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ABSTRACT Today, Android is one of the most used operating systems in smartphone technology. This is 

the main reason, Android has become the favorite target for hackers and attackers. Malicious codes are being 

embedded in Android applications in such a sophisticated manner that detecting and identifying an 

application as a malware has become the toughest job for security providers. In terms of ingenuity and 

cognition, Android malware has progressed to the point where they're more impervious to conventional 

detection techniques. Approaches based on machine learning have emerged as a much more effective way 

to tackle the intricacy and originality of developing Android threats. They function by first identifying 

current patterns of malware activity and then using this information to distinguish between identified threats 

and unidentified threats with unknown behavior. This research paper uses Reverse Engineered Android 

applications’ features and Machine Learning algorithms to find vulnerabilities present in Smartphone 

applications. Our contribution is twofold. Firstly, we propose a model that incorporates more innovative 

static feature sets with the largest current datasets of malware samples than conventional methods. Secondly, 

we have used ensemble learning with machine learning algorithms such as AdaBoost, SVM, etc. to improve 

our model's performance. Our experimental results and findings exhibit 96.24% accuracy to detect extracted 

malware from Android applications, with a 0.3 False Positive Rate (FPR). The proposed model incorporates 

ignored detrimental features such as permissions, intents, API calls, and so on, trained by feeding a solitary 

arbitrary feature, extracted by reverse engineering as an input to the machine. 

INDEX TERMS Android applications, Benign, Feature extraction, Malware Detection, Reverse 

Engineering, Machine Learning.  

I. INTRODUCTION 

To this degree, it is guaranteed that mobile devices are an 

integral part of most people's daily lives. Furthermore, 

Android now controls the vast majority of mobile devices, 

with Android devices accounting for an average of 80% of 

the global market share over the past years. With the ongoing 

plan of Android to a growing range of smartphones and 

consumers around the world, malware targeting Android 

devices has increased as well. Since it is an open-source 

operating system, the level of danger it poses, with malware 

authors and programmers implementing unwanted 

permissions, features and application components in 

Android apps. The option to expand its capabilities with 

third-party software is also appealing, but this capability 

comes with the risk of malicious device attacks. When the 

number of smartphone apps increases, so does the security 

problem with unnecessary access to different personal 

resources. As a result, the applications are becoming more 

insecure, and they are stealing personal information, SMS 

frauds, ransomware, etc.  

In contrast to static analysis methods such as a manual 

assessment of AndroidManifest.xml, source files and Dalvik 

Byte Code and the complex analysis of a managed 

environment to study the way it treats a program, Machine 

Learning includes learning the fundamental rules and habits 

of the positive and malicious settings of apps and then data-
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enabling. The static attributes derived from an application 

are extensively used in machine learning methodologies and 

the tedious task of this can be relieved if the static features 

of reverse-engineered Android Applications are extracted 

and use machine learning SVM algorithm, logistic 

progression, ensemble learning and other algorithms to help 

train the model for prediction of these malware applications 

[1].  

Machine learning employs a range of methodologies for data 

classification. SVM (Support Vector Machine) is a strong 

learner that plots each data item as a point in n-dimensional 

space (where n denotes the number of features you have), 

with the value of each feature becoming the vector value. 

Then it executes classification by locating the hyper-plane 

that best distinguishes the two groups, leading to an 

improvement identification property for any two parameters. 

Conversely, boosting or ensemble techniques like Adaboost 

are assigned higher weights to rectify the behavior of 

misclassified variables in conjunction with other machine 

algorithms. When combined alongside weak classifiers, our 

preliminary model benefits from deploying such models 

since they have a high degree of precision or classification. 

[2], [3], [4], supports classifiers in their system models to find 

the highest accuracy. Although using ensemble or strong 

classifiers can cause problems like multicollinearity, which 

in a regression model, occurs when two or more independent 

variables are strongly associated with one another. In 

multivariate regression, this indicates that one regression 

analysis may be forecasted from another independent 

variable. This scope of the study can be presented as a 

detection journal analysis itself and can present several 

experimentations and results based on machine learning 

models [5], [6].  

When an app has access to a resource in the most recent 

versions of Android OS, it must ask the OS for approval, and 

the OS will ask the user if they wish to grant or refuse the 

request via a pop-up menu. Many reports have been 

performed on the success of this resource management 

approach. The studies showed consumers made decisions by 

giving all requested access to the applications to their 

privileges requests [7]. In contrast to this, over 70% of 

Android mobile applications seek extra access that is not 

needed. They also sought a permit that is not needed for the 

app to run. A chess game that asks for photographs or 

requests for SMS and phone call permits, or loads unwanted 

packages are an example of an extra requested authorization. 

So, trying to assess an app's vindictiveness and not 

understanding the app is a tough challenge. As a result, 

successful malicious app monitoring will provide extra 

information to customers to assist them and defend them 

from information disclosure [8]. Figure 1 elaborates the 

android risk framework through the Google Play platform, 

which is then manually configured by the android device 

developers.  

 

 

FIGURE 1. Android Security Framework 

Contrary to other smartphone formats, such as iOS, Android 

requires users to access apps from untrusted outlets like file-

sharing sites or third-party app stores. The malware virus 

problem has become so severe that 97 % of all Smartphone 

malware now targets Android phones. In a year, 

approximately 3.25 million new malware Android 

applications are discovered as the growth of smartphones 

increases. This loosely amounts to a new malware android 

version being introduced every few seconds [9]. The primary 

aim of mobile malware is to gain entrance to user data saved 

on the computer and user information used in confidential 

financial activities, such as banking. Infected file extensions, 

files received via Bluetooth, links to infected code in SMS, 

and MMS application links are all ways that mobile malware 

can propagate [10]. There are some strategies for locating 

apps that need additional features. Hopefully, by using these 

techniques, it would be possible to determine whether the 

applications that were flagged as questionable and needed 

additional authorization are malicious.  

Static analysis methodologies are the most fundamental of 

all approaches. Until operating programs, the permissions 

and source codes are examined [11].  For many machine 

learning tasks, such as enhancing predictive performance or 

simplifying complicated learning problems, ensemble 

learning is regarded as the most advanced method. It 

enhances a single model's prediction performance by training 

several models and combining their predictions. Boosting, 

bagging, and random forest are examples of common 

ensemble learning techniques [12]. In summary, the main 

contributions of our study are as follows: 

1) We present a novel subset of features for static 

detection of Android malware, which consists of seven 

additional selected feature sets that are using around 

56000 features from these categories. On a collection 

of more than 500k benign and malicious Android 

applications and the highest malware sample set than 

any state-of-the-art approach, we assess their stability. 

The results obtain a detection increase in accuracy to 

96.24 % with 0.3% false-positives. 

2) With the additional features, we have trained six 

classifier models or machine learning algorithms and 

also implemented a Boosting ensemble learning 

approach (AdaBoost) with a Decision Tree based on 

the binary classification to enhance our prediction rate.  

3) Our model is trained on the latest and large time aware 

samples of malware collected within recent years 
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including the latest Android API level than state-of-

the-art approaches. 

This research paper incorporates binary vector mapping for 

classification by allocating 0 to malicious applications and 1 

for non-harmful and for predictive analysis of each 

application fed to the model implemented in the study. The 

technique eases the process by reducing fault predictive 

errors. Figure 2 shows the procedure for a better 

understanding of the concept applied later in our study. The 

paper passes both the categories of applications through 

static analysis and then is further processed for feature 

extraction. We presented features in 0’s and 1’s after 

extraction. Matrix displays the extraction characteristics of 

each application used in the dataset. 

