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Abstract

Shared mobility systems have been recently tested and piloted in many cities

across the globe, with great potentials to be deeply woven into the fabric of future

urban planning. Those systems, not only represent a more sustainable paradigm

that can e↵ectively cut unnecessary emissions, but could also bring significant so-

cietal benefits by o↵ering a much more a↵ordable on-demand mobility option to

the general public. As a relatively new mobility trend, they expand at impressive

speeds, pouring more fleet and infrastructure into the urban spaces than ever before.

Coupled with the unpredictability of real-world environments, this brings numerous

challenges in the deployment and operation of those systems, impacting their us-

ability and practicality. In this thesis, we aim to better understand the structure,

process and interaction of the shared mobility system with such dynamics, from

a spatio-temporal learning perspective. Particularly, this thesis addresses the fol-

lowing question: How deep spatio-temporal learning can be tailored to improve the

prediction, optimisation and actuation of shared mobility systems in the presence of

real-world dynamics?

The key insight is that such dynamics, although complex, shouldn’t be

treated independently in an isolated way, but rather be considered and embraced at

full stack, from data modelling to inference and learning across the spatio-temporal

domain. Specifically, we tackle this in a number of research threads. Firstly, we pro-

pose D3P, a novel data-driven prediction framework, which is able to directly model

the spatio-temporal dynamics from the data with time-varying graphs, and uses be-

spoke dynamic Graph Convolutional Neural Networks (GCNs) to accurately forecast

vii



the future demand of the shared mobility systems in both short and long terms. We

further proposeMANS, a new optimisation approach for mobility infrastructure de-

ployment based on multi-agent neural search, which can e↵ectively discover the op-

timal infrastructure deployment strategies for shared mobility systems across space

and time, so that the services provided are ubiquitous to the users while sustainable

in profitability. Finally, we propose ac-PPO, a novel user-incentive based fleet man-

agement approach, which uses a deep reinforcement learning paradigm to guide the

rebalancing of fleet with cooperative users, and incorporates the dynamics by a new

action cascading technique. All the proposed approaches have been comprehensively

evaluated through large-scale experiments with extensive real-world datasets, and

the results have shown superior performance compared with the state-of-the-art,

demonstrating their potential impact on a broad spectrum of application scenarios.
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Chapter 1

Introduction

1.1 Motivation

One of the most significant trends of future urban mobility is sharing. According to

a recent study [1], by 2050 the average time that an urban travellers spends in tra�c

jams could be 106 hours per year, three times more than today. This motivates a

massive surge of investments in the public transportation sectors across the globe,

resulting in up to two-fold increase of market volume predicted by the International

Association of Public Transport [1]. However, while public transport remains a

fundamental form of urban mobility, which in fact is also shared, the emerging

challenges of future urban mobility may not be fully addressed by public transport

only. Driven by digital platforms and new technologies, new mobility models and

systems based on shared ownership, use and access of infrastructure (including bikes,

vehicles, chargers, etc.) are proliferating. We are witnessing a major change in

users’ preferences towards urban mobility, embracing novel approaches to balance

individuality and sharing, which is also in line with the recent shift towards sharing

economy in other sectors, such as accommodation, finance and learning [2].

The benefits of developing such shared mobility paradigm in urban spaces

are clearly visible. First of all, it is a greener mobility option which can e↵ectively

cut unnecessary carbon emissions on the roads, especially when clean energy is used,

e.g. electric vehicles/scooters. With the recent advances in battery technologies, this

electrified form of shared mobility has been deployed in various major cities, from

London [3], to Berlin [4] and Singapore [5]. Secondly, the sharing nature of such

systems, in that multiple users undertake trips with the same mobility resources, or

companies share costs for transport of goods, could make them more accessible and

a↵ordable than individual ownership. In practice, the implementation of this shared
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access based on users’ demand disconnects the usage of mobility infrastructure from

their ownership, further maximising the utilisation of total resources that our society

can a↵ord. Finally, compared with traditional solutions, shared mobility systems are

often more e�cient and flexible, since they essentially exploit the idle time of urban

mobility resources (e.g. according to [6], in the UK privately owned cars are unused

95% of the time), which are considered as the “wasted capacity”, opening up new

opportunities in the urban mobility space. In addition, thanks to the adoption of

new technologies in sensing, data acquisition and scheduling, share mobility systems

are becoming more data-centric and intelligent, capable of providing the ever better

travel experience: e.g. people can hail a taxi or source a bike at just a few clicks in

an app on their mobile phones, almost everywhere in the urban environment.

Besides improving their own services, the rich data generated by shared mo-

bility systems can also benefit a broader spectrum of urban applications, from tra�c

management, to city planning and facility development. In light of this, many organ-

isations including governments and major companies in the shared mobility sector

have been actively engaged in open data initiatives, such as the London Datas-

tore [7], NYC Open Data [8] and the GAIA project [9], advocating transparent

access to the relevant information. These data, typically in the format of spatio-

temporal records, such as trajectories, origin/destination pairs, and infrastructure

deployment processes, contains key insights on how such shared mobility systems be-

have in the real-world urban environments across space and time. It has been shown

by many existing studies [10, 11] that leveraging the data generated by shared urban

mobility systems can enable greater innovation, realise more e�cient services, and

support resilient communities.

Therefore, the problem investigated in this thesis is how to better model,

optimise and actuate the shared mobility systems in urban spaces, where a variety

of entities such as users, fleets and mobility infrastructure interact with each others

and generate heterogeneous data footprints across spatial and temporal domains. In

particular, we study the shared mobility systems in dynamic settings, in that they

may evolve over time, e.g. varying their operations or infrastructure under di↵erent

circumstances.

1.2 Challenges

We have identified the following key challenges in addressing the above problem:

Firstly, in reality shared mobility systems are operated in urban environ-

ments with unpredictable real-world dynamics. This means those systems can be

2



heavily a↵ected by various factors, such as weather, events, holidays, and other

transportation modalities, making accurate modelling and prediction of their be-

haviour challenging. In addition, as a relatively new mobility paradigm, in many

cities the shared mobility systems themselves are continuously expanding their ser-

vice/infrastructure at visible speeds. As shown later in this thesis, this expansion

process introduces significant extra dynamics, leading to new challenges on the mod-

elling, optimisation and actuation of those systems that haven’t been identified nor

fully addressed by existing approaches.

Secondly, in practice it is often not economical or even feasible to actu-

ate/optimise the shared mobility systems in vivo, e.g., implementing di↵erent oper-

ation strategies and retrospectively evaluating their corresponding e↵ects, especially

across the entire city. In this case, a common practice is to adopt simulation [12, 13].

However, building a high-fidelity simulation environment for shared mobility systems

at urban scale can be challenging, in that i) it is not trivial to faithfully capture

the fine-grained interactions between various elements involved in shared mobility

systems, such as users, fleets and infrastructure; ii) calibration of the simulation

environment are not straightforward, which often requires careful design to incor-

porate multi-modal real-world data; and iii) balancing simulation performance and

e�ciency can be di�cult, especially when the system operates across large ubran

spaces, involving substantial amount of fleet and infrastructure.

Thirdly, the data footprint generated by shared mobility systems can be

imprecise, incomplete and of huge volumes. This poses significant challenges in

processing and modelling the data, requiring novel machine learning approaches that

can scale gracefully on large data volumes (e.g. taxi trajectory data in a single day

could have millions of data points), and are resilient to various types of imperfections

(e.g. data loss caused by sensor malfunctioning, network faults etc.). In particular,

the fact that shared mobility systems are continuously expanding exacerbates these

challenges, e.g., the systems may expand to new areas with limited prior knowledge

or historical data, making it very challenging to e↵ectively model or optimise the

systems based on information available.

Finally, e↵ective learning for the spatio-temporal data produced by shared

mobility systems is a challenging task. Although deep learning methods have demon-

strated superior performances in many applications, such as image recognition and

speech processing, most of the existing techniques are designed either primarily

for spatial input, e.g. images, or temporal input, e.g. audio signals. In our case,

the spatio-temporal data generated by shared mobility systems has both spatial

and temporal properties that are much more complex, which can’t be directly cap-

3



tured by o↵-the-shelf learning techniques. In addition, one common assumption in

standard learning approaches is that the underlying data samples are generated in-

dependently (e.g. governed by i.i.d. variables). However, for spatio-temporal data

which encodes non-trivial dependencies within and across the spatial and temporal

domains, this is often not true: the data tends to be highly self correlated, posing

additional challenges for modelling and learning.

1.3 Contributions

To tackle these challenges, in this dissertation, we developed new modelling and

learning techniques for urban shared mobility systems, aiming to better understand

and optimise such systems in the presence of real-world dynamics. To this end, it

presents a class of novel approaches in a variety of scenarios, from demand forecast-

ing to infrastructure optimisation and fleet management. Concretely, the technical

contributions of this thesis are:

Accurate prediction of mobility demand is crucial for shared mobility systems

to operate e↵ectively and e�ciently, especially when the systems are continuously

expanding. In this thesis we propose a novel data-driven approach called D3P for

demand prediction, which is capable of modelling the complex dynamics caused by

such system expansion. In particular, we model the expanding shared mobility sys-

tem as time-varying graphs, and consider both temporal dependencies and spatial

correlations within the systems by employing a novel dynamic Graph Convolutional

Neural Network (GCN). On top of that, we further design a new multi-scale predic-

tor, which is able to not only forecast the expected future demand of the system,

but also the concrete instance demand during a given time period (e.g. specific days

in the near future), allowing the stake holders to better understand both short and

long term performance of the systems. Extensive experiments on real-world data

show that the proposed D3P approach significantly outperforms the state-of-the-art

forecasting approaches, o↵ering up to three-fold improvement in prediction accuracy

and is robust to di↵erent levels of expansion dynamics.

High-fidelity simulation of the shared mobility systems is the cornerstone for

many tasks that require learning via trail-and-error, such as infrastructure optimi-

sation and fleet management. To support development of such a simulation environ-

ment, we worked with an industry partner to conduct an in-depth case study of a

real-world shared mobility system for one year, and collected rich sets of data from

various sources to support our study. We analyse the operational models, expansion

processes and usage patterns of the system, and abstract key functionalities and
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operations that are crucial. We further show how to calibrate the simulation envi-

ronment with data collected from the real world, ensuring it to faithfully capture

the fine-grained details when the system interacts with users and infrastructure. To

support reproduciblility, we’ve also open-sourced the code [14] of our simulator to

the community.

Infrastructure optimisation plays an important role in the deployment and

expansion of urban shared mobility systems. Existing solutions often assume that

the optimisation may only happen once for all, while in this thesis we consider a

more realistic scenario, where the deployment of infrastructure could be optimised

dynamically as they operate. In particular, we would like to find the dynamic

deployment plan that guides system deployment through space and time, which is

optimal in terms of given objectives (e.g. service coverage or revenue) and constrains

(e.g. di↵erent stages of budget). To address that, we design a multi-agent neural

search algorithm called MANS, which works with our simulation environment and

uses reinforcement learning to discover viable deployment plans in spatio-temporal

domains. Specifically, we develop a hierarchical controller for the search process,

which iteratively proposes deployment plans and evaluates their performance. The

results are then propagated back to the controller as reward signals, whose param-

eters are updated accordingly so it can generate better plans in future iterations.

Through extensive evaluation, we show that development plans proposed by our

approach significantly outperform the actual plans used in the real-world, and the

existing one-stage or multi-stage optimisation approaches, achieving improvements

in both revenue and service coverage.

Fleets are the lifeblood of any urban mobility system, where for shared mo-

bility systems, e↵ective fleet management (e.g., rebalancing) is the key enabler to

unlock their full business potentials, especially when the systems are continuously

expanding. To the best of our knowledge, this thesis is the first to identify the

problem of rebalancing the expanding shared mobility systems. We consider the

user incentive-based rebalancing paradigm, and formulate the rebalancing problem

under the multi-agent reinforcement learning (MARL) framework, where we design

the agents, states and rewards for the specific context accordingly. To solve that,

we propose a novel approach of policy optimisation with action cascading called

ac-PPO, which uses two connected policy networks to handle the dynamics intro-

duced by the continuous expansion of the shared mobility systems. We also design

a regularised reward function for the proposed ac-PPO, which can e↵ectively sta-

bilise training and improve data e�ciency. With our simulation environment, the

proposed ac-PPO approach has been evaluated extensively, and results show that
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our approach significantly outperforms the state-of-the-art, o↵ering significant im-

provement in system net revenue and user demand satisfied rate.

1.4 Thesis Structure

The rest of this thesis is organised as follows. Chapter 2 covers the literature sur-

vey for the existing methods and work, which provides a general background for

the spatio-temporal learning. The following three chapters present the proposed

approaches of this thesis. Chapter 3 introduces the proposed data-driven demand

forecasting approach D3P for accurate prediction of mobility demand in the pres-

ence of real-world expansion dynamics, which tackled the first challenges identified

above. Chapter 4 presents the design of our simulation environment, and the pro-

posed infrastructure optimisation approach MANS, which uses multi-agent neural

search to discover optimal deployment strategies. Specifically, we introduce a hier-

archical controller, which iteratively proposes deployment plans, and evaluates their

performance and then the results are propagated back to the controller as rewards,

whose parameters are updated accordingly so it can generate better plans in the fu-

ture. Chapter 5 discusses the proposed fleet management approach ac-PPO, which

formulates the task as a Multi-Agent Reinforcement Learning (MARL) problem and

introduce techniques of action cascading for policy optimization, which is able to

work with the dynamics in the system and solve the imbalance problem via incen-

tivizing users. Finally in Chapter 6 we conclude the thesis and outline potential

future directions. Now we are in the position to go through the literature related to

this thesis.
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Chapter 2

Literature Review

This chapter covers the background and existing work related to the contributions

of this thesis. Specifically, in Section 2.1 we briefly introduce the concept and

taxonomy of shared-mobility systems in urban settings, which describes the main

environment where all the proposed approaches in this thesis are working on. Then

in Section 2.2 we survey existing machine learning techniques for spatio-temporal

data analytics, from the traditional “shallow” learning methods to more recent deep

neural networks (DNNs) and geometric deep learning approaches, where the tradi-

tional ”shallow” learning methods and deep neural networks are used as baselines in

the experimental parts of the following contribution chapters, while the geometric

deep learning approaches are core components for the proposed demand forecasting

approach in Chapter 3. Finally in Section 2.3, we discuss reinforcement learning

techniques, another important research field closely related to this thesis, and high-

light their applications in the urban mobility sector as both of the infrastructure

optimisation in Chapter 4 and fleet management in Chapter 5 are solved through

reinforcement learning approaches.

2.1 Shared Mobility Systems in Urban Settings

Broadly speaking, urban mobility refers to the trips generated daily by the inhab-

itants from one point in a city to another, which are associated with methods,

conditions and data, such as the modes of transport selected, length of trip, time

spent in transport, etc [15]. In the early ages, the trips generated by people were

far less due to the limitation of travel methods. With technology advances, numer-

ous new modalities for travel have been invented, such as buses, subway, or private

cars. However, the increase in urban population poses significant challenges to the
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capacity of transport infrastructure of the cities, where now most of the world’s

cities are congested and heavily polluted. In addition, new economy models such

as e-commerce introduces extra demand for mobility, where people and goods flow

across urban areas, making mobility a key competency for modern cities to func-

tion. To alleviate those challenges, shared mobility systems, which have already

modified our travel habits during the past decades, emerged with the aim to im-

prove the utilisation of urban mobility resources and achieve more flexible ways of

travel. In the following, we start by revisiting the traditional shared mobility systems

such as buses and taxis, and then discuss the more recent ride-hailing and shared

bike/vehicle systems that have been increasingly popular in major cities across the

world.

2.1.1 Traditional Urban Shared Mobility Systems

Generally, the term “shared mobility” refers to the modality where transportation

services and resources are shared among users, either concurrently or sequentially,

i.e. one after another. In that sense, buses, taxis and other public transportation

systems, which are based on regular operation along fixed routes according to cer-

tain timetables or arbitrarily across the urban environments, can be categorised as a

form of shared mobility systems. People can access them at locations where they are

available such as bus stops or taxi stations, and then proceed to their destination.

For many years, these public shared mobility systems are one of the primary trans-

portation modes in cities [16], and have attracted numerous research interests to

address the associated challenges, such as bus route planning and taxi dispatching.

For instance, the work in [17] proposes a two-phase approach for night bus route

planning, aiming to find a bidirectional route that can maximize the number of

passengers expected along the route, while the work in [18] designs a dynamic route

planning approach for shuttle buses. For taxi, early work in [19] introduces a multi-

agent approach for automating taxi dispatching, and later work in [20] develops a

robust data-driven taxi dispatching framework, which takes the spatial-temporally

correlated demand uncertainties into account. The work in [21] also proposes a pas-

senger finding and driver dispatching strategy using spatio-temporal features, while

di↵erent service strategies of taxi drivers have been studied in [22]. To better un-

derstand the behaviour of such systems, historical GPS traces of vehicle trajectories

are often considered, e.g., for optimal route selection [23].
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2.1.2 Ride-hailing Systems

Recently, in addition to the traditional taxi services, a new form of shared mobility

systems, named ride-hailing services, such as Lyft, Uber and Didi [24] are gaining

their popularity in major cities. Those systems, unlike the standard taxi which

have to be hailed from streets or taxi ranks, allow users to order a customised

ride using smartphone apps to travel from A to B [24]. In this way, ride-hailing

systems o↵er more comfortable on-demand mobility options for door-to-door travel,

and are usually cheaper than their counterparts [25], leading to increase in adoption

among urban travellers. However, compared to traditional shared mobility systems,

the ride-hailing systems, as an emerging modality the ride-hailing systems, also

introduce new challenges. One fundamental problem that has attracted a lot of

research e↵orts is how to e↵ectively and e�ciently match the mobility requests of the

users with the current states of the system, e.g. capacity of nearby available drivers.

For instance, the work in [26] develops an order dispatching algorithm for such

ride-hailing platforms, aiming to optimise the platform’s long-term e�ciency, while

in [27] the authors consider preference-aware order assignment using online stable

matching to maximise the expected total profit, as well as minimising the expected

total number of blocking pairs. Another parallel yet important problem for the

ride-hailing systems is the design of an optimal pricing strategy, i.e., when and how

much to charge the users to trade-o↵maximum profit for customer satisfaction. This

can be addressed by dynamic pricing, e.g., the work in [28] proposes the ADAPT-

Pricing scheme, which sets prices based on di↵erent origin destination pairs of the

rides rather than the origins only. Besides profitability, achieving certain levels

of fairness in pricing strategies is also essential to the success of such ride-hailing

systems. For instance, the work in [29] introduces a fair pricing model, which seeks

for profit while satisfying constraints (e.g. availability and a↵ordability) of di↵erent

user groups.

2.1.3 Station-based Ride-sharing Systems

Unlike the ride-hailing systems where users typically won’t need to drive the vehi-

cles by themselves, recently, another shared-mobility paradigm, station-based ride-

sharing systems have been widely adopted in di↵erent cities, e.g., shared bikes in-

cluding Capital Bikeshare in Washington DC [30] and Velib in Paris [31], and shared

cars or car clubs such as Zipcar in London [32]. Conceptually, a station-based ride-

sharing system maintains a set of designated stations (in some cases can be just

parking spaces) across the city, where each station has a fixed capacity for fleet
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to park, i.e., bikes or cars. Using the systems is straightforward: a user can pick

up a bike/car from any stations to start the trip, and then return the bike/car to

another station when finish. The rental price is typically calculated based on trip

duration. Since those systems depend heavily on their infrastructure, i.e., stations,

one natural problem arises is that how stations should be deployed across the city to

improve their operations. The work in [33] tackles this problem by leveraging open

data to forecast potential trip demand, using a two-phase feature selection method

to extract customised features for prediction. On the other hand, the work in [34]

proposes a station optimisation approach for bike sharing systems, which selects the

appropriate station locations by integrating multiple factors into decision process.

Another common problem for such station-based ride-sharing systems is the imbal-

ance distribution of their fleets across the stations. Intuitively, for those systems

to work well, at most of the time, a station should have both su�cient number of

vehicles for users to borrow, and ample amount of parking/docking spaces for users

to return. However, due to certain patterns of human mobility, e.g., commuting to

central areas in the morning, the fleet distribution often becomes very skewed, and

thus rebalancing is needed. For example, in order to rebalance bikes with minimum

cost, the work in [35] develops di↵erent bike reservation policies, and suggests users

to visit the less crowded stations instead of the busy few. Another line of work fo-

cuses on minimising the rebalancing cost in terms of distance travelled, e.g., in [36]

a heuristic method is developed for single vehicle static rebalancing, which solves

the rebalancing problem for up to 60 stations with a branch-and-cut procedure. The

work in [37], on the other hand, incorporates data from multiple sources to optimise

rebalancing in bike sharing systems.

2.1.4 Station-less Ride-sharing Systems

Unlike the station-based ride-sharing systems which needs stations to park/dock

vehicles/bikes, recently the station-less ride-sharing systems are becoming popular,

particularly in the shard bike sector, such as MoBike and ofo [38]. Those systems

relax the requirements that shared bikes should only be rented from and returned

to designated stations, but the users can take any available bike on the street to

start the trip, and return to any locations that are compliant with urban regulations.

Intuitively, such station-less systems are able to provide more flexible and convenient

travel experiences than their station-based counterparts, but they may su↵er more

from the problem of imbalanced fleet. Since there is little or no restrictions on where

the bikes can be parked, in some cases the bikes may be piled at certain locations,

causing serious problems such as blockages along road segments. Recent work has
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identified and tried to mitigate such problems. For instance, the work in [39] detects

possible parking hotspots before the station-less ride-sharing systems were deployed

by fusing multi-source urban data, allowing appropriate actions to be taken a priori

to avoid potential pitfalls. The work in [40] proposes a pricing scheme to incentivize

users to voluntarily park the bikes to less congested locations, i.e. rebalancing the

system. On the other hand, the fact that those systems are station-less means that

the trajectories generated by them can be richer and more diverse, which may embed

useful information for tasks such as urban planning and management. For example,

the work in [41] leverages trajectory data from real-world station-less bike sharing

systems to help the planning of new bike lanes in cities, while the work in [42] uses

similar information to detect illegal parking events in urban environments.

2.1.5 Shared Electric Mobility Systems and Infrastructure

With the recent advances in battery technologies and the increasing concerns in

emissions, Electric Vehicles (EVs) have gained rapid adoptions in many urban mo-

bility systems. However, this electrification of fleets has introduced a number of

new challenges. Unlike the traditional internal combustion engine (ICE) powered

vehicles, the EVs typically have limited range, while the charging time can be much

longer than filling up the petrol or diesel cars. In addition, although growing con-

tinuously, the charging infrastructure for EVs is still less ubiquitous than petrol

stations, where the potential incompatibility between chargers and battery speci-

fications makes it harder to charge a EV smoothly [43]. In the context of shared

mobility systems, such unique properties of EVs may also set constraints in their

normal operations, e.g. EVs can’t be driven beyond the remaining range without

charging, and they often need to be su�ciently charge to serve future orders. The

work in [44] studies these properties in the context of electric taxi in a city, which

conducts a comprehensive measurement investigation on the long-term evolving mo-

bility and charging patterns of those systems, using real-world data collected over

five years. The work in [45] considers route planning and optimisation for EV fleet,

which uses a multi-objective route planner to guide the EVs. There is also a rich

body of work [46, 47] on EV charging scheduling, which studies how to plan for dif-

ferent types of EVs to be charged e�ciently across space and time. Another active

research area is the development and planning for EV charging infrastructure [45].

For instance, the work in [48] considers region-based charger planning to minimise

range anxiety of EV users, while the work in [49], the interactions between charger

deployment and EV users are taken into account when planning the infrastructure.

The work in [10] proposes a charger planning approach which aims to maximise

11



the overall satisfied user charging demand with given budget constraints, while the

work in [50] considers a heuristic algorithm to also take the social factors (e.g., fair-

ness) into account when deploying charging facilities, arguing that charging demand

should be satisfied not only in central places but also in relatively rural areas.

2.2 Machine Learning for Spatio-temporal Analysis

After reviewing the concepts and taxonomy of shared-mobility systems in urban

settings, and it is obvious that the majorities of entities in our cities operate and

evolve across both space and time, forming spatio-temporal processes that describe

the dynamics and interactions between them, e.g. the moving of vehicles forms traf-

fic flow, and the development of infrastructure reshapes functionalities of di↵erent

urban regions. With the recent development of sensing and wireless communica-

tion technologies, capturing and streaming data from those processes becomes much

more straightforward, enabling a number of new applications such as intelligent traf-

fic management, mobility modelling and urban climate control. Those applications,

although with di↵erent objectives and assumptions, rely heavily on the capability

of extracting relevant knowledge from the collected spatio-temporal data, a task

often known as spatio-temporal analysis. Machine learning techniques, on the other

hand, have demonstrated superior performance in processing data in both spatial

and temporal formats, from classifying objects in images to recognising speeches

with audio signals. These techniques and many of their variations, have also been

used to analyse the spatio-temporal data, particularly in urban computing context,

e.g., improving service levels of taxi [51], predicting user demand [52] and reposition-

ing vehicles in shared mobility systems [40]. In the following, we thoroughly survey

the machine learning approaches that are relevant to spatio-temporal analysis, from

the traditional shallow learning approaches, to the more recent deep learning and

reinforcement learning.

