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HIGHER TEICHMÜLLER THEORY FOR SURFACE GROUPS

AND SHIFTS OF FINITE TYPE

MARK POLLICOTT AND RICHARD SHARP

Abstract. The Teichmüller space of Riemann metrics on a compact oriented

surface V comes equipped with a natural Riemannian metric called the Weil-
Petersson metric. Bridgeman, Canary, Labourie and Sambarino generalised

this to Higher Teichmüller Theory, i.e. representations of π1(V ) in SL(d,R),

and showed that their metric is analytic. In this note we will present a new
equivalent definition of the Weil-Petersson metric for Higher Teichmüller The-

ory and also give a short proof of analyticity. Our approach involves coding

π1(V ) in terms of a symbolic dynamical system and the associated thermody-
namic formalism.

1. Introduction

Given a compact oriented surface V of genus g ≥ 2, the classical Teichmüller
space T (V ) is the space of hyperbolic structures on V , i.e. Riemannian metrics of
constant curvature −1. Then T (V ) is diffeomorphic to R6g−6 and it supports a
number of natural metrics. One of the best known of these is the Weil-Petersson
metric, which is negatively curved but incomplete. Let Γ denote the fundamental
group π1(V ) of V . By the uniformisation theorem, each element of T (V ) can be
realised as H2/ρ(Γ), where ρ : Γ → PSL(2,R) is a discrete co-compact representa-
tion of Γ into PSL(2,R) = Isom+(H2) and where the action on H2 is by Möbius
transformations. In fact, Goldman [10] and Hitchin [11] showed that T (V ) can be
identified with a connected component in the representation space

Rep(Γ,PSL(2,R)) = Hom(Γ,PSL(2,R))/PSL(2,R),

where PSL(2,R) acts by conjugation. (Some modification is needed to obtain a
Hausdorff quotient space, see [2] or [9] for details. However this does not affect
the Teichmüller component or the Hitchin components introduced below.) Another
(homeomorphic) connected component T ′(V ) is obtained through the action of an
outer automorphism of PSL(2,R) (corresponding to reversing the orientation of V ).

In 1958, Weil defined the Weil-Petersson metric on Teichmüller space, using the
Petersson inner product on modular forms. An alternative definition of the metric
was introduced by Thurston, the equivalence of which to the Weil-Petersson metric
was shown by Wolpert in 1986 [31]. In 2008, McMullen gave a more thermody-
namic formulation, using the pressure metric [20]. In this note, we will consider
an extension of the definition of the classical Weil-Petersson metric on Teichmüller
space to representations into the higher rank groups PSL(d,R), d ≥ 3.

We begin by recalling another equivalent definition of the classical Weil-Petersson
metric from [24], based on [26]. Given an analytic family of representations

(−ε, ε)→ Rep(Γ,PSL(2,R)) = Hom(Γ,PSL(2,R))/PSL(2,R) : λ 7→ ρλ,

with expansion

ρλ = ρ0 + ρ(1)λ+ o(λ),

where tr(ρ(1)) = 0, it suffices to define the norm of the tangent ρ(1). (We assume
that the familiy is non-trivial and thus ε > 0 can be chosen sufficiently small that
ρλ 6= ρ0 for λ 6= 0.) One approach to doing this is given in Proposition 1.1 below.
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2 MARK POLLICOTT AND RICHARD SHARP

For g ∈ Γ, let [g] denote its conjugacy class and let C(Γ) denote the set of non-
trivial conjugacy classes in Γ. To each conjugacy classes [g] ∈ C(Γ) and λ ∈ (−ε, ε),
we associate the length lρλ(g) of corresponding closed geodesic in H2/ρλ(Γ). We
recall that

lim
T→+∞

1

T
log #{[g] ∈ C(Γ) : lρ0([g]) ≤ T} = 1.

The next result describes how the growth rate changes if, for a given λ 6= 0, we
restrict to conjugacy classes [g] for which lρλ([g]) is close to lρ0([g]).

Proposition 1.1 ([24, 26]). For each λ ∈ (−ε, ε) \ {0}, there exists 0 < α(λ) < 1
such that

α(λ) = lim
δ→0

lim
T→+∞

1

T
log #

{
[g] ∈ C(Γ) : lρ0(g) ≤ T and

lρλ(g)

lρ0(g)
∈ (1− δ, 1 + δ)

}
.

(1.1)
Furthermore, if we define α : (−ε, ε) → [0, 1] by setting α(0) = 1 then the Weil-
Petersson norm is given by

‖ρ(1)‖ = − 1

12π(g − 1)

∂2α(λ)

∂λ2

∣∣∣∣
λ=0

.

Indeed, [26] contains a stronger asymptotic result than (1.1), but the above
statement suffices for our purpose of studying the Weil-Petersson metric.

It is natural to consider the generalisation of this approach to representations
in the higher rank group PSL(d,R) (for d ≥ 3). As we discuss in section 2, there
is a natural representation from PSL(2,R) to PSL(d,R) (induced by the action
on homogeneous polynomials in two variables of degree d− 1) and a representation
R : Γ→ PSL(d,R) is called Fuchsian if it is obtained from a representation in T (V )
or T ′(V ) by composition. Unlike the d = 2 case, the Fuchsian representations do
not fill out a whole connected component of the representation space

Rep(Γ,PSL(d,R)) = Hom(Γ,PSL(d,R))/PSL(d,R)

but a component containing a Fuchsian representation is called a Hitchin component.
Such a component is an analytic manifold diffeomorphic to an open ball of dimension
(2g − 2) dim(PSL(d,R)) [12].

Let H be a Hitchin component. The natural problem of defining an analogue of
the Weil-Petersson metric on H has already been considered by Bridgeman, Canary,
Labourie and Sambarino (in the even more general setting of Gromov hyperbolic
groups) in [3]. We start by defining a numerical characteristic called the entropy of a
representation. Representations in the Hitchin component have the key proximality
property that for g ∈ Γ \ {1Γ}, the matrix R(g) (which we can think of as lifted to
SL(d,R)) has a unique simple eigenvalue λ(g) which is strictly maximal in modulus,
satisfies |λ(g)| > 1, and which only depends of the conjugacy class [g]. This then
allows us to define the entropy, h(R), of a representation R ∈ H by

h(R) = lim
T→+∞

1

T
log (#{[g] ∈ C(Γ) : dR([g]) ≤ T}) ,

where dR([g]) = log |λ(g)|. Bridgeman, Canary, Labourie and Sambarino have
shown that the entropy is analytic on H:

Theorem 1.2 (Bridgeman, Canary, Labourie and Sambarino [3]). The map h :
H → R is real analytic.

