
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3149053, IEEE Access

 Beenish Urooj, et al.: Malware Detection: A Framework for Reverse Engineered Android Applications through Machine Learning Algorithms

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Malware Detection: A Framework for
Reverse Engineered Android
Applications through Machine Learning
Algorithms
Beenish Urooj1, Munam Ali Shah2, Carsten Maple3, Muhammad Kamran Abbasi4, Sidra

Riasat5

1 Department of Computer Science COMSATS University, Islamabad, Pakistan (e-mail: ubee.arooj@gmail.com)

2 Department of Computer Science COMSATS University, Islamabad, Pakistan (e-mail: mshah@comsats.edu.pk)

3WMG, University of Warwick, Coventry, UK. CV4 7AL (e-mail: cm@warwick.ac.uk)

4Institute for Research in Applicable Computing University of Bedfordshire (email: abbasikamran@usindh.edu.pk)

5Department of Computer Science COMSATS University, Islamabad, Pakistan (e-mail: sidrariasat4@gmail.com)

Corresponding Author: Carsten Maple (email: cm@warwick.ac.uk)

ABSTRACT Today, Android is one of the most used operating systems in smartphone technology. This is

the main reason, Android has become the favorite target for hackers and attackers. Malicious codes are being

embedded in Android applications in such a sophisticated manner that detecting and identifying an

application as a malware has become the toughest job for security providers. In terms of ingenuity and

cognition, Android malware has progressed to the point where they're more impervious to conventional

detection techniques. Approaches based on machine learning have emerged as a much more effective way

to tackle the intricacy and originality of developing Android threats. They function by first identifying

current patterns of malware activity and then using this information to distinguish between identified threats

and unidentified threats with unknown behavior. This research paper uses Reverse Engineered Android

applications’ features and Machine Learning algorithms to find vulnerabilities present in Smartphone

applications. Our contribution is twofold. Firstly, we propose a model that incorporates more innovative

static feature sets with the largest current datasets of malware samples than conventional methods. Secondly,

we have used ensemble learning with machine learning algorithms such as AdaBoost, SVM, etc. to improve

our model's performance. Our experimental results and findings exhibit 96.24% accuracy to detect extracted

malware from Android applications, with a 0.3 False Positive Rate (FPR). The proposed model incorporates

ignored detrimental features such as permissions, intents, API calls, and so on, trained by feeding a solitary

arbitrary feature, extracted by reverse engineering as an input to the machine.

INDEX TERMS Android applications, Benign, Feature extraction, Malware Detection, Reverse

Engineering, Machine Learning.

I. INTRODUCTION

To this degree, it is guaranteed that mobile devices are an

integral part of most people's daily lives. Furthermore,

Android now controls the vast majority of mobile devices,

with Android devices accounting for an average of 80% of

the global market share over the past years. With the ongoing

plan of Android to a growing range of smartphones and

consumers around the world, malware targeting Android

devices has increased as well. Since it is an open-source

operating system, the level of danger it poses, with malware

authors and programmers implementing unwanted

permissions, features and application components in

Android apps. The option to expand its capabilities with

third-party software is also appealing, but this capability

comes with the risk of malicious device attacks. When the

number of smartphone apps increases, so does the security

problem with unnecessary access to different personal

resources. As a result, the applications are becoming more

insecure, and they are stealing personal information, SMS

frauds, ransomware, etc.

In contrast to static analysis methods such as a manual

assessment of AndroidManifest.xml, source files and Dalvik

Byte Code and the complex analysis of a managed

environment to study the way it treats a program, Machine

Learning includes learning the fundamental rules and habits

of the positive and malicious settings of apps and then data-

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3149053, IEEE Access

 Beenish Urooj, et al.: Malware Detection: A Framework for Reverse Engineered Android Applications through Machine Learning Algorithms

2

enabling. The static attributes derived from an application

are extensively used in machine learning methodologies and

the tedious task of this can be relieved if the static features

of reverse-engineered Android Applications are extracted

and use machine learning SVM algorithm, logistic

progression, ensemble learning and other algorithms to help

train the model for prediction of these malware applications

[1].

Machine learning employs a range of methodologies for data

classification. SVM (Support Vector Machine) is a strong

learner that plots each data item as a point in n-dimensional

space (where n denotes the number of features you have),

with the value of each feature becoming the vector value.

Then it executes classification by locating the hyper-plane

that best distinguishes the two groups, leading to an

improvement identification property for any two parameters.

Conversely, boosting or ensemble techniques like Adaboost

are assigned higher weights to rectify the behavior of

misclassified variables in conjunction with other machine

algorithms. When combined alongside weak classifiers, our

preliminary model benefits from deploying such models

since they have a high degree of precision or classification.

[2], [3], [4], supports classifiers in their system models to find

the highest accuracy. Although using ensemble or strong

classifiers can cause problems like multicollinearity, which

in a regression model, occurs when two or more independent

variables are strongly associated with one another. In

multivariate regression, this indicates that one regression

analysis may be forecasted from another independent

variable. This scope of the study can be presented as a

detection journal analysis itself and can present several

experimentations and results based on machine learning

models [5], [6].

When an app has access to a resource in the most recent

versions of Android OS, it must ask the OS for approval, and

the OS will ask the user if they wish to grant or refuse the

request via a pop-up menu. Many reports have been

performed on the success of this resource management

approach. The studies showed consumers made decisions by

giving all requested access to the applications to their

privileges requests [7]. In contrast to this, over 70% of

Android mobile applications seek extra access that is not

needed. They also sought a permit that is not needed for the

app to run. A chess game that asks for photographs or

requests for SMS and phone call permits, or loads unwanted

packages are an example of an extra requested authorization.

So, trying to assess an app's vindictiveness and not

understanding the app is a tough challenge. As a result,

successful malicious app monitoring will provide extra

information to customers to assist them and defend them

from information disclosure [8]. Figure 1 elaborates the

android risk framework through the Google Play platform,

which is then manually configured by the android device

developers.

FIGURE 1. Android Security Framework

Contrary to other smartphone formats, such as iOS, Android

requires users to access apps from untrusted outlets like file-

sharing sites or third-party app stores. The malware virus

problem has become so severe that 97 % of all Smartphone

malware now targets Android phones. In a year,

approximately 3.25 million new malware Android

applications are discovered as the growth of smartphones

increases. This loosely amounts to a new malware android

version being introduced every few seconds [9]. The primary

aim of mobile malware is to gain entrance to user data saved

on the computer and user information used in confidential

financial activities, such as banking. Infected file extensions,

files received via Bluetooth, links to infected code in SMS,

and MMS application links are all ways that mobile malware

can propagate [10]. There are some strategies for locating

apps that need additional features. Hopefully, by using these

techniques, it would be possible to determine whether the

applications that were flagged as questionable and needed

additional authorization are malicious.

Static analysis methodologies are the most fundamental of

all approaches. Until operating programs, the permissions

and source codes are examined [11]. For many machine

learning tasks, such as enhancing predictive performance or

simplifying complicated learning problems, ensemble

learning is regarded as the most advanced method. It

enhances a single model's prediction performance by training

several models and combining their predictions. Boosting,

bagging, and random forest are examples of common

ensemble learning techniques [12]. In summary, the main

contributions of our study are as follows:

1) We present a novel subset of features for static

detection of Android malware, which consists of seven

additional selected feature sets that are using around

56000 features from these categories. On a collection

of more than 500k benign and malicious Android

applications and the highest malware sample set than

any state-of-the-art approach, we assess their stability.

The results obtain a detection increase in accuracy to

96.24 % with 0.3% false-positives.

2) With the additional features, we have trained six

classifier models or machine learning algorithms and

also implemented a Boosting ensemble learning

approach (AdaBoost) with a Decision Tree based on

the binary classification to enhance our prediction rate.

3) Our model is trained on the latest and large time aware

samples of malware collected within recent years

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3149053, IEEE Access

 Beenish Urooj, et al.: Malware Detection: A Framework for Reverse Engineered Android Applications through Machine Learning Algorithms

3

including the latest Android API level than state-of-

the-art approaches.

This research paper incorporates binary vector mapping for

classification by allocating 0 to malicious applications and 1

for non-harmful and for predictive analysis of each

application fed to the model implemented in the study. The

technique eases the process by reducing fault predictive

errors. Figure 2 shows the procedure for a better

understanding of the concept applied later in our study. The

paper passes both the categories of applications through

static analysis and then is further processed for feature

extraction. We presented features in 0’s and 1’s after

extraction. Matrix displays the extraction characteristics of

each application used in the dataset.

FIGURE 2. Static Binary matrix extraction

There are major issues to be addressed to incorporate our

strategy. High measurements of the features will make it

difficult to identify malware in many real-world Android

applications. Certain features overlap with innocuous apps

and malware [13]. In comparison, the vast number of features

will cause high throughput computing. Therefore, we can

learn from the features directly derived from Android apps,

the most popular and significant features. The paper

implements prediction models and various computer

ensemble teaching strategies to boost and enhance accuracy

to resolve this problem [14]. Feature selection is an essential

step in all machine-based learning approaches. The optimum

collection of features will not only help boost the outcomes

of tests but will also help to reduce the compass of most

machine-based learning algorithms [15].

Studies have extensively suggested three separate methods

for identifying android malware: static, interactive meaning

dynamically, and synthetic or hybrid. Static analysis

techniques look at the code without ever running it, so they're

a little sluggish if carried out manually and have to face a lot

of false positives [16]. Data obfuscation and complex code

loading are both significant pitfalls of the technique. That is

why automated operation helps to achieve reliability,

accuracy, and lesser time utilization [17]. Reverse engineer

Android applications and extract features and do static

analysis from them without having to execute them. This

method entails examining the contents of two files:

AndroidManifest.xml and classes.dex, and working on the

file with the .apk extension. Feature selection techniques and

classification algorithms are two crucial areas of feature-

based types of fraudulent applications. Feature filtering

methods are used to reduce the dimension size of a dataset.

Any of the functions (attributes) that aren't helpful in the

study are omitted from the data collection because of this.

The remaining features are chosen by weighing the

representational strength of all the dataset's features [18].

Parsing tools can help learn which permissions, packages or

services an application offers by analyzing the

AndroidManifest.xml file, such as permission

android.permission.call phone, which allows an application

to misuse calling abilities. The paper elaborates exactly what

sort of sensitive API the authors could name by decoding the

classes.dex file with the Jadx-gui disassembler [19]. In

certain cases, including two permissions in a single app can

signify the app's possible malicious attacks. For example, an

application with RECEIVE SMS and WRITE SMS

permissions can mask or interfere with receiving text

messages [20] or applying sensitive API such as

sendTextMessage() can also be harmful and lead to fraud and

stealing.