2.2.1 “Shallow” Learning Approaches

With slight abuse of terms, we use “shallow” learning to refer to the conventional ma-

chine learning models, which do not use deep neural networks. For spatio-temporal

data which contains correlations along both spatial and temporal axis and between

them, the shallow learning approaches typically model the dependencies in spatial

and temporal domains separately or in tandem, e.g., they may extract spatial fea-

tures (e.g., geographical distance) and temporal properties (e.g., periodical patterns)

from the data, and use those features for learning. Therefore without loss of gener-
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ality, in the following we will cover the existing shallow methods on spatial learning

and temporal learning respectively, where those methods are often employed jointly

for spatio-temporal analysis.

Spatial Learning. Traditional approaches for spatial learning typically consider

clustering and kernels, which aims to group features in the spatial domain, or inter-

polate based on existing data samples. A simple yet widely used clustering algorithm

in spatial learning is k-means, which firstly identifies k centroids and then assigns

each data point to the clusters represented by the nearest centroid. For instance,

the work in [53] uses k-means to identify the spatial pattern in storms and [54]

considers a similar clustering approach to profile hotspots of road accident. Other

popular clustering algorithms for spatial learning include hierarchical clustering and

density-based approaches such as DBSCAN [55], which uses di↵erent techniques to

extract correlations of the data in spatial domain. A similar but slightly di↵erent

learning approach often used in classification and prediction tasks for spatial data is

the Supported Vector Machine (SVM), which aims to find a hyperplane in feature

space that can best separate the data points [56]. For example, the work in [57]

applies SVM in environmental data classification and [58] proposes an algorithm for

short-term tra�c flow prediction using adaptive SVM. For interpolation in spatial

data, Gaussian Processes (GPs) [59] are popular models, which are able to directly

represent uncertainty and thus can be used to gain physical insight into the pro-

cesses. Also known as Kriging [60], GPs have been widely considered in various

interpolation/regression tasks in spatial learning, particularly in the urban comput-

ing/GIS community, such as air quality estimation [61], precipitation forecasting [62]

and demographic analysis [63].

Temporal Learning: Learning approaches for temporal data (e.g., time series) pri-

marily focus on prediction/forecasting tasks. Single Exponential Smoothing (SES)

and Auto Regressive Integrated Moving Average (ARIMA) are the two most widely

used approaches, where the former is often used for data with no clear trend or

seasonal pattern while the latter aims to capture the autocorrelations in the data.

Concretely, SES requires a single parameter, called the smoothing factor, which is

often set to values between 0 and 1. Larger values indicate that the more recent

data points would have bigger impact on the model, while smaller values mean the

contrary [64]. Using the SES model, the work in [65] forecasts urban water ecological

footprints using exponential smoothing analysis and in [66] exponential smoothing is

adopted for urban tra�c forecasting. On the other hand, ARIMA is often parame-

terised as ARIMA(p, d, q), where p is the order of autoregressive model (i.e., number

of time lags), d is the degree of di↵erencing (i.e., the number of times the data have
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Figure 2.1: A minimalist example of the multi-layer perceptron (MLP).

had past values subtracted) and q is the order of moving-average model [67]. Those

parameters can be adjusted to fit the data as well as possible. ARIMA has also been

applied in many urban application scenarios that involve time series analysis, e.g.,

the work in [68] adapts ARIMA to forecast daily mean ambient air pollution, while

in [69] a variant of ARIMA model has been considered for travel time prediction in

urban environments.

2.2.2 Deep Neural Networks

Deep learning methods have gained significant popularity thanks to their supe-

rior performance in a broad range of applications, such as object detection [70, 71],

speech recognition [72, 73], natural language processing [74], machine translation [75]

and many other areas [76, 77]. Essentially, they are very good at approximating com-

plex non-linear functions and capable of extracting features automatically from raw

data without the e↵ort of pre-processing and hand-crafted feature engineering [78].

Therefore, deep learning approaches have also been introduced to spatio-temporal

analysis, and demonstrated promising results in various application scenarios. In

the following, we will give a brief overview of the di↵erent types of deep neural

networks that are considered or relevant to the approaches proposed in this thesis,

including the multi-layer perceptron (MLP), convolutional neural networks (CNNs),

recurrent neural networks (RNNs) and graph neural networks (GNNs).

Multilayer Perceptron (MLP). A MLP is a class of feedforward Artificial Neural

Networks (ANNs), which typically consists of at least three layers of neurons: an

input layer, a hidden layer and an output layer. Each of those layers contains neu-
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Figure 2.2: An example of Convolutional Neural Networks (CNNs) used for image
classification task.

rons, which are wired by connections. Neurons receive inputs from their predecessor

neurons in previous layer and produce output to the successor neurons in the next

layer, via certain activation functions, which can be either linear or nonlinear. Note

that there is no connections between neurons in the same layer. The connections

between the neurons are associated with weights, which are multiplied to the input

signal. Therefore, the output of each neuron is a weighted sum of the inputs fol-

lowed by neuron’s activation function, which is usually nonlinear. Fig. 2.1 shows a

minimalist example of a MLP.

The process of adjusting the weights during the learning process is often

refereed to as training. In practice, the most common training technique for MLP

and other ANNs is gradient descent. It calculates the gradient of each weight with

respect to a predefined loss function, which measures the di↵erence between the

output and the ground truth (i.e. labels). Essentially, it estimates by what amount

the error will increase or decrease if the weight were increased by a tiny amount.

To calculate the gradients, a standard approach is back-propagation. The idea is

to first perform a feed-forward pass from the input neurons to the output neurons,

and compute the loss between the output and the labels. Then a backward pass

is performed, where given the loss, the gradient of each weight can be iteratively

calculated according to the chain rule. The weights are adjusted in the negative

direction of the gradient, where the step size of the adjustments is proportional to

the magnitude of the gradient and the learning rate, a hyperparameter defined a

priori.

Convolutional Neural Networks (CNNs). In deep learning, CNNs are designed

particularly to be shift/space invariant, which have been commonly applied to pro-

cess image data. It takes the advantage of the properties of natural signal: local

connections and shared weights, where the convolution kernels (i.e., filters) slide

along the input data/features and output translation equivariant responses (often

known as the feature maps). The weights sharing mechanism vastly reduces the
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number of parameters compared to the fully connected MLP with the same input

and output dimensions. Fig. 2.2 shows a typical CNN architecture for image clas-

sification, which contains three types of layers: the convolutional layer, the pooling

layer and the fully-connected layer.

• A convolutional layer convolves the input and output the result to the next

layer, using convolutional filters and non-linear activation functions. It mimics

the response of a neuron in the visual cortex with respect a specific stimulus,

where each neuron only processes data for its receptive field. Compared to the

fully connected layers used in MLPs, the convolutional layers require much

fewer learnable parameters due to weight sharing between filters, allowing

deeper networks in practice. It is particularly suitable for processing data

with a grid-like topology (e.g., images) since spatial correlations are naturally

considered during convolution.

• A pooling layer performs downsampling along the spatial domain, which com-

bines the outputs of neuron clusters at one layer into a single neuron in the next

layer. In practice, pooling can be either local or global, where local pooling

operation considers neurons in small clusters, where global pooling operates

on all neurons of the feature map. There are two types of pooling operation

commonly used, max pooling and average pooling. The former extracts the

maximum value of the cluster or feature map, while the latter computes the

average value.

• A fully-connected layer is the same as the layers in MLP as discussed above,

where every neurons in the previous layer is connected to every neuron in

this layer. In CNNs, it is often used to flatten the output from the last

convolutional/pooling layer, to generate the predicted labels.

Essentially in a typical CNN, the convolutional layers perform non-linear

transformations to the input features, where spatial correlations are taken into ac-

count by the convolution operations, while the pooling layers reduce the feature

dimensions. Similar to the MLPs, CNNs can be trained using the family of gra-

dient descent algorithms. In practice, CNNs have demonstrated their success in a

number of di↵erent computer vision tasks, from object detection [79] to robotics

perception [80] and autonomous driving [81]. In the urban computing community,

CNNs have also gained considerable interests and been applied to a number of tasks

that require capturing the complex spatial correlations, such as citywide crowd flow

prediction [82] and tra�c speed estimation [83].
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Figure 2.3: An example of (left) Recurrent Neural Networks (RNNs) and (right) its
unfolded form in time.

Recurrent Neural Networks (RNNs). RNNs are neural networks designed for

processing sequential or time series data such as audio and text, which consume one

element of the input sequences at a time, while maintaining their hidden states in

a “state vector” that implicitly contains information about the history of all past

elements of the sequence. Fig. 2.3 illustrates an example of the typical RNNs and

the associated unfolded form in time, where x is the input and o is the output. h is

the hidden state of the RNN, which maintains the internal “memory” of the input

sequence. U , V and W are the weights of the RNN, which are shared among all the

timestamps. Therefore, a RNN can map an input sequence x = {xt} to an output

sequence o = {ot}, where each ot depends on all the previous input {x1, ..., xt}.
Given its unfolded form (As shown on the right of Fig. 2.3), it is straightforward

to train a RNN using backpropagation: we could consider the unfolded network as

a very deep feedforward network, where the outputs at di↵erent timestamps in the

RNN are the outputs of di↵erent neurons in the feedforward network, and all layers

share the same weights.

Although theoretically RNNs can process arbitrarily long input sequences, in

practice, it has been shown that it is di�cult to remember long-term dependencies

over time due to the vanishing gradient problem [84]. Long short-term memory

(LSTM) networks [85] are one of the most popular RNN variants that can address

such problems, which use a special hidden unit called the memory cell to handle

information from the past. In particular, a common LSTM unit also contains an

input gate, an output gate and a forget gate. Those gates regulate the flow of

information (i.e., features in forward pass while gradient in backward pass) into and

out of the cell, so that the cell can remember states over arbitrary time. LSTMs

can partially avoid the gradient vanishing problem, as they allow gradient to flow

unchanged across the network with the help of those gates. Due to such desirable
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Figure 2.4: (Left) Standard 2D convolution on Euclidean data. (Right) Convolution
on graph structures.

properties, LSTMs (or RNNs in general) have been widely applied in applications

such as language modelling [86] and machine translation [87], while recently they

have also been used extensively in the urban computing context where time series

analysis plays an important role, e.g., estimating mobility flow [88], predicting tra�c

condition [89] and detecting travel mode [90].

2.2.3 Graph Neural Networks (GNNs)

As we discussed above, deep neural networks, including MLP, CNNs and RNNs,

have demonstrated unprecedented performance in various tasks involving di↵erent

types of data, from images to text and audio signals. Here an implicit assumption

that those approaches made is that the underlying data has to be Euclidean. For

instance, images are instances in the 2D Euclidean space, where text and speech

data can be viewed as 1D Euclidean structure. However in practice, data can also

be non-Euclidean: e.g., social networks, gene/protein data and 3D mesh/graphs.

For those types of data, it is indeed possible to enforce Euclidean constraints and

then adopt standard learning approaches in Euclidean domains, but such conversion

often oversimplified the non-Euclidean correlations within the data, and thus harm-

ing performance. To address such limitations, Graph Neural Networks (GNNs) are

designed to perform inference and learning on non-Euclidean data, e.g., data that

can be described in graphs [91]. In the following, we focus on an important type of

GNNs, the Convolutional Graph Neural Networks (ConvGNNs), which works in a

similar way with the CNNs but on graphs. Fig. 2.4 shows an example of compari-

son between the standard 2D convolution on Euclidean data such as images (left),

and the convolution on graph structures (right). Like CNNs, the intuition behind

ConvGNNs is to generate the representation of a given node by aggregating its own

features and information from neighbouring nodes (i.e., those nodes connected to
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itself via edges). This is also the concept of node embedding in graph theory: we

try to map the nodes to an embedding space, in such a space similar nodes in the

graph (e.g., carrying similar features or topological properties) are closer to each

other. There are mainly two types of ConvGNNs: the spectral-based ConvGNNs,

and the spatial-based GCNs.

Spectral-based ConvGNNs. The spectral-based ConvGNNs are mathematically

based on graph signal processing, which generalise the convolution operation to

graph structures. In particular, it considers signal processing functions such as the

Fourier transform, tools usually reserved for signals/frequencies, and applies them

to graphs. Under this setting, the convolution operations are performed by finding

the eigendecomposition (a way of factoring a matrix into a set of eigenvectors and

eigenvalues) of the graph Laplacian, which is called the spectral decomposition. In

fact, the eigenvectors of the graph Laplacian represent the Fourier basis of the input

graph, and therefore the convolution on graph can be defined as the multiplication of

the input signal x 2 RN (a scalar for each of the N nodes) with a filter g✓ = diag(✓)

parameterised by ✓:

g✓ ⇤ x = Ug✓U
T
x (2.1)

where U is the matrix of eigenvectors of the normalised graph Laplacian L = IN �
D

� 1
2AD

� 1
2 = U⇤U

T . HereD is the degree matrix of the graph, A is the adjacency

matrix, and ⇤ is a diagonal matrix containing the eigenvalues. In practice, most

of the spectral-based ConvGNNs follow the above definition, and the key di↵erence

between di↵erent variants lies in the choice of the filter g✓, e.g., the Spectral Graph

Convolutional Neural Network (Spectral GNN) [92] considers g✓ as a set of learnable

parameters, while the ChebNet [93] uses Chebyshev polynomials of the diagonal

matrix of eigenvalues to approximate g✓, reducing the computational complexity.

Spatial-based ConvGNNs. Unlike the spectral-based approaches that rely on

spectrum analysis on graphs, the spatial-based ConvGNNs define convolution oper-

ation based on the spatial relations between the nodes, which is very similar to the

standard CNNs on images. In that sense, images can be viewed as a special form of

graphs, where each pixel is a node, directly connecting to the nearby nodes. A convo-

lutional filter is applied by taking the weighted average of pixel values of the central

node and its neighbors across each channel. Similarly, spatial-based ConvGNNs also

convolve the central node’s representations (features) with the representations of the

neighbouring nodes to derive the updated features for that central node. Essentially

this allows information propagate across nodes in the graph via edges, and the main

challenge is to define convolution operations that work well with di↵erently sized

neighbourhoods and thus are able to maintain the local invariant properties like
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CNNs. In fact, some popular spatial-based ConvGNNs, e.g., NN4G [94], share very

similar filter formulations with the spectral-based approaches (e.g., GCN [95]), but

they use the unnormalised adjacency matrix instead of the normalised matrix.

In the context of urban computing, due to their non-Euclidean nature, many

real-world problems, such as forecasting, estimation, and inference of demand/tra�c/air

quality, that require analysis in the spatio-temporal domains, have been tackled with

the emerging graph-based deep learning techniques [96, 97]. In those work, spatial

correlations are often captured by variants of GNNs as discussed above, while tem-

poral dependencies are typically modelled with certain forms of the recurrent neural

networks (RNNs). For instance, the work in [96] models tra�c flow as a di↵usion

process on directed graphs for tra�c forecasting, while the work in [52] and [97]

propose frameworks that use multi-graph convolutional neural networks to predict

demand for taxi and ride-hailing services respectively. Another work in [11] uses

an encoder-decoder structure on top of Multi-Graph Convolutional Networks to

estimate bike flow between stations within a bike sharing system.

2.3 Reinforcement Learning for Urban Mobility

Besides the machine learning techniques discussed above, reinforcement learning is

another popular way to solve many problems in urban settings. Unlike the afore-

mentioned machine learning techniques which typically train algorithms/networks

with known ground truth labels, Reinforcement Learning (RL) o↵ers an alternative

way for artificial agents, software or robotic, to discover optimal ways of performing

certain tasks. The intuition is that in some cases we won’t be able to have a clear

vision of what actions of an agent are “correct”, but can only tell whether a task

completed by the agent is desirable, or “rewardable”. In other words, the agents

won’t be instructed with the sequence of actions to perform in order to complete

the task, but rather if a particular sequence of actions was good enough or not.

Reinforcement learning is designed particularly for those scenarios, where instead

of testing every possible action sequences to find the appropriate one, it uses states

as a mechanism to remember what happened during a sequence of actions, and it-

eratively propagates the rewards received at the end of the task (when a sequence

of actions are completed) to the actions of the very sequence. Conceptually, RL is

a family of machine learning methods that learns the decision making policies for

agents while they interact with the environment and perform required tasks. Ac-

cording to the number of agents involved in the learning process, RL approaches can

be categorised into two classes: the single-agent and the multi-agent frameworks.
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Figure 2.5: The general single-agent reinforcement learning framework.

In the following, we briefly introduce the general formulation of the two classes of

RL approaches, and then discuss a recent popular RL paradigm, deep reinforce-

ment learning, which is also adopted in this thesis, and its applications in the urban

mobility sector.

2.3.1 Single-agent Reinforcement Learning Framework

As suggested by its name, the single-agent RL framework considers only one agent

globally, which interacts with the environment by taking actions and then perceives

the e↵ects of those actions. The environment in return, updates the agent with a

new state after actions are performed, and a reward/penalty measuring how the

actions contributed to the specific goal. Therefore in this case, the objective of the

agent is to maximise certain forms of the reward, e.g., sum of all rewards, and the

RL algorithm aims to adjust the behaviours of the agent to achieve that. This can

be modelled with the Markov Decision Processes (MDPs) [98], which is the basis for

typical RL frameworks. In particular, a MDP can be defined as a tuple (S,A, T ,R)

where:

• S is the set of states;

• A is the set of possible agent actions;

• T : S⇥A⇥S �! [0, 1] is the state transition function, defined as a probability

distribution over the states: T (s, a, s0) = p{st�1 = s0|st = s, at = a}. st is the
state at time t, at represents the action taken after observing state st and st+1

indicates the new state at time t+ 1;

• R: S ⇥ A ⇥ S �! R is the reward function, which determines the expected

value of the reward given the current state s, action a and the resulting next
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state s0: R(s, a, s0) = E{rt+1|st = s, at = a, st+1 = s0}. Here rt+1 is a specific

reward at t+ 1 given st and st+1, over which R computes the expectation.

In the above formulation, the state transitions T and reward function R
are static, i.e., they won’t change over time. Therefore, in this case the agent

performs an actions a and collects responses from the environment, in the form of

the subsequent state s0 and resulting reward r. Then for RL, the task of deciding

which action a 2 A to choose is governed by a policy function, which is often denoted

as ⇡. Concretely, a policy ⇡ = {s0, a1, s1, ..., aT�1, sT } is a sequence of probability

distributions, defining the probability that each action shall be chosen given the

states. The key goal of RL is to find the optimal policy which will maximise the

expected reward over time [99]. Broadly speaking, there are two classes of RL

approaches to solve that: the model-based and model-free RL approaches.

Model-based RL. A model-based RL approach often learns the model of the

system/environment explicitly, and then uses methods such as dynamic program-

ming [100] to compute the optimal policy given the estimated model. Classical

model-based RL includes value iteration and policy iteration, where the former tries

to determine the optimal value function (expected reward for some state given the

agent is following certain policy) that can lead to the optimal policy [99]. On the

other hand, rather than finding the policy through value functions, the policy it-

eration approach manipulates the policy directly, which typically consists of two

alternating steps: policy evaluation and policy improvement. The idea is that we

firstly evaluate the state values corresponding to the current policy, and then im-

prove the current policy in the greedy way with respect to the current value function.

In practice, policy iteration could end up with fewer iterations than the value iter-

ation approach, but it could also be slow in each iteration. Thus it depends on the

specific application scenario to choose between the two methods.

Model-free RL. The above model-based RL approaches typically assume that the

state transition T and reward function R are known, which in many cases is not

possible, especially if we only want to learn the optimal policy while interacting with

the environment. Therefore, the model-free RL approaches try to learn the state

value function, and derive the optimal policy from this estimated function. The

simplest algorithm in this context is the temporal di↵erence (TD learning [99]). The

idea is to use the immediate reward signal to approximate the state value function,

which is essentially a kind of stochastic approximation. It shares similar policy

evaluation step as the policy iteration approach, but the di↵erence is that in TD we

never improve the policy. There are two di↵erent types of learning approaches in this

category, o↵-policy and on-policy, depending on if the policy being evaluated and
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improved will be used to control the MDP or not. A classic o↵-policy method that

has been widely used is Q-learning [101], which learns the optimal Q-values, instead

of the state values, to find the optimal policy. The Q-values provide information

on the future quality of actions, based on which the agent will select the behaviour

policy in a probabilistic and greedy way, typically according to a parameter ✏. On

the other hand, the on-policy methods, such as Sarsa [102], operate according to

the same policy which has being improved.

2.3.2 Multi-agent Reinforcement Learning Framework

The multi-agent RL framework is based on the same idea of its single-agent counter-

part, but involves more than one agents interacting with the environment and each

other. Compared to the single-agent RL, the challenge is that the actions from each

agent will have some e↵ect on the environment, and thus the outcome may depend

very much on what the other agents do. Therefore, the single-agent based RL tech-

niques cannot be directly applied here since they are designed to solve stationary

environment. From each agent’s point of view, in the multi-agent settings the envi-

ronment is no longer stationary. Therefore, the multi-agent RL framework typically

model the process with stochastic games, which can be viewed as an extension to

the single-agent MDP in a sense as they deal with multiple agents in multiple states,

involving compromises and cooperations. Formally, they can be defined as a tuple

(n,S,A1,...,n, T ,R1,...,n), where:

• n is the number of agents in the environment;

• S is the joint states;

• Ai is the set of possible actions of agent i and A = A1 ⇥ ...⇥An is the joint

action space;

• T : S ⇥A⇥ S �! [0, 1] is the transition function depending on the actions of

all agents;

• R: S ⇥ A ⇥ S �! R is the reward function representing the expected value

of the next reward, which also depends on the action of all the agents.

In this multi-agent settings, for a given agent i, a policy ⇡i is still a collection

of probability distributions over the available actions, one for each state. The col-

lection of policies, one for each agent, is called the jointly policy. In the trivial case

where there is only one agent, such a stochastic game can be reduce to a MDP, which
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can be solved with the single-agent methods discussed above. On the other hand,

two types of approaches are designed to solve the stochastic game: the best-response

learners and equilibrium learners [99]. In particular, the former tries to learn the

optimal policy with respect to the policies of the other agents, without consider

equilibrium, while the latter aims to find the policies that are Nash equilibrium for

the stochastic game [99].

2.3.3 Deep Reinforcement Learning

In practice, the state space S in many problems can be complex and of high dimen-

sional, which often require manual engineering in traditional RL approaches. Deep

reinforcement learning combines reinforcement learning and deep learning, which

has shown significant advantages over the traditional approaches, e.g., it can pro-

cess unstructured and large input data, such as raw images captured by cameras

and sensor data recorded by robots, and decide what actions to perform given the

objectives. Deep RL has been widely applied and enabled remarkable progresses in

a number of research areas, from playing challenging games [103], to robotics [104]

and computer vision [105].

Similar to the traditional RL approaches, deep RL can also be categorised

into model-free and model-based methods. In model-based deep RL, a forward

model of the environment can be built using a deep neural network, which can be

trained by supervised learning. The actions of the agents can then be obtained from

the learned model. The major benefit of model-based deep RL is that it can signifi-

cantly reduce the sample complexity, while achieving the predictive power [106]. On

the other hand, model-free deep RL approaches learn policies from interactions (i.e.,

samples) between the agent and the environment, without explicitly modelling of

the forward model of the environment. A well known deep RL approach is the deep

Q-network (DQN) [107], which uses a deep network to approximate the Q function

in the traditional Q-learning. On the other hand, policy optimisation/gradient ap-

proaches, such as Proximal Policy Optimisation (PPO) [108], compute the policy

directly with deep neural networks. The actor-critic methods, e.g., A2C [109], typ-

ically employ two deep neural networks, one critic and one actor, where the critic

learns the value function (measuring how good the action taken is), while multiple

instances of actors (controlling how the agent behaves) are trained in parallel.
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2.3.4 Applications in Mobility Systems

Reinforcement learning, especially deep RL has also been used in the mobility con-

text, due to their unprecedented performance in many domains. Existing work has

shown that various challenging mobility problems that involve elements of actua-

tion, such as tra�c control [51], fleet management [13, 12] and rebalancing [40], can

be modelled and addressed with the deep RL frameworks. Given their distributed

nature, in most of the existing works, the mobility systems are modelled with the

multi-agent RL framework, e.g., the vehicles/bikes in the mobility systems are con-

sidered to be independent agents, interacting with both the urban environment and

the other agents. For instance, the work in [110] designs a spatio-temporal reinforce-

ment learning approach to dynamically reposition bikes in bike-sharing systems. The

idea is to use deep Q-Network (DQN) in the spatio-temporal domain to generate

the optimal reposition actions. DQNs have also been used in fleet management re-

lated tasks such as order dispatching in taxi and ride sharing systems [12], where the

work in [13] incorporates mean field approximation to improve e�ciency. It has been

shown that for mobility systems, or the general urban computing problems that in-

volve agents interacting and actuating the environment, deep RL often demonstrates

stronger performance than traditional approaches, particularly for high dimensional

input and complex problem structures.