In the particular case d = 2 then, as noted above, we always have that h(R) = 2
and the result is trivial. (This is because, in this case, we have λ(g) = exp(l([g])/2),
where l([g]) is the length of the unique closed geodesic in the free homotopy class
determined by the conjugacy class [g], the claim then following from the Prime Ge-
odesic Theorem of Huber [13]. This is closely related to the geodesic flow which has
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entropy one, the factor of two coming from the normalization.) In [3], Bridgeman,
Canary, Labourie and Sambarino introduced a generalised Weil-Petersson form and
a generalised Weil-Petersson norm on H.

Definition 1.3. The Weil-Petersson form is defined on the Hitchin component by

I(R0, R1) = lim
T→+∞

∑
dR0

([g])≤T
dR1

([g])

dR0
([g])

#{[g] ∈ C(Γ) : dR([g]) ≤ T}
.

The normalised Weil-Petersson form is then defined by

J(R0, R1) =
h(R1)

h(R0)
I(R0, R1).

Given an analytic family of representations Rλ ∈ H, λ ∈ (−ε, ε), with expansion

Rλ = R0 + λR(1) + o(λ),

one can define the Weil-Petersson norm of the tangent R(1) by

‖R(1)‖2 =
∂2J(R0, Rλ)

∂λ2

∣∣∣∣
λ=0

.

A key property of the Weil-Petersson norm is the following.

Theorem 1.4 (Bridgeman, Canary, Labourie and Sambarino [3]). The form J and
the norm ‖ · ‖ are real analytic.

We will present short proofs of Theorem 1.2 and Theorem 1.4 in section 5.
Our main result is the following new equivalent definition of the Weil-Petersson

norm, which is inspired by Proposition 1.1.

Theorem 1.5. Let Rλ ∈ H, λ ∈ (−ε, ε) be a (non-constant) analytic family of
representations. Then for each λ ∈ (−ε, ε) \ {0}, there exists 0 < α(λ) < h(R0)
such that

α(λ) =

lim
δ→0

lim
T→+∞

1

T
log #

{
[g] : dR0([g]) ≤ T and

dRλ([g])

dR0
([g])

∈
(
h(R0)

h(Rλ)
− δ, h(R0)

h(Rλ)
+ δ

)}
.

Furthermore, if we define α : (−ε, ε)→ [0, h(R0)] by setting α(0) = h(R0) then the
Weil-Petersson metric is given by

‖R(1)‖2 = − 4

h(R0)

∂2α(λ)

∂λ2

∣∣∣∣
λ=0

.

The approach of Bridgeman et al in [3] is to use the thermodynamic approach
of McMullen [20] (involving the pressure metric). In the present note, we will
also use the thermodynamic approach, but we introduce two new ingredients which
help simplify the analysis. Firstly, we introduce the thermodynamics directly via
the strongly Markov structure of Γ and an associated one-sided subshift of finite
type, rather than more indirectly via the construction of a flow and the associated
symbolic dynamics for that flow. Secondly, we will bypass many of the complica-
tions associated with studying the analyticity properties of pressure using Banach
manifolds by the introduction of a suitable family of complex functions.

2. Representations and proximality

In this section we discuss the generalisation of the classical Teichmüller theory
of representations into PSL(2,R) to PSL(d,R) (for d ≥ 3). In particular, we dis-
cuss the Hitchin components and the associate proximality property introduced in
the introduction. We then describe the key ideas that link the geometry of the
representation space to a readily analysed dynamical system.



4 MARK POLLICOTT AND RICHARD SHARP

There is an irreducible representation of ι : PSL(2,R) → PSL(d,R), induced by
the natural action on the space of homogeneous polynomials of degree d− 1,(

a b
c d

)
· P (X,Y ) = P (aX + bY, cX + dY ),

and representations of the form R = ι ◦ ρ, with ρ : Γ → PSL(2,R) in T (V ) or
T ′(V ), are called Fuchsian representations. More generally, a representation of
R : Γ → PSL(d,R) is said to be in a Hitchin component H if it is in the same
connected component of the representation space

Rep(Γ,PSL(d,R)) = Hom(Γ,PSL(d,R))/PSL(d,R)

as a Fuchsian representation. (If d is odd there is a single Hitchin component but
if d is even there are two Hitchin components.)

For future use, we note that a representation in the Hitchin component can be
lifted to a representation over Γ in SL(d,R). To see this, note first that since Γ is
torsion free, a discrete faithful representation ρ : Γ → PSL(2,R) can be lifted to
a representation ρ̃ : Γ → SL(2,R) [6]. Furthermore, ι is actually obtained from a
representation ι̃ : SL(2,R) → SL(d,R) and ι̃ ◦ ρ̃ is a lift of ι ◦ ρ. Finally, Theorem
4.1 of [6] tells us that any representation in a Hitchin component also has a lift
to SL(d,R). We will use the same symbol to denote both the original and lifted
representations.

We next discuss the notion of a hyperconvex representation and describe how
it relates the boundary of the group Γ to something akin to a limit set in RP d−1.
The boundary of Γ, denoted ∂Γ, is the well-defined topological space obtained from
the set of (one-sided) infinite geodesic paths in the Cayley graph of Γ by declaring
that two paths are equivalent if they remain a bounded distance apart. In the case
where Γ is the fundamental group of a compact surface, ∂Γ is homeomorphic to S1.

We recall that a flag space F for Rd is a collection of subspaces V1 ⊂ V2 ⊂ · · · ⊂ Vd
of Rd with dim(Vi) = i. There is a natural linear action of each R(g) ∈ SL(d,R) on
Rd which induces a corresponding action on the vector subspaces, and thus on the
flags.

Definition 2.1. A representation of R : Γ → SL(d,R) is hyperconvex if there
exist Γ-equivariant (Hölder) continuous maps (ξ, θ) : ∂Γ → F × F such that for
distinct x, y ∈ F the images ξ(x) = (Vi(x))di=0 and θ(x) = (Wi(x))di=0 satisfy
Vi(x)⊕Wd−i(x) = Rd, for i = 0, · · · , d.

By Γ-equivariance we mean that R(g)ξ(x) = ξ(gx), where R(g)ξ(x) is the image
under the linear action of R(g) for g ∈ Γ.

The following fundamental result of Labourie tells us that the representations in
a Hitchin component are hyperconvex.

Proposition 2.2 (Labourie [17]). If R ∈ H then R hyperconvex.

For our purposes it suffices for us to focus on one component of ξ : ∂Γ → F ,
say, and furthermore take the one dimensional subspace V1(x) in the flag given by
ξ0(x) = V1(x), say. This corresponds to a point in projective space and thus we
have a Hölder continuous Γ-equivariant map from ∂Γ to RP d−1.

