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1. Introduction 
 

Steel-concrete composite structures rely on the 

longitudinal shear transfer between the two materials, 

achieved by the shear connectors attached to the steel 

components and encased in concrete. Various types of shear 

connectors have been used in construction (Mujagić et al. 

2007; Shariati et al. 2012; Pavlović et al. 2013), with the 

welded headed studs being the most common due to the 

speed and simplicity of their installation and the reliability of 

their performance. 

Many researchers have experimentally studied the load-

slip performance of welded studs in solid concrete slabs 

using push tests. Test results formed the basis for several 

design models of the stud shear resistance proposed over 

time, some of which have been adopted in design standards. 

Probably the most well-known is the design model developed 

by Ollgaard et al. (1971), which was based on regression 

analyses of 48 push test results; this design model was 

subsequently adopted by AISC 360 (1986) and was also 
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adapted for use in Eurocode 4 (EN 1994-1-1 2004, EN 1994-

2 2005). However, comparisons of the existing design models 

with a larger pool of test data demonstrate that there is room 

for improvement to achieve more accurate resistance 

predictions, whilst maintaining the reliability requirements 

of the design standards (Pallarés and Hajjar 2010; Hicks 

2017; Bonilla et al. 2018).  

Pallarés and Hajjar (2010) assessed the predicted strength 

given by the AISC 360 (2005), EN 1994-1-1 (2004),  

ACI 318 (2008), and PCI (2004) design equations for stud shear 

connectors in solid slabs against 391 monotonic and cyclic test 

results. They found in particular that the AISC 360 (2005) 

formula for the steel failure mode was accurate only if a 

resistance factor was included. The stud shear strength governed 

by concrete strength did not need to be checked when: a 

resistance factor of 0.65 was applied to the steel strength 

formula; the studs were not subject to concrete breakout failure; 

normal weight concrete is used; and the stud height-to-diameter 

ratio (h/d) in excess of 5 is provided. In the North American 

design context, they also concluded that the EN 1994-1-1 (2004) 
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equations provided conservative predictions for steel and 

concrete failure modes when the partial factor was applied. 

Hicks (2017) conducted reliability analyses of the 

EN 1994-1-1 (2004), Oehlers and Johnson (1987), and 

Döinghaus (2001) design models for stud shear resistance in 

solid normal weight concrete slabs in accordance with EN 

1990 (2005). From considering a database of 242 push-out 

tests, the results from this study showed that the design 

equations for the concrete failure mode of all three 

considered models did not satisfy the Eurocode reliability 

requirements. In addition, it was demonstrated that the 

models could be extended over a wider range of concrete 

strengths and stud diameters currently permitted in European 

design practice. Modifications to all three models were 

proposed to ensure that they delivered the target partial factor 

required by EN 1994-1-1 (2004) for the design resistance of 

a headed stud.  

Bonilla et al. (2018) evaluated the accuracy of the stud 

shear resistance predictions for solid slabs by the AISC 360 

(2010), EN 1994-1-1 (2004), GB50017 (2003), JSCE (2007), 

and AS-2327.1 (2003) design models against experimental data. 

They concluded that the AISC 360 (2010) and JSCE (2007) 

equations might give unconservative results for stud 

diameters of 25, 27, and 30 mm. The EN 1994-1-1 (2004), 

GB50017 (2003), and AS-2327.1 (2003) models produced 

overly conservative results for stud diameters from 13 to 22 mm 

and less conservative results for stud diameters of 25, 27, and 

30 mm. 

This study describes an application of symbolic 

regression with genetic programming (GPSR) to 

experimental data to formulate new descriptive equations for 

predicting the nominal and design shear resistance of the 

studs. GPSR is a machine learning (ML) technique that seeks 

to find underlying relationships between dependent and 

independent variables of a dataset in the form of a 

mathematical expression by applying genetic operations and 

evaluating the performance of each generation of the 

functions until the desired performance has been achieved. 

GPSR is a variant of genetic programming (GP) (Wang 

et al. 2019, Ari and Alagöz 2021, Zhang et al. 2021), which 

has been successfully applied for solving different structural 

engineering problems. GP-based descriptive equations for 

predicting material properties at ambient and elevated 

temperatures were proposed by Ozbay et al. (2008), 

Sarıdemir (2010), Özcan (2012), Jafari and Mahini (2017), 

Velay-Lizancos et al. (2017), Naser (2019), and İpek and 

Mermerdaş (2020). In reinforced concrete, GP-based 

predictive equations were developed for the shear strength of 

elements (Aval et al. 2017, Chaabene and Nehdi 2021, 

Gondia et al. 2020, Pérez et al. 2010, Shahnewaz and Alam 

2020, Solhmirzaei et al. 2020, and Naser 2020), the strength 

of beam-column and slab-column joints (Jeon et al. 2014, 

Jeong et al. 2021a, Mansouri et al. 2021), column capacity 

(Lim et al. 2016), bond strength (Güneyisi et al. 2013, 

Golafshani et al. 2015), transfer length (Jeong et al. 2021b), 

fire-induced concrete spalling (Naser and Salehi 2020), as 

well as bond properties and bending capacity of fiber-

reinforced polymer-strengthened and reinforced concrete 

members (Naser 2020). In steel structures, GP was employed 

for deriving equations for bending capacity of castellated 

beams and circular tubes (Gandomi et al. 2011, Shahin and 

Elchalakani 2014), flexural overstrength factor and available 

rotation capacity of steel beams (Güneyisi et al. 2013, 

D’Aniello et al. 2014, 2015), beam resistance under localized 

loads (Graciano et al. 2021), compressive capacity of 

perforated tubular members (Hernández et al. 2018), damage 

evaluation of steel columns under blast loads (Momeni et al. 

2020), and plasticity models (Bomarito et al. 2021). GP has 

also found applications for predicting the capacity of 

concrete-filled steel columns in compression (Güneyisi and 

Nour 2019, Nour and Güneyisi 2019, Naser et al. 2021, İpek 

and Güneyisi, 2022). 

The abovementioned studies demonstrated that GP is an 

efficient technique capable of deriving new empirical 

equations with improved performance. Therefore, it was 

hypothesized that GPSR could discover hidden relationships 

between variables and produce improved predictive models 

of the stud shear resistance in solid concrete slabs. This study 

had the following objectives: 1) to derive new equations for 

predicting the nominal shear resistance of studs in normal 

weight concrete (NWC) and lightweight concrete (LWC) via 

GPSR; 2) to evaluate the reliability of the obtained equations 

in accordance with European and US design practices; 3) to 

develop models for predicting the design shear resistance of 

studs that meet the target reliability index; and 4) to compare 

the performance of the developed design models with several 

existing models, including those currently used in 

international design standards. The novelty of the present 

work consists of improved GPSR-based descriptive 

equations for predicting the shear resistance of studs in both 

NWC and LWC solid slabs and subsequent refinement of the 

GPSR-based equations for use in design from reliability 

analyses. The proposed models can be applied in the design 

of composite bridge beams which commonly use solid 

concrete slabs, or in the design of composite columns using 

concrete-encased and concrete-filled steel sections. 