2.4 Discussion

As discussed in this chapter, the maturity of various mobility modalities and the

remarkable advances in machine learning techniques for spatio-temporal data have

significantly transformed the way that people develop, operate and optimise the

shared mobility systems in urban settings. However as surveyed in this chapter, we

also identified the following key limitations of the prior art that motivate this thesis:

• In the real-world, shared mobility systems are never static, but often change

over time. This is overlooked by existing work, most of which only considers

static systems, or a few static snapshots. The dynamics, e.g., expansion of the

system infrastructure, have not been thoroughly studied in their analysis. In

this thesis, we relax this oversimplified assumption, and assume shared mo-

bility systems can dynamically update their states across the spatio-temporal

domains. For all the tasks tackled in this thesis, from demand forecasting in

Chapter 3, to infrastructure optimisation in Chapter 4 and fleet management

in Chapter 5, we consider the shared mobility systems as dynamic, in the
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sense that their components e.g., station networks and vehicles, can continu-

ously evolve over space and time. We present the challenges associated with

this dynamic settings in those tasks, and show that our approaches can cope

well.

• Although various forms of spatio-temporal analysis have been applied in urban

computing scenarios, deep learning techniques bespoke for shared mobility

systems are still limited. In this thesis, we aim to design suitable modelling

and analysis techniques that are specifically crafted for such systems, that can

capture their unique properties in spatio-temporal domains, scale gracefully

on large data volumes, and be resilient to real-world dynamics. Motivated by

this, we present our dynamic multi-graph GCN approach in Chapter 3, which

models the shared mobility systems with time-varying graphs and performs

inference on them with tailored GCNs. Although designed for forecasting

tasks, our approach can potentially be extended to other applications such as

flow estimation and event detection.

• The infrastructure of shared mobility system plays an important role in their

operations, and therefore optimisation of such infrastructure is vital. Exist-

ing works tackle this line of tasks has two major shortcomings. Firstly, most

of existing solutions optimise the system in an once-for-all fashion, i.e., they

compute the optimal plan for infrastructure deployment initially, and once

the infrastructure is deployed, it stays unchanged as the systems are in op-

eration. Secondly, existing approaches often use heuristic based optimisation

in this process, which although simple to implement, could be easily stuck

in local minima. We address such limitations in Chapter 4 by developing a

deep neural search approach that is able to discover optimal deployment plans

through space and time, guiding the mobility systems to dynamically adjust

its infrastructure in order to achieve the desired goals.

• Rebalancing of the fleet is an important task for shared mobility systems. As

mentioned above, most of the existing works assume that the mobility sys-

tems are static while actuating them, e.g., repositioning the fleets. However,

this won’t work well when the systems are dynamically changing in real-world

scenarios, i.e., the decision space (where to reposition a vehicle) could have

already changed during the operation. In addition, for mobility systems with

specific constraints, e.g., those using electric vehicles, there is very limited

work. Those systems, although sharing many common properties with stan-

dard ones, present unique challenges, e.g. electric vehicles typically have much
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limited range with long charging time, and thus can’t be repositioned to ar-

bitrary locations nor at any time unless su�ciently charged. We tackle those

limitations and challenges in Chapter 5, which explicitly models the dynamics

and constraints of the shared mobility systems and tailors a deep reinforcement

learning approach for this fleet management tasks.

We are now in a position to present the main contributions of this thesis in

the following three chapters.
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Chapter 3

Demand Forecasting

3.1 Introduction

Cities around the globe struggle with congestion and poor air quality. Shared mo-

bility systems are emerging within the cities as a new form of urban mobility forms,

which have been recognised as an environmental friendly mobility option, reducing

vehicles on the road while cutting out unnecessary CO2 emissions. In particular,

in the following chapters of this thesis, we consider a specific type of shared mobil-

ity systems, the station-based shared e-mobility systems, as the instantiation of our

study. Those systems, as a new generation of mobility systems, have been increas-

ingly popular across the globe, and taken significant market shares in the business,

by o↵ering full electric vehicle (EV) fleets with fast expanding infrastructures in

major cities, e.g., Bluecity [3] in London, WeShare [4] in Berlin, and BlueSG [5] in

Singapore. Traditional car sharing providers have also started to populate their EV

fleets, e.g., ZipCar [32] seeks to provide over 9,000 full electric vehicles across Lon-

don by 2025. According to a recent study [111], the global market of EV sharing

services is poised for an even faster growth in the near future, due to the incen-

tives and regulations put in place by governments across the world to encourage

overall EV usages. Shared e-mobility systems will reshape the current urban trans-

portation paradigm, providing a much more e�cient, sustainable, and a↵ordable

mobility option to all citizens, independent of individual car ownership. Note that

it is straightforward to apply the approaches presented in this thesis to the gen-

eral shared mobility systems, i.e., by relaxing the constraints related to EVs such

as range limits and charging models. Therefore without loss of generality, in the

following three chapters we consider shared e-mobility systems in our context.

In this chapter, we study one of the key problems in shared e-mobility sys-
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tems, demand forecasting, i.e., we would like to accurately predict the mobility

demand of the users of the systems. As highlighted in previous chapters, a major

problem of those systems is that during their fast expansion processes, dynamic

predictions of user demand and implementing any expansion strategy becomes sub-

stantially more di�cult. This is not only key for stakeholders to make informed

decisions as to where and when to deploy new stations or close the poorly perform-

ing ones, but also of great importance to the e↵ective operation of currently used

stations: understanding the potential impact of proposed expansions to their de-

mand can provide valuable insights on a number of vital tasks such as scheduling,

pricing and rebalancing.

However, in the context of such fast expanding shared e-mobility systems,

this demand prediction problem is not trivial. Most of the existing works on demand

prediction [112, 113] assume the stations in the system are static and historical data

is always available, or only predict demand after fixed (one or two) expansion stages

where stations are only deployed in batches [114]. These assumptions often collapse

in the real world. For instance, Fig. 3.1a-c visualise the expansion process of a major

shared e-mobility platform in Shanghai during 2017. We see that in the beginning

stations are only scattered within limited areas, while at the end of the year the

entire city has been densely covered. As shown in Fig. 3.1d, within 12 months the

total number of stations in operation has doubled (from roughly 1500 to more than

3000). In addition, we see that in each month there are continuously hundreds of

stations being deployed or closed. In this case, predicting demand at those newly

deployed or to be deployed stations is very challenging, since there is no su�cient

historical data available as prior knowledge.

On the other hand, the new dynamics caused by the expansion process may

have complex e↵ects on the entire shared e-mobility system. For example, as shown

in Fig. 3.2, deploying stations at various places may have completely di↵erent e↵ects.

For example, the new station (denoted as the red dot) in Fig. 3.2a “steals” the

demand from one of its neighbors (station A) since its deployment in June (see the

changes of their order numbers in Fig. 3.2b). We found from the data that the new

station was deployed in a major shopping center, and therefore it likely attracted

the users who originally preferred to rent/return cars from/to station A, which is

just one block away. In contrast as shown in Fig. 3.2c and Fig. 3.2d, deploying a

new station has increased the orders of its neighbor stations E, F and G collectively.

In particular, we found from the data that a large portion of their increased orders

have the new station as the destination. This means that after the new station is

deployed, many users tend to rent EVs from E, F, and G because together with
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(d) Stations statistics over 12 months.

Figure 3.1: The expansion process of a shared e-mobility system in Shanghai during
the year. Images better viewed in colour.

the new station, they o↵er convenient short-range connections for them to get to

the other side of the airport. In the presence of such dynamics, accurate demand

prediction for the remaining stations becomes very challenging, due to the non-trivial

system dynamics caused by the continuous expansion process.

To address those challenges, in this chapter we present a novel data-driven

demand prediction approach, which models the expansion of shared e-mobility sys-

tems with time-varying graphs, and is able to forecast the accurate demand of

stations along with the expansion process. Specifically, for each station that comes

in operation, we employ a local temporal encoding module to capture the correla-

tions within the historical data. The extracted features from all stations are then

compiled by a dynamic spatial encoding module, which considers the spatial de-

pendencies between them as multiple graphs, and fuses the station-level features

with Graph Convolutional Neural Network (GCN). Based on the encoded informa-

tion and future expansion plan (i.e., which stations to be deployed or closed), we

consider a multi-scale predictor which forecasts station demand at di↵erent scales:
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Figure 3.2: Di↵erent types of impact when deploying new stations to the current
station network. (a)-(b) An example showing that a new station ‘steals’ the user
demand from one of its neighbour stations. (c)-(d) An example showing that a new
station ‘boosts’ the demand of its neighbour stations.

From instant demand in the immediate near future to the long term expected de-

mand, for both stations to be deployed and the ones remaining. In summary, the

technical contributions are as follows:

• To the best of our knowledge, this is the first work that investigates the demand

forecasting problem in the context of fast expanding electric vehicle sharing

systems. We conduct a comprehensive study with the operational data from

a fast growing shared e-mobility system in the real world, and identify the

needs and benefits of forecasting the accurate user demand as the system

continuously expands, which have not been studied before.

• We propose a novel data-driven approach for demand prediction which is ca-

pable of modelling the complex dynamics caused by the fast system expansion.

The key idea is to model the evolving station network of the shared e-mobility

system as multiple time-varying graphs, which describe the di↵erent types of

correlations between the station. With those graphs, we propose new encod-
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ing approaches which perform the local temporal encoding and global spatial

encoding processes in tandem, to jointly incorporate the historical knowledge

at individual stations and the spatial dependencies between them.

• We design a new multi-scale predictor on top of the encoding processes, which

is able to forecast the accurate user demand of both stations to be deployed

and those already existing in the current system. In addition, our predictor

can predict not only the expected future demand of the stations, but also

their instant demand in subsequent timestamps, which allows us to better

understand both short and long term impact of the system expansion.

• We evaluate the proposed demand prediction approach on both real and syn-

thetic data collected from a major shared e-mobility platform in Shanghai for

one year, including data from over 3000 stations and 16,000 electric vehicles

in operation. Extensive experiments have shown that our approach signifi-

cantly outperforms the state of the art, o↵ering up to three-fold improvement

in prediction accuracy and is robust to di↵erent levels of expansion dynamics.

The rest of this chapter is organised as follows. We first discuss additional

related work in Section 3.2 and formulate the problem of demand forecasting for fast

expanding system such as shared e-mobility systems in Section 3.3. Then we present

the proposed data-driven demand prediction approach in Section 3.4, covering the

proposed local temporal and dynamic spatial encoding techniques, as well as the

design of a multi-scale predictor. Section 3.5 evaluates the performance of our

approach with real-world shared e-mobility system data. We conclude the chapter

in Section 3.6.

3.2 Related Work

In this section, we discuss additional related works that are particularly relevant to

the contributions of this chapter. For general background we refer the readers to

Chapter 2.

3.2.1 Demand Prediction for Shared Mobility Systems

Predicting user demand in shared mobility services (e.g., taxis and bike- or vehicle-

sharing systems) has received considerable interests in various research communities.

Most of the existing works take the historical usage (e.g., picking-up and return-

ing records), geospatial data such as POIs, and other auxiliary information (e.g.,
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weather) into account, and build prediction models that can forecast demand over

certain periods or aggregated time slots. They also predict the demand at di↵erent

spatial granularity, e.g., over the entire systems [115, 116], grids/regions [97], station

clusters [117, 112, 118], or individual stations [34, 119, 120]. This work falls into

the last category since we aim to predict station-level demand of shared e-mobility

systems. However, our work is fundamentally di↵erent in that we assume the sta-

tion network is not static, but dynamically evolving, i.e., stations can be deployed

or closed at arbitrary times. This has not been investigated by the existing works,

and in this case, state of the art station-level demand predictors (e.g., [113]) do not

address our problem because they rely heavily on station historical data to make

predictions, which are not available for those newly deployed stations.

3.2.2 Shared Mobility System Expansion

There is also a solid body of work focusing on modeling the expansion processes

of shared mobility systems, e.g., planning for optimal new stations [49, 34, 121],

or increasing the capacity of existing stations [10]. However, most of the existing

works assume that historical information on demand of the stations (renting and

returning) are either known, or can be estimated from other data sources such as

taxi records, which is fundamentally di↵erent from our work. On the other hand,

the work in [114] proposes a functional zone based hierarchical demand predictor

for shared bike systems, which can estimate the average demand at newly deployed

stations across di↵erent expansion stages. In general, our work in this chapter shares

similar assumptions with [114], yet di↵ers substantially: 1) instead of fixed stages,

we can predict demand while the entire station network is dynamically expanding;

2) we are able to estimate both the instant and expected demand of new or existing

stations, while [114] can only predict aggregated demand patterns; and finally 3) we

do not require historical mobility data in the newly expanded areas, like the taxi

trip records required in [114].

3.2.3 Graph-based Learning for Urban Prediction

Our work shares similar challenges and settings with the other urban analysis prob-

lems, such as crowd prediction [122, 123], tra�c analysis [124], anomalies detec-

tion [125, 126]. Due to their non-Euclidean nature, recently many real-world prob-

lems such as demand/tra�c/air quality forecasting that require spatio-temporal

analysis have been tackled with the emerging graph-based deep learning techniques [96,

52]. In particular, existing works often employ the graph convolutional neural net-
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work [92] to capture the spatial correlations, where temporal dependencies are typ-

ically modelled with recurrent neural networks. We consider a novel dynamic GCN

approach that can handle the time-varying graph of the growing EV station net-

work), while most of the recent work, e.g., those on crowd prediction [123, 122]

assume the space (modeled as graphs where di↵erent regions are nodes) is station-

ary. Essentially, the graphs considered in the crowd prediction work can be viewed

as static containers of the crowd, as they represent regions of the space. Thus their

approaches cannot be applied to our demand prediction problem where the graphs

themselves are variables evolving over time. In addition, the work in [96] models the

tra�c flow as a di↵usion process on directed graphs for tra�c forecasting, while [52]

and [97] propose frameworks that use multi-graph convolutional neural networks

(CNNs) to predict demand for taxi and ride-hailing services. Another work in [11]

uses an encoder-decoder structure on top of multi-graph CNNs to estimate flow be-

tween stations in bike sharing systems, which bears a close resemblance to this work.

However, unlike [11] who only output demand at the immediate next timestamp, our

work considers a sequence to sequence model with attention mechanism to perform

multi-step forecasting towards future demand. None of the above approaches can

work on new stations where historical data is not available, i.e., they do not address

continuous system expansion.

3.3 Problem Formulation

In this section, we first introduce some key concepts used throughout this chapter,

then we formulate the problem of demand prediction for expanding shared e-mobility

systems and provide an overview of the proposed framework. Note that in the

following chapters we will also provide additional details relevant to the specific

problems tackled when necessary.

3.3.1 Preliminaries

Electric Vehicle (EV) Stations. Let si be a station in the shared e-mobility

system. In this chapter, we assume si can be represented as a tuple (xi,mi), where

xi are the geographic coordinates (e.g. latitude and longitude) of station si, and mi

is the number of charging docks within si. We also assume that for a given si, we

can extract a number of geospatial features based on its location xi, such as nearby

Points of Interest (POI) or the distribution of road networks within a certain radius.

Instant Station Demand. We define the instant demand of a station si at times-

tamp t as the rent/return frequency of si, denoted as di(t). In this chapter the
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granularity of timestamp t is days, i.e., we focus on daily station demand, but the

proposed approach can be extended to adopt other time granularity levels.

Expected Station Demand. For a station si, the expected demand d̄i over a

period [ts, te] can be defined as the mean d̄i(ts, te) = |te� ts|�1Pte
t=ts di(t). We con-

sider the expected demand from the current time t towards the future, and aggregate

it according to some index, e.g., days of the week. Without loss of generality, in

the following text we denote the future expected demand of station si as a vector

d̄i = [d̄Mo
i , d̄Tui , ..., d̄Sui ], d̄i 2 R7 for di↵erent days of the week.

Station Network. We model the stations of the shared e-mobility system as a

graph G = (S,A), where the nodes si 2 S are stations as defined above. An edge

aij 2 A may encode a certain type of correlation between two stations si and sj , e.g.,

the spatial distance between them, or similarity between their POI/road network

features. Section 3.4.2 will discuss how we construct multiple graphs to capture

such inter-station relationships in more detail.

Station Network Dynamics. Unlike existing work, in this thesis we assume the

station network is evolving over time, i.e., G = (S,A) is a time-varying graph. More

specifically, let Gt�1 = (St�1, At�1) represents the station network at time t � 1.

Without loss of generality, we assume that at time t� 1, there is an expansion plan

to be implemented at time t, which shall expand the current station network from

Gt�1 to the planned network GP
t . Let’s assume during this a set of new stations S+

will be deployed, while existing stations S� will be closed. If the expansion plan

goes through, then at time t the actual station network Gt = (St, At) becomes the

planned GP
t , where

St = (St�1 � S�) [ S+ (3.1a)

At = (At�1 � {aij |si 2 S� or sj 2 S�}) [ {aij |si 2 S+ or sj 2 S+} (3.1b)

3.3.2 The Demand Prediction Problem

Suppose that at time t, we have the topology G1, ...Gt and demand D1, ..., Dt of

the station network, where Dt = {di(t)|si 2 Gt}. Let GP
t+1 be the planned station

network at the future timestamp t+ 1. The demand prediction problem addressed

in this chapter is that given the historical data, for an arbitrary station in the

planned network si 2 GP
t+1 (deployed or not yet deployed) we aim to estimate both

its expected future demand ˆ̄
di and the subsequent k instant demand [d̂i(t+1), d̂i(t+

2), ..., d̂i(t+ k)], which minimise the mean square errors with respect to the ground
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Figure 3.3: Overview of the proposed data-driven demand prediction framework.

truth d̄i and di:

�d̄i
= |d̄i|�1kˆ̄di � d̄ik2 (3.2a)

�di = k�1
t+kX

⌧=t+1

kd̂i(⌧)� di(⌧)k2 (3.2b)

In practice, the expected demand ˆ̄
di can be viewed as a metric for the long-

term performance of stations si, e.g., if si is a station to be deployed, ˆ̄di quantifies

the average level of demand it may be able to attract. On the other hand, the

sequence of instant demand [d̂i(t+1), d̂i(t+2), ..., d̂i(t+k)] describes the immediate

trend of station demand under the impact of the expansion plan, which can help to

optimise key future operation strategies such as marketing and resource allocation.

3.3.3 Framework Overview

Fig. 3.3 shows the overview of the proposed data-driven demand prediction frame-

work, which consists of three major components:

Local Temporal Encoding. During the life cycle of a station si (from being

deployed to shut down), its demand can be viewed as a time series, where the current

demand di(t) should correlate with the local historical demand di(t � 1), ..., di(1).

In addition, there may exist other temporal factors that can influence the demand

of individual stations, such as weather conditions, air pollution levels, days of the

week and public holidays etc. To model such temporal dependencies, we assign a

Long Short-Term Memory (LSTM) network at each individual station when being

deployed, and use them to encode local temporal information at station level.

Dynamic Spatial Encoding. Intuitively, the demand of a station si can be af-

fected also by the other stations in the network. To capture the spatial correlations,
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at each time t we construct multiple graphs to encode di↵erent spatial relationships

between the stations, e.g., inter-station distances, POI similarity, and road network

metrics. Then we use a Graph Convolutional Neural Network (GCN) to fuse those

graphs and encode the previously computed local features of individual stations. In

particular, as the station network is evolving over time, we develop a dynamic GCN

(DGCN) which is able to process such time-varying graphs.

Multi-scale Demand Prediction. Based on the results of the above temporal

and spatial encoding, we aim to predict both the expected demand and subsequent

instant demand of stations after the planned expansion. To achieve that, we design a

multi-scale prediction network, which firstly compiles the previously learned features

into a context vector. For expected demand, it uses a fully connected branch to

perform the prediction, while on the other hand, it considers a decoder LSTM

network with attention mechanism to forecast instant demand at multiple future

timestamps.

We are now in a position to elaborate the proposed data-driven demand

prediction approach in more detail.

3.4 Data-driven Demand Prediction

In this section, we present the proposed data-driven demand prediction approach,

where we first introduce the local temporal and dynamic encoding techniques in

Sections 3.4.1 and Section 3.4.2 respectively, and then in Section 3.4.3, we describe

the design of the multi-scale predictor.

3.4.1 Local Temporal Encoding

Like in many other shared mobility services, we observe that the demand of stations

in the shared e-mobility system exhibits strong temporal correlations, as shown later

in Fig. 3.6b. For instance, although it fluctuates largely over time, the demand at an

individual station approximates certain periodical patterns at di↵erent days across

the week. In that sense, exploiting such knowledge can help significantly in estimat-

ing the future demand of the existing stations, which will have a positive knock-on

e↵ect when predicting demand for the new stations during expansion. However,

those demand patterns are typically influenced by multiple factors such as weather,

air quality and events, and individual stations may react to those factors di↵erently.

Therefore, it is often not optimal to only incorporate the temporal information glob-

ally for the station network, but instead we model such microdynamics at the station

level.
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Concretely, when a station si is deployed, we instantiate a LSTM network

which keeps processing its demand records and the additional temporal informa-

tion available, e.g., weather, days of the week and public holiday/events. In our

implementation, we encode such temporal information as feature vectors, e.g., the

weather data can be discretised and represented as one hot vector, and all the vec-

tors are concatenated as the input to the LSTMs. To avoid over-fitting, we train

the LSTMs with shared weights across stations. At time t, the LSTMs encode the

station’s historical demand di(t), di(t�1), ... as well as the auxiliary information into

a temporal feature vector fi(t). Moreover, in this work we also condition fi(t) with a

static station feature vector ci, which describes key attributes of the station si such

as its number of available charging docks mi, nearby POIs and environmental char-

acteristics, etc. We encode the static feature ci in a similar way with the temporal

information, e.g., the POI data can be represented as vectors where each element

indicates the number of a particular type of POIs that are close to the station.

Therefore, fi(t) and ci carry important local information about individual station

since it started operating, which are concatenated and passed on as the input for the

later spatial encoding. Fig. 3.4 shows the workflow of the proposed approach, where

at each timestamp we maintain a collection of local LSTMs to encode information

of individual stations.

3.4.2 Dynamic Spatial Encoding

Constructing Multiple Graphs

As discussed in Section 3.3.1, at a given time t we represent the station network

as a graph Gt = (St, At), where St are the set of current stations and At is the

adjacent matrix describing the pairwise correlations between them. In practice

there are often more than one types of correlations, which cannot be e↵ectively

captured by a single graph. Therefore in this work we construct multiple graphs to

encode the complex inter-station relationships [97] particularly the distance graph,

the functional similarity graph, and the road accessibility graph (see Fig. 3.4).

Distance. In most cases, we observe that the demand of stations close to each

other are highly correlated, e.g., they may be deployed around the same shopping

centre, and thus tend to be used interchangeably. We capture such correlations with

a distance graph AD, whose elements are the reciprocal of station distance:

aD
ij = kxi � xjk�1

2 (3.3)

where xi,xj are the station coordinates, and k · k2 is the Euclidean distance. We
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Figure 3.4: The workflow of the proposed data-driven demand prediction approach.
The local temporal encoding process produces the temporal and static features fi(t)
and ci, which are concatenated as the input to the spatial encoding process with the
multi-graph dynamic GCN. The output of the GCN Ht encodes both the spatial
and temporal features across di↵erent stations, and are fed into the multi-scale
prediction networks.

also set diag (AD) to 1 to include self loops in the graph.

Functional Similarity. Intuitively, stations deployed in areas with similar func-

tionalities should share comparable demand patterns. For instance, stations close

to university campuses typically have significantly higher demand during weekends.

We characterise the functionalities of stations by considering the distributions of

their surrounding POIs. Suppose we have P di↵erent categories of POIs in total,

and let pi be the distribution of the P types of POIs within a certain radius of

station si. The functional similarity graph AF is then defined as:

aF
ij = sim (pi,pj) (3.4)

where sim (, ) 2 [0, 1] is a similarity measure which quantifies the distance between

feature vectors. In our experiments, we use the soft cosine function.

Road Accessibility. Another factor that a↵ects station demand is the accessibility
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to road networks. Intuitively, stations close to major ring roads, or within areas

that have densely connected streets would have higher demand. To model this, we

consider the drivable streets in the vicinity of a station si as a local road network,

containing di↵erent types of road segments and their junctions. We extract a feature

vector ri from the local road network, which encodes information such as the road

segments density, average junction degree and mean centrality. Given those features,

the road accessibility graph can be defined with a similarity function sim (, ):

aR
ij = sim (ri, rj) (3.5)

where we also use soft cosine as the similarity function.

Dynamic Multi-graph Convolution

At time t�1, given the constructed graphsAt�1 = {AD
t�1, A

F
t�1, A

R
t�1} which describe

the inter-station relationships, we propose a dynamic multi-graph GCN (DGCN) to

fuse such spatial knowledge with local features fi(t � 1) and ci computed by the

station-level temporal encoding. In the proposed DGCN, we perform multi-graph

convolution as follows:

H
(l)
t�1 = �

✓ X

At�12At�1

f(At�1)H
(l�1)
t�1 W

(l�1)
t�1

◆
(3.6)

where H l�1
t�1 and H

l
t�1 are the hidden features of layers l�1 and l respectively, while

W
l�1
t�1 2 RUl�1⇥Ul is the feature transformation matrix learned through end-to-end

training. In particular, the input H(0)
t�1 is the collection of local features computed

at individual stations. f(At�1) is a function on graphs At�1, e.g., the symmetric

normalized Laplacian [127] or k-order polynomial function of Laplacian [97], and �

is a non-linear activation function such as ReLU.