FIGURE 2. Static Binary matrix extraction 

There are major issues to be addressed to incorporate our 

strategy. High measurements of the features will make it 

difficult to identify malware in many real-world Android 

applications. Certain features overlap with innocuous apps 

and malware [13]. In comparison, the vast number of features 

will cause high throughput computing. Therefore, we can 

learn from the features directly derived from Android apps, 

the most popular and significant features. The paper 

implements prediction models and various computer 

ensemble teaching strategies to boost and enhance accuracy 

to resolve this problem [14]. Feature selection is an essential 

step in all machine-based learning approaches. The optimum 

collection of features will not only help boost the outcomes 

of tests but will also help to reduce the compass of most 

machine-based learning algorithms [15].  

Studies have extensively suggested three separate methods 

for identifying android malware: static, interactive meaning 

dynamically, and synthetic or hybrid. Static analysis 

techniques look at the code without ever running it, so they're 

a little sluggish if carried out manually and have to face a lot 

of false positives [16]. Data obfuscation and complex code 

loading are both significant pitfalls of the technique. That is 

why automated operation helps to achieve reliability, 

accuracy, and lesser time utilization [17]. Reverse engineer 

Android applications and extract features and do static 

analysis from them without having to execute them. This 

method entails examining the contents of two files: 

AndroidManifest.xml and classes.dex, and working on the 

file with the .apk extension. Feature selection techniques and 

classification algorithms are two crucial areas of feature-

based types of fraudulent applications. Feature filtering 

methods are used to reduce the dimension size of a dataset. 

Any of the functions (attributes) that aren't helpful in the 

study are omitted from the data collection because of this. 

The remaining features are chosen by weighing the 

representational strength of all the dataset's features [18]. 

Parsing tools can help learn which permissions, packages or 

services an application offers by analyzing the 

AndroidManifest.xml file, such as permission 

android.permission.call phone, which allows an application 

to misuse calling abilities. The paper elaborates exactly what 

sort of sensitive API the authors could name by decoding the 

classes.dex file with the Jadx-gui disassembler [19]. In 

certain cases, including two permissions in a single app can 

signify the app's possible malicious attacks. For example, an 

application with RECEIVE SMS and WRITE SMS 

permissions can mask or interfere with receiving text 

messages [20] or applying sensitive API such as 

sendTextMessage() can also be harmful and lead to fraud and 

stealing. 

Until we started our main idea of the project. The fact 

explained that Android applications pose a lot of threats to 

its user because of the unnecessary programs compiled 

inside them and explained why it is necessary to automate 

the process of static analysis for the efficient detection of 

malware applications based on the extracted features. The 

rest of the paper is planned as follows. Related works are 

examined in Section II. Section III will present the design 

and method of our model. Section IV elaborates the 

assessment findings and future threats. The experiments and 

results will be dilated and performed in Sections V and VI. 

Section VII includes our research issues, recommendations, 

and conclusions for the future. 

II. RELATED WORKS 

Linux (Android core) keeps key aspects of the security 

infrastructure of the operating system. The Android displays 

to the administrator a list of features, sought to reinstall an 

update. The program installs itself on the computer after they 

issue access. Figure 3 shows the integrated core parts of 

Android architecture. It comprises applications at the top 

layer and also includes an application framework, libraries 

or a Runtime layer, and a Linux kernel. These levels are 

further divided into their components, which make an 

Android Application. The Linux Kernel is the key part of 

Android that provides its OS functionality to phones, and the 

Dalvik Virtual Machine (DVM) is to manage a mobile 

device. Application is the Android architecture's highest 

layer. Native and third-party apps such as contacts, email, 

audio, gallery, clock, sports, and so on are located only in 

this layer. This framework gets the classes often used to 

develop Android apps. It also handles the user interface and 

device infrastructure and provides a common specification 

for hardware entry. To facilitate the development of 

Android, the Platform Libraries include many C/C++ core 

libraries and Java-based libraries such as SSL, libc, 

Graphics, SQLite, Webkit, Media, Surface Manager, 

OpenGL, and others. The taxonomy helps understand the 

viewer with a logical algorithmic approach for grasping the 

core surfaces and functionality of the operating system. 
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FIGURE 3.    Taxonomy of Android Architecture 

The methods proposed in this related work contribute to key 

aspects and a higher predictive rate for malware detection. 

Certain research has focused on increasing accuracy, while 

others have focused on providing a larger dataset, some have 

been implemented by employing various feature sets, and 

many studies have combined all of these to improve 

detection rate efficiency. In [21] the authors offer a system 

for detecting Android malware apps to aid in the 

organization of the Android Market. The proposed 

framework aims to provide a machine learning-based 

malware detection system for Android to detect malware 

apps and improve phone users' safety and privacy. This 

system monitors different permission-based characteristics 

and events acquired from Android apps and examines these 

features employing machine learning classifiers to determine 

if the program is goodware or malicious. The paper uses two 

datasets with collectively 700 malware samples and 160 

features. Both datasets achieved approximately 91% 

accuracy with Random Forest (RF) Algorithm. [22] 

Examines 5,560 malware samples, detecting 94 % of the 

malware with minimal false alarms, where the reasons 

supplied for each detection disclose key features of the 

identified malware. Another technique [23] exceeds both 

static and dynamic methods that rely on system calls in terms 

of resilience. Researchers demonstrated the consistency of 

the model in attaining maximum classification performance 

and better accuracy compared to two state-of-the-art peer 

methods that represent both static and dynamic 

methodologies over for nine years through three interrelated 

assessments with satisfactory malware samples from 

different sources. Model continuously achieved 97% F1-

measure accuracy for identifying applications or 

categorizing malware. [24] The authors present a unique 

Android malware detection approach dubbed Permission-

based Malware Detection Systems (PMDS) based on a study 

of 2950 samples of benign and malicious Android 

applications. In PMDS, requested permissions are viewed as 

behavioral markers, and a machine learning model is built on 

those indicators to detect new potentially dangerous behavior 

in unknown apps depending on the mix of rights they require. 

PMDS identifies more than 92–94% of all heretofore 

unknown malware, with a false positive rate of 1.52–3.93%. 

The authors of this article [25] solely use the machine 

learning ensemble learning method Random Forest 

supervised classifier on Android feature malware samples 

with 42 features respectively. Their objective was to assess 

Random Forest's accuracy in identifying Android application 

activity as harmful or benign. Dataset 1 is built on 1330 

malicious apk samples and 407 benign ones seen by the 

author. This is based on the collection of feature vectors for 

each application. Based on an ensemble learning approach, 

Congyi proposes a concept in [26] for recognizing and 

distinguishing Android malware. To begin, a static analysis 

of the Android Manifest file in the APK is done to extract 

system characteristics such as permission calls, component 

calls, and intents. Then, to detect malicious apps, they deploy 

the XGBoost technique, which is an implementation of 

ensemble learning. Analyzing more than 6,000 Android apps 

on the Kaggle platform provided the initial data for this 

experiment. They tested both benign and malicious apps 

based on 3 feature sets for a testing set of 2,000 samples and 

used the remaining data to create a training set of 6,315 

samples. Additional approaches include [27], an SVM-based 

malware detection technique for the Android platform that 

incorporates both dangerous permission combinations and 

susceptible API calls as elements in the SVM algorithm. The 

dataset includes 400 Android applications, which included 

200 benign apps from the official Android market and 200 

malicious apps from the Drebin dataset. [28] Determines 

whether the program is dangerous and, if so, categorizes it as 

part of a malware family. They obtain up to 99.82 % 

accuracy with zero false positives for malware detection at a 

fraction of the computation power of state-of-the-art 

methods but incorporate a minimal feature set. The results of 

[29] demonstrate that deep learning is adequate for 

classifying Android malware and that it is much more 

successful when additional training data is available. A 

permission-based strategy for identifying malware in 

Android applications is described in [30], which uses filter 

feature selection algorithms to pick features and implements 

machine learning algorithms such as Random Forest, SVM, 

and J48 to classify applications as malware or benign. This 

research [31] provides a feature selection using the Genetic 

algorithm (GA) approach for identifying Android malware. 