However, the models are not directly applicable to studs in 

steel decking, which are commonly found in composite 

beams in modern multi-storey buildings, owing to the 

reduction in resistance caused by the geometry of the deck 

profile. Notwithstanding this, given that most international 

design standards provide reduction factor equations that are 

multiplied to the resistance of studs embedded in solid 

concrete slabs, the GPSR-based descriptive equations offer 

insights on the importance of some of the variables that have 

historically been used in code-defined design models. In 

addition, the models will provide a basis for future 

investigations on whether it is entirely appropriate that a 

simple reduction factor can adequately capture the 

performance of studs in decking.  

 

 

2. Test databases 
 

Two databases of push-out test results for headed stud 

shear connectors embedded in solid NWC and LWC slabs 

were used in this study (Hicks 2021a, Hicks 2021b). The 

databases contain 242 NWC and 90 LWC test results and 

include the mean measured shear resistance per stud, Pem, 

along with the following mean measured material and 
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geometric properties: concrete compressive strength, fcm; 

secant modulus of elasticity of concrete, Ecm; ultimate tensile 

strength of studs, fum; stud shank diameter, dm; diameter of 

the weld collar, ddom; the height of the weld collar, hwm; the 

overall height of stud after welding, hm; stud height-to-

diameter ratio, hm/dm; and concrete density (LWC database 

only). Nominal properties of the independent variables are 

also presented in the databases, which are based on the 

specified properties reported in the tests, or evaluated from 

considering the statistical properties assumed in European 

and international product standards. 

The test databases include independent variables in the 

following ranges:  

- NWC: 16.61 MPa ≤ fcm ≤ 115.83 MPa, 15.1 GPa ≤ Ecm ≤ 

46.5 GPa, 426 MPa ≤ fum ≤ 675 MPa, 12.7 mm ≤ dm ≤ 

31.8 mm, 21.0 mm ≤ ddom ≤ 44.5 mm, 3.0 mm ≤ hwm ≤ 8.6 

mm, 70 mm ≤ hm ≤ 200 mm, and 3.00 ≤ hm/dm ≤ 9.09.  

- LWC: 20.48 MPa ≤ fcm ≤ 55.71 MPa, 10.41 GPa ≤ Ecm ≤ 

19.44 GPa, 407 MPa ≤ fum ≤ 600 MPa, 12.7 mm ≤ dm ≤ 

22.2 mm, 17.0 mm ≤ ddom ≤ 29.0 mm, 3.0 mm ≤ hwm ≤ 6.0 

mm, 51 mm ≤ hm ≤ 114 mm, 2.67 ≤ hm/dm ≤ 8.00, and 

1410 kg/m3 ≤ density ≤ 1970 kg/m3. 

Distributions of the database variables are illustrated in Figs. 

1 and 2, which demonstrate that the test databases cover a 

wide range of design parameters used in composite steel-

concrete construction. 

Figs. 1 and 2 also show that only a small number of tests 

are available for the following ranges of the variables: 

- NWC:  fum > 600 MPa, dm < 16 mm and dm > 25 mm, 

and 3.9 < hm/dm and hm/dm > 6.  

- LWC: fcm > 40 MPa, fum > 530 MPa, dm > 20 mm, hm/dm 

> 6, and density < 1550 kg/m3 and density > 1850 kg/m3. 

Future experimental studies on specimens with the 

variables in these ranges would be beneficial for extending 

the knowledge and improving design models. 

Figs. 3 and 4 present correlation matrices for the database 

variables. For NWC, the stud shank diameter, dm, has the 

highest positive correlation with Pem, characterized by a 

correlation coefficient of 0.77. In descending order, the weld 

collar diameter, ddom, concrete elastic modulus, Ecm, and 

concrete compressive strength, fcm, have correlation 

coefficients of 0.68, 0.64, and 0.62 with Pem, respectively. 

The weld collar height, hwm, and stud height, hm, demonstrate 

an even smaller correlation with Pem, with a coefficient of 

correlation of 0.52. The stud height-to-diameter ratio, hm/dm, 

and ultimate tensile strength of studs, fum, show practically 

no correlation with Pem. For LWC, dm, ddom, and hwm have the 

strongest positive correlations with Pem, characterized by 

correlation coefficients of 0.87, 0.86, and 0.80, respectively. 

All other variables demonstrate relatively weak correlations 

with Pem. According to EN ISO 13918 (2017), the weld collar 

diameter and height depend on the stud shank diameter, 

which is reflected by strong correlations between dm and ddom, 

and dm and hwm, in both databases. 

It should be noted that the correlation matrices are based 

on a linear correlation of each variable considered separately 

from the others. They are unable to capture complex 

nonlinear relationships between the variables and the 

interaction effects of several variables. The correlation 

matrices give insights into the variables that might affect the 

 

Fig. 1 Distributions of NWC database variables 

 

 

Fig. 2 Distributions of LWC database variables 
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stud resistance most significantly but do not paint the 

complete picture of the relationships between the 

independent and dependent variables. 

 

 

Fig. 3 Correlation matrix of NWC database variables 

 

 

Fig. 4 Correlation matrix of LWC database variables 

 

 
3. Symbolic regression with genetic programming 
 

ML algorithms are effective at discovering and revealing 

hidden relationships between variables. The advantage of 

GPSR over other ML models is that they produce descriptive 

models in the form of easily comprehended mathematical 

expressions, as opposed to predictions which often cannot be 

easily explained and interpreted by humans (Naser 2021). 

GPSR, proposed by Koza (1992), is a type of regression 

analysis that searches over the space of all possible 

mathematical expressions for the one that produces the best 

predictions for a given dataset. In this study, GPSR analyses 

were performed using gplearn (Stephens 2016), an open-

source Python-based library, with genetic programming 

implemented to solve symbolic regression problems. 

Fig. 5 demonstrates a flow chart of the algorithm. The 

analysis starts with creating a population of random functions 

represented as tree structures consisting of a mix of variables, 

constants, and functions. The variables are the independent 

variables of the dataset. The user specifies the functions 

considered by the algorithm. They include addition, 

subtraction, multiplication, division, square root, and others. 

The number of functions in the first and following 

generations, or population size, is a hyperparameter specified 

by the user at the beginning of the analysis.  

 

 

Fig. 5 Flow chart of GPSR 

 

The prediction accuracy, or fitness, of the initial random 

functions is evaluated against the dataset. Mean absolute 

error, mean squared error or root-mean-squared error can be 

used as prediction accuracy metrics. Functions with the best 

fitness value evolve into the next generation. The function 

selection process is done via tournaments, where the 

population of functions is randomly split into smaller 

subsets. The functions compete between themselves, and the 

fittest function from each subset is selected to move into the 

next generation.  

The algorithm’s next step consists of genetic operations, 

such as crossover and mutation, performed on the selected 

functions. In crossover, the functions are randomly mixed. 

Mutation involves random replacing of parts of the functions, 

which are referred to as subtrees. The processes of fitness 

evaluation, selection, and evolution are repeated for each 

generation of functions until the maximum number of 

generations specified by the user is reached or when the 

fitness metric of at least one function in the population is 

smaller than the specified stopping value.  

