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Abstract

The work presented in this thesis considers the effect of dynamic and static
distortions on the local structure of perovskite-related materials. I systematically
interrogate the pair distribution functions of the materials against phonon eigenvec-
tors, determined using representation theory. I present the method for performing
this Symmetry-Adapted Pair Distribution Function Analysis (SAPA) in chaper 2.

In the chapters 3 and 4, I perform this SAPA technique on the negative ther-
mal expansion (NTE) materials ScF3, CaZrF6 and ReO3. NTE is usually viewed
as originating from a vibrational tension effect, commonly realised in materials via
cooperative rotations of atomic polyhedra, termed rigid unit modes (RUMs). The
results of our SAPA analysis show that scissoring modes, which distort the octahe-
dral bond angles, dominate the local structure in ScF3 and CaZrF6 but not ReO3,
rather than the RUMs one might expect. I therefore conclude that structural flexi-
bility is a key determining factor in the extent and magnitude of NTE observed in
a material.

This theme of the importance of structural flexibility, in the form of scissoring
modes, continues in the final results chapter. In this work, the local structure of
the cubic phases of the methylammonium lead halides are analysed using the SAPA
technique. We find that in all three hybrid perovskites studied, scissoring modes
again describe the largest deviation from the average structure. These modes have
a larger amplitude for these hybrid perovskites than for ScF3, despite the presence
of A-sites in the former. Using Density Functional Theory calculations, we show
that these modes are linked to an opening of the electronic band gap.
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Chapter 1

Introduction

1.1 Background and Motivation

The aim of this thesis is to present a novel technique for analysing the local struc-

ture of crystalline compounds by determining how the local structure deviates from

the average structure. By doing this, we want to obtain insight into the materi-

als properties. The dynamic distortions in a solid, which in quantum mechanics

are described in terms of vibrational quanta named phonons, heavily influence the

properties of a material and are the origin of some of the most fundamental phys-

ical processes, such as thermal expansion. The measure of local structure used for

this work is the pair distribution function (PDF) which is obtained via the total

scattering method for neutron and X-ray powder diffraction. I develop here a sym-

metry motivated approach to analysing PDFs that is based on using representation

theory to construct a basis set of a “distortion space” in terms of zone-centre and

zone-boundary displacements.

The motivation behind this work was to produce a technique which uses pair

distribution functions to analyse distortions. Current methods, as discussed in sec-

tion 1.2.11, introduce user input bias into the analysis, whereas the method we have

developed uses only the symmetry of the structure to be studied as an input, thereby

reducing the bias. The first presented paper details how to perform our developed

technique, which we term symmetry-adapted PDF analysis. The remaining papers

present applications of this technique to the negative thermal expansion materials

ScF3, CaZrF6 and ReO3 and the photovoltaic materials (CH3NH3)PbX3, X = I,

Br, Cl.

The analysis of the negative thermal expansion materials ScF3, CaZrF6 and

ReO3 was motivated for two primary reasons. The first is that they are simple, high
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symmetry structures, so provide a good test case for our novel analysis method. The

second is that despite the structural simplicity, the origin of phonon-driven negative

thermal expansion is still not fully understood, with the traditional rigid unit mode

model of NTE being challenged in recent years. Our analysis gives support to

the idea that rigid unit modes, soft in these materials due to an incipient phase

transition with applied pressure, are a key determinating factor for the presence of

NTE, but that the flexibility of the structure plays a large role in the magnitude

and temperature range of NTE. This structural flexibility gives a greater number

of quasi-RUMs, modes with mixed RUM and octahedral deformation character, a

negative Grüneisen parameter.

The motivation for the study on the methylammonium lead halides is that

despite them being very promising candidate materials for low cost and high ef-

ficiency solar cells, the origin of their desirable properties as photovoltaics is still

to be determined. We show that large amplitude scissoring modes are a dominant

distortion in the cubic phases of these hybrid perovskites, which have the effect of

opening up the band gap significantly. We also provide evidence that the organic

cation and inorganic framework dynamics are linked.

1.2 Structure Determination

The primary method used in this work is the total scattering method. This is an

extension of neutron and X-ray powder diffraction where as much of the scattering

information as possible is collected during the experiment. The collected powder

pattern will not only include information on the average structure from the sharp

Bragg peaks, but will also contain information on local order. This local structural

information appears in the data as fluctuations at high values of the scattering

vector, Q, (Fig 1.1), so the Q-range for these experiments is maximised. This

information is extracted by careful treatment of the data, such as subtracting any

systematic contribution from the sample environment and modelling contributions

from factors such as how densely packed the sample is within its environment. This

section will first introduce the basics of crystallography. Following this, the theory

of X-ray and neutron diffraction from the average crystal structure is presented and

then extended to the formalism of total scattering. The processes used to generate

the X-rays and neutrons for diffraction experiments and the analysis of diffraction

data are also discussed.
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Figure 1.1: A plot of the total scattering structure factor for CsPbI3 after data
treatment has been performed. This shows the difference between a total scattering
experiment and a traditional powder experiment. In the latter, the goal is to collect
as high resolution as possible data for the low Q region, since it contains all the
Bragg scattering. In the former, Q-resolution is often sacrificed so the Q-range can
be maximised. These data was collected on the I15-1 beamline at Diamond Light
Source. A wavelength of λ = 0.161 669 Å was used.

1.2.1 Crystallography

The field of crystallography is the study of materials whose structure consists of a

periodic arrangement of atoms. The structure of these crystalline materials can be

described by a unit cell, the repeat unit of the periodic structure, and the lattice

on which the unit cell is tiled. The lattice is characterised by its dimensions and

centering. The dimensions of a lattice are described using three lattice parameters a,

b and c (often termed lattice vectors when describing them in cartesian coordinates)

and the angles between them, α, β and γ[5]. The simplest type of lattice, one

with lattice points only at the cell corners, is termed primitive and denoted by P .

Sometimes however the primitive cell does not fully describe the symmetry of the

lattice, so more complex cells are used. These are body-centred (I), with an extra
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atom at the point (a/2, b/2, c/2) in unit cell coordinates; face-centred (F ), with an

extra atom at the centre of each face, and end-centred (A, B or C), with an extra

atom at the centre of each of a pair of parallel faces. In addition, a hexagonal cell can

be rhombohedrally-centered (R), with two additional lattice points along one body

diagonal of the cell. In 3-dimensional space, there are 14 possible lattices, defined

in Table 1.1, which were classified by Auguste Bravais in 1850 and hence termed

Bravais lattices. The unit cell describes the positions of the atoms relative to one

another and the symmetry elements that relate atoms therein. The combination of

Bravais lattice and possible symmetry elements, including translational symmetry

elements such as glide and screw axes, gives rise to 230 distinct space groups to

describe the crystal symmetry[6]. The basic aim of crystallography is to be able

to describe the structure of any solid state material through a choice of a space

group, lattice parameters and a set of fractional coordinates. This is important

since the structure of a material is a key factor in determining what properties it

may have. For example, a material that crystallises in a centrosymmetric space

group, i.e., the space group has a centre of inversion, will not be able to exhibit

proper ferroelectricity since polar distortions necessarily break this symmetry. In

this thesis, the Hermann-Mauguin space group notation is used. In this notation, the

first (capital) letter describes the lattice centering. The subsequent characters give

the highest order symmetry operation along a particular axis. The axes that these

labels refer to differ for different lattices. For example, the labels in orthorhombic

lattices refer to the [1 0 0], [0 1 0] and [0 0 1] axes, but in cubic systems these are

equivalent, so the first label refers to all 3 of those directions, the second to the <1

1 1> directions and the third typically to <1 1 0> directions.

The origin of crystallographic experiments dates back to the 17th century,

when it was noticed that crystals of the same type will have the same angles between

their faces. Later work by William Miller classified these faces using 3 integers hkl,

a notation which is still used in modern crystallography. In the late 18th and early

19th centuries, René Juste Haüy broke down crystals into as small pieces as he could,

and came to the conclusion that crystals were formed from orderly arrangements of

“integrant molecules”. Theoretical ideas of crystal symmetry built upon this work,

but these ideas could not be experimentally confirmed until the advent of X-ray

diffraction in the early 20th century and the work of Max von Laue, William H. and

William L. Bragg, amongst others[7]. This technique, along with its sister technique

of neutron diffraction, allows for the complete structural determination of a crystal

and these techniques form the core of a modern crystallographer’s toolbox.
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Table 1.1: The different types of Bravais lattices. Where a lattice length does not
appear in an entry, it means there is no restriction on it for that lattice type. * Note
that by convention, lattices with rhombohedral symmetry are usually assigned a
rhombohedrally-centered hexagonal cell rather than a primitive rhombohedral cell.
Unit Cell Lattice Lengths Lattice Angles Centering

Cubic a = b = c α = β = γ = 90◦ P, I, F
Hexagonal a = b α = β = 90◦, γ = 120◦ P , R∗

Rhombohedral a = b = c α = β = γ 6= 90◦ P
Tetragonal a = b 6= c α = β = γ = 90◦ P, I
Orthorhombic a 6= b 6= c α = β = γ = 90◦ P, I, F,A,B,C
Monoclinic a 6= c α = γ = 90◦, β 6= 90◦ P,A,B,C
Triclinic All other cases P

1.2.2 Diffraction

It is a fundamental property of waves, or beams of wave-like particles, that the

wave-fronts spread out and bend when incident on the corner of an obstacle, or

when travelling through a gap in an obstacle. This phenomenon is known as diffrac-

tion. The diffracted wave acts as a spherical wave emanating from the gap causing

the diffraction. If a wave is incident on multiple diffraction gaps, a so-called “diffrac-

tion grating”, it will result in a series of spherical waves which interfere with each

other, either reinforcing or cancelling. In neutron and X-ray diffraction, a regular

array of atoms acts like a diffraction grating, producing a regular array of scattered

waves. For most scattering angles, the individual intensities of these scattered waves

cancel out, but for some, they combine in phase and are reinforced, producing a se-

ries of tight beams. When incident upon a detector, these beams form spots, the

arrangement and varied intensities of which is known as a diffraction pattern. Con-

structive interference occurs for scattering angles where the path length between

waves is equal to an integer number of wavelengths. Since the distance travelled by

two waves after leaving the sample until they reach a particular point on a detector

will be the same for both waves, any difference in path length will be caused by a

difference in distance travelled within the sample (Fig 1.2). The picture becomes

clearer if we consider the particle view of an incident beam of X-rays or neutrons.

If we have a beam of our diffraction probe of choice incident at an angle, θ, to the

normal of the sample surface, it could either scatter from the first plane of atoms

or any subsequent plane. If the planes are separated by a distance, d, for example,

this leads to an extra 2d sin θ travelled for scattering from the second plane. This

5



d
θ

2dsinθ

dsinθ

Figure 1.2: A diagram showing how a difference in path length of 2d sin θ can arise
due to scattering of radiation from subsequent planes of atoms in a crystal.

idea is captured by Bragg’s law:

nλ = 2dhkl sin θ (1.1)

where λ is the wavelength of the incident radiation, dhkl is the interplanar spacing

and n is an integer[8]. The subscript of hkl in the interplanar spacing refers to the

Miller index of the crystallographic plane, named after the aforementioned William

Miller. The Miller index, usually written as (h k l) for an individual plane or {h k

l} for a set of symmetry equivalent planes, denotes a plane that intercepts the unit

cell at the points a/h, b/k and c/l, where a, b and c are the lattice vectors of the

unit cell.

The Laue conditions are another way to express the relationship between

diffraction patterns and the incident radiation[9]. For an incident wave to be
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diffracted by a crystal, the following must be satisfied:

a ·Q = 2πh (1.2)

b ·Q = 2πk (1.3)

c ·Q = 2πl (1.4)

where h, k and l are Miller indices, a, b and c are lattice vectors and Q is the

scattering vector. The scattering vector, also known as the momentum transfer, is

given by the difference between the incident and scattered wave vectors. For elastic

scattering, |Q| = 4π sin θ
λ . This will become an important property when discussing

total scattering. If these conditions are rearranged to isolate Q, we get the concept

of a reciprocal lattice. The reciprocal lattice is a Fourier transform of the real space

crystal lattice, with vectors a∗ = (b × c)/V , b∗ = (a × c)/V and c∗ = (a × b)/V

where V is the real space volume of the unit cell. The Laue condition tells us

that the scattering vector can be expressed in terms of integer numbers of these

reciprocal lattice vectors. This indicates that the image formed on a 2D detector

by a beam of X-rays or neutrons incident on a single crystal will be a 2-dimensional

projection of the reciprocal space. To get a full view of the structure from single

crystal experiments, the diffraction pattern must be taken for different orientations

of the crystal with respect to the incident radiation.

The focus of this thesis is on powder diffraction, where instead of diffraction

from a single crystal we observe scattering from a powder that is formed from a large

number of small crystallites which are randomly oriented with respect to each other.

This has the effect of smearing out the diffraction spots into rings (Fig 1.3). The

beam of radiation producing the pattern sees all the possible lattice plane spacings

at the same time, meaning the experiments are typically much quicker than those of

single crystal work. Planes with different d-spacings will give rise to rings at different

angles from the path of the incident beam which has the effect of superimposing

symmetry-equivalent reflections, e.g., the {1 0 0} reflections of a cubic structure.

The pattern of rings on the detector is then radially integrated to give data in the

form of intensity vs. scattering angle. This is subsequently modelled using computer

software and a computed diffraction pattern is compared to the experimental one.

The impact that simple properties of the crystal, such as the size of the lattice, has

upon the diffraction pattern can be seen using Bragg’s law. For example, if we are

studying two samples with the same structure but one has larger lattice parameters,

the peaks will shift to a lower scattering angle (2θ) since sin θ will have to decrease
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Figure 1.3: A diagram showing the qualitative difference between diffraction from
a single crystal and diffraction from a powder of randomly oriented crystallites.

to compensate for the increased lattice spacings. To see how more complex factors

affect the diffraction pattern, such as the arrangement of atoms in the unit cell, we

move on to a more in depth discussion of diffraction theory.

1.2.3 Diffraction Theory

The principles underpinning the scattering of X-rays and neutrons by a crystal is

similar and, therefore, the theory of diffraction will initially be discussed in terms of

generic particles. For a beam of particles with an incident flux of I0, the scattered

flux (the number of scattered particles per unit area per unit time) is given by

Is ∝ I0∆Ω
dσ

dΩ
(1.5)

where ∆Ω is the unit solid angle and dσ
dΩ is the differential cross section. The in-

tensity of the scattered beam is also affected by factors such as absorbance, in-
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coherent scattering and multiple scattering events. Using Fermi’s Golden Rule

that the differential cross-section will be proportional to the matrix element | <
Final|Interaction|Initial > |2[10, 11], we can get an expression for the differential

cross-section. Scattering is an elastic process, and we assume that the wave before

and after scattering are plane waves with wavevectors ki and kf respectively, with

|ki| = |kf |1. If the incoming particles are scattered by some potential, V (r), then

we have:
dσ

dΩ
∝
∣∣∣∣
∫

V
exp[−i(kf · r)]V (r) exp[i(ki · r)]d3r

∣∣∣∣
2

(1.6)

which, using the definition of the scattering vector Q = ki − kf , simplifies to

dσ

dΩ
∝
∣∣∣∣
∫

V
V (r) exp[i(Q · r)]d3r

∣∣∣∣
2

(1.7)

This efectively constitutes a Fourier transform of the scattering potential, which

has the same periodicity as the crystal lattice. Therefore, to simulate a diffraction

pattern, we need to determine the form of the scattering potential for X-rays and

neutrons.

1.2.4 X-ray Scattering

X-rays are a form of electromagnetic radiation and are consequently scattered by the

electrons surrounding the atoms which comprise the crystal. The scattering power

for an X-ray incident on a single electron is e2/mc2[14]. The ratio of the amplitude

of the X-ray scattered from an atom compared to that scattered by a single electron,

termed the atomic form factor, is given by

f =

∫

V
ρ(r) exp[i(Q · r)]d3r (1.8)

where ρ(r) is the number density of electrons surrounding the nucleus. X-rays scatter

from a cloud of electrons of finite size, resulting in a path difference between X-rays

scattered from different points of the cloud for non-zero scattering angles. Therefore,

the atomic scattering factors decrease with increasing sin θ/λ (Fig 1.4)[5, 1].

Since the atomic number Z =
∫
V ρ(r)d3r, heavier elements display stronger

scattering.

1This approximation is known as the Born approximation[12, 13]
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Figure 1.4: A plot showing the decrease in atomic scattering factors for Pb and I
for increasing sin θ/λ. The values plotted are taken from the International Tables
of Crystallography.[1]

1.2.5 Neutron Scattering

Neutrons are characterised by a wavevector, k, determined by its de Broglie wave-

length and also by a spin, σ. Neutrons can, therefore, interact with either the

nucleus of an atom via the strong force or with any magnetic moment the atoms

may have. Neutron diffraction from magnetic materials is beyond the scope of this

thesis, so only the neutron-nuclear interaction will be discussed.

Since the interaction between the neutron and the nucleus occurs via the

strong force, it tends to be of an “all-or-nothing” nature. Hence, we can approximate

the scattering potential, V (r), to be some constant, A, within a radius r0 and zero

outside this radius. We can define an atomic scattering factor for neutrons as

f =

∫

V
V (r) exp[i(Q · r)]d3r (1.9)

Since r0 << |Q| (the range of the nuclear potential is several orders of magni-
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tude smaller than the wavelengths of neutrons used in diffraction experiments),

exp[i(Q · r)] ≈ 1 and we have f = A
(

4πr30
3

)
. There is no additional factor of sin θ/λ

as the scattering is from a point source and, since the atomic scattering factor is

consequently a constant, it is usually denoted by a single letter, b, also called the

neutron scattering length.

Neutron scattering from isotopes of the same element can be very different

and will also be affected by spin effects, so the scattering length is usually split into

two parts: a coherent scattering length, bcoh = 〈b〉, which describes scattering from

the average, and an incoherent scattering length, b2inc = 〈b2〉 − 〈b〉2, describing the

scattering from fluctuations. For elastic scattering, the incoherent scattering ap-

pears in the diffraction pattern as a background-like contribution, making isotopes

with a large incoherent scattering length undesirable, especially for total scattering

studies. An example of an isotope with a large incoherent scattering length is 1H,

which makes accurately modelling hydrogen positions in neutron diffraction difficult.

Consequently, samples containing hydrogen are typically deuterated, since deutir-

ium has an insignificant incoherent scattering length. An important difference to

X-rays is that the coherent scattering length has no uniform variation with atomic

number and can even be negative2. Consequently, this gives neutron diffraction an

advantage when studying materials with a wide range of atomic numbers amongst

the constituent elements, since the diffraction pattern will not necessarily be dom-

inated by contributions from the heavy elements and light atoms may still be well

resolved.

1.2.6 Diffraction from a Crystal

When viewing diffraction from a series of atoms rather than a single isolated atom,

the contribution of every atom to the scattering must be taken into account. The

scattering amplitude for a sample is given by:

Ψ(Q) =
1

〈f〉
∑

j

fj exp(iQ ·Rj) (1.10)

where fj and Rj are the atomic form factor and position of atom j, respectively,

and 〈f〉 is the mean form factor[15]. If this function could be reconstructed from

a diffraction pattern, then we could perfectly reconstruct both the crystal lattice

and the electron density in the unit cell. Diffraction experiments, however, detect

the intensity of the diffracted beam, which is proportional to the product of the

2A negative neutron scattering length means the wave function of the scattered neutron is out
of phase to that of the incident neutron.
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scattering amplitude with its complex conjugate:

dσ

dΩ
=
〈f〉2
N
|Ψ(Q)|2 =

1

N

∑

i,j

fifj exp[iQ · (Ri −Rj)] (1.11)

where N is the number of atoms in the sample. From equation 1.11, we can see that

diffraction experiments are only sensitive to the phase difference between scattered

waves from different atoms. Without the phase information, we cannot reconstruct

the electron density of the unit cell without using some method of phase retrieval.

This is known as the phase problem in crystallography.

If the sample is crystalline, we can split the sum in equation 1.11 into a sum

over a single unit cell and a sum over the crystal lattice:

dσ

dΩ
=

1

nc

∑

α,κ

fαfκ exp[iQ · (rα − rκ)]
∑

n,m

exp[iQ · (Rn −Rm)] (1.12)

where rα and rκ are the positions of atoms α and κ within the unit cell, Rn is a

direct lattice vector and nc is the number of unit cells within the sample. This can

also be expressed as:

dσ

dΩ
=

1

nc
|
∑

j

fj exp(iQ · rj)|2|
∑

n

exp(iQ ·Rn)|2 (1.13)

The first of these sums can be simplified further by recalling that for diffraction

to occur, the scattering vector, Q, is a reciprocal lattice vector. Letting Q =

ha∗ + kb∗ + lc∗ and rj = xja + yjb + zjc, where xj , yj and zj are the fractional

coordinates of atom j, we get the crystallographic structure factor:

Fhkl =
∑

j

fj(Q) exp[2πi(hxj + kyj + lzj)] (1.14)

For some combinations of h, k and l, and for unit cells with atoms on high symmetry

positions, the exponentials in the above equation can sum to zero, leading to some

reflections being missing from the diffraction pattern. These necessarily missing

peaks, known as systematic absences, help to determine the space group of the

structure. For example, for a reflection to be observed from a face-centred cubic

lattice, h, k and l must either all be even or all be odd. Any other combination

results in a systematic absence.

The latter sum, over the entire crystal lattice, doesn’t tell us anything on

its own about the intensity of the diffraction pattern. Chiefly, it affects the shape
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of the diffraction peaks. For a sample with an infinite number of unit cells in each

direction, the diffraction peaks are a series of delta functions at the reciprocal lattice

points. For finite numbers of unit cells, the diffraction peaks spread out over a small

Q-range.

For both neutrons and X-rays, the effect of thermal motion must be taken

into account. It was mentioned earlier that since X-rays scatter from a cloud of

electrons of finite size, the atomic form factor decreases with increasing sin θ/λ.

The effect of temperature is that the atoms vibrate about their average position,

which has the effect of spreading the atom out and attenuating the diffraction signal.

This is taken into account by the Debye-Waller factor, exp(−〈[Q · u]2〉), where u

is the displacement of the atom relative to its average position and the angular

brackets indicate that a time average is taken. Using the definition of Q, this

becomes exp(−8π2〈u2〉 sin2 θ/λ2), where 〈u2〉 is the root mean square of the atomic

displacement. In some programs, a B-factor is used, with B = 8π2〈u2〉. This form

of the equation for the Debye-Waller factor assumes the displacement is isotropic.

However, this is clearly not physically precise and, in many cases, such an assumption

is invalid. In this context, atomic displacement parameters (ADPs) can be used. The

atoms can then have different displacive amplitudes in different directions, although

this is still subject to the symmetry restraints of the space group. In crystal structure

diagrams, ADPs are usually represented using ellipsoids. The shape of the ellipsoids

is determined by the relative magnitudes of thermal vibration of the atom along

the axes of choice. The size of the ellipsoid is scaled to encapsulate a particular

probability of finding the electron density of the scatterer within the ellipsoid. This

probability is usually 50 %.

1.2.7 Total Scattering

To describe the total scattering method, we will start with the derivation for neu-

trons, since the neutron scattering length is a constant, unlike the Q-dependent

atomic form factor of X-rays. This work follows the formalism for total scattering

as laid out by Keen[16, 17]. As discussed previously, the scattering is determined

by the structure factor:

FN (Q) =
∑

j

bj exp[i(Q · rj)] (1.15)

13



where the superscript N denotes that this is for neutron scattering. The quantity we

actually detect in a diffraction experiment is related to the square of this quantity:

SN (Q) =
1

N

∣∣FN (Q)
∣∣2 =

1

N

∑

jk

bjbk exp[iQ(rj − rk)] =
1

N

dσ

dΩ
(1.16)

where SN (Q) is the scattered intensity per unit atom for a system of N atoms at

positions r1 to rN . The sum in the above equation can be split into two compo-

nents: the self-scattering term, for which j = k, and the differential or interference

scattering term, where j 6= k. We can then define a total-scattering structure factor

without the self-scattering term. Typically, this is also referred to as F (Q) in the

literature, but for clarity will be referred to as FTS(Q) below. Since total scatter-

ing is performed on powder samples, the orientational averaging means we can use

|rj − rk| = r and Q = |Q| in the following equations. The total scattering structure

factor can be expressed as follows[17]:

FNTS(Q) =
n∑

j,k=1

cjckbjbk[Ajk(Q)− 1] (1.17)

where Ajk(Q) are the Faber-Ziman (or site-site) partial structure factors[18] and cj

is the proportion of atom species j. This sum is over n atom species, rather than

N total atoms. These partial structure factors are related to partial radial (or pair)

distribution functions gjk(r) by the following relations:

Ajk(Q)− 1 = ρ0

∫ ∞

0
4πr2[gjk(r)− 1]

sinQr

Qr
dr (1.18)

and

gjk(r)− 1 =
1

(2π)3ρ0

∫ ∞

0
4πQ2[Ajk(Q)− 1]

sinQr

Qr
dQ (1.19)

where ρ0 is the average number density of the material. The partial pair distribution

functions are defined by the following equation

gjk(r) =
njk(r)

4πr2drρk
(1.20)

where njk(r) is the number of particles of atom species k between a distance r and

r + dr from a particle of atom species j and ρk = ckρ0. We can also define a total

14



radial distribution function:

GN (r) =
n∑

j,k=1

cjckbjbk[gjk(Q)− 1] (1.21)

and then write the total pair distribution function and total scattering structure

factor in terms of each other:

FNTS(Q) = ρ0

∫ ∞

0
4πr2G(r)

sinQr

Qr
dr (1.22)

and

GN (r) =
1

(2π)3ρ0

∫ ∞

0
4πQ2FNTS(Q)

sinQr

Qr
dQ (1.23)

-i.e., they are related to each other via a sine Fourier transform.

In the PDF analysis performed in this thesis, two different normalisations of

the pair distribution function, D(r) and G′(r), are used with the programs TOPAS

and PDFGui respectively. They have the same relation to the PDF defined above

for both neutrons and X-rays

D(r) = 4πrρ0G(r) =

(
n∑

i=1

cibi

)2

G′(r) (1.24)

The formalism for X-ray total scattering is slightly more complicated since

the atomic form factor is Q-dependent and would get convoluted with the partial

structure factors when Fourier transforming between FXTS(Q) and GX(r). Conse-

quently, the atomic form factors are approximated by assuming that form factors

for different atomic species vary similarly with Q but are scaled by the number

of electrons in that atom, i.e., fj(Q) = ejfe(Q) where ej is the number of elec-

trons for atom j, and fe(Q) is the average scattering factor per electron, given by

fe(Q) =
∑n

j=1 cjfj(Q)/
∑n

j=1 cjZj where Zj is the atomic number of atom j. With

this approximation, we can define the relation between the total and partial pair

distribution functions:

GX(r) =
n∑

j,k=1

cjck
ejek

〈∑n
i=1 ciZi〉2

[gjk(r)− 1] (1.25)

which can be Fourier transformed without any convolution, so this approximation

is what we aim to get when converting X-ray total scattering data to real space.

In X-ray total scattering, since the X-ray scattering factors decrease in in-

tensity at high Q, a sharpening factor is used. Using the definition of the total
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scattering structure factor as the difference between the differential cross section

per atom and the self-scattering term, the sharpening term B(Q) is included:

FXTS(Q) =


 1

N

dσ

dΩ
−

n∑

j=1

cjfj(Q)2


 /B(Q) (1.26)

There are two forms for B(Q) with different cases for using each of them[19]. Most

frequently B(Q) =
(∑n

j=1 cjfj(Q)
)2

is used, but there are some systems where the

use of this function still retains Q dependence to the total scattering structure fac-

tor, which can inhibit refinement programs from finding the best fit to the PDF. In

systems which can be expected to show this behaviour, such as uncorrelated sys-

tems, this problem is alleviated by using B(Q) =
∑n

j=1 cjfj(Q)2 as the sharpening

function.

The Fourier transform between the total scattering structure factor and the

pair distribution function involves an integral over Q from 0 to ∞. In real ex-

periments however, an infinite Q cannot be reached and the integral is performed

between a Qmin and Qmax, which are instrument dependent. The effects of inte-

grating from Qmin can largely be ignored in crystalline materials since it would only

effect very low frequency information. In contrast, truncating the upper end of the

integral at a finite value introduces fluctuations into the data, known as termination

ripples, since the Fourier transform of a box function is a sinc function, which gets

convoluted with the PDF and must be accounted for in data analysis. This effect

is more significant for lower values of Qmax. The value of Qmax also determines

the resolution in real space, since ∆r = 2π/Qmax, and a high Qmax is consequently

desirable. Real diffraction data also has a finite reciprocal space peak width, dQ,

which can supress the higher radius parts of the PDF. In addition, diffraction peaks

typically are broader at higher Q, serving to broaden the PDF peaks. These last

two parameters are typically refined using a standard.

When converting total scattering data into pair distribution functions, we

want to minimise contributions from sources of scattering that aren’t the sample

since, as we can see from the definition of the partial pair distribution functions, PDF

data is on an absolute scale. Therefore measurements of the sample environment

and an empty beam must be taken and subtracted from the scattering data with the

sample. The self-scattering must also be subtracted, but this can’t be distinguised

from the differential scattering and consequently introduces features into the low-r

region of the PDF after conversion to real space. To account for this, as well as any

other effects that may produce a Q-dependent background, the data is convolved
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with a top hat function given by T (Q) = 3/4πQ3
T for Q ≤ QT and 0 otherwise.

Typically, QT = 3/rmin is used, where rmin is the minimum radius of the PDF, below

which there are no physically plausible peaks present in the PDF. The convolved data

is then subtracted before the Fourier transformation is performed. Other factors

that need to be taken into account for converting X-ray total scattering data are the

beam polarisation and Compton scattering factor, which can both reduce the atomic

form factor. For both types of total scattering, the efficiency of sample packing in

its container must also be considered. Typically, a 50 % packing fraction is assumed.

1.2.8 X-ray Sources

There are two primary ways to generate X-rays for use in diffraction experiments.

The laboratory-based method uses a high voltage to accelerate electrons towards a

target. The high energy of the electrons is then converted to radiation and heat

upon striking this target. The emitted radiation consists of a continuous spectrum

of X-rays. The spectrum of radiation emitted also contains spikes at energies charac-

teristic of the elements which comprise the target. These energy spikes are what we

use for diffraction experiments, and the target material is chosen for its particular

characteristic energies. Commonly, light metals such as copper or molybdenum are

used. The beam produced from such a source typically doesn’t have a high enough

Qmax to produce decent quality total scattering data, therefore these sources are

not used in this thesis. Recently however there have been instruments manufac-

tured that can perform total scattering in a laboratory environment, which is a key

step in making the technique more accessible. These instruments require detectors

with good counting statistics and the use of shorter wavelength, and therefore higher

energy, X-rays from Ag sources.