Let R ∈ H. An important consequence of the hyperconvexity of R is that, for
each g ∈ Γ\{1Γ}, the matrix R(g) ∈ SL(d,R) is proximal, i.e. it has a unique simple
eigenvalue λ(g) which is strictly maximal in modulus (and which only depends on
the conjugacy class [g]) [17], [25]. Since detR(g) = 1, we have |λ(g)| > 1. As above,
we will write dR([g]) = log |λ(g)| > 0.

It will prove important to characterise dR([g]) in terms of the action that R(g)

induces on projective space. We can consider the projective action R̂(g) : RP d−1 →
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RP d−1 of the representation R(g) ∈ SL(d,R) defined by R̂(g)[v] = R(g)v/‖R(g)v‖2
(where v ∈ Rd \ {0} is a representative element).

The proximality of R(g) ensures that R̂(g) : RP d−1 → RP d−1 has a unique
attracting fixed point ξg ∈ RP d−1. We can use the following simple lemma to
relate the weight dR([g]) to the action of R(g) on RP d−1.

Lemma 2.3. If g ∈ Γ \ {1Γ} and ξg ∈ RP d−1 is the attracting fixed point for

R̂(g) : RP d−1 → RP d−1 then

dR([g]) = −1

d
log det(Dξg R̂(g)).

Proof. We can consider the linear action of R(g) on Rd, then the fixed point cor-
responds to an eigenvector v and the result follows from a simple calculation using
that the linear action of R(g) ∈ SL(d,R) preserves area in Rd. More precisely, ξg
corresponds to an eigenvector v for the maximal eigenvalue λ(g), with |λ(g)| > 1,
for the matrix R(g). We can assume without loss of generality that ‖v‖ = 1 and
then for arbitrarily small δ > 0 we can consider a δ-neighbourhood of v which is the
product of a (d−1)-dimensional neighbourhood in RP d−1 and a δ-neighbourhood in
the radial direction. The effect of the linear action of R(g) is to replace v by λ(g)v,
and thus stretch the neighbourhood in the radial direction by a factor of |λ(g)|.
Since R(g) has determinant one, the volume of the (d− 1)-dimensional neighbour-

hood contracts by |λ(g)|−1. To calculate the effect of the projective action R̂(g), we
need to rescale λ(g)v to have norm one, which corresponds to multiplication by the
diagonal matrix diag(|λ(g)|−1, . . . , |λ(g)|−1). In particular, the (d− 1)-dimensional
neighbourhood in RP d−1 shrinks by a factor of approximately |λ(g)|−d, giving the
result. �

3. Symbolic dynamics

The structure of the group Γ allows us to code it in terms of a symbolic dynamical
system, namely a subshift of finite type. We will describe this and then discuss
how the geometric information given by the numbers dR([g]) may also be encoded.
This in turn enables use to use the machinery of thermodynamic formalism to
define a form of pressure function and hence an associated metric on spaces of
representations.

As the fundamental group of a compact orientable surface of genus g ≥ 2, Γ has
the standard presentation

Γ =

〈
a1, . . . , ag, b1, . . . , bg |

g∏
i=1

[ai, bi] = 1

〉
.

We write Γ0 = {a±1
1 , · · · , a±1

g , b±1
1 , · · · , b±1

g } for the symmetrised generating set.
The surface group Γ is a particular example of a Gromov hyperbolic group and

as such it is a strongly Markov group in the sense of Ghys and de la Harpe [8], i.e.,
they can be encoded using a directed graph and an edge labelling by elements in
Γ0. In the particular case of surface groups, the coding follows directly from the
work of Adler and Flatto [1] and Series [27] on coding the action on the boundary
and the associated shift of finite type is mixing.

Lemma 3.1. We can associate to (Γ,Γ0) a directed graph G = (V,E), with a
distinguished vertex ∗ ∈ V , and an edge labelling ρ : E → Γ0, such that:

(1) no edge terminates at ∗;
(2) there is at most one directed edge between each ordered pair of vertices;
(3) the map from the set finite paths in the graph starting at ∗ to Γ\{e} defined

by
(e1, . . . , en) 7→ ρ(e1) · · · ρ(en)
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is a bijection and |ρ(e1) · · · ρ(en)| = n;
(4) the map from closed paths in G (modulo cyclic permutation) to C(Γ) in-

duced by ρ is a bijection and for such a closed path (e1, . . . , en, e1), n is the
minimum word length in the conjugacy class of ρ(e1) · · · ρ(en); and

(5) a conjugacy class in C(Γ) is primitive (i.e. it does not contain an element of
the form gn with g ∈ Γ and n ∈ Z\{−1, 1}) if and only if the corresponding
closed path is not a power of a shorter path.

Furthermore, the subgraph obtained be deleting the vertex ∗ has the aperiodicity
property that there exists N ≥ 1 such that, given any two v, v′ ∈ V \ {∗}, there is a
directed path of length N from v to v′.

We now introduce a dynamical system. We can associate to the directed graph
G a subshift of finite type where the states are labelled by the edges in the graph
after deleting the edges that originate in the vertex ∗. In particular, if there are k
such edges then we can define a k× k matrix A by A(e, e′) = 1 if e′ follows e in the
directed graph and then define a space

Σ = {x = (xn)∞n=0 ∈ {1, . . . , k}Z
+

: A(xn, xn+1) = 1, n ≥ 0},
where for convenience we have labelled the edges 1, . . . , k. This is a compact space
with respect to the metric

d(x, y) =

∞∑
n=0

1− δ(xn, yn)

2n
.

The shift map is the local homeomorphism σ : Σ → Σ defined by (σx)n = xn+1.
By Lemma 3.1, A is aperiodic (i.e. there exists N ≥ 1 such that AN has all entries
positive) and, equivalently, the shift σ : Σ → Σ is mixing (i.e. for all open non-
empty U, V ⊂ Σ, there exists N ≥ 1 such that σ−n(U) ∩ V 6= ∅ for all n ≥ N).
The periodic orbits for σ correspond exactly to the conjugacy classes in C(Γ) and
they are prime if and only if the corresponding conjugacy class is primitive.

There is a natural surjective Hölder continuous map π : Σ→ ∂Γ defined by set-
ting π((xn)∞n=0) to be the equivalence class of the infinite geodesic path (ρ(xn))∞n=0

in ∂Γ.
However, the shift σ : Σ → Σ only encodes information about Γ as an abstract

group. In order to keep track of the additional information given by the representa-
tion of Γ in PSL(d,R) we need to introduce a Hölder continuous function r : Σ→ R.