For identifying and analyzing Android malware, three 

alternative classifier techniques with distinct feature subsets 

were built and compared using GA.  

One of the important matters that has not been considered by 

any of the studies is the sustainability of the model after the 
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advancement of applications. This issue is still a challenge 

for our research as well. The model’s ability to classify will 

gradually decrease over time when new features or evolved 

applications are created. Only [28] and [25] specify this issue 

and introduce it as a drift concept, describing the low 

performance of their systems after some time. Our research 

doesn’t implement this problem as well but we suggested 

some potential studies to initiate solutions for models 

sustainability in the research issues and challenges section. 

Another matter that could arise in the field of implementing 

machine learning algorithms is the “Multicollinearity 

Problem” which we have discussed in the introduction 

section. This subject arises due to the algorithms being 

dependent on multiple variables embedded in these machine 

learning or deep learning models. Although it is one of the 

rising issues in the area and could be present in our study it 

would constitute better as separate research. Our model is 

already incorporating a wide range of evaluations and 

analysis of Android applications features sets but this would 

be a great opportunity to further enhance the models for 

future use. There are relevant studies that support alleviating 

this challenge by detecting the model’s dependencies in 

terms of comparing multiple models together and then 

calculating the greater impact of the highest given model. 

Authors in [32], [33], [34] consider different tales 

concerning different machine learning models to highlight 

and find out the measures for different model scenarios.  

Tables 1 and 2 elaborates on the novelty of our approach and 

compare state-of-the-art methodologies in several 

categories. Table 1 focuses on the key novel categories in 

terms of malware samples, feature sets, the method 

proposed, accuracy, false-positive rate, the level of API 

(increased complex application behavior) and system 

environment for data processing. It also explains that our 

sample set and feature set is larger and achieve satisfactory 

accuracy with 0.3% FPR, depicting the lowest false positives 

other than DroidSieve. Our contribution lands on the 

upgraded API levels with large sample sizes including 

enhanced feature sets to detect malware. Table 2 elaborates 

a more in-depth approach and shows the key features present 

in the proposed and other approaches with also the time 

awareness of the data being collected.  

 

 

 

 

TABLE I 

Relative techniques analysis on basis of multiple factors in comparison to proposed approach (PER: Permissions, STR: String, API: Application 

Programming Interface, INT: Intents, PKG: Package, APP-C: App Components, SR: Services, RS: Receivers)

Year Method Models 
Trained 

Feature Set API 

Level 

# Malware FP% Acc% Environment 

2013 PDMS 3 PER 19 700 - 91.75% - 

2014 Drebin 1 PER,STR,API,INT 20 , 21 5,560 1.0% - Core 2 Duo, 4G RAM 

2015 RevealDroid 3 PER,API, INT,PKG 22, 23 9,054 18.7% 95.2 8-Core, 64G RAM 

2016 DroidDetector Deep 

Learning 

PER, API 24, 25 1760 - 96.76% - 

2017 DroidSieve 3 API, PER, INT 26, 27 16,141 0.0% 99% 40-Core Xeon, 378G RAM 

2018 DroidCat 1 API 22, 23 16,978 - 97% - 

2018 Permission based 

malware detection in 
android devices 

4 PER 28 673 6% 93% 8 G in memory, i5-4300U 

CPU, LINUX CENTOS 7 OS 

2019 Permission-based 
Android Malware 

Detection System 

(FS with GA) 

2 PER 29 1119 - 98.45% - 

2020 Method for 
Detecting Android 

Malware Based on 

Ensemble Learning 

2 PER, INT, APP-C 28, 29 4,011 - 95% Intel ® core (TM) i7-8750h 
CPU @ 

2.20GHz 2.21ghz, 16.0GB 

memory and Windows 10 OS. 

2021 Proposed Approach 6 PER, API, PKG, 

INT, SR, RS, App-C 

29, 30 18,578 0.3% 96.24% Intel ®, Core i5, 2.5 GHz, 

Windows 8, 4GB Ram 
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TABLE II  

Relative techniques analysis on basis of features and sample collected in comparison to proposed approach 

Year Sample 

Collected 

Method 

 

Function Static Features Extracted 

Clas Det Permissions Intent M-

Tags 

Packages API Calls Receivers Services APP-C 

2013 2012 PDMS           

2014 - Drebin           

2015 2013-2014 RevealDroid           

2016 2016 DroidDetector           

2017 Past nine 

years 

DroidSieve           

2018 2017 Permission based 

malware detection 

in android devices 

          

2019 2018 Permission-based 

Android Malware 

Detection (FS with 

GA) 

          

2020 2018 Detecting Android 

Malware Based on 

Ensemble 

Learning 

          

2021 2017-2021 Proposed 

Approach 

          

 

A. Reverse Engineered Applications characteristics 

As for Android apps, various apps have various 

functionalities. If the app is to use the device tools, you must 

specify the corresponding allowances in the Android Manifest 

format. Different program forms, therefore, have different 

declarations of prior approval [35] [36]. System static analysis 

also identifies an application as malicious or benevolent. In 

classification, they make rational choices using features. The 

article shows the taxonomy diagram for the features present in 

Android applications [37]. It comprises all the components 

present in the APK files and how they are when they are 

reverse engineered by using a disassembler, in our case Jadx-

gui. Fig.4 represents the process of apk file disassembly. 

 

 

 

 

 

 
FIGURE 4.     Reverse Engineering APK files architecture 

1) ANDROIDMANIFEST.XML 

In the root folder of any reverse-engineered application, 

there must be an android Manifest.xml file. The Manifest 

file gives essential information to the Mobile application, 

which is required by the framework before executing any 

code for the app. The authorization process should protect 

the application's key elements, which include the Operation, 

Service, Content Provider, and Broadcast Receivers. These 

results mainly accomplished by affiliating these components 

with the relevant element in its manifest definition and 

making Android dynamically implement the features in the 

closely associated contexts [27].  

 

 

 

 

 

 

 
FIGURE 5.      Taxonomy of Android Manifest 
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Fig. 5 shows the taxonomy of the Android manifest 

components, which contain all the requested permissions, 

packages, intents and features for extraction.  

B. FEATURE SET EXTRACTION 

Using feature filtering decreases the dimensions of data 

collection by deleting functions that are not useful for study. 

We chose the characteristics based on their capability to 

display all data sets. Enhanced efficiency by reducing the 

dataset size and the hours wasted on the classification 

process introduces an effective function selection process. 

Our process does not support a revamped Android emulator, 

because it's not a convenient approach and we preferred our 

system for physical devices in the future. Jadx carries out the 

modification and evaluation of source code. The system 

concentrated on trying to hook the byte-level API calls [38]. 

For our dataset, features from over 1, 00,000 applications are 

extracted containing around 56000 extracted features. 

Functions and processes of opcode API features are removed 

from the disassembled Smali and Manifest files of an APK 

file. The Smali file, segmented by the process and the opcode 

frequency of Dalvik for every method, is determined by 

scanning Dalvik Bytecodes. To verify invocation of a 

hazardous API in that form, it is also possible to determine 

the hazardous frequency of an API invocation for each 

method during the byte code search. For string functions, 

strings are selected without the method of isolation from the 

entire Smali archives [39].  

We will never have a predictable response when the number 

of features inside a dataset exceeds the number of 

occurrences. In other terms, when we don't have enough data 

to train our machine on, generating a structure that could 

capture the association between both the predictive variables 

and responses variable appears problematic.  

The system used in this study also incorporates larger feature 

sets for classification. Although this problem arises in 

machine learning quite often to some extent choosing the 

type of model for detection or classification can highly 

impact the high dimensionality of the data being used. 

Support vector machine and AdaBoost can handle relatively 

well than other algorithms because of their high dimensional 

space/hyperplane sectioning. Another suspension for our 

datasets was the tool used for extracting the given datasets. 

