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Abstract

Mobile Edge Network (MEN) is emerging as a novel computing paradigm that

puts high storage and computational power within easy reach of mobile users

for a range of applications such as big data applications and location-based

services. The MENs consist of a number of small base stations, which we

call Cloudlets, that provide the required services to end-users. Ecosystems

are resource-constrained, making execution of resource-hungry applications

challenging. Computation offload between ecosystems and cloudlets plays a

key role in this vision and ensures that the integration between ecosystem and

cloudlet is seamless with better quality of service such as lower latency. Analysis

of the available literature relating to currently proposed offloading techniques

focuses on centralised approaches with a small number of mostly static user

devices hosting in-dependent tasks. In this thesis, we address three major

offloading problems: (i) that algorithms consider distributed environment with

multi offloading systems, (ii) users with ecosystems are mobile and (iii) tasks

are dependent as (DAGs). We develop the offloading algorithms for mobile user

devices with hosting of dependent tasks, where a dependent task cannot start

until its immediate predecessor tasks have completed, with the aim of reducing

completion latency. We start by formalizing the dependent task offloading

problem as a constraint satisfaction problem with all proposed algorithms.

While the first objective aims at minimising completion latency with central

server in edge, the second objective aims at minimising completion latency with

multi systems in distributed environment. We construct optimisation models

for both objectives and develop two offloading algorithms to approximate the

optimal solution. According to the results with ns-3 simulation, Optimisation

CPLEX, and real deployment, our offloading algorithms are able to efficiently

produce allocation schemes that are close to optimal during the offloading.

viii
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Chapter 1

Introduction

Nowadays, smart mobile devices such as smartphones are becoming the platform

of choice for both personal computing and business needs. It is claimed that,

by 2026, the number of smartphone users will be over 7 billion [1]. It is believed

that humans, on average, spend 35% of their time on smartphone playing

games while they spend over 50% of their time on smart tablets playing games.

At the same time, it is projected that the number of connected cars will reach

400 million by 2025, up from 237 million currently [2]. Vehicle users will be

expecting their vehicles to be smart, running applications that will make their

vehicles safer.

1.1 Motivation

The (predicted) surge in the usage of smart and connected devices is resulting

in novel applications being executed on them. For example, the type of

applications that people are running on their smartphones or smart devices are

compute-intensive, such as live streaming, Augmented Reality/Virtual Reality

(AR/VR) and image processing. Similarly, smart cars are expected to run

compute-intensive applications such as driving assistance systems and collision

avoidance among others, that may require deep learning techniques that are

notoriously resource-hungry.

The growth in such resource-hungry and real-time applications has led to a

corresponding increase in the computational requirements on hardware (HW)

to support such applications as Augmented Reality, driver assistance, Real-

Time Analytics, Face Recognition and Gaming [101]. Often, these applications

may be hosted on Internet-of-Things (IoT) devices such as smartphones or

on relatively resource-constrained HW. The HW limitations of these devices

such as battery power (IoT devices) or memory capacity to store data and,

most importantly, processing capacity (both IoT and cars) need to be handled

properly in the era of computationally-intensive applications [57]. Computation

1



offloading [28] has been proposed as one possible solution, where a remote

infrastructure consisting of computers with significant power is used to sup-

port the resource-constrained devices, thereby encouraging the users of such

devices to transfer their resource-intensive jobs to the remote infrastructure for

execution. Such a remote infrastructure can be cloud environment or a similar

environment closer to the user, in what is called an edge network [83].

As the type of applications that are becoming increasingly popular (e.g.,

AR/VR) and also safety-critical (e.g., driver assistance systems) are also

time critical, it is important that the communication latency is bounded,

to ensure responsiveness of the applications. As such, the main difference

between offloading to a cloud computing environment and to an edge network

environment lies essentially in the network latency that may be experienced.