Definition 3.2. We can associate a map r : Σ→ R defined by

r(x) = −1

d
log det(DΞ(x)R̂(gx0)),

(i.e., the Jacobian of the derivative of the projective action) where Ξ = ξ0 ◦ π and
where gx0

= ρ(x0) is the generator corresponding to the first term in x = (xn)∞n=0 ∈
Σ.

Given r : Σ → R and x ∈ Σ we denote rn(x) := r(x) + r(σx) + · · · + r(σn−1x)
for n ≥ 1. We now have the following simple but key result.

Lemma 3.3. The function r : Σ → R is Hölder continuous, and if σnx = x is a
periodic point corresponding to an element g ∈ Γ then rn(x) = dR([g]).

Proof. The Hölder continuity of r follows immediately from the Hölder continuity
of ξ0, which in turn comes from Proposition 2.2. The second part of the lemma
follows from the equivariance and the observation Ξ(σx) = R(gx0)Ξ(x). Moreover,

that the periodic point x has an image Ξ(x)(= ξg) which is fixed by R̂(g) and the
result follows from Lemma 2.3. �

The next lemma shows how the analytic dependence of the representations trans-
lates into analytic dependence of the associated function r.
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Lemma 3.4. For a Cω family (−ε, ε) 3 λ 7→ Rλ of representations, the associated
maps rλ have a Cω dependence.

Proof. The proof is very similar to Proposition 2.2 in [14], which is in turn based
on the classical approach of Mather, and the refinement of de la Llave-Marco-
Moriyón [7], to showing the existence of, and analytic dependence of, a conju-
gating (Hölder) homeomorphism between nearby expanding maps on a manifold
(i.e., structural stability). Given this similarity, it suffices to only outline the
main steps in the proof. The main objective is to construct a natural family
of (Hölder) continuous equivariant maps Ξλ : Σ → RP d−1, that is a family of
(Hölder) continuous maps satisfying Rλ(gx0)Ξλ(x) = Ξλ(σx), for x ∈ Σ. Given
any 0 < α < 1, we let Cα(Σ,RP d−1) denote the Banach manifold of α-Hölder
continuous functions on Σ taking values in the projective space RP d−1. We can
now consider the family of maps Hλ : Cα(Σ,RP d−1) → Cα(Σ,RP d−1) defined by
Hλ(Ξ)(x) = Rλ(g−1

x0
)Ξ(σx), for x ∈ Σ with first symbol x0, and Ξ ∈ Cα(Σ,RP d−1).

In particular, providing 0 < α < 1 is sufficiently small then one can show that for
each λ ∈ (−ε, ε) there exists a unique continuous family Ξλ which is a fixed point
(i.e., Hλ(Ξλ) = Ξλ) and, moreover, the maps (−ε, ε) ∈ λ 7→ Ξλ ∈ Cα(Σ,RP d−1)
are analytic. This follows from an application of the Implicit Function Theorem.
More precisely, in order to apply the Implicit Function Theorem we first observe
that we can identify the tangent space TvRP d−1 at v ∈ RP d−1 with Rd−1. We
can then consider the derivative DHλ : Cα(Σ,Rd−1) → Cα(Σ,Rd−1) which can
be defined by DHλ(Π)(x) = Dg−1

x0
Π(x), for Π ∈ Cα(Σ,Rd−1) and x ∈ Σ. For

0 < α < 1 sufficiently small the hyperbolic nature of R̂λ(g−1
x0

) ensures that the op-

erator (DHλ− I) : Cα(Σ,Rd−1)→ Cα(Σ,Rd−1) is invertible. (This is more readily
seen in the case of (DHλ − I) : C(Σ,Rd−1) → C(Σ,Rd−1) on continuous func-
tions, the setting of Mather’s original proof, but then the result extends to Hölder
functions providing α is sufficiently small, as in the article of de la Llave-Marco-
Moriyón [7]). It then follows from the Implicit Function Theorem that there is a
unique fixed point Ξλ and also that this depends analytically on λ ∈ (−ε, ε). Finally,
writing rλ(x) = log det(Rλ(gx0

))(Ξλ(x)) we see that this too depends analytically
on λ ∈ (−ε, ε). �

4. Thermodynamic formalism

In this section we discuss the thermodynamic formalism associated to the map
σ : Σ → Σ and, subsequently, to an associated suspended semiflow. (We refer
the reader to [22] for a more detailed account.) We say that two Hölder continuous
functions f1, f2 : Σ→ R are cohomologous if f1−f2 = u◦σ−u, for some continuous
u : Σ→ R. Then f1 and f2 are cohomologous of and only if fn1 (x) = fn2 (x) whenever
σnx = x, n ≥ 1.

Let Mσ denote the set of σ-invariant probability measure on Σ. For a Hölder
continuous function f : Σ→ R, its pressure P (f) is defined by

P (f) := sup
µ∈Mσ

{
hσ(µ) +

∫
f dµ

}
,

where hσ(µ) denotes the measure-theoretic entropy, and its equilibrium state µf is
the unique σ-invariant probability measure for which the supremum is attained. If
f is not cohomologous to a constant then

Iσ(f) :=

{∫
f dµ : µ ∈Mσ

}
is a non-trivial closed interval and, for ξ ∈ int(I(f)),

sup

{
h(µ) : µ ∈Mσ and

∫
f dµ = ξ

}
> 0.



8 MARK POLLICOTT AND RICHARD SHARP

The following result is standard (see [22]).

Lemma 4.1. The map t 7→ P (tf1 + f2) is real analytic on R and satisfies

dP (tf1 + f2)

dt

∣∣∣∣
t=0

=

∫
f1 dµf2 .

We will also need some material about suspended semi-flows over σ : Σ → Σ.
Let f : Σ→ R be strictly positive and Hölder continuous.

Definition 4.2. We define

Σf = {(x, s) : x ∈ Σ, 0 ≤ s ≤ f(x)}/ ∼,
where we have quotiented by the relation (x, f(x)) ∼ (σx, 0). The associated sus-

pended semiflow σft : Σf → Σf , t ≥ 0, is defined by σft (x, s) = (x, s + t), modulo
the identifications.

Let Mσf denote the set of σf -invariant probability measure on Σf . Each m ∈
Mσf takes the form dm = (dµ×dt)/

∫
f dµ, where µ ∈Mσ and their entropies are

related by

hσf (m) =
hσ(µ)∫
f dµ

.

For a Hölder continuous function G : Σf → R, its equilibrium state mG is the
unique σf -invariant probability measure for which

hσf (mG) +

∫
GdmG = P (G) := sup

m∈M
σf

{
hσf (m) +

∫
Gdm

}
.

Then dmG = (dµg−P (G)f × dt)/
∫
f dµg−P (G)f , where g : Σ→ R is defined by

g(x) =

∫ f(x)

0

G(x, s) ds.