As discussed before, in our case the station network evolves over time, i.e.,

new/existing stations can be opened or closed at any time. For simplicity, suppose

at t there is only one new station sN has been deployed. To capture this event, we

recalculate the inter-station graphs At�1 by appending new rows and columns to

them, where the new graphs At now contain pairwise correlations between the new

sN and each existing stations. Note that the DGCN input also changes, i.e., now

H
(0)
t has an extra feature for this newly deployed station sN , computed by the local

encoding process.

On the other hand, let sj be the station that has been closed at time t.

In our implementation, instead of removing elements from the graphs, we simply
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apply a mask of zeros to the corresponding rows and columns of At, and set the j-th

row of the input H(0)
t to zeros since there won’t be local features generated from sj

anymore. The intuition is that in our graph representation, a: ,j = 0 means station sj

has no correlation with any other station at all, and thus won’t be able to propagate

information in the graph convolution. Therefore in our case, at di↵erent timestamps

the dimension of the input to our GCN can be di↵erent, i.e., the dimensions of

the graphs At and input features H
(0)
t are varying. However this won’t a↵ect

the learning process, since the learnable parameters W
l
t at each layer l have fixed

dimensions. In addition, note that although f(At) produces filters with the same size

of the feature H(l)
t at each layer l, Eq. (3.6) can still be viewed as a local convolution

given the graphs At. The reason is that by definition many elements in At are near

zero (e.g., in the distance graph AD
t ), i.e., for a given station, it will be only a↵ected

by the features of stations with su�ciently high correlations with it (having large

non-zero elements in At). Conceptually, the dynamic GCN (DGCN) operates on

snapshots of the inter-station graphs which are constructed on-the-fly, and fuses the

local temporal features at individual stations with the spatial dependencies encoded

in those graphs.

3.4.3 Multi-scale Demand Prediction

As discussed in Section 3.3.2, the demand prediction problem addressed in this chap-

ter is to forecast the future demand of arbitrary stations in the shared e-mobility

system under the planned expansion, given the historical data and previous dynam-

ics of the station network. We have shown in the previous sections how we use

local LSTMs and dynamic GCN (DGCN) to encode the spatial-temporal dynam-

ics of the system, and in this section we explain how to make predictions of the

user demand at multiple scales based on the knowledge extracted from the encod-

ing processes. Fig. 3.5 shows the architecture of the proposed multi-scale demand

prediction network.

Predicting Expected Demand

Let Gt be the current station network at time t. Without loss of generality, we

assume that at the next timestamp we plan to deploy a candidate new station sN ,

while will close an existing station sj . Therefore, the goal is to predict the future

demand of each individual station in this planned station network GP
t+1. To achieve

that, for each station in GP
t+1, we run the LSTMs in the local temporal encoding

process (Section 3.4.1) to generate an additional feature for time t+1, and create the
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new input feature H(0)0

t+1 for the GCN. Note that at this moment there is no historical

data for the planned new station sN since it is not deployed yet, and therefore here

we only include its static features csN while keeping its temporal features fsN (t+1)

as zeros. We also mask the row corresponding to station sj with zeros in H
(0)0

t+1,

to mute features from sj which will be removed at t + 1. Then we process the

planned station network GP
t+1 by applying the same update to the inter-station

graphs as discussed in Section 3.4.2, i.e., adding and masking the rows and columns

corresponding to sN and sj . The generated feature H
(0)0

t+1 is then passed through

the multi-graph DGCN, producing an output H 0
t+1. We consider this H 0

t+1 as the

context for prediction, because it not only encodes the current information about

the new candidate station sN and the spatial dependencies between stations, but is

also relevant to the available historical information, since the underlying temporal

encoding process uses LSTMs to preserve the temporal correlations.

In this work, we consider the expected demand of station si over di↵erent

days of the week, indicating the mean demand that the station can attract in the

future at each week day, i.e., d̄i = [d̄Mo
i , d̄Tui , ..., d̄Sui ]. To predict d̄i, we plug in

a fully connected network to the context vector H
0
t+1, which is trained to output

the future expected demand (7 values indicating demand on di↵erent week days)

for each station in the network GP
t+1. For the station sN , the predicted expected

demand of itself and nearby stations indicate the potential benefits of deploying

sN to the current station network. In Section 3.5.3 we will show that in real-

world experiments our approach significantly outperforms the existing techniques in

prediction accuracy.
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Predicting Instant Demand

We also predict the future instant demand of stations in the planned network GP
t+1

over a certain time window. This is also of great importance in practice, especially

for the planned new station sN , since it forecasts the immediate impact and future

trends of the station network once sN is in operation. However it is more challenging

than predicting the expected demand, because essentially for each station we need

to predict a sequence of concrete demand instead of the aggregated values.

To address that, we design a decoder LSTM network with attention ar-

chitecture, which takes a sequence of previous features computed by the dynamic

multi-graph GCN as input, and estimates the future k instant demand. In this

case, conceptually the prediction framework becomes an encoder-decoder structure,

where the processes of local temporal encoding and dynamic spatial encoding serve

together as the encoder. Let [Ht�n, ...,Ht,H
0
t+1] be the sequence of n+1 previous

features generated by our DGCN. Unlike in the previous case where we only consider

the last output feature H
0
t+1 as the context for prediction, here for each timestamp

u in the prediction window of length k, i.e., u = [t + 1, ..., t + k], we construct the

context vectors by fusing the feature sequence with attention mechanism:

Ctxu =
t+1X

v=t�n

↵uvHv (3.7)

where ↵uv are the attention weights determining the contribution of a feature Hv

(v 2 [t�n, t+1]) in predicting the demand at time u. Those weights ↵uv are trained

through back propagation in the end-to-end optimization. Then the decoder LSTM

consumes the context vectors and predicts the k subsequent future demand. We

found in our experiments that the attention mechanism is very helpful, since the

station demand patterns tend to have strong periodic components, e.g., demand on

this Monday is highly correlated with previous Mondays, and a single context vector

is too compressed to encode such correlation. In our implementation we typically

set n = k or n = 2k to better capture such periodical pattern in the station demand.

3.5 Evaluation

In this section, we evaluate the performance of the proposed data-driven demand

prediction approach on data from a shared e-mobility system in Shanghai, China.

We first describe the datasets, baseline approaches and implementation details of

our experiments (Sections 3.5.1 and 3.5.2), and then discuss the experimental results
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Figure 3.6: Visualisation of data used in the experiments. (a) Spatial distribution
of orders (only showing the most frequent orders over the year). (b) Number of
orders in one month. (c) Road network in Shanghai in a graph format. (d) Weather
distribution of Shanghai in each month of the year.

in Section 3.5.3.

3.5.1 Datasets

Electric Vehicle (EV) Sharing Data. Our EV data is collected from real-

world operational records of a shared e-mobility platform for one year (January

to December 2017), containing two sets of data: i) the renting/returning orders at

each stations, where an example of the order transaction are illustrated in Table. 3.1

and ii)the detailed expansion process of the station network (i.e., when and where

a station was deployed/closed). In particular, there were 1705 stations and 4725

electric vehicles at the beginning of 2017, while as of December 2017 there were

3127 stations with a fleet of 16148 vehicles in operation. In total, the raw data

contains 6,843,737 records, which were generated by approximately 0.36 million

active users. Fig. 3.6a visualises the spatial distribution of the orders (represented
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as lines between pick up and return stations) in a month. Fig. 3.6b shows the

numbers of orders at di↵erent days-of-month, which exhibit clear periodic patterns

with peaks on weekends.

Table 3.1: An example of the order transactions of the shared e-mobility platform.

Order ID 20171108151609
User ID 00068594305670
Pickup Station PUDONG Airport
Pickup Time 2017-08-09-11-54-07
Return Station HONGQIAO Station
Return Time 2017-08-09-13-08-51
Vehicle ID nfiehtiuwoqr
Pickup mileage(remaining) 200
Return mileage(remaining) 50

Synthetic System Expansion Data. In addition to the actual EV data, we

also synthesise additional datasets for training purposes with di↵erent patterns of

system expansion. The rationale is that the real expansion data only represents

one sample (run) of system expansion, and it is not su�cient for our models to

learn how to react to the general expansion process. Specifically, given the real EV

data (both orders and expansion data), at each timestamp t we randomly pick a

subset of existing stations according to a probability p, and treat those stations as

newly deployed, i.e., assuming they don’t have any previous order data. Note that

here we select the stations randomly instead of following certain rules in order to

make learning more generalisable. We vary the probability p from 0 to 1, generating

multiple synthetic datasets (p = 0.1, ..., p = 1) with di↵erent expansion dynamics.

Intuitively, the case where p = 0 is the real EV data without any extra injected

expansion dynamics, while p = 1 is the extreme case where all stations at every

timestamp are supposed to be newly deployed. Note that we only use the synthetic

data in training, and for testing we always use the real data. As shown later in

Section 3.5.3, the synthetic datasets e↵ectively augment the real EV data, which

help the proposed demand prediction approach to generalise better.

POI Data. We also collect Point Of Interest (POI) data from an online map

service provider [128] in China. In total we have extracted 4,126,844 POI entries

in Shanghai, each of which consists of a GPS coordinate and a category label. The

label indicates the particular type and function of the POI, e.g., hospitals, subway

stations, schools etc. In our experiments, for each station we only consider the POIs

within 1km radius. Table. 3.2 shows the statistics of some POI categories. In our

implementation we use one hot vector to represent the POI features of the stations,
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Table 3.2: Statistics of some POI categories in our data.

POI Type Number POI Type Number
Hospitals 4745 Banks 2988
Tourist attractions 2696 Companies 89,747
Gov. organizations 16,425 Higher education 6922
Airport services 126 Residences 51,089
Subway stations 1,729 Hotels 18,234
Bus stations 41,475 ... ...

i.e., the elements encode the numbers of particular types of POIs which are close to

the station.

Road Network Data. We extract road network data in Shanghai using OSMnx [129]

from OpenStreetMap [130], which is formatted as a graph (visualised in Fig. 3.6c).

Similar with the POIs, we consider the subgraphs within 1km radius of the stations,

and compile key statistics such as mean degree, length of road segments etc. into

the feature vectors. In our data, on average a subgraph contains road segments of

length 13.85km and approximately 39 junctions, with a mean degree of 4.28.

Meteorology Data. Finally, we collect the historical daily weather data in Shang-

hai for the year 2017 from a publicly available source [131]. Each record describes

weather conditions of the day, which falls into four di↵erent categories: sunny, over-

cast/foggy, drizzling/light snow and heavy rain/snow. Then natually we encode the

data using one hot vector as the weather features. Fig. 3.6d shows the distribution

of weather conditions in Shanghai over the 12 months.

3.5.2 Experimental Setup

We evaluate two variants of the proposed data-driven demand prediction approach

respectively: 1) D3P-Exp, which predicts the future expected demand of stations;

and 2) D3P-Seq, which forecasts the instant demand of stations in a subsequent

time window. Both of the two variants share the same local temporal and dynamic

spatial encoding processes, but they implement the two di↵erent branches in our

multi-scale demand predictor and forecast future demand at di↵erent scales (as

discussed in Section 3.4.3).

Competing Approaches. In particular, for predicting the expected demand, we

compare our D3P-Exp approach with the following baselines:

• KNN [132], which uses a linear regressor to predict the expected demand of

existing stations. For the planned stations, it estimates their demand with
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standard KNN, based on the similarity of features (e.g., POIs) between them

and the existing stations.

• Random Forest (RF) [133], which shares the similar idea as KNN, but

trains a random forest as the predictor.

• Functional Zone (FZ), which implements the state of the art demand pre-

diction approach for system expansion in [114]. Note that we don’t have taxi

records in our data, but instead we directly feed the ground truth check-in/out

to favour this approach.

For D3P-Seq which computes the instant demand, we consider three com-

peting algorithms:

• ARIMA + KNN, which uses Auto-Regressive Integrated Moving Average

(ARIMA) [134] to forecast multi-step demand at existing stations, and then

uses KNN to estimate demand at new station based on station features such

as POIs.

• LSTM + KNN, which is similar with A-KNN, but trains LSTM networks

for temporal modelling.

• Multi-graph convolutional network (MGCN), which implements a sim-

ilar framework as the state of the art in [11], whose implementation is not

publicly available. More importantly, the original framework in [11] is not

able to work with time-varying graphs. Therefore, to perform fair comparison,

here we use our dynamic multi-graph GCN implementations that can handle

new/closed stations, and consider the same data sources as in our approach.

Evaluation Metrics. For all approaches, we adopt the Root Mean Squared Error

(RMSE) and the Error Rate (ER) as the performance metric:

RMSE =

vuut 1

N

NX

i=1

(ẑi � zi)2

ER =

PN
i=1 |ẑi � zi|PN

i=1 zi

(3.8)

where ẑi and zi are the predicted and ground truth values respectively.

Implementation Details. We implement the deep neural networks in the pro-

posed approach with TensorFlow [135] 1.10.0, and use the Adam optimiser [136]
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Figure 3.7: Performance on predicting the expected demand. (a) RMSE and (b) ER
of all stations across di↵erent days in the week. (c) RMSE and (d) ER of existing
vs. newly deployed stations vs. all stations averaged over all days of the week.

with the learning rate of 0.001. The networks are trained on a single Titan Xp GPU

from scratch. To preserve the temporal dependencies in the data, we partition the

data into multiple batches where each of them contains data of consecutive three

months. For example, the first batch includes data from January, February and

March, while the second has data of February, March and April. For each batch,

we use both real and synthetic data (p = 0, ..., p = 1 as discussed above) from the

first two months for training, and the real data of the third month for testing. We

train the two branches of our predictor networks separately, where the ground truth

labels are obtained from the real world data. We repeat training on all batches and

report the best average performance.

3.5.3 Results

Accuracy of Predicting Expected Demand. The first set of experiments evalu-

ate the overall accuracy when predicting the expected demand of stations. Fig. 3.7a

and Fig. 3.7b show the RMSE and ER of the proposed approach (D3P-Exp) and

competing algorithms over di↵erent days of the week. We see that comparing to

naive KNN, the random forest based approach (RF) can reduce the RMSE by about

30% while ER by 20%. However, our approach (D3P-Exp) performs significantly
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Figure 3.8: Performance on predicting the instant demand. (a) RMSE and (b) ER
of the competing approaches.

better, and can achieve up to three times improvement in both RMSE and ER. In

particular, on average the RMSE of D3P-Exp is approximately 1.961, which means

when predicting a station’s expected demand, the value estimated by our approach is

only about ±2 with respect to the ground truth. This confirms that the proposed ap-

proach can e↵ectively model the complex temporal and spatial dependencies within

the evolving station network, and exploits that to make more accurate predictions.

In addition, we observe that the RMSE tends to increase on weekends compared

to weekdays for all algorithms. This is because in practice the absolute demand on

weekends is larger, which often leads to bigger RMSE. Note that the ER remains

relatively consistent across di↵erent days.

Planned vs. Existing Stations. This experiment investigates the prediction

performance of di↵erent approaches on the planned new stations which haven’t been

deployed yet, and existing stations which are already been in operation. Fig. 3.7c

and Fig. 3.7d show the average RMSE and ER of the proposed approach (D3P-Exp)

and the competing algorithms on the planned, existing, and all stations respectively.

We see that all of approaches perform better on the existing stations than the

planned. This is expected because for existing stations we have access to their

historical demand data, which is not available for planned stations. We also observe

that although the functional zone based approach (FZ) performs better than the

baselines for the planned stations, it fails on the existing stations (performs worse

than RF). This is because by design FZ is tuned to predict demand of new stations

in the context of system expansion, but not for existing ones. Finally, we see that for

both planned and existing stations our approach (D3P-Exp) performs consistently

the best. For the planned stations, it halves the errors comparing to the state

of the art approach FZ, while for the existing stations, it o↵ers about three-fold

improvement over the baselines.

Accuracy of Predicting Instant Demand. This set of experiments evaluates
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Figure 3.9: (a) RMSE and (b) ER of the predicted instant demand for di↵erent
prediction lengths.

the performance of di↵erent approaches when predicting the future instant demand.

Here we only consider the planned stations, since it is straightforward to predict for

the existing stations given their historical data. We ask all approaches to predict the

instant demand over the next seven days, and report the average accuracy. Fig. 3.8

shows the RMSE and ER of the proposed approach (D3P-Seq) and the competing

algorithms. We see that in this challenging case, our approach (D3P-Seq) can still

achieve an average RMSE of 2.903, which is over 30% lower than the baselines

(similar gap can be observed in ER). It is also superior to the state of the art

MGCN approach which also uses multi-graph GCN, with about 20% reduction in

RMSE and ER. This confirms that even for the planned stations without historical

data, our approach can still accurately predict their future instant demand within

a certain time window. In addition, we find that the attention mechanism in our

approach is very e↵ective. Without using attention architecture in the decoder, the

performance of our approach drops by approximately 15%, which is still better than

the state of the art.

Accuracy vs. Prediction Length. This experiment studies the accuracy of

competing approaches when predicting instant demand over di↵erent time intervals.

As in the previous experiment, here we also only consider prediction performance

for the planned station. We vary the length of the prediction time window from 1

to 7, i.e., from predicting the demand of stations on the immediate next day t+ 1,

to that on the subsequent seven days t+7. Fig. 3.9 shows the RMSE and ER of the

approaches under di↵erent time windows. We observe that in general, the RMSE

increases as the length of the time window grows, especially for our approach (D3P-

Seq) and the state of the art MGCN. This makes sense because clearly predicting

demand over a longer time window is more di�cult. On the other hand, we see that

the ER of baselines are higher for short window lengths comparing to the MGCN

or our approach. We find that this is because the baselines tend to report random
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Figure 3.10: Prediction performance of our approach trained on datasets with dif-
ferent levels of system expansion dynamics. (a) RMSE and (b) ER.

estimations on the future demand, where for shorter windows this can lead to larger

ER, but will be averaged out for longer time windows as the ground truth demand

grows in later days. Finally, we see that MGCN can o↵er comparable performance

with our approach (D3P-Seq) when predicting for the immediate next timestamp.

However as the prediction length increases, our approach consistently outperforms

MGCN, with a performance gap of up to 26%.

Impact of Di↵erent System Expansion Dynamics. The last set of experiments

investigates the impact of di↵erent levels of system expansion dynamics on the

proposed demand prediction approach, and the validity of using the synthetic data

for training. As discussed in Section 3.5.2, the reason why we use synthetic data in

addition to real data for training is that the real data only represents one sample (or

run) of system expansion, which is not su�cient for our models to pick up the general

expansion process. Therefore, we synthesise more datasets by randomly selecting a

subset of existing stations according to a probability p, and assume those stations

as newly deployed. This allows us to generate datasets with di↵erent levels of extra

injected expansion dynamics. In particular, we vary p from 0 to 1, where p = 0 is the

real data without any extra dynamics, and p = 1 leads to the extreme case where

all the stations are considered as newly deployed at each timestamp. Therefore,

we train our models with both the real (p = 0) and synthetic (p = [0.1, ..., 0.9])

data, but in all experiments we evaluated our approach with the real data. As

shown in Fig. 3.10, we see that as p increases from zero, our approach tends to make

more accurate predictions for both expected and instant demand (lower errors).

This confirms the validity of our data augmentation approach, in that by artificially

injecting the synthetic dynamics, we essentially force the GCN to learn how to better

react to the deployment of new stations. We also observed that for larger p values,
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the errors (both RMSE and ER) tend to increase for both types of demand. This is

also expected because in those cases the excessive injected dynamics would mute the

useful information coming from local LSTMs at individual stations and confuse the

GCN, leading to deterioration of performance. Therefore, this means with carefully

selected p, the synthetic data can help the learning process to capture the dynamics

caused by system expansion, leading to more accurate predictions. Empirically we

find that p with values around 0.4⇠0.6 would achieve the desired balance between

incorporating the historical information and learning from the expansion dynamics.

3.6 Conclusion

In this chapter, we propose a novel data-driven demand forecasting approach for

urban mobility system using a fast expanding electric vehicle (EV) sharing systems

as an example, which learns the complex spatial and temporal system dynamics

from the continuous expansion process, and is able to robustly predict demand for

both existing stations and the planned new stations which haven’t been deployed

yet. Specifically, the proposed method first encodes the local temporal information

at the individual station level, and then fuses the extracted features with a novel

Dynamic Graph Convolutional Neural Network (DGCN) to account for the spatial

dependencies between di↵erent stations. The demand of stations is then estimated

by a multi-scale prediction network, which forecasts both the long-term expected

demand and the instant future demand of the shared e-mobility system. We evaluate

our approach on data collected from a real-world shared e-mobility platform in

Shanghai for a year. Extensive experiments on real and synthetic data have shown

that our approach consistently and substantially outperforms the state of the art in

predicting both the long-term expected and the immediate future demand of the fast

expanding system. Our proposed method may help businesses or public operators to

reliably evaluate planned system changes and expansions, o↵ering valuable decision

support. However, there are also some limitations of the proposed approach. For

instance, it does not consider the potential user demand, which is caused by the

nature of the real-world dataset. Overall, it helps to improve the shared mobility

systems by accurately predict future demand. The next chapter also improve such

systems from the infrastructure optimisation perspective.
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Chapter 4

Infrastructure Optimisation

4.1 Introduction

In this chapter, we study another important problem for urban shared mobility

systems, the optimisation of their infrastructure. In particular, we aim to find the

optimal ways of deploying the infrastructure for the shared mobility systems (sta-

tions in particular) during their operation, in seek for the desired balance between

gains and cost. This has become increasingly important as the services mature: they

could have passed the initial fast growing stage in which high deployment cost can

be tolerated, but are more keen to fine-tune themselves to increase profit margin,

while improving coverage and service level if possible. To achieve that, the shared

mobility systems need to carefully select which stations to open or close and when,

so that the overall performance is optimised throughout lifespan. Similarly as in

the previous chapter, we consider data collected from a real-world shared e-mobility

system, but the approaches developed in this chapter can be used for general shared

mobility systems in urban settings.

This particular problem falls into a broader class of optimisation tasks in the

context of shared mobility systems, which have attracted attentions from various

communities. For instance, the work in [10] addresses a similar problem of charger

planning for electric vehicle sharing services. It proposes a demand-aware planning

approach and uses heuristics to approximate the optimal plan which ensures both

pervasive coverage (in terms of reaching as many POIs as possible) and satisfies

su�cient user charging demand. However, this approach only performs one-o↵ op-

timisation relying on aggregated historical demand estimates, which won’t be able

to adapt as situation changes. On the other hand, the recent work in [50] considers

the incremental cases, but essentially it uses greedy-based approaches to re-compute
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Figure 4.1: Workflow of the proposed hierarchical neural search approach. The
hierarchical controller generates possible deployment plans, which are then run in the
simulation environment to evaluate their performance. The reward signals (e.g. net
revenue and service coverage) obtained are used to update the controller parameters
with reinforcement learning.

for charger planning, which may not be e�cient in many cases. In addition, most

of the existing work aims to maximising certain objectives given fixed budgets, such

as service coverage and satisfied demand.

In this thesis, we consider a much more realistic case, where the deployment

of the shared mobility system could be optimised dynamically as they operate, with

or without specifying concrete budgets. In particular, we would like to find the

dynamic deployment plan that guides system deployment through time, which is

optimal in terms of given objectives (e.g., service coverage or revenue), and also

self-sustaining. This requires that the income of the system under the deployment

plan at any time should be able to cover the cost of adjusting its station deployment.

In practice, such plans could better cater for varying user demand and provide

substantial improvement in performance, e.g., we could temporally close stations

that are often quiet on specific days (weekdays vs. weekends), while deploying

“overflow” stations in the presence of demand surges. However, it is not trivial to

find the optimal deployment plans, in that i) for such mobility systems operating

at city scales, the search space of station deployment can be prohibitively large;

and ii) for a given deployment plan, accurately evaluating its performance could

be challenging. This may be easy for static metrics such as service coverage, but

for those that involve interactions between users and the systems, e.g., revenue of

orders, it is often di�cult to evaluate without actually running the systems with

the deployment plan. Using historical data to extrapolate is one option (as in [10]

and [50]), but as we show later the performance can be limited.
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To address the challenges, in this chapter we build a high-fidelity simulation

environment for shared mobility systems, which is able to capture the operation

details of such systems at fine-granularity. The simulation environment is calibrated

with data collected from a real-world shared mobility system for a year, to ensure

that it can faithfully simulate the real system behaviors and user interactions in

practice. With the simulation environment, we design a novel multi-agent neural

search algorithm to address the deployment optimisation problem. Specifically, we

consider a hierarchical search structure, which employs a two-level controller to

iteratively propose possible deployment plans, and evaluates their performances in

the simulation. The results (as rewards) are propagated back to the controller, whose

parameters are updated accordingly so it can generate better deployment plans in

the future, as shown in Fig. 4.1. Concretely, our contributions are as follows:

• We design a high-fidelity simulation environment for shared mobility systems

at city scales. We abstract the key functionalities and operations that are cru-

cial in real shared mobility systems, and calibrate the simulation environment

with data collected from the real-world systems. Thus our simulation is able

to faithfully capture the fine-grained details of the system operation, which

provide support for training and testing the proposed search algorithm.