Androguard implements parsing and analyzing automation 

to further break down components of application apk’s after 

decompiling and encourages weighting of the data into 

binary, making it easy to use relevant data for classification. 

It uses certain functionality to get useful features from 

manifest files of these Android applications reducing the 

acquiring irrelevant features. Although the data in this study 

works significantly well for evaluation, however, the 

datasets will be needed to upgrade in terms of forthcoming 

evolving measures. 

Certain other authors have presented many tools and 

proposals to deal with high dimensional data such as [40], 

[41], inducing multiple methods such as filtering wrapping 

to enhance robustness.  

The feature set of our model includes: 

                               𝐹1→ Permissions 

                               𝐹2→ API Calls 

                               𝐹3→ Intents 

                               𝐹4→ App Components 

                               𝐹5→ Packages 

                               𝐹6→ Services 

                               𝐹7→ Receivers  

2) PERMISSIONS 

Permission is a security feature that limits access to certain 

information on smartphone, with the role of preserving 

sensitive data and functions that might be exploited to harm 

the user's experience. A unique label is assigned for every 

permit, which typically denotes a limited operation. The 

permissions are further categorized into four parts by 

Google: normal, dangerous, signature, and 

SignatureOrSystem. For evaluating Android permissions, 

researchers take a variety of methods [42]. Standard (also 

called secure) levels of security permissions, such as 

VIBRATE and SET WALLPAPER, are permissions without 

risk. Android kit installer will not allow the user to approve 

these permissions. The dangerous security standard will pose 

warnings to the user before implementation and will require 

the user's consent. The signature and symbol Security stages 

of SignatureOrSystem cover the most risky permits. Only 

applications with the same certificate, as the certificate used 

to sign the request declaring approval, are allowed to sign 

signature permissions [43]. It also acts as a buffer in the 

middle of hardware and the rest of the stack. A variety of 

different C/C++ core libraries, such as libc and SSL, are 

being used in libraries. Dalvik virtual machines and key 

libraries are part of the Android Run Time. App Model 

defines classes for developing Android applications, as well 

as a standardized structure for hardware control and the 

management of user experience and app property. API 

libraries are used for both proprietary and third-party users 

[44]. Table 3 shows some dangerous permissions that pose 

problems to the reverse engineered applications. 
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                       TABLE III 

 Dangerous Permissions (Malware Probability) 
DANGEROUS PERMISSIONS 

SMS 

SEND_SMS 
STORAGE 

READ_EXTERNALSTORAGE 

RECEIVE_SMS WRITE_EXTERNALSTORAGE 

READ_SMS SENSORS BODY_SENSORS 

RECEIVE_WAPPUSH 
CALENDAR 

READ_CALENDAR 

MICROPHONE RECORD_AUDIO WRITE_CALENDAR 

CONTACTS 

READ_CONTACTS 
LOCATION 

ACCESS_FINELOCATION 

WRITE_CONTACTS ACCESS_COARSELOCATION 

GET_ACCOUNTS 

PHONE 

READ_PHONESTATE 

RECEIVE_MMS READ_PHONENUMBERS 

CALLLOG 

READ_CALLLOG CALL_PHONE 

WRITE_CALLLOG USES_IP 

PROCESS_OUTGOINGCALLS READ_PHONESTATE 

3) INTENTS 

The message delivered among modules such as activities, 

content providers, broadcast receivers, and services is known 

as Android Intent. It's commonly used alongside the 

startActivity() function to start activities, broadcast 

receivers, and other things. Individual intent counts are 

exploited as a continuous feature in categorization. To 

provide more specificity, we divide the list of intents into 

further sections, such as intentions including the phrases 

(android.net), which are linked to the network manager, 

intents including (com.android.vending), for billing 

transactions, and intents addressing framework components 

(com.android) and proving to be harmful elements in these 

apps.  

4) API CALLS 

Safe APIs are tools that are only available by the operating 

system. GPS, camera, SMS, Bluetooth, and network or data 

are some examples. To make use of such resources, the 

application must identify them in its manifest [45]. The Cost-

sensitive APIs are those that can increase cost through their 

usages, such as SMS, data or network, and NFC. Each 

version includes these APIs in the OS-controlled set of 

protected APIs that require the device's user's sole 

permission. API calls that grant sensitive information or 

device resources are commonly detected in malicious codes. 

These calls are isolated and compiled in a different feature 

set so they might contribute to harmful activity. Table 4 

elaborates dangerous API features: 

TABLE IV 

Sensitive APIs 

getDeviceId() execHttpRequest() 

getSubscriberId() sendTextMessage() 

setWifiEnabled() Runtime.exec() 

5) API COMPONENTS 

The program that requires access or activity e.g. a path from 

point A to point B on a route predicated on a user's 

location from another application makes a call to its API, 

stating the data/functionality demands. The other software 

includes the data/functionality that the first program 

requested. For privacy reasons, some API features must be 

declared and not used in these apps. These components relate 

to broadcast features present in these applications. 

6) PACKAGES, SERVICES AND RECEIVERS 

The package manifest has always been found in the 

package's root and provides information about the package, 

such as its registered name and sequence number. It also 

specifies crucial data to convey to the user, such as a 

consumer name for the program that displays in the User 

Interface (UI). The file format is in .json for packages.  

According to a publication process model, Android apps can 

transmit and receive messages from the Android system and 

other Android apps. When a noteworthy event occurs, these 

broadcasts are sent out. The Android system, for example, 

sends broadcasts when different system events occur, such 

as the system booting up or the smartphone charging. 

Individuals can sign up to receive certain broadcasts [46]. 

When a broadcast is sent, the system automatically directs it 

to applications that have signed up to receive that sort of 

broadcast. Services, unlike activities, do not have a graphical 

user interface. They're used to build long-running 

background processes or a complex communications API 

that other programs may access. In the manifest file, all 

services are represented by <service> elements and 

they allow the developer to invalidate the structure of the 

application.  

C. Classification 

The collection of chosen features in the signature database, 

separated into training and test data, and is used to recognize 

android malware apps by traditional machine learning 

techniques [47]. There are three different computer 

frameworks: supervised learning, unsupervised learning, and 

reinforcement learning. The supervised learning method is 

the focus of this paper, comprises algorithms that learn a 

model from externally provided instances of known data and 
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known results to produce a theoretical model so that the 

learned model predicts feedback about previous occurrences 

over new data [48]. The deployment of ensemble techniques 

and strong learning classifiers helps classification of our 

binary feature sets, resulting in correctly categorized 

malware and benign samples. We believe that these 

classification mechanics produces efficient outputs because 

of their sorting nature. Fig. 6 explains the learning model 

process.   

 
FIGURE 6.      Machine learning Process 

A comparative algorithm selection for our model based on  

AdaBoost, Naive Bayes, Decision Tree classifier, K-

Neighbor, Gaussian NB, Random forest classifier, and 

Support Vector Machine performing a relative review  which 

will give an accurate analysis of the algorithm for the 

prediction of our model. 

1) ALGORITHM CHARACTERISTICS APPRAISAL 

The assessment of suggested algorithms was carried out 

using Python. The use of FPR and Accuracy assess our 

comparative algorithms trials [49]. These estimates, derived 

from the following basic factors, are listed further down: 

 Accuracy: Accuracy is one criterion being used to 

evaluate classification techniques. TP refers to the number of 

malicious apps which were misclassified as malicious, and 

FN identifies the number of safe applications which were 

misidentified as malicious. The number TN measures the 

truly benign applications and FN denotes the number of 

irregular apps that were wrongly labelled as normal [50].  

 False Positive Rate: Determines the measuring factor of 

a model’s ability to identify correct apps or the model’s 

ability to generate FP.  