In particular, σf has a unique measure of measure of maximal entropy m0 for σf ,
i.e. a unique measure m0 such that

hσf (m0) = sup
m∈M

σf

hσf (m).

Furthermore, hσf (m0) is equal to the topological entropy

h(σf ) := lim
T→∞

1

T
log

( ∞∑
n=1

# {σnx = x : fn(x) ≤ T}

)
.

This measure is given by dm0 = (dµ−h(σf )f × dt)/
∫
f dµ−h(σf )f and we have

h(σf ) = hσf (m0) =
hσ(µ−h(σf )f )∫
f dµ−h(σf )f

.

The topological entropy is also characterised by the equation P (−h(σf )f) = 0. We
have the following analogue of Lemma 4.1 (see Lemma 1 of [28]).

Lemma 4.3. The map t 7→ P (tG1 +G2) is real analytic on R and satisfies

dP (tG1 +G2)

dt

∣∣∣∣
t=0

=

∫
G1 dµG2

.

If G is not cohomologous to a constant then

Iσf (G) :=

{∫
Gdm : m ∈Mf

σ

}
is a non-trivial closed interval. Furthermore,{∫

GdmtG : t ∈ R
}

= int(Iσf (G)).
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We use the following large deviation type result.

Lemma 4.4. Let f1, f2 : Σ → R be strictly positive Hölder continuous functions
such that 0 ∈ int(Iσ(f1 − f2)). Then

β(f1, f2) :=

lim
δ→0

lim sup
T→∞

1

T
log

( ∞∑
n=1

#

{
σnx = x : fn1 (x) ≤ T and

fn2 (x)

fn1 (x)
∈ (1− δ, 1 + δ)

})
satisfies

β(f1, f2) = sup

{
h(µ)∫
f1 dµ

: µ ∈Mσ,

∫
f1 dµ =

∫
f2 dµ

}
.

In particular, 0 < β(f1, f2) ≤ h := h(σf1) and β(f1, f2) = h if and only if∫
f1 dµ−hf1 =

∫
f2 dµ−hf1 , where µ−hf1 is the equilibrium state for −hf1.

Proof. We apply results about periodic orbits for hyperbolic flows, which also apply
to suspended semiflows over subshifts of finite type. We have that

∞∑
n=1

#

{
σnx = x : fn1 (x) ≤ T and

fn2 (x)

fn1 (x)
∈ (1− δ, 1 + δ)

}
= #

{
τ : l(τ) ≤ T and

∫
F dmτ ∈ (1− δ, 1 + δ)

}
,

where τ denotes a periodic orbit of the suspended semi-flow σf1 with least period
l(τ), mτ is the corresponding orbital measure (of total mass l(τ)) and F : Σf1 → R
satisfies

∫
F dmτ = fn2 (x). Using Kifer’s large deviations results for hyperbolic

flows [15], we have

lim
T→∞

1

T
log #

{
τ : l(τ) ≤ T and

1

l(τ)

∫
F dmτ ∈ (1− δ, 1 + δ)

}
= sup

{
h(m) : m ∈Mσf1 and

∫
F dm ∈ (1− δ, 1 + δ)

}
= sup

{
h(µ)∫
f1 dµ

: µ ∈Mσ and

∫
f2 dµ∫
f1 dµ

∈ (1− δ, 1 + δ)

}
= sup
ξ∈(1−δ,1+δ)

H(ξ),

where

H(ξ) = sup

{
h(µ)∫
f1 dµ

: µ ∈Mσ and

∫
f2 dµ∫
f1 dµ

= ξ

}
.

Since H(ξ) is analytic, letting δ → 0 gives the required formula for β(f1, f2). That
β(f1, f2) ≤ h is immediate and β(f1, f2) > 0 follows from 0 ∈ int(Iσ(f1−f2)), since∫
f2 dµ/

∫
f1 dµ = 1 is equivalent to

∫
f1 − f2 dµ = 0. If

∫
f1 dµ−hf1 =

∫
f2 dµ−hf1

then it is clear that β(f1, f2) = h. On the other hand, if

h = β(f1, f2) =
hσ(µ)∫
f1 dµ

,

for some µ ∈Mσ, then

hσ(µ)− h
∫
f1 dµ = 0 = P (−hf1)

so uniqueness of equilibrium states gives µ = µ−hf1 . This completes the proof. �
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5. Analyticity of the metric and the entropy

In this section we will establish the analyticity of the metric and the entropy.
We will do this by considering certain complex functions, which provides a fairly
direct proof avoiding the use of Lemma 3.4. We want to establish analyticity of the
Weil-Petersson form and metric by using the analytic function η(s,R0, Rλ) defined
below, where Rλ depends analytically on λ.

We begin by establishing the analyticity of individual weights dRλ([g]) as func-
tions of λ.

Lemma 5.1. For each [g] ∈ C(Γ), the weight dRλ([g]) ∈ R has a real analytic de-
pendence on λ ∈ (−ε, ε). Moreover, we can choose an open neighbourhood (−ε, ε) ⊂
U ⊂ C so that we have an analytic extension U 3 λ 7→ dRλ([g]) ∈ C for each
[g] ∈ C(Γ).

Proof. We need only modify the approach in Proposition 1.1 of [14]. For each
generator g0 ∈ Γ0 we can consider the image Xg0 ⊂ RP d−1 of the corresponding
1-cylinder [x0] ⊂ Σ, say. In particular Xg0 is a compact set in RP d−1. Since
RP d−1 is a real analytic manifold it has a (local) complexification and we can then
choose a (small) neighbourhood Ug0 ⊃ Xg0 in this complexification of RP d−1. We
will still denote by Rλ(g0)−1 the unique extension of the action of R(g0)−1 to the
neighbourhood Ug0 ⊃ Xg0 . Providing the neighbourhoods Ug0 are sufficiently small

we have by continuity of the extension Rλ(g0)−1 that Rλ(g0)−1Ug0 ⊃ Ug1 , for
λ ∈ (−ε, ε), where g1 ∈ Γ0 satisfies Rλ(g0)−1Xg0 ⊃ Xg1 , since we know that the
restriction Rλ(g0)−1|Xg0 is a contraction. Moreover, by continuity and by choosing

Ug0 smaller, if necessary, we can assume that the inclusion Rλ(g0)−1Ug0 ⊃ Ug1 also
holds for each g0 for the complexification of Rλ for λ lying in a suitably small open
subset C ⊃ V ⊃ (−ε, ε), say.