Until we started our main idea of the project. The fact

explained that Android applications pose a lot of threats to

its user because of the unnecessary programs compiled

inside them and explained why it is necessary to automate

the process of static analysis for the efficient detection of

malware applications based on the extracted features. The

rest of the paper is planned as follows. Related works are

examined in Section II. Section III will present the design

and method of our model. Section IV elaborates the

assessment findings and future threats. The experiments and

results will be dilated and performed in Sections V and VI.

Section VII includes our research issues, recommendations,

and conclusions for the future.

II. RELATED WORKS

Linux (Android core) keeps key aspects of the security

infrastructure of the operating system. The Android displays

to the administrator a list of features, sought to reinstall an

update. The program installs itself on the computer after they

issue access. Figure 3 shows the integrated core parts of

Android architecture. It comprises applications at the top

layer and also includes an application framework, libraries

or a Runtime layer, and a Linux kernel. These levels are

further divided into their components, which make an

Android Application. The Linux Kernel is the key part of

Android that provides its OS functionality to phones, and the

Dalvik Virtual Machine (DVM) is to manage a mobile

device. Application is the Android architecture's highest

layer. Native and third-party apps such as contacts, email,

audio, gallery, clock, sports, and so on are located only in

this layer. This framework gets the classes often used to

develop Android apps. It also handles the user interface and

device infrastructure and provides a common specification

for hardware entry. To facilitate the development of

Android, the Platform Libraries include many C/C++ core

libraries and Java-based libraries such as SSL, libc,

Graphics, SQLite, Webkit, Media, Surface Manager,

OpenGL, and others. The taxonomy helps understand the

viewer with a logical algorithmic approach for grasping the

core surfaces and functionality of the operating system.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3149053, IEEE Access

 Beenish Urooj, et al.: Malware Detection: A Framework for Reverse Engineered Android Applications through Machine Learning Algorithms

4

FIGURE 3. Taxonomy of Android Architecture

The methods proposed in this related work contribute to key

aspects and a higher predictive rate for malware detection.

Certain research has focused on increasing accuracy, while

others have focused on providing a larger dataset, some have

been implemented by employing various feature sets, and

many studies have combined all of these to improve

detection rate efficiency. In [21] the authors offer a system

for detecting Android malware apps to aid in the

organization of the Android Market. The proposed

framework aims to provide a machine learning-based

malware detection system for Android to detect malware

apps and improve phone users' safety and privacy. This

system monitors different permission-based characteristics

and events acquired from Android apps and examines these

features employing machine learning classifiers to determine

if the program is goodware or malicious. The paper uses two

datasets with collectively 700 malware samples and 160

features. Both datasets achieved approximately 91%

accuracy with Random Forest (RF) Algorithm. [22]

Examines 5,560 malware samples, detecting 94 % of the

malware with minimal false alarms, where the reasons

supplied for each detection disclose key features of the

identified malware. Another technique [23] exceeds both

static and dynamic methods that rely on system calls in terms

of resilience. Researchers demonstrated the consistency of

the model in attaining maximum classification performance

and better accuracy compared to two state-of-the-art peer

methods that represent both static and dynamic

methodologies over for nine years through three interrelated

assessments with satisfactory malware samples from

different sources. Model continuously achieved 97% F1-

measure accuracy for identifying applications or

categorizing malware. [24] The authors present a unique

Android malware detection approach dubbed Permission-

based Malware Detection Systems (PMDS) based on a study

of 2950 samples of benign and malicious Android

applications. In PMDS, requested permissions are viewed as

behavioral markers, and a machine learning model is built on

those indicators to detect new potentially dangerous behavior

in unknown apps depending on the mix of rights they require.

PMDS identifies more than 92–94% of all heretofore

unknown malware, with a false positive rate of 1.52–3.93%.

The authors of this article [25] solely use the machine

learning ensemble learning method Random Forest

supervised classifier on Android feature malware samples

with 42 features respectively. Their objective was to assess

Random Forest's accuracy in identifying Android application

activity as harmful or benign. Dataset 1 is built on 1330

malicious apk samples and 407 benign ones seen by the

author. This is based on the collection of feature vectors for

each application. Based on an ensemble learning approach,

Congyi proposes a concept in [26] for recognizing and

distinguishing Android malware. To begin, a static analysis

of the Android Manifest file in the APK is done to extract

system characteristics such as permission calls, component

calls, and intents. Then, to detect malicious apps, they deploy

the XGBoost technique, which is an implementation of

ensemble learning. Analyzing more than 6,000 Android apps

on the Kaggle platform provided the initial data for this

experiment. They tested both benign and malicious apps

based on 3 feature sets for a testing set of 2,000 samples and

used the remaining data to create a training set of 6,315

samples. Additional approaches include [27], an SVM-based

malware detection technique for the Android platform that

incorporates both dangerous permission combinations and

susceptible API calls as elements in the SVM algorithm. The

dataset includes 400 Android applications, which included

200 benign apps from the official Android market and 200

malicious apps from the Drebin dataset. [28] Determines

whether the program is dangerous and, if so, categorizes it as

part of a malware family. They obtain up to 99.82 %

accuracy with zero false positives for malware detection at a

fraction of the computation power of state-of-the-art

methods but incorporate a minimal feature set. The results of

[29] demonstrate that deep learning is adequate for

classifying Android malware and that it is much more

successful when additional training data is available. A

permission-based strategy for identifying malware in

Android applications is described in [30], which uses filter

feature selection algorithms to pick features and implements

machine learning algorithms such as Random Forest, SVM,

and J48 to classify applications as malware or benign. This

research [31] provides a feature selection using the Genetic

algorithm (GA) approach for identifying Android malware.

For identifying and analyzing Android malware, three

alternative classifier techniques with distinct feature subsets

were built and compared using GA.

One of the important matters that has not been considered by

any of the studies is the sustainability of the model after the

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3149053, IEEE Access

 Beenish Urooj, et al.: Malware Detection: A Framework for Reverse Engineered Android Applications through Machine Learning Algorithms

5

advancement of applications. This issue is still a challenge

for our research as well. The model’s ability to classify will

gradually decrease over time when new features or evolved

applications are created. Only [28] and [25] specify this issue

and introduce it as a drift concept, describing the low

performance of their systems after some time. Our research

doesn’t implement this problem as well but we suggested

some potential studies to initiate solutions for models

sustainability in the research issues and challenges section.

Another matter that could arise in the field of implementing

machine learning algorithms is the “Multicollinearity

Problem” which we have discussed in the introduction

section. This subject arises due to the algorithms being

dependent on multiple variables embedded in these machine

learning or deep learning models. Although it is one of the

rising issues in the area and could be present in our study it

would constitute better as separate research. Our model is

already incorporating a wide range of evaluations and

analysis of Android applications features sets but this would

be a great opportunity to further enhance the models for

future use. There are relevant studies that support alleviating

this challenge by detecting the model’s dependencies in

terms of comparing multiple models together and then

calculating the greater impact of the highest given model.

Authors in [32], [33], [34] consider different tales

concerning different machine learning models to highlight

and find out the measures for different model scenarios.

Tables 1 and 2 elaborates on the novelty of our approach and

compare state-of-the-art methodologies in several

categories. Table 1 focuses on the key novel categories in

terms of malware samples, feature sets, the method

proposed, accuracy, false-positive rate, the level of API

(increased complex application behavior) and system

environment for data processing. It also explains that our

sample set and feature set is larger and achieve satisfactory

accuracy with 0.3% FPR, depicting the lowest false positives

other than DroidSieve. Our contribution lands on the

upgraded API levels with large sample sizes including

enhanced feature sets to detect malware. Table 2 elaborates

a more in-depth approach and shows the key features present

in the proposed and other approaches with also the time

awareness of the data being collected.

TABLE I

Relative techniques analysis on basis of multiple factors in comparison to proposed approach (PER: Permissions, STR: String, API: Application

Programming Interface, INT: Intents, PKG: Package, APP-C: App Components, SR: Services, RS: Receivers)

Year Method Models
Trained

Feature Set API

Level

Malware FP% Acc% Environment

2013 PDMS 3 PER 19 700 - 91.75% -

2014 Drebin 1 PER,STR,API,INT 20 , 21 5,560 1.0% - Core 2 Duo, 4G RAM

2015 RevealDroid 3 PER,API, INT,PKG 22, 23 9,054 18.7% 95.2 8-Core, 64G RAM

2016 DroidDetector Deep

Learning

PER, API 24, 25 1760 - 96.76% -

2017 DroidSieve 3 API, PER, INT 26, 27 16,141 0.0% 99% 40-Core Xeon, 378G RAM

2018 DroidCat 1 API 22, 23 16,978 - 97% -

2018 Permission based

malware detection in
android devices

4 PER 28 673 6% 93% 8 G in memory, i5-4300U

CPU, LINUX CENTOS 7 OS

2019 Permission-based
Android Malware

Detection System

(FS with GA)

2 PER 29 1119 - 98.45% -

2020 Method for
Detecting Android

Malware Based on

Ensemble Learning

2 PER, INT, APP-C 28, 29 4,011 - 95% Intel ® core (TM) i7-8750h
CPU @

2.20GHz 2.21ghz, 16.0GB

memory and Windows 10 OS.

2021 Proposed Approach 6 PER, API, PKG,

INT, SR, RS, App-C

29, 30 18,578 0.3% 96.24% Intel ®, Core i5, 2.5 GHz,

Windows 8, 4GB Ram

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3149053, IEEE Access

 Beenish Urooj, et al.: Malware Detection: A Framework for Reverse Engineered Android Applications through Machine Learning Algorithms

6

TABLE II

Relative techniques analysis on basis of features and sample collected in comparison to proposed approach

Year Sample

Collected

Method

Function Static Features Extracted

Clas Det Permissions Intent M-

Tags

Packages API Calls Receivers Services APP-C

2013 2012 PDMS          

2014 - Drebin          

2015 2013-2014 RevealDroid          

2016 2016 DroidDetector          

2017 Past nine

years

DroidSieve          

2018 2017 Permission based

malware detection

in android devices

         

2019 2018 Permission-based

Android Malware

Detection (FS with

GA)

         

2020 2018 Detecting Android

Malware Based on

Ensemble

Learning

         

2021 2017-2021 Proposed

Approach

         

A. Reverse Engineered Applications characteristics

As for Android apps, various apps have various

functionalities. If the app is to use the device tools, you must

specify the corresponding allowances in the Android Manifest

format. Different program forms, therefore, have different

declarations of prior approval [35] [36]. System static analysis

also identifies an application as malicious or benevolent. In

classification, they make rational choices using features. The

article shows the taxonomy diagram for the features present in

Android applications [37]. It comprises all the components

present in the APK files and how they are when they are

reverse engineered by using a disassembler, in our case Jadx-

gui. Fig.4 represents the process of apk file disassembly.