Several hyperparameters must be specified at the 

beginning of the analysis, including the following: 
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- population size (the number of functions in each 

generation),  

- the maximum number of generations,  

- tournament size (the number of functions that will 

compete to become a part of the next generation),  

- stopping criteria (the fitness metric value required to 

stop evolution early), 

- initial depth (the range of tree depths for the initial 

generation of random functions),  

- the function set for building and evolving functions,  

- the fitness metric used for fitness evaluation,  

- parsimony coefficient, which is used to penalize large 

functions by adjusting their fitness to be less favorable 

in the selection, 

- the probability of performing crossover and mutation on 

a tournament winner. 

Optimal values of the hyperparameters that result in the 

desired algorithm performance are usually obtained via 

multiple trials. The reader is referred to the gplearn 

documentation (Stephens 2016) for more information about 

the GPSR method. 

Multiple analyses of the stud resistance test data were 

performed in this study to find optimal hyperparameters that 

produce descriptive equations with the best performance. 

The original independent variables of the database and their 

combinations, such as fumAm, hwmddomfcm, fcmAm, (where 

Am=πdm
2/4), and others, were considered. Special attention 

was paid to ensure that the developed equations had 

reasonable forms and sizes to be convenient for hand 

calculations. The equation size was controlled by carefully 

selecting the initial function depth and parsimony coefficient 

values. Many equations were obtained from the analyses. 

Their performance was carefully evaluated to select the 

simplest equations producing good agreements with the test 

data.  

 
 
4. Descriptive equations for predicting the nominal 
shear resistance of studs in solid concrete slabs 

 

Two descriptive equations for predicting the nominal 

(mean) shear resistance of headed studs, 𝑃𝑛, were selected 

from the conducted GPSR analyses. The equations are 

referenced as SRN1 (Eq. (1)) and SRN2 (Eq. (2)). 

𝑃n = 1.1𝜆 √𝑓cm𝑓u
3

ℎ

𝑑

4 𝜋𝑑2

4
 (SRN1) (1) 

𝑃n = (1.1 − 0.1𝜂) √𝑓cm𝑓u
3 (

ℎ

𝑑
− 𝜂)

4 𝜋𝑑2

4
 (SRN2) (2) 

where 𝑓u , 𝑑 , and ℎ  are the nominal ultimate tensile 

strength, shank diameter, and height of the stud; 𝜆  is the 

concrete type factor taken as 1.00 for NWC and 0.84 for 

LWC; 𝜂 is the concrete type coefficient taken as 0 for NWC 

and 1 for LWC.  

It can be observed that SRN1 and SRN2 models are 

identical for NWC and differ for LWC. Fig. 6 shows 

 

 

 
Fig. 6 Performance of the developed equations for 

predicting the nominal shear resistance of studs 

 

 
Fig. 7 Test-to-prediction ratios versus NWC database 

variables for the nominal resistance equations 
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Fig. 8 Test-to-prediction ratios versus LWC database 

variables for the nominal resistance equations 

 

comparisons of the stud shear resistance predicted by models 

SRN1 and SRN2 with the experimental data from the NWC, 

LWC, and combined NWC and LWC databases. The 

equation variables were taken as the mean measured values 

from the test database. The presented comparisons 

demonstrate that the stud resistance predictions by the 

developed equations agreed reasonably well with the test 

results for NWC and LWC. Both models produced 

comparable performance metrics.  

 

 
Fig. 9 Test-to-prediction ratios versus NWC and LWC 

combined database variables for the nominal resistance 

equations 

 

Figs. 7-9 show test-to-prediction ratios as functions of the 

test database variables for each developed model for the NWC, 

LWC, and combined NWC and LWC data. The figure 
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demonstrates that all models produced relatively consistent 

predictions of the stud resistance for the entire ranges of the test 

dataset variables. It can also be seen that predictions of some 

models might be improved by introducing additional 

coefficients, which are functions of the independent variables. 

For example, coefficients that are functions of d and 𝑓u could 

be added to the models to improve their performance (the former 

is consistent with that found by Hicks 2017, who proposed a 

reduction factor based on stud shank diameter for studs in 

NWC). That, however, was not done in the present work to 

preserve the simplicity of the equations, which demonstrate 

decent prediction accuracy in the original form without any 

additional modifications. 

In the proposed models, the differences between NWC and 

LWC are accounted for by coefficients 𝜆  and 𝜂 . Several 

existing stud resistance models presented in Section 7 include 

Ecm, which allows for distinguishing between NWC and LWC 

with equal compressive strengths. Figs. 8 and 9 demonstrate a 

weak correlation between the test-to-prediction ratios for both 

developed models and Ecm, which justifies the absence of this 

variable in the proposed models. Stud resistance proposal #4 by 

Pallarés and Hajjar (2010) presented in Section 7 is based on a 

similar approach. It includes an LWC reduction coefficient and 

does not include Ecm. It can also be observed from Fig. 8 that the 

LWC density has a weak correlation with the test-to-prediction 

ratios for the proposed models. This finding is important as, 

following its introduction within the empirical equations 

proposed by Ollgaard et al. (1971), the secant modulus of 

elasticity is widely used within the design models for stud 

resistance in many international standards (see Section 7).  

 

 

5. Reliability analyses of the models according to the 
European and US design practices 
 

The information presented in the previous section shows that 

models SRN1 and SRN2 can predict the nominal (mean) shear 

resistance of studs in solid concrete slabs reasonably well. The 

models, however, have to be calibrated via reliability analyses 

to ensure that a sufficiently low probability of failure is 

achieved. Design standards from around the world contain 

different calibration requirements. In this study, the reliability of 

the developed equations was evaluated in accordance with both 

European and US design practices.  

 

5.1 Eurocodes 
 

In Europe, steel-concrete composite structures are designed 

in accordance with Eurocode 4 (EN 1994-1-1 2004, EN 1994-2 

2005), which recommends the partial factor for shear 

connectors, γV, of 1.25. In the interest of harmonization across 

the Eurocodes, this value was considered appropriate for all 

connection components (bolts, rivets, welds, etc.), and the 

resistance to fracture of a steel cross-section in tension. The 

design resistance is based on a probability of failure that does 

not exceed Pf = 1.2  10-3 (EN 1990 2002, Hicks 2017). This 

value corresponds to the target reliability index, β = 3.8 for a 50-

year reference period multiplied by the First Order Reliability 

Method (FORM) sensitivity factor for resistance, αR, of 0.8, 

resulting in the adjusted target reliability index of αRβ = 3.04. 

The reliability analyses for evaluating the design resistance 

should follow the method of EN 1990 Annex D, which consists 

of the following steps: 

1) A design model for the theoretical resistance, rt, is 

developed based on test results. 

𝑟t = 𝑔rt(𝑋),  (3) 

where 𝑔rt(𝑋)  is resistance function of the basic variables 

𝑋. 

2) Theoretical resistances are compared with experimental 

resistances, re, by plotting an re-rt diagram. 

3) The mean value of correction factor, b, is estimated as 

follows:  

𝑏 =
∑ 𝑟e𝑟t

∑ 𝑟t
2   (4) 

4) The coefficient of variation, Vδ, of the error terms, δi, is 

estimated from Eqs. (5)-(9). 