As cloud computing environments are typically remote, far removed from where

users are generally located, it is expected that the communication latency is

quite high. This thus makes edge network environments more suitable due to

their close proximity to the IoT and vehicular networks. It is expected that,

with the commercialisation of 5G networks, the data latency in edge networks

can be reduced to less than 10ms, making such deployment suitable for critical

real-time applications.

When the users of the IoT devices and smart vehicles are mobile, the

edge network (or cloudlet) infrastructure is known as mobile edge computing

(MEC) [8]. The problem of computational offloading in the presence of mobile

users present some important challenges. For example, a user may offload a task

onto an edge node for computation but is no longer within the communication

range of that node when the result is ready. Another challenge is that the user

has only a partial view of the network, i.e., the user will not know whether

there are more suitable edge nodes to offload a task to. These issues can be

mitigated if the network topology has a certain structure which, unfortunately,

however do not always scale well. For example, it has been typically assumed

that some information about the MEC environment is available in a central

repository, e.g., [111]. As such, recent works in MEC mostly focused on solving

the offloading problem with users being static during task offloading, so that

the communication links between mobile devices and edge nodes are always

available, e.g., [14, 52, 121, 123]. However, such an availability assumption

is not valid, with mobility users presenting a significant challenge in MEC

networks that need to be addressed.

Thus, it is becoming essential to be able to address the challenge of compu-

tational offloading the mobile edge networks. However, it is also important to

determine the type of jobs to be offloaded. Most current works assume that

tasks are independent, i.e., there are no data or control dependencies among

the tasks. However, a majority of the modern applications are typically com-
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posed of dependent tasks. For example, applications with dependent tasks are

included in more than 75% of 4 million applications in the Alibaba data-trace

[67]. Another example of a video processing application from Facebook has

a set of constrained tasks to complete the video [126]. Also, the real world

examples of the Global Positioning System GPS navigation and smart parking

system have dependent tasks at runtime. As such, the offloading of dependent

tasks to the edge networks with make the offloading mechanism more complex

and challenging. Most current studies have not solved the problem of offloading

of dependent tasks to the edge in the presence of user mobility [52, 67, 98, 121].

The process of uploading, downloading and execution the dependent tasks are

seriously affected by constraints of the dependent tasks during the offloading

process. For example, the output of an executing task might be used as the

input for other tasks that depend on it, which makes the order of execution in

the multi edge nodes challenging [71]. More specifically, a task may not start

until it receives its inputs from other tasks. By then, a mobile user may no

longer be in the range of an edge node to execute the now ready task.

We consider the problem of offloading of jobs that consist of dependent tasks,

which we represent as directed acyclic graphs (DAGs), onto heterogeneous

computational resources of the edge network so as to minimise the completion

time of the job. The task set with dependent tasks has precedence constraints

i.e. a child task cannot be begun the execution before the full completion of

all its parent tasks.

1.2 Computation Offloading Mechanism

Computation offloading mechanism is a solution which drives the mobile

devices to offload the computational functions to a remote-based server. The

server has huge computation resources and is able to perform the operations

faster than local resources of the mobile device and where remote execution of

offloaded computation is performed. Computation offloading mechanism can

be done in the cloud side or the edge side to save more energy of smartphones

and getting high performance in running the intensive applications that need

more resources. Computation offloading can be classified into two categories:

fine-grained mobile code offloading structure , which is also known as partial

offloading scheme and the coarse-grained offloading which is also known as

a full offloading scheme [26, 56]. However it is important for the offloading

process to be cognisant of any dependency that may exist between tasks. This

is especially important when users are mobile, otherwise significant delay or

latency can be introduced due to tasks being blocked waiting for outputs of

other tasks. The real world examples of applications with dependent task

are the Global Positioning System GPS navigation and smart parking system

3



which have fully dependent tasks in the run time.

1.3 Elastic Resource Provisioning for Cloud

Users have been executing applications in the cloud. However, the cloud

platform is not in the vicinity of the mobile devices during the offloading process

which causes a huge timing overhead during the communication between nodes.