FIGURE 4. Reverse Engineering APK files architecture

1) ANDROIDMANIFEST.XML

In the root folder of any reverse-engineered application,

there must be an android Manifest.xml file. The Manifest

file gives essential information to the Mobile application,

which is required by the framework before executing any

code for the app. The authorization process should protect

the application's key elements, which include the Operation,

Service, Content Provider, and Broadcast Receivers. These

results mainly accomplished by affiliating these components

with the relevant element in its manifest definition and

making Android dynamically implement the features in the

closely associated contexts [27].

FIGURE 5. Taxonomy of Android Manifest

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3149053, IEEE Access

 Beenish Urooj, et al.: Malware Detection: A Framework for Reverse Engineered Android Applications through Machine Learning Algorithms

7

Fig. 5 shows the taxonomy of the Android manifest

components, which contain all the requested permissions,

packages, intents and features for extraction.

B. FEATURE SET EXTRACTION

Using feature filtering decreases the dimensions of data

collection by deleting functions that are not useful for study.

We chose the characteristics based on their capability to

display all data sets. Enhanced efficiency by reducing the

dataset size and the hours wasted on the classification

process introduces an effective function selection process.

Our process does not support a revamped Android emulator,

because it's not a convenient approach and we preferred our

system for physical devices in the future. Jadx carries out the

modification and evaluation of source code. The system

concentrated on trying to hook the byte-level API calls [38].

For our dataset, features from over 1, 00,000 applications are

extracted containing around 56000 extracted features.

Functions and processes of opcode API features are removed

from the disassembled Smali and Manifest files of an APK

file. The Smali file, segmented by the process and the opcode

frequency of Dalvik for every method, is determined by

scanning Dalvik Bytecodes. To verify invocation of a

hazardous API in that form, it is also possible to determine

the hazardous frequency of an API invocation for each

method during the byte code search. For string functions,

strings are selected without the method of isolation from the

entire Smali archives [39].

We will never have a predictable response when the number

of features inside a dataset exceeds the number of

occurrences. In other terms, when we don't have enough data

to train our machine on, generating a structure that could

capture the association between both the predictive variables

and responses variable appears problematic.

The system used in this study also incorporates larger feature

sets for classification. Although this problem arises in

machine learning quite often to some extent choosing the

type of model for detection or classification can highly

impact the high dimensionality of the data being used.

Support vector machine and AdaBoost can handle relatively

well than other algorithms because of their high dimensional

space/hyperplane sectioning. Another suspension for our

datasets was the tool used for extracting the given datasets.

Androguard implements parsing and analyzing automation

to further break down components of application apk’s after

decompiling and encourages weighting of the data into

binary, making it easy to use relevant data for classification.

It uses certain functionality to get useful features from

manifest files of these Android applications reducing the

acquiring irrelevant features. Although the data in this study

works significantly well for evaluation, however, the

datasets will be needed to upgrade in terms of forthcoming

evolving measures.

Certain other authors have presented many tools and

proposals to deal with high dimensional data such as [40],

[41], inducing multiple methods such as filtering wrapping

to enhance robustness.

The feature set of our model includes:

 𝐹1→ Permissions

 𝐹2→ API Calls

 𝐹3→ Intents

 𝐹4→ App Components

 𝐹5→ Packages

 𝐹6→ Services

 𝐹7→ Receivers

2) PERMISSIONS

Permission is a security feature that limits access to certain

information on smartphone, with the role of preserving

sensitive data and functions that might be exploited to harm

the user's experience. A unique label is assigned for every

permit, which typically denotes a limited operation. The

permissions are further categorized into four parts by

Google: normal, dangerous, signature, and

SignatureOrSystem. For evaluating Android permissions,

researchers take a variety of methods [42]. Standard (also

called secure) levels of security permissions, such as

VIBRATE and SET WALLPAPER, are permissions without

risk. Android kit installer will not allow the user to approve

these permissions. The dangerous security standard will pose

warnings to the user before implementation and will require

the user's consent. The signature and symbol Security stages

of SignatureOrSystem cover the most risky permits. Only

applications with the same certificate, as the certificate used

to sign the request declaring approval, are allowed to sign

signature permissions [43]. It also acts as a buffer in the

middle of hardware and the rest of the stack. A variety of

different C/C++ core libraries, such as libc and SSL, are

being used in libraries. Dalvik virtual machines and key

libraries are part of the Android Run Time. App Model

defines classes for developing Android applications, as well

as a standardized structure for hardware control and the

management of user experience and app property. API

libraries are used for both proprietary and third-party users

[44]. Table 3 shows some dangerous permissions that pose

problems to the reverse engineered applications.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3149053, IEEE Access

 Beenish Urooj, et al.: Malware Detection: A Framework for Reverse Engineered Android Applications through Machine Learning Algorithms

8

 TABLE III

 Dangerous Permissions (Malware Probability)
DANGEROUS PERMISSIONS

SMS

SEND_SMS
STORAGE

READ_EXTERNALSTORAGE

RECEIVE_SMS WRITE_EXTERNALSTORAGE

READ_SMS SENSORS BODY_SENSORS

RECEIVE_WAPPUSH
CALENDAR

READ_CALENDAR

MICROPHONE RECORD_AUDIO WRITE_CALENDAR

CONTACTS

READ_CONTACTS
LOCATION

ACCESS_FINELOCATION

WRITE_CONTACTS ACCESS_COARSELOCATION

GET_ACCOUNTS

PHONE

READ_PHONESTATE

RECEIVE_MMS READ_PHONENUMBERS

CALLLOG

READ_CALLLOG CALL_PHONE

WRITE_CALLLOG USES_IP

PROCESS_OUTGOINGCALLS READ_PHONESTATE

3) INTENTS

The message delivered among modules such as activities,

content providers, broadcast receivers, and services is known

as Android Intent. It's commonly used alongside the

startActivity() function to start activities, broadcast

receivers, and other things. Individual intent counts are

exploited as a continuous feature in categorization. To

provide more specificity, we divide the list of intents into

further sections, such as intentions including the phrases

(android.net), which are linked to the network manager,

intents including (com.android.vending), for billing

transactions, and intents addressing framework components

(com.android) and proving to be harmful elements in these

apps.

4) API CALLS

Safe APIs are tools that are only available by the operating

system. GPS, camera, SMS, Bluetooth, and network or data

are some examples. To make use of such resources, the

application must identify them in its manifest [45]. The Cost-

sensitive APIs are those that can increase cost through their

usages, such as SMS, data or network, and NFC. Each

version includes these APIs in the OS-controlled set of

protected APIs that require the device's user's sole

permission. API calls that grant sensitive information or

device resources are commonly detected in malicious codes.

These calls are isolated and compiled in a different feature

set so they might contribute to harmful activity. Table 4

elaborates dangerous API features:

TABLE IV

Sensitive APIs

getDeviceId() execHttpRequest()

getSubscriberId() sendTextMessage()

setWifiEnabled() Runtime.exec()

5) API COMPONENTS

The program that requires access or activity e.g. a path from

point A to point B on a route predicated on a user's

location from another application makes a call to its API,

stating the data/functionality demands. The other software

includes the data/functionality that the first program

requested. For privacy reasons, some API features must be

declared and not used in these apps. These components relate

to broadcast features present in these applications.

6) PACKAGES, SERVICES AND RECEIVERS

The package manifest has always been found in the

package's root and provides information about the package,

such as its registered name and sequence number. It also

specifies crucial data to convey to the user, such as a

consumer name for the program that displays in the User

Interface (UI). The file format is in .json for packages.

According to a publication process model, Android apps can

transmit and receive messages from the Android system and

other Android apps. When a noteworthy event occurs, these

broadcasts are sent out. The Android system, for example,

sends broadcasts when different system events occur, such

as the system booting up or the smartphone charging.

Individuals can sign up to receive certain broadcasts [46].

When a broadcast is sent, the system automatically directs it

to applications that have signed up to receive that sort of

broadcast. Services, unlike activities, do not have a graphical

user interface. They're used to build long-running

background processes or a complex communications API

that other programs may access. In the manifest file, all

services are represented by <service> elements and

they allow the developer to invalidate the structure of the

application.

C. Classification

The collection of chosen features in the signature database,

separated into training and test data, and is used to recognize

android malware apps by traditional machine learning

techniques [47]. There are three different computer

frameworks: supervised learning, unsupervised learning, and

reinforcement learning. The supervised learning method is

the focus of this paper, comprises algorithms that learn a

model from externally provided instances of known data and

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3149053, IEEE Access

 Beenish Urooj, et al.: Malware Detection: A Framework for Reverse Engineered Android Applications through Machine Learning Algorithms

9

known results to produce a theoretical model so that the

learned model predicts feedback about previous occurrences

over new data [48]. The deployment of ensemble techniques

and strong learning classifiers helps classification of our

binary feature sets, resulting in correctly categorized

malware and benign samples. We believe that these

classification mechanics produces efficient outputs because

of their sorting nature. Fig. 6 explains the learning model

process.

FIGURE 6. Machine learning Process

A comparative algorithm selection for our model based on

AdaBoost, Naive Bayes, Decision Tree classifier, K-

Neighbor, Gaussian NB, Random forest classifier, and

Support Vector Machine performing a relative review which

will give an accurate analysis of the algorithm for the

prediction of our model.

1) ALGORITHM CHARACTERISTICS APPRAISAL

The assessment of suggested algorithms was carried out

using Python. The use of FPR and Accuracy assess our

comparative algorithms trials [49]. These estimates, derived

from the following basic factors, are listed further down:

 Accuracy: Accuracy is one criterion being used to

evaluate classification techniques. TP refers to the number of

malicious apps which were misclassified as malicious, and

FN identifies the number of safe applications which were

misidentified as malicious. The number TN measures the

truly benign applications and FN denotes the number of

irregular apps that were wrongly labelled as normal [50].

 False Positive Rate: Determines the measuring factor of

a model’s ability to identify correct apps or the model’s

ability to generate FP.

 (𝐴𝑐𝑐)𝑚,𝑏 =
 (𝑇𝑃)𝑚,𝑏 + (𝑇𝑁)𝑚,𝑏

𝐴𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 [1]

 (𝐹𝑃𝑅)𝑚,𝑏 =
 (𝐹𝑃)𝑚,𝑏

(𝑇𝑃)𝑚,𝑏+(𝐹𝑃)𝑚,𝑏
 [2]

Equations (1) and (2) demonstrate the accuracy of the false

detection rate measuring formula applied to calculate the

Detection Rate (DR) and precision. Accuracy of the

classification dataset, which contains both benevolent and

malicious applications, our models define a hyperplane that

divides both categories with the largest probability. One

class is synonymous with ransomware and the other with

friendly applications [51]. The authors then assumed the

research data to be unknown applications, which are

classified by projecting them to subspace to determine if they

are on the malicious or friendly side of the hyperplane [52].