 

       (𝐴𝑐𝑐)𝑚,𝑏 =
     (𝑇𝑃)𝑚,𝑏 + (𝑇𝑁)𝑚,𝑏

𝐴𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
                      [1] 

 

 

            (𝐹𝑃𝑅)𝑚,𝑏 =
     (𝐹𝑃)𝑚,𝑏 

(𝑇𝑃)𝑚,𝑏+( 𝐹𝑃)𝑚,𝑏
                           [2] 

 

Equations (1) and (2) demonstrate the accuracy of the false 

detection rate measuring formula applied to calculate the 

Detection Rate (DR) and precision. Accuracy of the 

classification dataset, which contains both benevolent and 

malicious applications, our models define a hyperplane that 

divides both categories with the largest probability. One 

class is synonymous with ransomware and the other with 

friendly applications [51]. The authors then assumed the 

research data to be unknown applications, which are 

classified by projecting them to subspace to determine if they 

are on the malicious or friendly side of the hyperplane [52]. 

Then, using our model will correlate all the regression 

findings to their original reports to assess the proposed 

model's malware identification accuracy [53]. Static features 

make for a pleasing accuracy and precision of more than 

90%. What's more noteworthy is that defining the usage of 

API calls in a single part of the Android platform allows for 

the creation of the most representative function space or the 

resources where malicious and benign can be distinguished 

more easily [54], [55]. If the amount of the classification 

target is greater than the probability estimates, the 

classification target of the testing data is then calculated as 

that label [56]. The objects are Blue or Red; the dividing lines 

identify the border, so an object on the right side is called 

blue, meaning benign, a general scenario and likewise. This 

is an example of linear classification, but not all 

classifications are this basic, and functional groups are 

needed to differentiate between groups [57], [58].  

III. PROPOSED METHODOLOGY  

The major goal of our research is to determine which criteria 

are most helpful in detecting malware in cell phones, 

particularly those running Android. We have taken up the 

task to train up to six machine learning algorithms such as 

AdaBoost, Support Vector Machine, Decision Tree, KNN, 

Navies Bayes and Random Forest techniques and classify 

these machine learning algorithms accurately. The 

methodology section is elaborated in two sections; Pre-

Processing (explaining the pre-requisite processing), 

Proposed Model (Model functionalities and components). 

D. Pre-Processing 

APK files from numerous apps were included in the resulting 

datasets (containing malware and benign characteristics). A 

Jadx-Gui decompiler is then used to reverse engineer the apk 

files to extract features from the Android manifest file's 

feature set for further processing. These stages are regarded 

as pre-processes from before real assessments and are 

essential parts before any kind of testing and training using 

any predictive models.  

Androguard, an open-source tool that extracts prioritised 

features from files and converts them into binary values, is 

used to extract features. For labelling the false or accurate 

android application, we employ binary search techniques, i.e. 

1 or 0 for benign and 1 or 0 for malware. Figure 7 shows our 

technique's pre-processing framework and flow structures, 

which must be accomplished before the classifiers are tested. 
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FIGURE 7.     Flow analysis of our research 

The operations embedded in the rectangle are to be 

determined beforehand, ensuring efficient data collection. 

The main role in this is by the decompiler and extractor 

which improves and eases the model’s data classification 

efficiency for detection of malware applications. Although 

our study discusses the challenge of multi-collinearity and 

the use of high dimensional data being implemented, we 

have discussed the better output for high-dimensional data in 

our feature extracted section but the issue of collinearity still 

stands and can be done as a novel contribution as future 

work. 

Succeeding the extraction process and the use of efficient 

datasets accommodating useful features, the testing and 

training are administered. For our model, a comparative 

approach will be adopted based on Naive Bayes, Decision 

Tree classifier, K-Neighbour, Gaussian NB, Random Forest 

classifier, Support Vector Machine and AdaBoost. The 

comparison evaluation will provide an accurate assessment 

of the algorithm used to forecast our model. The installation 

package is a ZIP-compressed bundle of files that includes the 

manifest file (AndroidManifest.xml) and classes.dex. The 

manifest file describes an Android application, namely the 

activities, services, broadcast receivers, and content 

providers that make up the system. The methodology and the 

classification are explained before in the related work 

section. The next section describes the model functionality. 

 

FIGURE 8.       Proposed Methodology of our system 

E. Proposed Model 

The model gathers information from many Android 

applications (Google Play). These reverse-engineered 

(decompiled through Jadx-Gui) apps are then subjected to 

static analysis to extract features. Our suggested approach in 

figure 8, for the training phase, uses the retrieved 

characteristics to create vector mapping parsed through 

Androguard. The contribution is indicated by the proposed 

feature section that encompasses nearly 56,000 extracted 

features from the feature set seen in figure 8. Those collected 

features are then composed in a form of a dataset .csv file, 

stating the benign and malware properties in 1 or 0. After we 

generate the datasets, the features are ready for classification 

by predictive models. We adopted Python to create a 

machine algorithm classification performance program after 

collecting the dataset, and then we'll employ the best 

accurate algorithms to train our models for malware and 

benign detection. The system's approach and its operation 

are detailed in figure 8, which depicts the whole 

methodology of our model and algorithm learning phase 

with the training model processing for detection. 

 

 

 

 

 

 

 

 

 

FIGURE 9.      Training Model Processing 
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Figure 9 shows us the training cycle of the program and how 

the model first is constructed and then evaluated. Then 

further on the data is cycled towards testing and that is the 

data fed to the trained model for further prediction analysis 

of the android applications.  

The future threats and predictions pointed out in the next 

section state insecure android applications which contain 

unnecessary permissions, and opt for an easy way for an 

attacker to steal private data or launch major attacks, and 

later on, present the methodology of our research. 

IV. FUTURE THREATS AND PREDICTION 

By 2020, mobile applications will be installed onto consumer 

devices over 205 billion times. Statistics by Marketing Land 

suggest that 57 percent of the overall digital content time is 

spent on mobile devices. Our daily activities always depend 

on social networking, bank transfers, business operations, 

and mobile managed services applications. Accommodating 

over two billion individuals, almost 40% of the world's total 

population, Juniper Sources point to the number of those 

using mobile banking services.  

Developers devote close attention to the development of 

software to provide us a comfortable and seamless 

experience and when someone enthusiastically installs these 

mobile applications requiring personal information, the user 

stops thinking about the security consequences. This is the 

reason people don’t even look closely at the permissions or 

the feature updates being asked by the applications [59]. 

They simply download the application they want and, when 

asked for installation, they overlook everything else and start 

using the app. Most of these applications never even ask the 

consent of the consumer and the hackers are using their 

information without their knowledge. The future threat rises, 

at the end of 2020 and beginning of 2021: 

 70% of Google Play Store applications require 

access to one more "dangerous permission and 

packages, up from 66.6% in Q12020, which is a 5 

percent raise”. 69.4% of applications for children 

(13 years of age) claim at least one risky permit up 

from 68.8% in 2020 (a 1 percent rise). 

 Over 2.3 million applications altogether, over 2.1 

million applications for children need at least one 

harmful authorization. 

FIGURE 10.      Graph of application threat increase by 5% 

Figure 10 shows the percent hit in 2020, proceeding to 2021 

on both the application for permission criteria. As per these 

statistics, the predicted rate in the coming years (till 2025) 

proposes that there could be a grave danger because of these 

unnecessary access as per each level of the Android API. 

Graph 1 shows the representation of both the factors, 

application for everyone and the other for application kids 

for the year 2019-2020. The graph shows the increase in 5% 

of the applications with dangerous malware. This takes a 

great deal of application security and also depicts the 

futuristic way that if nothing is done on time, these 

applications will increase up to a higher number in the future. 