Latency is the main issue to have the offloading to the cloud and also the need

for more energy during the offloading process to the cloud. The majority of

studies in mobile cloud computing (MCC) addressed mainly the problem of

offloading tasks from a mobile device to a cloud server with the assumption of

the stable network environment during the offloading process [21, 56, 85]. Most

of these offloading frameworks focused on two major problems involved with

tasks assignment: (i) the application partitioning problem [22, 23, 54, 55], and

(ii) the offloading decision problem [19, 42, 111, 119]. However, the latency

during the offloading in MCC makes the offloading process slow with a huge

execution time in the cloud.

1.4 Computational Offloading in Edge Networks

To overcome the latency during the offloading to the cloud, there is a new

technology which is called edge networks. The edge is considerable computing

power resides at the edge of the network and it is closer to the mobile users.

The critical feature of edge network is its requirement for small latency and

offer of high workload capacity while being near the user and their devices. The

transmission and computational delays are found to be minimal in the edge,

as these are nearer to the users unlike the remote resources of offloading to

the cloud. Edge network provides flexibility in the task of offloading of mobile

tasks which otherwise would be subject to delay constraints [81]. Recent works

and researches are focusing on making the computation offloading to the edge

to meet the requirement of the minimal delay during the offloading process as

[62, 64, 111, 130].

A vast number of works have been proposed in the literature. However,

most of the algorithms were designed for centralised environments with consid-

ering the communication between mobile devices and edge servers are always

reliable without considering user mobility and dependent tasks during the

offloading, such as in [52, 67, 98, 121]. New efforts are required to develop

offloading mechanisms in distributed environment to address the dependent

tasks offloading during the user mobility in multi systems.
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1.5 Contributions

The problem we solve in this work is the development of offloading algorithms

for jobs with dependent tasks onto edge networks in the presence of device

mobility. As such, the contributions made in this thesis address the novel

problem of offloading dependent tasks onto edge networks during the user

mobility. Our focus is to minimize the completion time of a job in the edge

(compared to the job executing on the device locally).

In support of this thesis the following contributions are made:

• In Chapter (4), we have defined and analysed the current challenges

of the problem of computational offloading in distributed environment.

We presented a simple case study to show the offloading process with

dependent tasks which is represented as a directed acyclic graph1(DAG).

• In Chapter (5), we make the following contributions: (i) we formulate the

scheduling problem of dependent tasks in MEN as a constraint satisfaction

problem, (ii) we provide a heuristic offloading algorithm that attempts to

reduce the computation time of dependent tasks in MEN, (iii) we develop

the Integer Linear Programming (ILP) model to optimize the solution in

CPLEX Solver, (iv) We run simulation experiments using ns-3 to gauge

the effectiveness of our approach in terms of reduction in computation

time compared to execution on the local device and finally, (v) we run

a real deployment at Warwick University with Flask server and a Face

Recognition Application.

• In Chapter (6), we make the following contributions: (i) we provide a

formalisation of the dependent tasks offloading problem as an optimisation

problem, (ii) we develop a fully distributed offloading algorithm for the

offload-able dependent tasks in a MEC network, (iii) we conduct extensive

experiments using the ns-3 simulation engine to evaluate the effectiveness

of our distributed offloading algorithm in terms of minimising the task

completion time in the edge, (iv) we study the performance of our

distributed offloading algorithm compared to the base case of offloading

to a central cloudlet, and (v) we also study the bottlenecks caused by

the distributed algorithms, in this case, queue waiting time and we study

the impact of mobility on the bottleneck.

1A directed acyclic graph (DAG) is the a directed graph structure that we use to model
the applications in our work and it consists of a set of tasks with dependency constraints as :
Ai = (Ti, Di).
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1.6 Thesis Organisation

This chapter has introduced the problem of the offloading of dependent tasks

during the user mobility on the edge networks with computational offloading

process and stated the contributions this thesis makes. The remainder of this

work is organised as follows:

• Chapter 2 presents a background of the previous works performed in

developing techniques for computational offloading and other context

relevant to task offloading for edge networks.