Another method of producing X-rays is to use a synchrotron source. Syn-

chrotron radiation is the radiation emitted from an accelerating charged particle

travelling at near the speed of light. In synchrotron sources, electrons are made to

constantly accelerate by steering them in a large circle using a magnetic field. The

electrons are accelerated to a very high energy (3 GeV at Diamond Light Source,

the UK’s national synchrotron facility) and as a result of this, the magnetic fields

need to be very strong and the radius of the main storage ring needs to be large. Di-

amond Light Source has a main storage ring with a circumference of 561.6 m inside

a 738 m circumference building. Other synchrotrons are even larger. For example,

the storage ring of PETRA III at DESY in Hamburg is 2.3 km in circumference.

The X-rays produced tangentially from the orbiting electrons are guided to different
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Figure 1.5: The layout of the I15-1 beamline at Diamond Light Source. Taken from
[2]

beamlines vis an array of optics. An example of this, for the beamlines I15 and I15-1

at Diamond Light Source, is shown in Fig 1.5. Each beamline has a specialised set

of optics equipment to best serve its main functions. The result of this is a source of

X-rays that has a much higher energy and flux than laboratory sources, with many

specialised techniques available. For diffraction experiments, this results in a higher

Qmax and greater resolution and a much shorter collection time. In addition, the

synchrotron radiation is horizontally polarised in the plane of the electron orbit.

The former aspect allows total scattering measurements to be performed, whilst the

latter allows more measurements to be done in a given window of time. The flux

tends to be significantly higher for synchrotron X-ray sources than neutron sources,

although to a much lesser degree than the increased flux compared to laboratory

sources. For the work carried out in this thesis, the I15-1 beamline at Diamond

Light Source and the P02.1 beamline at PETRA III have been used.

In total scattering experiments, the detector is quite close to the sample so

as much of the total Q-range as possible can be measured without having to increase

the size of the detector. For dedicated PDF beamlines, a 2D detector is used, with

the centre of the beam either at one corner of the detector to maximise the Q-range

for a given beam wavelength or at the centre, providing a higher count rate since

the former set up only collects a portion of the diffraction rings. Dual-purpose
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Figure 1.6: The standard experimental setup of the P02.1 beamline at PETRA
III. The area detector is used to collect both total scattering and standard powder
diffraction patterns, since it can be moved further from or closer to the sample.
Diagram taken from [3]

beamlines, such as P02.1 at PETRA III, which need to collect both total scattering

and powder diffraction data, can use a movable detector to switch between the two

experiments (Fig 1.6) In addition, dedicated total scattering beamlines typically use

shorter wavelength X-rays in order to access higher Q.

1.2.9 Neutron Sources

There are two methods to produce neutrons. The first employs the fission reaction of

a nuclear reactor. In the fission reaction, a thermal neutron (5-10 meV) is absorbed

by a 235U nucleus which then becomes unstable. The unstable nucleus splits into

a few lighter nuclei, releasing neutrons in the process (2.5 on average). Some of

these emitted neutrons keep the chain reaction going, while the rest can be used

for neutron diffraction. Neutron beams produced by a reactor source are usually

monochromated.

The other method to produce neutrons is spallation. In this process, a high

energy beam of protons, typically around 1 GeV, is shot into a heavy metal target

such as mercury or tungsten. The impact causes many particles to spall off the tar-

get, including neutrons. The process produces between 20-30 neutrons per incident

proton which are then channelled to the different instruments. The flux produced
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by a spallation source is higher than a reactor source, but the signal is pulsed. Both

reactor and neutron sources produce high energy neutrons which need to be slowed

down for use in experiments. This is done by placing moderators formed of light

elements, which can slow the neutrons down by inelastic scattering, around the

source.

The neutron beam produced by a spallation source has a range of wavelengths

and the instruments make use of this by taking advantage of the pulsed nature of

the beam. The detector is placed at a fixed distance and angle from the sample and,

since the de Broglie wavelength of the neutron is determined by its velocity, neutrons

of different wavelengths will arrive at different times after the pulse. This is known

as the time-of-flight method. After the neutrons are produced by the impact of the

proton beam on the target, they are channelled to different instruments surrounding

the target station.

Since spallation sources have a broad range of wavelengths compared to re-

actor sources, neutron diffraction patterns can be measured over a greater Q-range.

The source can also be tailored further to give a greater Q-resolution, meaning that

spallation sources such as ISIS in the UK are preferable for total scattering mea-

surements. Instruments used for total scattering experiments typically have multiple

detector banks at different angles, to capture as much of the diffracted beam as pos-

sible. For example, the two primary total scattering instruments at ISIS, GEM and

POLARIS, have 8 and 5 detector banks, respectively.

1.2.10 Data Analysis

In modern crystallography, computer programs are used to determine a crystal struc-

ture from diffraction data. The following discussion of Bragg diffraction data will

focus on X-ray powder diffraction data, since any neutron Bragg data that appears

in this thesis has been refined by others, as stated in the declaration and analysis

of single crystal data is beyond the scope of this work.

The main problem with analysing powder diffraction data is that the peaks

from different hkls can overlap if they cause the beam to diffract at similar scatter-

ing angles. There are a few methods used to overcome this problem. To reduce the

likelihood of this being an issue during data analysis, high resolution powder diffrac-

tion can be used. During data analysis, the Pawley [20] or Le Bail [21] methods can

be used to determine the unit cell metric and trim down the number of potential

space groups for the structure based on systematic absence analysis. These meth-

ods use some instrumental parameters and peak shape functions to determine the

position of the Bragg peaks and then use a least-squares approach to refine the unit
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cell parameters from an input guess. These methods don’t determine the position

of atoms within the unit cell, they just model the unit cell itself. The problem with

these methods is that overlapping peaks from hkls that aren’t symmetry equivalent

can still be obscured. These methods are useful, however, since they can verify that

a sample is single phase and accurately refine lattice parameters and peak shapes

without a structural model.

The primary method for refining crystallographic models against powder

diffraction data is the Rietveld method [22]. This method uses a structural model,

consisting of lattice parameters, space-group symmetry and fractional coordinates,

as an input to calculate a powder diffraction pattern. This model is then refined

using a least-squares approach. The least-squares method minimises
∑

iwi(yi,o −
yi,c)

2, where yi,o and yi,c are the observed and calculated intensities at some point,

i, wi is the weight given to that point and, typically, the weight wi = 1/σ2(yi,o)

is used, where σ(yi,o) is the error in data point, yi,o. In Rietveld refinement, the

calculated intensities are convoluted with a peak shape function. This function is

usually a pseudo-Voigt function, which is a combination of Gaussian and Lorentzian

peak shapes. The quality of a fit is determined by its weighted-profile R-factor which

is given by

Rwp =

√∑

i

wi(yi,o − yi,c)2/
∑

i

wiy2
i,o (1.27)

These methods require some instrument-dependent parameters to be determined by

refinement of a standard sample, typically silicon. These include the wavelength or

emission profile of the radiation, the peak shape parameters, the zero error of the

instrument and an axial divergence parameter. A zero error will shift the scattering

angle of the Bragg peaks, while an axial divergence to the beam can cause an

asymmetric peak shape. In addition, a background, which arises from inelastic

scattering of the diffracted X-rays as well as scattering from the air and sample

environment, is modelled, usually with a polynomial function.

For refinements of crystallographic models using pair distribution function

data, there are two commonly used methods. The first is similar to Rietveld re-

finement of Bragg peaks, where a unit cell is refined. In this technique however, it

is not the structure factors that are calculated and refined, but the possible pairs

within the structure. The quality of fit is still reported using the weighted R-factor

as defined above. This type of technique is termed a “small box” technique, in con-

trast to the second common method of modelling PDF data. Small box analysis of

PDF data is most commonly performed using the PDFGui [23] or Topas Academic

software [24].
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The other commonly used method of analysing PDF data is the Reverse

Monte Carlo (RMC), or “big box”, technique [25, 26] In this method, a large super-

cell is built and atoms within it are allowed to move at random. If a move reduces

some overall “energy” function, then the RMC algorithm accepts the move. There

is also a small probability that the algorithm accepts a “bad” move. The “energy”

used in RMC modelling includes a function similar to the R-factor for small box

refinements, but constraints can also be included. For example, interatomic poten-

tials can be used as a constraint to stop the atoms getting too close together. In

addition, an R-factor for the Bragg data is also typically used, which ensures the

resulting atomistic configurations obey the average structure.

Both small- and big-box methods have been used to try and evaluate lattice

dynamics from PDF data. Small-box methods involve the pre-selection of a standard

phonon model and the refinement of the PDFs associated with the model against

experimental data. The process was found to be accurate for only simple models, and

has a degree of user input bias[27, 28, 29]. Big-box methods of extracting dynamics

from total scattering data involve using the reverse Monte Carlo method to generate

a large number of atomistic configurations, all of which are consistent with the input.

A phonon dispersion curve is then constructed from these, using methods developed

for molecular dynamics[30, 31]. These methods have their limitations, which is the

main motivation for the novel technique presented in this thesis.

The refinements of both Bragg and PDF data performed in this thesis use

the Topas Academic software version 6.

1.3 Phonons and Symmetry

The classical view of temperature is the vibration of atoms about their equilibrium

positions. These vibrations give rise to a number of important properties including

thermal expansion, which will be discussed later, in section 1.4. Unlike in fluids or

amorphous solids, we can get a good idea of the positions of atoms in crystals using

diffraction techniques. If we can then determine the forces between atoms, we can

gain an understanding of how the atoms oscillate within a crystal. The derivations

for phonons in 1D crystals follow the typical arguments[32, 5, 33]. For the general

case, I follow the arguments laid out by Dove[32]. We can also determine the atomic

displacements associated with phonons from the space group of the crystal using

representation theory. The arguments presented in section 1.3.4 follow the work of

Stokes and Hatch[34]. A layman description of the terminology used in that section

has been written by Senn[35].

22



1.3.1 Lattice Dynamics in one dimension

a
J

a

J

M m

Figure 1.7: A diagram showing the one dimensional monoatomic (top) and diatomic
chain (bottom) models, showing the repeat unit of length a in each case.

Imagine a chain of N atoms in one dimension, each separated by a distance

a from its nearest neighbour in each direction with an energy, E, dependent only on

a nearest neighbour interaction, φ(a) (Fig 1.7). At rest, the energy of this chain will

be given by E = Nφ(a). If each atom is displaced by some distance un, n ∈ [1, N ]

from its equilibrium position, the total energy of the chain will be increased, since

the unperturbed chain is the local ground state. We can calculate the increase in

energy using a Taylor series:

∆E =
∞∑

α=1

1

α!

∂αφ

∂uα

N∑

n=1

(un − un+1)α (1.28)

The nearest neighbour separation, a, represents a minimum in the energy since

it is the equilibrium separation and, therefore, the first derivative in the above

equation will be zero. We also ignore terms for α > 2, which results in the energy

being equivalent to a series of harmonic oscillators. This is known as the harmonic

approximation. The main reason for doing it is that anharmonic equations do not

have exact solutions, so simplifying it to only the harmonic contribution allows exact

solutions to be calculated. This is justified in a physical sense since the displacements

caused by lattice vibrations are, in general, small when compared to the distances

between atoms, so higher order terms will have a vanishingly small contribution.

Analogously to the simple harmonic oscillator, we can define an effective “spring

constant”, J , between the atoms with J = ∂2φ/∂u2 and ∆E = (J/2)
∑N

n=1(un −
un+1)2. Using Newton’s second law, we can write an equation of motion for the nth
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atom:

m
∂2un
∂t2

= −∂E
∂x

= −∂(∆E)

∂un
= −J(2un − un+1 − un−1) (1.29)

using periodic boundary conditions for n = 1 and n = N , i.e., for n = N , n+ 1 = 1.

The solution for a harmonic oscillator is a plane wave so we assume a solution

corresponding to a superposition of plane waves:

un(t) =
∑

k

Ak exp[i(kx− ωkt)] (1.30)

where x = na, k is a wave vector and Ak and ωk are the amplitude and angular

frequency of the wave with wave vector, k, respectively. We substitute this into the

equation of motion, which results in:

mω2
k = 2J(1− cos ka) (1.31)

This can be rearranged using trigonemtric identities to give a solution for ωk in

terms of k, known as the dispersion relation:

ωk = 2

√
J

m
| sin(ka/2)| (1.32)

where we are taking positive roots only, hence the absolute value of sin(ka/2)

appearing in the above equation. This equation (1.32) is periodic with a repeat unit

of 2π/a, i.e., if we add a reciprocal lattice vector, a∗ = 2π/a, to k, we retain the same

frequency and hence all the information is given by waves with |k| ≤ π/a. The edges

of this region, k = ±π/a, define the boundary of the first Brillouin zone (BZ). The

Brillouin zone can be thought of as a reciprocal space unit cell3 and points within

it are usually described in terms of a reduced wave vector, obtained by dividing the

wave vector by the reciprocal lattice vector. For example, in the above example, the

boundaries of the BZ are given by reduced wave vectors k∗ = ±1/2. The BZ is also

symmetry dependent, and high-symmetry points of it are given labels, depending

on the symmetry of the lattice. For all symmetries, the BZ centre, [0 0 0], is labelled

Γ, and, for a primitive cubic lattice, the high symmetry points [1/2 0 0], [1/2 1/2

0] and [1/2 1/2 1/2] are labelled X, M and R respectively. The face-centred and

body-centred cubic BZs will be different, since some reciprocal lattice points will be

missing due to systematic absences. These systematic abscences can increase the

3In reality, the Brillouin Zone is a Wigner-Seitz cell of the reciprocal lattice. A Wigner-Seitz
cell is the volume around a lattice point that encompasses all points in space closer to that lattice
point than any other.
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Figure 1.8: A diagram showing the high symmetry points of the primitive cubic
Brillouin Zone.

size of the BZ in certain directions.

The number of possible wave vectors within one BZ is finite since we have a

finite chain of atoms. The number can be determined using the periodic boundary

conditions since atom N must behave in the same way as atom 0 and using the

equation for un(t = 0), we have exp(ikNa) = exp(0) = 1, giving

k =
2πm

Na
(1.33)

where m is an integer.

In the dispersion relation for this simple system, if we consider the angular

frequency, ω, in the long wavelength limit (k → 0), the dispersion will approximately

be linear:

ω(k → 0) = a
√
J/m|k| (1.34)

giving a constant phase velocity, meaning long wavelength waves with different wave-

lengths can travel through a solid without breaking up. This is the reason that low

frequency noises can travel through solids without distortion. The phase velocity

of these modes give the speed of sound in the solid. Due to this connection with

sound waves, these modes are termed acoustic modes. They are the only type of

mode for the simple case of a chain of identical atoms, but more complex systems
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have another type of mode.

Now, consider a chain of atoms alternating between two different types, one

of mass m and another of mass M , as shown in Fig 1.7. Atoms of the same type

are separated by a distance, a, and the atoms are equally spaced when at rest. As

before, there is a force constant, J , between neighbouring atoms. For this case, we

get a more complicated dispersion relation:

ω2
k = J

(
1

M
+

1

m

)
± J

√(
1

M
+

1

m

)2

− 4 sin2(ka/2)

Mm
(1.35)

which has two solutions (or branches). These solutions are plotted in Fig 1.9. The

first has the same behaviour as the acoustic modes, as described previously, while

the second solution is non-zero at the zone centre and varies weakly with k. This

branch is termed the optic mode.

In the three-dimensional picture, displacements can either be along the chain

or perpendicular to it. Using this we can classify the modes further, as they can

be either longitudinal or transverse and optic or acoustic. When this model of a

diatomic chain is expanded to systems with n atoms in a unit cell, there will always

be 3 acoustic branches, 2 of which will be transverse, and 3(n-1) optic branches.

1.3.2 General Description of Lattice Dynamics

It gets increasingly difficult to solve specific cases when the picture gets more com-

plex than the one-dimensional diatomic chain. Therefore, we will continue by dis-

cussing how the phonon frequencies are calculated in a general case. Similarly to

the simple case, we can use Newton’s laws to determine an equation of motion and,

therefore, we will need to define a lattice energy :

E =
Z

2

∑

κ,κ′
φ

(
κ

κ′

)
(1.36)

where φ is the interaction energy between atoms κ and κ′ in the unit cell and Z

is the number of unit cells. As before, we determine the change in energy due to

displacements of these atoms, although these are now vector quantities:

uκ,α =



uκ,x

uκ,y

uκ,z


 (1.37)
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Figure 1.9: A plot of the frequencies of the diatomic chain model. For this solution,
a coupling constant of J = 1 and atomic masses M = 3 and m = 1 were used.

The energy per unit cell is given by a Taylor expansion:

E = E0 +
∑

κ,α

∂E

∂uκ,α
·uκ,α+

1

2

∑

κ,α,κ′,α′
uκ,α ·

∂2E

∂uκ,α∂uκ′,α′
·uκ′,α′+O(u3

κ,α)+ ... (1.38)

The first order term,
∑

κ,α
∂E
∂uκ,α

· uκ,α is just the force on atom κ, which at equi-

librium is zero so we can ignore it, as in the one-dimensional case. We also use

the harmonic approximation, leaving us only the 2nd order term. This term can be

simplified by defining a force constant matrix:

Φκ,κ′
α,α′ =

∂2E

∂uκ,α∂uκ′,α′
(1.39)

This force constant matrix encapsulates the symmetry of the system, since if there

are two or more symmetry equivalent directions then the force an atom feels from

those directions will be equal. For example, consider the structure of rock salt,

NaCl. Each Na atom has a neighbouring Cl atom at some distance a either side

of it in both directions in each cartesian direction, with an equal magnitude force
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coming from each Cl atom.

Using this force constant matrix, the equation of motion will be:

mκ
∂2uκ,α
∂t2

= −
∑

κ′,α′
Φκ,κ′
α,α′ · uκ′,α′ (1.40)

into which we can substitute a plane wave solution:

uκ,α =
∑

k,ν

Uν,κ,α,k exp[i(k · rκ,α − ω(k, ν)t)] (1.41)

This yields an eigenvalue equation for the frequencies:

ω2(k, ν)ε(k, ν) = D(k)ε(k, ν) (1.42)

where the polarisation vectors ε, which describe the direction of displacement of

each atom for each mode, ν, are 3n dimensional (n being the number of atoms per

unit cell) and given by:

ε(k, ν) =




√
m1Ux(1,k, ν)
√
m1Uy(1,k, ν)
√
m1Uz(1,k, ν)

...
√
mnUx(n,k, ν)
√
mnUy(n,k, ν)
√
mnUz(n,k, ν)




(1.43)

and D(k) is a 3n× 3n matrix called the Dynamical matrix. The dynamical matrix

is obtained by a Fourier transform of the force constant matrix and hence will also

be dependent on the symmetry of the lattice:

Dκ,κ′
α,α′ =

1√
mκmκ′

∑

α

Φκ,κ′
α,α′ exp[−i(k · rα)] (1.44)

The basic principle behind ab initio methods to calculate phonon frequencies

and eigenvectors is to determine the force constant matrix by calculating the change

in forces when atoms in an input structure are physically displaced.
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1.3.3 Anharmonic Effects

In the previous treatment of lattice dynamics, terms of a higher order than the

second differential of energy were ignored. This is a useful approximation since

it allows us to find exact solutions for the phonon frequencies, but the harmonic

approximation fails to account for a number of important properties. One of them is

thermal expansion, which will be discussed in more detail in the next section. In the

harmonic approximation, each phonon acts independently but in the full anharmonic

Hamiltonian, phonons can interact with each other. Due to the small displacements

involved with lattice dynamics, typically only quartic terms are considered.

An important aspect of the field of crystallography that requires anharmonic

effects are phase transitions. If we take a snapshot at some point along the propaga-

tion vector of a phonon, the displacements it causes will temporarily break some of

the symmetry elements of the space group, whilst, on the time average, the crystal

still obeys them. If at some point it becomes preferable in energy for these displace-

ments to be permanently frozen in to the structure, then the symmetry elements that

are broken by the phonon mode remain broken, and the structure will be described

by a new, lower symmetry space group. Typically, the higher symmetry structure

is referred to as the “parent” space group, whilst the structure it becomes after a

phase transition is the “child”. This is the basic idea of the “soft mode” theory

of phase transitions, i.e., a displacement of atoms along a phonon eigenvector of a

material in a metastable state can cause a transition to a lower energy polymorph.

If a phase of a material is unstable with respect to certain phonon eigenvectors,

then the eigenvalues of those eigenvectors of the dynamical matrix will be negative

when calculated for that phase, meaning that they are associated with phonons of

imaginary frequency. A material which is stable has to become unstable somehow,

which is where anharmonic effects come in. Consider a system with a Hamiltonian

of the form:

H =
1

1
mv2 +

1

2
k|x|r (1.45)

where m is the mass of the oscillator, k is the effective spring constant, v is the

velocity and x is the displacement of the oscillating atom. The frequency of this

oscillation is proportional to x
r/2−1
max , where xmax is the amplitude of the oscillation.

For values of r > 2, i.e, anharmonic oscillations, the frequency is dependent on

the amplitude of vibration[36]. Since the amplitude in turn is dependent on tem-

perature, this means the frequencies are also temperature dependent. While the

temperature variance of phonon frequencies occurs due to anharmonic effects, it

is usually modelled with a pseudo-harmonic approximation. The frequencies are
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renormalised from their harmonic values. When considering only harmonic and

quartic terms, and in the simplest case where the phonon coupling constants are

temperature independent, the renormalised frequencies, ω2, are linearly dependent

on temperature:

ω2(k, j) = ω2
0(k, j) +

1

2
kBT

∑

k′,j′

α4(k,k′, j, j′)
ω2

0(k′, j′)
(1.46)

where ω2
0 are the harmonic phonon frequencies and α4 are the 4th order anharmonic

coupling parameters[32, 37]. If the square of the phonon frequency is temperature

dependent, then lowering the temperature could lower ω2 below zero at some critical

temperature, at which point the phase transition occurs.

Modes which are low frequency and hence likely to cause transitions are called

soft modes. Often, the wave vector of a soft mode is a high-symmetry point, meaning

it lies at the centre or on the boundary of the BZ. While the temperature variance

of phonon frequencies occurs due to anharmonic effects, it is usually modelled with

a pseudo-harmonic approximation.

Landau theory is often used to describe phase transitions, particularly con-

tinuous phase transitions. In Landau theory, the Helmholtz free energy is written

as a functional of some parameter of interest, dubbed the order parameter. For

example, the free energy of a ferromagnetic material can be written as a function of

the magnetisation, m:

F (T,m) ≈ F0 + a0(T − Tc)m+
b0
2
m4 (1.47)

where F0 is some ground state free energy, Tc is the critical temperature of the

ferromagnetic transition and a0 and b0 are constants. The ground state of a sys-

tem at any given temperature is the minimum of the free energy and the minimum

of equation 1.47 with respect to the magnetisation is at m = 0 for T > Tc and

when m2
0 = −(a0/b0)(T − Tc) for T < Tc, meaning that below the critical tem-

perature, the material has a permanent magnetisation of ±m0. The amplitude of

a soft mode can be used as an order parameter for a phase transition in Landau

theory. When discussing phonon modes in the language of group theory, the idea

of an order parameter becomes more complex due to multi-dimensional irreducible

representations. The Landau potential is written as a linear combination of sets of

polynomials in the components of the order parameter. These polynomials must be

invariant under all of the symmetry operations of the parent space group[38, 39].

In this thesis, order parameters will be classified according to the irreducible
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representations that they transform as, and the irreducible representation label will

be used interchangeably to refer directly to the order parameter.

1.3.4 Representation Theory

The collection of symmetry operations that act on a crystal, together with the

operation of combining these symmetry elements, form a mathematical construct

known as a group, hence the term space group in crystallography. A group, G, has

a set of conditions which it must satisfy:

(a) If a, b ∈ G, then c = a ◦ b is also a member of G

(b) If a, b, c ∈ G, then a ◦ (b ◦ c) = (a ◦ b) ◦ c

(c) There is an identity element E ∈ G that satisfies the condition E ◦a = a◦E = a

for all a ∈ G

(d) For each a ∈ G, there is an inverse element a−1 that satisfies the condition

a ◦ a−1 = a−1 ◦ a = E

This means that any combination of two symmetry elements is another sym-

metry element of the space group, and that the action of each symmetry element

can be “undone” by another. If we form a vector space4 to describe the positions

of atoms in a unit cell, we can represent the action of the symmetry elements on

the vectors in the vector space as matrices. This is the core idea of representation

theory - we can convert a problem in group theory to one in linear algebra. The

matrix that describes the action of a symmetry element is the representation of that

symmetry element. The different representations must still obey the conditions that

make them elements of a group. We can also consider the action of these matrices

upon a distortion space: a vector space consisting of the atomic displacements of

the atoms in a crystal. For an example of this, consider an arrangement of atoms in

the x− y plane, with positions r1 = (a, 0), r2 = (−a, 0), r3 = (0, b) and r4 = (0,−b)
(Fig 1.10). We can define a point group (2mm) of symmetry elements which these

objects obey consisting of:

(a) E, the identity operator

(b) C2z, a rotation of 180◦ about the z-axis

4A vector space is a set of vectors over some field, usually a multi-dimensional real space in this
section. Similarly to a group, there are a list of axioms the vectors must obey to be described as a
vector space.
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(c) mx, a mirror plane along the x-axis

(d) my, a mirror plane along the y-axis

which obey the rules for a group since all four elements are their own inverse.

If we define a vector which consists of the atomic displacements in the x and y plane

u = (u1x, u1y, u2x, u2y, u3x, u3y, u4x, u4y) (1.48)

we can then define matrix representations for the symmetry operations, since we

know the result of applying the operations to the above vector. For example, if we

apply the mirror in the x-axis to the general vector of displacements, we get the

following:

mx(u) = (u1x, u1y, u2x, u2y, u4x,−u4y, u3x,−u3y) (1.49)

meaning we can use the following representation:

mx →




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −1

0 0 0 0 1 0 0 0

0 0 0 0 0 −1 0 0




(1.50)

If the matrix representation of a space group element can be converted by a similar-

ity transformation5 to a block diagonal matrix6 then that representation is said to

be reducible7. If the set of matrices forming the diagonal blocks cannot be reduced

in any way, then the set of block matrices forms an irreducible representation. This

effectively constitutes a change of basis8 for the vector space, to a new set of basis

5Two matrices A and A′ are similar if A′B = BA for some invertible matrix B. The similarity
transform from A to A′ is then given by BAB−1 = A′, where B−1 is the inverse of B. Diagonalisation
is a form of similarity transform.

6A block diagonal matrix is a type of square matrix, the diagonal elements of which are smaller
square matrices and off-diagonal elements of which are zero.

7For a representation to be reducible, all the matrices that constitute the representation must
be able to be converted to a block diagonal form. If this is not possible, then the irrep is multi-
dimensional, meaning that the displacements associated with the irrep are not independent with
respect to at least one of the symmetry elements of the space group.

8A basis for a vector space is a set of vectors that span the vector space, by which we mean every
component of the vector space can be expressed as a sum of scalar products, or linear combination,
of the basis vectors. In addition, the basis vectors must be linearly independent of each other. The
dimension of a vector space is the number of basis vectors.
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Figure 1.10: A diagram showing the arrangement of atoms used for examples in this
section.

vectors that are collective displacements of the atoms, rather than displacements of

one atom in one direction.

To demonstrate this generally, consider a particular vector u in the vec-

tor space of atomic displacements, S. We can form an n-dimensional subspace

of S, S′, by operating on u by every symmetry element g of the space group G.

Using the previous example, the vector u = (u, 0, 0, 0, u, 0, 0, 0) produces the vec-

tors mx(u) = (0, 0,−u, 0, u, 0, 0, 0) , my(u) = (u, 0, 0, 0, 0, 0, u, 0) and C2z(u) =

(0, 0,−u, 0, 0,−u, 0). The set of vectors {gu} span S′, i.e., all linear combinations

of these vectors are also members of S′. If we define a basis of S′, then the action

of a symmetry operation, g, on one of these basis vectors can be expressed as a
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linear combination of the basis vectors. The coefficients of this linear combination

form an n-dimensional square matrix, with a different matrix for each symmetry

element. These matrices relate to each other in the same way as the symmetry

elements do, therefore they form a representation of G. For example, the subspace

generated by u = (u, 0, 0, 0, u, 0, 0, 0) has basis vectors u1 = (1, 0, 0, 0, 0, 0, 0, 0),

u2 = (0, 0, 1, 0, 0, 0, 0, 0, 0), u3 = (0, 0, 0, 0, 1, 0, 0, 0) and u4 = (0, 0, 0, 0, 0, 0, 1, 0).

This subspace contains all displacements in the x-direction. A general vector in this

subspace is φ = au1 + bu2 + cu3 + du4, which we can write as φ = (a, b, c, d). By

considering the action of the symmetry elements on the basis vectors, we can build

a representation in this subspace:

D(mx) =




0 −1 0 0

−1 0 0 0

0 0 1 0

0 0 0 1




D(my) =




1 0 0 0

0 1 0 0

0 0 0 −1

0 0 −1 0




(1.51)

D(C2z) =




0 −1 0 0

−1 0 0 0

0 0 0 −1

0 0 −1 0




D(E) =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




(1.52)

These representations are all equal to their own inverse and follow the mul-

tiplication rules for the point group.

If we do the same process for a new vector u′, orthogonal to every vector

in S′, we form a new subspace S′′, which has no overlap with S′. All the vectors

in each subspace are orthogonal to each other, including the basis vectors. We can

repeat this process until the original vector space is fully decomposed. The sum of

the dimension of these subspaces is the same as the dimension of the parent space,

and each subspace has basis vectors that are orthogonal to the basis vectors of all

the other subspaces. Therefore, the basis sets of each representation forms a basis

set of the distortion space, S. For example, we can construct a subspace, orthog-

onal to the previous example, containing all the displacements in the y-direction.

The two subspaces have no overlap, since x-displacements can not be transformed

into y-displacements under the symmetry operations of the 2mm point group, and

vice-versa. The new subspace will have 4 basis vectors, orthogonal to those of the

x-subspace and has a dimension of 4. Adding this to the dimension of the previous

subspace (also 4) gives the dimension of the parent space.
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If, for some vector u and subspace S′, we can find another vector u′ in S′

such that the set of vectors {gu′} span a subspace with a dimension smaller than

that of S′, then the matrix representation of S′ is reducible. We can repeat this

process until we have a set of matrices which form an irreducible representation. As

before, the basis vectors corresponding to the irreps of the fully decomposed vector

space, S, form a basis set for S. Consider again the arrangement of atoms in the

x − y plane, with positions r1 = (a, 0), r2 = (−a, 0), r3 = (0, b) and r4 = (0,−b)
and with point group 2mm. We can choose a vector u = (u, 0,−u, 0, 0, 0, 0, 0)

which is invariant under the elements of 2mm and forms a subspace on its own

with irreducible representation matrices, D(my) = D(mx) = D(C2z) = 1. The

vectors u′ = (0, u, 0, u, 0, 0, 0, 0) and u′′ = −u′ form a subspace since they are both

invariant under the mirror planes but D(C2z)u
′ = u′′ and vice versa. The subspace

is one-dimensional, however, since both vectors can be described using a single basis

vector. This brings up a key aspect of the basis vectors: if two basis vectors can be

transformed onto each other using symmetry elements of the parent space group,

then they transform as the same irrep.