According to multiple tech reviews, each one published in 

2021, states that according to research of 2,500 top-of-the-

line and rising applications, over two portions of the most 

popular Android applications on Google Play request 

excessive user permissions and access. These allow apps, 

among other unwanted behaviors, to launch harmful scripts 

and access messages unnecessarily with unwanted features 

inbuilt [60]. They stated that with the increase in usage of 

application components and features and also the release of 

new Android frameworks and APIs each year. It is most 

likely that threats are surely to increase by 15% from 5%. 

The average Android user has roughly 80 applications 

loaded, thus at least one app on the phone demands 

additional authorization on the phone. It is likely that 

excessive authorizations may jeopardize user data and 

privacy or even allow device hacks. 

FIGURE 11.    Increase in Android Malware Statistics 

Figure 11 elaborates the dangerous malware increase till 

2020 with every newer version of API Level. Figure 12 

shows the most rising apps from 2016 to 2021 and the 

percentage of dangerous permissions, packages these 

applications gain [61]. These applications are used daily and 

if they are involved in unnecessary and third-party access, 

then there is a special need to apply countermeasures on 

these applications, as this is going to be a major threat in the 

future. Also, the Figure depicts the need to measure these 

threats and devise countermeasures or at least present models 

to provide more encoded procedures to carry out for these 

well-known applications. These apps provide a lot of 

opportunities, but with an increase in private and intellectual 
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property stored in these apps, certain anecdotes need to be 

proposed. 

FIGURE 12.   Third-party well-known dangerous apps increase from 2016 
to 2020 

V. Experimental Results 

In this section, the results of our experimentation are stated. 

To start our experimentation discussion, we will elaborate on 

the basic criteria for performing our implementation 

successfully and will also briefly discuss the data collection 

or the dataset that we got and then further converse about the 

actual contribution part. 

A. Experiment Setup 

Our environment is based on Windows 8.1 Pro with Intel®, 

Core (MT) i5-2450 CPU @ 2.50 GHz as a processor. The 

installed memory (RAM) of the system is 4.00 GB with a 64-

bit Operating System (OS), x-64 based processor.  

For the generated dataset Androguard 3.3.5 (latest release) is 

used for decompiling and feature extraction, deployed in 

regulated .csv files in binary vectors. We have installed 

Python 3.8.12 (version 3.8) on our system for the 

implementation and execution of training and testing scripts 

of imported machine learning models.   

B. Dataset 

Three different datasets are used for our implementation, 

mainly apps belonging to Google Play. The static features of 

our first two datasets containing API calls, permissions, 

intents, packages, receivers and services were collected from 

MalDroid [62] and DefenseDroid [63] which includes 

around 14,000 malware samples. The model also uses a third 

dataset of 5000 malware samples using our own generated 

applications dataset. Applications in the datasets were 

reverse-engineered by the Jadx-GUI tool and the features are 

extracted using Androguard into binary data. All the datasets 

from different platforms are combined to incorporate our 

multiple features sets more than state-of-the-art approaches 

(explained in table 5) in a single training to achieve higher 

accuracy and classification of malware. The datasets are first 

trained on every algorithm for comparative classification 

analysis. After the accuracy of the algorithms are evaluated, 

the datasets is again trained and tested on the higher- 

performing algorithms to use as a feed, based on the features, 

inserted into the database and our model will then forecast 

the output for a given android application extracted features. 

TABLE V 

Sample Datasets 
Datasets Period Source Benign 

Applications 

Malware 

Applications 

MalDroid 2017-

2020 

UNB 1795 10,516 

DefenseDroid 2021 Kaggle 1500 3062 

GD 2021 GD 2421 5000 

The next subsection elaborates the discussion and 

presentation of the programs for our machine learning 

algorithms. 

C. MACHINE LEARNING ALGORITHM AND ENSEMBLE 

LEARNING 

Six models have been selected to experiment with two strong 

classifiers (AdaBoost, SVM and Random Forest). The model 

executes upon KNN, NB, RBF, Decision Tree, SVM and we 

have also performed AdaBoost with Decision Tree by 

calculating the weighted error of the Decision tree based on 

its data points. As the input parameters are not jointly 

optimized, Adaboost is less prone to overfitting. Adaboost 

can help you to increase data performance of existing weak 

classifiers. After the higher weight of all the wrongly 

misclassified data points is rightly classified, the model can 

enhance model accuracy.  Fig 13 shows the functioning of 

the boosting technique. 

FIGURE 13.    Boosting mechanism 

Since there is a distinct boundary between two categories, 

ensemble methods and SVM perform rather well enough 

when dealing with clear aligned datasets following adequate 

extraction processes. Another significant benefit of the SVM 

Algorithm is that it can handle high-dimensional data, which 

comes in handy when it comes to its use and application in 

the Machine Learning sector. As seen in the diagram above, 

AdaBoost's greater weighted property aids our weak learner 

(Decision Trees) with achieving higher accuracy and wider 

consumption for misclassified binary feature inputs. 

0.09
1.52

13.2

0.6

19.67

0.750.55

26.84

0.690.22

10.7

0.47

0

5

10

15

20

25

30

New Android Malware (Monthly 
Stats)

Total Number of Malware

M
A

X
IM

U
M

 N
O

 O
F 

M
A

LW
A

R
E

Increase in Android Malware

2013 2016 2017 2017 2018 2018 2019 2020



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3149053, IEEE Access

                                                Beenish Urooj, et al.: Malware Detection: A Framework for Reverse Engineered Android Applications through Machine Learning Algorithms 

13 

D. PROGRAM PARAMETERS 

Our project is based on Python 3.9.7 and divided our 

execution into two programs. The first program, written to 

compare the algorithms for the accuracy check of respective 

models, based on AdaBoost, Decision Tree, KNN, SVM, 

Naive Bayes, and Random Forest for the comparative 

analysis. The program uses different import and split 

functions to train the models and then stores the result in a 

variable embedded for the testing model. The function 

sklearn.model_selection, used for accessing the bundles of 

algorithms, accuracy_score for accuracy readings, pandas to 

read the database, and NumPy to convert the testing model 

data into rr format. 

      The parameter on the x-axis is the features of the 

algorithms and on the y-axis is its label, meaning the 

accuracy percentage for these algorithms. The x and y 

parameters of the program are configured to shuffle=True 

using the test_train_split function, so each algorithm takes a 

random permission value from the dataset. Figures 14 and 15 

show the import modules and parameters values set in our 

program.  

FIGURE 14.    Representation of the modules of our program. 
 

 
FIGURE 15.    Program Parameters and split functions. 
First, all the algorithms are imported into the program to 

implement the training data for the model, meaning the 

machine is training based on the given datasets. The program 

will work as each algorithm will take up random binary value 

of an app from the dataset and execute its feature’s accuracy 

score in another variable. After training the data, the program 

passes the testing data to store into a predictive function. The 

program is designed to identify the normal and harmful 

permissions features through the dataset binary values (0.1) 

and specifies those results in function pred (). As you can see 

in the code below, the program uses a fit () function, which 

takes the training data as arguments that are fitted using the 

x and y parameters into testing data for our two models 

(AdaBoost and SVM). All the variables were specified at the 

end that was given to each of our algorithms in the program 

to the variable acc. After executing the program, every 

algorithm will start accessing the dataset and start predicting 

the dataset value for the android permissions. Figures 16 and 

17 represent the main key functions for our models 

AdaBoost and SVM, which are discussed above.  

 
FIGURE 16.      Fit and pred function for SVM 

 

FIGURE 17.      Predictive measures for AdaBoost 

Figure 17 also explains the predictive procedure of the 

ensemble model with 1000 malware sample runs and given 

features to train for a single predictive classification output. 

The same fit() function is used for dataset training. The 

model is placed for higher weights of decision trees 

algorithm within row values and executed in yhat. Accuracy 

is then accomplished by declaring the mean and standard 

deviation (mean (n_acc_scores), std (n)acc_score))) for the 

binary classification output of malware. Further ahead, 

figure 18 shows the plotted assigned value for accuracy after 

the data is trained on the models.  