Then, using our model will correlate all the regression

findings to their original reports to assess the proposed

model's malware identification accuracy [53]. Static features

make for a pleasing accuracy and precision of more than

90%. What's more noteworthy is that defining the usage of

API calls in a single part of the Android platform allows for

the creation of the most representative function space or the

resources where malicious and benign can be distinguished

more easily [54], [55]. If the amount of the classification

target is greater than the probability estimates, the

classification target of the testing data is then calculated as

that label [56]. The objects are Blue or Red; the dividing lines

identify the border, so an object on the right side is called

blue, meaning benign, a general scenario and likewise. This

is an example of linear classification, but not all

classifications are this basic, and functional groups are

needed to differentiate between groups [57], [58].

III. PROPOSED METHODOLOGY

The major goal of our research is to determine which criteria

are most helpful in detecting malware in cell phones,

particularly those running Android. We have taken up the

task to train up to six machine learning algorithms such as

AdaBoost, Support Vector Machine, Decision Tree, KNN,

Navies Bayes and Random Forest techniques and classify

these machine learning algorithms accurately. The

methodology section is elaborated in two sections; Pre-

Processing (explaining the pre-requisite processing),

Proposed Model (Model functionalities and components).

D. Pre-Processing

APK files from numerous apps were included in the resulting

datasets (containing malware and benign characteristics). A

Jadx-Gui decompiler is then used to reverse engineer the apk

files to extract features from the Android manifest file's

feature set for further processing. These stages are regarded

as pre-processes from before real assessments and are

essential parts before any kind of testing and training using

any predictive models.

Androguard, an open-source tool that extracts prioritised

features from files and converts them into binary values, is

used to extract features. For labelling the false or accurate

android application, we employ binary search techniques, i.e.

1 or 0 for benign and 1 or 0 for malware. Figure 7 shows our

technique's pre-processing framework and flow structures,

which must be accomplished before the classifiers are tested.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3149053, IEEE Access

 Beenish Urooj, et al.: Malware Detection: A Framework for Reverse Engineered Android Applications through Machine Learning Algorithms

10

FIGURE 7. Flow analysis of our research

The operations embedded in the rectangle are to be

determined beforehand, ensuring efficient data collection.

The main role in this is by the decompiler and extractor

which improves and eases the model’s data classification

efficiency for detection of malware applications. Although

our study discusses the challenge of multi-collinearity and

the use of high dimensional data being implemented, we

have discussed the better output for high-dimensional data in

our feature extracted section but the issue of collinearity still

stands and can be done as a novel contribution as future

work.

Succeeding the extraction process and the use of efficient

datasets accommodating useful features, the testing and

training are administered. For our model, a comparative

approach will be adopted based on Naive Bayes, Decision

Tree classifier, K-Neighbour, Gaussian NB, Random Forest

classifier, Support Vector Machine and AdaBoost. The

comparison evaluation will provide an accurate assessment

of the algorithm used to forecast our model. The installation

package is a ZIP-compressed bundle of files that includes the

manifest file (AndroidManifest.xml) and classes.dex. The

manifest file describes an Android application, namely the

activities, services, broadcast receivers, and content

providers that make up the system. The methodology and the

classification are explained before in the related work

section. The next section describes the model functionality.

FIGURE 8. Proposed Methodology of our system

E. Proposed Model

The model gathers information from many Android

applications (Google Play). These reverse-engineered

(decompiled through Jadx-Gui) apps are then subjected to

static analysis to extract features. Our suggested approach in

figure 8, for the training phase, uses the retrieved

characteristics to create vector mapping parsed through

Androguard. The contribution is indicated by the proposed

feature section that encompasses nearly 56,000 extracted

features from the feature set seen in figure 8. Those collected

features are then composed in a form of a dataset .csv file,

stating the benign and malware properties in 1 or 0. After we

generate the datasets, the features are ready for classification

by predictive models. We adopted Python to create a

machine algorithm classification performance program after

collecting the dataset, and then we'll employ the best

accurate algorithms to train our models for malware and

benign detection. The system's approach and its operation

are detailed in figure 8, which depicts the whole

methodology of our model and algorithm learning phase

with the training model processing for detection.

FIGURE 9. Training Model Processing

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3149053, IEEE Access

 Beenish Urooj, et al.: Malware Detection: A Framework for Reverse Engineered Android Applications through Machine Learning Algorithms

11

Figure 9 shows us the training cycle of the program and how

the model first is constructed and then evaluated. Then

further on the data is cycled towards testing and that is the

data fed to the trained model for further prediction analysis

of the android applications.

The future threats and predictions pointed out in the next

section state insecure android applications which contain

unnecessary permissions, and opt for an easy way for an

attacker to steal private data or launch major attacks, and

later on, present the methodology of our research.

IV. FUTURE THREATS AND PREDICTION

By 2020, mobile applications will be installed onto consumer

devices over 205 billion times. Statistics by Marketing Land

suggest that 57 percent of the overall digital content time is

spent on mobile devices. Our daily activities always depend

on social networking, bank transfers, business operations,

and mobile managed services applications. Accommodating

over two billion individuals, almost 40% of the world's total

population, Juniper Sources point to the number of those

using mobile banking services.

Developers devote close attention to the development of

software to provide us a comfortable and seamless

experience and when someone enthusiastically installs these

mobile applications requiring personal information, the user

stops thinking about the security consequences. This is the

reason people don’t even look closely at the permissions or

the feature updates being asked by the applications [59].

They simply download the application they want and, when

asked for installation, they overlook everything else and start

using the app. Most of these applications never even ask the

consent of the consumer and the hackers are using their

information without their knowledge. The future threat rises,

at the end of 2020 and beginning of 2021:

 70% of Google Play Store applications require

access to one more "dangerous permission and

packages, up from 66.6% in Q12020, which is a 5

percent raise”. 69.4% of applications for children

(13 years of age) claim at least one risky permit up

from 68.8% in 2020 (a 1 percent rise).

 Over 2.3 million applications altogether, over 2.1

million applications for children need at least one

harmful authorization.

FIGURE 10. Graph of application threat increase by 5%

Figure 10 shows the percent hit in 2020, proceeding to 2021

on both the application for permission criteria. As per these

statistics, the predicted rate in the coming years (till 2025)

proposes that there could be a grave danger because of these

unnecessary access as per each level of the Android API.

Graph 1 shows the representation of both the factors,

application for everyone and the other for application kids

for the year 2019-2020. The graph shows the increase in 5%

of the applications with dangerous malware. This takes a

great deal of application security and also depicts the

futuristic way that if nothing is done on time, these

applications will increase up to a higher number in the future.

According to multiple tech reviews, each one published in

2021, states that according to research of 2,500 top-of-the-

line and rising applications, over two portions of the most

popular Android applications on Google Play request

excessive user permissions and access. These allow apps,

among other unwanted behaviors, to launch harmful scripts

and access messages unnecessarily with unwanted features

inbuilt [60]. They stated that with the increase in usage of

application components and features and also the release of

new Android frameworks and APIs each year. It is most

likely that threats are surely to increase by 15% from 5%.

The average Android user has roughly 80 applications

loaded, thus at least one app on the phone demands

additional authorization on the phone. It is likely that

excessive authorizations may jeopardize user data and

privacy or even allow device hacks.

FIGURE 11. Increase in Android Malware Statistics

Figure 11 elaborates the dangerous malware increase till

2020 with every newer version of API Level. Figure 12

shows the most rising apps from 2016 to 2021 and the

percentage of dangerous permissions, packages these

applications gain [61]. These applications are used daily and

if they are involved in unnecessary and third-party access,

then there is a special need to apply countermeasures on

these applications, as this is going to be a major threat in the

future. Also, the Figure depicts the need to measure these

threats and devise countermeasures or at least present models

to provide more encoded procedures to carry out for these

well-known applications. These apps provide a lot of

opportunities, but with an increase in private and intellectual

66.60%
68.80%

67.20%
68.80%

70% 69.40%

50.00%

55.00%

60.00%

65.00%

70.00%

75.00%

Applications Applications for kids

IN
C

R
E

A
S

E
 P

E
R

C
E

N
T

A
G

E

2018 2019 2020

0 50 100 150 200 250

Messenger

Skype

Instagram

Snapchat

Telegram

WhatsApp

Uber

Features base on dangerous on API levels

D
an

g
er

o
u

s
p

er
m

is
si

o
n

s
p

er
 y

ea
r

2020 2019 2018 2017 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3149053, IEEE Access

 Beenish Urooj, et al.: Malware Detection: A Framework for Reverse Engineered Android Applications through Machine Learning Algorithms

12

property stored in these apps, certain anecdotes need to be

proposed.

FIGURE 12. Third-party well-known dangerous apps increase from 2016
to 2020

V. Experimental Results

In this section, the results of our experimentation are stated.

To start our experimentation discussion, we will elaborate on

the basic criteria for performing our implementation

successfully and will also briefly discuss the data collection

or the dataset that we got and then further converse about the

actual contribution part.

A. Experiment Setup

Our environment is based on Windows 8.1 Pro with Intel®,

Core (MT) i5-2450 CPU @ 2.50 GHz as a processor. The

installed memory (RAM) of the system is 4.00 GB with a 64-

bit Operating System (OS), x-64 based processor.

For the generated dataset Androguard 3.3.5 (latest release) is

used for decompiling and feature extraction, deployed in

regulated .csv files in binary vectors. We have installed

Python 3.8.12 (version 3.8) on our system for the

implementation and execution of training and testing scripts

of imported machine learning models.

B. Dataset

Three different datasets are used for our implementation,

mainly apps belonging to Google Play. The static features of

our first two datasets containing API calls, permissions,

intents, packages, receivers and services were collected from

MalDroid [62] and DefenseDroid [63] which includes

around 14,000 malware samples. The model also uses a third

dataset of 5000 malware samples using our own generated

applications dataset. Applications in the datasets were

reverse-engineered by the Jadx-GUI tool and the features are

extracted using Androguard into binary data. All the datasets

from different platforms are combined to incorporate our

multiple features sets more than state-of-the-art approaches

(explained in table 5) in a single training to achieve higher

accuracy and classification of malware. The datasets are first

trained on every algorithm for comparative classification

analysis. After the accuracy of the algorithms are evaluated,

the datasets is again trained and tested on the higher-

performing algorithms to use as a feed, based on the features,

inserted into the database and our model will then forecast

the output for a given android application extracted features.