The key observation now is that when we extend these inclusions to conjugacy
classes of more general elements g ∈ Γ \ {1Γ} without further reducing the neigh-
bourhood (−ε, ε) ⊂ V ⊂ C. More precisely, for each reduced word g = gi0 · · · gin−1

(where gi0 , . . . , gin−1 ∈ Γ0) we have from the above construction that Rλ(g)−1Ug0 ⊃
Ugn−1

for λ ∈ V . Moreover, writing ξλg ∈ RP d−1 for the fixed point for Rλ(gλ)−1, we

see that V 3 λ 7→ ξλg is analytic and V 3 λ 7→ dRλ([g]) = − 1
2 log det(Dξλg

R̂λ(g)) ∈ C
is analytic as the sum of analytic terms. In particular, these functions are analytic
on the region V . �

We now define a complex function using these weights.

Definition 5.2. We can associate to the two representations R0, Rλ ∈ H a complex
function

η(s,R0, Rλ) =
∑
[g]

dRλ([g])e−sdR0
([g])

which converges for Re(s) sufficiently large.

From now on, we shall write h(R0) = h.

Lemma 5.3. The function η(s,R0, Rλ) is analytic for Re(s) > h. Moreover, s = h
is a simple pole with residue equal to∫

rλ dµ−hr0∫
r0 dµ−hr0

,

where r0, rλ correspond to R0, Rλ using Lemma 3.3. In particular, η(s,Rλ, R0) has
a simple pole at h(Rλ).
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Proof. We will write C′(Γ) ⊂ C(Γ) for the set of primitive conjugacy classes in Γ.
We can associate to R0 and Rλ a zeta function formally defined by

ζ(s, z,R0, Rλ) =
∏

[g]∈C′(Γ)

(
1− e−sdR0

([g])+zdRλ ([g])
)−1

, for s ∈ C, z ∈ R,

which converges for Re(s) sufficiently large and |z| sufficiently small (depending on
s). We can rewrite this in terms of the shift σ : Σ→ Σ and the functions r0, rλ as

ζ(s, z,R0, Rλ) = exp

( ∞∑
n=1

1

n

∑
σnx=x

e−sr
n
0 (x)−zrnλ(x)

)
.

(Here we use the fact that primitive conjugacy classes correspond to prime peri-
odic orbits for the shift map and then there is convergence to an analytic function
P (−Re(s)r0 − zrλ) < 0 [22].) Using the analysis of [22], we see that ζ(s, z,R0, Rλ)
converges for Re(s) > h. Furthermore, for s close to h and z close to zero,

ζ(s, z,R0, Rλ) =
A(s, z)

1− eP (−sr0+zrλ)
,

where A(s, z) is non-zero and analytic and eP (−sr0+zrλ) is the standard analytic
extension of the exponential of the pressure function to complex arguments (ob-
tained via perturbation theory applied to the maximal eigenvalue of the associated
transfer operator cf. [22]).

It is easy to show that

η(s,R0, Rλ) =
∂

∂z
log ζ(s, z,R0, Rλ)

∣∣∣∣
z=0

+ φ(s),

where φ(s) is analytic for Re(s) > h/2, while, for s close to h,

∂

∂z
log ζ(s, z,R0, Rλ)

∣∣∣∣
z=0

=
∂A(s, z)/∂z|z=0

A(s, 0)
+

∂P (−sr0+zrλ)
∂z

∣∣∣
z=0

1− eP (−sr0)

=

∫
rλ dµ−hr0∫
r0 dµ−hr0

1

s− h
+B(s)

where B(s) is analytic in a neighbourhood of s = h. The final statement follows by
reversing the roles of R0 and Rλ. �

We have the following result (which implies Theorem 1.2)

Lemma 5.4. The function (−ε, ε) 3 λ 7→ h(Rλ) is real analytic.

Proof. By Lemma 5.1, the function 1/ζ(s, λ), where ζ(s, λ) := ζ(s, 0, Rλ, Rλ), has
an analytic dependence on λ ∈ (−ε, ε) for Re(s) sufficiently large. It follows from
[23] that, for each λ ∈ (−ε, ε), 1/ζ(s, λ) has an analytic extension to a half plane
Re(s) > ν(λ), where ν(λ) < h(Rλ) depends continuously on λ. We can therefore
find a common domain D, containing

⋃
−ε<λ<ε{s ∈ C : Re(s) ≥ h(Rλ)}, such that

1/ζ(s, λ) is separately analytic for s ∈ D and λ ∈ (−ε, ε). We may then apply
Theorem 1 of [30] to conclude that (s, λ) 7→ 1/ζ(s, λ) is real analytic on D× (−ε, ε).
Finally, we can use the Implicit Function Theorem to show that λ 7→ h(Rλ) is real
analytic. �

In order to establish further analyticity results, we need to show that the inter-
section I(R0, Rλ) is equal to the residue of η(s,R0, Rλ) at s = h. To do this, it will
be convenient to use the following technical result.

Lemma 5.5. Let R ∈ H. Then there does not exist α > 0 such that {dR([g]) : g ∈
Γ \ {1Γ}} ⊂ αZ.
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Proof. Let g, h ∈ Γ \ {1Γ} be two distinct elements of the group. For any N > 0
we can consider gN , hN ∈ Γ. The linear maps on Rd for the associated ma-
trices R(gN ), R(hN ) ∈ SL(d,R) can be written in the form λ(g)Nπg + UgN and

λ(h)Nπh + UhN , respectively, where λ(g), λ(h) are the largest simple eigenvalues,
πg, πh : Rd → Rd are the eigenprojections onto their one dimensional eigenspaces,

lim supN→+∞ ‖UgN ‖1/N < λ(g) and lim supN→+∞ ‖UhN ‖1/N < λ(h).

Let us now consider gNhN ∈ Γ and and associated matrix R(gNhN ). The asso-
ciated linear map will be of the form λ(gNhN )πgNhN + UgNhN where λ(gNhN ) is

the largest simple eigenvalue, πgNhN : Rd → Rd is the eigenprojection onto their

one dimensional eigenspaces, and lim supN→+∞ ‖UgNhN ‖1/N < λ(gNhN ). However,

since we have the identity R(gNhN ) = R(gN )R(gN ) for the matrix representations
we can also write the corresponding relationship for the linear maps:

λ(gNhN )πgNhN + UgNhN =
(
λ(gN )πgN + UgN

) (
λ(hN )πhN + UhN

)
. (5.1)

In particular, we see that as N becomes larger

lim
N→+∞

exp
(
(dR([gNhN ])− dR([gN ])− dR([hN ])

)
= lim
N→+∞

λ(gNhN )

λ(gN )λ(hN )
= 〈πh, πg〉

where 〈πh, πg〉 is simply the cosine of the angle between the eigenvectors associated
to λ(g) and λ(h), respectively. However, if we assume for a contradiction that
the conclusion of the lemma does not hold, then the right hand side of (5.1) must
be of the form enα, for some n ∈ Z. However, the directions for the associated
eigenprojections form an infinite set in RP d−1 and have an accumulation point.
Thus for suitable choices of g, h we can arrange that 0 < 〈πh, πg〉 < eα, leading to
a contradiction. This completes the proof of the lemma. �

Corollary 5.6. Apart from the simple pole at s = h, η(s,R0, Rλ) has an analytic
extension to a neighbourhood of Re(s) ≥ h.