FIGURE 18.    Results stored to acc variable and plotted by plt.bar function  

Figure 19 shows the accuracy percentage for our models 

which is 96.24% and the graph displays the highest correct 

predictive frequency out of all the algorithms, professing the 

research work for greater validity. This graph is plotted by 

training the algorithms on the datasets to verify which 

algorithm can classify the application’s features accurately. 

Program 1 is scripted to import all of the algorithms and 

execute them one by one on these datasets to train the 

algorithms, producing the most precise values after testing. 

In the case of AdaBoost, we trained Decision Tree first on 

the dataset and then used those classified values to train on 

the higher weights using AdaBoost. AdaBoost takes those 

classified samples and features used by decision trees and 

generates higher weights for correct results after training on 

those features again. (x,y) are the stored values by decision 

trees which are given as input values for AdaBoost to 

enhance accuracy, hence the model with the highest accuracy 

in fig 19. This program performs in a way that when all the 

models are done training, the script generates a graph using 

the plt.bar command to display the algo that classifies most 

applications correctly. Figure 19 and Table 6 show the 

accuracy and the label value that depicts the training data 
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each algorithm randomly took and trained its model for. 

FIGURE 19.      Models accuracy percentage w.r.t label 

 

TABLE VI  

Shows the label values for each algorithm and their accuracy 

percentage 

ML 

Algorithm 

Testing Label Values Algorithm 

Percentage 

AdaBoost [0101111011000000000100111100001001
1011001111001101101011111111111111

1110110110101110101000011110001111] 

96.24% 

Decision 

Tree 

[1111111011011110000100111100001001

1011001111001101101011110000000111
1110110100111110101000011110001111] 

90.12% 

 

SVM [1111110110011100001001111000010011

0110011111011011010111100000011111

110110100111110101000011110001111] 

92% 

 

KNN [1111110110111100011001111000010010
0110001111011011010111100001001111

11011010011011010000001101000111] 

89.45% 

 

Navies Bayes [1110111001010110000110101000001001

0011101111100100101001100001000111
0110110100110110100000011000001011] 

88.65% 

 

Random  

Forest 

[1111111011011110000100111100001001
0011001111101101101011110000001111

110110100110110101000011110001111] 

89% 

 

VI. Model Precision Evaluation 

After training the datasets on algorithms and achieving 

accuracy percentage, individually developed another 

program that uses the properties of the previous code to help 

execute and predict the application state according to the 

input from the dataset. For this program, the algorithm with 

greater prediction capabilities is imported, i.e. AdaBoost and 

SVM using the function sklearn imports linear_svc and 

sklearn.ensemble import AdaBoost. The database stores 

input permissions into the rr python module as a feeding 

factor for the trained models and designated [1] for the 

benign applications and [0] for the malware application, 

meaning the app which uses unnecessary features. This will 

work in a way that, when the program executes, the 

algorithms will take the input from the database and then 

categorize the features based on what we trained the 

algorithm upon. So, if there are malware applications fed as 

an input to the database, the trained model will predict the 

outcome and label the state of the application.  

Following the import of the trained models, the 

random_state = 0 and the testing data = 0.25 for the 

algorithms. The import of sklearn.preprocessing_normalize 

function, which takes samples separately according to the 

Normalize unit. Every set of data with one component or 

perhaps more (each data matrix row), rescaled separately 

from other samples to the standard. The program also 

imports the function sklearn.features_extraction.text which 

transforms a text data array into a token count matrix and at 

the very end declares the accuracy score of these algorithms 

by using sklearn.metrics function, implementing loss, score, 

and utility functions to quantify performance in the 

categorization of the feature sets. Parameters for this 

program are the same as the previous program, but to fix 

features on every algorithm, the x type is dedicated to the 

trained models for features and y type for the prediction of 

the applications. So when the program executes it will work 

in the same manner and this time gives us the precision value 

instead of the plotted accuracy percentage of the algorithms 

and at last, the program will print out the pred () function 

value which was declared to the model’s testing data. Figures 

20 and 21 and 22 indicate the consideration of AdaBoost and 

SVM prediction for features extracted for single feature 

input. 

FIGURE 20.    Import modules for program 2

 
FIGURE 21.    Prediction function for SVM for testing data for the database 

 

FiGURE 22. Prediction function for AdaBoost for testing data for the 
database  

Further ahead, the prediction results of the program are 

discussed. As the code executes, the models will take the 

features from the dataset that was provided for a single 

application. The result displayed in Figure 23 shows that it’s 

a benign application. When permission features, again fed as 

input the Figure 23 shows that it is a malware application 

based on the features the highly trained models draw out. In 

the same manner, the database is fed with feature binary 

values and the model will predict the result in 1 or 0. Figures 

16 and 17 elaborate on the predictive function which will 
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allow AdaBoost and SVM to predict the basis of the 

applications on the feeding input. Figures 23, 24, 25 and 26 

are output screenshots of [1] showing benign and [0] for 

harmful applications with random application features for 

respective models. 

 
FIGURE 23.    Output [1] representing the Benign Application (SVM). 

 
FIGURE 24.   Output [0] representing the Malware Application (SVM). 
 

 

FIGURE 25.   Output [1] representing the Benign Application (AdaBoost)   

FIGURE 26.    Output [0] representing the Malware Application (AdaBoost 

A. Results 

After the forecast of our models, results show that the 

accuracy for our highest predictive systems is 96% and 92%. 

The proposed model doesn’t peak in higher accuracy or 

predictive rate but it contributes by introducing enhanced 

and large feature sets (containing around 56000 newly 

extracted features) with the latest API level applications 

datasets collected in recent years than state-of-the-art 

approaches. Another point of view for a less predictive rate 

is the limitation of our sources/environment to process and 

generate these datasets on our models. The novelty and 

contributions are explained in Tables 1 and 2.   

Figures 27, 28, 29 and 30 show the runs performed on the 

datasets on our trained model. The applications in orange 

indicate not harmful apps and only passes sensitive features 

over the line, which doesn’t pose that much of a threat for 

the application, but it still shows the model issue for 

indicating true negatives for zero apps. The applications in 

black indicate harmful applications and the false positive rate 

(FPR) of this category which falls over the non-harmful apps 

is about 3-4 applications in case of AdaBoost and 6-7 in case 

of SVM in our system for 1000 runs, as shown in figures 

above achieved with 96% and 92% accuracy of AdaBoost 

and SVM.  

 

 

 

 

 

FIGURE 27.  Orange entries for Non-Harmful applications in AdaBoost 

FIGURE 28.  Black entries for Harmful applications in AdaBoost 

All four figures are plotted in a hyperplane which describes 

the applications classifications in two sections i.e. Harmful 

and Non-harmful applications. The above line represents the 

harmful apps section (Black and Red) and applications lying 

below the line indicated non-harmful applications. The 

plotted hyperplanes help in understanding the prediction 

applications perspective as shown in fig 28 and 30 showing 

successful classification above the line and 3-4 apps below 

line indicating misclassifications. The same process is for 

non-harmful apps in orange colors (fig 27, 29) and the above 

line shows misclassifications but they don’t pose serious 

threats. 
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FIGURE 29.  Orange entries for Non-Harmful applications in SVM FIGURE 30.  Black entries for Harmful applications in SVM 

The Forthcoming is the comparative review of both 

malicious and benign applications of our models and 

experimental results with accumulative accuracy and FPR. 

The purpose to plot a comparative graph of malware 

detection is to understand the relative perspective of both our 

parameters. Figure 31 represents a comparative analysis of 

both models in terms of malicious and benign applications. 