• We propose a novel multi-agent neural search algorithm to address the de-

ployment optimisation problem. We formulate the problem with multi-agent

reinforcement learning (MARL) framework, and develop a novel hierarchical

controller architecture, which learns to search for optimal deployment plans

e�ciently.

• We evaluate the proposed approach extensively, and show that development

plans proposed by our approach significantly outperform the actual plan used

in the real-world, o↵ering about 30% better net revenue and service coverage.

We also show that our search algorithm is superior to the state-of-the-art

optimisation approaches, achieving improvements in both net revenue and

service coverage.

The rest of this chapter is organised as follows. We discuss additional re-

lated work in Section 4.2. In Section 4.4 we present the design of our high-fidelity

simulation environment for shared mobility systems. In Section 4.3 we present our

multi-agent neural search algorithm to solve the sustainable deployment optimisa-

tion problem, and evaluate the proposed approach against baselines in Section 4.5.

We conclude this chapter in Section 4.6.
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4.2 Related Work

As in the previous chapter, in this section we delve into the existing approaches that

are particularly related to the contributions presented by this chapter. For general

background we refer the readers to Chapter 2.

4.2.1 Facility Planning and Deployment

Our work is also related to the facility location problem, which has been exten-

sively investigated in many application scenarios, such as finding locations for ware-

houses [137], chain stores [138], and bike sharing stations [139]. In the EV context,

there is also a variety of existing work, focusing on EV specific tasks such as charger

deployment. For example, the work in [140] proposes approaches to find locations

to deploy EV charging facilities relying on electric taxi trajectory data, while [141]

uses a model to optimise the charger distribution across the city. The work in [142]

also considers the charging cost of the EV drivers when optimising charger loca-

tions, while [50] proposes two heuristic-based algorithms to place EV chargers given

their potential social benefits. It also considers the cases of incremental deployment,

where they essentially re-run the proposed algorithms on the new set of candidate

locations. Our work is di↵erent in that we have di↵erent objectives to optimise.

These work considers the deployment public chargers across the city, which aims to

satisfy as much charging demand as possible with a given budget on charger deploy-

ment. In our case besides service coverage, we also care about profit as a private

EV sharing service provider. In addition, our approach doesn’t need to work with

a predefined budget, which is often di�cult to estimate in practice, but just finds

the self-sustaining deployment plans that can cover the cost. On the other hand,

the work in [10] also studies EV charger planning for private EV-sharing platforms,

which shares the similar problem with our work. However, it assumes the deploy-

ment of chargers is an one-o↵ task, and doesn’t consider the dynamic deployment

cases as investigated in this work.

4.2.2 Neural Search and Optimisation

Recently, there is a emerging interest in using deep neural networks to solve a

broad range of optimisation problems. Given their structure, it is often possible

to formulate the optimisation problems as sequential decision progresses and use a

reinforcement learning agent, which learns the heuristic implicitly to find a solution.

For instance, the work in [143] proposes a DQN based approach to address the Max-

Cut problem, which becomes the new state-of-the-art. In [144] the authors design
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a general RL approach for combinatorial optimisation and show promising results

on the Maximum Independent Set Problem. The work in [145] tackles the Graph

Coloring Problem for large graphs by using e�cient network architectures to speed

up optimisation. Besides the traditional optimisation problems, such neural search

techniques have also been widely used in the emerging AutoML field, which aims to

automate the machine learning pipeline. For instance, the work in [146] introduces

neural architecture search, which learns to generate good performing child neural

networks. Another work [147] uses similar technique, but rather than searching for

network architecture it finds the optimal optimiser. Our work bears close resem-

blance to those existing work, in that we also try to tackle large search spaces, and

the evaluation of the generated representations (in our case the deployment plan) is

not trivial. However, in this work we try to solve a di↵erent problem in the shared

e-mobility context, and propose a novel hierarchical controller architecture to search

e�ciently, which has not been considered in the existing work.

4.3 Infrastructure Optimisation

In this section, we present the proposed infrastructure optimisation approach, which

leverages the simulation environment built in the previous section to search for the

optimal deployment strategies. We first describe the infrastructure optimisation

problem in Section 4.3.1, and then show how this problem can be formulated as a

Multi-agent Reinforcement Learning (MARL) task in Section 4.3.2. In Section 4.3.3

we introduce our hierarchical neural search framework to address this task, and

discuss parallel training techniques to speed up learning.

4.3.1 The Deployment Optimisation Problem

Let us assume at time t = 0, the simulation world is at the initialisation state,

i.e., the shared mobility system has some stations deployed and is ready to operate.

This is reasonable since in practice, such systems tend to deploy their first batch of

stations before going live to the public. Let T be the length of one simulation episode,

i.e., we run the simulator for T timestamps (days in our case) in one training/testing

pass. As discussed above, we assume during the T days the stations of the service

can be dynamically deployed or removed on a daily basis, i.e., at each t, according

to a deployment plan S = {St}, t 2 [1, T ], where St is the set of stations to be active

at t, drawing from the candidate pool S.
Let P(S) be the set of all possible deployment plan of length T for this

simulated mobility system. Then our deployment optimisation problem is to find
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the optimal deployment plan S
⇤ 2 P(S):

S
⇤ = argmax

S2P(S)
SC(S) + wPM(S)

s.t: c(St)  GMV(St), where St 2 S, 8t 2 [1 : T ].

(4.1)

Here PM(S) is the profit margin ratio of the deployment plan S, i.e., the percentage

of profit (net revenue NV) with respect to the total income (GMV) if deploying stations

as instructed by S. SC(S) is the service coverage ratio of the deployment plan S,

which is defined as the normalised sum of two ratios: i) the percentage of satisfied

user demand, and ii) the percentage of POIs covered by the service. We assume

a POI is covered by a station if it is within 1km radius of the station. Therefore,

at time t the service coverage of the corresponding deployment snapshot SC(St)

depends on both satisfied demand and covered POIs. Similar to NV(S) defined

above, we define SC(S) as the mean service coverage of this particular deployment

plan over T timestamps, SC(S) = T�1P
t=1:T SC(St). In our case, both objectives

are in percentage, and thus we can use a weight w 2 [0, 1] to balance them, which

can be tuned for scenarios with di↵erent priorities, e.g., aiming to roll out service

to more users vs. obtain more profit. The constraint requests that the deployment

plans should be self-sustaining, in the sense that the income of the system at any

t should be able to cover the cost of deployment, i.e., we want the system to be

break-even.

In fact, if we unfold the deployment plans over time, this deployment opti-

misation problem is essentially a constrained combinatorial optimisation problem.

However, the search space in our case can be prohibitively large, e.g., with 4k can-

didate stations over 30 days period there will be 24k
30

possible plans to evaluate.

In addition as discussed in previous sections, the impact of deploying/removing

a particular station is often complicated, i.e., we won’t be able to directly esti-

mate the gain of such an action (e.g., increase in NV and SC) without running the

system through. This makes most of the existing heuristics-based optimisation ap-

proaches [10, 50] infeasible, as they assume the benefits/utility (e.g., of deploying a

particular charger/station) are independent and known a priori. In the next section,

we show how we formulate this problem as a Multi-agent Reinforcement Learning

(MARL) task, which allows us to explore the search space via trial-and-error.

4.3.2 Deployment Optimisation as a MARL Task

We consider a set of autonomous agents, each of which interacts with the common

environment to improve its behavior. Comparing to the single agent settings, the
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multi-agent formulation is more suitable to address our problem, because multiple

agents could better exploit the decentralized nature of the station deployment task.

By design learning can be more e�cient than the single agent case, as the action

spaces of the agents are much smaller, and the computation can be accelerated

by parallel processing. Under this setting, we model the deployment optimisation

problem as a Markov Game G = (N,X ,A, T ,R, �), in which at most N agents

interact with the environment, making decisions as to where and when stations

should be deployed. X represents the states of G and T is the transition function

between states. A is the joint actions of the agents, R is the reward function, and

� is the discount factor.

Agents. In our multi-agent formulation, we assume an agent controls the de-

ployment of stations within a certain geospatial region. Essentially, we delegate the

agent to manage the station deployment process of that region, who decides which

candidate stations should be deployed or closed and when. We partition the space

into regions belong to di↵erent agents by clustering candidate stations locations in

S. In particular, we cluster the candidate stations based on their pairwise distances,

where boundaries of regions are formed by convex hulls of clusters. Let us assume

we have obtained N regions as the result of clustering, managed by N agents.

To make sure that the agents should face similar learning load, we also require

each cluster to have the same amount of M candidate stations. In practice, this

may lead to regions with di↵erent sizes due to the spatial variation in the density of

candidate station locations, e.g., we observe that the obtained regions in city center

is much smaller than those at the city edges. However, we found that this won’t

a↵ect the agents’ performance, since the candidate station density is also highly

correlated with POI density and distribution of potential user demand. This means

although managing regions with di↵erent sizes, the agents tend to learn to cover

similar levels of demand/POIs with its deployment plans, only at di↵erent spatial

scales. It is also worth pointing out that our approach can also work with the other

space partition paradigms, such as hexagonal or rectangular grids, as long as each

region/grid is managed by a individual agent.

States and Observations. At time t, for the i-th region, its state xit encodes

information about the user demand, vehicle distribution and station deployment

within the boundary of this region. In particular, we consider both the set of

currently online stations, and candidate stations that are not yet deployed. For each

of them, we include its location loc, number of parking spaces #c, the deployment

cost and the numbers of vehicles parked in the stations at each simulation step

within t, as well as the potential future rent/return requests and the average value of
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potential future orders in the next timestamp. The global state xt is the combination

of states of each region xt = {xit}, i 2 [1, N ]. Let agent i manage the i-th region. At

time t, we assume the agent observes its local state {xit} as well as the global state xt.

This allows the agents to observe and interact with not just its local environment,

but also learn to better cooperate with the others that have connections with them,

e.g., agents of neighbouring regions, or those with high correlations in terms of user

demand (i.e., users may frequently travel from one region to another).

Agent Actions and State Transitions. For agent i, its action ait describes the

deployment snapshot of the i-th region, i.e., which stations should be deployed or

removed. Therefore at time t, a joint action at 2 A1
t ⇥ ... ⇥ ANt

t all the N agents

forms the complete deployment snapshot St, as introduced above. Upon performing

the joint action at t, the current state xt will transit to the next state xt+1 according

to the state transition probabilities T , which are defined as T (xt+1|xt,at). Note

that in many MARL cases, it is often not possible to describe the state transitions

as functions with analytical forms, and thus in our case we don’t attempt to model

T explicitly, but rely on our simulator to capture the state transitions.

Reward Function. For each agent, the reward rit of taking an action at time t is

determined by the reward function:

Ri(xt,at) : X ⇥A1
t ⇥ ...⇥ANt

t ! R (4.2)

As discussed above, in our deployment optimisation problem, we would like to max-

imise both the profit margin (PM) and the service coverage (SC). In practice, we

found that the two objectives often diverge, e.g., maximizing PM would often lead to

greedy agents that always try to deploy new stations at “hot” locations with high

profit. On the other hand, optimizing SC tend to encourage the agents to spread sta-

tions across the space, while keeping many less profitable stations active, resulting

in decrease in net revenue. In addition, we also require the service to be sustainable,

in that the GMV of the deployed stations should be able to cover their cost. To

balance such factors, given the agent action ait, which requires the set of stations Si
t

to be active at time t, we design the reward function rit based on our optimisation

objectives as in Eq. (4.1):

rit = g SC
�
Si
t , S

i
t�1

�
+ w g PM

�
Si
t , S

i
t�1

�
+ �min{NV(Si

t), 0} (4.3)

where gSC(Si
t , S

i
t�1) and gPM(Si

t , S
i
t�1) calculate the improvement rate in terms of

service coverage SC and profit margin PM, given the current deployment snapshot

Si
t and the previous one Si

t�1. w is the weight balancing the two objectives, as in
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Figure 4.2: The architecture of the proposed hierarchical controller.

Eq. (4.1). The term �min{NV(Si
t), 0} penalizes any Si

t that produces negative net

revenue with a scaling factor �, which is learned via grid search. Given the reward

function, each agent aims to maximise its discounted reward E[
P1

k=0 �
krit+k], where

� 2 [0, 1] is the discount factor.

4.3.3 Hierarchical Neural Search

Under the above MARL formulation, we design a novel hierarchical neural search

algorithm, which learns to generate better deployment plans over time. The key

idea is to use a controller (in the form of neural networks) to generate various de-

ployment plans (i.e., actions), and evaluate the performance of those plans in our

simulation environment. The reward/penalty signals collected from the simulation

are then propagate back and used to update the controller with reinforcement learn-

ing paradigm, so that it tends to produce improved plans in future runs.

Hierarchical Controllers. In this work, we consider a LSTM-based controller,

which recursively generates deployment plan St at each t for T timestamps. In

fact, given the multi-agent setting, for each agent i, we can use a boolean string of

length M to represent Si
t , where M is the total number of candidate stations in the

regions. Such encoding has been widely considered in tasks such as searching for

neural network architectures. However unlike the existing work, in our case even

with multi-agent formulation, directly generating and searching from the 2M sized

encoding space is prohibitively expensive. To tackle this challenges, we design a

hierarchical controller which generate Si
t progressively, as shown in Fig. 4.2. The

key idea is that instead of directly sampling from the distribution of deployment

plans at each t, we generate Si
t in two stages. Concretely, we design a hierarchical

structure with two connected controllers: a high-level and a low-level controllers

respectively.

High-level Controller Design. Given the previous and current states, rather than
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delving into deployment details, the high-level controller only generates a categorical

deployment prior for the region i at time t. In particular, we consider a deployment

prior as a pair (Si+
t , Si�

t ), where Si+
t is a categorical variable indicating the amount

of new stations to be made online during time t at region i, e.g., 10% of the total

candidates in the region, while Si�
t is for the stations to be made o✏ine. In this case,

if the domain of the variables is limited, then for the high-level controller the search

space at each timestamp t is manageable. On the other hand, such a deployment

prior indicates the coarse volume of the desired deployment plan for the region at

time t, e.g., the high-level controller may prefer to deploy more rather than removing

in some cases since it predicts demand would surge.

Low-level Controller Design. Now we explain the design of the low-level con-

troller, which translates the received deployment prior into the concrete deployment

plan Si
t . Essentially, now the low-level controller needs to find two sets of stations,

one to deploy and one to close, while the cardinalities of them are known. In this

case, one straightforward way is to continue to sample the constrained search space

which is already much smaller, and generate the deployment plan Si
t accordingly.

However, we found that in practice this would still lead to many meaningless trials

without converging. Therefore, in this work we adopt an e�cient approach to gen-

erate Si
t . Concretely, for each candidate station sij within region i, we compute a

score which is the combination of two values: i) its service coverage, i.e., the ratio

that it could contribute to the total service coverage in this region, and ii) the ratio

of expected demand it could satisfied with respect to the total demand in region i.

Here we use the forecasting approach discussed in the previous chapter to predict

the expected demand for sij at t, given the previous states in this simulation episode.

Now we obtain the ranked list of the candidate stations in region i based

on their scores. Intuitively, we should deploy the best station candidates if they

are not yet in operation, and close the poorly performing ones. To generate such

Si
t at t, our low-level controller adopts a ✏-greedy approach for both deploying and

closing stations. In particular, it iteratively chooses the current best/worst station

candidates with the probability 1� ✏, while making random selections for the rest,

until the required number is reached. In our experiments, we set ✏ = 0.1. In this

way, the low-level controller balances exploration and exploitation in searching of

Si
t , which makes our algorithm more robust to noises and perturbations.

Training. We consider a shared-weights controller for our agents, which is trained

with reinforcement learning. As discussed in Section 4.3.2, the generated deployment

plan S = {St} is a sequence of actions {at} (t = 1 : T ) to adjust the vehicle sharing

service. By applying S in the simulation, we could evaluate the performance of S,
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and compute the reward as Eq. (4.3) and Eq. (4.2). The reward signal is then fed

back to the controller, to help updating its parameters ✓. Therefore the updated

controller would have high probabilities to propose better deployment plans. Note

that here ✓ is only relevant to the high-level controller, as the parameters of the

low-level controller (the GCN) have already been trained. In our case, the reward

structure is not di↵erentiable (min in Eq. (4.3)), and thus we consider policy gradient

approaches to iteratively improve ✓. In our case, we train the controller to maximise

the performance of its sampled deployment plans S. The training objective can be

formulated as follows:

J(✓) = Ep(S;✓)[R(S)] (4.4)

where R is the reward collected from simulation, and the expectation is taken over

p(S; ✓), i.e., the distribution of deployment plans S given ✓. In this work we use

the Proximal Policy Optimisation (PPO) approach [148] to optimise J(✓), which

is more sample e�cient than the standard REINFORCE [149], and o↵ers faster

convergence of the controller. For the sake of completeness and clarity, here we

refrain from introducing the formulation details of PPO, which will be discussed in

Chapter 5, to show how we tailor the standard PPO approach for our specific tasks.

We refer the reader to Section 5.4.2 for more details.

4.4 Simulating Shared Mobility Systems at City Scale

In this section, we present our design of the high-fidelity simulation environment for

shared mobility systems at city scale, which builds the playground for the proposed

multi-agent neural search algorithm to learn, by trial-and-error, how to optimise

deployment with specific goals (e.g., revenue vs. service coverage) in mind. In the

previous chapter, we have already introduced some key concepts of characteristics

of the shared mobility system (Section 3.3.1). In the following we provide a more

systematic overview of such systems (Section 4.4.1), and describe how our simula-

tion environment handles deployment dynamics (Section 4.4.2) and user demand

(Section 4.4.3), as well as its operational models (Section 4.4.4) and calibration

(Section 4.4.5).

4.4.1 Overview of Shared Mobility Systems

The Shared Mobility Model. As mentioned in the previous chapter, in this

thesis we consider a station-based shared mobility services, i.e., the users can only

pick up vehicles from and return them to the available stations operated by the
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vehicle sharing service. Let s be such a station. In our case, s can be represented

as a tuple (loc,#c), where loc denotes the location (e.g., latitude and longitude

coordinates) of s, and #c is the total number of parking spaces within the station

s. In practice, the system may deploy new stations or close existing ones across

the city. When a station s is firstly deployed for operation, a number of vehicles

(denoted by #v) would be assigned to s, where typically #v < #c. This means at

the beginning the station s should have #v vehicles available for pick up and #c -

#v free spaces for potential returns.

Particularly for shared e-mobility systems, we assume the vehicles are of

limited range depending on di↵erent models, e.g., in ideal conditions a Rover E50

typically has the range of 100km while a BMW i3 could cover 180km. In this thesis,

we assume the fully charged ranges of the EVs for given vehicle models are fixed, and

during normal driving the remaining range can be determined by their discharging

curves [150]. In practice, we observe that the time for charging of the EVs is much

longer than refilling the traditional vehicles, which however can be estimated by the

corresponding charging models [150], given the remaining range, battery capacities

and charger specifications.

Given the set of its available stations S, the shared mobility system operates

as follows. Assume that at time t, a user wants to rent an vehicle from a certain

station so 2 S, and return to the destination station sd 2 S. If she finds there

is at least one vehicle available at the picking up station so (in e-mobility systems

the vehicle has to be su�ciently charged with enough range to cover her planned

trip), she will post an order ot = (so, sd) to the system. Upon accepting the order,

the system allows the user to take over the vehicle. The order is considered to be

completed (i.e., the demand of this user is satisfied) when the vehicle is returned to

the destination station sd (and charged in the EV context). The price for this order

is calculated based on her rental duration.

The Shared Mobility Data. We consider the same sets of data as in the previous

chapter. In particular, the dataset contains a) the complete transactions of orders in

the system, i.e., when and where a user rented/returned a vehicle, and b) information

on station deployment, i.e., when and where a station was deployed or closed. In the

order data, each record contains detailed information about this order, including

the anonymous user ID who initiated the order, the ID of the origin/destination

stations, the timestamps of pick-up/return, the total duration of the order and

the final price etc. In total we have collected >7 million valid order transactions,

which were generated by approximately 0.4 million active users during the one year

period. For the station deployment data, we collected the service status at each
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(a) (b)

(c)

Figure 4.3: Visualisation of the collected data. (a) The distribution, density and
sizes (# of parking spaces/charging docks) of the stations in the real-world shared
mobility system. (b) POI distribution in the city. (c) Average property price across
di↵erent regions in the city.

day during the 12 months period, including station locations, numbers of parking

spaces (charging docks) in each station (see Fig. 4.3a for visualisation), and when

and where stations were deployed/closed. We also collected additional auxiliary

data for our simulation, such as the POI data of the city [128] (see Fig. 4.3b for

visualisation), the average property prices across di↵erent regions [151] (see Fig. 4.3c

for visualisation), and taxi trajectory data during the same period of time [152].

4.4.2 Simulating Dynamic Deployment of Stations

We construct our simulation environment by first simulating the deployment in the

stations of the shared mobility system. As discussed in the previous section, in

practice a station can be viewed as a tuple (loc,#c), where loc is its location

coordinates, and #c is the total number of parking spaces within the station. For

simplicity, in our simulation we assume that any stations to be deployed are drawn
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from a candidate pool S, containing all possible candidates of stations in the system.

Without loss of generality, we consider a 2D world where a station candidate s 2 S
is a point at location loc and with #c parking spaces. In our implementation, we

generate the candidate pool S according to the station deployment data collected

from the real-world system, i.e., for any station s that has been deployed once in

that system, regardless of whether it had been closed or not, we add s to the pool S.
In this way we obtain the candidate pool of stations for deployment in simulation,

which forms the search space for the proposed approach.

In our simulation, we consider dynamic deployment of stations, i.e., stations

can be opened or shut down at arbitrary times. Without loss of generality, we assume

the time granularity for station deployment is days, i.e., they can be adjusted on

daily basis. Let St ✓ S be a subset of the candidate pool. We refer to St as a

deployment snapshot at time t, and assume by the end of the timestamp only the

stations in St will remain active in simulation. The sequence of such deployment

snapshots from the beginning to the end of the simulation episode is defined as the

deployment plan S, where S = {St}, t 2 [1, T ]. In essence, S describes the evolving

process of the stations in the shared mobility system, which as discussed later is

the key for performance, such as the revenue and demand satisfaction rate of the

service.

We also assume that for each candidate station s, there is a cost c(s) for being

active in operation of the system per unit time. In our simulation, this cost is set

based on two factors: i) the property price around s; and ii) the size (i.e. number of

parking spaces #c) of s. This is consistent with the cases we observed from the real-

world data, where the rental prices of stations depend on their sizes, e.g., those with

more parking spaces tend to be more expensive, and also di↵er in di↵erent areas.

Therefore, at given time t the cost of running the service depends on the current

deployment snapshot St, i.e., c(St) =
P

s2St
c(s). Then for a deployment plan S,

we define the total cost in this episode c(S) as the sum of the costs incurred by its

snapshots: c(S) =
P

t=1:T c(St). Note that here for simplicity we don’t consider

the upfront deployment cost such as installing chargers etc., which in practice can

be factored into the long-term running cost, and assume there is no overhead of

shutting down or re-opening stations.

4.4.3 Generating Spatio-temporal User Demand

To better simulate the operation details of the actual shared mobility system, we

set 10min as one simulation step. Note that this is di↵erent from the timestamps

considered in station deployment process as discussed above, which is a day (24
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hours), containing 144 simulation steps. With such settings we are able to simulate

at much finer granularity, e.g., we could generate each individual user demand for

the mobility sharing service, and observe how it is satisfied or why not, rather than

relying on aggregated information.

We define a particular user demand as a tuple d = (k, o, d), where k is the

current simulation step, o and d are the origin and destination of this demand

respectively. We represent o and d with 2D coordinates e.g., GPS locations across

the space. This represents the intention of travel from o to d of the users, and in our

simulation we learn to generate user demand from the real-world data. In particular,

we consider the historical order transactions of the shared mobility system, as well

as the taxi trajectory data (cleaned to only have origins and destinations). We use

Gaussian Processes (GP) [59] with RBF kernels to approximate the spatial-temporal

distributions of the user demand. In particular, we first consider the pick up demand

(i.e., the origins o) and learn GP models over space and time, with which at each

simulation step k we can obtain a spatial distribution of the potential origins in user

demand. This also means for any point in the 2D space, we have an estimate of

the numbers of users that intend to travel from that point at step k, with certain

confidence interval obtained from the GP.