𝛿i =
𝑟ei

𝑏𝑟ti
  (5) 

∆i= ln(𝛿i)  (6) 

∆̅=
1

𝑛
∑ ∆i

n
i=1   (7) 

𝑠∆
2 =

1

𝑛−1
∑ (∆i − ∆̅)2n

i=1   (8) 

𝑉δ = √exp(𝑠∆
2) − 1  (9) 

where the subscript i denotes values for the ith test specimen 

and n is the total number of test specimens.  

5) The coefficient of variation of the theoretical resistance, 

Vrt, is estimated from EN 1990 equations (which are challenging 

to implement for complex functions) or, more conveniently, 

through Monte Carlo simulation (Hicks 2017).  

6) The coefficient of variation, Vr, is estimated as follows 

𝑉r = √𝑉δ
2 + 𝑉rt

2  (10) 

7) The characteristic resistance, Rk, is obtained from Eq. 

(11). 

𝑅k = 𝑏𝑔rt(𝑋m)exp(−𝑘∞𝛼rt𝑄rt − 𝑘n𝛼δ𝑄δ − 0.5𝑄2) (11) 

where 𝑋m is the array of mean values of the basic variables; 

𝑘n is the characteristic fractile factor for the number of tests, 

n with a probability of 0.05; 𝑘∞ = 1.64 ; 𝛼rt = 𝑄rt 𝑄⁄   is 

the weighting factor for the theoretical resistance; 𝛼δ =
𝑄δ 𝑄⁄  is the weighting factor for the error terms; and 𝑄rt =

√ln(𝑉rt
2 + 1) , 𝑄δ = √ln(𝑉δ

2 + 1) , and 𝑄 = √ln(𝑉r
2 + 1) 

are the standard deviations of the theoretical resistance, error 

terms, and resistance, respectively. 

8) The design resistance, Rd, is determined from Eq. (12) 

𝑅d = 𝑏𝑔rt(𝑋m)exp(−𝑘d,∞𝛼rt𝑄rt − 𝑘d,n𝛼δ𝑄δ

− 0.5𝑄2) 
(12) 

where 𝑘d,n  is the design fractile factor for the number of 

tests, n, with a probability of failure of 1.2  10-3; and 𝑘d,∞ =
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𝛼R𝛽 = 3.04. 

9) The partial factor, γM, is determined as follows.   

𝛾M =
𝑅k

𝑅d
  (13) 

10) The corrected partial factor, γ*
M, is obtained from Eq. 

(14). 

𝛾M
∗ =

𝑅n

𝑅d
= 𝑘c𝛾M  (14) 

where Rn is the nominal resistance determined from the design 

model using nominal values of the variables and 𝑘c = 𝑅n 𝑅k⁄ . 

This procedure was used by Hicks (2017) to evaluate the 

reliability of the stud resistance design models of Eurocode 4, 

Oehlers and Johnson (1987), and Döinghaus (2001). The study 

showed that all three models needed modifications to satisfy the 

reliability requirements with the partial factor of 1.25. The 

modified equations were proposed by Hicks (2017). 

In the present study, the required partial factors for the 

developed nominal stud resistance models were determined per 

the EN 1990 method described above. The Monte Carlo 

simulation performed for estimating Vrt was based on 10,000 

random values generated for each nominal material and 

geometric property from the test database (Hicks 2021). Log-

normal distributions with the parameters listed hereafter were 

assumed for all properties. The values given below represent the 

mean of the ratios of the actual to nominal values of the 

variables.  

1) Concrete compressive strength, fcm: the mean of 1.0 

and the coefficient of variation (CoV) of 8 (1.64𝑓cm)⁄  (EN 

1992-1-1 2004). 

2) Ultimate tensile strength of studs, fu: the mean of 1.1 

and CoV of 0.05 (Hicks 2017). 

3) Stud shank diameter, d: the mean of 1.0 and CoV of 

0.231/d. 

4) Height of stud after welding, h: the mean of 1.0 and 

CoV of 1.012/h. 

The CoV values for d and h were determined based on the 

tolerances published in ISO EN 13918 (2017). 

 

Table 1 Reliability analysis results for the nominal resistance 

models per EN 1990 

Model b V Vrt Vr kc *M=V 

NWC (n=242) 

SRN1 1.001 0.131 0.058 0.143 1.09 1.33 

SRN2 1.001 0.131 0.058 0.143 1.09 1.33 

LWC (n=90) 

SRN1 1.004 0.118 0.070 0.137 1.12 1.37 

SRN2 0.989 0.116 0.070 0.135 1.13 1.38 

NWC & LWC (n=332) 

SRN1 1.002 0.128 0.061 0.142 1.09 1.34 

SRN2 1.000 0.127 0.061 0.141 1.10 1.34 

 

The reliability analyses were separately performed for the 

NWC, LWC, and combined LWC and NWC data. The 

reliability analysis results for each nominal resistance model are 

summarized in Table 1. Both models need a partial factor, γV, 

higher than 1.25 to provide the design resistance with the 

required reliability level. Therefore, the nominal resistance 

models SRN1 and SRN2 must be modified to meet the 

reliability requirements of EN 1990 (2002) and EN 1994-1-1 

(2004). 

It should also be acceptable to use the SRN1 and SRN2 

models with a partial factor larger than 1.25 (e.g., 1.40) for the 

design resistance predictions. However, according to Annex D 

of EN 1990 the partial factor that is applied should be taken from 

the appropriate Eurocode. Therefore, to enable the models to be 

used directly in design, the recommended value of 1.25 was 

taken from Eurocode 4 and a reduction coefficient applied. As 

well as satisfying the EN 1990 requirements, the adoption of this 

approach also facilitates direct comparison with the 

performance of the existing design equations. As discussed 

hereafter, both approaches give approximately the same design 

shear resistance. 

 

5.2 US design practice 
 
AISC 360 (2016) governs the design of steel-concrete 

composite structures in the US. It includes shear strength 

provisions for steel headed stud anchors in both composite 

beams and other composite components. A composite 

component is defined as a member, connecting element or 

assemblage in which steel and concrete elements work as a unit 

in the distribution of internal forces; composite beams with solid 

slabs or formed steel deck are excluded from this definition. 

This distinction determines how the resistance factor is applied 

in design. 

The AISC 360 nominal shear strength formula for studs in 

composite beams considers the stud material and concrete 

strengths, but does not include a resistance factor. The required 

reliability is provided by the resistance factors applied to the 

composite beam strength (Mujagić and Easterling 2009, 

Pallarés and Hajjar 2010). Therefore, the resistance factors for 

composite beams must, in theory, be calibrated for each new 

stud shear strength equation considered, which was beyond the 

scope of the present study. 

In contrast, a resistance factor of 0.65 is applied directly to 

the nominal shear strength of a stud anchor in other composite 

components. AISC 360 gives a shear strength formula based on 

the stud material only and references ACI 318 for concrete 

breakout strength calculations, where applicable. The AISC 360 

provisions for composite components have not been evaluated 

in the present work. 

The resistance factor for a stud strength model can be 

computed using Eq. (15) recommended by Ravindra and 

Galambos (1978). 