Triangles in red represent the classification and detection of 

AdaBoost and in the square, the SVM is displayed. The 

graph show a malware section angle for the executive runs 

performed and the values above the hyperplane shows the 

category of Non-Harmful apps. The 0.7 misclassification 

rate of SVM and 0.3 of AdaBoost is plotted with malware 

applications falling into the true positive category.  

Nevertheless, the models perform with 96.24% accuracy by 

accurately predicting the applications categories.

FIGURE 31.  Comparative Analysis of Malicious and Benign in Adaboost and SVM 

We use Accuracy and FPR as evaluation markers in this 

project. Precision is computed as the percentage of true 

harmful samples in the malware tagged by the detection 

system, showing the system's capacity to discriminate 

malware properly in the field of malware detection. False 

Positive Rate (FPR) is the criteria to judge the model’s 

performance in terms of establishing how many true 

indications a model gives. Below are the experimental results 

in quantitative measures, presented in table 7, which explains 

the points based on accuracy, false positive rate and their 

predictive measures after testing on binary input for 1000 

runs on our 2 higher predictive models depending on testing 

and training of mixed datasets containing features and 

malware samples. The operational speed advantage of 

AdaBoost is not apparent when adopting the datasets for 

classification and prediction. However, given AdaBoost 

structural features with parallel learning, we anticipate it will 

perform better while computing bigger data sets. We reached 
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the same conclusion after we analyzed a much bigger data 

set with over 500,000 apps. 

In table 7, both models are compared and trained on datasets 

and specify the accuracy, FPR and features used and selected 

corresponding to the composing samples. The FPR is also 

presented in figures 26 to 29 above, specifying the 

calculative measures through a hyperplane. The accuracy 

and false positives have been measured by the equation 

described in section IV in algorithm characteristics for the 

number of runs of the model. Results show 96.24% as the 

highest accuracy for the model after experimentation and 

false-positive rate of 0.3% in the case of the ensemble 

approach. 

TABLE VII  

Experimental results (AdaBoost and SVM), Selected, specify features 

selected in the model, MalD (MalDroid), DefenseD (DefenseDroid), 

GD (Generated Dataset), FPR (False Positive Rate) 

Model Features # Datasets Mal (S) Acc [1] FPR [2] 

AdaBoost 55821 
(Selected) 

MalD + 
DefenseD + 

GD 

18578 96.24% 0.301% 

AdaBoost 55821 MalD + GD  12931 95.74% 0.416% 

 50621 + 
331 

(Selected) 

    

SVM 55821 
331 + 

56471 

(Selected) 

MalD + 
DefenseD + 

GD 

18578 92.04% 0.731% 

SVM 331 
(Selected) 

GD 5877 90.1% 0.970% 

Related works explain the originality of our model and 

exhibit the novel features and sample size. To conclude our 

model still lack fewer percentages in terms of accurate 

detection. To justify this fact, table 8 presents some 

properties of similar studies with higher performance rates, 

indicating such elements which elaborated the efficiency of 

our system.  

[28] This model has exceptional computational/processing 

power with a much stronger environment to test and train 

their datasets. [23] Has somewhat of a similar resource with 

higher processing but their sample size is very limited in 

comparison to our model. A few other studies describe 

similar technical advantages, thus, leaving us to work with 

restrictive measures. Table 8 presents some key properties to 

elaborate on similar systems’ components.  

TABLE VIII 

Relative resources (Pro, Processing) 

Model Accuracy RAM Pro Samples FPR 

DroidSieve 99.82% 378GB 40 core      16,141 0% 

DroidCat 97%     -      -       16,978 No FPR 

PMDS (FS with 
GA)  

98.45%     -      -        1119 No FPR 

Proposed Model 96.24% 4GB Core-i5       18,578 0.3% 

VII. Research Issues and Challenges 

This section highlights our experiment's prevalent and 

crucial topics. These hurdles are based on various stages of 

our work and maybe gradually rectified in the work to be 

undertaken in the future.  

1.     Features declared mostly on the device are more durable 

than the features specific to the applications and 

therefore can usually automate malware detection. The 

range of android parameters for processing is rather big 

and difficult to detect properly if someone does not 

extract the permissions properly.  

2.    There is still a fast increase in the number of apps. 

Malware apps can always be identified in potential in 

combination with methods based on AI or machine 

learning, such as inept learning, to make the detection 

more sophisticated to make it easier to identify and 

regulate app prediction rate.  

3.    Application behaviours in the malware ecosystem 

encourage non-emerging threats. Our study doesn’t 

incorporate the rider analysis or behaviour of 

repackaged malware. The study simply uses the reverse-

engineered apk files and extracts the given context to the 

AndroGuard and extracts features in binary vectors. 

Although this is a major issue and a key challenge with 

the advancement in Android malware. This approach 

will be our advanced project to perform differential or 

effective analysis on reverse applications, determining 

the effects of these applications and their results. 

4. The applications with time induce new features with 

enhanced malware abilities which is why we would have 

to upgrade the system whenever the model’s FPR rate 

after execution increases. The simplest explanation for 

how to identify if the model is degrading on evolved 

features is that our datasets are designed in binary matrix 

extracted from features that are currently implemented 

in these applications and not features that will be present 

in evolved apps in coming years. With new features, we 

would have to reverse and extract those features to form 

an updated dataset again to train on these classifiers. 

[64], [65], [66] and [67] discuss the possible solutions 

for this key issue and propose some possible solutions 

but for our model and given the resource we have only 

performed for current features. For future work, we will 

consider model sustainability and how to classify the 

malware that our system will be able to detect even if 

the features are not yet implemented.  

5. The research mentions the problem of multicollinearity 

in the introduction, depicting the rise of dependent 

variables in-between machine learning algorithms 

which cause interpretation in results. However, this field 

of study can be taken as a future work for further testing 

of several models handling multicollinearity because 

our model itself is already performing high processing 

detection schemes to generate accuracy for Android 

applications features malware. We will foresee this issue 

and incorporate it to produce an efficient solution to the 

problem. Authors in [68], [69], [70] proposes some 
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solutions to tackle this challenge and can help 

understand viewers queries. 

B. LIMITATIONS 

The technique in this paper is based on binary classification 

of lightweight code of static feature sets present in the 

Android manifest file. The three major limitations of our 

method is: 

1. The research doesn’t include dynamic or runtime 

application features. We will consider the potential 

dynamic aspects of Android applications in the future, 

including real-time permissions requests and essential 

API requests. We will evaluate the behavioural traits of 

the app using a mixture of dynamic and static evaluation 

to discover harmful tendencies. 

2. Our system lags in future sustainable operative 

measures, meaning the system will need to be upgraded 

in terms of forthcoming API levels and malware 

collection or terms of new innovative features present in 

these Android applications.  

3. The constraint of a slow and low processing 

environment is another motive for less accuracy and 

predictive measures of our model in comparison to a few 

other peak detection techniques achieving higher 

accuracy. 

VIII. Conclusion 

In this research, we devised a framework that can detect 

malicious Android applications. The proposed technique 

takes into account various elements of machine learning and 

achieves a 96.24% in identifying malicious Android 

applications. We first define and pick functions to capture 

and analyze Android apps' behavior, leveraging reverse 

application engineering and AndroGuard to extract features 

into binary vectors and then use python build modules and 

split shuffle functions to train the model with benign and 

malicious datasets. Our experimental findings show that our 

suggested model has a false positive rate of 0.3 with 96% 

accuracy in the given environment with an enhanced and 

larger feature and sample sets. The study also discovered that 

when dealing with classifications and high-dimensional data, 

ensemble and strong learner algorithms perform 

comparatively better. The suggested approach is restricted in 

terms of static analysis, lacks sustainability concerns, and 

fails to address a key multicollinearity barrier. In the future, 

we'll consider model resilience in terms of enhanced and 

dynamic features. The issue of dependent variables or high 

intercorrelation between machine algorithms before 

employing them is also a promising field. 
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