TABLE V

Sample Datasets
Datasets Period Source Benign

Applications

Malware

Applications

MalDroid 2017-

2020

UNB 1795 10,516

DefenseDroid 2021 Kaggle 1500 3062

GD 2021 GD 2421 5000

The next subsection elaborates the discussion and

presentation of the programs for our machine learning

algorithms.

C. MACHINE LEARNING ALGORITHM AND ENSEMBLE

LEARNING

Six models have been selected to experiment with two strong

classifiers (AdaBoost, SVM and Random Forest). The model

executes upon KNN, NB, RBF, Decision Tree, SVM and we

have also performed AdaBoost with Decision Tree by

calculating the weighted error of the Decision tree based on

its data points. As the input parameters are not jointly

optimized, Adaboost is less prone to overfitting. Adaboost

can help you to increase data performance of existing weak

classifiers. After the higher weight of all the wrongly

misclassified data points is rightly classified, the model can

enhance model accuracy. Fig 13 shows the functioning of

the boosting technique.

FIGURE 13. Boosting mechanism

Since there is a distinct boundary between two categories,

ensemble methods and SVM perform rather well enough

when dealing with clear aligned datasets following adequate

extraction processes. Another significant benefit of the SVM

Algorithm is that it can handle high-dimensional data, which

comes in handy when it comes to its use and application in

the Machine Learning sector. As seen in the diagram above,

AdaBoost's greater weighted property aids our weak learner

(Decision Trees) with achieving higher accuracy and wider

consumption for misclassified binary feature inputs.

0.09
1.52

13.2

0.6

19.67

0.750.55

26.84

0.690.22

10.7

0.47

0

5

10

15

20

25

30

New Android Malware (Monthly
Stats)

Total Number of Malware

M
A

X
IM

U
M

 N
O

 O
F

M
A

LW
A

R
E

Increase in Android Malware

2013 2016 2017 2017 2018 2018 2019 2020

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3149053, IEEE Access

 Beenish Urooj, et al.: Malware Detection: A Framework for Reverse Engineered Android Applications through Machine Learning Algorithms

13

D. PROGRAM PARAMETERS

Our project is based on Python 3.9.7 and divided our

execution into two programs. The first program, written to

compare the algorithms for the accuracy check of respective

models, based on AdaBoost, Decision Tree, KNN, SVM,

Naive Bayes, and Random Forest for the comparative

analysis. The program uses different import and split

functions to train the models and then stores the result in a

variable embedded for the testing model. The function

sklearn.model_selection, used for accessing the bundles of

algorithms, accuracy_score for accuracy readings, pandas to

read the database, and NumPy to convert the testing model

data into rr format.

 The parameter on the x-axis is the features of the

algorithms and on the y-axis is its label, meaning the

accuracy percentage for these algorithms. The x and y

parameters of the program are configured to shuffle=True

using the test_train_split function, so each algorithm takes a

random permission value from the dataset. Figures 14 and 15

show the import modules and parameters values set in our

program.

FIGURE 14. Representation of the modules of our program.

FIGURE 15. Program Parameters and split functions.
First, all the algorithms are imported into the program to

implement the training data for the model, meaning the

machine is training based on the given datasets. The program

will work as each algorithm will take up random binary value

of an app from the dataset and execute its feature’s accuracy

score in another variable. After training the data, the program

passes the testing data to store into a predictive function. The

program is designed to identify the normal and harmful

permissions features through the dataset binary values (0.1)

and specifies those results in function pred (). As you can see

in the code below, the program uses a fit () function, which

takes the training data as arguments that are fitted using the

x and y parameters into testing data for our two models

(AdaBoost and SVM). All the variables were specified at the

end that was given to each of our algorithms in the program

to the variable acc. After executing the program, every

algorithm will start accessing the dataset and start predicting

the dataset value for the android permissions. Figures 16 and

17 represent the main key functions for our models

AdaBoost and SVM, which are discussed above.

FIGURE 16. Fit and pred function for SVM

FIGURE 17. Predictive measures for AdaBoost

Figure 17 also explains the predictive procedure of the

ensemble model with 1000 malware sample runs and given

features to train for a single predictive classification output.

The same fit() function is used for dataset training. The

model is placed for higher weights of decision trees

algorithm within row values and executed in yhat. Accuracy

is then accomplished by declaring the mean and standard

deviation (mean (n_acc_scores), std (n)acc_score))) for the

binary classification output of malware. Further ahead,

figure 18 shows the plotted assigned value for accuracy after

the data is trained on the models.

FIGURE 18. Results stored to acc variable and plotted by plt.bar function

Figure 19 shows the accuracy percentage for our models

which is 96.24% and the graph displays the highest correct

predictive frequency out of all the algorithms, professing the

research work for greater validity. This graph is plotted by

training the algorithms on the datasets to verify which

algorithm can classify the application’s features accurately.

Program 1 is scripted to import all of the algorithms and

execute them one by one on these datasets to train the

algorithms, producing the most precise values after testing.

In the case of AdaBoost, we trained Decision Tree first on

the dataset and then used those classified values to train on

the higher weights using AdaBoost. AdaBoost takes those

classified samples and features used by decision trees and

generates higher weights for correct results after training on

those features again. (x,y) are the stored values by decision

trees which are given as input values for AdaBoost to

enhance accuracy, hence the model with the highest accuracy

in fig 19. This program performs in a way that when all the

models are done training, the script generates a graph using

the plt.bar command to display the algo that classifies most

applications correctly. Figure 19 and Table 6 show the

accuracy and the label value that depicts the training data

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3149053, IEEE Access

 Beenish Urooj, et al.: Malware Detection: A Framework for Reverse Engineered Android Applications through Machine Learning Algorithms

14

each algorithm randomly took and trained its model for.

FIGURE 19. Models accuracy percentage w.r.t label

TABLE VI

Shows the label values for each algorithm and their accuracy

percentage

ML

Algorithm

Testing Label Values Algorithm

Percentage

AdaBoost [0101111011000000000100111100001001
1011001111001101101011111111111111

1110110110101110101000011110001111]

96.24%

Decision

Tree

[1111111011011110000100111100001001

1011001111001101101011110000000111
1110110100111110101000011110001111]

90.12%

SVM [1111110110011100001001111000010011

0110011111011011010111100000011111

110110100111110101000011110001111]

92%

KNN [1111110110111100011001111000010010
0110001111011011010111100001001111

11011010011011010000001101000111]

89.45%

Navies Bayes [1110111001010110000110101000001001

0011101111100100101001100001000111
0110110100110110100000011000001011]

88.65%

Random

Forest

[1111111011011110000100111100001001
0011001111101101101011110000001111

110110100110110101000011110001111]

89%

VI. Model Precision Evaluation

After training the datasets on algorithms and achieving

accuracy percentage, individually developed another

program that uses the properties of the previous code to help

execute and predict the application state according to the

input from the dataset. For this program, the algorithm with

greater prediction capabilities is imported, i.e. AdaBoost and

SVM using the function sklearn imports linear_svc and

sklearn.ensemble import AdaBoost. The database stores

input permissions into the rr python module as a feeding

factor for the trained models and designated [1] for the

benign applications and [0] for the malware application,

meaning the app which uses unnecessary features. This will

work in a way that, when the program executes, the

algorithms will take the input from the database and then

categorize the features based on what we trained the

algorithm upon. So, if there are malware applications fed as

an input to the database, the trained model will predict the

outcome and label the state of the application.

Following the import of the trained models, the

random_state = 0 and the testing data = 0.25 for the

algorithms. The import of sklearn.preprocessing_normalize

function, which takes samples separately according to the

Normalize unit. Every set of data with one component or

perhaps more (each data matrix row), rescaled separately

from other samples to the standard. The program also

imports the function sklearn.features_extraction.text which

transforms a text data array into a token count matrix and at

the very end declares the accuracy score of these algorithms

by using sklearn.metrics function, implementing loss, score,

and utility functions to quantify performance in the

categorization of the feature sets. Parameters for this

program are the same as the previous program, but to fix

features on every algorithm, the x type is dedicated to the

trained models for features and y type for the prediction of

the applications. So when the program executes it will work

in the same manner and this time gives us the precision value

instead of the plotted accuracy percentage of the algorithms

and at last, the program will print out the pred () function

value which was declared to the model’s testing data. Figures

20 and 21 and 22 indicate the consideration of AdaBoost and

SVM prediction for features extracted for single feature

input.

FIGURE 20. Import modules for program 2

FIGURE 21. Prediction function for SVM for testing data for the database

FiGURE 22. Prediction function for AdaBoost for testing data for the
database

Further ahead, the prediction results of the program are

discussed. As the code executes, the models will take the

features from the dataset that was provided for a single

application. The result displayed in Figure 23 shows that it’s

a benign application. When permission features, again fed as

input the Figure 23 shows that it is a malware application

based on the features the highly trained models draw out. In

the same manner, the database is fed with feature binary

values and the model will predict the result in 1 or 0. Figures

16 and 17 elaborate on the predictive function which will

0.9624

0.9012

0.8945

0.92

0.8865

0.89

0.82 0.85 0.88 0.91 0.94 0.97 1

Accuracy

RBF NB SVM KNN Decision Tree AdaBoost

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3149053, IEEE Access

 Beenish Urooj, et al.: Malware Detection: A Framework for Reverse Engineered Android Applications through Machine Learning Algorithms

15

allow AdaBoost and SVM to predict the basis of the

applications on the feeding input. Figures 23, 24, 25 and 26

are output screenshots of [1] showing benign and [0] for

harmful applications with random application features for

respective models.

FIGURE 23. Output [1] representing the Benign Application (SVM).

FIGURE 24. Output [0] representing the Malware Application (SVM).

FIGURE 25. Output [1] representing the Benign Application (AdaBoost)

FIGURE 26. Output [0] representing the Malware Application (AdaBoost

A. Results

After the forecast of our models, results show that the

accuracy for our highest predictive systems is 96% and 92%.

The proposed model doesn’t peak in higher accuracy or

predictive rate but it contributes by introducing enhanced

and large feature sets (containing around 56000 newly

extracted features) with the latest API level applications

datasets collected in recent years than state-of-the-art

approaches. Another point of view for a less predictive rate

is the limitation of our sources/environment to process and

generate these datasets on our models. The novelty and

contributions are explained in Tables 1 and 2.

Figures 27, 28, 29 and 30 show the runs performed on the

datasets on our trained model. The applications in orange

indicate not harmful apps and only passes sensitive features

over the line, which doesn’t pose that much of a threat for

the application, but it still shows the model issue for

indicating true negatives for zero apps. The applications in

black indicate harmful applications and the false positive rate

(FPR) of this category which falls over the non-harmful apps

is about 3-4 applications in case of AdaBoost and 6-7 in case

of SVM in our system for 1000 runs, as shown in figures

above achieved with 96% and 92% accuracy of AdaBoost

and SVM.