𝜙v =
𝑅m

𝑅n
𝑒(−𝛼𝛽𝑉R)  (15) 

where 𝑅m 𝑅n⁄  is the average ratio between the experimental 

and predicted values, 𝛼 =0.55, 𝛽  is the target reliability 

index, and 𝑉R = √𝑉F
2 + 𝑉P

2 + 𝑉M
2  , where 𝑉F  is the 

coefficient of variation on fabrication (stud dimensions), 𝑉P 

is the coefficient of variation of 𝑅m 𝑅n⁄  , and 𝑉M  is the 

coefficient of variation of the material properties. The 𝑉F 

and 𝑉M values of 0.05 and 0.09, respectively, were used in 

this study, following the recommendations of Pallarés and 

Hajjar (2010). In their work on stud connectors, these authors 

considered a reliability index of  = 3.0 and 4.0; the former value 

was considered to be delivered by composite beams, whilst the 
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latter was adopted to permit studs to be used in a wider range of 

applications. 

The 𝑅m 𝑅n⁄  and 𝑉P  values were determined for the 

proposed nominal shear strength models using two 

approaches: 1) based on the mean measured concrete 

strength, f ’cr=fcm, and stud tensile strength, fum; and 2) based 

on the specified concrete strength, f ’c, and the stud nominal 

tensile strength of fu=450 MPa (65 ksi). The f ’cr values were 

converted into f ’c per the ACI 301 (2016) recommendations. 

The 450 MPa (65 ksi) value was selected because studs with 

such a nominal tensile strength are commonly used in the US 

(AISC SCM 2016). The NWC and LWC test databases 

include 9 and 29 tests, respectively, with fum < 450 MPa, 

which were excluded from the resistance factor calculations 

using the second approach.  

The resistance factors computed for the target reliability 

indices of  = 3.0 and 4.0 (Pallarés and Hajjar 2010) are 

presented in Table 2. It can be noted that the resistance factor 

values based on the nominal properties and β=4.0 agree well 

with the partial factor value recommended by Eurocode 4 

(v=1/γV=1/1.25=0.80) and exceed the AISC 360 resistance 

factor for studs in composite components.  

 

Table 2 Resistance factors for the nominal strength models 

per US design practice 

Model 
Concrete/stud 

strength 
Rm/Rn VP 

v 

 = 3.0  = 4.0 

NWC  

(n=242 for f’cr=fcm, fum and n=233 for f’c, fu=450 MPa) 

SRN1 
f’cr=fcm, fum 1.018 0.130 0.77 0.71 

f’c, fu=450 MPa 1.200 0.118 0.93 0.85 

SRN2 
f’cr=fcm, fum 1.018 0.130 0.77 0.71 

f’c, fu=450 MPa 1.200 0.118 0.93 0.85 

LWC 

(n=90 for f’cr=fcm, fum and n=61 for f’c, fu=450 MPa) 

SRN1 
f’cr=fcm, fum 1.025 0.120 0.79 0.72 

f’c, fu=450 MPa 1.197 0.095 0.95 0.88 

SRN2 
f’cr=fcm, fum 1.008 0.118 0.78 0.71 

f’c, fu=450 MPa 1.178 0.095 0.94 0.87 

NWC & LWC  

(n=332 for f’cr=fcm, fum and n=294 for f’c, fu=450 MPa) 

SRN1 
f’cr=fcm, fum 1.020 0.127 0.78 0.71 

f’c, fu=450 MPa 1.200 0.114 0.93 0.86 

SRN2 
f’cr=fcm, fum 1.015 0.127 0.78 0.71 

f’c, fu=450 MPa 1.196 0.114 0.93 0.85 

 

 

6. Design shear resistance of headed studs in solid 
concrete slabs 
 

Reduction coefficients were applied to nominal resistance 

models SRN1 and SRN2 (Eqs. (1) and (2)) to provide the 

reliability level required by the Eurocodes. Required 

magnitudes of the reduction coefficients for each model were 

determined by trials. The resulting design resistance models 

SRD1 and SRD2 are described by Eqs. (16) and (17). As can be 

seen from comparing the nominal and design resistance models, 

a reduction coefficient of 0.9 was necessary for both models to 

achieve the required reliability with the partial factor of 1.25. 

  𝑃Rd = 𝜆 √𝑓ck𝑓u
3 ℎ

𝑑

4 𝜋𝑑2

4

1

𝛾V
 (SRD1) (16) 

𝑃Rd = (1 − 0.1𝜂) √𝑓ck𝑓u
3 (

ℎ

𝑑
− 𝜂)

4 𝜋𝑑2

4

1

𝛾V

 (SRD2) (17) 

 

Reliability analyses of the design models performed in 

accordance with European and US design practices described in 

Section 5 are summarized in Tables 3 and 4, respectively.  

 

Table 3 Reliability analysis results for the design resistance 

models per EN 1990 

Model b V Vrt Vr kc *M=V 

NWC (n=242) 

SRD1 1.101 0.131 0.058 0.143 0.99 1.21 

SRD2 1.101 0.131 0.058 0.143 0.99 1.21 

LWC (n=90) 

SRD1 1.104 0.118 0.070 0.137 1.02 1.24 

SRD2 1.098 0.116 0.070 0.135 1.02 1.24 

NWC & LWC (n=332) 

SRD1 1.102 0.128 0.061 0.142 1.00 1.22 

SRD2 1.101 0.127 0.061 0.141 0.99 1.21 

 

Table 4 Resistance factors for the design strength models per 

US design practice 

Model 
Concrete/stud 

strength 
Rm/Rn VP 

v 

 = 3.0  = 4.0 

NWC  

(n=242 for f’cr=fcm, fum and n=233 for f’c, fu=450 MPa) 

SRD1 
f’cr=fcm, fum 1.119 0.130 0.85 0.78 

f’c, fu=450 MPa 1.321 0.118 1.00 0.94 

SRD2 
f’cr=fcm, fum 1.119 0.130 0.85 0.78 

f’c, fu=450 MPa 1.321 0.118 1.00 0.94 

LWC  

(n=90 for f’cr=fcm, fum and n=61 for f’c, fu=450 MPa) 

SRD1 
f’cr=fcm, fum 1.128 0.120 0.87 0.80 

f’c, fu=450 MPa 1.317 0.095 1.00 0.97 

SRD2 
f’cr=fcm, fum 1.120 0.118 0.86 0.79 

f’c, fu=450 MPa 1.309 0.095 1.00 0.96 

NWC & LWC  

(n=332 for f’cr=fcm, fum and n=294 for f’c, fu=450 MPa) 

SRD1 
f’cr=fcm, fum 1.122 0.127 0.86 0.78 

f’c, fu=450 MPa 1.320 0.114 1.00 0.94 

SRD2 
f’cr=fcm, fum 1.120 0.127 0.86 0.78 

f’c, fu=450 MPa 1.318 0.114 1.00 0.94 

 

The partial factors smaller than 1.25 obtained for SRD1 and 

SRD2 demonstrate that the reliability of the design models 

meets or exceeds the reliability level required by Eurocodes. It 

can also be noticed that the ratios of the partial factors for the 
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SRD1 and SRD2 models (see Table 3) to those for the SRN1 

and SRN2 models (see Table 1) are approximately equal to the 

reduction coefficient of 0.9 applied to the nominal resistance 

models. Therefore, the design stud resistances obtained from the 

SRN1 and SRN2 models with the partial factors from Table 1 

are approximately equal to those from the SRD1 and SRD2 

models with the partial factors from Table 3. Conversely, when 

considering US design practice, the resistance factors, v, were 

relatively high for both models, especially when the nominal 

values of the concrete and stud resistances were used. The 

resistance factors for the proposed models are higher than the 

AISC 360 resistance factor of 0.65 for the stud shear strength in 

composite components. 