Proof. Given Lemma 5.5, it follows from the analysis of [22] that ζ(s, z,R0, Rλ) has
an analytic and non-zero extension to a neighbourhood of each point s = h + it,
t 6= 0, for |z| sufficiently small depending on s. Using again that

η(s,R0, Rλ) =
∂

∂z
log ζ(s, z,R0, Rλ)

∣∣∣∣
z=0

+ φ(s),

where φ(s) is analytic for Re(s) > h/2, we obtain the result. �

We now have the following result which characterises the intersection number of
I(R0, Rλ).

Lemma 5.7. We can write

I(R0, Rλ) =

∫
rλ dµ−hr0∫
r0 dµ−hr0

Proof. Recall from Lemma 5.3 that the right hand side in the statement is the
residue of η(s,R0, Rλ) at s = h. In view of Corollary 5.6, we can apply the Ikehara
Tauberian theorem to η(s,R0, Rλ) to deduce that∑

dR0
([g])≤T

dRλ([g]) ∼
∫
rλ dµ−hr0∫
r0 dµ−hr0

ehT , as T → +∞.

Moreover, upon taking Rλ = R0, we deduce that∑
dR0

([g])≤T

dR0([g]) ∼ ehT , as T → +∞.
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An elementary argument given in [21] shows that

lim
T→+∞

∑
dR0

([g])≤T
dRλ ([g])

dR0
([g])∑

dR0
([g])≤T 1

= lim
T→+∞

∑
dR0

([g])≤T dRλ([g])∑
dR0

([g])≤T dR0([g])
,

so that

I(R0, Rλ) =

∫
rλ dµ−hr0∫
r0 dµ−hr0

,

as required. �

We can now use the characterisation of I(R0, Rλ) in terms of a complex function
to deduce the following.

Lemma 5.8. The function (−ε, ε)→ R : λ 7→ I(R0, Rλ) is real analytic.

Proof. By Lemma 5.1, η(s,R0, Rλ) has an analytic dependence on λ ∈ U . More
precisely, it is a uniformly convergent series with individually analytic terms in
λ ∈ U for Re(s) > h and thus bianalytic for λ ∈ U . Moreover, by Hartogs’ Theorem
for functions of several complex variables [16], 1/η(s,R0, Rλ) is bi-analytic for s in
a neighbourhood of h and λ ∈ U . Thus the residue of η(s,R0, Rλ) at s = h
is analytic. Thus, using the residue theorem, I(R0, Rλ), which is the residue of
η(s,R0, Rλ), depends analytically on λ. �

Since h(Rλ) and I(R0, Rλ) both depend analytically on λ, we have the following.

Corollary 5.9. The function (−ε, ε)→ R : λ 7→ J(R0, Rλ) is real analytic.

By differentiating twice and using that ‖R(1)‖2 = ∂2J(R0,Rλ)
∂λ2

∣∣∣
λ=0

we have the

following result.

Corollary 5.10. The function (−ε, ε)→ R : λ 7→ ‖R(1)‖ is real analytic.

6. Proof of Theorem 1.5

The first part of Theorem 1.5 will follow from Lemma 4.4 once we formulate
things appropriately. Given an analytic family of representations λ 7→ Rλ, we de-
fine strictly positive Hölder continuous functions rλ : Σ→ R as in section 3 so that
if σnx = x corresponds to a conjugacy class [g] then dRλ([g]) = rnλ(x), using Lemma
3.3. By Lemma 3.4, rλ depends analytically on λ. We then have h(σr0) = h(R0) and
h(σrλ) = h(Rλ). We now define f0 = h(R0)r0 and fλ = h(Rλ)rλ, so that, in partic-
ular, P (−f0) = P (−fλ) = 0. Since periodic point measures are dense in Mσ, it is
clear that 0 ∈ int(Iσ(f0−fλ)) if and only if there exist two conjugacy classes [g] and
[g′] such that h(R0)dR0

([g]) < h(Rλ)dRλ([g]) and h(R0)dR0
([g′]) > h(Rλ)dRλ([g′]).

We will show that this latter condition holds provided the representations R0 and
Rλ are not equal up to conjugacy.

Lemma 6.1. If R0 and Rλ are not conjugate then there exist two conjugacy classes
[g] and [g′] such that we have h(R0)dR0([g]) < h(Rλ)dRλ([g]) and h(R0)dR0([g′]) >
h(Rλ)dRλ([g′]).

Proof. We will prove the contrapositive. Without loss of generality, suppose that
h(R0)dR0

([g]) ≤ h(R1)dRλ([g]) for all [g] ∈ C(Γ), i.e. that (f0 − fλ)n(x) ≤ 0
whenever σnx = x. Then

∫
(f0 − fλ) dµ ≤ 0 for every µ ∈Mσ.

Now consider the real analytic map Q : [0, 1] → R defined by Q(t) = P (−f0 +
t(f0−fλ). This has derivativeQ′(t) =

∫
(f0−fλ) dµt ≤ 0, where µt is the equilibrium

state for −f0 + t(f0 − fλ). Since Q(0) = Q(1) = 0 we deduce that Q(t) = 0
for all t ∈ [0, 1] and then the strict convexity of pressure implies that f0 − fλ is
cohomologous to a constant. Since P (f0) = P (−fλ), the constant must be zero
and so fn0 (x) = fnλ (x), whenever σnx = x. This implies that h(R0)dR0([g]) =
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h(Rλ)dRλ([g]) for all g and hence that J(R0, Rλ) = 1. It then follows by Corollary
1.5 of [3] that the representations are equal up to conjugacy. �

Write h = h(R0). We may now apply Lemma 4.4 to show that, for each λ ∈
(−ε, ε), the limit

α(λ)

= lim
δ→0

lim
T→+∞

1

T
log #

{
[g] : dR0([g]) ≤ T and

dRλ([g])

dR0([g])
∈
(
h(R0)

h(Rλ)
− δ, h(R0)

h(Rλ)
+ δ

)}
= lim
δ→0

lim sup
T→∞

1

T
log

( ∞∑
n=1

#

{
σnx = x :

fn0 (x)

h
≤ T and

fnλ (x)

fn0 (x)
∈ (1− δ, 1 + δ)

})
= hβ(f0, fλ)

exists and satisfies 0 < α(λ) ≤ h. (Here we have used that h(σf0) = 1.) The next
result shows that we have a strict inequality when λ 6= 0.