• Chapter 3 introduces the models used in this work and explains how the

models are used in practice when the algorithms are simulated in ns-3

and the deployment.

• Chapters 4 to 6 present the main contributions of this work.

• Chapter 7 discusses the implications of this work and also includes a

comparison between the techniques.

• Chapter 8 summarises conclusions and outlines the future direction of

work in this area.
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Chapter 2

Background and Literature Review

2.1 An Overview on Computational Offloading

Computation offloading technique nowadays is popularly used to tackle the

ecosystems limitations and provide effective computation in remote resources i.e.

cloud or cloudlets. The delay in task offloading is still found as a delay problem

in the current offloading works [53, 70, 82, 111]. Most of the frameworks

approach this problem as an optimisation problem with the main objective of

minimising the delay time during the execution process. However, previous

frameworks have not considered the optimization of execution latency subject to

the dependent tasks with user mobility as noted by existing studies of offloading

[69]. We develop offloading algorithms for multi-systems and dependent tasks

with the aim of reducing the completion latency in distributed edge environment.

Our focus is to minimize the task delay in the edge that will affect the completion

time of offloadable tasks after the offloading decision is made. In this section,

we present an overview of computational offloading in edge networks1 as follows.

2.1.1 Evolution of Computational Offloading

There has been huge advancement and evolution in the field of computing

technology. Despite the enhancements, the computational capacity and energy

consumption of the ecosystems like smartphones or Internet-of-Things IOT

devices are nowhere near that of powerful computing machines that use powerful

CPUs. The growth of intensive and real-time applications, such as applications

with Augmented Reality, Multimedia, Video Editing, Face Recognition, and

Gaming, has increased the computational requirement and energy consumption

of these ecosystems. The limitations of ecosystems such as low battery power,

low capacity to store data, and most of all limited processing capacity need to be

tackled at a fundamental level in the era of intensive applications development

1Edge networks in our thesis mean both the mobile cloud computing as a cloud side
(MCC) and mobile edge computing as a cloudlet side (MEC).
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[57]. Computation offloading mechanism has been the best available solution up

to now, driving the ecosystems to offload the intensive computational functions

to remote computation resources such as edge-based server as shown in Figure

2.1, which has huge computation resources and can perform the operations

faster than local ecosystem resources [21, 28, 34, 56, 85]. As we see in Figure

2.1, the devices could be offload tasks to the cloudlet (edge node) which is

close in the distance or to the Service Cloud which is away in the distance.

History of remote computation pointed toward the early 1990s when remote

execution and inter process communications were beginning to emerge to utilize

the resources in cluster computers at fullest and management of message-

passing traffic [12, 40]. Despite the benefit of remote computation, the parallel

running challenges diminished the popularity of the concept at that time.

Nevertheless, the development of Internet provided a new pathway to develop

further the concept of remote execution, which enabled the establishment of

a new foundation called Service Oriented Architecture (SOA). Mobile Web

Services (MWS) includes SOA along with portable devices, which enabled

enhancement of the computation capability and saved energy by allowing the

mutual share of services and software between mobile devices and other devices

[102]. However, its reliance on a static network produced the drawback of

unstable performance. Computation offloading with Mobile Cloud Computing

(MCC) started late (2009) and it was based only on the mobile devices side and

the main cloud server side to offload tasks [54]. However, in the computation

offloading technique of MCC the main cloud side is not close to the mobile

devices side during offloading operations, which leads to the latency problem

on the middle-ware of media connection and the significant defect of rendering

the user mobility impossible during the offloading task [22, 23, 54, 55]. At the

end of (2014), Mobile Edge Computing (MEC) was introduced as a means to

help resolve the latency problem that happens during the offloading process

in MCC [81]. The characteristic feature of MEC is need of small latency and

offer of high workload capacity while being near to the user and their devices

[28]. The transmission and computational delays are found to be very small

in the MECs, as these are nearest to the users unlike the remote resources of

traditional computation offloading in MCC.