Following the ranges of the variables in the test databases, 

the applicability of the proposed design models should be 

limited by the following values: 

- NWC: 20 MPa ≤ fcm ≤ 115 MPa (12 MPa ≤ fck ≤ 90 MPa), 

450 MPa ≤ fu ≤ 600 MPa, 16 mm ≤ d ≤ 25 mm, 3 ≤ h/d ≤ 9; 

- LWC: 24 MPa ≤ fcm ≤ 58 MPa (16 MPa ≤ fck ≤ 50 MPa), 450 

MPa ≤ fu ≤ 600 MPa, 13 mm ≤ d ≤ 22 mm, 3 ≤ h/d ≤ 8. 

 

 

7. Comparisons of the developed models with the 
existing descriptive equations 
 

The developed models for predicting the shear resistance of 

studs in solid concrete slabs were compared with the following 

existing models:  

- Eurocode 4 (EN 1994-1-1 2004 and EN 1994-2 2005), 

- Eurocode 4 modified (Hicks 2017),  

- AISC (AISC 360 2016),  

- AS/NZS (AS/NZS 2327 2017 and AS/NZS 5100.6 2017),  

- JSCE (2017),  

- Oehlers and Johnson modified (Hicks 2017),  

- Döinghaus modified (Hicks 2017),  

- Konrad et al. (2020),  

- Hanswille and Porsch (2007), and  

- Pallarés and Hajjar (2010).  

The equations proposed by Xue et al. (2008) and Bonilla et 

al. (2012) were also considered but not included in the 

comparisons because their applicability ranges were 

considerably narrower than the ranges of the variables in the 

test databases. 

The existing equations are summarized in Table 5, with 

the consistent notation used for each variable. When two 

equations are given for an existing model, the design 

resistance is taken as the smaller value computed from each 

equation. The AISC 360 (2016) and Pallarés and Hajjar 

(2010) equations give the nominal stud resistance, 𝑃n, with 

no resistance factors applied. All other existing equations 

predict the design resistance, 𝑃Rd. Therefore, two separate 

comparisons of the proposed equations were performed: 

models SRN1 and SRN2 were compared with the existing 

nominal resistance equations, whereas models SRD1 and 

SRD2 were compared with the existing design resistance 

equations. The design resistance models were compared in 

terms of characteristic resistance, 𝑃Rk = 𝑃Rd𝛾V , or 𝑃Rk =
𝑃Rd𝛾b for the JSCE model. 

Pallarés and Hajjar (2010) evaluated Cv values of 0.65, 

0.75, and 1. Cv=1 was used in this study because it produced 

better agreements of the predictions with the experimental 

data than two other values of Cv.  

 

Table 5 Existing descriptive equations  

Source Equations  

EC 4  
𝑃Rd = 0.8𝑓u(𝜋𝑑2 4⁄ ) 𝛾V⁄   (18) 

𝑃Rd = 0.29𝛼𝑑2√𝑓ck𝐸cm 𝛾V⁄   (19) 

EC 4 modified 
𝑃Rd = 0.94𝜂𝑓u(𝜋𝑑2 4⁄ ) 𝛾V⁄   (20) 

𝑃Rd = 0.25𝑑2√𝑓ck𝐸cm 𝛾V⁄   (21) 

AISC 360 𝑃n = 0.5
𝜋𝑑2

4
√𝑓c

′𝐸c ≤ 0.75
𝜋𝑑2

4
𝑓u  (22) 

AS/NZS 
𝑃Rd = 0.70𝑑2𝑓u 𝛾V⁄   (23) 

𝑃Rd = 0.29𝑑2√𝑓ck𝐸cm 𝛾V⁄   (24) 

JSCE 

𝑃Rd = (𝜋𝑑2 4⁄ )𝑓u 𝛾b⁄    (25) 

𝑃Rd = (31
𝜋𝑑2

4
√

ℎ

𝑑

𝑓ck

1.3
+ 10000) 𝛾b⁄  (26) 

Oehlers and 

Johnson 

modified  

𝑃Rd = 3.2𝑓u
𝜋𝑑2

4
(

𝐸cm

𝐸sc
)

0.4
(

𝑓ck

𝑓u
)

0.35 1

𝛾V
  (27) 

Döinghaus 

modified 

𝑃Rd =

(0.84𝑓u(𝜋𝑑2 4⁄ ) + 1.63𝑓ck𝑑doℎw) 𝛾V⁄   
(28) 

𝑃Rd = 0.25𝑑2√𝑓ck𝐸cm 𝛾V⁄   (29) 

Konrad et al. 

𝑃Rd = [326
𝑑doℎw

2
(

𝑓ck

30
N

mm2

)

2
3⁄

+

220𝑑2 (
𝑓ck

30
N

mm2

)

2
3⁄

(
𝑓u

500
N

mm2

)

1
2⁄

]
1

𝛾V
  

(30) 

𝑃Rd = [313
𝑑doℎw

2
(

𝑓ck

30
N

mm2

)

2
3⁄

+

240𝑑2 (
𝑓u

500
N

mm2

)]
1

𝛾V
  

(31) 

Hanswille and 

Porsch  

𝑃Rd = 0.83𝑓u(𝜋𝑑2 4⁄ ) 𝛾V⁄   (32) 

𝑃Rd = 0.245𝛼𝑑2√𝑓ck𝐸cm 𝛾V⁄   (33) 

Pallarés and 

Hajjar #1 
𝑃n = 17

𝜋𝑑2

4
(𝑓c

′)0.45(𝐸c)0.04 ≤ 𝐶v
𝜋𝑑2

4
𝑓u  (34) 

Pallarés and 

Hajjar #2 
𝑃n = 6.2

𝜋𝑑2

4
(𝑓c

′𝐸c)0.2 ≤ 𝐶v
𝜋𝑑2

4
𝑓u  (35) 

Pallarés and 

Hajjar #3 
𝑃n = 18

𝜋𝑑2

4
(𝑓c

′)0.5(ℎ)0.2 ≤ 𝐶v
𝜋𝑑2

4
𝑓u  (36) 

Pallarés and 

Hajjar #4 
𝑃n = 9𝜆(𝑓c

′)0.5(𝑑)1.4(ℎ)0.6 ≤ 𝐶v
𝜋𝑑2

4
𝑓𝑢  (37) 

Notes:  

1. α = 0.2 (h/d + 1) for 3 ≤ h/d ≤ 4 and α =1 for h/d > 4. 

2. 𝜂 = 1.25 − 3𝑑 337⁄ . 

3. 𝑓𝑢 ≤ 500 MPa in Eqs. (18), (20), (23), (27), and (28); 𝑓𝑢 ≤
620 MPa in Eq. (32); and 𝑓𝑢 ≤ 740 MPa in Eqs. (30) and (31). 