When generating the demand in simulation, at given step k we sample the

learned GP over the candidate station pool S, i.e., at each candidate station we

obtain the amount of travel demand starting from that location at step k. Here

we only sample over S rather than the entire 2D space because eventually user

demand will be satisfied at those stations, while the GP model has already taken

the neighbourhood knowledge into account, e.g., nearby taxi demand or vehicle pick-

up demand at stations within certain distance. Therefore in the following text, we

consider the user demand only at the candidate stations, i.e., d = (k, so, sd), where

so, sd 2 S.
To generate the complete demand in pairs of origins and destinations, for

a user demand originated from so 2 S, we use another GP to approximate the

spatio-temporal distribution of possible destinations from the historical orders of

the mobility system as well as taxi data. In essence, at step k for this demand with

origin so, the GP model generates a 2D distribution over the space, and by sampling

from the distribution over the candidate pool S we can pin down the destination

station sd for this particular demand. The reason why we adopt this two-phase

approach rather than sampling independently from the distributions of origins and

destinations, is that in practice the origins and destinations of user demand are

highly correlated, and the correlations often depend on di↵erent times. In addition,
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unlike existing work [10] which directly uses historical data as demand, we use

GPs to i) fuse di↵erent sources of information (taxi and the mobility data), and ii)

generate distributions of user demand rather than scalar values for robustness. As

shown later in Section 4.5, this improves the fidelity of our simulation, and helps

the proposed algorithm to generalize better.

4.4.4 Operating Shared Mobility Systems in Simulation

For each simulation episode, let S be a deployment plan of the vehicle sharing

stations, e.g., generated by our search algorithm. In essence, S describes which can-

didate/existing stations should be deployed/removed from the service and when. We

assume that this station deployment/adjustment process happens at the beginning

of a timestamp t (0am on each day), which updates the active stations according to

the corresponding snapshot St in the deployment plan S. Note that any candidate

station to be deployed, we allocate certain number of vehicles (fully charged) to

this new station for its future operation, according to its maximum capacity (#c)

and a probability ratio learned from the historical data. Typically in our simulation

we assign 0.5#c to 0.7#c of vehicles to the new stations, leaving su�cient parking

spaces for incoming vehicles from other stations.

Then for each simulation step k (there are 144 steps per time t), our simulator

generates user demand as discussed in Section 4.4.3. Concretely, let d = (k, so, sd)

be one demand generated at step k, indicating that a user would like to travel from

the candidate station location so to sd. This demand could be accepted by the

shared mobility service only if i) both candidate stations so and sd are online, i.e.,

active in operation; and ii) at the origin station so, there is at least one vehicle to

cover the trip to sd. Once the demand is accepted, our simulator creates an order,

assigns an vehicle to serve this order, and estimates the order duration (rental time

in terms of simulation steps) from the model learned from historical data. When

this order is about to finish, i.e., at the end of the pre-defined simulation step, our

simulator checks the status of the destination station sd, and the order is announced

to be completed only if there is available parking space at sd. If not, it chooses a

nearby station for vehicle return. The income of this order is computed based on

the rental time. Otherwise the order is considered to be failed, where there will be

no income for the service. Therefore at time t, with the deployment snapshot St, we

define the total revenue value (i.e., Gross Merchandise Value) at t as GMV(St), which

is calculated over all the satisfied orders of the mobility sharing service during that

time. The net revenue value NV(St) is then defined as GMV subtracts the deployment

cost: NV(St) = GMV(St) � c(St). For deployment plan S, we define its GMV and
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(a) (b)

Figure 4.4: Simulation calibration. (a) Simulated vs. real station network expansion
for one year (averaged over 10 runs), and (b) Simulated vs. real gross Merchandise
Value (GMV).

net revenue as their summations over T timestamps: GMV(S) =
P

t=1:T GMV(St), and

NV(S) =
P

t=1:T NV(St) respectively.

4.4.5 Calibrating Simulation Environment

We calibrate our simulation environment with the real-world data as discussed

above. As shown in Fig. 4.4a, the patterns of simulated system expansion are very

close to the actual expansion carried out during the year, with Pearson correlation

0.9957 and p value p < 1e-10. For demand generation, we use the calibrated sys-

tem expansion dynamics, and further tune the simulator with respect to the Gross

Merchandise Value (GMV), indicating the total revenue of the system. Fig. 4.4b

shows that the simulated order data has very similar properties in GMV with the

real data, where the Pearson correlation between simulated and real GMV is 0.9599

with p value p < 1e-10.

4.5 Evaluation

In this section, we evaluate the proposed multi-agent neural search algorithm exten-

sively with the simulation environment as described in Section 4.4. We first explain

our experimental settings and competing approaches in Section 4.5.1, and report

the results in Section 4.5.2.

4.5.1 Experimental Setup

We compare the proposed multi-agent neural search (MANS) approach with the

following baseline approaches:
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• Fixed Deployment (FD), which keeps the stations at initialisation un-

changed, and there is no stations deployed/removed during the simulation.

• Human Deployment (HD), which uses the deployment plan obtained from

the real shared mobility data. Particularly, we use an independent validation

dataset which hasn’t been considered in simulator calibration, and take the

actual deployment plan which had been implemented in the real-world.

• Revenue-greedy Deployment (REV), which selects the top/bottom sta-

tions to deploy/remove based on their historical averaged net revenue. The

amount of stations to be deployed/removed is obtained by sampling a dis-

tribution learned from the validation set as in HD, i.e., the scale of changes

in stations is similar with HD, but the decisions on deployment are revenue-

greedy.

• Coverage-greedy Deployment (COV), which is also heuristic-based like

REV, but deploys/removes the stations according to their service coverage,

i.e., it prefers to deploy stations that tend to satisfy more demand and cover

more POIs.

• One-time optimisation (OO), which is our implementation of the the state-

of-the-art charger location optimisation algorithm in [10]. It assumes that the

average user demand at each station can be estimated from historical data, and

tries to find an one-time optimal station deployment snapshot that maximise

both POI coverage and the demand satisfied rate.

• Incremental optimisation (IO), which is the incremental version of OO

(similar to the work in [50]). Unlike OO which only optimises station deploy-

ment once and uses the solution throughout the episode, this IO performs

optimisation and finds the best set of stations to maintain at each timestamp.

All the competing approaches are implemented with TensorFlow 1.14.0, and

trained with NVIDIA 2080Ti GPUs. We set the same initialisation of deployment

snapshot S0 to all the competing approaches, i.e., they start from the same situ-

ation, and try to learn the optimal deployment plan from there. As discussed in

Section 4.3.3, we consider shared-weights controller for our agents, and train in par-

allel using the multi-simulation technique to improve e�ciency. We evaluate the

competing approaches against the following metrics:

Service Coverage (SC) as defined in Section 4.3.1, which is the combination of

satisfied demand rate and POI coverage; and
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Table 4.1: Overall Performance of deployment optimisation by di↵erent approaches.
�SC and �NV are obtained with respect to Human Deployment (HD). For our
MANS, w=1/9 prefers rewards in SC, while w=9/1 reward more on NV. Best perfor-
mance values are shown in red, and second best in blue.

FD HD REV COV OO IO MANS (w=1)MANS (w=1/9)MANS (w=9/1)

SC 0.5511 0.5529 0.5680 0.6113 0.6054 0.6063 0.7194 0.7192 0.6942
�SC – – 3.07% 10.92% 9.85% 10.02% 30.53% 30.50% 25.97%
�NV – – 11.49% 2.49% 9.86% 10.60% 30.92% 29.82% 33.55%

Net Revenue Value (NV), which is calculated as the GMV generated by the

deployment plan subtracts the cost on deployment, as defined in Section 4.4.4.

To be fair, instead of directly comparing SC and NV of the competing ap-

proaches, we report the improved percentages of SC and NV with respect to the

baselines HD, indicating the performance gap between the searched plans and the

actual deployment process conducted by human.

4.5.2 Results

Overall Deployment optimisation Performance. This set of experiments

study the overall performance of the competing approaches. The results are shown

in Table. 4.1. Firstly, we see that there is very little improvement in both SC

between HD and FD, which means that the actual deployment plan doesn’t o↵er

much benefit. This is as expected because the human knowledge is only applicable

to that particular case, but can’t generalize to unseen scenarios in simulation. We

also see the two greedy-based approaches REV and COV manage to improve NV

and SC respectively, but for the other metrics which are not explicitly optimised,

the improvements are marginal. On the other hand, the one-time optimisation

approach OO strikes a better balance, o↵ering about 10% improvement in both NV

and SC. This is because OO uses a demand-aware heuristics, which jointly optimises

the POI coverage and the amount of demand satisfied, leading to better SC while

also indirectly improving NV. The incremental optimisation approach IO further

improves the performance, in that it is able to dynamically optimise deployment plan

over time, but the gap with OO is not significant. This is because that essentially

it just re-runs OO at each timestamp, while its knowledge about the demand is still

estimated from historical data, in the same way as OO. Comparing to the state-of-

the-art IO, our approach MANS (with w=1) o↵ers about 20% improvement in NV

and in SC. The gain comes from: i) we directly optimise NV in our reward structure,

and ii) instead of relying on estimates from historical data which is essentially to

optimise on a proxy task, we directly learn by trial-and-error on the target task

71



0.0%

10.0%

20.0%

30.0%

ΔDS ΔNV

IO
MANS (w=9/1)

MANS (w=7/3)
MANS (w=1)

MANS (w=3/7)
MANS (w=1/9)

ΔSC ΔNVΔSC ΔNV

(a) Impact of Weight w

0.0

0.2

0.5

0.8

1.0

0 10 20 30
Days

N
or

m
al

iz
ed

 S
C

IO MANS (w=1) MANS (w=1/9) MANS (w=9/1)

(b) SC over 30 days w.r.t w

0.0

0.2

0.5

0.8

1.0

0 10 20 30
Days

N
or

m
al

iz
ed

 N
V

IO MANS (w=1) MANS (w=1/9) MANS (w=9/1)

(c) NV over 30 days w.r.t w

0.0%

10.0%

20.0%

30.0%

ΔDS ΔNV

IO MANS ([0, .05, .1])
MANS ([0, .10, .20]) MANS ([0, .15, .30])
MANS ([0, .20, .40])

ΔSC ΔNVΔSC ΔNV

(d) SC/NV vs. Action Scales

Figure 4.5: Performance of the proposed MANS approach under di↵erent parameter
settings. Results of the IO algorithm is included here as the baseline.

using deep reinforcement learning.

Deployment Behaviours under Di↵erent Rewards. In this set of exper-

iments, we investigate the impact of the weight w between the two terms in our

reward structure, as discussed in Eq. (4.3). Here we vary w in the range [9/1, 7/3,

1, 3/7, 1/9], which gives di↵erent importance to the two reward terms g SC and g PM.

We train our controller under di↵erent w, and report the performance of those vari-

ants in Fig. 4.5a as well as Table. 4.1. We see that as we decrease the weight, NV

drops while SC increases. This is expected, as we essentially give more reward on

SC, while ignoring actions that lead to high NV. On the other hand, we also see that

SC is less sensitive to w than NV. We see that the increase in SC is very small while

w decreases from 7/3 to 1/9. This is because that SC cares about the ubiquity of

the service, and thus once the stations in the deployment plan can cover the critical

mass of the candidate stations, SC tend to be stable. This can also be observed

from Fig. 4.5b, where we show the 30 day trend of SC for w = [9/1, 1, 1/9]. We see

that under di↵erent deployment plans SC remains relatively flat. However, the NV

is more sensitive, as shown in Fig. 4.5c. We see clearly that if we reward g PM heav-

ily, the NV on certain days is much higher. It is possible that under such settings,

our controller learns to deploy stations temporarily at hot spots on particular days,

serving substantial amount of high-value orders. This may bring extra income but
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won’t necessarily increase the service coverage, since the POIs may already be well

covered by neighbouring stations.

Performance vs. Deployment Variability. Finally in this set of experiments,

we evaluate the performance of our approach with respect to di↵erent level of de-

ployment variability considered in our controller. As discussed in Section 4.3.3,

our approach uses a hierarchical controller where the high-level controller gener-

ates a categorical deployment prior (Si+
t , Si�

t ), determining roughly how many

new/existing stations should be deployed/removed for each category. Here we vary

the magnitude of this deployment prior, and consider four action scales : [0, 0.05,

0.1], [0, 0.1, 0.2], [0, 0.15, 0.3], and [0, 0.2, 0.4], each of which has three levels.

Here 0 means there should be no stations to be deployed or removed. Therefore,

the first scale [0, 0.05, 0.1] means that at each timestamp there could be no, 5% or

10% of the total stations removed or deployed. Intuitively, this scale specifies how

much our controller can explore in the search space. For instance, if the highest

scale [0, 0.2, 0.4] were selected, in the extreme cases, the controller can add 40% of

new stations, while removing 40% of the existing ones in one timestamp. Fig. 4.5d

shows the improved SC and NV of di↵erent variants of our controller compared with

the baseline HD. We see that as we increase the scale, i.e., our controller has more

room to explore, the NV is relatively stable, but drops a bit as the scale reaches the

highest. This means our approach can robustly optimise towards the goal of NV,

while at high scales the increased randomness in generated deployment plans may

deteriorate NV, e.g., deploying more stations may cost too much. On the other hand,

for SC we see that it generally increases, which is also expected, since if more stations

are allowed to be altered, the controller is likely to propose plans that quickly fill

up the candidate stations to improve the service coverage.

4.6 Conclusion

In this chapter, we investigate the infrastructure optimisation problem for shared

urban mobility systems, aiming to find the optimal deployment plan with which

the system can achieve the desired service coverage, net revenue, and demand sat-

isfied rate while being profitable. We design a high-fidelity simulation environment

to capture the key operational details the shared mobility systems at fine gran-

ularity, and calibrate the environment with rich data collected from a real-world

shared mobility system over 12 months. To tackle the deployment optimisation

problem, we propose a novel multi-agent deep neural search algorithm, which em-

ploys hierarchical controllers to generate possible deployment plans. The controllers
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are trained using a multi-simulation paradigm within our simulation environment,

which learns to propose better plans in the next iteration. The proposed approach

has been evaluated extensively, and experimental results show that: i) our neural

search algorithm significantly outperforms both the baseline and state-of-the-art op-

timisation approaches, in various metrics including service coverage and net revenue;

ii) By adjusting the weight between objectives, our search algorithm can optimise

towards di↵erent directions, providing desired deployment plan for di↵erent cases;

iii) the proposed hierarchical controller architecture reduces the search cost, where

tuning the action space of the high-level controller has substantial impact on bal-

ancing exploration and exploitation. There are some limitations of the proposed

approach. For example, it takes long time to train the model. Overall, the proposed

approach achieved the aim to improve the shared mobility systems, and the next

chapter studies how to improve such systems by managing the fleet in the systems.
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Chapter 5

Fleet Management

5.1 Introduction

Fleets are indispensable components of the urban mobility systems. In this chapter,

we investigate fleet management, in particular rebalancing, a key problem for the

shared mobility systems to operate smoothly in urban settings. Despite their rapid

adoption and growth across the world, almost all types of shared mobility systems

face the problem of imbalanced distribution of their fleets as they operate over time.

As in previous two chapters, in this chapter we also consider the shared e-mobility

systems as our case study, which in fact are more challenging than standard shared

mobility systems in this context, due to the extra constraints imposed by the use of

electric vehicles (EVs). As stated before, the approaches developed in this chapter

can be extended to other station-based shared mobility systems, by removing the

EV related constraints.

To demonstrate the problem of imbalanced fleets, Fig. 5.1b shows the dis-

tribution of the EVs in a real-world shared e-mobility system at the last day of a

month, where at the beginning of the month the system has just been manually re-

balanced (see Fig. 5.1a). We see that after 30 days the vehicle distribution becomes

very skewed, where some areas (red patches) have substantially more EVs than the

others. In addition, such imbalance also happens within shorter time frames, e.g.,

we observe that in morning rush hours a large volume of EVs tend to flow to cen-

tral areas and stay there, making fewer or even no vehicle available in other places.

This would certainly have negative impact on the overall system performance, as

potential customers may refrain from using the system if there is no available EVs

nearby, or no parking location available near their destinations.

In fact, this rebalancing problem is a common issue in di↵erent types of
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(a) 8am, Day 1 (b) 8am, Day 31

Figure 5.1: Vehicle distribution of a shared e-mobility system over a month, where
hotter areas contain more vehicles. Images better viewed in colour.

shared mobility systems, e.g., shared bikes [153, 110, 154], taxi [12, 13, 51], and

ride-sharing services [155, 156]. Typically, there are mainly two types of rebalanc-

ing strategies: i) employing a dedicated team of sta↵ to manually reposition the

vehicles/bikes, e.g., the work in [110]; or ii) incentivizing the users or drivers to vol-

untarily rent/return vehicles/bikes to the desired locations [157, 40]. In this chapter,

we consider user incentive based rebalancing, since it is natural in our context to

o↵er monetary incentives, e.g., price discount to the users, in exchange for them to

reposition the vehicles to alternative destinations. However, unlike the traditional

vehicle sharing systems, the rebalancing problem in shared e-mobility systems has

two unique challenges. First of all, EVs typically have limited range, and the charg-

ing time is much longer than filling up the petrol or diesel vehicles. This adds many

implicit constraints to the rebalancing problem, e.g., the EVs can’t be repositioned

to locations that is beyond the remaining range, and they also need to be su�ciently

charged to serve future user orders. Secondly, as the shared e-mobility systems are

relatively new to many cities, at this stage they tend to expand their services and

infrastructure very rapidly. For instance, in the shared e-mobility system studied in

this thesis, we observe that within just 12 months the total number of stations in

operation has doubled, and in each month there are hundreds of new stations being

deployed (see Fig. 5.2a). This makes the rebalancing task even more challenging,

as at each timestamp the candidate stations to which the EVs may be repositioned

are dynamically changing.

To address the rebalancing problem in the fast expanding shared e-mobility

systems, we propose a novel multi-agent reinforcement learning (MARL) approach,

which models the rebalancing task as a stochastic game among multiple agents.

Each agent manages the EV stations within a spatial region, and learns to make
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informed decision on where to reposition the incoming EVs to achieve maximum

expected reward. To tackle the challenges of limited EV range and the charging

delays, we propose to incorporate the range and charging information directly in our

MARL algorithm, so that the agents are fully aware of those constrains when making

decisions. For the dynamically expanding station networks, we propose a novel

action cascading approach, which decomposes the actions of repositioning an EV

into two subsequent and conditionally dependent sub-actions. The intuition is that

when an EV needs to be repositioned, one could firstly decide which of the regions it

should be redirected to, and then given the decision subsequently determine which

station within that region should be the new destination. Therefore, the expansion

dynamics are localised within the regions, while the first sub-actions should have

static action spaces. In light of this, the proposed action cascading approach uses

two connected policy networks to generate the sub-actions in sequel, where the

second network is specially designed to handle the non-stationary action spaces.

There is also a solid body of existing work that uses the MARL formulation

in rebalancing the shared mobility systems. For instance, the recent work in [110]

uses a spatial-temporal DQN to rebalance the shared bikes, but it is fundamentally

di↵erent from our work since it doesn’t consider the dynamic system expansion. On

the other hand, the work in [13] and [12] tackles the order dispatching problem in

taxi systems, which although di↵erent from our problem, share similar challenges in

the varying action spaces. However, their solutions are to allow the agents directly

ranking the potential actions and selecting the one with highest score, while we use

two policy networks to generate cascading actions and handle the non-stationarity.

Concretely, the technical contributions are as follows:

• To the best of our knowledge, we are the first to identify the problem of rebal-

ancing the continuously expanding shared e-mobility systems. We formulate

the incentive-based rebalancing problem under the multi-agent reinforcement

learning framework, and design the agents, states and rewards for the EV

context accordingly.

• We conduct an in-depth case study of a real-world shared e-mobility system

for one year, and collected rich sets of data from various sources to support our

study. We analyse its operation model, expansion process and usage patterns.

Based on the learned insights we consider a high-fidelity simulator for training

and evaluation of the proposed approach.

• We propose a novel approach of policy optimisation with action cascading

(ac-PPO), which uses two connected policy networks to handle the dynamics
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introduced by the continuous expansion of the shared e-mobility systems. We

also design a regularised reward function for the proposed ac-PPO, which can

e↵ectively stabilize training and improve data e�ciency.

• The proposed approach has been evaluated extensively with our simulator,

and the results show that our approach significantly outperforms the state-of-

the-art, o↵ering up to 12% improvement in net revenue and 14% in demand

satisfied rate.

The rest of this chapter is orgnised as follows. We first discuss additional

related work in Section 5.2 and briefly revisit the settings of the shared e-mobility

systems, and discuss our key findings from the collected data that are relevant to

the reblancing task in Section 5.3. Then we present the proposed approach for the

rebalancing problem in Section 5.4. Section 5.5 evaluates the performance of our

approach. We conclude the chapter in Section 5.6.

5.2 Related Work

As in the previous two chapters, in this section we discuss existing work in areas

that are directly relevant to contributions in this chapter. For general background

we refer the readers to Chapter 2.

5.2.1 Fleet Management

Existing work to address the problem of managing the fleet in the urban mobil-

ity services can be broadly categorized into three types, static reposition, dynamic

reposition and user-based reposition. The first two are conducted by the system

operators while the last is conducted by users. The static reposition solution is

usually performed when the system is not operating or during the nights, with no

perturbation from the users. Then the rebalancing tasks is cast into an optimisa-

tion problem with some objectives [37, 158, 159], e.g., maximising satisfaction of

the customers. In practice, such static repositioning approaches only work well if

the demand is predictable and stable. However, they can’t perform rebalancing

online as during operation the distributions of vehicles are varying. Dynamic repo-

sition approaches consider the real-time flow of vehicles in the system, which also

use optimisation techniques [157, 110, 160] to find the optimal repositioning plans.

However, they depend heavily on the accuracy of demand prediction and it is often

di�cult to adjust the reposition operation given the unpredictable fluctuations in

demand. The user-based reposition approaches solve the problem by incentivizing
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the users with rewards to rent or return vehicles at specific stations [157, 40, 161].

However, it is often challenging to determine the optimal alternative station and

estimate the appropriate reward to o↵er. Our work in Chapter. 5 falls into the

last category, but unlike the existing solutions which assumes the system is static,

we aim to tackle the rebalancing problem in the presence of dynamically changing

station networks. It is fundamentally di↵erent from the static case, as at di↵erent

time the candidate stations for potential repositioning operations can be di↵erent,

which can’t be addressed by the existing approaches.

5.2.2 Deep MARL for Mobility

Deep learning techniques have been used in various ubiquitous mobility applica-

tions due to their superior performance, e.g., improving service levels of taxi [51],

predicting user demand [114], and reposition bikes or vehicles [40]. In particular,

deep reinforcement learning has been introduced to solve various challenging mo-

bility problems, such as tra�c management [51, 162], order dispatching [13, 12],

and rebalancing [110, 40]. Due to their distributed nature, many of those mobility

applications can be modeled as multi-agent games, which can be well solved by deep

reinforcement learning. For instance, the work in [110] designs a spatio-temporal

reinforcement learning approach to dynamically reposition bikes in the bike-sharing

system. The work in [12] proposes a multi-agent reinforcement learning framework

to tackle the fleet management problem, while [13] addresses the order dispatch-

ing problem for ride sharing systems using mean field approximation. It has been

shown that in those applications, deep reinforcement learning often achieves bet-

ter performance, e.g., in terms of reducing potential customer loss, or increasing

the gross merchandise values, than the traditional rule-based or optimisation based

approaches, especially when the problem structure is complex. In this work, we

also model the rebalancing problem in shared e-mobility system with MARL frame-

work. However, our work di↵ers from the existing work in that a) we extend the

existing framework to directly model unique properties of EV sharing such as range

limitations and charging time, and more importantly b) we develop the new action

cascading technique to support continuous system expansion.

5.3 Rebalancing Shared e-Mobility Systems

In this section, we first remind the readers with some key concepts and assumptions

of the shared e-mobility system considered in this thesis, and illustrate how it is

operated in practice, highlighting the unique properties that are di↵erent from the

79



traditional mobility sharing services. Then we provide an in-depth analysis of the EV

sharing data, particularly on the aspects related to fleet management and usage, and

explain the problem of incentive-based EV rebalancing in the presence of continuous

system expansion.

5.3.1 Shared e-mobility Systems

We follow the same models and assumptions for shared e-mobility systems as intro-

duced in the previous two chapters (in Section 3.3.1 and 4.4.1). We assume that the

electric vehicles (EVs) used in our shared e-mobility system are of limited range, and

fully charged ranges of the EVs are fixed, and during normal driving the remaining

range can be determined by a typical discharging model [150]. In addition, the time

for charging of the EVs is much longer than refilling the traditional vehicles, which

however can be estimated by a charging model [150], given the remaining range,

battery capacities and charger specifications. We assume our system only uses one

type of the chargers throughout. In Section 5.5 we will show how di↵erent EV ranges

and charging duration may impact the patterns of system operation in more detail.

The stations S in the systems are the same as defined in Section 3.3.1, which

also contain charging docks. The operation model of the shared e-mobility system is

the same as in Section 4.4.1, where a user may pick up a vehicles from a certain sta-

tion so 2 S, and return to the destination station sd 2 S. As highlighted throughout

this thesis, we assume the shared e-mobility system is continuously evolving during

its operation, i.e., there are new EV stations deployed while existing ones closed at

arbitrary time. In practice, a new EV station could be deployed in a new area to

extend the coverage of current station network, or within the already covered areas

to increase the station density. On the other hand, stations can also be closed tem-

porarily or permanently for various reasons, e.g., with limited profit or the parking

spaces are no longer available. We assume that overall the system keeps expanding,

i.e., there are always more stations being deployed than closed.