FIGURE 27. Orange entries for Non-Harmful applications in AdaBoost

FIGURE 28. Black entries for Harmful applications in AdaBoost

All four figures are plotted in a hyperplane which describes

the applications classifications in two sections i.e. Harmful

and Non-harmful applications. The above line represents the

harmful apps section (Black and Red) and applications lying

below the line indicated non-harmful applications. The

plotted hyperplanes help in understanding the prediction

applications perspective as shown in fig 28 and 30 showing

successful classification above the line and 3-4 apps below

line indicating misclassifications. The same process is for

non-harmful apps in orange colors (fig 27, 29) and the above

line shows misclassifications but they don’t pose serious

threats.

0

250

500

750

1000

0 250 500 750 1000

H
ar

m
fu

l s
ec

io
n

 o
f

h
yp

er
p

la
n

e

Non-Harmful secion of hyperplane

0

250

500

750

1000

0 250 500 750 1000

H
ar

m
fu

l a
p

p
s

se
ct

io
n

 in
 h

yp
er

p
la

n
e

Non-Harmful secion of hyperplane

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3149053, IEEE Access

 Beenish Urooj, et al.: Malware Detection: A Framework for Reverse Engineered Android Applications through Machine Learning Algorithms

16

FIGURE 29. Orange entries for Non-Harmful applications in SVM FIGURE 30. Black entries for Harmful applications in SVM

The Forthcoming is the comparative review of both

malicious and benign applications of our models and

experimental results with accumulative accuracy and FPR.

The purpose to plot a comparative graph of malware

detection is to understand the relative perspective of both our

parameters. Figure 31 represents a comparative analysis of

both models in terms of malicious and benign applications.

Triangles in red represent the classification and detection of

AdaBoost and in the square, the SVM is displayed. The

graph show a malware section angle for the executive runs

performed and the values above the hyperplane shows the

category of Non-Harmful apps. The 0.7 misclassification

rate of SVM and 0.3 of AdaBoost is plotted with malware

applications falling into the true positive category.

Nevertheless, the models perform with 96.24% accuracy by

accurately predicting the applications categories.

FIGURE 31. Comparative Analysis of Malicious and Benign in Adaboost and SVM

We use Accuracy and FPR as evaluation markers in this

project. Precision is computed as the percentage of true

harmful samples in the malware tagged by the detection

system, showing the system's capacity to discriminate

malware properly in the field of malware detection. False

Positive Rate (FPR) is the criteria to judge the model’s

performance in terms of establishing how many true

indications a model gives. Below are the experimental results

in quantitative measures, presented in table 7, which explains

the points based on accuracy, false positive rate and their

predictive measures after testing on binary input for 1000

runs on our 2 higher predictive models depending on testing

and training of mixed datasets containing features and

malware samples. The operational speed advantage of

AdaBoost is not apparent when adopting the datasets for

classification and prediction. However, given AdaBoost

structural features with parallel learning, we anticipate it will

perform better while computing bigger data sets. We reached

0

250

500

750

1000

0 250 500 750 1000

H
ar

m
fu

l a
p

p
s

se
ct

io
n

 in
 h

yp
er

p
la

n
e

Non-Harmful apps section in hyperplane

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600 700 800 900 1000

H
ar

m
fu

l A
p

p
s

se
ct

io
n

s
in

 h
yp

er
p

la
n

e
(S

V
M

)

Harmful Apps sections in hyperplane (AdaBoost)

0

250

500

750

1000

0 250 500 750 1000

H
ar

m
fu

l a
p

p
s

se
ct

io
n

 in
 h

yp
er

p
la

n
e

Non-Harmful apps section in hyperplane

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3149053, IEEE Access

 Beenish Urooj, et al.: Malware Detection: A Framework for Reverse Engineered Android Applications through Machine Learning Algorithms

17

the same conclusion after we analyzed a much bigger data

set with over 500,000 apps.

In table 7, both models are compared and trained on datasets

and specify the accuracy, FPR and features used and selected

corresponding to the composing samples. The FPR is also

presented in figures 26 to 29 above, specifying the

calculative measures through a hyperplane. The accuracy

and false positives have been measured by the equation

described in section IV in algorithm characteristics for the

number of runs of the model. Results show 96.24% as the

highest accuracy for the model after experimentation and

false-positive rate of 0.3% in the case of the ensemble

approach.

TABLE VII

Experimental results (AdaBoost and SVM), Selected, specify features

selected in the model, MalD (MalDroid), DefenseD (DefenseDroid),

GD (Generated Dataset), FPR (False Positive Rate)

Model Features # Datasets Mal (S) Acc [1] FPR [2]

AdaBoost 55821
(Selected)

MalD +
DefenseD +

GD

18578 96.24% 0.301%

AdaBoost 55821 MalD + GD 12931 95.74% 0.416%

 50621 +
331

(Selected)

SVM 55821
331 +

56471

(Selected)

MalD +
DefenseD +

GD

18578 92.04% 0.731%

SVM 331
(Selected)

GD 5877 90.1% 0.970%

Related works explain the originality of our model and

exhibit the novel features and sample size. To conclude our

model still lack fewer percentages in terms of accurate

detection. To justify this fact, table 8 presents some

properties of similar studies with higher performance rates,

indicating such elements which elaborated the efficiency of

our system.

[28] This model has exceptional computational/processing

power with a much stronger environment to test and train

their datasets. [23] Has somewhat of a similar resource with

higher processing but their sample size is very limited in

comparison to our model. A few other studies describe

similar technical advantages, thus, leaving us to work with

restrictive measures. Table 8 presents some key properties to

elaborate on similar systems’ components.

TABLE VIII

Relative resources (Pro, Processing)

Model Accuracy RAM Pro Samples FPR

DroidSieve 99.82% 378GB 40 core 16,141 0%

DroidCat 97% - - 16,978 No FPR

PMDS (FS with
GA)

98.45% - - 1119 No FPR

Proposed Model 96.24% 4GB Core-i5 18,578 0.3%

VII. Research Issues and Challenges

This section highlights our experiment's prevalent and

crucial topics. These hurdles are based on various stages of

our work and maybe gradually rectified in the work to be

undertaken in the future.

1. Features declared mostly on the device are more durable

than the features specific to the applications and

therefore can usually automate malware detection. The

range of android parameters for processing is rather big

and difficult to detect properly if someone does not

extract the permissions properly.

2. There is still a fast increase in the number of apps.

Malware apps can always be identified in potential in

combination with methods based on AI or machine

learning, such as inept learning, to make the detection

more sophisticated to make it easier to identify and

regulate app prediction rate.

3. Application behaviours in the malware ecosystem

encourage non-emerging threats. Our study doesn’t

incorporate the rider analysis or behaviour of

repackaged malware. The study simply uses the reverse-

engineered apk files and extracts the given context to the

AndroGuard and extracts features in binary vectors.

Although this is a major issue and a key challenge with

the advancement in Android malware. This approach

will be our advanced project to perform differential or

effective analysis on reverse applications, determining

the effects of these applications and their results.

4. The applications with time induce new features with

enhanced malware abilities which is why we would have

to upgrade the system whenever the model’s FPR rate

after execution increases. The simplest explanation for

how to identify if the model is degrading on evolved

features is that our datasets are designed in binary matrix

extracted from features that are currently implemented

in these applications and not features that will be present

in evolved apps in coming years. With new features, we

would have to reverse and extract those features to form

an updated dataset again to train on these classifiers.

[64], [65], [66] and [67] discuss the possible solutions

for this key issue and propose some possible solutions

but for our model and given the resource we have only

performed for current features. For future work, we will

consider model sustainability and how to classify the

malware that our system will be able to detect even if

the features are not yet implemented.

5. The research mentions the problem of multicollinearity

in the introduction, depicting the rise of dependent

variables in-between machine learning algorithms

which cause interpretation in results. However, this field

of study can be taken as a future work for further testing

of several models handling multicollinearity because

our model itself is already performing high processing

detection schemes to generate accuracy for Android

applications features malware. We will foresee this issue

and incorporate it to produce an efficient solution to the

problem. Authors in [68], [69], [70] proposes some

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3149053, IEEE Access

 Beenish Urooj, et al.: Malware Detection: A Framework for Reverse Engineered Android Applications through Machine Learning Algorithms

18

solutions to tackle this challenge and can help

understand viewers queries.

B. LIMITATIONS

The technique in this paper is based on binary classification

of lightweight code of static feature sets present in the

Android manifest file. The three major limitations of our

method is:

1. The research doesn’t include dynamic or runtime

application features. We will consider the potential

dynamic aspects of Android applications in the future,

including real-time permissions requests and essential

API requests. We will evaluate the behavioural traits of

the app using a mixture of dynamic and static evaluation

to discover harmful tendencies.

2. Our system lags in future sustainable operative

measures, meaning the system will need to be upgraded

in terms of forthcoming API levels and malware

collection or terms of new innovative features present in

these Android applications.

3. The constraint of a slow and low processing

environment is another motive for less accuracy and

predictive measures of our model in comparison to a few

other peak detection techniques achieving higher

accuracy.

VIII. Conclusion

In this research, we devised a framework that can detect

malicious Android applications. The proposed technique

takes into account various elements of machine learning and

achieves a 96.24% in identifying malicious Android

applications. We first define and pick functions to capture

and analyze Android apps' behavior, leveraging reverse

application engineering and AndroGuard to extract features

into binary vectors and then use python build modules and

split shuffle functions to train the model with benign and

malicious datasets. Our experimental findings show that our

suggested model has a false positive rate of 0.3 with 96%

accuracy in the given environment with an enhanced and

larger feature and sample sets. The study also discovered that

when dealing with classifications and high-dimensional data,

ensemble and strong learner algorithms perform

comparatively better. The suggested approach is restricted in

terms of static analysis, lacks sustainability concerns, and

fails to address a key multicollinearity barrier. In the future,

we'll consider model resilience in terms of enhanced and

dynamic features. The issue of dependent variables or high

intercorrelation between machine algorithms before

employing them is also a promising field.

IX. References

[1] A. O. Christiana, B. A. Gyunka, and A. Noah, “Android Malware
Detection through Machine Learning Techniques: A Review,” Int. J.

Online Biomed. Eng. IJOE, vol. 16, no. 02, p. 14, Feb. 2020, doi:
10.3991/ijoe.v16i02.11549.

[2] D. Ghimire and J. Lee, “Geometric Feature-Based Facial Expression

Recognition in Image Sequences Using Multi-Class AdaBoost and
Support Vector Machines,” Sensors, vol. 13, no. 6, pp. 7714–7734,

Jun. 2013, doi: 10.3390/s130607714.