4. 𝛾v=1.25 and 𝛾b = 1.3. 
5. 𝐸sc is the modulus of elasticity of the stud material. 

6. 𝜆 is a factor taken as 0.75, 0.85, and 1 for all-lightweight, sand-

lightweight, and normal weight concrete, respectively.  

7. Units: kips, inches in Eqs. (22), and (34)-(37); N, mm in all other 

equations. 

 

The 𝑃Rk  and 𝑃n  values computed with the proposed 
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and existing models were compared with the 𝑃em  values 

from the test databases. Separate comparisons were 

conducted for the NWC, LWC, and combined NWC and 

LWC data. The following metrics were used to evaluate the 

model performance: root-mean-square error (RMSE) (Eq. 

(38)), mean absolute error (MAE) (Eq. (39)), mean absolute 

percentage error (MAPE) (Eq. (40)), and the coefficient of 

determination (R2) (Eq. (41)). The minimum, maximum, 

mean, and coefficient of variation values of the test-to-

prediction ratios were also determined for each model. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦 − 𝑥)2n

i=1   (38) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦 − 𝑥|n

i=1   (39) 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑦−𝑥

𝑦
|n

i=1   (40) 

𝑅2 = [
∑ (𝑥−𝑥̅)(𝑦−𝑦̅)n

i=1

√∑ (𝑥−𝑥̅)2n
i=1 ∑ (𝑦−𝑦̅)2n

i=1

]

2

    (41) 

where n is the number of samples, y is the experimental 

resistance value (𝑃em ), 𝑥  is the predicted resistance value 

(𝑃Rk or 𝑃n), 𝑥̅ and 𝑦̅ are the means of the x and y values. 

 

Tables 6 and 7 summarize the performance metrics for 

each model. For NWC, the prediction accuracy of the 

developed models exceeded the accuracy of most of the 

existing models. Only the JSCE and Pallarés and Hajjar #4 

models showed slightly better performance metrics than the 

developed design and nominal resistance models, 

respectively.  

For LWC, the proposed models demonstrate better 

prediction accuracies than the existing models. The mean 

values of the test-to-prediction ratios for the JSCE (2007) and 

Konrad et al. (2020) models were smaller than one, which 

indicates that these models produce unconservative results 

for LWC (this may be because LWC was not considered 

within the development of these two models). For the 

combined NWC and LWC data, only the JSCE (2007) model 

shows some performance metrics better than those for the 

proposed models. However, the mean value of the test-to-

prediction ratio for the JSCE (2007) model is very close to 

unity (1.057), which makes its compliance with the reliability 

requirements questionable. 

It should be noted that all existing models, except Oehlers 

and Johnson modified, consist of two equations: for the stud 

material and concrete strengths. For high-strength concrete, 

the shear resistance is limited by the stud strength. 

Conversely, the developed models consist of one equation 

with no upper limit. They show good agreement with the test 

results and allow for a continuous moderate stud resistance 

increase when concrete strength increases. This feature of the 

proposed equations should result in higher shear resistance 

values, whilst still delivering the required reliability index. 

Fig. 10 presents test-to-prediction ratio distributions for 

the design resistance models for the combined NWC and 

LWC data. The design shear resistance values, 𝑃Rd , were 

computed using the nominal values of the test database 

variables. The distributions illustrate the safety and 

conservatism of the predictions by each design model. The 

developed design models produce safe predictions with the 

lowest CoV values of the test-to-prediction ratios. 

 

Table 6 Performance metrics of the existing and proposed 

design resistance models 

Model 
RMSE 

(kN) 

MAE 

(kN) 

MAPE 

(%) 
R2 

Test-to-Prediction Ratio 

min max mean CoV 

NWC 

EC4 51.8 43.7 23.8 0.765 0.832 1.862 1.329 0.148 

EC4M 41.4 36.5 21.6 0.838 0.773 1.810 1.290 0.153 

AS/NZS 40.7 33.6 18.7 0.780 0.666 1.671 1.229 0.142 

JSCE 24.1 19.1 11.1 0.880 0.802 1.593 1.101 0.116 

OJM 52.1 46.6 27.9 0.802 0.845 1.936 1.419 0.167 

DM 38.7 34.0 20.5 0.853 0.773 1.810 1.272 0.157 

K 35.0 29.6 16.4 0.854 0.690 1.552 1.191 0.120 

HP 46.6 41.8 24.4 0.873 0.937 1.847 1.346 0.140 

SRD1 27.3 22.2 12.8 0.856 0.774 1.557 1.119 0.130 

SRD2 27.3 22.2 12.8 0.856 0.774 1.557 1.119 0.130 

LWC 

EC4 23.5 22.1 26.7 0.812 0.946 2.571 1.389 0.152 

EC4M 31.7 30.4 36.4 0.791 1.015 2.982 1.608 0.157 

AS/NZS 23.5 22.1 26.7 0.791 0.875 2.571 1.386 0.157 

JSCE 12.2 9.2 11.6 0.762 0.705 1.256 0.938 0.116 

OJM 34.7 33.7 40.3 0.858 1.139 2.977 1.700 0.131 

DM 31.7 30.4 36.4 0.791 1.015 2.982 1.608 0.157 

K 10.6 8.0 10.3 0.842 0.592 1.813 0.989 0.152 

HP 32.8 31.6 38.0 0.812 1.119 3.043 1.645 0.152 

SRD1 12.0 9.9 11.8 0.817 0.840 1.708 1.128 0.120 

SRD2 11.7 9.6 11.4 0.815 0.869 1.668 1.120 0.118 

NWC & LWC 

EC4 45.9 37.9 24.6 0.858 0.832 2.571 1.345 0.150 

EC4M 39.0 34.9 25.6 0.902 0.773 2.982 1.376 0.186 

AS/NZS 36.9 30.5 20.9 0.868 0.666 2.571 1.271 0.157 

JSCE 21.5 16.5 11.2 0.907 0.705 1.593 1.057 0.135 

OJM 48.0 43.1 31.2 0.876 0.845 2.977 1.495 0.177 

DM 36.9 33.0 24.8 0.910 0.773 2.982 1.363 0.192 

K 30.4 23.7 14.7 0.883 0.592 1.813 1.136 0.150 

HP 43.3 39.1 28.1 0.922 0.937 3.043 1.427 0.172 

SRD1 24.1 18.9 12.6 0.911 0.774 1.708 1.122 0.127 

SRD2 24.1 18.8 12.4 0.911 0.774 1.668 1.120 0.127 

Notes: EC4 = Eurocode 4, EC4M = Eurocode 4 modified, 

AS/NZS = AS/NZS 2327, OJM = Oehlers and Johnson modified, 

DM = Döinghaus modified, K = Konrad et al., and HP = 

Hanswille and Porsch. 

 

The mean values of the test-to-prediction ratios for the 

developed models are one of the lowest, indicating higher 

design resistances computed with the developed models. 