Lemma 6.2. For λ ∈ (−ε, ε) \ {0}, α(λ) < h.

Proof. By Proposition 4.4, we will have α(λ) < h unless
∫
f0 dµ−f0 =

∫
fλ dµ−f0 .

The latter condition may be rewritten as∫
fλ dµ−f0∫
f0 dµ−f0

= 1 =
h(σf0)

h(σfλ)
=

hσ(µ−f0)∫
f0 dµ−f0

∫
fλ dµ−fλ
hσ(µ−fλ)

.

Rearranging, this becomes

hσ(µ−fλ)∫
fλ dµ−fλ

=
hσ(µ−f0)∫
fλ dµ−f0

,

which, by uniqueness of the measure of maximal entropy for σfλ , forces µ−f0 =
µ−fλ . The latter equality implies that f0 − fλ is cohomologous to a constant
and, since P (−f0) = P (−fλ), the constant is necessarily zero. This means that
h(R0)dR0([g]) = h(Rλ)dRλ([g]) for all [g] ∈ C(Γ), contradicting Lemma 6.1. �

We now complete the proof of Theorem 1.5 by establishing the characterisation of
the Weil-Petersson metric in terms of the growth rate α(λ). It is more convenient to
work with β(λ) := β(f0, fλ) = α(λ)/h. For t ∈ R, consider the pressure P (−tf0−fλ)
and define χλ(t) by the equation P (−tf0−χλ(t)fλ) = 0. We trivially have χ0(t) =
1− t but we are interested in the function when λ 6= 0.

Lemma 6.3. For each λ ∈ (−ε, ε) \ {0}, the function χλ(t) is well-defined and real
analytic. Furthermore,

lim
t→±∞

χλ(t) = ∓∞.

Proof. That χλ(t) is well-defined and real analytic follows from the Implicit Func-
tion Theorem. Suppose limt→+∞ χλ(t) 6= −∞. Then there exists a sequence
tn → +∞ and a constant A ≥ 0 such that χλ(tn) ≥ −A for all n. We have

−tnf0 − χλ(tn)fλ ≤ −tnf0 +A‖fλ‖∞
and so

0 = P (−tnf0 − χλ(tn)fλ) ≤ P (−tnf0 +A‖fλ‖∞) = P (−tnf0) +A‖fλ‖ → −∞,
as n → ∞, a contradiction. A similar argument show that limt→−∞ χλ(t) = +∞.

�

We want to show that there is a unique number 0 < tλ < 1 for which χ′λ(tλ) = −1.
To do this, it is convenient to use the following alternative characterisation of χλ(t)
in terms of the semiflow σf0 . Let Fλ : Σf0 → R be a Hölder continuous function
such that, for a periodic σf0-orbit τ corresponding to a periodic σ-orbit σnx = x,∫
Fλ dmτ = fnλ (x). Here, as above, mτ is the associated periodic orbit measure of
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total mass l(τ) = fn0 (x). It is easy to construct such an Fλ and this also satisfies∫
Fλ dm > 0, for every m ∈Mσf0 . We then have that χλ(t) is defined by

P (−χλ(t)Fλ) = t.

It is then easy to calculate that

χ′λ(t) =
−1∫

Fλ dm−χλ(t)Fλ

.

In particular, χλ(t) is strictly decreasing. By Lemma 6.3, χλ takes all real values
and so {∫

Fλ dm−χλ(t)Fλ : t ∈ R
}

=

{∫
Fλ dmtFλ : t ∈ R

}
= int(Iσf0 ).

However, by Lemma 6.1, we can find periodic σf0-orbits τ and τ ′ (corresponding to
conjugacy classes [g] and [g′]) such that

1

l(τ)

∫
Fλ dmτ > 1 and

1

l(τ ′)

∫
Fλ dmτ ′ < 1.

Hence, in particular, for λ 6= 0, there exists a unique tλ such that χ′λ(tλ) = −1.

Lemma 6.4. We have β(λ) = tλ + χλ(t).

Proof. By Proposition 4.4, we have

β(λ) = sup

{
hσ(µ)∫
f0 dµ

: µ ∈Mσ and

∫
f0 dµ =

∫
fλ dµ

}
.

Let ν denote the equilibrium state of −tλf0 − χλ(tλ)fλ. By the definition of tλ,∫
fλ dν∫
f0 dν

=

∫
Fλ dm−χλ(tλ)Fλ = 1.

Thus

0 = P (−tλf0 − χλ(tλ)fλ) = hσ(ν)− tλ
∫
f0 dν − χλ(tλ)

∫
fλ dν

= hσ(ν)− (tλ + χλ(tλ))

∫
f0 dν,

so that

tλ + χλ(tλ) =
hσ(ν)∫
f0 dν

and
∫
f0 dν =

∫
fλ dν. On the other hand, if µ ∈ Mσ, µ 6= ν satisfies

∫
f0 dµ =∫

fλ dµ then

0 = P (−tλf0 − χλ(tλ)fλ) > hσ(µ)− tλ
∫
f0 dµ− χλ(tλ)

∫
fλ dµ

= hσ(µ)− (tλ + χλ(tλ))

∫
f0 dµ,

so that

tλ + χλ(tλ) >
hσ(ν)∫
f0 dν

.

Combining these two observations shows that tλ + χλ(tλ) = β(λ). �

Since λ 7→ rλ and λ 7→ h(Rλ) are analytic, we can write fλ = f0 + f
(1)
0 λ +

f
(2)
0 λ2/2 + o(λ2). It follows from the definition of the Weil-Petersson metric in

terms of J(R0, Rλ) and Lemma 5.7 that

‖R(1)‖2 =

∫
f

(2)
0 dµ−f0∫
f0 dµ−f0

.
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We may then use the calculation in the proof of Lemma 4.2 of [24] to show that

∂2χλ
∂λ2

(t)

∣∣∣∣
λ=0

= t(t− 1)‖R(1)‖2.

The next lemma establishes the final part of Theorem 1.5.

Lemma 6.5. The function α : (−ε, ε)→ (0, h(R0)] satisfies

‖R(1)‖2 = −4
∂2β(λ)

∂λ2

∣∣∣∣
λ=0

= − 4

h(R0)

∂2α(λ)

∂λ2

∣∣∣∣
λ=0

.

Proof. This follows from the calculations in the proof of Theorem 4.3 of [24], once
one replaces the function Dλ there with β(λ), combined with Lemma 6.4. �
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