In the above examples of irreducible subspaces, the irreducible representa-

tion matrices are one dimensional. There are, however, cases where representations

cannot be reduced to a single dimension. Multi-dimensional irreps mean that the or-

thogonal displacement vectors associated with them are physically indistinguishable

from each other once the symmetry elements of the parent space group have been

applied[40]. For example, the representations in equation 1.51 can be broken down

into two-dimensional block diagonal matrices, meaning that the x-displacements of

the atoms at positions r1 and r2 are not independent. The same is also true of the

x-displacements of the atoms at positions r3 and r4.

From this discussion of irreducible representations and atomic displacements

we can see that they are important when discussing lattice dynamics. The reason

we use them is that the eigenvectors of the dynamical matrix correspond to the

modes associated with the irreducible representations, so we can determine phonon

eigenvectors for high symmetry systems at high symmetry BZ points based only

on the structure of a material, without needing to consider the forces between the

constituent atoms. This is the basis of the method outlined in chapter 2: we can

analyse the local structure of a material by determining how it deviates from the

average along basis vectors associated with the irreducible representations of the

parent space group. Another useful property of irreducible representations is that

the number of them is dependent on the number of conjugacy classes[41]9 in the

9A conjugacy class of a symmetry element gk in a space group G consists of the symmetry
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space group, so different structures with the same space group symmetry will have

the same set of irreps but different distortions associated with them. If two different

structures are related, then the distortions associated with each irrep will also be

related, provided a consistent setting is used for the structures. For example, the

materials isostructural to ReO3 can be thought of as A-site deficient perovskites

and when I perform the mode parameterisation of these materials and compare it

to that of a normal perovskite, the modes associated with an irrep in ReO3 are a

subset of the modes associated with the same irrep of the ABX3 perovskite.

As discussed in a previous part of this section, collective distortions of atoms

in a crystal are associated with symmetry-breaking phase transitions. If the distor-

tion described by a vector, u, gets frozen in to the structure, the new space group,

G′, is a subgroup of the parent space group, G, so it still obeys the definition of

a group but with a smaller set of symmetry elements. The new space group will

contain the symmetry elements that leave u invariant, i.e., gu = u. This means

that for elements that are in G but not G′, the relation gu = u no longer holds.

Now let us suppose that u can be written as a linear combination of basis vectors

u1, u2 and u3 of a 3-dimensional irreducible subspace, i.e., u =
∑3

i=1 ciui. In this

subspace, each symmetry element g has an irreducible matrix representation D(g),

so we can write the action of a symmetry element on u as

gu =

3∑

j=1

(
3∑

i=1

Dji(g)ci

)
uj (1.53)

From this equation, it can be seen that the relation gu = u holds if the rela-

tion gc = D(g)c is true, where c is a vector containing the coefficients ci. Therefore,

the vector of coefficients determines which symmetry elements are broken. Since

the amplitude of a distortion can be used in Landau theory as an order parameter,

the vector of coefficients is termed an order parameter direction.

When applying representation theory, tools such as ISODISTORT[42] are

used since they automate a rather complex procedure. ISODISTORT takes an

input structure file and uses the known irreps of the space group to generate a full

set of basis vectors for the distortion space classified by their associated irrep and

a matrix to change from the generated distortion mode basis to a simple cartesian

basis. This matrix allows us to implement this basis in refinement programs such as

TOPAS since we can determine how varying the amplitude of a particular distortion

elements gj = g−1
n gkgn, with gn running through G.
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mode changes the positions of the atoms in the unit cell.

The work presented in this thesis uses the Miller and Love notation for the

irreducible representations[43]. In this notation, the irrep label takes the form A±n ,

where A denotes the propagation vector of the distortion using its BZ label, the

subscript n is a number that differentiates the irrep from others at the same point

in the BZ and the superscript indicates whether the distortion breaks or conserves

inversion symmetry at the origin (represented by - and + respectively). The irrep

labels can change for different unit cell settings and the setting used for a given case

is stated. In addition to specifying the irrep we are considering, we often need to

specify the relationship between different components of a multi-dimensional irrep

and the different arms of a wave vector. The possible arms of the wave vector are

determined by the space group symmetry. For example, in cubic structures the

k-points [1/2 0 0], [0 1/2 0] and [0 0 1/2] are equivalent so are all arms of the

“star” of the propagation vector. To do this, we split up the different arms of the

propagation vector with semi-colons and then if the arms are multi-dimensional then

the components are split up with commas. For example, a general order parameter

direction for a 3-dimensional irrep at a k-point with only one arm (for example

the R-point) would be denoted (a, b, c). A 2-dimensional irrep with 3 arms to its

propagation vector (e.g. an X or M point irrep) would have a general OPD denoted

by (a, b; c, d; e, f).

1.4 Negative Thermal Expansion

1.4.1 Thermal Expansion

The thermal expansion of materials upon heating is so commonplace that any ma-

terial that doesn’t display this property is worthy of study. Accounting for the

volume changes of different materials with temperature is a key aspect that must be

considered when designing something expected to undergo significant temperature

changes such as devices intended for use in space, or in heaters. If a material showed

a volume contraction upon heating, termed negative thermal expansion (NTE), this

could be used to compensate for the positive thermal expansion (PTE) of other

materials. Research into NTE materials was kickstarted[44] in 1996 with the re-

discovery of large, isotropic NTE in ZrW2O8 (Fig 1.11) by Evans et al [45]. This

work also took the key step of linking the observed NTE to the crystal structure.

Before this work, reports of NTE were scarce and were often dismissed. Since then,

however, research into the area has increased significantly and several new families

of NTE materials have been discovered.
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Figure 1.11: The structure of ZrW2O8, showing the ZrO6 octahedra (green) and
WO4 tetrahedra (grey).

There are a variety of different origins of NTE and it can manifest in materials

in a number of different ways. In this thesis, I focus on materials which show negative

thermal expansion with a purely structural origin. Before introducing the theories

behind the vibrational origin of thermal expansion and any departures from it, I

will give a brief overview of the range of negative thermal expansion materials.

Framework materials, such as the AM2O8 (A = Zr, Hf and M = W, Mo) and the

Prussian blue analogues, are the most well-known class of NTE materials and have

a vibrational origin to their anomalous thermal expansion behaviour. There are a

wide range of possible origins to NTE, however.

Common non-vibrational mechanisms for NTE include the magneto-volume

effect, as exhibited by the anti-perovskite manganese nitrides[46, 47, 48], which have

a large volume contraction on transition from a low-temperature antiferromagnetic

phase to a high-temperature paramagnetic phase. Competing magnetic phases of

different volumes can also lead to NTE, as seen in the compound Hf0.6Ti0.4Fe2[49].

The magnitude of spontaneous polarisation in a ferroelectric material with a dis-

placive origin is inherently linked to the lattice parameter in the direction of polar-

isation. This spontaneous volume ferroelectrostriction is evident in the perovskite

PbTiO3, which exhibits NTE behaviour along the c-axis in its tetragonal phase[50].

Charge transfer is another possible mechanism for NTE. The ionic radius of an ion

is dependent on its oxidation state, with ions of different elements changing with

different amounts. The transfer of an electron between two neighbouring ions can

then result in a reduction in the combined ionic radii of the two ions. This process

is seen in BiNiO3, which has coexisting phases with different oxidation states at
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Figure 1.12: A plot of the interatomic potential against interatomic separation, as
defined by the Lennard-Jones potential. The position of the energy minimum is
21/6σ. Lines are drawn to show the effect of increasing temperature on the equilib-
rium separation of the two atoms, which are shown in red.

pressure above 1.5 GPa. This charge transfer transition can be brought closer to

ambient pressure via doping with La[51]. Before getting deeper into theories of why

materials might exhibit NTE, however, it is first necessary to discuss the more usual

case: why the majority of materials show positive thermal expansion.

The basic origin for the thermal expansion of a material lies in the potential

energy of two nearby atoms[52]. The simplest interaction model is given by the

Lennard-Jones potential:

V (r) = 4ε[
(σ
r

)12
−
(σ
r

)6
] (1.54)

where r is the interatomic separation, ε is the depth of the potential well and σ is the

point at which the function crosses zero. The shape of this function, displayed in Fig

1.12, is asymmetric with respect to the energy minimum which reflects the fact that

as the atoms get closer together it will become harder and harder to decrease their

separation further and that as you increase their separation, the potential energy

tends to zero. At 0 K, the atoms will have no kinetic energy and their separation

will be at the point with the lowest potential energy. As temperature is raised,

the atoms start to vibrate due to their increased kinetic energy. The asymmetric
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nature of the interatomic potential means the equilibrium point changes when the

atoms gain energy. The width of the potential well is larger on the side of increased

atomic separation, and so the equilibrium separation of the two atoms increases

with increasing temperature. This picture of thermal expansion gets more complex

when expanding it to higher dimensions and periodic solids: the impact of phonons

upon the thermal expansion of solids will be discussed later.

1.4.2 Quantifying Thermal Expansion

We can quantify thermal expansion in solids by determining the relative change in

volume for a given change in temperature at a constant pressure[36]. This coefficient

of thermal expansion is defined as:

αV =
1

V

(
∂V

∂T

)

P

(1.55)

It is also useful when discussing materials which show anisotropic thermal expansion

to define a coefficient of linear thermal expansion αL = 1
L

(
∂V
∂T

)
, but this is beyond

the scope of this thesis.

We can use standard thermodynamic relations to express αV in terms of

other thermodynamic properties. The most useful of these is to use a triple rule

relation: (
∂T

∂V

)

P

(
∂V

∂P

)

T

(
∂P

∂T

)

V

= −1 (1.56)

to express (∂V/∂T )P = −(∂P/∂T )V (∂V/∂P )T , and use the Maxwell relation (∂P/∂T )V =

(∂S/∂V )T to obtain:

αV = − 1

V

(
∂V

∂P

)

T

(
∂S

∂V

)

T

(1.57)

Using the definition of the isothermal bulk modulus, B = −V (∂P/∂V )T , this be-

comes:

αV =
1

B

(
∂S

∂V

)

T

=
1

B

(
∂P

∂T

)

V

(1.58)

Again using a triple rule relation:

(
∂S

∂V

)

T

(
∂V

∂T

)

S

(
∂T

∂S

)

V

= −1 (1.59)

we can introduce the heat capacity, CV = T (∂S/∂T )V , into the expression for the
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coefficient of thermal expansion:

αv = −CV
BT

(
∂T

∂V

)

S

(1.60)

This can be simplified by defining a quantity γ = −(∂lnT/∂lnV )S known as the

macroscopic Grüneisen parameter[53], leaving the expression for the volume coeffi-

cient of thermal expansion as

αV =
CV γ

BV
(1.61)

1.4.3 Thermal Expansion and Phonons

It was mentioned in section 1.4.1 that the thermal expansion of a bond between two

atoms is a result of the vibration of these atoms. Vibrations in crystals can be broken

down into quantised normal modes known as phonons, as discussed in section 1.3.

We can relate the frequencies of these phonons, ω(k), to thermodynamic quantities

by constructing a partition function, Z[32]. The general form for the partition

function is defined as Z =
∑∞

j=1 exp(−Ej/kBT ) where Ej is the energy of the jth

excited state. Using the properties of phonons and some series identities, this gives

us Z =
∏
k n(ωk, T ) where

n(ωk, T ) =
1

exp(h̄ωk/kBT )− 1
(1.62)

is the Bose-Einstein distribution. When accounting for the potential energy of the

crystal while the atoms are at rest and the zero-point motion, the partition function

becomes:

Z = exp(−EN/kBT )
∏

k

exp(−h̄ωk/2kBT )

1− exp(−h̄ω/kBT )
(1.63)

where EN is the potential energy of the crystal. From this, we can determine the

Helmholtz free energy,

F = −kBT lnZ = EN + kBT
∑

k

ln[2 sinh(h̄ωk/2kBT )] (1.64)

and the pressure,

P = −
(
∂F

∂V

)

T

= −∂EN
V
− h̄

2

∑

k

∂ωk
∂V
− h̄

∑

k

n(ωk, T )
∂ωk
∂V

(1.65)

We can use this expression for pressure to calculate the coefficient of thermal expan-

sion, but first we must make some approximations for the phonon frequencies. We
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cannot directly use the harmonic approximation, since the harmonic nature of the

vibrations means they don’t have an intrinsic volume dependence. To account for

this without considering anharmonic terms in the Hamiltonian, the quasi-harmonic

approximation is used[54]. In this expansion of the harmonic approximation, it is

assumed that the atomic forces change with the volume as a result of anharmonic

components of the potential energy. Since the force constants change, so do the

phonon frequencies, which can then be recalculated using the harmonic approxima-

tion. Using this, the phonon frequencies retain their lack of explicit dependence on

temperature but gain an intrinsic volume dependence. Consequently, when differ-

entiating the expression for pressure in equation 1.58 to obtain the coefficient of

thermal expansion, we can ignore all but the last term, which is the only one with

an explicit dependence on temperature[32]. This gives us

αV = − 1

B
h̄
∑

k

∂n(ωk, T )

∂T

∂ωk
∂V

(1.66)

as an expression of the coefficient of thermal expansion in terms of phonon frequen-

cies. Since the total heat capacity CV =
∑

k h̄ωk(∂n(ωk, T )/∂T ), we can define a

heat capacity for each mode

ck = h̄ωk
∂n(ωk, T )

∂T
,CV =

∑

k

ck (1.67)

Similarly, a mode Grüneisen parameter can be defined as

γk = − V
ωk

∂ωk
∂V

= − V

2ω2
k

∂ω2
k

∂V
(1.68)

It is useful to express the mode Grüneisen parameter in terms of ω2
k since these are

the quantities calculated directly from the force constants by diagonalisation of the

dynamical matrix. The overall thermal expansion coefficient is given by

αV =
CV γ̄

BV
(1.69)

where the mean Grüneisen parameter γ̄ = 1
CV

∑
k ckγk is equivalent to the macro-

scopic Grüneisen parameter defined in equation 1.61. Since CV , B and V are pos-

itive, the sign of the thermal expansion is determined by the sign of the mean

Grüneisen parameter. This is determined by the contributions of the individal mode

Grüneisen parameters and, as can be seen in equation 1.68, modes with a lower fre-

quency, and consequently a lower energy, will have a larger Grüneisen parameter
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Figure 1.13: A schematic diagram showing the effect of transverse vibrations on
a chain of atoms. The bond length is fixed at a value, a, and under a transverse
displacement of magnitude d, the distance between atoms in the direction of the
original bonds is shortened to a distance x =

√
a2 − d2, which is strictly shorter

than a.

and, therefore, a bigger contribution to overall thermal expansion.

1.4.4 Phonons and Negative Thermal Expansion

In the previous section, it was discussed that if phonon modes which caused a vol-

ume shrinkage had a large enough contribution to the mean Grüneisen parameter

then the system as a whole would show negative thermal expansion. This begs the

question of which types of distortion can produce NTE. If we imagine a chain of

atoms in one dimension, there are two types of vibrational motion they could un-

dergo. They can vibrate in directions along the chain or perpendicular to it. These

types of vibrations are known as longitudinal and transverse, respectively. Given

a fixed bond length between atoms in this chain, transverse vibrations will shorten

the gap between atoms along the chain (Fig 1.13). This phenomenon is known as

the tension effect. Theoretically, all systems should exhibit this type of distortion,

however, the vast majority of materials show positive thermal expansion. This indi-

cates that either these modes are too high in energy to provide an overall negative

thermal expansion or there are too few of them present in the system, therefore, to

find NTE materials, we must find materials with low energy transverse displacive

modes. A large number of materials which exhibit phonon-driven negative thermal

expansion are network materials. These materials consist of a 3-dimensional net-

work of linked polyhedra[55]. The archetypal NTE material ZrW2O8 is an example

of this, consisting of corner-sharing ZrO6 octahedra and WO4 tetrahedra[45]. Other
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Figure 1.14: A diagram showing how rigid unit modes can lead to lattice contraction.

examples include SiO2[56], ZrV2O7[57, 58], M2O (M = Cu, Ag)[59, 60, 61] and

AlPO4[62]. These network materials often undergo symmetry-lowering phase tran-

sitions via collective rotations of their constituent polyhedral units. For example,

metal trifluorides, such as AlF3, consist of corner sharing MF6 octahedra (M = Al,

Cr, Ga, V, Fe, In and more) and typically adopt a rhombohedral phase at room

temperature[63]. This structure is distorted from the cubic (un-tilted) phase via

the triply degenerate R-point octahedral tilt mode. These types of distortions are

typically termed rigid unit modes (RUMs). Since these modes cause phase tran-

sitions, above the phase transition they must be low in energy. These modes also

consist of transverse displacements of the lighter elements in the polyhedra and

consequently also commonly have a negative Grüneisen parameter[64]. Figure 1.14

depicts how RUMs can lead to negative thermal expansion: for a material with an

average structure made of corner-sharing octahedra with rigid bonds of length d,

the untilted average structure would have a lattice parameter a = 2d and a volume

V = a3 = 8d3. If the material undergoes a tilt of angle θ along one of the <1 0

0> directions, then the new lattice parameters perpendicular to this direction will

be a′ = 2d cos θ and the volume V ′ = 8d3 cos2 θ < V . The average crystallographic

structure is not sensitive to dynamic tilt modes, but the pairwise interactions, as

probed by a pair distribution function, will change.

Since not all network materials exhibit NTE, there must be other factors

that determine its presence within a material. This is one of the key reasons we

chose to demonstrate our symmetry-adapted PDF analysis technique on negative

thermal expansion materials.
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Figure 1.15: A plot of the apparent and actual bond lengths of the nearest neighbour
Sc-F bond in ScF3 determined by X-ray Bragg diffraction and pair distribution
functions, respectively. Total scattering data were collected on the P02.1 beamline
of the PETRA III synchrotron at DESY. The same data were used for the Rietveld
refinments of the average structure and to generate the PDFs.

1.4.5 Structural Studies of Negative Thermal Expansion Materials

A key aspect of the study of materials which exhibit negative thermal expansion due

to their structure is determining said structure. The advancements in neutron and

X-ray generation facilities, serving to allow faster collection of data and, therefore,

improved ability to study the changes in structure with temperature, is a key factor

in why the field took off after the work of Evans et al in 1996. Before this semi-

nal work in the field, reports of materials exhibiting NTE were often dismissed as

inaccurate[65]. However, while the refinement of Bragg peaks obtained by neutron

and X-ray powder diffraction is very useful in determining the thermal expansion

behaviour of a material, the average structure view it obtains can obfuscate the

origin of NTE[36]. For example, in a lot of NTE materials, the apparent nearest-

neighbour bond lengths obtained from the average structure shrink upon heating,

which goes against the basic physics of the interatomic potentials discussed earlier in

this section. An example of this is displayed in Fig 1.15. This picture can be cleared

up by looking at the local structure of the material, which can be studied using pair

distribution functions obtained by the total scattering method. The peaks in the

PDF give actual rather than apparent bond lengths and are also sensitive to the

vibrations that give rise to NTE. The peak positions can be analysed by hand to

show deviation from the average structure. For example, this method has been used
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Figure 1.16: The structure of the negative thermal expansion material GaFe(CN)6,
showing GaN6 (green) and FeC6 (brown) octahedra, connected by cyanide bonds.

to analyse GaFe(CN)6, a material showing isotropic NTE. It is formed of alternating

GaN6 and FeC6 octahedra, linked by their corners with cyanide bonds (Fig 1.16). In

the average structure, the -Ga-N≡C-Fe- linkages are straight, but the bond lengths

from the PDF are too long to fit in the average structure picture meaning that the

C and N atoms must be displaced from their position in the average structure in a

direction perpendicular to the linkage[66]. Another example of this type of analysis

was used to examine the NTE material β-cristobalite. This structure is formed of

corner-sharing SiO4 tetrahedra, with the silicon atoms arranged in the same way as

the carbons in the crystal structure of diamond. The ideal value for the Si-O bond

length in this structure is
√

3a/8, where a is the cubic lattice parameter. The actual

bond lengths, as determined by PDF analysis, are slightly larger than this, meaning

that the Si-O-Si bonds are bent rather than straight[67]. A significant proportion

of PDF analysis of NTE materials is of this nature, using trends in peak positions

with changing temperature to determine a mechanism for NTE[68, 69, 70, 71, 72].

Studies of this type have led to a disagreement in the origin of NTE in ZrW2O8.

Models using reverse Monte Carlo analysis of the PDFs suggest the RUM theory

of NTE is accurate[73, 74], whilst others conclude that the Zr-W linkage is too stiff

to allow for bending of the W-O-Zr link which would be necessary for whole-body

rotations of the linked ZrO6 and WO4 polyhedra and that instead, the NTE arises

from translations of the WO4 tetrahedra along the <1 1 1> axes[75]. Subsequent

molecular dynamics simulations have concluded that neither picture is fully ade-

quate in explaining the NTE[76]. The origin of NTE in more simple structures like
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ScF3 is also disputed, with some still subscribing to the RUM model[36] while some

conclude that the transverse vibration of the F atoms is entirely uncorrelated[77].

Therefore, it is clear that the field is ripe for a different technique for analysing the

PDF data of NTE materials.

1.5 Hybrid Perovskites

1.5.1 Perovskites

The term perovskite refers to a class of materials with the same structure as the min-

eral perovskite (CaTiO3), discovered in Russia in 1839 and named after mineralogist

Lev Perovski[78]. Its structure is also commonly found in other materials with the

general formula ABX3, with the X atoms typically being oxygen or a halide and the

A and B atoms being inorganic cations, including bridgmanite ((Mg,Fe)SiO3), the

most common phase in the Earth’s mantle[79]. The ideal perovskite, displayed in

Fig 1.17, is formed of a network of corner-sharing BX6 octahedra with A ions sitting

in the centre of the gaps in this network, within a cubic Pm3̄m lattice. There are a

large number of different elements that have been put on the A and B sites in vari-

ous perovskite materials, and as such this class of compounds can have a wide array

of interesting properties, such as ferroelectricity, ferromagnetism, superconductivity,

piezoelectricity and recently photovoltaic behaviour[80]. Another consequence of the

variety of elements that can sit on the A or B site is that the structure of perovskite

materials can often be distorted away from the ideal cubic structure[81, 40] and, in

fact, the eponymous perovskite, CaTiO3, is one of these (Fig 1.19)[4, 82]. These

distortions arise due to the strict size requirements of the ionic radii in the cubic

structure. In the hard sphere model, the cubic lattice parameter a = 2rB + 2rX

and the diagonal of one “face” of the cubic unit cell d = 2rA + 2rX , where rA, rB

and rX are the ionic radii of the A, B and X atoms respectively. From Pythagoras’

theorem, this gives rA + rX =
√

2(rB + rX). Deviations from this ideal picture

are likely to result in a distorted structure. This idea was first proposed by Vic-

tor Goldschmidt[83], which he captured using the idea of his eponymous tolerance

factor

t =
rA + rX√
2(rB + rX)

(1.70)

Values of t between 0.9-1 are most likely to result in the cubic perovskite structure,

and values of t <≈ 0.71 are likely to result in unrelated structures. Whilst this toler-

ance factor is often accurate for oxide- and fluoride-based perovskites (able to predict

between perovskite and non-perovskite phases for ABX3 materials approximately
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Figure 1.17: A diagram of the archetypal perovskite structure in both the standard
setting (left) and alternate setting (right).

83% of the time), it is considerably less accurate for other halide perovskites. As a

result of this, a new tolerance factor, τ , was recently proposed using a data-analytics

approach:

τ =
rX
rB
− nA

(
nA −

rA/rB
ln(rA/rB)

)
(1.71)

where nA is the oxidation state of A. Using this definition, a value of τ < 4.18

indicates a perovskite with an accuracy of 92%[84].

In addition to materials with the ABX3 general formula, there are other

types of structure that generally fall under the perovskite umbrella but aren’t true

perovskites. These include anti-perovskites, where the X-site is now a cation and

the A and B sites anions[85, 48, 46]; double perovskites (A2BB
′O6), where half

of the B cations are replaced by a different cation, B′, resulting in a rock salt

ordering of the octahedra[86, 87] and Ruddlesden-Popper phases (An+1BnX3n+1),

which consist of layers of the perovskite structure separated by layers of the rock

salt structure[88, 89]. Each perovskite layer is a number of archetypal perovskite

unit cells thick, which is governed by n in the general formula (Fig 1.18). There is

also the class of hexagonal perovskites. The archetypal perovskite structure ican be

described as a cubic-close-packed lattice of AO3 layers, with the B cations occupying

the octahedral cavities to balance the charge. For hexagonal perovskites, the layering

instead follows the hexagonal-close-packed stacking sequence. This allows for chains

of face-sharing octahedra, rather than the more usual corner-sharing octahedra of

cubic perovskites[90].

There are two possible settings for the parent Pm3̄m perovskite structure.

Unless otherwise stated, the setting A 1a (0, 0, 0); B 1b (1
2 ,

1
2 ,

1
2); X 3c (0, 1

2 ,
1
2) is

48



n = 1 n = 2 n = 

Figure 1.18: Ruddlesden-Popper phases with n = 1, 2 and ∞. The latter corre-
sponds to the archetypal perovskite structure.

used. The alternate setting, with the B site at the origin, results in many of the

irreducible representation labels changing[91].

1.5.2 Distortions in Perovskites

As discussed earlier in this section, due to the strict size requirements on the ions in

the ideal cubic perovskite structure, perovskite materials are often distorted away

from this. There are a few mechanisms for these distortions, which are octahedral

tilting (or RUMs, as discussed in section 1.4.4), octahedral distortions via bond-

bending or bond-stretching (typically termed scissoring and Jahn-Teller modes, re-

spectively) and polar (and anti-polar) displacements. In addition, there are displace-

ments that can arise as a result of ion-ordering[40]. Sometimes, these distortions

can cause the material to show interesting properties. A prime example of this

is BaTiO3, which is ferroelectric in its low temperature phases due to an ordered

displacement of the Ti cation off the centre of the octahedra[92].

Octahedral tilts in perovskites were classified by Glazer in 1972 who formed a

standard notation to describe them[93, 94]. He considered all tilts as a combination

of component tilts about the three pseudo-cubic axes, with the magnitude of the

tilts in each direction, in the order [1 0 0], [0 1 0], [0 0 1] being denoted by a letter.

For example, 3 unequal tilts would be denoted abc and tilts of equal magnitude

represented by repetition of the appropriate letter, e.g., aac. In addition, subsequent

tilts along the tilt axis can either be rotated in the same sense or the opposite sense

to the first tilt, which are usually described as “in-phase” and “out-of-phase” tilts,

respectively. This is represented by a superscript to the letter describing the tilt,

with a + denoting an in-phase tilt and a - an out-of-phase tilt. A superscript 0

denotes there is no tilt in that direction. Putting this all together, if we have an

out-of-phase tilt along the c-axis, which would result in lowering the symmetry to
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O
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Ti

Figure 1.19: A depiction of the unit cell of CaTiO3, showing the distorted Pbnm
structure which exhibits an a−a−c+ tilt system. The lattice parameters of this unit
cell, a, b and c, are related to the pseudo-cubic lattice parameter via the relations
a ≈ b ≈

√
2ap and c ≈ 2ap. The structure depicted here is as published in [4].

I4/mcm, the tilt system is denoted by a0a0c− in Glazer notation. This work was

expanded upon by Howard and Stokes using a group-theoretical analysis[95]. It

reduced the 23 possible distortions suggested by Glazer to 15 and also clarified the

group-subgroup relationships between the different distortions.

1.5.3 Hybrid Perovskites

Typically, perovskites are completely inorganic materials, i.e., A, B and X are all

inorganic. The family of materials known as hybrid or molecular perovskites are

a departure from this norm, with A, X or both being molecular ions. They are

typically classified by the type of molecular ion used. Replacing the X site with a

molecular ion has the effect of introducing new types of distortion into the perovskite

family: unconventional tilts, where neighbouring octahedra perpendicular to the

tilt axis can be rotated in the same manner, and columnar shifts, where planes of

octahedra can shift relative to each other. Replacing the A site with a molecular

ion can result in dipolar or higher-order moments being present[96].

The most famous of this class of materials are the methylammonium (CH3NH+
3 ,

commonly abbreviated to MA) lead halides, which have the general formula MAPbX3,

X = I, Br, Cl[97]. They are a fast-growing research area due to their promise as

low cost and highly efficienct solar cell materials. Since MAPbI3 was first stud-

ied for use as a photovoltaic in 2009, the efficiency of devices made using it has

increased rapidly from an initial 3.9% [98] to greater than 20% today [99], which

can rival, or even out-perform, the best single cell silicon devices. These materials
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Table 1.2: A table showing the different types of distortion in perovskites and which
irreducible representation they are associated with for the setting with the A atom
at the origin of the unit cell. The atoms the distortion is acting on, either A, B or
X, is indicated by the brackets after the distortion type.

Distortion / K-point Γ X M R

Strain Γ
+
3 ; Γ+

5

Cation order (A) X+
1 M+

1 R+
1

Cation order (B) X−3 M+
4 R−2

(Anti-)Polar order (A) Γ
−
4 X−3 ; X−5 M−3 ; M−5 R−4

(Anti-)Polar order (B) Γ
−
4 X+

1 ; X+
5 M−2 ; M−5 R+

5

Anion Order (X) X+
1 M+

4 R+
5

Jahn-Teller (X) Γ
+
3 X−3 M+

3 R−3
RUM (X) M+

2 R−5
Semi-RUM (X) Γ

−
5 X+

2 ; X+
5 ; X−5 M+

5 ; M−5 R−4

offer a number of advantages over Si [100], such as the aforementioned increased

efficiency, a higher absorption cross-section[101], low charge-carrier recombination

rates[102] and a long charge-carrier diffusion length[103]. They also have some sig-

nificant drawbacks, however, the most significant of which is the instability of the

best-performing material, MAPbI3 [104, 105, 106, 107]. It degrades when exposed

to heat, light and humidity, which is compounded by the fact that one of its degra-

dation products, PbI2, is toxic and water-soluble. Improving the stability of devices

made using MAPbI3 is a significant research area [108], with improvements made by

incorporating different anions and cations into the structure such as small amounts

of the other halides (Br and Cl) [109, 110] or replacing some of the organic cations

with inorganic alternatives such as Cs [111, 112]. Other strategies include device

engineering such as adding a hydrophobic passivation layer on top of the perovskite

absorber[113]. In addition to improving the stability of these devices, efforts are

being made to replace the lead, chiefly by substitution with tin [114, 115], due to

the aforementioned toxicity concerns.