Only the JSCE (2007) model shows a smaller mean test-to-

prediction ratio than the proposed models, but the 

compliance of this model with the reliability requirements for 

LWC is questionable, as was discussed previously. 
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Figs. 11-14 present PRd/d2 and Pn/d2 values computed 

with the proposed and existing design resistance models for 

NWC and LWC as functions of concrete strength for 

different stud tensile strengths, fu, and the stud height-to-

diameter ratios, h/d. The JSCE (2007) and Konrad et al. 

(2020) models were not included in Fig. 12 for LWC because 

they produced unconservative predictions for LWC, with the 

mean test-to-prediction ratios less than unity, as discussed 

previously. 

 

Table 7 Performance metrics of the existing and proposed 

nominal resistance models 

Model 
RMSE 

(kN) 

MAE 

(kN) 

MAPE 

(%) 
R2 

Test-to-Prediction Ratio 

min max mean CoV 

NWC 

AISC 50.4 41.9 22.2 0.689 0.687 1.934 1.281 0.174 

PH1 34.9 29.9 17.8 0.839 0.772 1.617 1.214 0.142 

PH2 54.7 48.2 27.0 0.786 0.803 1.892 1.388 0.135 

PH3 27.1 22.7 13.8 0.871 0.763 1.510 1.143 0.133 

PH4 21.6 16.0 9.3 0.855 0.713 1.451 1.023 0.123 

SRN1 21.6 17.1 10.4 0.856 0.703 1.416 1.018 0.130 

SRN2 21.6 17.1 10.4 0.856 0.703 1.416 1.018 0.130 

LWC 

AISC 9.8 8.0 10.5 0.847 0.646 1.898 1.071 0.144 

PH1 10.8 8.8 11.1 0.810 0.641 1.847 1.092 0.131 

PH2 18.2 16.7 20.5 0.831 0.777 2.026 1.267 0.127 

PH3 10.9 8.1 9.9 0.801 0.658 1.786 1.028 0.140 

PH4 12.8 10.8 12.8 0.687 0.786 1.590 1.085 0.144 

SRN1 8.8 7.5 9.4 0.817 0.763 1.553 1.025 0.120 

SRN2 8.9 7.6 9.5 0.815 0.782 1.502 1.008 0.118 

NWC & LWC 

AISC 43.4 32.7 19.0 0.792 0.646 1.934 1.224 0.186 

PH1 30.3 24.2 16.0 0.879 0.641 1.847 1.181 0.147 

PH2 47.6 39.6 25.2 0.858 0.777 2.026 1.355 0.139 

PH3 23.8 18.7 12.7 0.899 0.658 1.786 1.112 0.142 

PH4 19.6 14.6 10.2 0.908 0.713 1.590 1.040 0.133 

SRN1 19.0 14.5 10.1 0.911 0.703 1.553 1.020 0.127 

SRN2 19.0 14.6 10.2 0.910 0.703 1.502 1.015 0.127 

Notes: AISC = AISC 360, PH1, PH2, PH3, and PH4 = Pallarés 

and Hajjar Eqs. (34), (35), (36), and (37), respectively. 

 

Relatively wide ranges of the design and nominal 

resistance predictions by different models can be observed 

from Figs. 11-14. The shapes of the presented curves of the 

stud resistance normalized by d2 for the proposed models 

generally correspond to the curves for the existing 

descriptive equations. They show a more significant increase 

in stud shear resistance as the concrete strength increases up 

to around 30 MPa and 40 MPa for NWC and LWC, 

respectively. For concretes beyond these values, an increase 

in concrete strength results in a more moderate increase in 

stud shear resistance. 

As discussed previously, SRN1/SRD1 and SRN2/SRD2 

models are identical for NWC, which is reflected by the 

graphs in Figs. 11 and 13. For LWC, the proposed models 

produce slightly different stud resistances. For h/d=3, 

SRN1/SRD1 models give greater stud resistances than those 

computed with SRN2/SRD2 models. When h/d increases, 

SRN2/SRD2 models produce higher stud resistances than 

SRN1/SRD1. 

 

 
Fig. 10 Test-to-prediction ratio distributions using the 

existing and proposed design models for the combined 

NWC and LWC database 

 

It can also be seen that the proposed models give higher 

stud shear resistances than the existing models for many 



 

Design models for predicting shear resistance of studs in solid concrete slabs based on symbolic regression with genetic programming 

combinations of fck, fu, and h/d, especially for high-strength  

concretes, high-strength studs, and studs with higher height-

to-diameter ratios. The increased resistance for larger h/d 

ratios may be of particular interest to designers as many 

international standards do not directly exploit this effect 

within their provisions.  

 

 
Fig. 11 Comparisons of design shear resistances of studs in 

NWC predicted by the existing and proposed models  

 

From the present comparison, it is recommended that the 

SRD2 model would be a worthy candidate for use in design 

in that, not only does it deliver the target reliability for both 

NWC and LWC, it also provides much more competitive 

design resistances than many of the existing design models. 

 

 

8. Conclusions 
 

This paper has presented new models for predicting the  
 

 
Fig. 12 Comparisons of design shear resistances of studs in 

LWC (1800 kg/m3) predicted by the existing and proposed 

models  

 

shear resistance of headed studs in solid concrete slabs made 

of normal and lightweight concrete. The models were 

obtained by applying symbolic regression with genetic 

programming to experimental data with 242 normal weight 

concrete samples and 90 lightweight concrete samples. Each 

proposed model consists of one relatively simple equation, 

which is a nonlinear function of stud and concrete strengths, 

stud shank diameter, and stud height-to-diameter ratio. 

The test-to-prediction ratios for the developed models 

showed practically no correlation with the secant modulus of 

elasticity of concrete and concrete density, indicating that the 

stud shear resistance is insensitive to these parameters based 

on the available test data. This finding is important as, 

following its introduction within the empirical equations 

proposed by Ollgaard et al. (1971), the secant modulus of 

elasticity is widely used within the design models for stud 

resistance in many international standards. 
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Fig. 13 Comparisons of nominal shear resistances of studs 

in NWC predicted by the existing and proposed models  

 

 

The proposed models produce higher shear resistances for 

studs with larger height-to-diameter ratios, which is not 

currently a feature of the provisions given in international 

standards. 

The obtained GPSR-based nominal strength equations 

were subsequently refined for use in design from reliability 

analyses to provide the reliability level required by the 

Eurocodes with the partial factor of 1.25. Resistance factors 

for the proposed models were also determined in accordance 

with US design practice. The nominal and design stud 

resistances produced by the developed models were 

compared with those predicted by 13 existing models. The 

proposed models showed the highest accuracy in predicting 

the nominal and design shear resistances for the combined 

normal and lightweight concrete data than the existing 

descriptive equations. The developed models produce higher  
 

 
Fig. 14 Comparisons of nominal shear resistances of studs 

in LWC (1800 kg/m3) predicted by the existing and 

proposed models  

 

stud shear resistance than the existing models for many 

combinations of fck, fu, and h/d, especially for high-strength 

concretes, high-strength studs, and studs with higher height-

to-diameter ratios. The latter finding may be of particular 

interest to designers as many international standards do not 

directly exploit this effect within their provisions. From the 

present study, it is recommended that the SRD2 model should 

be considered as a worthy candidate for possible 

implementation within future design standards on steel-

concrete composite construction. 
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