5.3.2 Data Analysis for Rebalancing Task

Now we revisit the data collected for our study, and highlight the properties and

characteristics that could a↵ect the rebalancing task studied in this chapter. As

motioned in previous chapters, we worked with a major shared e-mobility provider

in Shanghai and collected its operational data for one year. Details of the data

format and volume has been presented in Section 4.4.1. In particular, the data

contains i) the complete order transactions of the shared e-mobility system, and
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Figure 5.2: (a) Statistics of system expansion during the 12 months period (taken
from Fig. 3.1). (b) Newly deployed stations in two consecutive weeks.

ii) records on station deployment, i.e., when and where a station was deployed or

closed. We refer the readers to Section 4.4.1 for more details.

Station Distribution. As discussed in the previous chapter, the density of the

deployed stations is very di↵erent across the space. For instance, we find that the

density decrease significantly towards the outer ring road, e.g., from 3.23 stations

per km2 in the inner ring road, to only 0.93 stations per km2 in areas beyond

the outer ring road. This would certainly a↵ect the rebalancing decisions as in

denser areas there may have more choices for alternative destinations, which are

also closer. We also see that across the city the sizes of stations vary, and there

are some particularly larger stations exist. By cross-checking the nearby POIs we

found that those stations are typically within transportation hubs such as airports,

which is also vital for rebalancing, as in those station there should be constantly

significant volume of in/our demand, which needs su�cient amount of EV available

to satisfy. We refer the readers to Fig. 4.3 for visualisation of the station and POI

distributions.

System Expansion. Fig. 5.2a visualises the expansion of the shared e-mobility

system studied in this work. We see that in 12 months time, the stations in opera-

tion has doubled from roughly 1500 to more than 3000, where in each month there

are continuously hundreds of stations being deployed or closed. This would pose

significant challenges to our rebalancing task, as the possible destinations for repo-

sitioning the EVs are continuously changing. Another observation is that in reality,

the expansion process of the stations is not uniform, which requires the rebalancing

strategies to adapt accordingly. For instance, Fig. 5.2b shows the newly deployed

stations of the service in two consecutive weeks. We see that during the first week

more stations were deployed at the central areas with only a few scattered around,
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Figure 5.3: Demand patterns of the EV sharing service are highly imbalanced across
space and time. (a) Average number of orders during each day in a week. (b)
Average number of orders during morning rush hours. (c) Average number of orders
during evening rush hours.

while in the second week stations were spread more uniformly. This indicates that

as the system expands over time, di↵erent regions across the city might require

di↵erent rebalancing strategies to better exploit the infrastructure available.

Demand Patterns. We observe that the demand patterns of the shared e-

mobility system vary significantly across space and time. Firstly, there are clearly

di↵erent temporal patterns between weekdays and weekends. As shown in Fig. 5.3a,

we see the two peaks on weekdays align well with the morning (7-9am) and evening

(5-7pm) rush hours in Shanghai. It is also interesting to see that the demand at

evening peaks are higher than morning peaks. One possible reason is that people

choose not to use EV sharing to avoid congestion during morning journeys to work,

while are more flexible and willing to drive EVs when they finish in the evenings.

Intuitively during those rush hours the rebalancing task is more challenging, where

more rent/return demand surges across the city. For instance, we may have to

reposition more EVs during those times, to ensure the balance of the system. In

addition, Fig. 5.3b and Fig. 5.3c show the spatial distributions of demand at both
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Figure 5.4: The distributions of (a) the order duration, (b) the monthly usage
frequency per user, and (c) the overall EV utilisation.

mornings and evenings, where we see high volumes of demand are typically generated

at suburban areas in the mornings, while at central areas in the evenings, reflecting

the typical commuting needs. Therefore the rebalancing strategies should be able to

take such spatio-temporal characteristics into account, and make informed decisions

as how to reposition the EVs given the specific context.

Usage Characteristics. As shown in Fig. 5.4a, we see that on average the users

of the shared e-mobility system tend to rent EVs for short trips, where the mean

order length is 46 min. This indicates that for such systems, user-incentive based

rebalancing is a sensible and beneficial choice, since users would not mind driving

for a bit longer to reposition the EVs after shorter trips in exchange for incentives,

while having more chances to reject such proposals after long journeys [157]. We

also find that more than half of users tend to use the shared e-mobility system for

less than 30 times in a month, i.e., roughly on daily basis, as shown in Fig. 5.4b.

Therefore, although with appropriate incentives, the rebalancing strategies need to

be carefully designed to not require excessive user e↵orts, e.g., repositioning EVs to

far away stations. Interestingly, we also find the utilisation of EVs across the system

is skewed. Fig. 5.4c shows the distribution of usage frequency of EVs (number of

orders served) during the 12 month period. We see that some EVs have been

used more than the others, e.g., they were deployed to popular stations such as

the airports. This may lead to imbalanced vehicle conditions across the fleet, e.g.,

some EVs may su↵er from early battery degradation or over wear and tear, which
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should be avoided. In practice, rebalancing could also alleviate this, as EVs are

often redistributed from popular stations to the quieter ones.

5.3.3 The EV Rebalancing Problem

In this chapter, we consider rebalancing the shared e-mobility system by incentiviz-

ing the users. In particular, let ot = (so, sd) be an order placed by a user at time t,

requesting to rent a vehicle from station so and return to sd. As discussed above,

due to the very unbalanced user demand over space and time, during operation the

shared e-mobility system can become skewed where some stations are too crowded

(i.e., not enough places to park/charge), while the others are depleted (i.e., not

enough EVs to rent). Clearly both cases would negatively impact the system per-

formance in satisfying future user demand. Therefore, to alleviate such imbalance

we may have to reposition the EV serving the current order ot to another station sd
0

instead of the original destination sd, if the remaining range of the EV is su�cient.

We motivate the user who is driving the EV to perform this for us by o↵ering her

a certain amount of monetary reward. In general, we o↵er her a reward of value

v(sd, sd
0
) which depends on the extra distance she has to drive from sd to the new

destination sd
0
. The user may or may not accept the o↵er, according to a prior user

model [157]. If she accepts, we pay the reward directly e.g., discounting the order

price, while otherwise we allow the user to return the EV to her original destination

and charge the order normally.

Therefore, the rebalancing problem studied in this chapter is that given the

total available budget B on user incentives, for each order ot = (so, sd), we want

to decide where to reposition the EV to minimise the future customer loss (i.e.,

satisfying as much user demand as possible) while maximizing the net revenue of the

shared e-mobility system, in the presence of limited EV range, typical EV charging

time, and the dynamically expanding station network.

5.4 Rebalancing Methodology

To tackle this EV rebalancing problem, in this section we first formulate it as a Multi-

Agent Reinforcement Learning (MARL) task with non-stationary action spaces in

Section 5.4.1. Then in Section 5.4.2 we explain in the stationary cases how MARL

tasks can be solved by general policy optimisation techniques, and finally present

the proposed policy optimisation approach with action cascading in Section 5.4.3,

which is able to handle the non-stationarity in our problem.
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Figure 5.5: An illustration of the MARL formulation for the fleet rebalancing task.

5.4.1 Fleet Rebalancing as a MARL Task

In this problem, we consider a set of autonomous agents, each of which has its own

action space, and interacts with the common environment to improve its behav-

ior. Comparing to the single agent settings, the multi-agent formulation is more

suitable to address our problem, because multiple agents could better exploit the

decentralized nature of the rebalancing task, and by design it allows new agents to

join online in a flexible way, which could capture the dynamic system expansion in

our context. In addition, under the MARL framework learning can be more e�-

cient than the single agent case, as the action spaces of the agents are much smaller,

and the computation can be accelerated by parallel processing. Formally, we model

the above rebalancing problem in shared e-mobility systems as a Markov Game

G = (N,X ,A, T ,R, �), where at most N agents interact with the environment,

characterized by the states X and transition functions T . A is the joint actions

of the agents, R is the reward functions, and � is the discount factor. Note that

the MARL formulation for the rebalancing task bears some resemblance to that of

the infrastructure optimisation problem discuss in Chapter 4, but they also di↵er in

many aspects, from the design of action space and reward function, to implemen-

tation details. In the following we present the specific MARL formulation for the

rebalancing task studied in this chapter.

Agents. In our formulation, we assume an agent controls the operation of EV

stations within a certain geospatial region. Essentially, we consider the agent as the

virtual system operator of that region, who decides if an EV returning to stations

within its region should be repositioned and where. Without loss of generality, in

this chapter we assume each agent manages a hexagonal region, i.e., the space is

partitioned into hexagonal grids with the same size. As the shared e-mobility system
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is continuously expanding to new areas, in our case the number of agents at a given

time t is a variable Nt, but we assume the maximum number of agents are fixed

N , which is determined by the maximum number of hexagonal grids in the space

partition.

States. At time t, the global state xt contains information about the the cur-

rently online EV stations, the available EVs and the spatial distributions of the user

demand. More concretely, we assume xt is the combination of states for each hexag-

onal grid xt = {xit}, i 2 [1, N ]. For the i-th hexagonal grid, its state xit encodes

information about the stations within the boundary of this grid. In particular, for

each station we consider its location #loc, number of available charging docks #c,

number of EVs parked in the stations #v and their individual range, as well as

the potential future rent/return requests (number of EVs) and the average value of

potential future orders in the next timestamp.

Agent Observations. Let agent i manage the i-th hexagonal grid. At time t, we

assume the agent makes a partial observation of the global state xt. In this work,

we assume that an agent can draw observations from only the grids within its one

and two-hop neighborhood, i.e., normally it observes the states of itself and the 19

grids around it. This means the receptive fields of our agents are two-hop, which

enables them to observe and interact with the local environment around them, and

learn to better cooperate with their neighboring agents.

Actions. For agent i, its action ait describes how each EV returned to the grid i

at time t will be handled, i.e., continue directly to the original destination station,

or being redirected to another station. In this work we assume that our agents shall

only propose to reposition the EVs to stations within the one-hop neighborhood of

destination grid to avoid excessive user e↵ort, i.e., an EV being returned to grid i

shall only be repositioned to stations in the 6 neighbor grids of i if necessary. As

there are stations being deployed or closed dynamically in our system, the action

spaceAi
t of the agent i is non-stationary, i.e., the candidates of the reposition stations

may vary over time. Therefore at time t, a joint action at 2 A1
t ⇥ ...⇥ANt

t specifies

the EV reposition strategies of all Nt agents.

State Transitions. The state transitions T are defined as T (xt+1|xt,at,ut), where

xt is the previous state, at is the joint action of the agents, and ut is the control

input describing the system dynamics. We use this variable ut to capture the changes

caused by the station network expansion happened at t, i.e., which new stations are

deployed with how many new EVs, and which exiting stations are o↵-line from time

t. Therefore, in our case the environment is non-stationary, as the state transitions

are induced not only by the actions at of the agents, but also the external input ut,

86



which is often governed by a random process.

Reward Function. For each agent, the reward rit of taking an action at time

t is determined by the reward function Ri(xt,at), as defined in Eq. (4.2). As

discussed above, in the rebalancing task we would like to maximise the gross revenue

of our shared e-mobility system with minimum cost on user incentives. Intuitively,

the gross revenue can be increased by providing more EVs to stations with higher

expected order values. However, in practice we found that considering only the order

values would lead to over-greedy agents, who would only push EVs to certain “hot”

stations with higher average order values such as the airport but ignore the others,

causing further imbalance to the system. Therefore, to mitigate that we also reward

the agents that choose to reposition the EVs to the stations that are in shortage of

vehicles, i.e., those are likely to have more orders in the future but currently don’t

have enough EVs available. Concretely, suppose that at time t the agent i decides

to reposition an incoming EV to a new destination station sd
0
instead of the original

sd. To balance fairness and the potential revenue, we design the reward function rit
as follows:

rit = gd
0

t + ↵1v
d0
t + ↵2b

d0
t � ↵3d(s

d0 , sd) (5.1)

where gd
0

t is the expected demand gap at station sd
0
in the next timestamp, i.e.,

the number of orders minus the number of available EVs onsite, and vd
0

t is the

expected average order value at station sd
0
. bd

0
t is a binary variable indicating if

station sd
0
is empty, i.e., there is no EVs in the station at t. We use bd

0
t to explicitly

encourage agents to position EVs to those empty stations, which are very likely to

cause unsatisfied demand in the future. The penalty term d(sd
0
, sd) is the cost we

pay (monetary reward to the user) for this reposition, which is proportional to the

squared distance that one has to travel from the original sd to the new destination

station sd
0
[40]. The weights ↵1, ↵2 and ↵3 scale the di↵erent reward/penalty terms

to approximately the same range, which are set empirically in our experiments via

grid search. Given the reward function, each agent aims to maximise its discounted

reward E[
P1

k=0 �
krit+k], where � 2 [0, 1] is the discount factor. Fig. 5.5 shows an

illustration of the MARL formulation of the rebalancing task.

It is worth pointing out that in our MARL formulation, the action spaces

of the agents are non-stationary, due to the fact that the EV station network is

dynamically evolving over time. This means in both training and testing, at di↵erent

timestamps an agent may face di↵erent lists of candidate stations, e.g., at arbitrary

locations and with heterogeneous properties such as number of charging docks or

available vehicles, to which it may reposition the EVs. In that sense, typical RL

techniques such as Q-learning or policy-based approaches are not directly applicable,
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as they often require a fixed set of actions to evaluate their Q values or the probability

distribution over them. In the following, for completeness we first briefly introduce

the standard policy optimisation approaches for multi-agent RL that are designed

for stationary action spaces, and then explain how we extend them to deal with the

non-stationary cases.

5.4.2 Standard Policy Optimisation

Depending on specific learning tasks, there are two main types of model-free MARL

algorithms in practice: the value-based and policy-based approaches. The former

relies on good estimations of the state action value functions such as DQN [163],

but often fails when the rewards are complex. On the other hand, the policy-based

approaches directly search for better policies in each iteration, but naive techniques

such as policy gradient [164] su↵er from large gradient variances and are not robust.

In this work, we consider the more recent policy optimisation algorithms [165],

which combine the best of two worlds: the learning task is cast into a constrained

optimisation problem, which iteratively searches for better policies that yield larger

returns.

More concretely, let ⇡✓ be the policy parameterized by ✓, which is often im-

plemented as policy networks. In our case, the agents aim to maximise the expected

discounted reward since the beginning of time: ⌘(⇡✓) = E
⇥P1

t=0 �
t
rt
⇤
, where rt is

the joint reward. In practice, ⌘(⇡✓) can be optimized by the Minorize-Maximization

(MM) algorithm [166], which tries to find a surrogate function approximating the

lower bound of ⌘ at the current policy ⇡✓ and optimize it iteratively. In particular,

we consider the following objective function L:

L(✓) = Ê


⇡✓(at|xt)

⇡✓old(at|xt)
Ât

�
(5.2)

where at and xt are the joint actions and states at time t, and Ê[·] is the empirical

average over the batch of samples. Ât is an estimator of the advantage function At,

which is the benefit of taking a specific action at under the current state xt than

the expected state value:

At(at,xt) = Q(at,xt)� V (xt) (5.3)

where Q(at,xt) is the Q-function and V (xt) is the value function.

Here the actions at are drawn from the current policy at ⇠ ⇡✓(at|xt), and

we assume the states transition only depends on the previous states and actions:
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xt+1 ⇠ T (xt+1|at,xt). Note that we use the advantage function At instead of the

Q function which is the expected reward, to reduce the estimation variance and

stabilize training. The intuition is that L approximates ⌘(⇡✓) locally at the current

policy ⇡✓, but can get inaccurate as it moves away from ⇡✓. Therefore, to avoid

updating the policy too much, we consider the following constrained optimisation

problem:

maximise
✓

L(✓)� �Ê[DKL(⇡✓(·|xt),⇡✓old(·|xt))] (5.4)

The constraint term is the mean KL divergence between the old and current policy,

indicating that the new policy can’t be too di↵erent from the old one. We then

iteratively optimize the objective function, until the optimal policy ⇡✓⇤ can be found.

Note that the standard policy optimisation algorithms assume that the action spaces

of the agents are stationary, i.e., at each timestamp the learned policy ⇡✓ outputs a

distribution over the fixed set of possible actionsA. In the context of our rebalancing

task, this means the standard algorithms can only work if the station network is

static, i.e., the candidate stations to which an agent can reposition EVs should be

fixed, and thus they are not directly applicable to our problem where the station

network is dynamically changing.

5.4.3 Policy Optimisation with Action Cascading

We now present the proposed policy optimisation approach with action cascading

(ac-PPO), which extends the standard algorithms and is able to handle the non-

stationarity in our EV rebalancing problem. The key intuition is that in our settings

the action of repositioning an EV to an alternative station can be viewed as a

sequence of two sub-actions, where we first decide which grid the EV should go to,

and then figure out which station within that selected grid should be the target. In

essence, we chain two sub-actions, one inter-grid and the other intra-grid, to achieve

the desired goal of repositioning the vehicle. One of the benefits of this action

cascading is that now the inter-grid actions can have fixed action spaces, while the

non-stationarity of the station network would only a↵ect the intra-grid actions. This

makes it possible to fit our problem into the policy optimisation framework discussed

above, where the non-stationarity within di↵erent grids can be handled by separate

policy selectors. In the following, we first explain the design of action cascading

in more detail, and then we show how we adapt the reward structure to stabilize

training.

Action Cascading. Let ait be the action of agent i at time t. We assume ait can

be decomposed as ait = (gait, sa
i
t), where gait is the inter-grid action that decides
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which grid within the neighborhood the EV should be redirected to, and sait is the

intra-grid action which determines the actual destination station within the selected

grid. Clearly, here gait has a fixed action space, which contains the six neighbors

around the gird i and itself. Therefore, gait can be sampled from the output of a

standard policy network ⇡g
✓ as discussed in Section 5.4.2. Let us assume that we

have a gait that would redirect the EV to a nearby grid j. Now we need to find the

intra-grid action sait that selects a suitable station within grid j. Note that here

the action space of sait is not stationary, as there are always stations deployed or

closed in grid j. We address this by using a special action-in policy network ⇡s
� as

shown in Fig. 5.6, which takes the current state xjt of the grid j, and the output of

the last layer of the inter-grid policy network ⇡g
✓ as the input. Note that here the

state xjt encodes information of the current stations and vehicles within grid j, and

the output from ⇡g
✓ conditions xjt . The output of the network ⇡s

� are deterministic

values of each station within grid j, and we select the one with highest value for

action sait.

Essentially, we use two policy networks that are connected, to determine the

inter-grid and intra-grid actions respectively. During training, we only sample from

the inter-grid policy network ⇡g
✓ , while considering the intra-grid policies of ⇡s

� are

deterministic, which makes the training more data e�cient. In our implementation,

we train the networks with the following clipped objective function:

LCLIP(✓,�) = Ê
h
min(R✓

t Â
✓,�
t ,Clip(R✓

t , 1� ✏, 1 + ✏)Â✓,�
t

i
(5.5)

where R✓
t is the probability ratio between new and old inter-grid policy:

R✓
t =

⇡g
✓(gat|xt)

⇡g
✓old

(gat|xt)
(5.6)

This R✓
t together with the Clip function constrains the policy updates to

avoid obtaining very di↵erent new policies. ✏ is the hyperparameter, which is usually

set to values around 0.2⇠0.3. Note here we only consider the inter-grid policy ⇡g
✓ ,

since the output gat has stationary action space. On the other hand, the advantage

function Â✓,�
t = Q(at,xt)� V (xt) considers both inter and intra-grid policies, since

the reward rt is given to the full actions at = (gat, sat), where the Q function is

evaluated with the discounted rewards of the actions obtained in this experience.

Reward Regularisation. Essentially, the proposed ac-PPO addresses the non-

stationarity in action spaces by decomposing the action into the sequence of inter-

grid and intra-grid sub-actions, and using two connected policy networks to deter-

mine them. Therefore, we fit the non-stationary rebalancing problem into the policy
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Figure 5.6: Overview of the proposed action cascading.

optimisation framework, by allowing non-stationary reward functions. In fact, from

the view of the inter-grid policy network ⇡g
✓ , the reward distribution of the same

action (e.g., repositioning the EV to the grid directly above) across di↵erent times-

tamps may be di↵erent, because the set of stations within the grid are changing, and

the intra-grid policy network ⇡s
� is very likely to select di↵erent destination stations.

When the station network is very dynamic, such non-stationarity in reward could

lead to large gradient variance when training ⇡g
✓ . To address that, we propose to

regularise the reward function rit in Eq. (5.1) with a baseline:

ri
0
t = rit + �r̄t(j) (5.7)

where the regularisation term r̄t(j) = v̄t(j) · ḡt(j) is the product of the mean order

value v̄t(j) and the average future demand gap ḡt(j) (# of user demand - # of

available EVs ) per station in grid j, assuming that the action is to reposition

the EV to a station in the target grid j. Intuitively, r̄t(j) can be viewed as the

“potential” of the grid, indicating how much extra revenue one would expect to

get if more EVs are repositioned to stations within the grid. In practice, r̄t(j)

is updated every timestamp and is more stable than rit, which depends on the

particular destination station selected by the intra-grid policy network ⇡s
�. The

weight � scales the regularisation term to adjust its impact during learning. We

describe the detailed ac-PPO algorithm in Alg. 1.
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Algorithm 1 Policy Optimisation with Action Cascading
1: while training not finished do
2: for agent i = 1, 2, . . . do
3: for t = 1, 2, . . . , T do
4: Run inter-grid policy ⇡g

✓old
to sample gait

5: Given gait = j, run intra-grid policy ⇡s
�old

(j) to get sait
6: Take the cascading action ait = (gait, sa

i
t)

7: Collect reward ri
0
t as in Eq. (5.7)

8: Compute advantage estimates Ât as in Eq. (5.3)
9: end for

10: Sample a batch of experiences as described above
11: Optimize the objective function LCLIP(✓,�) as in Eq. (5.5)
12: Update ✓old  ✓
13: Update �old  �
14: end for
15: end while

5.5 Evaluation

In this section, we evaluate the proposed MARL algorithm extensively with a cus-

timised version of the simulation environment as presented in Chapter 4. We first

explain our experimental settings and competing approaches in Section 5.5.2, and

report the experiment results in Section 5.5.3.

5.5.1 Simulation Settings

For the rebalancing task, we consider the simulation environment designed in Sec-

tion 4.4, and adapt it to EV model and simulate the rebalancing operations in shared

mobility systems. As in the previous chapter, we consider 10 mins as one timestamp,

i.e., one day (24 hours) contains 144 time intervals. The space is partitioned into

hexagonal grids, where each agent manages one grid and can reposition EVs to the

neighboring 6 grids. In total we have 598 grids covering the entire city of Shanghai.

To simulate the dynamic system expansion, our simulator uses a random process

to control i) the expansion speed, i.e., numbers of new stations to be deployed and

existing stations to be closed at a timestamp; and ii) the expansion plan, i.e., where

to deploy the new stations, and which existing stations should be closed. The pa-

rameters of the random process are learned from the real expansion data. For a

newly deployed station, the simulator sets the number of parking/charging docks

using the actual station data, i.e., it finds the set of stations in real data that are

close to this new station in simulation, and use their average number of charging
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docks to initialize it. We also allocate certain number of EVs to this new station,

according to a probability ratio learned from the historical expansion data.

We use similar process as in Section 4.4 to generate the user demand, i.e.,

user orders for the shard mobility system. At initialisation, the simulation envi-

ronment assumes all the EVs in the system are fully charged. As the simulation

progresses, the simulator keeps track of the range of each EV by applying a dis-

charging model [150] when serving orders. Once the order is completed, i.e., the EV

is returned to a station and charging, the remaining range of the EV is estimated

using a charging model [150].

When there is a need to reposition an EV, our simulation environment com-

putes an o↵er of monetary reward, whose value depends on the square of the extra

distance that the user has to travel [157]. The simulator assumes that the user

would accept this o↵er according to an incentive acceptance probability p, which

indicates how cooperative the user is. In our experiments, we vary p and study how

di↵erent p values could impact the rebalancing performance. If the o↵er is accepted,

the simulator updates the order information accordingly (e.g., discounting the price,

changing the destination station), and also updates the status of the EV and sta-

tions accordingly. We calibrate the simulation environment with real-world data in

the same way as discussed in Section 4.4.5.

5.5.2 Experimental Setup

In our experiments, we compare the proposed approach with the following baselines:

• No Rebalancing (NR), which simulates the operation of shared e-mobility

system without any rebalancing actions.

• Random Rebalancing (RND), where in rebalancing the EVs are reposi-

tioned randomly to nearby stations (with at least one charging dock available)

within a certain radius of the original destinations.

• Revenue Greedy (REV), which is similar with RND but selects the stations

with the highest average order values.

• Demand Gap Greedy (DMD), which prefers the stations with the highest

demand gap in the vicinity.