All three of the methylammonium lead halides attain the archetypal cubic

perovskite structure at high temperatures[97]. A key difference between these per-

ovskites and all-inorganic perovskites is that the A-site is disordered over many

different directions in the higher-symmetry phases. In the cubic phase of all three

methylammonium lead halides, the MA cation is fully disordered and recent NMR

and quasi-elastic neutron scattering measurements show that these cations are close

to having the orientational freedom of a free MA cation[116, 117, 118]. All three com-

pounds undergo symmetry-lowering phase transitions to tetragonal and orthorhom-
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(a) (b)

(c) (d)

Figure 1.20: Diagrams of the structures of MAPbBr3. (a) shows the cubic structure
with the fully disordered A-site orientation. (b) shows the I4/mcm tetragonal struc-
ture and (c) and (d) show the orthorhombic structure. For clarity, the hydrogens
are not shown in (a) and (b).

bic structures as temperature is lowered. An increase of the ordering of the MA

cations accompanies these phase transitions[119, 120, 121, 122, 123]. The transition

to the tetragonal phase (at ≈ 327, 237 and 179 K for X = I, Br and Cl respectively)

occurs via an a0a0c− tilt for X = I and Br and via an a0a0c+ tilt for X = Cl. The

MA cations are less disordered in these phases, but the exact nature of this disorder

is still up for debate. The exact space group of the phase is also disputed, with most

reporting an I4/mcm space group for X = I and Br [124, 125], but some studies

suggesting that I4cm is the true symmetry, which is the polar maximal subgroup

of I4/mcm and so implicitly allows for ferroelectricity [126, 127]. The lowest tem-

perature phase (below ≈ 162, 145 and 173 K for X = I, Br and Cl respectively) of

each compound is in the orthorhombic space group, Pnma[128, 129]. In this phase,

the MA cations are fully ordered in an anti-parallel arrangement and the octahedra
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Table 1.3: A table showing the different structures of the methylammonium lead
halides and their transition temperatures.

Phase Temperature (K) Space Group

MAPbCl3

> 178.8 Pm3̄m
172.9 - 178.8 P4/mmm
< 172.9 Pnma

MAPbBr3

> 236.9 Pm3̄m
155.1 - 236.9 I4/mcm
149.5 - 155.1 Incommensurate
< 144.5 Pnma

MAPbI3

> 327.4 Pm3̄m
162.2-327.4 I4/mcm or I4cm
< 162.2 Pnma

are tilted in an a+b−b− arrangement. Pnma is a centro-symmetric space group and

so does not allow for ferroelectricity. MAPbBr3, unlike the other two compounds,

has an additional phase between the orthorhombic and tetragonal phases. It was

originally indexed by Poglitsch and Weber as an additional tetragonal phase with

the P4/mmm space group, but the consensus now is that it is an incommensu-

rate phase [130], with recent work assigning it an Imma space group derived by

an a−b0a− tilt system, with an additional incommensurate tilt distortion[131]. Re-

cently, total scattering studies of these compounds using neutron and X-ray total

scattering have shown a persistence of the low-symmetry phases in the local struc-

ture of the cubic phase, suggesting that the PbX6 octahedra are locally distorted,

possibly due to interactions with the methylammonium cation [132, 133, 134, 135].

This is reflected in the short-range local structure of the inorganic backbone of

the hybrid perovskites remaining very similar across the different structural phases

(Fig 1.21). Studies using other methods, such as molecular dynamics and electron

scattering, support this picture. Other studies have suggested that the Pb cations

undergo a local polar distortion due to their lone pair of electrons[136, 137].

Despite their promising potential for use in photovoltaic devices, the ori-

gin of the desirable photovoltaic properties in these hybrid perovskites is not fully

understood[138]. All-inorganic halide perovskites can show similar properties, such

as low effective masses and low density of states at the valence band maximum[139,

140]. The presence of the MA cation is likely to have at most a subtle effect on

these properties of the electronic band structure since the inorganic backbone of

the structure providing the frontier states of the electronic band structure, but in-

teraction with the MA cation could still have an indirect effect by modifying bond
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Figure 1.21: A figure showing the similarity between the first four peaks of the pair
distribution functions of MAPbBr3 in the Pnma, I4/mcm and Pm3̄m phases. The
PDFs were generated from data collected at DESY, as described in chapter 5.

lengths and angles via hydrogen bonding interactions[141].

The role of the MA cation could be reflected in the improved performance

in the tetragonal phase of MAPbI3 compared to the orthorhombic phase[142]. A

lot of studies have suggested that the tetragonal phase is actually in the non-

centrosymmetric space group, I4cm, rather than the I4/mcm space group it was

originally assigned. This revision has two main implications - the first is that it would

allow for ferroelectricity, as has been observed experimentally[143, 144, 145, 146].

Theoretical studies of another hybrid perovskite, (benzylammonium)2PbCl4, have

also shown that ferroelectric alignment of the polar groups inhibits non-radiative

charge recombination, possibly by suppressing higher frequency phonon contribu-

tions to electron-phonon coupling[147]. The presence of ferroelectric domains has

also been shown to create internal junctions in hybrid perovskites[148]. Molecular

ferroelectricity could also explain other observed properties in hybrid perovskites,

such as anomalous hysteresis[149]. The second effect is that the selection rules of

the I4cm space group allow the Rashba effect, otherwise forbidden in I4/mcm.
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This has been hypothesised to also slow down the recombination of charge carriers

since it has been shown to change the band gap in cubic MAPbI3 from direct to

indirect[150, 151, 152, 153, 154]. The origin of this low recombination rate is still

an open question, since it is also lowered by the addition of Cl ions into MAPbI3.

Polaronic effects are expected to contribute to this. Polarons are a quasi-particle

and are effectively charge carriers coupled with a local polar lattice deformation.

This screens the charge carrier from the electric field within the lattice, and po-

laron formation is often energetically favourable compared to the formation of a

bare charge carrier. The structure of MAPbX3 is highly dynamic and so polaron

formation could be expected to play a greater role in these materials compared to

photovoltaics with harder lattices[155, 156, 157]. The dynamic structure of these

materials has also been linked to band gap fluctuations, which could assist in the

initial stages of charge separation[158, 159].

1.6 Outline of the Thesis

As previously stated, the main aim of this thesis is to introduce a symmetry-adapted

technique for analysing pair distribution function data. The primary goal for this

technique is to determine how the local structure of a material deviates from the

average and use this information to gain insight into how the lattice dynamics are

associated with the properties of a material.

Chapter 1 introduced the methods of total scattering and representational

analysis and also lays out background information for the types of materials studied

in later chapters. In the second chapter, a paper demonstrating the use of symmetry-

adapted PDF analysis (SAPA) is presented, covering the basics of analysing PDFs

in the Topas Academic software and how to implement SAPA in said software. The

later chapters cover applications of this technique.

In chapters 3 and 4, the technique is applied to the negative thermal ex-

pansion materials ScF3, CaZrF6 and ReO3. The materials ScF3 and ReO3 are

iso-structural and are directly comparable, whilst CaZrF6 is a “double perovskite”

equivalent. By using the SAPA technique on these 3 compounds, we gain useful

insight into the mechanism that drives the negative thermal expansion they exhibit.

In chapter 5, the SAPA technique is used to analyse the cubic phases of the

hybrid perovskites MAPbX3, X = I, Br, Cl. Benefiting from the comparitively low

scattering power that organic elements have for X-rays we were able to focus on the

inorganic dynamics and then use density functional theory calculations to determine

how the local distortions effect material properties like the electronic band structure.
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Lastly, chapter 6 gives the conclusion of the work presented.
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Chapter 2

Symmetry Adapted Pair

Distribution Function Analysis

(SAPA): A Novel Approach to

Evaluating Lattice Dynamics

and Local Distortions from

Total Scattering Data
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A novel symmetry-adapted pair distribution function analysis (SAPA) method

for extracting information on local distortions from pair distribution function

data is introduced. The implementation of SAPA is demonstrated in the

TOPAS-Academic software using the freely available online software

ISODISTORT, and scripts for converting the output from ISODISTORT to a

SAPA input file for TOPAS are provided. Finally, two examples are provided to

show how SAPA can evaluate the nature of both dynamic distortions in ScF3 and

the distortions which act as an order parameter for the phase transitions in

BaTiO3.

1. Introduction

The technique of total scattering, by which one obtains a pair

distribution function (PDF), is an increasingly powerful tool

used to analyse the local structure of a variety of materials

(Keen, 2020). The first quantitative measurements using this

technique were made in the 1930s, when experiments were

performed on liquid mercury (Debye & Menke, 1930) and

sodium (Tarasov & Warren, 1936). Since this early work, the

technique has seen a wide range of uses, such as comparing

crystalline and amorphous structures of the same materials

(Biscoe & Warren, 1938; Hultgren et al., 1935; Warren et al.,

1936; Peterson et al., 2013), modelling crystalline disorder

(Keen et al., 2005; Senn et al., 2016), and studying the dynamics

of more ordered materials (Bird et al., 2020; Conterio et al.,

2008; Goodwin et al., 2009). The focus of this work is to

present a novel approach for the latter. Whilst there are more

established methods of investigating phonons in crystalline

materials, chiefly inelastic neutron scattering, these methods

require single crystals and are often quite time consuming. In

comparison, total scattering experiments are relatively easy to

perform, only require a powder sample and are more time

efficient. There are now even laboratory-based instruments

that can collect X-ray total scattering data, making it a more

readily available technique (Confalonieri et al., 2015; Thomae

et al., 2019; Irving et al., 2021).

The PDF of a material is obtained via a Fourier transform of

the observed scattering function S(Q) (Keen, 2020). The

scattering function contains structural and lattice dynamics

information, and therefore this information should also be

present in the PDF. Indeed, it has been shown that experi-

mental PDF peak widths correlate well with mean-square

displacements obtained from lattice vibration models (Jeong

et al., 1999, 2003).
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Various methods have been used to try and retrieve the

dynamic information from the PDF. The first method used

standard phonon models of the studied materials. By

comparing their associated PDFs with those observed

experimentally, reasonably accurate dispersion curves could

be reproduced for some fairly simple systems such as face-

centred cubic rhodium (Dimitrov et al., 1999), but the process

became increasingly inaccurate when more parameters were

required in the phonon model (Reichardt & Pintschovius,

2001; Graf et al., 2003). The second method used the reverse

Monte Carlo (RMC) method to produce a large number of

atomistic configurations, which can be thought of as snapshots

of the material at different times since they are all consistent

with the input PDF (Goodwin et al., 2004, 2005, 2009; Conterio

et al., 2008). These configurations can then be used to

construct a phonon dispersion curve via methods developed

for molecular dynamics simulations. The same authors have

used a similar technique to construct spin-wave dispersion

curves (Goodwin et al., 2007). This method has been shown

to produce reliable information for low-frequency modes

but fails to reproduce higher-frequency features, such as

longitudinal-optical/transverse-optical mode splitting. This is

to be expected, since the Bose factor in the phonon cross

section, which approaches 1/!2 at higher temperatures, means

that the PDF is much more sensitive to low-frequency infor-

mation. A later paper used a similar method to look at

disorder in BaTiO3 and Bi2Ti2O7, but employed representa-

tional analysis rather than molecular dynamics methods to

quantify the dynamics (Neilson & McQueen, 2015). Whilst

these methods have their uses, they both have some down-

sides. They are both computationally intensive and require a

lot of modelling to produce any results. In addition, the RMC

method requires a more intensive setup process than the

method presented here. The first method also requires

preselection of a phonon model and hence an assumption of

the nature of the local distortions, introducing bias into the

analysis. As a result of this, there have been relatively few

papers using either method.

The method presented here, symmetry-adapted PDF

analysis (SAPA), involves expanding the possible degrees of

freedom of the crystallographic unit cell up to a given super-

cell size in terms of symmetry-adapted displacements of the

zone centre and zone boundary irreducible representations

(irreps) of the structure being studied, or a higher-symmetry

parent structure. The collection of symmetry-breaking

displacements transforming as the same irrep may be further

decomposed into symmetry-adapted distortion modes by

choosing a sensible basis that reflects the chemistry and

crystallographic axes of the structure. The distortion modes

have a 1:1 correspondence with phonon eigenvectors in the

limit that only one set of atomic displacements transforms as

the corresponding irrep. It is hence justifiable (in the harmonic

approximation) to test distortions belonging to a given irrep

against the data in turn. In cases where distortions from

different Wyckoff sites transform as the same irrep, the

character of the low-lying excitations can still be ascertained

through refining the relative amplitudes of the individual

distortion modes simultaneously. This method does not aim to

produce a dispersion curve from diffraction data; the goal is to

determine which of the symmetry-adapted distortion modes

are most responsible for local deviations from a parent or

average structure. The method has been used successfully to

study order–disorder-type phase transitions in BaTiO3 (Senn

et al., 2016) and the dynamic distortions responsible for the

large magnitude of negative thermal expansion in ScF3 and

CaZrF6 (Bird et al., 2020). The process itself is similar to one

presented by Kerman et al. (2012) to determine the average

structure of a distorted material, although the primary aim of

the SAPA method is to determine how the local structure

deviates from the average.

2. Method

The primary tool presented in this paper is a script to convert

mode parameterizations generated by the ISODISTORT

software (Campbell et al., 2006) into pair distribution function

refinement input files for the TOPAS-Academic software

(Coelho et al., 2015). This script groups the symmetry modes in

the input file with respect to the irreducible representation

they transform as, and allows these groups of modes to be

turned on in refinements from the command line.

2.1. Software

This method uses the TOPAS-Academic software v6

(Coelho, 2018) with an additional set of macros and functions

for use with pair distribution function refinements. These

macros and functions are obtained by downloading the

pdf.inc file from the GitHub repository of Chater (2017). A

strength of the TOPAS software is that it is written in its own

scripting language. This has allowed users from the scientific

community to implement new methods, including symmetry-

mode refinements (Lewis et al., 2016). Additionally, the

method it uses to refine PDF data is significantly faster than

alternative programs (Coelho et al., 2015), including the

PDFfit2 program (Farrow et al., 2007), in which this symmetry-

adapted PDF analysis method was initially implemented (Senn

et al., 2016). The online tool ISODISTORT (version 6.9.0,

June 2021) was used to generate the mode parameterizations.

2.2. Generating mode parameterizations

An overview of the steps required to perform a symmetry-

adapted PDF analysis is shown in Fig. 1. The first step in the

process of performing this symmetry mode analysis is to

identify the parent structure to be used. When analysing the

dynamic distortions of a material that stays in the same phase

over the temperature or pressure range of interest, that phase

can be chosen as the parent structure. For example, when

performing this analysis on the negative thermal expansion

material ScF3, which retains its cubic Pm�33m structure down to

very low temperatures, the Pm�33m phase was chosen to

perform the analysis. If however the material undergoes phase

transitions, or stays in one phase but is a distorted version of a

higher-symmetry parent structure, the undistorted parent
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structure would be a sensible choice. For example, to study a

distorted perovskite, or a perovskite which undergoes a phase

transition in the temperature range of interest, the aristotype

perovskite structure could be used.

The next step is to decide the supercell size to expand up to.

The modes that will be included and excluded when choosing

the supercell must be considered; for example, a 3 � 3 � 3

supercell would not include distortions with propagation

vectors of [1/2 0 0], [1/2 1/2 0] or [1/2 1/2 1/2]. Another element

of the analysis to keep in mind is that expanding the structure

further increases the number of modes and therefore increases

the time it takes to get results. For example, the 2 � 2 � 2

supercell of ScF3 contains 32 atoms and therefore has 96

distortion modes. Increasing the supercell to 3 � 3 � 3

increases the number of atoms to 108 and the number of

modes to 324. Furthermore, distortion modes corresponding

to very low symmetry points of the Brillouin zone will not

benefit from any symmetry constraints on their characters. In

addition, their long-wavelength nature will

mean that low-r regions of the PDF will not

contain sufficient information to constrain

them.

Once the previous two steps have been

completed, the mode listing can be generated

using the ISODISTORT program. Firstly, a

.cif file of the chosen parent structure must

be imported, taking careful note of the setting

and positions of the atoms used in this struc-

ture since they can have an effect on the

assignment of irrep labels in the analysis. The

ISODISTORT option ‘Method 3: Search over

arbitrary k points for specified space group

and lattice’ is then used. In order to include all

possible distortion modes, the user should

select P1 space-group symmetry and then

input the supercell size by changing the diagonal elements in

the representative basis: e.g if choosing a 2 � 2 � 2 supercell,

a0 = 2a + 0b + 0c, b0 = 0a + 2b + 0c and c0 = 0a + 0b + 2c.

Clicking ‘OK’ here opens a new window prompting the user to

finish selecting the distortion mode. There should only be one

option here, so the user should just click ‘OK’. The next page

will have a list of all the distortion modes grouped by irrep and

a few options at the top. On choosing the ‘CIF file’ option and

again clicking ‘OK’, the user will be prompted to save a .cif

file – it is recommended not to include spaces or special

characters in the file name, as this could cause later steps to

not work.

The majority of the TOPAS input file can be written using

information from the CIF produced with ISODISTORT in the

previous step. To make this easier, we have written a script

(available on an online repository; Bird & Senn, 2021) in the

Python programming language which can read a CIF and

convert it to a Python class. The data names defined in the CIF

are accessible as class variables in Python. A method of this

class, write_inp, uses this to output a TOPAS .inp file. A

snippet of code demonstrating how to use this is shown in

Fig. 2(a). In this section, we will go through the contents of the

.inp file and detail any information that the user has to input.

Another method of this class, irrep_list, can be used to

produce a list of irreps in the .cif file, which is useful when

running the .inp file. Note that this script will not work

without the string #End at the end of the CIF. Files generated

using ISODISTORT should have this already included, but

those generated from other sources may not. In addition, the

user should ensure that there is no white space at the start of

each line.

The first thing the user must decide is the number of cycles

that TOPAS will perform for each irrep. At the start of each

cycle, the mode amplitudes for the defined irrep are rando-

mized within a set range via the continue_after_

convergence and val_on_continue commands. For

irreps that have a higher dimensionality, more cycles are

needed to ensure that the global minimum is found for that

irrep, but this has the trade-off of increasing the time needed

for a full set of refinements. A good starting point is to choose
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Figure 2
A snippet of Python code showing (a) how to use the write_inp method of the
read_isodisplace_cif script to generate a TOPAS input file and (b) how to use the
Python os library to run the generated file on the command line. Here, irreps and temps
are user-defined lists.

Figure 1
A diagram showing the processes to go through to use the expanded small
box method. Steps in a red box use the online tool ISODISTORT and
steps with a green box use the Python programming language.



500 cycles. We found that, on a standard single-core laptop

computer, 500 repeat refinements of a single irrep tended to

take about 20 min. The command to specify a fixed number of

cycles is shown in the seventh line of Fig. 3. The second part of

Fig. 3 is the file input macro. This can be used when the data

files are in a consistent format. The macro itself should reflect

the user’s directory structure. The macro is called in the xdd

line of the input file, and the VAR keyword is updated with a

user-defined variable in the command line, which is explained

in more detail in the next section. To make things easier, it is

recommended to rename the data files to reflect the vari-

able(s) that are changing with each PDF. For example, the files

for the ScF3 example below reflect the temperature that the

data were collected at.

Following this, the user must input some functions to take

care of any instrumental and processing factors in the PDF. All

of these functions, and others necessary for this method, can

be found at the cited GitHub repository (Chater, 2017). The

first instrumental function is to model the damping effect of

the reciprocal-space peak width, dQ. If the Bragg peaks can be

modelled well with a Gaussian peak shape, then the function

dQ_damping should be used. If the Bragg peaks have a

significant Lorentzian component, then this can be

modelled using the dQ_lor_damping function. If the Bragg

peak width increases as a function of Q, which results in

r-dependent broadening in the PDF, the convolute_alpha

function can be used. This does significantly slow down

refinements however, and including it typically does not affect

the qualitative output for this method. All three of these

parameters (dQ, the Lorentzian contribution to the Bragg

peak shape and the linear peak width scaling) can be refined

from the Bragg data of a standard using the peak shape

function pkshape_dQ_alpha. The termination ripples in

the PDF originating from a finite Qmax can be accounted for

using the convolute_Qmax_Sinc function. This function

fails at low radii, so it is recommended to limit the refinement

range to above 1 Å. If a Lorch or Soper–Lorch function has

been used to mitigate against termination ripples prior to the

Fourier transform of S(Q), then the convolute_Lorch or

convolute_SoperLorch function should be used instead.

The usage of these functions is detailed fully in the pdf.inc

file. All of the values set at this stage of the input file should be

fixed when running the file.

The major choice the user has to make when creating the

input file is the PDF peak shape function. In Bragg scattering,

the thermal motion is assumed to be completely uncorrelated,

so a Gaussian function that ignores any correlated displace-

ments is a reasonable approximation, and a constant value Biso

can be used to account for the thermal motion of an atom. In

PDFs, this is not a good approximation, since atoms which are

closer together will tend to have highly correlated motion,

resulting in a narrower peak width at low radii. This kind of

correlated motion is precisely what we aim to extract with this

symmetry-motivated approach for analysing PDFs. To account

for this, the single value Biso (beq in TOPAS) is replaced with

a radius-dependent function. There are a variety of options to

choose from for this function, all of which are defined in the

pdf.inc file. The simplest is the beq_rcut function, which

is a step function between two constant values, increasing from

the smaller to the larger at some defined cut-off radius.

Another simple function, beq_spherical, uses the PDF of

a sphere to scale between a value at low radius and another at

a higher radius. The beq_rcut_rlo_spherical, beq_

rlo_spherical and beq_rcut_spherical functions

use a combination of cut-offs and spherical scaling. The

function that is included by default by the write_inp

method is beq_r_r2, which is a quadratic function of the

radius, r. We find that the coefficient of r2 refines to negligible

values, so typically fix it at zero. It is advisable to choose a

simple peak width function – the symmetry-adapted displa-

cements being refined will account for some of the peak width,

and introducing more parameters can lead to undesirable

correlations. The PDFfit peak shape function is also imple-

mented. However, we have found that refinements are often

unstable when using it and, in particular, refinements with a

constrained order parameter direction often fail to find the

global minimum.

The last thing in the input file is the file output macro.

Similarly to the file input macro, the VAR and IRREP

keywords are replaced in the command line. This function,

used in conjunction with the out_prm_vals_on_

convergence command, produces an output file for each

irrep and each temperature or pressure which has a record of

the final values for each cycle for all refined variables in the

input file.

2.3. Running the input file

The input file is intended for use with the TOPAS command

line executable, which requires that the working directory is

the directory where TOPAS is installed. The input file uses

#ifdef and #ifndef directives in conjunction with the

#define directive, the last of which can be passed on the

command line, to refine each irrep in sequence. While all the

symmetry modes belonging to the irreps are defined in the

input file, the user can choose which modes, grouped by irrep,
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Figure 3
The start of a TOPAS input file for analysing a PDF via symmetry-mode
analysis. xxx should be replaced with the desired number of repeat
refinements for each irrep. In the present work, xxx = 500 has been
employed to ensure that the global minimum has been reached. In
addition, the directory here is taken to be the directory in which the data
are stored. The string ##n## is replaced by the command line macro
according to the naming convention of the variable-temperature data
sets.



to activate. The TOPAS command line executable also has the

ability to replace user-defined keywords in the input file with

values passed on the command line. For example, writing

macro VAR {X} on the command line will replace the

keyword VAR with the value X wherever it is found in the

input file. To use the input file, the user must define a list of

temperatures or pressures to sequentially replace the VAR

keyword with and a list of irreps to cycle through. Example

scripts to execute the generated input file are included in the

online repository (Bird & Senn, 2021) and a demonstration of

how to run the input file is given in Fig. 2(b).

A successful execution of the input file will produce a series

of output files. A separate output file is produced for each

irrep and each temperature, containing the Rwp and the value

of every refined parameter for each cycle in the order they

were performed. These files are delimited by white space and

can be analysed by standard data analysis software packages

such as R (https://www.r-project.org/) or the pandas library for

Python (https://pandas.pydata.org/).

3. Examples

The files for both examples, including example input files and

Python scripts to execute the analysis, are included in the

online repository (Bird & Senn, 2021).

3.1. Scandium trifluoride

Scandium trifluoride (ScF3) is a material that exhibits

isotropic negative thermal expansion (NTE) over a wide

temperature range and is typically used to demonstrate the

rigid unit mode (RUM) model of NTE. It is formed of corner-

sharing ScF6 octahedra and remains in a Pm�33m cubic structure

as the temperature is lowered to 0 K. Owing to its high-

symmetry structure, lack of phase transitions and interesting

dynamics, it makes a good test case on which to apply this

symmetry-adapted PDF analysis. Since ScF3 remains in the

same space group, the choice of the Pm�33m phase as the parent

structure for the analysis is trivial – the only choice to make is

the structure setting, which determines the irrep labels. For

this work, the setting with Sc at 1b (1/2, 1/2, 1/2) and F at 3c

(0, 1/2, 1/2) was used. A 2 � 2 � 2 supercell was chosen for

the unit-cell expansion, since this allows phonon modes with

propagation vectors k = [0 0 0], [1/2 0 0], [1/2 1/2 0] and [1/2 1/2

1/2] to be modelled and distortions with these k vectors are

very common in perovskite and perovskite-adjacent

compounds like ScF3. This study uses X-ray PDF data

generated from total scattering data collected at the P02.1

beamline at PETRA III, DESY, Germany. Qmax = 21 Å�1 was

used with dQ = 0.08 Å�1. Complete experimental details can

be found in our previously published work (Bird et al., 2020).

An example input file is included in the online repository

(Bird & Senn, 2021). The input file contains definitions for

modes belonging to all the high-symmetry irreps of the

2 � 2 � 2 supercell. However, use of the #ifdef and

#ifndef directives in conjunction with the #define directive

allows the modes belonging to a single irrep to be refined with

all the others ‘turned off’.

As mentioned in Section 2, an important aspect of applying

this symmetry-adapted PDF analysis is the choice of PDF peak

width function. We compare results from three of these

functions in Fig. 4 [beq_r_r2, beq_spherical and

beq_PDFfit2, the TOPAS implementation of the PDFgui

(Farrow et al., 2007) peak shape function]. The three functions

produce quite similar results – the ‘ranking’ of the irreps at

each temperature is reasonably consistent. The function that

performs the best for this compound is beq_r_r2 – the trend

for each irrep is quite smooth and there are none of the erratic

jumps in Rw that can be seen in both of the other functions.

Since in this case the coefficient of r2 was fixed at zero, this

function also has only two parameters per site, which is the

same as the PDFfit function used and the spherical function.

We now go on to analyse the results of this method.

The distortions used in this analysis can be sorted into three

general types: rigid unit modes, which consist of coherent

rotations of the octahedra; semi-rigid ‘scissoring’ modes,

where there is a scissoring of some of the Sc—F bond angles

within the octahedra; and bond-stretching modes, where some

M—F bond lengths change. Most irreps only have one of these

types of distortion associated with them, although some have

two. In Fig. 4, the irreps are clearly separated into two ‘bands’,

one fitting well and one fitting poorly. The band of poorly

fitting irreps all have distortions with a bond-stretching char-

acter, which are typically the highest-energy modes, meaning

they have little influence on the local structure. The irreps in

the other band all have at least one distortion associated with

them that is of either rigid or semi-rigid unit mode character.

There are four zone-boundary irreps that consistently have

the lowest weighted R factors and have the greatest ampli-

tudes: Xþ5 , X�5 , Mþ5 and M�5 . All four of these have one
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Figure 4
A plot of the best Rwp of all irreps against temperature for three different
PDF peak shape functions used during refinement against ScF3 X-ray
PDF data. The data points are made to differentiate between irrep labels:
the marker designates the k point (a circle for M, a triangle for R, a star
for X and a plus for �); the colour designates the number in the subscript
(blue for 1, red for 2, green for 3, black for 4 and cyan for 5); and the
linestyle designates the sign of the superscript (solid for +, dashed for �).



distortion associated with them that is of scissoring-mode

character. All four modes have an amplitude (normalized to

the supercell) between 0.9 and 1.0 Å and vary linearly with

temperature to values between 1.30 and 1.45 Å at 450 K.

There are a few possible conclusions one could make from this

information, which would need further analysis to explore.

By performing competitive two-phase refinements between

scissoring modes and RUMs, we found that scissoring modes

dominate the motion of the fluorine ions (Bird et al., 2020).

This could mean that the negative thermal expansion in ScF3

arises purely from these kind of motions, and Wendt et al.

(2019) have even argued that the fluorine ion motions are

predominately uncorrelated. Alternatively, it could mean that

these scissoring modes act in conjunction with the RUMs to

produce the observed NTE. A low energy cost for scissoring-

type deformations of the octahedra would increase the

proportion of quasi-RUMs, modes of mixed RUM and octa-

hedral deformation character, with negative Grüneisen para-

meters. Both of these possibilities are analysed further in our

(Bird et al., 2020) and others’ recent work (Dove, 2019; Dove

et al., 2020).

3.2. Barium titanate

Barium titanate (BaTiO3) is one of the most well known

ferroelectric materials. The Curie temperature (TC) for

BaTiO3 is 393 K, above which the material has the archetypal

cubic perovskite structure. Below TC, the structure is distorted

into a P4mm tetragonal phase and, because of this, the cubic-

to-tetragonal distortion was initially discussed in terms of

displacive phase transitions (Cochran, 1959). Two lower-

temperature phases, an orthorhombic Amm2 phase and a

rhombohedral R3m phase, were discovered, with transition

temperatures of 278 and 183 K, respectively (Kay & Vousden,

1949; Rhodes, 1949). The existence of these phases is incon-

sistent with the picture of second-order displacive phase

transitions. This anomaly, in conjunction with the observation

of diffuse scattering in all but the rhombohedral phase (Comes

et al., 1968), led to the development of an order–disorder

model for BaTiO3 (Comès et al., 1970). In this example, we aim

to show that this method is sensitive to the nature of the local

displacements in BaTiO3.

We generate the distortion modes using the high-symmetry

Pm�33m structure for BaTiO3, with the setting Ba 1a (0, 0, 0); Ti

1b (1/2, 1/2, 1/2); O 3c (0, 1/2, 1/2). The beq_r_r2 function is

used to account for correlation of displacements. The PDFs

used for this study were generated from total scattering data

collected on the GEM instrument at the ISIS neutron and

muon source. Qmax = 40 Å�1 was used with dQ = 0.033 Å�1.

Further experimental details can be found in our previous

publication on the subject (Senn et al., 2016). An example

input file is included in the online repository (Bird & Senn,

2021). Since the structure undergoes phase transitions, we give

different constraints for the lattice parameters and angles

depending on the average structure. For example, when the

structure is cubic, we restrict all three lattice parameters to be

equal, whereas they are allowed to be different in the

orthorhombic structure. We use a different method to view the

initial results than for ScF3, where we simply viewed the best

fit for each irrep at each temperature. For BaTiO3 we are more

interested in the primary order parameter. Therefore, we

calculate the mode amplitude for each refinement and weight

it according to a Boltzmann distribution exp[(Rw global � Rw)/

�], where Rw is the weighted phase R factor for that refine-

ment, Rw global is the lowest value for Rw across all irreps for

each temperature and � is the value of a meaningful difference

in Rw, taken to be 0.8%. We then sum this value for each irrep

and obtain what we term a Boltzmann weighted mode

amplitude (BWMA). These BWMAs are plotted in Fig. 5. The

mode amplitudes themselves are calculated for each refine-

ment by first dividing the amplitude of each mode that enters

into the irrep by the normalization factor (given in the

ISODISTORT CIF), putting it on an absolute, rather than

fractional, scale. Subsequently, the square root of the sum of

squares of the individual normalized mode amplitudes is taken

as the overall mode amplitude for the irrep.