[3] R. Wang, “AdaBoost for Feature Selection, Classification and Its
Relation with SVM, A Review,” Phys. Procedia, vol. 25, pp. 800–807,

2012, doi: 10.1016/j.phpro.2012.03.160.

[4] J. Sun, H. Fujita, P. Chen, and H. Li, “Dynamic financial distress
prediction with concept drift based on time weighting combined with

Adaboost support vector machine ensemble,” Knowl.-Based Syst.,

vol. 120, pp. 4–14, Mar. 2017, doi: 10.1016/j.knosys.2016.12.019.
[5] A. Garg and K. Tai, “Comparison of statistical and machine learning

methods in modelling of data with multicollinearity,” Int. J. Model.

Identif. Control, vol. 18, no. 4, p. 295, 2013, doi:

10.1504/IJMIC.2013.053535.

[6] C. P. Obite, N. P. Olewuezi, G. U. Ugwuanyim, and D. C.

Bartholomew, “Multicollinearity Effect in Regression Analysis: A
Feed Forward Artificial Neural Network Approach,” Asian J. Probab.

Stat., pp. 22–33, Jan. 2020, doi: 10.9734/ajpas/2020/v6i130151.

[7] W. Wang et al., “Constructing Features for Detecting Android
Malicious Applications: Issues, Taxonomy and Directions,” IEEE

Access, vol. 7, pp. 67602–67631, 2019, doi:

10.1109/ACCESS.2019.2918139.
[8] B. Rashidi, C. Fung, and E. Bertino, “Android malicious application

detection using support vector machine and active learning,” in 2017
13th International Conference on Network and Service Management

(CNSM), Tokyo, Nov. 2017, pp. 1–9. doi:

10.23919/CNSM.2017.8256035.
[9] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye, “Significant

Permission Identification for Machine-Learning-Based Android

Malware Detection,” IEEE Trans. Ind. Inform., vol. 14, no. 7, pp.
3216–3225, Jul. 2018, doi: 10.1109/TII.2017.2789219.

[10] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and J. Blasco,

“Dendroid: A text mining approach to analyzing and classifying code
structures in Android malware families,” Expert Syst. Appl., vol. 41,

no. 4, pp. 1104–1117, Mar. 2014, doi: 10.1016/j.eswa.2013.07.106.

[11] M. Magdum, “Permission based Mobile Malware Detection System
using Machine Learning Techniques,” vol. 14, no. 6, pp. 6170–6174,

2015.

[12] M. Qiao, A. H. Sung, and Q. Liu, “Merging Permission and API
Features for Android Malware Detection,” in 2016 5th IIAI

International Congress on Advanced Applied Informatics (IIAI-AAI),

Kumamoto, Japan, Jul. 2016, pp. 566–571. doi: 10.1109/IIAI-
AAI.2016.237.

[13] D. O. Sahin, O. E. Kural, S. Akleylek, and E. Kilic, “New results on

permission based static analysis for Android malware,” in 2018 6th

International Symposium on Digital Forensic and Security (ISDFS),

Antalya, Mar. 2018, pp. 1–4. doi: 10.1109/ISDFS.2018.8355377.

[14] A. Mahindru and A. L. Sangal, “MLDroid—framework for Android
malware detection using machine learning techniques,” Neural

Comput. Appl., vol. 33, no. 10, pp. 5183–5240, May 2021, doi:

10.1007/s00521-020-05309-4.
[15] X. Su, D. Zhang, W. Li, and K. Zhao, “A Deep Learning Approach to

Android Malware Feature Learning and Detection,” in 2016 IEEE

Trustcom/BigDataSE/ISPA, Tianjin, China, Aug. 2016, pp. 244–251.
doi: 10.1109/TrustCom.2016.0070.

[16] K. A. Talha, D. I. Alper, and C. Aydin, “APK Auditor: Permission-

based Android malware detection system,” Digit. Investig., vol. 13,
pp. 1–14, Jun. 2015, doi: 10.1016/j.diin.2015.01.001.

[17] A. Mahindru and P. Singh, “Dynamic Permissions based Android

Malware Detection using Machine Learning Techniques,” in
Proceedings of the 10th Innovations in Software Engineering

Conference, Jaipur India, Feb. 2017, pp. 202–210. doi:

10.1145/3021460.3021485.
[18] U. Pehlivan, N. Baltaci, C. Acarturk, and N. Baykal, “The analysis of

feature selection methods and classification algorithms in permission

based Android malware detection,” in 2014 IEEE Symposium on
Computational Intelligence in Cyber Security (CICS), Orlando, FL,

USA, Dec. 2014, pp. 1–8. doi: 10.1109/CICYBS.2014.7013371.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3149053, IEEE Access

 Beenish Urooj, et al.: Malware Detection: A Framework for Reverse Engineered Android Applications through Machine Learning Algorithms

19

[19] M. Kedziora, P. Gawin, M. Szczepanik, and I. Jozwiak, “Malware
Detection Using Machine Learning Algorithms and Reverse

Engineering of Android Java Code,” Int. J. Netw. Secur. Its Appl., vol.

11, no. 01, pp. 01–14, Jan. 2019, doi: 10.5121/ijnsa.2019.11101.
[20] X. Liu and J. Liu, “A Two-Layered Permission-Based Android

Malware Detection Scheme,” in 2014 2nd IEEE International

Conference on Mobile Cloud Computing, Services, and Engineering,
Oxford, United Kingdom, Apr. 2014, pp. 142–148. doi:

10.1109/MobileCloud.2014.22.

[21] “Permission-Based Android Malware Detection | Semantic Scholar.”
https://www.semanticscholar.org/paper/Permission-Based-Android-

Malware-Detection-Aung-

Zaw/c8576b5df33813fe8938cbb19e35217ee21fc80b (accessed Oct.
31, 2021).

[22] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck,

“Drebin: Effective and Explainable Detection of Android Malware in

Your Pocket,” presented at the Network and Distributed System

Security Symposium, San Diego, CA, 2014. doi:

10.14722/ndss.2014.23247.
[23] H. Cai, N. Meng, B. Ryder, and D. Yao, “DroidCat: Effective Android

Malware Detection and Categorization via App-Level Profiling,”

IEEE Trans. Inf. Forensics Secur., vol. 14, no. 6, pp. 1455–1470, Jun.
2019, doi: 10.1109/TIFS.2018.2879302.

[24] P. Rovelli and Ý. Vigfússon, “PMDS: Permission-Based Malware

Detection System,” in Information Systems Security, vol. 8880, A.
Prakash and R. Shyamasundar, Eds. Cham: Springer International

Publishing, 2014, pp. 338–357. doi: 10.1007/978-3-319-13841-1_19.
[25] M. S. Alam and S. T. Vuong, “Random Forest Classification for

Detecting Android Malware,” in 2013 IEEE International Conference

on Green Computing and Communications and IEEE Internet of
Things and IEEE Cyber, Physical and Social Computing, Beijing,

China, Aug. 2013, pp. 663–669. doi: 10.1109/GreenCom-iThings-

CPSCom.2013.122.
[26] D. Congyi and S. Guangshun, “Method for Detecting Android

Malware Based on Ensemble Learning,” in Proceedings of the 2020

5th International Conference on Machine Learning Technologies,
Beijing China, Jun. 2020, pp. 28–31. doi: 10.1145/3409073.3409084.

[27] W. Li, J. Ge, and G. Dai, “Detecting Malware for Android Platform:

An SVM-Based Approach,” in 2015 IEEE 2nd International
Conference on Cyber Security and Cloud Computing, New York, NY,

USA, Nov. 2015, pp. 464–469. doi: 10.1109/CSCloud.2015.50.

[28] G. Suarez-Tangil, S. K. Dash, M. Ahmadi, J. Kinder, G. Giacinto, and
L. Cavallaro, “DroidSieve: Fast and Accurate Classification of

Obfuscated Android Malware,” in Proceedings of the Seventh ACM

on Conference on Data and Application Security and Privacy,
Scottsdale Arizona USA, Mar. 2017, pp. 309–320. doi:

10.1145/3029806.3029825.

[29] Z. Yuan, Y. Lu, and Y. Xue, “Droiddetector: android malware

characterization and detection using deep learning,” Tsinghua Sci.

Technol., vol. 21, no. 1, pp. 114–123, Feb. 2016, doi:

10.1109/TST.2016.7399288.
[30] S. Ilham, G. Abderrahim, and B. A. Abdelhakim, “Permission based

malware detection in android devices,” in Proceedings of the 3rd

International Conference on Smart City Applications, Tetouan
Morocco, Oct. 2018, pp. 1–6. doi: 10.1145/3286606.3286860.

[31] O. Yildiz and I. A. Doğru, “Permission-based Android Malware

Detection System Using Feature Selection with Genetic Algorithm,”
Int. J. Softw. Eng. Knowl. Eng., vol. 29, no. 02, pp. 245–262, Feb.

2019, doi: 10.1142/S0218194019500116.

[32] A. Senawi, H.-L. Wei, and S. A. Billings, “A new maximum
relevance-minimum multicollinearity (MRmMC) method for feature

selection and ranking,” Pattern Recognit., vol. 67, pp. 47–61, Jul.

2017, doi: 10.1016/j.patcog.2017.01.026.
[33] R. Tamura, K. Kobayashi, Y. Takano, R. Miyashiro, K. Nakata, and

T. Matsui, “BEST SUBSET SELECTION FOR ELIMINATING

MULTICOLLINEARITY,” J. Oper. Res. Soc. Jpn., vol. 60, no. 3, pp.
321–336, 2017, doi: 10.15807/jorsj.60.321.

[34] A. Farrell et al., “Machine learning of large‐scale spatial distributions

of wild turkeys with high‐dimensional environmental data,” Ecol.
Evol., vol. 9, no. 10, pp. 5938–5949, May 2019, doi:

10.1002/ece3.5177.

[35] S. Niu, R. Huang, W. Chen, and Y. Xue, “An Improved Permission
Management Scheme of Android Application Based on Machine

Learning,” Secur. Commun. Netw., vol. 2018, pp. 1–12, Oct. 2018,

doi: 10.1155/2018/2329891.
[36] “Permission Based Malware Protection Model for Android

Application,” presented at the International Conference on Advances

in Engineering and Technology, Mar. 2014. doi:
10.15242/IIE.E0314102.

[37] G. L. Scoccia, S. Ruberto, I. Malavolta, M. Autili, and P. Inverardi,

“An investigation into Android run-time permissions from the end
users’ perspective,” in Proceedings of the 5th International Conference

on Mobile Software Engineering and Systems, Gothenburg Sweden,

May 2018, pp. 45–55. doi: 10.1145/3197231.3197236.
[38] P. Topark-ngarm, “Identifying Android Malware Using Machine

Learning Based Upon Both Static and Dynamic Features,” 2014.