• STRL, which is our implementation of the the state-of-the-art rebalancing ap-

proach [110] for shared mobility systems. It uses multi-agent spatial-temporal

reinforcement learning to reposition shared bikes across di↵erent stations.
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To further validate the performance of the proposed action cascading, we

also consider di↵erent variants of our MARL algorithm for ablation study. For

the inter-grid actions (i.e., determining which grid for repositioning), we consider

the following di↵erent implementations of the policy network ⇡g
✓ (as explained in

Section 5.4.3):

• Policy Gradient (ac-PG), which uses the standard policy gradient tech-

nique to determine the inter-grid actions. The policy network is implemented

with a four layer MLP, and we use learning rate 4e-4.

• Deep Q Networks (ac-DQN), which uses a Q-network to approximate the

action-state values. In our implementation, we use four layer MLP and ✏-

greedy policy as the agent policies, where ✏ is annealed from 0.1 to 0.02 in

training. The learning rate is set to 5e-4.

• Advantage Actor Critic (ac-A2C), which uses two separate networks (the

actor and the critic) to produce actions and estimate the advantage values

respectively. In our implementation, we use two four layer MLPs for the actor

and critic network. We use learning rate 1e-4 for both networks.

• Proximal Policy Optimisation (ac-PPO), which is the policy optimisation

approach as discussed in Section 5.4.3. In particular, we use a four layer MLP

as the policy network to generate the inter-grid actions, which also estimates

the state values. The learning rate is set to 5e-5.

Note that for all the above variants, we use the proposed intra-grid policy

network ⇡s
� as described in Section 5.4.3 to determine the later intra-grid actions that

redirect the EV to destination stations, and the same function in Eq. 5.7 to collect

rewards. On the other hand, to evaluate the performance of di↵erent approaches

for the intra-grid policy network ⇡s
�, we fix the inter-grid policy network ⇡g

✓ as the

PPO, and consider the following additional variants:

• PPO + Random (PPO+RND), which uses PPO to determine which grid

to reposition the EV, and then randomly selects a destination station within

that grid.

• PPO + Revenue Greedy (PPO+REV), which is similar to the above, but

instead of random selection, it finds the destination station with the highest

average order values.
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NR RND REV DMD STRL ac-DQN ac-PG ac-A2C ac-PPO PPO+RNDPPO+REVPPO+DMD

DS 74.69% 49.79% 82.15% 81.09% 82.47% 83.50% 83.64% 85.23% 88.79% 53.94% 83.19% 82.88%
�DS — -24.90% 7.46% 6.41% 7.78% 8.81% 8.95% 10.55% 14.10% -20.75% 8.51% 8.20%

�GMV — -36.30% 8.25% 3.22% 9.27% 10.76% 11.26% 13.13% 18.13% -29.82% 10.41% 6.22%
�NV — -47.71%-7.64% -0.48% 1.12% 6.95% 7.37% 8.53% 12.23% -48.40% -3.27% 1.72%

�|o|/|a| – — 9.28 4.98 2.08 1.14 1.09 1.11 1.12 — 7.82 3.53

Table 5.1: Performance of the competing approaches in 1) demand satisfied rate
(DS), 2) increased demand satisfied rate (�DS) w.r.t. baseline NR, 3) increased %
of GMV (�GMV) w.r.t. baseline NR, 4) increased % of net revenue value (�NV)
w.r.t. baseline NR, and 5) # of increased order per reposition operation (�|o|/|a|,
only showing positive values).

• PPO + Demand Gap Greedy (PPO+DMD), which decides the des-

tination station by finding the one with the largest demand gap within the

grid.

In our experiments, all the competing approaches are implemented with Ten-

sorFlow 1.14.0, and trained with a single NVIDIA 2080Ti GPU. For e�cient train-

ing, in our implementation all the agents share the same policy and value networks,

which also encourage them to collaborate with the others. In practice, the agents

can maintain their own network parameters locally, and get updates from a central

server. To be fair, we assume that for all approaches the amount of user incen-

tives we have to pay for a particular reposition action is calculated by the same cost

model [157], which depends on the squared distance between the original destination

and proposed reposition station. We evaluate the competing approaches against two

main metrics:

Demand Satisfied Rate (DS), which is the percentage of the demand satisfied

by an algorithm with respect to the total user demand generated.

Net Revenue Value (NV), which is calculated as the GMV of the system sub-

tracts the cost on user incentives.

5.5.3 Results

Overall Rebalancing Performance. The first set of experiments evaluate the

overall rebalancing performance of di↵erent approaches. Table. 5.1 shows the de-

mand satisfied rates and the increased net revenue (in percentage) of the competing

algorithms. We allow the station network to expand at the normal speed (similar

with the real data), where at each timestamp there are new stations deployed and

existing ones closed. We can see that comparing to no rebalancing (NR) which is

the normal operation, randomly selecting the reposition stations (RND) won’t help

in neither satisfying user demand, nor improving net revenue: we observe a signif-
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icant drop in both performance metric. On the other hand, if we are greedy on

order values (REV) we do satisfy more user demand by roughly 7%, but the net

revenue actually drop by 8%. This is because with this algorithm, the agents tend to

excessively reposition EVs to those station with high expected order values, while

ignore the cost on user incentives. In our experiments, we find that on average,

REV would satisfy one extra order (which tends to be of higher values) at the cost

of repositioning 9.3 EVs. On the other hand, the demand gap greedy algorithm

(DMD) achieves more balanced performance, improving the demand satisfied rate

(DS) by 3%, while maintaining similar net revenue with the baseline NR. This is also

expected, as sending EVs to stations with larger demand gap is more likely to fulfill

future user orders. On average, this DMD has to reposition 4.9 EVs to satisfy one

extra order, which is better than REV. We observe that the state-of-the-art STRL

outperforms the baselines, with 8% improvement in DS and 1% improvement in net

revenue (NV). It also has more e�cient repositioning as well: on average it reposi-

tions 2.1 EVs to satisfy one extra order. It confirms that by using spatial-temporal

RL, the STRL can better learn the demand pattern across space and time, and thus

make more informed decisions in rebalancing. However, we see that the approaches

with the proposed action cascading significantly outperforms STRL. For instance,

the best ac-PPO can achieve almost 15% improvement in demand satisfied rate,

while obtaining approximately 12% more net revenue. This means comparing to

the state-of-the-art STRL, our approach can o↵er two-fold improvement in satisfy-

ing user demand, while >10x net revenue improvement. In addition we find that on

average approach only needs to reposition 1.1 EVs to satisfy an extra order, which

is very e�cient. This validates the e↵ectiveness of the proposed action cascading,

and also shows that our approach can cope with the dynamically expanding station

network. We will show later that the gap between our approaches and the STRL

would be even larger when the system expansion dynamics increases.

Performance of Inter-grid Policy. This experiment compares the performance

of di↵erent algorithms to learn the inter-grid policy ⇡g
✓ in our action cascading

framework, which decides the grid that the EVs should be repositioned to. We

consider four di↵erent learning algorithms, the policy gradient (PG), DQN, A2C and

PPO. Note that here we plug in those algorithms to our action cascading framework,

while using the same intra-grid policy network ⇡s
� later and feed the algorithms with

the same reward. Firstly, we see that even the weakest performed algorithm ac-DQN

can achieve better performance than the state-of-the-art STRL, with approximately

5% improvement in demand satisfied rate and 1% increase in net revenue. This is

because STRL doesn’t have the mechanism of handling station network expansion,
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Figure 5.7: Performance of the proposed ac-PPO and STRL under di↵erent speeds
of station network expansion.

while the proposed action cascading can e↵ectively work with the non-stationarity

in action space. The reason why ac-DQN performs not so well is because that DQN

typically works well when the action space is finite with clear reward structures,

while in our case although action cascading can address varying action spaces, the

non-stationarity in rewards can still a↵ect the performance of ac-DQN. On the other

hand, policy gradient (PG) only performs slightly better than DQN, but is inferior

to A2C, which is about 2% better in both satisfied demand rate and increase in

net revenue. This is because in practice the variance of the gradients computed by

PG can be large, and thus it is very likely to deviate from the optimal direction

if the learning rate is too high. Comparing to ac-A2C, the ac-PPO (discussed

in Section 5.4.3) provides a further improvement of roughly 4% in both demand

satisfied rate and net revenue, achieving >14% better demand satisfied rate and

>12% extra net revenue than no rebalancing (NR). This maps to more than 200,000

USD extra revenue per month according to the real data where the mean order value

is around 3.8 USD and average number of orders per month is about 500k.

Performance of Intra-grid Policy: The third set of experiments studies the

performance of di↵erent approaches in generating the Intra-grid policies. Here we

use the best performing PPO algorithm to output the inter-grid actions. We com-

pare the proposed ac-PPO with three variants, where we replace the intra-grid policy

network ⇡s
� with rule-based strategies: the random (PPO-RND), the revenue greedy

(PPO-REV), and the demand gap greedy (PPO-DMD). Essentially, here we con-

sider a vanilla version of action cascading, where inside the grids we follow certain

heuristics to find the destination. For fair comparison, we use the same reward func-

tion as in our ac-PPO for all the algorithms. As shown in Table. 5.1, the random
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Figure 5.8: Performance of the proposed ac-PPO algorithm vs. (a) charging time,
and (b) EV fully charged range.

approach (PPO-RND) produces worse results than the baseline NR. This is ex-

pected, as even within the optimal grid, the variations of station can be significant,

where selecting a wrong station would hugely a↵ect the reward. This would also

have knock-on e↵ects on training the PPO on top, since the obtained rewards can

no longer faithfully represent the potential gain of the inter-grid actions. The rev-

enue greedy approach (PPO-REV) is more sensible than PPO-RND, by o↵ering 8%

improvement in demand satisfied rate than the baseline NR. However, as discussed

above, this approach tends to perform lots of unnecessary repositions and push EVs

to high value sites, causing undesirable performance in net revenue. We observe

similar trend in the demand gap greedy algorithm (PPO-DMD), which o↵ers simi-

lar demand satisfied rate (about 8% improvement) and slightly better net revenue

(2% improvement). As expected, the proposed ac-PPO performs the best overall,

and the gap between ac-PPO and PPO-DMD is about 10% in net revenue and 6%

in demand satisfied rate. This confirms that the two sub-actions (inter-grid and

intra-grid) should be optimized jointly, and the proposed intra-grid policy network

⇡s
� outperforms the rule-based baselines under the action cascading framework.

Impact of System Expansion Dynamics. This set of experiments investigate

the impact of system expansion dynamics to the rebalancing algorithms. Here we

only consider the state-of-the-art STRL and the proposed ac-PPO, as we have shown

that the baselines are inferior to both of them in previous experiments. In the

experiments, we adjust the simulator to allow di↵erent speeds of station network

expansion, i.e., on average how many new stations should be deployed and existing

stations closed per day. Essentially here we control the level of dynamics in the

station network. We vary the speed from 0 to 3, where 0 means the station network

is static, and 1 means station network expands at the same speed with that in the
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real world. As shown in Fig. 5.7, we see that when there is no dynamics at all,

the gap between STRL and ac-PPO is only about 4% in demand satisfied rate, and

6% in net revenue. Also we find that in this case, on average STRL only needs

to reposition 1.7 EVs to satisfy an extra order, which is already quite e�cient.

This is expected, as in this static case STRL clusters the stations into groups, and

uses spatial-temporal RL to estimate the future demand of those groups, in order

to reposition the EVs accordingly. However, as the system begins to expand, the

performance of STRL drops immediately. We already see that at the normal speed,

the gap between STRL and our ac-PPO is more than 6% in demand satisfied rate,

and 11% in net revenue. In the extreme case where the expansion speed is 3x, we see

that gap in demand satisfied rate becomes almost 10%, while STRL can’t increase

the net revenue when the expansion speed is faster than 1.5. This is also expected,

as STRL relies heavily on the station clustering performance, where as the station

network is very dynamic, naturally its clustering algorithm would fail to produce

optimal results, leading to inferior decisions in rebalancing. On the other hand,

we see that the ac-PPO approach is very robust as the expansion speed increases,

confirming that the proposed action cascading can work well under di↵erent levels

of expansion dynamics.

Performance vs. Charging Time. In this set of experiments, we study a

practical problem in the EV sharing industry: how charging time would a↵ect our

rebalancing performance. This is of great importance since one of the key problems

of the current EVs is that the the range and charging delays often impact their usage

patterns. For instance, the users may behave very di↵erently when driving EVs

whose batteries can be replaced immediately, those with super charging, or the ones

with normal charging time. In this experiment, we first fix the EV range at 150km

when fully charged, and vary the charging time of the EVs from 0 to 600min, where

0 in this case means the batteries of the EVs can be changed instantly. Note that in

all other experiments, we assume the charging time of the EVs is 300min, which is

consistent with the real data. Fig. 5.8a show the demand satisfied rate (DS) and net

revenue (NV) increased by the proposed ac-PPO algorithm with respect to baseline

NR at di↵erent charging rate. We see that clearly as charging time increases, the

performance gain of our algorithm drops. This is expected because we can’t perform

any reposition action when the EV is charging. In the extreme case if the EVs are

battery replaceable, the increase in NV is about 3% comparing to the standard case

with 300min charging time. This means the approach of replaceable batteries does

have its merits in some cases, and should be considered in practice. On the other

hand, even in the slowest charging case (600min), our ac-PPO can still improve
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Figure 5.9: Performance of the proposed ac-PPO algorithm vs incentive acceptance
probability: (a) increased % in DS, and (b) increased % in NV.

¿10% in NV and about 14% in DS. The gap between the cases of fastest and slowest

charging is negligible in DS, and about 3% in NV. This means our ac-PPO algorithm

is very robust to di↵erent charging time: for rebalancing task, even systems with

slow chargers could enjoy considerable performance boost.

Performance vs. Battery Capacity. This set of experiments studies the im-

pact of battery capacity i.e., fully charged range of the EVs to the performance

of the rebalancing task. This is also a practical problem, which essentially indi-

cates how shared e-mobility systems with di↵erent EV models (short range vs. long

range) would behave under the proposed algorithm. Here we fix the charging time

at 300min and vary the EV range from 75km to 225km. Note that in all the other

experiments we use EV range as 150km. Fig. 5.8b shows the increased demand sat-

isfied rate (DS) and net revenue (NV) of the proposed ac-PPO algorithm compared

to the baseline NV. We can see that as the range of the EVs increases, the perfor-

mance gain becomes more significant. This makes sense because EVs with longer

range require less frequently charging, and often allow more flexible rebalancing:

they could be repositioned to further stations if needed. We also observe that the

performance is more sensitive for EVs with shorter range. For instance, when the

range drops from 150km to 75km, the performance gain in NV is halved. However,

even in that case our ac-PPO algorithm o↵ers about 10% improvement in demand

satisfied rate, as well as >5% more net revenue value, which is still better than

the state-of-the-art. On the other hand, we see that after the range increases over

175km, the extra benefit brought by longer range becomes negligible. This means

in practice, EV models with di↵erent ranges do react di↵erently to the rebalancing

task, but after a certain point the longer range EVs won’t contribute much to the

performance gain.
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Performance vs. Incentive Acceptance Probability. The last set of ex-

periments studies the rebalancing performance of the proposed ac-PPO algorithm

under di↵erent incentive acceptance probability p. In our simulator, this probabil-

ity p indicates how likely the users would agree to reposition the EVs to alternative

stations, i.e., how cooperative they are. We vary p from 0 to 1, where 0 means the

users decline any rebalancing o↵er, which is equivalent to the No Rebalancing (NR)

as discussed in Section 5.5.2, and 1 means the users would accept all the reposition

proposals. Fig. 5.9 shows the performance of our ac-PPO algorithm under di↵erent

p values. We see that as the incentive acceptance probability increases, both DS

and NV improves. This is expected since as the users become more cooperative,

our algorithm can reposition more EVs, and thus smooth the vehicle distribution

especially around the busy stations, enabling the system to satisfy more orders in

the future. We also observe that as p increases, the gain in DS and NV becomes

smaller, e.g., as p is larger than 0.5, the increase of performance is slowed down.

This also makes sense because when the users tend to reject rebalancing (e.g., when

p vary from 0 to 0.2), the performance of the system is limited by the amount of

e↵ective rebalancing operations carried out (i.e., those accepted by the users), while

if the users are cooperative enough, it becomes less significant. On the other hand,

this also shows that our algorithm is robust to di↵erent user models, e.g., as we can

see in Fig. 5.9, even only 50% of the balancing operations are carried out (accepted

by the users), we can still achieve 10% improvement in demand satisfied rate, and

about 8% in net revenue.

5.6 Conclusion

In this chapter, we study the incentive-based rebalancing for fast expanding shared

e-mobility systems. We formulate the rebalancing task as a Multi-agent Reinforce-

ment Learning (MARL) problem, and solve it with the proposed approach of policy

optimisation with action cascading. We design a simulator to simulate the real op-

eration of the shared e-mobility systems, and calibrate the simulator with real data

from an actual shared e-mobility system for over a year. Extensive experiments have

shown that: 1) the proposed approach significantly outperforms the baselines and

the state-of-the-art STRL in both metric of satisfied demand rate and net revenue;

2) PPO produces the best inter-grid policy comparing to other RL methods; 3)

For intra-grid policy the proposed policy network works much better than the rule-

based alternatives; 4) The proposed approach is robust to di↵erent levels of system

expansion dynamics, while STRL fails as the dynamics increase; 5) The proposed
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approach performs consistently with di↵erent charging time and EV range, while

shorter charging time and longer EV range typically lead to better performance,

but only to a certain extend. For future work, we would like to explore the more

realistic case where the system can be rebalanced by both incentivized users and the

dedicated sta↵, while there are multiple di↵erent EV models in operation. However,

in practice, it may be di�cult to decide the right amount of the incentives. Here we

did not take this problem into consideration, which can be further solved through

intensive user studies.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The development of new technologies such as shared mobility has generated tremen-

dous opportunities to transform the way people get around cities, and reshape their

life styles in urban environments. In this thesis, we focus on building robust deep

spatio-temporal learning techniques for urban shared mobility systems, in which

a diversity of entities such as users, vehicles and infrastructure, interact with the

physical world and generate heterogeneous data footprints across spatial and tem-

poral scales. More specifically, the thesis developed new modelling, optimisation

and actuation approaches for the shared mobility systems, which aims to better

understand the process, structure and evolution of mobility in our cities. In sum-

mary, this thesis contributed the following three main strands of research: demand

forecasting, infrastructure optimisation and fleet management.

Demand Forecasting. This body of work has been presented in Chapter 3,

which aims to develop new techniques to better model and predict the patterns of

urban mobility across space and time. A key assumption that most of the existing

work relies on, is that the mobility infrastructure has been fully deployed and thus

static, while the emerging mobility systems in the real world, e.g., charging facilities

for electric vehicles, may still continuously expand at visible speeds, posing new

challenges for tasks such as demand or flow prediction. To capture such dynam-

icity, we propose new representation methods to model mobility patterns, where

the spatial correlations within the evolving mobility systems are described using

time-varying graphs, while local temporal dependencies are encoded with sequential

models such as recurrent neural networks. On top of that, our work proposes a

dynamic Graphical Convolutional Neural Networks (GCNs) architecture which is
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more flexible, i.e., can handle data defined in non-Euclidean domains, and thus able

to o↵er much better performance than the existing solutions by fusing information

from heterogeneous sources and at various levels. The developed techniques have

been adopted by a major shared e-mobility provider in one of the biggest markets

to support demand forecasting and decision making in their operation.

Infrastructure Optimisation. This research thread has been discussed in Chap-

ter 4, which investigates how infrastructure for shared mobility systems can be op-

timised in their deployment and operation across the spatio-temporal domain, to

provide better service while being cost-e↵ective. Instead of optimising such systems

in vivo, we develop high fidelity simulations for mobility systems, which are cal-

ibrated with multi-modal data from the real world. The simulation environment

serves as the “digital twins” of the actual systems, in which the impact of di↵erent

deployment and operation strategies can be evaluated, enabling search algorithms to

discover better strategies via trail-and-error. This is still challenging, as for systems

operating at the city scales, the search space for optimal strategies can be complex

and prohibitively large. To address that, we design a deep neural search algorithm,

which employs a novel hierarchical controller to iteratively propose possible infras-

tructure deployment plans at di↵erent granularity, which are evaluated in the sim-

ulation environment. The results are propagated back as rewards to the controller,

whose parameters are updated accordingly, steering it to generate better strategies

in the future iterations. It has been shown that the proposed neural search algorithm

can discover superior strategies for mobility infrastructure deployment than those

provided by human e↵orts and the state-of-the-art, o↵ering significant improvement

in performance.

Fleet Management. This work has been detailed in Chapter 5, which studies the

problem of fleet management in shared mobility systems, one of the fundamental

tasks to improve the usability and performance of such platforms. The key challenge

is that how to re-position the inevitably skewed distribution of fleet across the

infrastructure to balance immediate and future returns, without sacrificing user

experience. This becomes even more challenging when the mobility infrastructure

itself is evolving, i.e., the fleet re-balancing strategies should take the infrastructure

dynamics into account and adapt accordingly. In light of this, our work considers

user-incentive based fleet management, which o↵ers monetary rewards to users of

the mobility systems in exchange for their cooperation to re-position vehicles at

locations that are not their original destinations, but are more beneficial for future

system operations. In particular, we formulate the fleet management problem in

urban mobility as a multi-agent reinforcement learning task, where the strategies
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of rebalancing actions, i.e., when and how to o↵er incentives, are learned from the

interactions between agents and the simulated mobility systems. To cope with the

dynamics in mobility infrastructure, we design a new action cascading technique,

enabling the RL algorithms to work under varying action space, where the learned

policies demonstrate superior performance and e�ciency.

6.2 Future work

There are several future directions can be sketched based on the work of this thesis.

Although we have contributed new deep spatio-temporal learning approaches for the

modelling, optimisation and actuation of dynamic urban shared mobility systems,

there are still underlying limitations and areas for future investigation. Concretely,

we have identified the following directions that could potentially enhance and extend

our work in the future:

Station-less Shared Mobility Systems. In this thesis, we primarily focus on

station-based shared mobility systems. As discussed in Chapter 2, recently the

station-less shared mobility systems are becoming popular in urban environments,

from dockless shard bikes, to shared e-scooters and vehicles. Unlike the station-based

systems considered in this thesis, which needs stations to dock/park vehicles/bikes,

in those systems users can pick up or return the vehicles wherever available, o↵ering

more flexibility than the station-based ones. Therefore, it would be interesting to

investigate if the approaches proposed in this thesis can be extended or adapted for

station-less shared mobility systems, especially for the demand forecasting problem.

If we can accurately predict the future demand at any particular location for the

dockless shared mobility systems, it can help the system operators more e�ciently

manage the system such as designing dynamic pricing strategy to avoid parking

congestion. It can also provide some insights for the city planners such as designing

the bike-line. The most challenging part compared to station-based shared mobility

system is that there is no fixed location (stations) in the dockless shared mobility

systems. The potential solution can be taking the road segments as stations to

predict the demand on each road segment or dividing the city into grids and treat

the grids as stations. By doing this, the proposed demand forecasting approach in

this thesis can be adapted for the dockless shared mobility systems.

Knowledge Transfer Between Systems. Specifically, this thesis considers learn-

ing to operate and actuate a single shared mobility system. In that sense, we collect

data from a specific system, and use such data to obtain knowledge that can im-

prove the operation of the very same system. In practice, it would be even more
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appealing, if the knowledge learned from one system can be transferred to, and

thus benefit the other systems that might not even in the same city. However, it

is not always easy to collect a large set of data due to the privacy and commercial

concerns, as well as the long time needed to collect the data, especially for a new

system deployed in a new city. Therefore, an interesting future direction to explore

is how the learned models, e.g., the GCN proposed in this thesis, trained with data

from one system, can be carefully fine-tuned and transferred to other systems, e.g.,

forecasting the mobility demand of systems in a di↵erent city. However, it is not a

trivial task as cities are di↵erent from each other due to the di↵erent public trans-

portation services, di↵erent lifestyle of citizens and more. Therefore, it is very hard

to build an end-to-end model to directly generate results in the new city. There are

lots of opportunities can be explored along this direction. The knowledge transfer

between systems can give suggestions to government or enterprises in the new city

to make decisions in advance such as choosing station locations and planning public

chargers.

Comprehensive User Study. Finally, another line of work that could poten-

tially complement the contributions in this thesis is a comprehensive user study for

the urban shared mobility systems. In practice, a comprehensive qualitative and

quantitative user study towards the shared mobility systems in urban settings could

provide key insights into the usage patterns of those systems, e.g., when, where

and how users would like to use them, which in turn may help us to design better

systems in the future. For instance, the incentive-based rebalancing approach dis-

cussed in this thesis could benefit from such a study in various ways. It is non-trivial

to decide the right incentives should be provided to users because it may happen

cheating events if the incentives are much more than their expectation, while users

may not accept the incentives if it is far less than their expected rewards. Another

di�culty is that the expected incentives of users are di↵erent. Even the same user

under di↵erent travel purposes, the expected reward to help rebalancing the vehicles

are di↵erent. Therefore, it can be very useful to survey a large amount of users from

di↵erent age groups, occupations and travel intentions such that the system oper-

ators can design more e↵ective incentive strategies and discovering more sensible

reposition destinations, and thus o↵er better user experiences in general.
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