We can classify the behaviour of the BWMAs into three

different groups: the first has low values in the cubic phase

with larger values at lower temperatures; the second has small

values in the cubic phase which drop down to near zero at

lower temperatures; and the third has near-zero values for all

temperatures. We can disregard all those in the third group, as

they clearly do not have a significant contribution to the local

symmetry-breaking distortions in BaTiO3. There is only one

irrep in the first group, the ��4 irrep. The modes belonging to

this irrep are displacements of the Ti and O atoms (note that

ISODISTORT additionally includes displacements of the Ba

atoms in this irrep, but we fix these at zero to avoid a floating

origin of the unit cell) and are clearly the order parameters

relevant for the ferroelectric phase transitions. The second

group of irreps have modes which are soft in the cubic

phase, since they have similar BWMAs to the primary order
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Figure 5
A plot showing the BWMAs for BaTiO3. The data points are made to
differentiate between irrep labels: the marker designates the k point (a
circle for M, a triangle for R, a star for X and a plus for �); the colour
designates the number in the subscript (blue for 1, red for 2, green for 3,
black for 4 and cyan for 5); and the linestyle designates the sign of the
superscript (solid for +, dashed for �).



parameter in that phase. The two irreps with the greatest

BWMAs in the cubic phase are Xþ5 and M�2 , which are known

to be soft eigenvectors of the system and are on the same line

in the phonon dispersion curves as ��4 . An interesting

comparison between the results for BaTiO3 and ScF3 can be

made here – both analyses pull out Xþ5 as a mode of interest,

but the overall character of the distortion is different in each

case. For ScF3, the distortion is mostly of the scissoring-mode

character, with insignificant contributions from the other

modes. In BaTiO3, the main distortion is the anti-ferroelectric

displacements.

We now move on to analyse the underlying symmetry of the

order parameter ��4 . Each mode belonging to ��4 has three

branches, and hence has a general order parameter direction

(OPD) (a, b, c). This general distortion would reduce the

symmetry of the structure to P1. A more constrained OPD

would break fewer symmetry operations. The relevant order

parameters for ��4 are (a, 0, 0), resulting in a P4mm space

group, (a, a, 0) (Amm2), (a, a, a) (R3m), (a, b, 0) (Pm) and (a,

a, b) (Cm). In the tetragonal and orthorhombic phases, the

atoms tend to have an (a, a, b) OPD. This initially seems to

reveal an underlying monoclinic symmetry in the displace-

ments. However, this may also be viewed as a local rhombo-

hedral distortion split by the global lattice distortion. This is

consistent with the order–disorder model of the phase tran-

sitions in BaTiO3.

4. Summary

In conclusion, we have demonstrated in detail how to perform

the symmetry-adapted pair distribution function analysis

technique with the TOPAS-Academic software v6. We have

also provided two applications of this technique, with example

input files so the reader can reproduce the above results as an

introduction the technique. It has been demonstrated to be a

useful technique to gain insight into both dynamic and static

distortions in perovskite and perovskite-related materials. It is

envisaged that use of this approach in conjunction with the

freely available scripts (provided via GitHub) will enable

other researchers to robustly and routinely evaluate lattice

dynamics and local distortions of other solid-state materials.
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We use a symmetry-motivated approach to analyzing x-ray pair distribution functions to study the mechanism
of negative thermal expansion in two ReO3-like compounds: ScF3 and CaZrF6. Both average and local structures
suggest that it is the flexibility of M-F-M linkages (M = Ca, Zr, Sc) due to dynamic rigid and semirigid
“scissoring” modes that facilitates the observed negative thermal expansion (NTE) behavior. The amplitudes of
these dynamic distortions are greater for CaZrF6 than for ScF3, which corresponds well with the larger magnitude
of the thermal expansion reported in the literature for the former. We show that this flexibility is enhanced in
CaZrF6 due to the rocksalt ordering mixing the characters of two of these scissoring modes. Additionally, we
show that in ScF3 anharmonic coupling between the modes responsible for the structural flexibility and the rigid
unit modes contributes to the unusually high NTE behavior in this material.

DOI: 10.1103/PhysRevB.101.064306

I. INTRODUCTION

Research into materials that contract upon heating, termed
negative thermal expansion (NTE) materials, has been
steadily increasing over the past 30 years. The significance
of the phenomenon was first underlined by Evans et al. in
1996 [1] by linking the large, isotropic NTE of ZrW2O8 to
the crystal structure of the material, opening up the field to
synthesis of new compounds. Since then, this field has been
expanded to a wider range of materials, including simple
oxides (such as Cu2O [2] and ReO3 [3,4]) and metal-organic
frameworks [5,6].

The rigid unit mode (RUM) model is a common way to
explain the origin of NTE [7]. Materials made from rigid
polyhedra have a significant energy barrier to distortions of
the polyhedra, but a low barrier to collective dynamics such
as rotations. These modes are often low in energy and so
make a significant contribution to the coefficient of thermal
expansion, and they can lead to NTE via the tension effect: if
two linked bonds are straight or nearly straight and stretching
the bonds would take a large amount of energy, a transverse
displacement of the central atom would pull the two other
atoms closer together, resulting in a local decrease in volume,
the magnitude of which would increase when the temperature
is raised [8]. ReO3, a material made from corner-sharing ReO6

octahedra (and hence can be thought of as an A-site-deficient
perovskite), is commonly used to illustrate this model due
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to the complexity of the motion in more typical NTE ma-
terials such as ZrW2O8. The octahedra in this material are
expected to dynamically rotate in an out-of-phase manner
with respect to their neighboring units about their average
positions, resulting in a contraction of the structure while
the material remains, on average, cubic [3]. Two compounds
similar to ReO3 are studied herein: the isostructural ScF3

and the A-site-deficient double perovskite CaZrF6. Metal
trifluorides adopting the ReO3 structure typically undergo a
transition from the Pm3̄m cubic structure to a rhombohedral
phase (R3̄c) upon cooling, via long-range ordering of the
MF6 octahedra (a−a−a− in Glazer notation). The dynamic
motion of these tilts was expected to be the mechanism for
NTE in ScF3 [9] supported by the fact that a phase transition
to the rhombohedral tilt phase is observed under hydrostatic
pressure of 0.7 GPa at ambient temperature [9,10] and in
the related material CoZrF6, whose high-temperature phase
is isostructural to CaZrF6 [11]. NTE is observed at a range
of temperatures above the phase transition, but below it,
once the phonon mode associated with the RUM has been
“frozen in,” strong positive thermal expansion is observed.
Previous studies of these materials have shown large displace-
ments of the fluoride ions perpendicular to the M-F-M bonds
(M = Sc, Ca, Zr) [12,13], consistent with a polyhedral rocking
mechanism for NTE. Other studies have challenged the RUM
model, concluding that only certain bonds were rigid [14,15],
rather than entire polyhedra, and that bond bending could be
a contributor to NTE [16,17].

Several studies were performed recently to try and ascer-
tain the origin of NTE in these materials. X-ray pair distri-
bution function (PDF) analysis of two materials in the cubic
MZrF6 (M = Ca, Ni) series has shown that differing degrees
of flexibility in M-F linkages results in isostructural materi-
als having very different thermal expansion properties [18].
Lattice dynamics calculations of ScF3 performed by Li et al.
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[19] showed mostly soft lattice modes that distorted the ScF6

octahedra; however, a 3 × 3 × 3 grid of unit cells was chosen,
which excludes the zone-boundary wave vectors which the
RUMs are confined to. Molecular dynamics simulations on
the general ReO3 structure [20], with variable interaction
strengths, suggest a degree of flexibility in the octahedra en-
hances NTE. Another conclusion from these simulations was
that a weaker anion-anion nearest-neighbor interaction en-
hances NTE, which is supported experimentally by the greater
magnitude of NTE in ScF3 compared to ReO3. There is exper-
imental evidence from Raman spectra and inelastic neutron
scattering that the large NTE in these materials cannot be
accurately predicted with the quasiharmonic approximation
[15,19], so subsequently lattice dynamics calculations were
done to elucidate the connection between NTE and phonon
anharmonicity since the relatively simple structure compared
to other NTE materials allows for a more detailed analysis.
These calculations show that cubic [21] and quartic [13,19]
anharmonicity contribute significantly to the temperature de-
pendence of the thermal expansion coefficient. Other simula-
tions have shown that modes with quartic potential can have
an enhanced NTE compared to a single-well potential [22].

ABO3 perovskites exhibit a wide range of octahedral tilt
phase transitions, as classified by Glazer [23], yet do not gen-
erally display phonon-driven NTE. However, we have recently
demonstrated how, by using a symmetry-motivated approach
to analyzing PDF data, we can gain extra information on
disorder and dynamics [24]. Our study on BaTiO3 showed that
this method is very sensitive to soft phonon modes of RUM-
like character. Here, we use this method to probe the character
of the low-lying thermal excitations in the title compounds,
where the amplitudes of such vibrations are believed to be
very large.

II. EXPERIMENTAL DETAILS AND DATA ANALYSIS

Scandium trifluoride was used as supplied by Strem Chem-
icals. Synchrotron radiation x-ray total scattering experiments
were conducted at the synchrotron facility PETRA III (beam-
line P02.1 [25]) at DESY, Hamburg. A wavelength λ =
0.2070 Å was used to collect data. Data were collected at
temperatures of 125, 140, 147, and 152 K and at intervals
of 25 K from 175 to 450 K. The obtained two-dimensional
images were masked and radially integrated using the DAWN

[26] software. G(r) and D(r) functions were computed using
GUDRUNX [27] using Qmax = 21 Å−1. GUDRUNX was also
used to perform background subtraction and sample absorp-
tion corrections.

CaZrF6 was that prepared via a standard solid-state syn-
thesis methods in Ref. [18]. The total scattering data were col-
lected at 11-1D-C APS, Argonne National Laboratory, using a
wavelength λ = 0.11798 Å between 25 and 400 K. The PDFs
were computed using PDFGETX2 [28], which was also used for
background subtraction and sample absorption corrections.
Qmax = 28 Å−1 was used for the analysis presented below.

A. Pair distribution function analysis

Some form of modeling is usually required to extract
information of interest, such as local distortions of atoms away

from their high-symmetry positions, from pair distribution
functions. The method presented here involves expanding the
possible degrees of freedom in terms of symmetry-adapted
displacements of the zone center and zone boundary irre-
ducible representations (irreps) of the Pm3̄m A-site-deficient
perovskite structure. For this analysis we use a parent Pm3̄m
perovskite with the A site at the origin. Symmetry-breaking
displacements transforming as the same irrep can be fur-
ther decomposed into symmetry-adapted distortion modes by
choosing a sensible basis that reflects the chemistry and crys-
tallographic axes of the structure. The distortion modes have
a 1:1 correspondence with phonon eigenvectors in the limit
that only one set of atomic displacements transforms as the
corresponding irrep. In cases where distortions from different
Wyckoff sites transform as the same irrep, the character of the
low-lying excitations can still be ascertained through refining
the relative amplitudes of the individual distortion modes. An
overview of the displacements that enter into each irrep was
tabulated in a recent paper by Popuri et al. [29]. For both
compounds, ISODISTORT [30] was used to generate a model
parameterized in terms of symmetry-adapted displacements.
A 2 × 2 × 2 P1 supercell was used for ScF3 since this allows
phonon modes with propagation vectors k = [0 0 0], [1/2
0 0], [1/2 1/2 0], and [1/2 1/2 1/2] to be modeled. While
this is only a small fraction of possible wave vectors, these
are both the ones that PDF data have the greatest sensitivity
to and for which our symmetry-motivated approach provides
the greatest number of constraints. Furthermore, even if the
exact wave vectors of the NTE-driving phonons are of a
longer wavelength, we still expect the character of those
phonons to be reflected in our results, which probe a shorter
wavelength. To generate the parametrization of CaZrF6, a
2 × 2 × 2 supercell of disordered Ca0.5Zr0.5F3 was used. The
cations were then set to be fully ordered to generate the rock-
salt ordered structure. In all refinements, the breathing mode
about Ca/Zr (transforming as R−

2 ) was refined, making this
description equivalent to the published Fm3̄m structure [11].
The generated mode listings were output from ISODISTORT in
CIF format and then converted to the INP format of the TOPAS

ACADEMIC software, version 6 [31]. Modes transforming as
the same irrep were tested simultaneously. An example of
the best single-irrep refinement for each compound using
this method is shown in Fig. 1. The results shown below
(Fig. 2) were performed with a fitting range of 1 (ScF3) or
1.7 (CaZrF6) to 10 Å. The refinements were also done out to
a higher radius; however, the results were broadly similar for
these larger fitting ranges. A comparison between the results
for 10 and 30 Å can be seen in the Supplemental Material
(Fig. S3) [32].

The thermal parameters for each site were modeled with
a simple quadratic, i.e., bi = bi,low + ur + vr2, where u and v

are constant across all sites for each refinement and bi,low is el-
ement dependent. While this does not capture the true physical
behavior of the system, it was found to produce more robust
fits to the data (stabler and fewer false minima) than other
functional forms of bi, with the results still being consistent
with our analysis performed using different functional forms
of bi (see Fig. S2 in the Supplemental Material).

To get an unbiased view of how each irrep influences the
local structure, the refinement for each irrep was initiated from
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FIG. 1. Pair distribution functions for ScF3 (top) and CaZrF6

(bottom) at 400 K (black circles). A small box fit with the modes
belonging to X +

5 refined is shown for both compounds (blue lines),
with the R−

2 mode additionally refined for CaZrF6. Labeled peaks
correspond to Sc-F (1a), F-F (2a, 3b), Sc-Sc (3a), Zr-F (1b), Ca-F
(2b), and Ca-Zr (4b).

randomized starting values of the relevant mode amplitudes.
When a minimum was reached, the refined parameters were
stored, rerandomized, and a new cycle was initiated. This
process was repeated until 25 000 iterations were reached
(between 300 and 4000 refinements); this process was used
to ensure a global minimum was reached for each mode.
For refinements of atomic displacements transforming as the
�−

4 irrep, corresponding to ferroelectric type distortions, the
amplitudes of modes affecting the metal cations were used to
fix the origin; otherwise, the mode amplitudes of this irrep
would appear artificially high due to the floating origin of the
unit cell. Finally, we note that if the refined mode amplitudes
are treated as the mean absolute value of displacement of
an harmonic oscillator, then the amplitude of the harmonic
motion will be a factor of

√
2 larger than the refined values.

B. Constrained order parameter directions

Some order parameters can have many degrees of freedom
associated with them. The exact number is a function of the
degeneracy of the propagation vectors, the dimensionality of

the irrep, and the number of distortions transforming as the
irrep. All of these degrees of freedom are described by the
collection of symmetry-adapted displacements or “distortion
modes” that can be labeled accordingly. For example, in the
parent structure (Pm3̄m) of ScF3 there are three types of
distortion that transform as X +

5 , which is two-dimensional
and associated with the triply degenerate k vector [1/2 0 0],
which results in a total of 18 parameters, compared to just
3 for M+

2 (a triply degenerate single-dimensional k vector)
and R−

5 (a nondegenerate k vector with three dimensions).
In our refinements, to facilitate a fairer comparison between
irreps, the order parameter direction (OPD) associated with
the three wave vectors for each distortion have been set to
the same values, i.e., the general OPD (a, b; c, d; e, f ) has
been set to (a, b; a, b; a, b). Different distortion modes of the
same type associated with the a and b branches of the OPD
are allowed to have different values. However, to further
reduce the degrees of freedom that ratio between a and b
across all distortion types that transform as a single irrep is
fixed to be constant across different temperature ranges. This
reduces the number of parameters for X +

5 from 18 to 4.
Physically, these approximations correspond to a harmonic
approximation in which the order parameter directions with
respect to the propagation vectors and irrep dimensionality are
strictly degenerate in energy. An example of this implementa-
tion is given in the Supplemental Material.

III. RESULTS AND DISCUSSION

Rietveld refinement of ScF3 and CaZrF6 powder patterns
can be used to gain some insight into the NTE behavior
but can also be misleading; the average structure of both
compounds remains cubic over the temperature ranges used;
however, this structure fits the pair distribution function quite
poorly, with PDFGUI [34] refinements of both structures from
1 to 10 Å having Rwp ≈ 18% and 20% for ScF3 and CaZrF6,
respectively (see Fig. S1 in the Supplemental Material). The
average linear coefficient of thermal expansion (CTE) ≈
−7.5 ppm K−1 for ScF3 matches the literature reports well
[9]. The measured CaZrF6 linear CTE, as reported by Hu et al.
from the same data [18], is −6.69 ppm K−1. In the literature,
CaZrF6 is reported to have a magnitude of NTE approximately
two to three times that of ScF3 [9,11] for the temperature
range 25–400 K, whereas in these measurements they have
quite similar values. The differences from literature reports
are in part due to the differing temperature ranges over which
CTEs are reported but may also be due to different strains,
morphologies and thermal histories of samples [35,36]. The
refined atomic displacement parameters (Fig. 2, top) reveal
that most thermal motion of the F ions is perpendicular to the
M-F-M linkages (M = Sc, Ca, Zr), indicating that a tensioning
of these linkages could be responsible for the observed NTE.

Some information can be gained from the PDFs without
any modeling. First, the effect of the rocksalt ordering of
Ca2+ and Zr4+ in CaZrF6 can be seen in the presence of two
peaks at r ≈ 2 Å, compared to just one in ScF3; the greater
positive charge of Zr4+ compared to Ca2+ means the F− ions
do not sit at the midpoint of Ca-F-Zr bonds (Fig. 1). Second,
the relative magnitudes of the shorter interatomic separations
(Sc-F, Sc-Sc; Ca-F, Zr-F, and Ca-Zr) means that the magnitude
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FIG. 2. Transverse atomic displacement parameters from Rietveld refinement (top), the best weighted-phase R factor for each irrep at each
temperature (middle), and the Boltzmann weighted mode amplitude (bottom). Results for ScF3 are displayed on the left; those for CaZrF6 are
on the right.

of the mean M-F-M angle (M = Sc, Ca, Zr) must deviate
from 180◦. The magnitude of this deviation is larger for
CaZrF6 than for ScF3 (see Fig. S3). The first peak for ScF3

and the first two for CaZrF6 are noticeably less broad than
the other peaks, indicating that the M-F bonds are relatively
stiff. In contrast, the broadness of the F-F peaks at ∼3 Å
indicate a propensity for bending of the bond angles within
the MF6 octahedra. Little further information can be gained
from a simple inspection of the PDFs; hence, analysis of the
structures has been performed in terms of symmetry-adapted
displacements, as described in Sec. II A.

The results for the symmetry-adapted analysis are shown
in Fig. 2 (middle and bottom). The distortions can be classed
into three general types: rigid unit modes, consisting of coher-
ent rotations of the octahedra; semirigid “scissoring” modes,
where there is a scissoring of some of the M-F bonds within
the octahedra; and bond-stretching modes, where some M-F
bond lengths change. Most irreps in this analysis have only
one distortion associated with them, although there are a few
with more. There is a good degree of consistency between the
two compounds; both have two “bands” of modes, one that fits
well and one that fits poorly. The band with a greater weighted
R factor in both compounds consist of the same irreps [R−

3 ,
R+

5 , X −
3 , M−

2 , M+
3 , M+

4 (and R−
2 in ScF3)], all of which have

distortions with a bond-stretching character. The rest of the
irreps, in the band that fits the data well, have at least one
distortion associated with them that has a rigid unit (M+

2 and
R−

5 ) or scissoring mode character. There are four zone bound-
ary irreps that consistently have the lowest weighted R factor

for both compounds for the majority of temperatures: X +
5 , X −

5 ,
M+

5 , and M−
5 . All of these irreps have one distortion associated

with them that is of scissoring mode character. A depiction of
the effect of these modes on the structure of CaZrF6 is shown
in Fig. 3. The �−

5 irrep also fits well, especially in the refine-
ments that go out to 30 Å. The displacements associated with
this irrep are also of a scissoring mode character. However,
despite the low Rwp, the mode amplitudes are consistently
small; hence, most of the analysis is focused on X +

5 , X −
5 , M+

5 ,
and M−

5 . The weighted mean amplitudes over all refinements
at each temperature for these irreps have been calculated and
are shown in Fig. 2 (bottom), the weighting being given by
a Boltzmann distribution, w = exp[(Rglobal − Rwp)/σ ], where
Rglobal is the minimum weighted R factor achieved across all
refinements and all temperatures for the relevant compound
and σ is the value of a meaningful difference in the weighted
R factor, taken to be 0.1%. Rglobal is taken to be 9% for both
compounds. The amplitudes of these modes (X +

5 , X −
5 , M+

5 ,
and M−

5 ) are consistently higher for CaZrF6 than for ScF3; this
coincides well with the more significant distortion away from
the average structure for CaZrF6, as seen in the mean M-F-M
bond angles and the greater magnitude of NTE reported in the
literature. These modes also fit significantly better than the
RUMs (M+

2 and R−
5 ). These best-fitting irreps (X +

5 , X −
5 , M+

5 ,
and M−

5 ) are all two-dimensional and all have three k vectors;
therefore, the OPDs have been constrained as described in
Sec. II B to allow for a fairer comparison with the RUMs,
which have fewer degrees of freedom associated with them.
For the ScF3, the unconstrained R−

5 (which is associated with
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FIG. 3. Representations showing the effect of (a) X +
5 , (b) X −

5 ,
(c) M+

5 , and (d) M−
5 on the crystal structure of CaZrF66. The

distortions are taken from the refinements at 400 K with the lowest
Rwp and plotted using the VESTA software [33].

the out-of-phase octahedral tilts observed in other metal triflu-
orides) has a quality of fit similar to that of the constrained X +

5 ,
X −

5 , and M+
5 at lower temperatures and consistently performs

better than M−
5 (Fig. 4). This suggests that a combination of

both the rigid unit and scissoring modes is responsible for
NTE, which agrees with a previous molecular dynamics study
of these materials [20]. In that study the authors argued that
correlated dynamics of flexible polyhedra result in a greater
degree of NTE than purely rigid unit dynamics. However,
for CaZrF6, we find the constrained scissoring modes, with
the exception of M−

5 , consistently perform better than the
RUMs. The RUMs also start to perform increasingly poorly
as the temperature is raised above 100 K, suggesting that the
thermal expansion in CaZrF6 at higher temperatures may well
be dominated by contributions from these scissoring modes.
The increasing Rwp of the RUMs as temperature is increased
and the contrasting decrease in Rwp seen for the scissoring
modes tally well with the phonon dispersion curves of both
compounds [13,19]. These show that the scissoring modes are
slightly higher in energy than the RUMs, so the scissoring
modes will become more active at higher temperatures.

As discussed earlier, the different charges on the two
cations in CaZrF6 result in a need to refine the octahedral
breathing mode, transforming as the R−

2 irrep, alongside the
other distortion modes in order to facilitate a more direct
comparison to ScF3. In the average structure of CaZrF6, this
breathing mode is frozen in, lowering the symmetry from
Pm3̄m to Fm3̄m. This also has the effect of mixing the
characters of some of the irreps such that the associated
atomic displacements now transform as the same irrep. For
example, the X +

5 and M−
5 irreps of Pm3̄m correspond to the

X −
5 irrep of Fm3̄m, and X −

5 and M+
5 correspond to X +

5 . To de-

FIG. 4. Comparison of weighted R factors for restricted irreps
X +

5 , X −
5 , M+

5 , and M−
5 , unrestricted irreps M+

2 and R−
5 , and coupled

X +
5 ⊕ M−

5 and X −
5 ⊕ M+

5 .

termine whether this mixing of characters has any effect on the
observed local structure of CaZrF6, the constrained OPD X +

5
and M−

5 modes were refined together (hereafter referred to as
X +

5 ⊕ M−
5 ). This gave a significant improvement to the quality

of the fit (Figs. 4 and 5). To determine whether this coupling
is a significant effect, results are compared to a two-phase
model, in which modes transforming as different irreps are
refined in separate phases (Fig. 6). Hereafter these two models
will be referred to as the “coupled” model (denoted with ⊕)
and the “two-phase” model (denoted with &). The coupled
modes have a significantly better R factor above 100 K but fit
worse than the two-phase refinement below this temperature.
The same comparisons are also done for ScF3, where any
coupling between phonons of these characters should arise
from only anharmonic interactions. In contrast to CaZrF6,
which shows a clear preference for coupling between X +

5 and
M−

5 , no evidence of such coupling and hence an anharmonic
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FIG. 5. Comparison of fits to ScF3 (left) and CaZrF6 (right) PDF data at 400 K using restricted X +
5 , X −

5 , M+
5 , and M−

5 ; unrestricted R−
5 ;

and restricted X +
5 ⊕ M−

5 .

interaction is seen here for ScF3. This suggests that while
these scissoring modes are important in determining the local
structure of ScF3, any anharmonic coupling between them has
little influence on the lattice dynamics that drive NTE. A sim-
ilar comparison is made for X −

5 /M+
5 ; however, the two-phase

refinements consistently fit better than the coupled model for
both compounds. This may be due to both distortions locally
having the same character (Eu of point group m3̄m) with
respect to the MF6 octahedra, making coupling unfavorable.

Next, we investigate if the similar quality of fits of the
scissoring modes X +

5 , X −
5 , and M+

5 and the rigid unit mode
R−

5 could be indicative that the two types of distortion are
cooperatively coupled to produce the observed NTE. To test
this hypothesis, we explore two scenarios: whether this ob-
servation is simply due to the dynamic distortions occurring
in different sample volumes or at different times from each
other or a coupled model which implies that significant anhar-
monic coupling between these modes is occurring. For both
materials, the X +

5 /R−
5 refinements show a sort of behavior

similar to the X +
5 ⊕ M−

5 refinements in CaZrF6, in that the
refinements of the coupled modes perform worse than the
two-phase refinements at lower temperatures but soon cross
over to show an improved fit, although the results for CaZrF6

are not robust. Since by the symmetry lowering of the rocksalt
ordering in CaZrF6 X +

5 and M−
5 are allowed to couple and we

have shown our analysis to be sensitive to this coupling, the
results in Fig. 7 are indicative that there is coupling between
the X +

5 and R−
5 modes. However, as, by symmetry, coupling

in X +
5 ⊕ R−

5 is not permitted on its own, we construct a
coupled distortion that forms an invariant in the free-energy
expansion by inclusion of the M−

5 irrep. The X +
5 and M−

5

OPDs in this refinement are still restricted, resulting in three
more parameters than the X +

5 ⊕ M−
5 refinements but much

improved fits (Figs. 4 and 7). This model results in a very
good agreement with the data (Fig. 7).

A very recent analysis of ScF3 neutron PDF data using
the reverse Monte Carlo (RMC) method by Dove et al. [37]
similarly concluded that it is a combination of structural flexi-
bility and RUMs that causes the NTE in the compound. Dove
et al. argued that the flexibility of the structure allows RUMs
and RUM-like modes to occupy a larger volume in reciprocal
space, meaning they give a greater contribution to the overall
thermal expansion behavior, compared to entirely rigid struc-
tures. Our results here echo this conclusion and underline the
dominant contribution of scissoring modes in describing the
fluctuations from the average symmetry. Additionally, in the
work of Dove et al., geometric algebra was used to quantify
the proportion of the motion of the atoms in ScF3 originating
from correlated whole-body octahedral motion, deformations
of the F-Sc-F right angles, and changes in the Sc-F bond
length. This analysis resulted in a ratio of approximately 7:2:1
of bends:rotations:stretches. The X +

5 &R−
5 and X −

5 &R−
5 two-

phase refinements described previously give a similar ratio of
bends:rotations, approximately 8:2, although the contribution
from stretches is negligible (<1% of the total motion). The
X +

5 &R−
5 refinements for CaZrF6 give an approximately 7:3

ratio of bends:rotations, again with a negligible contribution
from stretches. There is hence a high degree of consistency
between results derived via big-box RMC methods and those
of our symmetry-motivated approach here. A different analy-
sis of neutron PDF data of ScF3, performed by Wendt et al.
[38], models the F atoms as being randomly positioned on a
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FIG. 6. Comparison of coupled and two-phase fits to PDF data
as a function of temperature for ScF3 (top) and CaZrF6 (bottom), as
described in the text.

torus-shaped Gaussian distribution around the F sites in the
average structure, with no correlation between neighboring F
atoms, in a fashion similar to entropic elasticity in polymers.
The model reproduces the observed NTE behavior and F-F
distribution up to ≈700 K. It shows how important the flexi-
bility of Sc-F-Sc linkages is in this material, a fact consistent
with our findings here; however, it fails to account for the full
range of NTE in the material. The previously discussed RMC
model shows that at least a small fraction of the motion of
F atoms in the material can be accounted for by correlated
rigid-unit-type distortions, results which are compatible with
our symmetry-based analysis of the x-ray PDF data.

In summary, we have shown via a symmetry-motivated
real-space analysis of PDF data that the most significant
distortions in these ReO3-like NTE materials are scissoring
modes, which involve scissoring of the MF6 octahedral bond

FIG. 7. Comparison of fits for X +
5 ⊕ R−

5 using a two-phase
model (blue) and a coupled model (red) and X +

5 (a, b; 0, 0; 0, 0) ⊕
M−

5 (0, 0; c, d; 0, 0) ⊕ R−
5 (e, f , g) (yellow) for ScF3.

angles. These modes have a greater amplitude in CaZrF6

than ScF3, which corresponds well to the greater magnitude
of NTE reported in the literature for the former. Coupling
between these modes and the rigid unit modes has been shown
to be active and the likely origin of unusually high NTE in
these structures.

The ScF3 data for this study are available as a supporting
data set [39].
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We use a symmetry-motivated approach to analyse neutron pair distribution function data to
investigate the mechanism of negative thermal expansion (NTE) in ReO3. This analysis shows
that the local structure of ReO3 is dominated by an in-phase octahedral tilting mode and that
the octahedral units are far less flexible to scissoring type deformations than the octahedra in the
related compound ScF3. These results support the idea that structural flexibility is an important
factor in NTE materials, allowing the phonon modes that drive a volume contraction of the lattice
to occupy a greater volume in reciprocal space. The lack of flexibility in ReO3 restricts the NTE-
driving phonons to a smaller region of reciprocal space, limiting the magnitude and temperature
range of NTE. In addition, we investigate the thermal expansion properties of the material at high
temperature and do not find the reported second NTE region. Finally, we show that the local
fluctuations, even at elevated temperatures, respect the symmetry and order parameter direction of
the observed P4/mbm high pressure phase of ReO3. The result indicates that the motions associated
with rigid unit modes are highly anisotropic in these systems.