Computation offloading technique nowadays is popularly used to tackle the

smart phone limitations and provide effective computation [57]. Traditional

client-server architecture, grid computing, or multiprocessor system are some

of the conventional system migrating their computation to their nearest server

for the reduction of resources utilization, enhancement of the performance, and

load balancing [85]. Since its introduction, utilization of computation offload-

ing technique has been stretched beyond its initial scope. The computation

offloading technique of mobile devices differs from traditional computation
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offloading technique in the sense that it does not utilitise only the resources

available nearest to the mobile device. Instead, the offloading is done in the

environment which is exclusively outside of the nearest computing environment

available.

Computation offloading can be achieved in different levels of migration.

These levels of offloading are dependent on the granularities offered by the

partitioning mechanism being utilised. Method level, thread level, whole

application level, tasks level, class level, object level, or whole virtual machine

level are some of the offloading granularities offered by current application

partitioning algorithms and offloading frameworks [90, 117]. Use of Java API

for Remote Method Invocation, Remote Procedure Call, and .NET remoting

played a significant role in enabling the offloading to object level and class level.

These offload-able codes are then executed in remote cloud-server environments,

where the states of the program are updated through execution, and the update

is sent back to the mobile users.

Similarly, offloading mechanism involves the use of offloading engines,

which provides functionalities such as partitioning of application, scheduling

the partitions, and making suitable offloading decisions based on parameters

gathered from profilers used in the offloading frameworks [21]. These engines are

embedded local mobile devices or pre-defined devices in networks. These engines

recognize the high energy and computation demanding tasks and with the help

of profiler prepare suitably annotated partitions of application, and schedule

them for remote execution. High bandwidth of the network, high-speed server

devices, heavy computation, and lower data weights to be exchanged between

two functions or processes are four requirements those should be satisfied for

efficient computational offloading which provides enhanced performance speed

and energy usage. And when designing frameworks and during comparative

studies of developed frameworks, these requirements are made the essential

objective to be achieved for optimal performance and energy gain [57].

2.1.2 Offloading Mechanism

Computation offloading mechanism is recognized generally as a transmission

of computation data from one computing side to another computing side

through various transmission media. Researchers in the area of computing

past few years have studied the utilization of remote computation resources

for improving performance and energy usage characteristics of mobile devices

[38, 50]. Computation-offloading mechanism was the best solution, driving the

ecosystems like mobile devices to offload the intensive computational tasks to

the remote computation resources, which have huge computation capacity and

can perform the operations faster than local mobile device resources such as

9



Amazon Ec2

Figure 2.1: Computational Offloading in Cloud and Cloudlet

Mobile Cloud Computing MCC and Mobile Edge Computing MEC as shown

in Figure 2.1 with cloudlet/ service cloud.

Although computation offloading in MCC/MEC is a part of remote comput-

ing technology, it differs from traditional client-server architecture regarding

computational load, where the mobile devices could completely migrates its

computation functions to the cloud or edge under any conditions. In addition,

computation offloading in MCC/MEC differs also from the migration of com-

putation in multiprocessors system, and grid system as well. Multiprocessors

system migrates the computation for load balancing purpose, and the grid

system migrates to the nearest resource available which is attached to the grid

through some means and within the same environment [57, 130].

2.1.3 Offloading Granularities

Computation offloading can be classified into two granularities. First defines

a fine-grained mobile code offloading structure [56], which is also known as

partial offloading scheme. This approach relies on developers to annotate the

offloading parts, within an application, and the main aim of this approach is

to improve the efficiency of energy utilization in mobile devices. This aim is

achieved by offloading annotated parts such as methods or thread to gain the

energy utilization efficiency. Fine grain granularity is a useful offloading type

for the applications that have tasks use the mobile device hardware and not

possible to be offloaded outside the mobile devices such as using speaker or the

screen of the mobile device. Coarse-grained offloading is the second granularity
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Figure 2.2: Remote Computation Resources Levels

of this approach. In this approach, full application/program, or a process, or a

whole virtual machine is offloaded to the remote computing resources and it is

called full offloading approach [26]. [56][26]