[39] N. Milosevic, A. Dehghantanha, and K.-K. R. Choo, “Machine

learning aided Android malware classification,” Comput. Electr. Eng.,

vol. 61, pp. 266–274, Jul. 2017, doi:

10.1016/j.compeleceng.2017.02.013.
[40] V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos,

Feature Selection for High-Dimensional Data. Cham: Springer

International Publishing, 2015. doi: 10.1007/978-3-319-21858-8.
[41] B. Pes, “Ensemble feature selection for high-dimensional data: a

stability analysis across multiple domains,” Neural Comput. Appl.,

vol. 32, no. 10, pp. 5951–5973, May 2020, doi: 10.1007/s00521-019-
04082-3.

[42] A. Hamidreza and N. Mohammed, “Permission-based Analysis of
Android Applications Using Categorization and Deep Learning

Scheme,” MATEC Web Conf., vol. 255, p. 05005, 2019, doi:

10.1051/matecconf/201925505005.
[43] T. Boksasp and E. Utnes, “Android Apps and Permissions: Security

and Privacy Risks,” p. 143.

[44] N. Yadav, A. Sharma, and A. Doegar, “A Survey on Android Malware
Detection,” vol. 2, no. 12, p. 7, 2016.

[45] F. I. Abro, “Investigating Android Permissions and Intents for

Malware Detection,” p. 169.
[46] M. Magdum and S. K. Wagh, “Permission Based Android Malware

Detection System using Machine Learning Approach,” vol. 14, no. 6,

p. 6, 2016.
[47] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A Multimodal Deep

Learning Method for Android Malware Detection Using Various

Features,” IEEE Trans. Inf. Forensics Secur., vol. 14, no. 3, pp. 773–
788, Mar. 2019, doi: 10.1109/TIFS.2018.2866319.

[48] H. A. Alatwi, “Android Malware Detection Using Category-Based

Machine Learning Classifiers,” p. 62.
[49] P. Basavaraju and A. S. Varde, “Supervised Learning Techniques in

Mobile Device Apps for Androids,” p. 12.

[50] R. N. Romli, M. F. Zolkipli, and M. Z. Osman, “Efficient feature

selection analysis for accuracy malware classification,” J. Phys. Conf.

Ser., vol. 1918, no. 4, p. 042140, Jun. 2021, doi: 10.1088/1742-

6596/1918/4/042140.
[51] J. Abah, W. O.V, A. M.B, A. U.M, and A. O.S, “A Machine Learning

Approach to Anomaly-Based Detection on Android Platforms,” Int. J.

Netw. Secur. Its Appl., vol. 7, no. 6, pp. 15–35, Nov. 2015, doi:
10.5121/ijnsa.2015.7602.

[52] I. K. Aksakalli, “Using convolutional neural network for Android

malware detection,” p. 7, 2019.
[53] I. Martín, J. A. Hernández, A. Muñoz, and A. Guzmán, “Android

Malware Characterization Using Metadata and Machine Learning

Techniques,” Secur. Commun. Netw., vol. 2018, pp. 1–11, Jul. 2018,
doi: 10.1155/2018/5749481.

[54] S. Fallah and A. J. Bidgoly, “BENCHMARKING MACHINE

LEARNING ALGORITHMS FOR ANDROID MALWARE
DETECTION,” Jordanian J. Comput. Inf. Technol., vol. 05, no. 03, p.

15.

[55] X. Jiang, B. Mao, J. Guan, and X. Huang, “Android Malware
Detection Using Fine-Grained Features,” Sci. Program., vol. 2020, pp.

1–13, Jan. 2020, doi: 10.1155/2020/5190138.

[56] H. Yuan, Y. Tang, W. Sun, and L. Liu, “A detection method for
android application security based on TF-IDF and machine learning,”

PLOS ONE, vol. 15, no. 9, p. e0238694, Sep. 2020, doi:

10.1371/journal.pone.0238694.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3149053, IEEE Access

 Beenish Urooj, et al.: Malware Detection: A Framework for Reverse Engineered Android Applications through Machine Learning Algorithms

20

[57] A. M. García, “Machine learning techniques for Android malware
detection and classification,” p. 170.

[58] S. Y. Yerima, M. K. Alzaylaee, and S. Sezer, “Machine learning-based

dynamic analysis of Android apps with improved code coverage,”
EURASIP J. Inf. Secur., vol. 2019, no. 1, p. 4, Dec. 2019, doi:

10.1186/s13635-019-0087-1.

[59] Y. Dong, “Android Malware Prediction by Permission Analysis and
Data Mining,” p. 71.

[60] V. P. D and V. P, “Detecting android malware using an improved filter

based technique in embedded software,” Microprocess. Microsyst.,
vol. 76, p. 103115, Jul. 2020, doi: 10.1016/j.micpro.2020.103115.

[61] A. Hemalatha and D. S. S. Brunda, “DETECTION OF MOBILE

MALWARES USING IMPROVED DEEP CONVOLUTIONAL
NEURAL NETWORK,” vol. 7, no. 14, p. 7, 2020.

[62] S. Mahdavifar, A. F. Abdul Kadir, R. Fatemi, D. Alhadidi, and A. A.

Ghorbani, “Dynamic Android Malware Category Classification using

Semi-Supervised Deep Learning,” in 2020 IEEE Intl Conf on

Dependable, Autonomic and Secure Computing, Intl Conf on

Pervasive Intelligence and Computing, Intl Conf on Cloud and Big
Data Computing, Intl Conf on Cyber Science and Technology

Congress (DASC/PiCom/CBDCom/CyberSciTech), Calgary, AB,

Canada, Aug. 2020, pp. 515–522. doi: 10.1109/DASC-PICom-
CBDCom-CyberSciTech49142.2020.00094.

[63] “Android Malware Detection | Kaggle.”

https://www.kaggle.com/defensedroid/android-malware-detection
(accessed Nov. 14, 2021).

[64] X. Fu and H. Cai, “On the Deterioration of Learning-Based Malware
Detectors for Android,” in 2019 IEEE/ACM 41st International

Conference on Software Engineering: Companion Proceedings

(ICSE-Companion), Montreal, QC, Canada, May 2019, pp. 272–273.
doi: 10.1109/ICSE-Companion.2019.00110.

[65] K. Xu, Y. Li, R. Deng, K. Chen, and J. Xu, “DroidEvolver: Self-

Evolving Android Malware Detection System,” in 2019 IEEE
European Symposium on Security and Privacy (EuroS&P),

Stockholm, Sweden, Jun. 2019, pp. 47–62. doi:

10.1109/EuroSP.2019.00014.
[66] H. Cai, “Assessing and Improving Malware Detection Sustainability

through App Evolution Studies,” ACM Trans. Softw. Eng. Methodol.,

vol. 29, no. 2, pp. 1–28, Apr. 2020, doi: 10.1145/3371924.
[67] X. Zhang et al., “Enhancing State-of-the-art Classifiers with API

Semantics to Detect Evolved Android Malware,” in Proceedings of the

2020 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event USA, Oct. 2020, pp. 757–770. doi:

10.1145/3372297.3417291.

[68] A. Katrutsa and V. Strijov, “Comprehensive study of feature selection
methods to solve multicollinearity problem according to evaluation

criteria,” Expert Syst. Appl., vol. 76, pp. 1–11, Jun. 2017, doi:

10.1016/j.eswa.2017.01.048.

[69] R. Grewal, J. A. Cote, and H. Baumgartner, “Multicollinearity and

Measurement Error in Structural Equation Models: Implications for

Theory Testing,” Mark. Sci., vol. 23, no. 4, pp. 519–529, Nov. 2004,
doi: 10.1287/mksc.1040.0070.

[70] M. Shyamala Devi, A. Poornima, J. Kosanam, and T. Hari Sathya

Prashanth, “Outlier multicollinearity free fish weight prediction using
machine learning,” Mater. Today Proc., p. S2214785321019271, Mar.

2021, doi: 10.1016/j.matpr.2021.02.773.

BEENISH UROOJ received her Bachelor’s
in Computer Science from COMSATS

University Islamabad, Wah Campus,
Pakistan, 2015-2019. Currently, she is

pursuing her Masters in Information Security

from Department of Computer Science,
COMSATS University Islamabad, Pakistan.

She is working part time as a Graphic

designer and a freelancer. Her conference
paper about Security in SCADA Systems

was declared runner up in best developmental research in 2021 (soon to be

published). Her research interests lie in the domain of Cyber Security,
Threat Hunting and Security in Industrial Control Systems (ICS).

MUNAM ALI SHAH received B.Sc. and M.Sc.

degrees, both in Computer Science from University
of Peshawar, Pakistan, in 2001 and 2003

respectively. He completed his M.S. degree in

Security Technologies and Applications from
University of Surrey, UK, in 2010, and has passed

his Ph.D. from University of Bedfordshire, UK in

2013. Since July 2004, he has been a Lecturer,
Department of Computer Science, COMSATS

Institute of Information Technology, and Islamabad,

Pakistan. His research interests include MAC
protocol design, QoS and security issues in wireless communication

systems. Dr. Shah received the Best Paper Award of the International

Conference on Automation and Computing in 2012. Dr. Shah is the author

of more than 50 research articles published in international conferences and

journals.

CASTREN MAPLE is Professor of Cyber
Systems Engineering at WMG’s Cyber

Security Centre (CSC), University of

Warwick. He is the director of research in
Cyber Security working with organizations in

key sectors such as manufacturing, healthcare,

financial services and the broader public sector
to address the challenges presented by today’s

global cyber environment. He is a member of
several professional societies including the

Council of Professors and Heads of Computing (CPHC) whose remit is to

promote public education in Computing and its applications and to provide

a forum for those responsible for management and research in university

computing departments. He is an elected member to the Committee of this

body. He is an Education Advisor for TIGA â˘A ¸S the trade association
representing the UK’s games industry. He is also a Fellow of the British

Computer Society, the Chartered Institute for IT and is a Chartered IT

professional. He also holds two Professorships in China, including a
position at one of the top two control engineering departments in China. His

interests include Information Security and Trust and Authentication in

Distributed Systems.

MUHAMMAD KAMRAN ABBASI received his
PhD in the field of Computer Science from the

University of Bedfordshire, UK. He is currently

serving as Associate Professor in the Department
of Distance Continuing and Computer Education,

University of Sindh. His research focuses on

Unsupervised Machine Learning, Informatics and
Educational Technology.

SIDRA RIASAT completed her Bachelor’s in

Computer Science from Fatima Jinnah Women
University. She is currently doing her Masters in

Information Security (Department of Computer

Science) from COMSATS University, Islamabad.
Her research interest includes Cyber Security,

Block chain smart cities and SCADA networks.