I. INTRODUCTION

The phenomenon of negative thermal expansion
(NTE) is an intriguing and unusual property for a mate-
rial to exhibit. Broadly speaking, there are two families
of NTE materials: those in which the anomalous ther-
mal expansion behaviour arises solely from vibrational
effects, and those in which it has an electronic origin1–4.
In a typical material, we expect to observe positive ther-
mal expansion (PTE) since the anharmonic shape of the
interatomic potential leads to an increase in the equilib-
rium distance between two atoms as they gain more en-
ergy from an increase in temperature. The typical expla-
nation for how vibrational effects can lead to a deviation
from this behaviour is the “tension effect”1,4. A lot of
structural NTE materials consist of a network of cation-
anion linkages, often with an anion linked to two cations
in a straight line5–8. If the energy cost to expand these
bonds is quite high, then the central ion can displace per-
pendicularly to the bonds, which has the effect of pulling
the two outer ions towards each other. The bonds con-
necting the linked ions still show PTE, but the linkage
as a whole shrinks. This hypothesis is supported by neu-
tron and X-ray powder diffaction experiments showing
significant transverse atomic displacement parameters4.
The tension effect is often realised in NTE materials via
rigid unit modes (RUMs)4,9 – materials made from a net-
work of rigid polyhedra often have a high energy cost to

distort the polyhedral units but a low energy cost for co-
operative rotations of the polyhedra. These distortions
typically cause a contraction of the volume of the ma-
terial and since they are low in energy will have a large
contribution to the overall thermal expansion behaviour.
Many of these cation-anion linked NTE materials give
rise to a network of connected polyhedra, such as the
archetypal NTE material ZrW2O8

10, SiO2
11 and layered

materials showing uniaxial NTE such as Ca3Mn2O7
12.

Two materials that are often used to illustrate the
RUM model are ReO3 and ScF3, due to their relatively
simple structure when compared to more complex ma-
terials like ZrW2O8. Both compounds consist of corner-
sharing octahedra and both exhibit NTE, up to around
220 K in ReO3

13,14 and 1100 K in ScF3
15, although the

exact range of NTE in the former is dependent on sam-
ple preparation16. There has also been an observation of
a reappearance of NTE in ReO3 between 600–700 K14.
This overlaps with the temperature at which ReO3 is
known to decompose to Re2O7 and ReO2

17. Both ReO3

and ScF3 undergo a phase transition via octahedral tilts
with applied pressure. In ReO3, the octahedral tilts in
successive planes along the tilt axis are in-phase tilts18–21,
whereas for ScF3, the tilts are out of phase15,22.

Compared to typical ABX3 perovskites, which also
exhibit rigid rotations of the octahedral units, ReO3

and ScF3 both have a vacant A-site, allowing larger
tilt angles19. Recent analysis of the local structure of
ScF3

23,24 demonstrated that flexibility of the octahedra
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themselves, i.e., distortions of the intraoctrahedral F–
Sc–F bond angles away from 90◦, is a key contributor to
the NTE. In perovskites, pure RUMs are restricted to the
line M-R in reciprocal space, which in principle gives their
mode Grüneisen parameters a vanishingly small contribu-
tion towards the mean Grüneisen parameter. On moving
away from this line, the modes have an increasing com-
ponent of octahedral distortion. These modes, termed
quasi-RUMs, can still contribute to NTE if they have neg-
ative Grüneisen parameters. Simplistically, structures
with greater flexibility will have a greater volume of re-
ciprocal space occupied by quasi-RUMs with a negative
Grüneisen parameter than those of lesser flexibility. In
addition, these modes will have a greater contribution to
the mean Grüneisen parameter, since their component of
octahedral deformation will have a lower energy cost25.
The oxygen anions in ReO3 have an increased charge
compared to the fluoride anions in ScF3 and therefore an
increased coulomb repulsion force between them, which
one might expect to decrease the flexibility of the octa-
hedra. Molecular dynamics simulations of an ReO3-like
structural model have also shown a decreasing magnitude
of NTE for increasing anion interaction strengths26. In
particular, the sign of the coefficient of thermal expansion
in ScF3 has been shown to be highly sensitive to changes
in the force constant governing flexing of the F−Sc−F
right angle24.

We investigate this hypothesis by using a symmetry-
motivated approach to analyze neutron pair distribution
function (PDF) data collected on ReO3 across its entire
temperature range of stability. Our study enables us to
identify the characters of the dominant dynamic devia-
tions away from the average structure as a function of
temperature.

II. EXPERIMENTAL DETAILS

Rhenium trioxide was purchased from Sigma-Aldrich
and used as received. A 4.63965 g sample was loaded
into a vanadium can of 6 mm diameter and mounted
onto the Polaris instrument at ISIS Neutron and Muon
Source (Rutherford Appleton Laboratory, U.K.)27. Data
were collected in “short” 13 µA hr runs for Rietveld re-
finement and “long” sets of five 150 µA hr runs for pair
distribution function analysis, equivalent to data collec-
tion periods of 5 minutes and 1 hour for each run, respec-
tively. For low temperatures (between 4 K and 293 K) a
helium flow cryostat was used, whereas for higher tem-
peratures from 293 K to 750 K a furnace was used. The
furnace data were collected in two separate experiments,
due to an unscheduled beam shut-off at the facility dur-
ing the first experiment. The furnace data for 600 K
and above were taken from the second experiment. Both
experiments used the same ReO3 sample, stil loaded in
the same sample can. During these experiments, data
were also collected from the empty instrument, empty
sample environment, and an empty vanadium can for

Re - Re

O - O

Re - O

= √2(Re - O)

= 2(Re - O)

(a)

(c)

(b)

Figure 1. (a) Temperature variation in the cubic lattice pa-
rameter of ReO3 from Rietveld refinement. The data points
shown in red are from the longer collections which were used
for total scattering measurements. (b) Plots of the PDF peak
position ratios indicated in the legend. Peak positions for
ScF3 were extracted from atomistic configurations generated
using the reverse Monte Carlo method on neutron PDF data24

and OriginLab was used to fit the peaks for ReO3. The error
bars for ReO3 correspond to the uncertainties from the peak
fitting algorithm. We note that values of (Re–Re)/2(Re–O)
above 1 are not physically possible, but at worst they are
less than 0.05 % too high. This is likely due to a systematic
error and we believe that the trends with temperature are re-
liable. The uncertainty in these atom pair distances due to
the r-space resolution (∆r ≈ 0.1 �A) is an order of magnitude
greater than this. (c) A diagram showing how the O–O and
Re–O distances in the average structure of ReO3 are related
to one another.

background correction, as well as a solid vanadium rod
for normalisation. For average structure determina-
tion, data reduction was carried out using Mantid28. The
lattice parameter for each temperature was determined
by Rietveld refinement using the EXPGUI29 interface to
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Figure 2. The results of the SAPA on ReO3. The best individual fitting statistic is plotted for each irrep at each temperature.
The Rw is shown relative to the Rw for the refinement with no symmetry adapted displacement modes active. The irreps are
labelled as follows: colour denotes the k-point of the irrep, with blue referring to the M point, green to X, pink to R and yellow
to Γ; marker shape denotes the irrep number, with a circle referring to 1, an upward-pointed triangle to 2, a star to 3, a square
to 4 and a downward-pointed triangle to 5; linestyle denotes the parity of the irrep, with a solid line referring to a + irrep, and
a dashed line referring to a − irrep. A representative fit of the average structure to the PDF at 293 K is shown in the SI.

GSAS30 against the data from Polaris detector banks 3–
5, refining both the unit cell and atomic displacement
parameters (noting that all atomic coordinates for the
Re and O atoms are fixed by symmetry in the Pm3̄m
space group). A representative fit to the data at 150 K is
included in the SI. The background was modelled using
an 8-term shifted Chebyschev function. An absorption
correction was refined to account for the neutron absorp-
tion of rhenium.

To ensure that the unit cell parameters were consis-
tent between the cryostat and furnace environments, data
were collected at 293 K in both environments. For the
furnace data set, the unit cell parameter was fixed at
the value determined from the cryostat data and the
diffractometer constant DIFC for the backscattering de-
tector bank was refined instead. This new value was held
constant for subsequent furnace data sets to ensure self-
consistency across the entire temperature range (with an
identical approach used to ensure consistency between
the first and second furnace data sets).

For local structure analysis, Gudrun31 was used to sub-
tract the background, correct the data for self-shielding,
absorption, and multiple scattering, normalise them to
give the scattering function S(Q), and finally Fourier
transform this to give the pair distribution function D(r).
The scattering function S(Q) was determined over the Q
range 0.6–50 �A−1 in steps of 0.02 �A−1. This data normal-
isation is also dependent on the density of the powdered
sample: the powder packing fraction was initially set to
the value measured experimentally and then adjusted by
hand for all data sets in order to set the limiting value of

the total scattering structure factor, F (Q)32 , as Q → 0
to its theoretical value of −∑i cib̄

2
i
33, and to set the co-

ordination number for the first peak (Re–O) to its ideal
value of six O atoms per Re atom.

Analysis of the pair distribution functions was carried
out using the symmetry-adapted PDF analysis (SAPA)
method described in ref. 23. For each sample, a 2 × 2 ×
2 P1 supercell of the Pm3̄m aristotype ReO3 with Re at
(0.5, 0.5, 0.5) and O at (0.5, 0.5, 0) was generated and
parameterised in terms of symmetry adapted displace-
ments using the ISODISTORT software34. The modes
modelled using this supercell expansion only represent a
small fraction of possible phonon modes. However, even
if the exact wave vectors of the soft phonon modes do not
coincide with the Γ, X, M or R points of reciprocal space,
since their characters should vary continuously between
high symmetry points, the nature of the local symmetry
breaking should still be manifested in our analysis. The
generated mode listings were output in .cif format and
then converted to the .inp format of the TOPAS Aca-
demic software v6 using the Jedit macros35. In total,
there were 96 modes which transformed according to one
of 19 irreducible representations. For each irreducible
representation (irrep) at each temperature, refinements
of the corresponding modes were started from random
starting mode amplitudes. This was repeated 500 times
for each irrep at each temperature to ensure the global
minimum of the refinement was reached. For all tem-
peratures, the refinements were carried out with a fitting
range of 1.5 to 10 �A. Refinements were carried out using
the Topas Academic software v636.
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(a)

(b)

(c) (d)

Figure 3. (a) Temperature variation of the normalised mode
amplitudes of the modes belonging to the M+

2 , X+
5 and X−5

irreps. The values were calculated from the lowest Rw re-
finement for each temperature and irrep from the output of
the SAPA. These values are supercell normalised mode am-
plitudes (As as defined in ISODISTORT). To convert to the
Ap values, divide by a factor of 2

√
2. Visualisations of the

modes which transform as each irrep are shown below. Specif-
ically, (b) the three distortions for the X+

5 (a,0;0,0;0,0), (c) X−5
(a,0;0,0;0,0) and (d) M+

2 (a;0;0).

The DFT calculations were performed using the Vi-
enna Ab Initio Simulation Package (VASP)37–40, ver-
sion 5.4.4. We employed the PBEsol exchange correla-
tion potential41 and projector augmented-wave (PAW)
pseudopotentials38,42, as supplied within the VASP pack-
age. A plane wave basis set with a 900 eV energy cutoff
and a 12 × 12 × 12 Monkhorst-Pack k-point mesh with
respect to the parent cubic primitive cell (scaled accord-
ingly for other supercells) were found suitable.

III. RESULTS AND DISCUSSION

Rietveld refinement of the a unit cell parameter from
the Bragg reflection positions observed during the total
scattering experiment shows we observe the same low
temperature negative thermal expansion range as liter-
ature reports for ReO3

13,14 (Fig. 1 (a)). The high tem-

perature measurements for both long and short runs do
not show the second region of NTE observed by Chatterji
et al14. Our conjecture is that the original observation
of this phenomenon was likely due to sample decompo-
sition, since above 673 K, ReO3 starts to decompose via
disproportionation17.

We can gain some insights into the local structure from
the PDFs of ReO3 without performing any modelling. In
Fig 1 (b), we quantitatively estimate the flexing of the
O–Re–O right angle and Re–O–Re linkage. In the av-
erage structure, the plotted ratios are constrained to be
constant at a value of one, due to a 90◦ O–Re–O bond
angle and a straight Re–O–Re bond. The intercepts of
these ratios at 0 K reflect the inherent flexibility of the
structures, since the force constants governing both types
of flexing motion do not change with temperature. This
shows that ScF3 is more flexible than ReO3, presumably
due to the lower charge of F− compared to O2−. The
difference in flexibility with respect to distortions of the
O–Re–O (F–Sc–F) bond angle is smaller than that for
distortions of the Re–O–Re (Sc–F–Sc) linkage. However,
molecular dynamics simulations have shown that the sign
of the coefficient of thermal expansion is more sensitive to
changes in the force constant governing the former24. An-
other difference of note is that the trends in the X–M–X
bond angle for ReO3 and ScF3 are opposed. The average
O–Re–O bond angle increasing with temperature while
the F–Sc–F bond angle decreases. These differing trends
could reflect that phonon modes with differing characters
and amplitude cause the octahedral deformations.

To gain a fuller understanding of the character of the
soft modes in ReO3, we turn to the results from our
SAPA method. In Fig 2, we can see there is a group
of irreducible representations whose modes consistently
give the best improvement in Rw compared to the av-
erage structure refinements at each temperature. These
are M+

2 , M+
5 , M−5 , X+

5 , X−5 and Γ−5 . All but M+
2 have

symmetry-adapted displacements associated with them
which are of a scissoring character: the Re-O octahedral
bond lengths remain unchanged, but some of the bond
angles are distorted via transverse displacements of the
O anions. The M−5 and X+

5 irreps both also support
bond-stretching. However, this type of distortion is rela-
tively high in energy so contributes negligibly both to the
overall coefficient of thermal expansion and to the refined
distortion. The amplitudes of these scissoring modes (Fig
3 (a)) are smaller than for ScF3

23 which further supports
the hypothesis that a lower flexibility is responsible for
the reduced magnitude of NTE in ReO3 compared to
ScF3.

The other local symmetry breaking which is consis-
tently amongst those which show the most improvement
in Rw from the average structure, and at some tempera-
tures shows the most improvement overall, transform as
irrep M+

2 . The distortions belonging to this irrep corre-
spond to an in-phase tilt of the octahedra, with no other
type of distortion associated with it, so it is of pure RUM
character. This is a significant distortion for ReO3 which



5

undergoes a phase transition with applied pressure (ca.
5 kbar at 300 K) during which the M+

2 mode softens and
the tilts are “frozen in” to the structure. To compare
the relevant prevalence of this pure RUM mode with the
scissoring modes, we refined a two-phase model, with dis-
placements from the X−5 irrep in one phase and from the
M+

2 in another. The X−5 irrep was chosen here since all
the displacements associated with it are of a scissoring
mode character and it provides a better fitting statistic
than other irreps for which this is also true (M+

5 and Γ−5 ,
Fig 2). At temperatures below 225 K, in the negative
thermal expansion region, the RUM dominates as evi-
denced by the refined phase fraction in Fig 4 (a). At
higher temperatures, there is a balance between the two
phase fractions, indicating that both scissoring and RUM
type motions account for a substantial proportion of the
dynamic distortions.

At first glance, this increase in the proportion of mo-
tion arising from scissoring modes, coincident with the
onset of PTE, is perhaps contradictory to the quasi-RUM
mechanism for NTE which has been previously discussed
for ScF3. In ScF3, the octahedral flexibility means a
significant proportion of quasi-RUMs, modes which are
of mixed scissoring and rigid unit mode character, will
have a negative Grüneisen parameter. This expands the
volume occupied in reciprocal space by NTE phonons,
increasing the overall contribution of modes with nega-
tive mode Grüneisen parameters to the mean Grüneisen
parameter. Previous analysis of both X-ray and neutron
PDF data of ScF3 finds that the majority of motion of
fluorine atoms comes from scissoring modes, with approx-
imate scissoring:RUM ratios of 4:1 (0.8 as a phase frac-
tion) from SAPA analysis23 and 3.5:1 (0.78) from reverse
Monte Carlo analysis24 at all temperatures. Our analy-
sis in Fig 4 shows that in ReO3, the scissoring:rotation
ratio is close to 1:1 at 675 K, but drops to 1:10 by 4 K.
These ratios suggest that there is significantly more re-
sistance to octahedral deformations in ReO3 than ScF3.
However, within renormalized phonon theory, we would
expect the phase fractions43 in Fig 4 to remain constant
with temperature, as we observe in our RMC analysis
of ScF3. The fact that the proportion of the scissor-
ing to RUM phase fraction increases at high tempera-
tures is more likely to reflect a hardening of the RUM
than a sudden increase in the flexibility of the structure.
This supposition is supported by the observation that the
pressure at which the first phase transition occurs, in-
creases with temperature20. The increased energy of the
phonon modes with RUM character on warming lowers
their contribution to the mean Grüneisen parameter at a
given temperature. This hardening also has a knock-on
effect on the quasi-RUMs, since their RUM component
will also have a higher energy. It is of course tempting
to suggest that this hardening of the modes with RUM
character above 200 K is responsible for the concurrent
change in sign of the bulk thermal expansion coefficient.
However, it is conversely evident from the negative sign
of the Grüneisen parameters of these modes that an in-
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Figure 4. A plot of the weighted mean phase fraction of the
X−5 phase from two-phase refinements of M+

2 in one phase and
X−5 OPD in the other. Similarly to the SAPA, 500 repeats
were performed at each temperature from randomised starting
values and the weighting, w, of each refinement towards the
mean was calculated according to w = exp[(Rmin −Ri)/0.1],
where Rmin is the minimum Rw for each temperature and the
Ri are the Rw of each refinement.

crease in volume would result in their hardening. Hence,
we can not establish a causal connection with the current
set of observations.

Next, we consider the sequence of phase transitions in
ReO3 under pressure, since these are likely to be indica-
tive of the character of the soft modes observed in the
present study. The nature of the initial phase transition
with pressure has come under question. The consensus
in the literature is that at 5 kbar and 300 K, ReO3 un-
dergoes a transition to a tetragonal P4/mbm structure
involving an in-phase octahedral tilt along one pseudo-
cubic axis, with only one arm of the propogation vector
active (M+

2 (a; 0; 0)). At 5.3 kbar it undergoes a further
transition to a cubic Im3̄ structure, with all 3 arms of
the propogation vector active (M+

2 (a; a; a)) and a tilt
of equal amplitude along all three pseudo-cubic axes. In
Glazer notation, this corresponds to a transition from an
a+b0b0 tilt system to a+a+a+. Some experiments, how-
ever, report that there is no transition to the P4/mbm
structure20, only observing the transition to the Im3̄
phase.

Since we expect the distortion which is responsible
for the phase transition to be a soft mode at ambi-
ent pressure, we can interrogate our PDFs to see if a
precursor signature of this phase transition is already
present. To do this, we parameterised the three dimen-
sional M+

2 order parameter direction (OPD) (a; b; c) in
terms of spherical polar coordinates with a = r cosφ sin θ,
b = r sinφ sin θ and c = r cos θ. Refinements were per-
formed at fixed values on a grid covering the range of val-
ues of θ and φ, whilst allowing the amplitude of the mode
to vary. In this parameterisation, the OPD corresponding
to P4/mbm symmetry occurs if both θ and φ are integer
multiples of π/2, and for all values of φ when θ = 0, π.
The Im3̄ OPD would occur when φ = π/4, 3π/4, 5π/4 or
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(a)

(b)

(c)

Figure 5. Plots showing the Rw of different M+
2 OPDs pa-

rameterised by spherical coordinates at (a) 75 and (b) 600 K
respectively. The greyscale color map corresponds to a value
w = exp[(Rmin − Ri)/0.1] where Rmin is the minimum Rw

for each temperature and the Ri are the Rw of each refine-
ment. A value of w = 1 then indicates a refinement with
a fitting statistic equal to the best fitting statistic across all
refinements for that temperature. Thus, darker regions rep-
resent better fits than lighter regions. Different color bars
are shown for the different temperatures since Rmin changes
with temperature. To aid the eye, points corresponding to an
order parameter direction with Im3̄ symmetry are shown in
orange. (c) A cut through of the above plots, shown in (a) &
(b) with a blue dashed line, showing the variation in the value
w for a fixed value of θ. Equivalent plots for the remaining
temperature points are shown in the SI.

7π/4 and θ = arctan(±
√

2).

In the Landau theory of phase transitions, the free en-
ergy expansion is written as a linear combination of sets

of polynomials in the components of the order parame-
ter. These polynomials must be invariant under all of the
symmetry operations of the parent space group, Pm3̄m
in this case. Since the invariant polynomial truncated at
the second (harmonic) order is of the form a2 + b2 + c2,
which in the spherical coordinate parameterisation is
equivalent to r2, the anisotropic Rw distribution we ob-
serve over the spherical surface (Fig 5), is indicative of
significant anharmonicity.

At low temperatures, the lowest Rw refinements are
clustered around points corresponding to the P4/mbm
OPD (Fig 5 (a)), while the worst fitting refinements are
clustered around points corresponding to Im3̄ symme-
try. Halfway in between points described by P4/mbm
and Im3̄ symmetry, corresponding to the OPD (a; a; 0)
with I4/mmm symmetry, a small improvement in the
quality of fit is observed compared to the OPD with Im3̄
symmetry. These areas correspond to distortions involv-
ing tilts about two orthogonal axes. This likely reflects a
saddle point in the energy between the best (P4/mbm)
and worst (Im3̄) fitting OPDs. The anisotropy in the fit-
ting statistics, that becomes more evident at higher tem-
peratures and at large mode amplitudes, points towards
significant anharmonicity, since, as discussed above, at
the harmonic (quadratic) level, all OPDs must be equiv-
alent with respect to the free energy expansion. Compar-
ing OPDs against our PDF data for Im3̄ and P4/mbm
phases also shows a clear preference for P4/mbm at all
temperatures, with an Rw of 7.28 % for P4/mbm and
7.83 % for Im3̄ at 293 K, respectively (Fig S3 in the SI).
This supports the consensus that this distortion is the
one first reached on the application of moderate pressure.
However, it is surprising that even at high temperatures,
such a pronounced anisotropic signature of this OPD is
evident. We investigate the origin of this anisotropy be-
low.

For small mode amplitudes (< 0.5 �A) of the M+
2

(a; 0; 0) and (a; a; a) OPDs, such as we observe here, the
distortions give rise to an almost identical volume strain
in our DFT calculations (Fig 6 (a)). The two distor-
tions are also found to be equally soft in energy over the
range of amplitudes we expect to sample dynamically
(Fig 6 (b&c)), hence these calculations do not explain
the observed anisotropy with respect to the dynamic dis-
placements transforming as M+

2 . Possible strain coupling
is accounted for in the DFT calculations since the lat-
tice parameters of each distorted structure were relaxed
during the energy calculations. The only factor not ac-
counted for by the DFT is that the M+

2 (a; a; a) OPD
can couple to displacements that transform as the M+

1

irrep, but this would only serve to decrease the energy
of the Im3̄ phase further, and so cannot explain why
we observe the P4/mbm distortion dynamically at am-
bient pressure. Since the ground state DFT calculations
fail to account for the anisotropy in the OPDs, we must
consider these effects to be either due to entropy or an-
harmonic couplings between phonons. We discount the
latter proposal as the anisotropy persists even down to
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Figure 6. (a) The volume difference (normalised to the volume
of the undistorted structure), (b) the energy increase and (c)
the energy difference for M+

2 OPDs with P4/mbm and Im3̄
symmetries for increasing 2×2×2 supercell-normalised mode
amplitudes. These values are obtained using DFT calcula-
tions. Lattice parameters were relaxed, respecting the space
group symmetry. The vertical line shows the mode amplitude
for M+

2 at 293 K (Fig 3) The energy difference between the
two is plotted (c). The lines shown in (b) are 4th order poly-
nomial fits to the data points shown. The line in (c) is the
difference between the fits in (b). The line in (a) is shown as
a guide to the eye.

the lowest temperature, where we have shown that any
dynamic deviations are small and are accounted for al-
most exclusively by the M+

2 RUM (Fig 4). Hence, in
the following paragraph, we explore the prior suggestion
that entropy might dictate the anisotropy of the dynamic
fluctuations.

By virtue of our experimental observation of the
anisotropy of these modes, we have already shown them
to be anharmonic in nature. For the OPD M+

2 (a; 0; 0)
with P4/mbm symmetry, the structural fluctuation,
taken in the static limit, has additional degrees of free-
dom that may be realised as dynamic tilts in the direc-
tions perpendicular to the spontaneously condensed tilt,

corresponding to a line in the phonon dispersion curve
between the R and M points in aristotypical perovskite
symmetry. The Im3̄ structure has tilts along all three
pseudo-cubic axes, and consequently will have no addi-
tional degrees of freedom of this manner. This leads to
the P4/mbm phase, or indeed an anharmonic distortion
of this character, having the greater vibrational entropy
of the two. This means that it is favoured over other
OPDs for the smaller distortion amplitudes that are re-
alised at lower pressures or during dynamic, anharmonic
fluctuations of the system.

The above scenario implies that we should be sensitive
in our PDF analysis to low amplitude, harmonic distor-
tions of RUM character that are orthogonal to the dom-
inant anharmonic one. Indeed, we can see a signature of
this from the spherical polar coordinate plots of the M+

2

OPD at 600 K, in the form of “rings” around the (a; 0; 0)
OPD (Fig 5 (b)), corresponding to smaller amplitude tilts
about the axes orthogonal to the propagation vector of
the anharmonic RUM. This is further supported by a fit
to the 600 K PDF data with a two-phase model. Each
phase contained a large amplitude (0.6 �A) M+

2 (a; 0; 0)
distortion, the “anharmonic part”, and one smaller am-
plitude distortion (< 0.3 �A) of M+

2 (0; b; c) or R−5 (0; b; c)
to mimic deviation in the data due to the line of mainly
dispersionless harmonic RUMs running from k = [1/2
1/2 0] to [1/2 1/2 1/2]. All non-zero ratios of in-phase
to out-of-phase tilts resulted in a slight improvement to
the fit compared to an all in-phase model (Fig S6 in the
SI).

The importance of entropy in determining the sequence
of soft mode phase transitions in Ruddlesden-Popper per-
ovskites has been highlighted by us recently44. In this
instance, we discussed how the layering in this structure
effectively affords phonon modes with an octahedral tilt
character (RUMs about axes perpendicular to the layer-
ing axis) a greater vibrational entropy than those with an
octahedral rotation character (about the layering axis).
The sequence of temperature induced soft mode phase
transitions we observed in these compounds were con-
sistent with the idea that the entropic cost of ordering
a tilt is higher than that of ordering a rotation. Given
that the change in entropy associated with the ordering
of a single mode is in principle vanishingly small, it is
maybe surprising that the phase transition pathway is
dictated in this manner. However, it is the associated
renormalisation of phonon modes with RUM and quasi-
RUM character, occupying a significant volume in recip-
rocal space, that provides the non-vanishing contribution
to the Gibbs free energy, directing the soft mode transi-
tion pathway. Our present results tentatively go beyond
these ideas in two respects. Firstly, ReO3 is not a layered
perovskite, so there is no distinction between octahedral
tilts and rotations. However, it is clear that the same ar-
guments about entropy and phonon renormalisation ap-
ply when considering the ordering of tilts about one axis
compared to tilts about three. Secondly, our results im-
ply that the anisotropic character of the phonon mode
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is essentially determined by the entropic cost of the an-
harmonic fluctuation itself, even without this fluctuation
reaching the static limit required to initiate a soft mode
phase transition.

In conclusion, a symmetry-motivated analysis of the
pair distribution functions of ReO3 has shown that the
presence of a rigid unit mode allows this material to ex-
hibit NTE, but a lack of flexibility of the structure limits
the magnitude and extent of the NTE behaviour. The
rigid unit mode has been shown to be anisotropic, dis-
playing a clear preference for an (a; 0; 0) order parameter
direction, even at elevated temperatures, which is consis-
tent with the P4/mbm space group the structure achieves
after its phase transition with pressure. We tentatively
suggest that the anisotropy we observe in the tilt direc-
tion of the M+

2 RUM is effectively determined by the

entropic cost of the fluctuation itself.
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Hybrid perovskites are a rapidly growing research area, having reached photovoltaic power con-
version efficiencies of over 25 %. We apply a symmetry-motivated analysis method to analyse X-ray
pair distribution function data of the cubic phases of the hybrid perovskites MAPbX3 (X = I, Br,
Cl). We demonstrate that the local structure of the inorganic components of MAPbX3 (X = I, Br,
Cl) are dominated by scissoring type deformations of the PbX6 octahedra. We find these modes
to have a larger amplitude than equivalent distortions in the A-site deficient perovskite ScF3 and
demonstrate that they show a significant departure from the harmonic approximation. Calculations
performed on an all-inorganic analogue to the hybrid perovskite, FrPbBr3, show that the large
amplitudes of the scissoring modes are coupled to an opening of the electronic band gap. Finally,
we use density functional theory calculations to show that the organic MA cations reorientate to
accomodate the large amplitude scissoring modes.

I. INTRODUCTION

Molecular perovskites, also known as hybrid per-
ovskites, are a fast growing research area in photovoltaics,
due to their low cost to make and rapid increase in effi-
ciency (from 3.9 % in 20091 to > 25 % today2–4). These
materials have the general structure and chemical for-
mula of traditional perovskites (ABX3), but where they
differ is that the A site cation is organic. The most fre-
quently studied of this class of materials are the methy-
lammonium (MA) lead halides, which have the general
formula CH3NH3PbX3 (X = I, Br, Cl), commonly abbre-
viated to MAPbX3. In addition to their high conversion
efficiency, this class of hybrid perovskites have other de-
sirable photovoltaic properties, such as long charge car-
rier lifetimes5, mobility6 and diffusion lengths7, a high
absorption coefficient8, and a direct band gap1. These
properties couple together to create a device that has
a high density of charge carriers with a strong barrier
against recombination, all whilst needing much less ma-
terial than traditional solar cell materials, and without
the need for a high energy input manufacturing process9.

Whilst perovskite oxides are a well studied class of ma-
terials due to the wide range of desirable properties ex-
hibited by them, less is understood about the structure-
property relationship in halide perovskites, particularly
the hybrid perovskite family. Having a methylammo-
nium ion rather than a metal ion at the A site re-
sults in the A site possessing an electric dipole moment
rather than a point charge, so the dynamics of these
ions are the focus of a lot of research in these hybrid

perovskites. In the higher temperature tetragonal and
cubic phases, the alignment of the ions appears to be
disordered10–13, however they could form small domains
below the length scale required for coherent diffraction
where the molecules are aligned. The dynamics of their
rotations, and any local order, could have a large contri-
bution to the properties of the material. For example, the
interaction between phonons and the rotational degrees
of freedom of the MA cations has been shown to have an
impact on thermal conductivity14. The changes in dy-
namics are thought to be closely linked to the structural
changes of the material with temperature, and it is still
unknown how the dynamics affect the properties of this
material as a photovoltaic. Another question that has
still not been fully solved is whether the configuration
of the MA cations lead to this class of materials being
ferroelectric10,15–17.