2.2 Remote Computation Resources

In this section, we introduce the concepts of the remote computation resources

i.e. Cloud Computing, Mobile Computing, Fog Computing, Mobile Cloud

Computing, and Mobile Edge Computing as shown in Figure 2.2. We will

introduce concepts of the remote computation resources as follows :

2.2.1 Mobile Cloud Computing (MCC)

Cloud computing is the centralized computation of the computing services

within a single environment, allocating the neccessary portion of that environ-

ment as per service demand in one of three types of service: Software As a

Service [SAAS], Platform As a Service [PAAS], or Infrastructure As a Service

[IAAS] [4]. The services provided by the cloud are purely dependent upon what

services have been demanded by the users. Service is determined by the type of

the device that share resources and the offloaded functions and contents from

user devices. This gave birth to the concept of mobile cloud computing. Mobile
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cloud computing (MCC) is the distributed computation of mobile applications,

by offloading some of the computational functions to the cloud via network,

within the single environment of the cloud providing the resources as per each

user need as shown in level 1 of Figure 2.2. This produces an opportunistic use

of Mobile Edge Computing (MEC) surrounding resources for the improvement

of MCC functionality in the network issues since the edge is close to mobile

devices side and the cloud is so far away from the mobile devices side [93].

Mobile computing is an execution of data and applications in portable

devices and mobile devices, while the transfer of data between two or more

mobile devices is known as mobile communication. Software, information,

applications, and another form of technological instructions are deployed

within a small portable device, which is distributed widely and connected

through various sorts of wireless connections. The distributed resources, which

are centrally located within each device are used, which are connected to each

other through the use of mobile computing technology. Increasing popularity of

mobile devices among people has increased expectation of quality and service

level which they offer [5, 26].

Mobile cloud computing (MCC) is an emerging and innovative technology

utilizing the unified resources of different clouds thus exploiting the elastic

nature of the cloud computation, providing unlimited ever present services to

mobile devices regardless of the location of service demands, and accommo-

dating client service level demands [93]. These services are mutually shared

between cloud side and mobile devices side through the network. MCC provides

for a wide range of mobile device users an environment where computation

processing and storage of mobile device data are done in the cloud which has

been allocated exclusively to the particular mobile device rather than within

the device concerned, regardless of the kinds of mobile devices being used which

provided the MCC services [35]. The driving force behind the development of

MCC is to enable limitless computation in mobile devices while minimizing

the challenges inherent in the current mobile computation technology.

2.2.2 Fog Computing

Fog computing is a remote computing paradigm that acts as an intermediate

layer between cloud and the cloudlet as shown in level 2 of Figure 2.2, so

that Cloud-based services can be extended closer to the ecosystems [25]. The

cloud datacenters often fail to deal with storage and processing demands of

billions of geo-distributed IoT devices and sensors with the consequence of

congested networks, high latency in service delivery, and poor Quality of Service

(QoS). Edge computing backed by powerful computing resources can reduce

the network latency and render the nearby cloudlet accessible by edge users
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through a one-hop high-speed wireless local area network. In order to reduce

the delay during the offloading, cloudlets will be the right offloading decision

to get the task result fast with the minimum delay and the cloudlet will be in

the edge layer which is closest to the edge users. The fog computing will be in

the middle layer between the edge layer (cloudlets) and the cloud layer (cloud)

[25].

2.2.3 Mobile Edge Computing (MEC)

Mobile Edge Computing (MEC) is an innovative architecture, which enables

the functionalities of cloud computing at the edge of the mobile network. The

main idea regarding MEC is to bring resources of cloud computing near the end

user and serve request of the end user locally as shown in level 3 of Figure 2.2.