Use of X-ray single crystal and powder diffraction has
led to a good understanding of the different structural
phases of these materials. Similarly to a large number of
perovskites, all of the single-halide MAPbX3 materials
have cubic symmetry at high temperatures and undergo
symmetry-lowering phase transitions to tetragonal and
orthorhombic structures at lower temperatures18. Most
experimental studies agree that there are 3 structural
phases for MAPbI3 and MAPbCl3, however there is a
4th phase for MAPbBr3 which is preferred for a small
temperature range (ca. 150-155 K), commonly thought
to be an incommensurate phase19. In the cubic phase,
the MA cation is thought be fully disordered, with re-
cent advances made using techniques such as NMR and
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quasi-elastic neutron scattering showing that the MA
cation is close to having the orientational freedom of a
free MA cation20,21. As the inorganic framework under-
goes structural phase transitions, lowering the average
symmetry from cubic Pm3̄m, the orientational freedom
of the MA cation is restricted, becoming fully ordered
in the orthorhombic phases12,22. This shows that the
organic molecular and inorganic framework dynamics in
MAPbX3 are inherently linked23,24. In addition to ex-
perimental studies, computational methods have seen a
lot of use in this, and other, areas of research in hy-
brid perovskites25–29. Both classical molecular dynamics
and DFT simulations have demonstrated a link between
the different phases of MAPbI3 and the preferred ori-
entations of the MA cations30. Work from Quarti et
al has demonstrated that the configuration of the MA
cations has a significant effect on the properties of the
material, such as its electronic band structure31,32. This
underlines why it is important to fully understand the
structure-property relationship in these materials. De-
spite the knowledge that the organic molecular and inor-
ganic framework dynamics are linked via hydrogen bond-
ing interactions, it is currently unclear how this interac-
tion affects the dynamics as a whole.

The bands forming the top of the valence bands and the
bottom of the conduction band in the electronic structure
of the methylammonium lead halides will be dominated
by Pb and X (X = I, Br, Cl) electrons24,33. Therefore,
regardless of the role of the MA cation in stabilising par-
ticular distortions, it is necessary to establish good mod-
els for the dynamic distortions in the PbX3 framework.
In this work, we aim to probe the dynamics of the inor-
ganic framework of the cubic phases of the three single-
halide MAPbX3 materials. We have recently demon-
strated how by using a symmetry motivated approach
to analysing PDF data we can gain extra information on
disorder and dynamics within a system. Our study on
BaTiO3 has shown that this method is very sensitive to
primary order parameters and is a powerful tool to anal-
yse order-disorder phase transitions34. Both this study
and our more recent work on the negative thermal expan-
sion materials ScF3 and CaZrF6 has demonstrated that
this method is also sensitive to soft phonon modes and
has also revealed substantial deviations from the crystal-
lographic average structure in these materials35. Here,
we use X-ray total scattering data, which is much more
sensitive to the inorganic framework than the molecular
cations, to probe the characters of the low lying excita-
tions of the cubic phases of the methylammonium lead
halides.

II. EXPERIMENTAL DETAILS AND DATA
ANALYSIS

MAPbI3 was prepared using the inverse tempera-
ture crystallisation method36. Briefly, equal molar
amounts of MAI and PbI2 were dissolved in a solvent

125K

200K

400K

Pb-Br Br-Br

Pb-Pb
Br-Br

Pb-Br

Figure 1. Pair distribution functions of MAPbBr3 are shown
in three different phases (orthorhomic, tetragonal and cubic,
shown top to bottom). Each PDF is shown with a offset of
4 between them. Similar plots for X = I and Cl are given in
the SI.

(γ-butyrolactone) at room temperature. Then the ob-
tained MAPbI3 solution was heated to 110 ◦C for the
crystal growth. Powder samples of MAPbBr3 were pre-
pared by the reaction of stoichiometric amounts of lead
acetate and methylamine hydrobromide in hydrobromic
acid. The excess acid was then evaporated to leave an
orange colored product which was washed with diethyl
ether. Powder samples of MAPbCl3 were prepared out of
a solution of methylamine hydrochloride and lead acetate
dissolved in hydrochloric acid. An excess of an approx-
imately 8-10 molar ratio of methylamine hydrochloride
was required to obtain these phase pure samples. The
resulting powder was washed with diethyl ether.

For MAPbBr3, synchrotron radiation X-ray total scat-
tering experiments were conducted at the synchrotron
facility PETRA III (beamline P02.137) at DESY, Ham-
burg. A wavelength λ = 0.2070 �A was used to collect
data. Data were collected at temperatures of 125, 140,
147, 152 K and at intervals of 25 K from 175 to 450 K.

For MAPbI3 and MAPbCl3, Synchrotron radiation
X-ray total scattering experiments were conducted at
the synchrotron facility Diamond Light Source (beam-
line I15-1). A wavelength of λ = 0.161 669 �A was used to
collect data. Data were collected at 20 K intervals over
the temperature ranges 100 - 460 K (MAPbCl3) and 100
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X5-
M1+
M2+
M2-

M3+
M4+
M5+
M5-

Figure 2. For each compound, the best individual fitting
statistic is plotted for each irrep at each temperature. The
R-factor is shown relative to the R-factor for the refinement
with no symmetry adapted displacement modes active in the
refinement, and the temperature shown is relative to the cu-
bic phase transition as reported in the literature. The cubic
transition temperature for each compound is indicated on the
plot. The irreps are labelled as follows: colour denotes the k-
point of the irrep, with blue referring to the M-point, green to
X, pink to R and yellow to Γ ; marker shape denotes the irrep
number, with a circle referring to 1, an upward-pointed tri-
angle to 2, a star to 3, a square to 4 and a downward-pointed
triangle to 5; linestyle denotes the parity of the irrep, with a
solid line referring to a “+” irrep, and a dashed line referring
to a “-” irrep.

- 560 K (MAPbI3).
The obtained 2D images were masked and radially in-

tegrated using the DAWN38 software. G(r) and D(r)
functions were computed using GudrunX39, using Qmax

values of 21, 30 and 28 �A
−1

for MAPbBr3, MAPbCl3 and
MAPbI3 respectively. GudrunX was also used to perform
background subtraction, sample absorption and fluores-
cence corrections.

Analysis of the pair distribution functions was carried
out using the symmetry-adapted PDF analysis (SAPA)
method described in ref. 32. For each sample, a 2 × 2 ×
2 P1 supercell of the Pm3̄m aristotype PbX3 with Pb at
(0.5, 0.5, 0.5) and X at (0.5, 0.5, 0) was generated and
parameterised in terms of symmetry adapted displace-
ments using the ISODISTORT software40. The gener-
ated mode listings were output in .cif format and then
converted to the .inp format of the TOPAS Academic
software v6 using the Jedit macros41. In total, there were
96 modes which transformed according to one of 19 irre-
ducible representations. These supercells were generated
without the organic A-site cation included, since the con-
tribution of pairs involving the organic components of the
structure will have a negligible contribution to the overall
PDF due to their comparitively weak scattering power for
X-rays. This lack of sensitivity of X-ray total scattering
to the organic elements of hybrid perovskites can be seen
by comparing recent publications by Malavasi et al42–44.
For each irreducible representation (irrep) at each tem-
perature, refinements of the corresponding modes were
started from random starting mode amplitudes. This
was repeated 500 times. For all samples, the refinements
were carried out with a fitting range of 1.7 to 20 �A. Re-
finements were also tested using a fitting range with a
maximum of 10 �A and found to be broadly similar.

The DFT calculations were performed using the Vi-
enna Ab Initio Simulation Package (VASP)45–48, ver-
sion 5.4.4. We employed the optB86b-vdW exchange
correlation potential49 which includes VdW corrections
previously found to suit hybrid perovskites24. Projec-
tor augmented-wave (PAW) pseudopotentials46,50 were
utilised, as supplied within the VASP package. A plane
wave basis set with a 1100 eV energy cutoff and a 4 ×
4 × 4 Monkhorst-Pack k-point mesh with respect to the
parent cubic primitive cell (scaled accordingly for other
supercells) were found suitable. The energy landscape
of the various modes in the hybrid system were studied
by fixing the halide framework while allowing for Pb and
MA to relax until the forces were less than 5 meV/�A. Re-
sults were compared with FrPbBr3, which we used as a
hypothetical inorganic analogue to the hybrid perovskite,
since Fr best matches the ionic radii of MA24.

III. RESULTS AND DISCUSSION

A key aspect of the local structure of the MAPbX3

(X= I, Br, Cl) family of hybrid perovskites is that the
first four peaks of the inorganic component of the PDF do
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(a) (b) (c)

(d)

(f)

(e)

Figure 3. (a-c) A breakdown of the atomic basis that spans the X+
5 irrep. Shown in (d) is the structure resulting from a

refinement of the Pnma order parameter direction of the X+
5 irrep. (e) Mode energies with varying distortion mode amplitude

for the Pnma order parameter direction of FrPbBr3. Harmonic (2nd order) and anharmonic (4th order) fits to the potential
well are shown. (f) Mean displacement values for the general X+

5 order parameter direction.

not change much beyond that expected for simply chang-
ing the temperature, i.e a change in peak width corre-
sponding to a change in thermal energy, and a change in
peak position corresponding to thermal expansion. For
MAPbBr3 (Fig. 1) and MAPbCl3, the peaks stay the
same from the low temperature orthorhombic phase into
the high temperature cubic phase42–44. For MAPbI3,
there is a slight change upon the transition between
the tetragonal and orthorhombic phases, but the peaks
from the tetragonal phase persist in the cubic phase51

(see SI). This has been taken to imply that the cubic
phase consists of local symmetry-broken domains and
there has been recent work to support this hypothesis51.
This would suggest that the distortions most responsi-
ble for the local structure should be the rigid-unit modes
(RUMs) that drive these phase transitions.

To gain a more robust understanding of the local struc-
ture of MAPbX3 (X= I, Br, Cl), we perform a symmetry-
adapted PDF analysis (SAPA)34,35 to eludicate the char-
acter of the dominant lattice dynamics associated with
the inorganic cage. We note that we are insensitive to
MA orientation and displacement modes in the present
X-ray PDF study, and so no attempt is made to model
these against the experimental data. The symmetry-
adapted displacements which show the most improve-
ment in the Rw for the models against the PDFs for all
compounds and all temperatures are those which trans-
form according to irreps that permit a scissoring motion

of the X anions, i.e., the Br–Pb–Br bond angles are dis-
torted away from 90◦ but the Pb–Br bond lengths remain
undistorted. This result of the SAPA analysis does not
imply that the RUMs are high energy modes, it simply
means that the majority of the motion of the halide an-
ions arise from these scissoring modes. This is supported
by competetive two-phase refinements of the PDFs, in
which we allow the X+

5 displacements to refine in one
phase and the displacements for one of the RUMs (R−

5

or M+
2 ) in the other. These refinements show a preference

for scissoring modes compared to the RUMs for all 3 sam-
ples, as evident from the refined scale factors of the two
phases which show an approximate scissoring:rotation ra-
tio of 2.3:1 (see SI for more details). For context, this
ratio is approximately 4:1 in ScF3, which is isostructural
to the inorganic framework of MAPbX3. The lower ra-
tio compared to ScF3 reflects a lower flexibility due to
the presence of an A-site cation, which can interact with
the inorganic framework via hydrogen bonding23. How-
ever, it is clear from our results that the majority of the
halide anion motion still arises from scissoring-type de-
formations of the octahedra.

The above results are in line with a recent re-
verse Monte Carlo (RMC) analysis of neutron PDFs of
MAPbI3

52 between 10 and 400 K. This study demon-
strates that a bending of the Pb-I-Pb bond angle dom-
inates the local distortions of the PbI6 octahedra. Our
results show that the four best fitting modes all have



5

scissoring character, of which it is the X+
5 (Fig 3 (c&d))

that performs best across all three compositions and tem-
peratures. This could be due to the fact that there are
more parameters for the X+

5 irrep than the other three (18
modes transform as the X+

5 irrep, compared to 12 for M−
5

and 6 for X−
5 and M+

5 ), but the improvement could arise
from the anti-polar Pb displacements that enter into the
irrep X+

5 , although this is unlikely since they only have
a small contribution to the overall displacements. The
three distortions that span this irrep are shown in Fig
3. We find the amplitudes of these scissoring modes to
be quite large; refinements of X+

5 and X−
5 in the tetrag-

onal phase of MAPbBr3 resulted in supercell-normalised
mode amplitudes of ≈ 1.35 �A. This is close in magni-
tude to the equivalent amplitude of the R−

5 distortion (≈
1.65 �A) which is frozen into the structure in the tetrago-
nal phase.

Given how large the local deviations are from the av-
erage structure, it is reasonable to assume they will have
a substantial effect on the band structure. We used DFT
calculations to investigate the impact that the scissoring
modes could have on the electronic band structure of the
hybrid perovskites. We chose to analyse MAPbBr3, since
it is cubic at room temperature where experimental band
gap values have been reported, and to focus on the two
X point modes that do the best job at describing the de-
viations away from local cubic symmetry, as evident in
the PDF data. For a completely unrestrained order pa-
rameter direction transforming as X+

5 , there are a rather
large number of degrees of freedom (18 in total), so, to
make our results more robust, and to facilitate a direct
comparison to X−

5 , we take results from refinements us-
ing higher symmetry OPDs with no more than 5 param-
eters. We use structures from refinements against our
data with X+

5 OPDs with Pnma and Cmcm symmetry
((0, a; b, 0; 0, c) and (0, a; b, b; a, 0) respectively) and the
X−

5 OPD with C2/c symmetry ((a, b; c,−c;−b,−a)) as
input to our band structure calculations. For the two X+

5

OPDs, only Br anion displacements were refined when
generating the CIFs for the band structure calculations,
although by symmetry, Pb displacements also enter into
the irrep. For X−

5 , Pb displacements are forbidden by
symmetry. We also sampled points of different overall
distortion amplitude along the X+

5 OPD with Pnma sym-
metry and calculated the energy. These energy calcula-
tions were performed for the FrPbBr3 structures used to
calculate the band structure.

In the undistorted structure, the calculated band gap
was 1.717 eV, which is slightly higher than other cal-
culated band gaps for cubic MAPbBr3 (1.64 eV53) at
the same level of theory, and is direct. Previous work
has shown that substitution of Fr for MA opens up the
band gap slightly in orthorhombic MAPbI3

24. For each
distortion, the band gap opens up significantly to val-
ues of 2.025, 2.138 and 2.162 eV for the C2/c, Cmcm
and Pnma distortions with an amplitude of 0.8× the
maximum amplitude refined from PDF data for the X+

5

distortions and 1.1× the maximum amplitude for X−
5 , re-

spectively, and remains direct. These relative amplitudes
were chosen so all 3 distortions were at similar mode am-
plitudes. These values are closer to the experimentally
determined band gaps for MAPbBr3 of ≈ 2.3 eV at room
temperature54, although this is likely due to a cancella-
tion of errors. The distortions result in a reduced orbital
overlap between Pb and Br p-orbitals, leading to a lower
band curvature and therefore an increased effective mass
in the distorted band structures (Fig 4 and SI). The mo-
bility of polarons is inversely proportional to the electron
band effective mass55, and this increased effective mass
in the distorted structures may explain the discrepancy
between experimental and calculated values56.

Spin-orbit coupling (SOC) interactions, which play a
large role in systems involving Pb, have not been ac-
counted for. Consequently, the exact shape of the elec-
tron bands and size of the band gap won’t be accurate,
since inclusion of SOC has been shown to lead to uncon-
ventional dispersion relations57. The effects from SOC on
band gap size in halide perovskites tend to be canceled
out by full treatment of electron Coulomb interactions
beyond DFT58,59. Therefore, the trends we detect due
to the different distortion modes will remain the same.
In the two X+

5 distortions, the degeneracy of the bands
at the conduction band minimum (CBM) at the Γpoint
are broken, leading to fewer available states at the CBM.
Contrastingly, the X+

5 Pnma distortion appears to have
the largest DOS at the valence band maximum due to
the reduced bandwidth. Fluctuations in the band gap of
hybrid perovskites due to their highly dynamic structure
has been previously predicted32, and is expected to as-
sist the initial stages of charge separation. In addition, an
increase of the band gap coinciding with a transverse dis-
placement of I ions in MAPbI3 due to an external strain
field has been reported33.

Our refinements against the PDF data show that all
three modes have a large amplitude, with supercell-
normalised mode amplitudes of 1.84, 1.82 and 1.36 �A
for OPDs with Pnma, Cmcm and C2/c symmetries, re-
spectively. These mode amplitudes correspond to maxiu-
mum Br displacements of 0.486, 0.410 and 0.350 �A. Note
that the refined distortions correspond to a time-averaged
view of the structure, so these maximum Br displace-
ments are a factor of

√
2× greater, in the harmonic ap-

proximation, than those found in the refined structures.
As a consequence of their large amplitudes, the distor-
tions would be expected to be anharmonic in nature,
which is supported by the potential energy well we cal-
culate for the X+

5 (0, a; b, 0; 0, c) OPD in FrPbBr3 (Fig 3
(f)), which has a significant quartic component when fit
with a 4th order polynomial fit (∆E = 127x4 + 79.7x2,
where x is the distortion mode amplitude relative to
its maximum value at 400 K). This breakdown in the
harmonic approximation would then allow the scissor-
ing modes of the inorganic framework to couple directly
to the anharmonic modes that correspond to the organic
cation dynamics60,61. Despite the presence of an A-site in
these materials, the amplitude of these scissoring modes
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are greater than those in ScF3, suggesting the MA cations
move to accomodate the large-amplitude modes. The im-
plication of this, then, is that the band gap opening we
detect as a response to the scissoring modes is likely influ-
enced by the dynamics of the MA cations, although our
refinements are only sensitive to the inorganic framework.

To investigate the above hypothesis, we consider the
X+

5 OPD with Pnma symmetry. This breaks the equiva-
lency of the < 100 > directions and leads to two distinct
A-site symmetries (see SI). Therefore, if the inorganic
and organic dynamics are coupled together, we would ex-
pect to see the MA cations located at different points of
the unit cell to respond differently to the distortion mode,
to reflect the different local environments they would ex-
perience. To test this, we relaxed the MA cations from
an initial anti-polar configuration with the C-N bonds
aligned with the [1 0 0] direction, in a structure with a
0.8× X+

5 (0, a; b, 0; 0, c) distortion (relative to the max-
imum amplitude at 400 K) frozen in. The MA cations
showed significant reorientation, with the “edge” ((0.5, 0,
0) and equivalents) and “corner” ((0, 0, 0)) cations rotat-
ing to include significant components along c. There is a
split amongst the “face” cations, with two (at (0.5, 0.5, 0)
and (0, 0.5, 0.5)) rotating to include smaller components
along the b- and c-axes. The remaining “face” cation
and the cation located at the centre of the supercell both
rotate to include a significant component along c and a
smaller component along b. In all, there are 5 distinct
C–N bond alignments, which may reflect the 5 distinct
Br sites. In addition, all cations show a slight displace-
ment from the high-symmetry-unique positions. Full de-
tails can be found in the SI. This demonstrates that the
MA cations can rotate to accommodate the distortions
of the inorganic framework, indicating that the dynam-
ics of the two components of the structure may be linked.
However, it is important to note that our calculations are
effectively performed at 0 K, where the ground state is
the fully ordered orthorhombic phase. It is quite possible
that the configurational entropy associated with the MA
orderings may effectively act to decouple these dynamics
at higher temperatures in the cubic phase. Indeed, there
is evidence to suggest the organic and inorganic dynam-
ics are decoupled in MAPbCl3

13. Additionally, a sim-
ilar computational result in CsPbBr3 showing coupling
between large amplitude distortions of the Br ions and
head-to-head Cs motion62 suggest this feature may not
be exclusive to hybrid inorganic systems. We have also
shown that acoustic phonon lifetimes for the all-inorganic
CsPbBr3 are very similar to those in MAPbCl3

63, fur-
ther supporting the idea that at high temperatures the
MA rotational modes may have little effect on the lattice
phonon modes.

There has been recent literature support for the idea
that cubic halide perovskites, rather than being treated
as a single repeating unit, should be thought of as a net-
work of polymorphs showing different symmetry-lowering
deformations of the average structure, such as varying
degrees of octahedral tilting or differing amplitudes of

(a) (b)

(d)(c)

Figure 4. The calculated electronic band structure of FrPbBr3
for the undistorted structure (a), the Pnma and Cmcm order
parameter directions of the X+

5 irrep (b and c, respectively)
and the C2/c order parameter direction of the X5−

5 irrep (d).
These figures were created using sumo65

B-site displacement64. Our work is broadly consistent
with this picture. The sterochemical behaviour of the
Pb cation, in conjunction with the coupling between or-
ganic cation and inorganic framework dynamics, is likely
to have a large impact on the possible polymorphs the
material exhibits within this hypothesis of the nature of
the structure of halide perovskites.

In summary, we have shown that large scissoring modes
of the halide ions describe the dominant deviations from
the average structure in the cubic phases of the hybrid
perovskites. These modes have a similar amplitude to
those of the static RUMs below the phase transition tem-
perature. These distortions have the effect of opening up
the band gap of the electronic structure. In addition, we
have shown that the organic cations can move to acco-
modate the distortions of the inorganic framework, sug-
gesting the dynamics of the two components could be
inherently linked, and that the inorganic lattice is likely
to be significantly distorted from the average at a local
level. These dynamic structures should be accounted for
in simulations performed on the hybrid perovskites, since
they can have a significant effect on the calculated prop-
erties.

The PDF data used in this study are available as a
supporting dataset.

ACKNOWLEDGEMENTS

T.A.B thanks EPSRC for a PhD studentship through
the EPSRC Centre for Doctoral Training in Molecular
Analytical Science, grant number EP/L015307/1. M.S.S



7

acknowledges the Royal Society for a University Research
Fellowship (UF160265). N.C.B acknowledges compu-
tational resources from the Hamilton HPC Service of
Durham University and the UK Materials and Molec-
ular Modelling Hub (partially funded by the EPSRC
project EP/P020194/1). We acknowledge DESY (Ham-
burg, Germany), a member of the Helmholtz Association

HGF, for the provision of experimental facilities. Parts
of this research were carried out at PETRA III. We also
thank Diamond Light Source for providing experiment
time on beamline I15-1 under proposal number CY21611.
Samples were characterised via Block Allocation Group
Award (EE18786) at the high resolution powder diffrac-
tometer I11, Diamond Light Source.

∗ m.senn@warwick.ac.uk
1 Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai, and

Tsutomu Miyasaka, “Organometal Halide Perovskites as
Visible- Light Sensitizers for Photovoltaic Cells,” J. Am.
Chem. Soc. 131, 6050–6051 (2009).

2 Martin A. Green, Anita Ho-Baillie, and Henry J. Snaith,
“The emergence of perovskite solar cells,” Nat. Photonics
8, 506–514 (2014).

3 Olga Malinkiewicz, Aswani Yella, Yong Hui Lee,
Guillermo Mı́nguez Espallargas, Michael Graetzel, Mo-
hammad K. Nazeeruddin, and Henk J. Bolink, “Perovskite
solar cells employing organic charge-transport layers,” Nat.
Photonics 8, 128–132 (2014).

4 Giorgio Schileo and Giulia Grancini, “Halide perovskites:
current issues and new strategies to push material and de-
vice stability,” J. Phys.: Energy 2, 021005 (2020).

5 Christian Wehrenfennig, Giles E. Eperon, Michael B.
Johnston, Henry J. Snaith, and Laura M. Herz, “High
charge carrier mobilities and lifetimes in organolead tri-
halide perovskites,” Adv. Mater. 26, 1584–1589 (2014).

6 Daming Zhao, Jonathan M. Skelton, Hongwei Hu, Chan
La-o vorakiat, Jian-Xin Zhu, Rudolph A. Marcus, Maria-
Elisabeth Michel-Beyerle, Yeng Ming Lam, Aron Walsh,
and Elbert E. M. Chia, “Low-frequency optical phonon
modes and carrier mobility in the halide perovskite CH 3
NH 3 PbBr 3 using terahertz time-domain spectroscopy,”
Appl. Phys. Lett. 111, 201903 (2017).

7 Guichuan Xing, Nripan Mathews, Shuangyong Sun,
Swee Sien Lim, Yeng Ming Lam, Michael Grätzel, Subodh
Mhaisalkar, and Tze Chien Sum, “Long-range balanced
electron- and hole-transport lengths in organic-inorganic
CH3NH3PbI3.” Science 342, 344–347 (2013).

8 Shuangyong Sun, Teddy Salim, Nripan Mathews, Martial
Duchamp, Chris Boothroyd, Guichuan Xing, Tze Chien
Sum, and Yeng Ming Lam, “The origin of high efficiency in
low-temperature solution-processable bilayer organometal
halide hybrid solar cells,” Energy Environ. Sci. 7, 399–407
(2014).

9 Yu-Che Hsiao, Ting Wu, Mingxing Li, Qing Liu, Wei
Qin, and Bin Hu, “Fundamental physics behind high-
efficiency organo-metal halide perovskite solar cells,” J.
Mater. Chem. A 3, 15372–15385 (2015).
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“Ultra-low thermal conductivity in organic-inorganic hy-
brid perovskite CH3NH3PbI3,” J. Phys. Chem. Lett. 5,
2488–2492 (2014).

15 M Nadim Ferdous Hoque, Mengjin Yang, Zhen Li, Nazi-
fah Islam, Xuan Pan, Kai Zhu, and Zhaoyang Fan, “Po-
larization and Dielectric Study of Methylammonium Lead
Iodide Thin Film to Reveal its Nonferroelectric Nature un-
der Solar Cell Operating Conditions,” ACS Energy Lett.
1, 142–149 (2016).

16 Joanna Jankowska and Oleg V. Prezhdo, “Ferroelec-
tric Alignment of Organic Cations Inhibits Nonradiative
Electron-Hole Recombination in Hybrid Perovskites: Ab
Initio Nonadiabatic Molecular Dynamics,” J. Phys. Chem.
Lett. 8, 812–818 (2017).

17 J. Breternitz, F. Lehmann, S. A. Barnett, H. Nowell, and
S. Schorr, “Role of the Iodide–Methylammonium Inter-
action in the Ferroelectricity of CH3NH3PbI3,” Angew.
Chem. Int. Ed. 59, 424–428 (2020).

18 A. Poglitsch and D. Weber, “Dynamic disorder in
methylammoniumtrihalogenoplumbates (II) observed by
millimeter-wave spectroscopy,” J. Chem. Phys. 87, 6373–
6378 (1987).

19 Yinsheng Guo, Omer Yaffe, Daniel W. Paley, Alexander N.
Beecher, Trevor D. Hull, Guilherme Szpak, Jonathan S.
Owen, Louis E. Brus, and Marcos A. Pimenta, “Inter-
play between organic cations and inorganic framework
and incommensurability in hybrid lead-halide perovskite
CH3NH3PbBr3,” Phys. Rev. Mater. 1, 042401 (2017).

20 Tianran Chen, Benjamin J. Foley, Bahar Ipek, Mad-
husudan Tyagi, John R. D. Copley, Craig M. Brown,
Joshua J. Choi, and Seung-Hun Lee, “Rotational dy-
namics of organic cations in the CH3NH3PbI3 perovskite,”
Phys. Chem. Chem. Phys. 17, 31278–31286 (2015).



8

21 Aurelien M.A. Leguy, Jarvist Moore Frost, Andrew P.
McMahon, Victoria Garcia Sakai, W. Kochelmann, Chun-
hung Law, Xiaoe Li, Fabrizia Foglia, Aron Walsh, Brian C.
O’Regan, Jenny Nelson, João T. Cabral, and Piers R.F.
Barnes, “The dynamics of methylammonium ions in hybrid
organic-inorganic perovskite solar cells,” Nat. Commun. 6,
7124 (2015).

22 Mark T. Weller, Oliver J. Weber, Paul F. Henry, Antoni-
etta M. Di Pumpo, and Thomas C. Hansen, “Complete
structure and cation orientation in the perovskite photo-
voltaic methylammonium lead iodide between 100 and 352
K,” Chem. Commun. 51, 4180–4183 (2015).

23 Jung Hoon Lee, Nicholas C. Bristowe, Paul D. Bristowe,
and Anthony K. Cheetham, “Role of hydrogen-bonding
and its interplay with octahedral tilting in CH3NH3PbI3,”
Chem. Commun. 51, 6434–6437 (2015).

24 Jung Hoon Lee, Nicholas C. Bristowe, June Ho Lee,
Sung Hoon Lee, Paul D. Bristowe, Anthony K. Cheetham,
and Hyun Myung Jang, “Resolving the Physical Origin of
Octahedral Tilting in Halide Perovskites,” Chem. Mater.
28, 4259–4266 (2016).

25 Nicholas Aristidou, Christopher Eames, Irene Sanchez-
Molina, Xiangnan Bu, Jan Kosco, M. Saiful Islam, and
Saif A. Haque, “Fast oxygen diffusion and iodide defects
mediate oxygen-induced degradation of perovskite solar
cells,” Nat. Commun. 8, 15218 (2017).

26 Dibyajyoti Ghosh, Philip Walsh Atkins, M. Saiful Islam,
Alison B. Walker, and Christopher Eames, “Good Vi-
brations: Locking of Octahedral Tilting in Mixed-Cation
Iodide Perovskites for Solar Cells,” ACS Energy Lett. 2,
2424–2429 (2017).

27 Christopher Eames, Jarvist M. Frost, Piers R.F. Barnes,
Brian C. O’Regan, Aron Walsh, and M. Saiful Islam,
“Ionic transport in hybrid lead iodide perovskite solar
cells,” Nat. Commun. 6, 7497 (2015).

28 Ana L. Montero-Alejo, E. Menéndez-Proupin, D. Hidalgo-
Rojas, P. Palacios, P. Wahnón, and J. C. Conesa, “Model-
ing of Thermal Effect on the Electronic Properties of Pho-
tovoltaic Perovskite CH3NH3PbI3: The Case of Tetragonal
Phase,” J. Phys. Chem. C 120, 7976–7986 (2016).

29 Marcelo A. Carignano, Ali Kachmar, and Jürg Hutter,
“Thermal Effects on CH 3 NH 3 PbI 3 Perovskite from Ab
Initio Molecular Dynamics Simulations,” J. Phys. Chem.
C 119, 8991–8997 (2015).

30 A. Mattoni, A. Filippetti, M. I. Saba, and P. Delugas,
“Methylammonium Rotational Dynamics in Lead Halide
Perovskite by Classical Molecular Dynamics: The Role of
Temperature,” J. Phys. Chem. C 119, 17421–17428 (2015).

31 Claudio Quarti, Edoardo Mosconi, and Filippo De Ange-
lis, “Interplay of orientational order and electronic struc-
ture in methylammonium lead iodide: Implications for so-
lar cell operation,” Chem. Mater. 26, 6557–6569 (2014).

32 Claudio Quarti, Edoardo Mosconi, and Filippo De Ange-
lis, “Structural and electronic properties of organo-halide
hybrid perovskites from ab initio molecular dynamics,”
Phys. Chem. Chem. Phys. 17, 9394–9409 (2015).

33 Le Zhang, Wei Geng, Chuan Jia Tong, Xueguang Chen,
Tengfei Cao, and Mingyang Chen, “Strain induced elec-
tronic structure variation in methyl-ammonium lead iodide
perovskite,” Sci. Rep. 8, 7760 (2018).

34 M. S. Senn, D. A. Keen, T. C.A. Lucas, J. A. Hriljac, and
A. L. Goodwin, “Emergence of Long-Range Order in Ba-
TiO3 from Local Symmetry-Breaking Distortions,” Phys.
Rev. Lett. 116, 207602 (2016).

35 T. A. Bird, J. Woodland-Scott, L. Hu, M. T. Wharmby,
J. Chen, A. L. Goodwin, and M. S. Senn, “Anharmonicity
and scissoring modes in the negative thermal expansion
materials ScF 3 and CaZrF 6,” Phys. Rev. B 101, 064306
(2020).

36 Makhsud I. Saidaminov, Ahmed L. Abdelhady, Banavoth
Murali, Erkki Alarousu, Victor M. Burlakov, Wei Peng,
Ibrahim Dursun, Lingfei Wang, Yao He, Giacomo MacU-
lan, Alain Goriely, Tom Wu, Omar F. Mohammed, and
Osman M. Bakr, “High-quality bulk hybrid perovskite sin-
gle crystals within minutes by inverse temperature crystal-
lization,” Nat. Commun. 6, 7586 (2015).

37 Ann-Christin Dippel, Hanns-Peter Liermann, Jan Torben
Delitz, Peter Walter, Horst Schulte-Schrepping, Oliver H.
Seeck, and Hermann Franz, “Beamline P02.1 at PETRA
III for high-resolution and high-energy powder diffraction,”
J. Synchrotron Radiat. 22, 675–687 (2015).

38 Mark Basham, Jacob Filik, Michael T. Wharmby, Pe-
ter C.Y. Chang, Baha El Kassaby, Matthew Gerring, Jun
Aishima, Karl Levik, Bill C.A. Pulford, Irakli Sikharulidze,
Duncan Sneddon, Matthew Webber, Sarnjeet S. Dhesi,
Francesco Maccherozzi, Olof Svensson, Sandor Brock-
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Chapter 6

Conclusions and Further Work

6.1 Conclusions

In this section, I will discuss the research presented in the previous chapters and

outline the significance of the work.

6.1.1 Symmetry Adapted Pair Distribution Function Analysis (SAPA):

A Novel Approach to Evaluating Lattice Dynamics and Local

Distortions from Total Scattering Data

In this paper, we sought to demonstrate the work which encompassed the primary

goal of my project: an unbiased, symmetry-motivated approach to analysing the

local structure of crystalline materials, measured by the use of total scattering ex-

periments. The primary goal of this method is to determine how the local structure

deviates from the long-range average structure and, therefore, gain insight into the

dynamics of the studied materials. There have been previous attempts in the liter-

ature to use total scattering data to quantify the dynamics of a material, but these

methods have their drawbacks. The first of these methods involves pre-selection

of a standard phonon model and the refinement of the theoretical pair distribution

functions of the model against the experimental pair distribution function obtained

from the total scattering data. The pre-selection of a phonon model introduces

bias into the analysis, and the method itself has been shown to be inaccurate for

all but the simplest of systems. The second method uses the reverse Monte Carlo

algorithm to generate several atomistic configurations which all fit the data. These

configurations are then treated like different time-steps in a molecular dynamics

simulation and phonon dispersion curves can be calculated[160, 32]. This technique

also introduces bias due to the inclusion of constraints in the “energy” function
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the RMC algorithm minimises, and, while the method is certainly more accurate

than the standard phonon model approach, it has its limits and is a fairly complex

and computationally intensive procedure. The SAPA approach I present in this

paper is used to identify the symmetry-adapted displacements which best describe

the deviation of the local structure from the average. Displacements which trans-

form as the same irrep are tested simultaneously, and the refinements for each set

of modes are repeated several times from random starting values. By doing this,

an unbiased view of the dynamics can be obtained. In the first example presented

in the paper, we identify scissoring modes, which cause a distortion of the intra-

octahedral bond angles, to be the dominant distortion modes in ScF3. Importantly,

they involve transverse displacements of the F anions, which could lead to nega-

tive thermal expansion via the tension or “guitar-string” effect. These findings are

discussed further in chapter 3. In the second example, modes belonging to the Γ−4
irrep, which correspond to polar displacements of the Ti and O ions, are found to be

the primary order parameter for the phase transitions of BaTiO3. This is unsurpris-

ing, as the general nature of this phase transition has been known for some time.

We find that the underlying nature of this order parameter to be rhombohedral,

or quasi-rhombohedral, at all temperatures, supporting the order-disorder picture

of BaTiO3. This example points to another strength of the SAPA approach: the

modes identified, using SAPA, which best describe the local structural deviations,

can be further interrogated to determine any underlying symmetry. This is used in

the work presented in chapters 4 and 5.

The motivation behind this paper is to provide other researchers with a

step-by-step guide to using Symmetry Adapted Pair Distribution Function Analysis

(SAPA) in their work. The paper, along with the examples provided at the GitHub

repository in ref [161], should provide enough information for others intending to

perform analysis using SAPA.

6.1.2 Anharmonicity and Scissoring Modes in the Negative Ther-

mal Expansion Materials ScF3 and CaZrF6

For this paper, we analyse the local structure of two negative thermal expansion

materials, ScF3 and CaZrF6, using the symmetry-adapted pair distribution func-

tion analysis presented in chapter 2. Both materials exhibit isotropic NTE over a

wide temperature range, with a coefficient of thermal expansion similar in magni-

tude to that of ZrW2O8. While the former compound, ScF3, is often used as an

example to illustrate the rigid unit mode model of negative thermal expansion[36],

the mechanism driving the NTE is not fully understood. Rigid unit modes are soft
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in ScF3, since a RUM-driven phase transition is observed with applied pressure[162].

Recently, however, a new model for the NTE in ScF3 has been proposed, in which

the motions of F anions are completely uncorrelated, in analogy with the entropic

elasticity of freely-jointed polymer chains[77]. Less is known about the negative

thermal expansion of CaZrF6, but previous reports had highlighted flexibility of the

M–F (M = Ca, Zr) linkages as having an effect[163, 164, 165].

Applying the SAPA method to X-ray pair distribution data of both com-

pounds reveals that the dominant distortions for both compounds are “scissoring

modes”, a distortion in which the intra-octahedral bond angles are distorted via

transverse displacements of the F anions, with the bond lengths unchanged. These

modes have a higher amplitude in CaZrF6 than in ScF3, which correlates well with

the greater magnitude of NTE in CaZrF6 reported in the literature. We also compare

two-phase and single-phase models, in which distortions can either act competetively

or cooperatively, respectively, to test coupling between modes from different irreps.

We find that scissoring modes associated with the X+
5 and M−5 irreps couple together

in CaZrF6. This is permitted within the harmonic approximation, since the lower

Fm3̄m symmetry of this structure due to the rock-salt ordering of Ca and Zr ions

means these displacements transform as one irrep. Additionally, we find evidence

for anharmonic coupling between the scissoring modes of the X+
5 and the rigid unit

modes of the R−5 irreps in ScF3.

This paper acts as an introduction, of sorts, to an emerging theme of this

thesis. We find that scissoring modes are a key distortion for all the systems studied

in this thesis and have often been left unstudied in the literature. All the systems

studied consist of a network of corner-sharing octahedra, with either an “empty” A-

site (ScF3, CaZrF6, ReO3) or a highly dynamic A-site (MAPbX3, X = I, Br, Cl). I

envisage that studies of similar systems, previously thought rigid, could be enhanced

by considering the possibility of structural flexibility in the form of scissoring modes.

6.1.3 Soft mode anisotropy in negative thermal expansion material

ReO3

This work builds on the analysis of ScF3 and CaZrF6 presented in chapter 3. The

studied material, ReO3, is isostructural to ScF3 and also exhibits negative ther-

mal expansion, but only for a limited temperature range. We also build on the

work of Dove et al [166], who came to a similar conclusion about the importance

of scissoring modes in ScF3 using reverse Monte Carlo analysis of neutron PDF

data. In perovskites, and perovskite-related materials, pure RUMs are restricted to

the M-R line in reciprocal space. As we move away from this line, we find modes
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with a mixed RUM and scissoring mode character, with an increasing component

of scissoring modes for wave vectors further from the M-R line. Dove hypothesised

that the prevalence of scissoring modes in ScF3 allow a significant proportion of

these quasi-RUMs to have a negative Grüneisen parameter, increasing the overall

contribution of NTE phonons to the thermal expansion properties.

In this paper, we investigate the hypothesis that the increased charge on the

O anions in ReO3 compared to the F anions in ScF3 lead to reduced structural

flexibility which is ultimately responsible for the restricted temperature range of

negative thermal expansion. The results of the SAPA method support this hypoth-

esis: at low temperatures, at which ReO3 shows negative thermal expansion, the

deviation of the local structure from the average is best desribed by in-phase rota-

tions of the octahedra. The SAPA analysis, in conjunction with a two-phase model

with competetive scissoring and rigid unit modes, shows that the scissoring modes

become dominant only after the onset of positive thermal expansion. This coincides

with a hardening of the RUM, causing the RUMs and quasi-RUMs to contribute less

to the mean Grüneisen parameter, resulting in a switch from negative to positive

thermal expansion.

Between this and the preceeding chapter, I have shown that structural flexi-

bility is a key determining factor in determining the magnitude and extent of NTE

within network materials. Work by Rimmer et al. has shown that flexibility is

a key factor in driving the NTE in materials where units smaller than a polyhe-

dra are the “rigid element”, such as Cu-O-Cu bonds in Cu2O[167] or Y-O rods in

Y2W3O12[168]. My work also shows that flexibility must also be considered an

integral part of the rigid unit mode model.

In section 6.1.1, I stated that an advantage of the SAPA method is the abil-

ity to further interrogate the underlying symmetry of the distortions the analysis

finds to be significant. In this paper, we do this by parameterising the three arms

of the M+
2 order parameter in terms of spherical polar coordinates and refining

the amplitude of the distortion at different points on a grid covering the angular

coordinates. We found the distribution in the R-factor of the refinements to be

highly anisotropic across the whole temperature range, showing a clear preference

for the M+
2 (a; 0; 0) order parameter direction. This OPD generates structures with

a P4/mbm symmetry, which is the first phase achieved with applied pressure, before

a further transition to a phase with the Im3̄ space group. This anisotropy indicates

that the dynamic displacements associated with the M+
2 irrep are anharmonic. Fur-

ther investigation of the anisotropy using DFT calculations revealed that for small

mode amplitudes, order parameter directions with P4/mbm and Im3̄ symmetry
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have an almost identical energy cost. We therefore argue that the entropic cost of

the fluctuation must determine the character of the phonon modes.

This work links to the general theme of the thesis that structural flexibility

of many apparently rigid materials is a key factor in determining their observed

properties. In addition, throughout this thesis, the underlying symmetry of distor-

tions is found to be important, in this case leading to key insights into the role of

entropy in determining the character of distortion modes.

6.1.4 Large dynamic scissoring mode displacements coupled to band

gap opening in Hybrid Perovskites

In this paper, we use the SAPA method presented in chapter 2 to analyse the cubic

phases of the hybrid perovskites MAPbX3, X = I, Br, Cl. These materials have been

widely studied in recent years due to their promise as low-cost, high-efficiency solar

cell materials. Despite this, the origin of their desirable properties as photovoltaics

is not fully understood. The presence of the methylammonium cation on the A-

site, rather than a metal ion, is likely to have an influence, although devices made

with MAPbBr3 and CsPbBr3 have been shown to have similar performances[138].

The dynamics of the organic cations and the inorganic backbone of the material are

known to be inherently linked, and we sought to probe this using the SAPA method.

This work uses X-ray PDF data, so we were only able to directly probe

the dynamics of the inorganic framework due to the low scattering power for X-

rays of the organic components. As a continuation of the theme of this thesis,

we find scissoring modes to best describe the deviation of the local structure from

the average in all three studied materials. Using DFT calculations, we show that

the large amplitude scissoring modes have a significantly anharmonic energy well,

meaning they are able to couple to the dynamic modes of the organic cation. Further

calculations show that MA cations rotate to accomodate the large amplitude of

the scissoring modes. We also show that the scissoring mode distortions lead to

significant band gap opening. We hypothesise that the average structure of the

hybrid perovskites are likely highly distorted locally. Calculations performed on

these materials should take this into account.

6.1.5 Summary

In this thesis, I have presented a new method to extract dynamics information

from total scattering experiments. This method uses the structure of the material

being studied, or a higher symmetry parent structure, along with a user-defined
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supercell expansion, as input. This reduces the possible sources of bias within the

analysis. I have also presented 3 demonstrations of this method to perovskite-related

materials. It has proven useful in extracting the dominant distortion modes in the

studied systems.

6.2 Further Work

In this section, I will explore how the work presented in this thesis could be developed

further. The two primary aspects of my research, the development of the SAPA

method and the materials I have applied this method to, will be discussed separately.

6.2.1 Further Development of Symmetry-Adapted Pair Distribu-

tion Function Analysis

At the moment, the SAPA method has only been used to analyse the local structures

of compounds with high-symmetry cubic structures, or, in the case of BaTiO3, struc-

tures distorted from a high-symmetry cubic structure. Lower-symmetry structures

with well understood distortions would prove a good test case. A good example

of this is the Ca2−xSrxMn1−yTiyO4 family of materials. They have the n = 1

Ruddlesden-Popper structure and show switching between positive thermal expan-

sion and uniaxial negative thermal expansion for different values of x and y[169].

These, and similar, materials have been extensively analysed by the Senn Group and

collaborators, and the mechanism driving the uniaxial negative thermal expansion

is well understood. The negative thermal expansion is facilitated by a “corkscrew”

mechanism that couples the tilts and rotations of octahedra in the perovskite layers

to the tetragonal strain. If applying SAPA to these structures as a function of x and

y, rather than the temperature dependent experiments performed in this thesis, it

would prove a good inital test on lower-symmetry structures.

A good test case for a lower symmetry structure would be to analyse the chal-

cohalide photovoltaic absorber Sn2SbS2I3. This compound was originally reported

to have a centrosymmetric structure with the Cmcm space group[170]. Recently,

computational work by Walsh et al has shown the structure to actually be an av-

erage over multiple polar Cmc21 configurations[171]. The local structure should be

sensitive to this, so SAPA should detect polar modes of the Sb ions as the largest

deviation from the Cmcm structure. A similar analysis could be performed on the

Pb analogue, Pb2SbS2I3. This compound has also been reported to have an or-

thorhombic structure with space group Cmcm at room temperature. In addition,

Sb can be substituted for Bi in both compounds. Since displacements of the Sb ions
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are the origin of disorder in Sn2SbS2I3, it would be interesting to see the effect of

substituting these for Bi.

Another useful development would be to expand the range of software the

technique is available for. In chapter 2, I present scripts that convert .CIF files

generated by the ISODISTORT software into an input file for the Topas Academic

software. Expanding this to include scripts for use with the DiffPy-CMI python

library or other software would increase the accessibility of the SAPA method.

The spherical polar coordinate parameterisation of the modes transforming

as the M+
2 irrep in ReO3 proved valuable in revealing the underlying anisotropy in

the order parameter direction of this distortion. While we can use this to analyse

other 3 (or fewer) component order parameters, a method of performing a similar

analysis on irreps with more parameters would be useful. This would allow more of

the distortion space to be explored for irreps such as X+
5 for MAPbX3 (X = I, Br,

Cl), rather than refining specific order parameter directions as I did in chapter 5.

Analagously to the spherical polar coordinates, one can define polar coordinates for

an n-dimensional sphere using a radial coordinate, r, and n−1 angular coordinates.

Rather than visualising the distribution of Rw as a heatmap, as done in chapter

4, the variation of Rw with respect to the different polar coordinates would need

to be viewed individually. Further difficulty comes in the “gridding” of the polar

coordinate space. In chapter 4, I used 36 grid points for θ and 72 for φ, resulting

in 2592 data points per temperature. An identical grid size for the 6-dimensional

sphere would result in approximately 1.2·108 data points and file sizes on the order of

10 GB. This also doesn’t take into account the computational time to perform these

refinements: assuming approximately 1 second per refinement, each temperature

point for the M+
2 irrep takes about 40 minutes. Extending this to a 6-component

order parameter would take over 3 years. This can be reduced by using a less fine

grid, but without further parameterising the order parameter in some way, this

analysis remains unfeasible.

During the development of the SAPA approach, I also developed a differ-

ent approach to modelling distortions within the Topas Academic software. For

a harmonic oscillator, the displacement of the atoms undergoing the distortion of

interest varies as a sine curve with respect to time. We can sample different points

along this sine curve in different phases and therefore determine the amplitude of

the distortion. For an anharmonic oscillator, the oscillation is less simple. Using an

approximate solution to a 4th order anharmonic oscillator (i.e, an oscillator with

potential V (x) = 1
2mω

2x2 + 1
4εmx

4), an attempt could be made to determine the

quartic component of the oscillation.

100



There are some downsides to the SAPA method. Firstly, it requires that

the local deviations from the average structure are somewhat ordered. Uncorrelated

disorder would still be best analysed using reverse Monte Carlo analysis. Secondly,

the PDF is much more sensitive to low-frequency than high-frequency information,

therefore non total scattering based techniques need to be used to analyse this infor-

mation. Finally, the SAPA method can not differentiate between static and dynamic

distortions, although recent developments have allowed energy-resolved pair distri-

bution functions to be measured[172]. The SAPA method could be extended to

apply to this dynamic pair distribution function technique.

6.2.2 Further Analysis of Negative Thermal Expansion Materials

In this thesis, I have presented a thorough analysis of the mechanism driving the

negative thermal expansion in the materials ScF3, ReO3 and CaZrF6. This analysis

could be taken further by performing SAPA on neutron PDF data on ScF3, to see

if the higher Qmax available for spallation sources such as ISIS, compared to the

comparitively low value of the P02.1 beamline at PETRA III, has an impact upon

results. In addition, the greater Qmax would allow the nature of the RUMs to be

investigated, in comparison with the spherical parameterisation performed for ReO3.

By using a gas pressure cell, the sequence of phase transitions with applied

pressure could be investigated using SAPA. This could lead credence to our theo-

ries that the additional vibrational entropy due to uncondensed RUMs are key in

stabilising the P4/mbm phase in ReO3.

The theory that the reduced interaction strength of F− compared to O2−,

which leads to lower force constants governing octahedral deformation and a greater

magnitude for NTE could be further investigated by analysing other fluorine ana-

logues of oxide NTE materials, such as ZnF2, an analogue of TiO2.

6.2.3 Further Analysis of Hybrid and Halide Perovskites

There is still a lot to be determined about both fully inorganic and hybrid organic-

inorganic halide perovskites. My work in chapter 5 shows that the dynamics of

the organic cations and inorganic framework in the methylammonium lead halides

are inherently linked, with the organic cations reorienting to accomodate the large

amplitude scissoring modes. The extent to which they are linked is still to be fully

assessed. This could be performed using a combination of theoretical work and

total scattering studies. Using molecular dynamics, the response of the cations

to different distortions of the inorganic framework, chosen by the user, could be
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assessed at a range of temperatures. The reverse analysis could also be performed:

choosing different alignments and orderings of the organic cations and determining

the resulting distortions of the framework.

The linked organic and inorganic dynamics could also be studied experimen-

tally by using a combination of the SAPA and RMC methods for analysing total

scattering data. As I have demonstrated in chapter 5, applying the SAPA method

to X-ray PDF data of the methylammonium lead halides allows the inorganic dy-

namics to be analysed without having to account for the organic component of the

structure, since it has a very weak scattering power for X-rays. The distortions

found from SAPA could then be used as an input for RMC analysis of neutron PDF

data. The methylammonium cation, if deuterated, is a good coherent scatterer

of neutrons, and the RMC method has proven to be a powerful tool for studying

disordered materials. These methods could also be used to analyse other hybrid

perovskites, such as the family of formamadinium lead halides.

The RMC method would also prove useful in investigating the polymorphic

nature of cubic halide perovskites. The RMC method could generate atomistic con-

figurations which agree with both the local and average structure which could be

broken down into smaller cells. The variation in structure across these smaller com-

ponents could then be analysed by a number of means. For example, the ISODIS-

TORT program could be used to determine the distortion modes which give rise to

the possible polymorphs if they are related by symmetry to the parent structure.
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[59] M. Dapiaggi, H. J. Kim, E. S. Božin, S. J. Billinge and G. Artioli, J. Phys.

Chem. Solids, 2008, 69, 2182–2186.

[60] G. Artioli, M. Dapiaggi, P. Fornasini, A. Sanson, F. Rocca and M. Merli, J.

Phys. Chem. Solids, 2006, 67, 1918–1922.

[61] A. Sanson, F. Rocca, G. Dalba, P. Fornasini, R. Grisenti, M. Dapiaggi and

G. Artioli, Phys. Rev. B, 2006, 73, 214305.

[62] M. P. Attfield and A. W. Sleight, Chem. Mater., 1998, 10, 2013–2019.

[63] P. Daniel, A. Bulou, M. Rousseau and J. Nouet, Phys. Rev. B, 1990, 42,

10545–10552.

[64] M. T. Dove, Phil. Trans. R. Soc. A, 2019, 377, 1–18.

[65] W. Miller, C. W. Smith, D. S. MacKenzie and K. E. Evans, Materia. Sci.

Eng., 1987, 95, 303–308.

[66] Q. Gao, N. Shi, Q. Sun, A. Sanson, R. Milazzo, A. Carnera, H. Zhu, S. H.

Lapidus, Y. Ren, Q. Huang, J. Chen and X. Xing, Inorg. Chem., 2018, 57,

10918–10924.

[67] M. T. Dove, D. A. Keen, A. C. Hannon and I. P. Swainson, Phys. Chem.

Miner., 1997, 24, 311–317.

[68] S. J. Hibble, A. M. Chippindale, E. Marelli, S. Kroeker, V. K. Michaelis, B. J.
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Supporting Information: Anharmonicity and scissoring modes in the negative thermal 

expansion materials ScF3 and CaZrF6 

T. A. Bird, J. Woodland-Scott, L. Hu, M. T. Wharmby, J. Chen, A. L. Goodwin, M. S. Senn 

Figure S1: Fits (blue) to pair distribution functions (black) of ScF3 (left) and CaZrF6 (right) at 400 K using the average 

structure. The difference between the fit and data is shown in red, with an offset. The TOPAS v6 implementation of 

the PDFFit peak width function was used. 

Figure S2: Plots of the best Rwp for each single irrep refinement (top) and the weighted mean mode amplitudes 

(bottom) for ScF3 for three different thermal parameter functions; the model discussed in the paper (left), the TOPAS 

v6 implementation of the PDFfit function (middle), and an approximate Debye model (right). 



Figure S4: M-F-M (M = Ca, Zr, Sc) bond angles calculated from positions of peaks in the pair 

distribution functions of ScF3 (red) and CaZrF6 (blue). 

Figure S3: Plots of the best Rwp for each single irrep refinement (top) and the weighted 

mean mode amplitudes (bottom) for ScF3 and CaZrF6 out to a radius of 30 Å.  



Figure S5: Rietveld fit of CaZrF6 X-ray powder diffraction data at 125 

K, collected at the 11-ID-C of APS, Argonne National Laboratory with 

a wavelength of 0.117418 Å. The data was fit using the ��3��

average structure using anisotropic atomic displacement 

parameters, resulting in an Rwp = 6.97 %. 

Table S1: Rwp of different directions of the stated irreps. NB: 

The central column (with OPDs (a,a,0) and (a,b;a,b;0,0) 

does not correspond to any real OPD, however the effect 

could be achieved by the coupling of two irreps 



Figure S6: Rietveld fit of ScF3 X-ray powder diffraction data at 125 K,

collected at the P02.1 beamline at PETRA III, DESY using a wavelength of 

0.207 Å. The data was fit with the ��3�� average structure of ScF3 using 

anisotropic atomic displacement parameters, resulting in an Rwp = 5.7 %.  



Figure S7: Comparison of fits for X5
+ ⨁ R5

- using a coupled (red) and a 2 

phase model (blue) for CaZrF6
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Supporting Information for Soft mode anisotropy in negative

thermal expansion material ReO3

Tobias A. Bird, Mark G. L. Wilkinson, David A. Keen, Ron I. Smith
Nicholas C. Bristowe, Martin T. Dove, Anthony E. Phillips, Mark S. Senn

August 4, 2021

0

2

4

6

8

0.5 1 1.5 2 2.5 3 3.5 4

In
te
ns
ity

(a
rb
.u
ni
ts
)

d (Å)

Rhenium trioxide in CCR cryostat at 150 K, POLARIS bank 4

diff
obs
calc

backgr

Figure 1: A Rietveld fit to the neutron powder diffraction data at 150 K, here only showing
data collected on Bank 4 of Polaris. The model was refined simultaneously against data from
detector banks 3–5 using the EXPGUI interface to GSAS.
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Figure 2: Fits to the 293 K PDF of ReO3 for the average structure (left) and the P4/mbm
phase (right). The calculated PDF is shown in black, and the difference between calculated and
observed is shown in red with a -4 offset. Both refinements were performed using the Topas
Academic v6 software.

Figure 3: A plot showing the Rw of the P4/mbm and Im3̄ OPDs of the M+
2 irrep against

temperature, refined against the ReO3 neutron PDF data using Topas Academic v6 software.
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Figure 4: Cut-throughs of the spherical polar parameterisation plots in figure 5 for fixed θ = π/2.
The value plotted is w = exp[(Rmin − Ri)/0.1], where Rmin is the minimum Rw for each
temperature and the Ri are the Rw of each refinement. A value of w = 1 then indicates a
refinement with a fitting statistic equal to the best fitting statistic across all refinements for
that temperature.
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Figure 5: Plots showing the Rw of different M+
2 OPDs parameterised by spherical coordinates.

The greyscale color map corresponds to a value w = exp[(Rmin − Ri)/0.1] where Rmin is the
minimum Rw for each temperature and the Ri are the Rw of each refinement. A value of
w = 1 then indicates a refinement with a fitting statistic equal to the best fitting statistic across
all refinements for that temperature. Thus, darker regions represent better fits than lighter
regions. The left column shows temperatures 4, 150, 225 and 293 K in order, and the right
shows temperatures 375, 450, 535 and 675 K in order.
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Figure 6: A plot showing the change in Rw for the 600 K neutron PDF for ReO3 whilst
performing two-phase refinements of a large amplitude M+

2 (a;0;0) mode with smaller amplitude
perpendicular tilt modes transforming as the M+

2 irrep in one phase, and as the R−
5 irrep in the

other. All refinements have an additional 3 parameters compared to the single phase P4/mbm
refinements shown in figure 3, and show an improvement from the Rw of 9.45 % for the single
phase model at 600 K.
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Supporting Information for Large dynamic scissoring mode

displacements coupled to band gap opening in Hybrid Perovskites

Tobias A. Bird, Junsheng Chen, Manila Songvilay, Chris Stock,
Michael T. Wharmby, Nicholas C. Bristowe and Mark S. Senn

August 13, 2021

(a) (b)

Figure 1: Plots of the MAPbI3 (a) and MAPbCl3 (b) PDFs at the different indicated temper-
atures, showing the different structural phases. The peak positions from the tetragonal phase
of MAPbI3 persist in the cubic phase. The peak positions from the orthorhombic phase of
MAPbCl3 persist in both the tetragonal and cubic phases. The PDFs are shown with an offset
to aid comparison.
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Figure 2: Fits with no modes active and with the X+
5 OPD with Pnma symmetry to the lowest

temperature PDFs in the cubic phase for each compound (340, 250 and 180 K for X = I, Br
and Cl, respectively). The data is shown as black circles, the calculated PDF as a blue line and
the difference between the two is shown as a red line, with a -3 offset.
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Figure 3: A plot of the X−
5 phase percentage for a competitive two-phase refinement for

MAPbBr3, with a general X−
5 OPD in one phase, as a pure scissoring mode, and general M+

2

and R−
5 OPDs in the other phase.
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Figure 4: A plot showing the Rw vs. temperature for OPDs with different symmetries for
the three studied compounds. All OPDs have 5 or fewer parameters. OPDs with 5 or fewer
parameters that have a symmetry corresponding to a space group which has a group-subgroup
relationship with one of the plotted symmetries are omitted.

3



−1 0 1 2 3
Energy (eV)

A
rb

. u
ni

ts

Total DOS

Br (s)

Br (p)

Pb (s)

Pb (p)

−1 0 1 2 3
Energy (eV)

A
rb

. u
ni

ts

Total DOS

Br (s)

Br (p)

Pb (s)

Pb (p)

−1 0 1 2 3
Energy (eV)

A
rb

. u
ni

ts

Total DOS

Br (s)

Br (p)

Pb (s)

Pb (p)

−1 0 1 2 3
Energy (eV)

A
rb

. u
ni

ts

Total DOS

Br (p)

Pb (s)

Pb (p)

(a) (b)

(c) (d)

Figure 5: Partial electronic Density of States plots for FrPbBr3 for the undistorted structure
(a), 0.8× X+

5 Pnma (b) and Cmcm (c) distortions and a 1.1× X−
5 C2/c distortion (d).

(a) (b) (c)

Figure 6: A diagram showing the relaxed alignments of the MA cations after a simulation of
MAPbBr3, with an X+

5 distortion with Pnma symmetry frozen in, with an amplitude 0.8times
the maximum amplitude.
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Table 1: A table showing the structure of MAPbBr3 with the OPD with Pnma symmetry
frozen in. The distortion has an amplitude of 0.8× its maximum value. This maximum value
is
√

2× the refined amplitude. The coordinates shown are fractional.
Atom Type Multiplicity Wyckoff Label x y z

Fr 4 b 0 0 0.5
Fr 4 a 0 0 0
Pb 4 c 0.75 0.25 0.75
Pb 4 c 0.75 0.25 0.25
Br 4 c 0.70427 0.25 0.50711
Br 4 c 0.70427 0.25 0.00711
Br 4 c 0.99119 0.25 ‘0.75
Br 4 c 0.99917 0.25 0.25
Br 8 d 0.28786 0.5 0.18254

Table 2: A table of the C–N bond directions in a simulation of MAPbBr3 with the OPD with
Pnma symmetry frozen in. The distortion has an amplitude of 0.8× its maximum value. This
maximum value is

√
2× the refined amplitude. The coordinates shown are fractional. Initially,

all bonds were aligned along the [1 0 0] direction. The vectors shown are unit vectors in the
direction from C to N.

Position Direction

x y z x y z

1/2 1/2 1/2 0.597 -0.379 0.707
1/2 1/2 0 -0.853 0.459 -0.246
1/2 0 1/2 -0.733 -0.129 -0.668
0 1/2 1/2 -0.855 0.468 0.223
0 0 0 -0.572 -0.044 0.819
0 1/2 0 0.684 -0.058 -0.728
1/2 0 0 0.897 0.082 0.433
0 0 1/2 0.900 0.067 -0.431
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