MEC helps computation offloading process to get low latency during offloading

tasks and reduces the traffic in the network as low requests are accelerated

to the cloud server. The MEC architecture is proposed by ETSI where they

presumed that cloud functionality like storage and computation would be

integrated with the edge network devices like small cell access points, macro

base station, radio network controller and macro base station [48]. The idea of

Cloudlets was produced at the late of 2009 as a trusted local rich computation

resource or multi-core rich resources, which are well linked to the Internet

through wireless LAN and are available for use by nearby mobile devices users

[94]. Cloudlets use Wi-Fi network for offloading of the computational tasks so

that helps to save a considerable amount of energy of mobile devices compared

to offloading through 3G/ LTE cellular network [7, 23]. Cloudlet mechanism

extends the mobile device battery lifetime thereby reducing the network latency,

on the other hand, improves the Quality of Experience (QoE) of the end user

[6]. Therefore, deployment of the cloudlets will be similar to that of Wi-Fi

hotspot configuration and will be close to the edge users.

2.2.4 How Are MCC / MEC Related?

Mobile Edge Computing was produced to overcome some limitations of Mobile

Cloud Computing such as the latency problem during offloading to the main

cloud and the energy consuming which accompanied the latency in MCC and

the assumption of stable network environment during offloading process in

MCC. Latency problem is one of the main limitations regarding Mobile Cloud

Computing. It costs a substantial amount of latency to transfer the migration

data to the cloud. Latency in transferring the data in MCC raises mainly

through three resources, which include latency between, connected access

points and mobile devices, between the access point and core network and

between the core network and the cloud server. Latency between connected
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APs and mobile devices depends on various factors like quality of the wireless

channel, path loss, number of bandwidth sharing users and interference. While

transferring the data to the core network from the access point, the main

reason for latency is backhaul in link capacity due to the low data rate. While

the latency between the cloud server and core network depends on the latency

of a wide area network which relies on the number of hops and the distance

between them.

Once the offloaded task reaches the cloud server, the server undertakes

the entire computation required task and transfer the task result back to the

mobile device through the core network and APs. Contrarily, in the case of

MEC large portion or whole tasks are handled in edge side. This results in

a reduction of a significant amount of latency while transferring data to the

cloud server side from APs through the core network. Through the deployment

of Mobile Edge Computing latency can be reduced from 60% to 90% as per

the field trial run by China Telecom. They showed that MEC compared to

MCC could reduce the latency by up to 88% for improved reality application

[29, 127]. In the case of energy consumption which accompanied with the

latency in MCC, computational tasks are offload by the mobile devices to

the cloud server through the APs and core network experiencing significant

latency. For fulfilling the latency requirements of the real-time applications and

intensive computation applications, mobile device offloads a small portion of

the task while performing a large portion of tasks locally in the mobile device

so that will results in high consumption of mobile device battery power.

By contrast, in MEC, lower latency enables offloading of higher portion

or whole of the computation tasks to the edge side, which will help to reduce

the mobile battery energy consumption. MEC helps to extend the lifetime of

the battery of mobile devices and the MEC saves 42% of energy consumption

compared to MCC as stated on [37]. Finally, computation offloading in MCC

considers the network as a stable environment that means, after offloading de-

cision is made, the task will migrate to the main cloud side without considering

the network fluctuations that could happen during the offloading process like

user mobility during offloading that will disconnect the connection between

mobile device side and the cloud side [22, 23, 55]. On the contrary, MEC

helps to get the best solution in the worst case of the network fluctuations

during task offloading and researchers on the area of MEC try to find solutions

in various network issues that affect the computation offloading mechanism

[18, 107, 111, 119].
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2.3 Computational Offloading Optimization

In the edge environments, allocating the best place to offload the tasks is a

challenging task because multiple criteria must be taken into account, including

limitation of resources and proximity of cloudlets [88]. Methods designed

to solve this problem falls into two categories: classical and metaheuristic

approaches. Classical approaches can produce better accuracy at the expense

of high computational time-consuming. In case the problem is non-linear, or

it has a huge size, classical approaches stuck in local optima. Accordingly,

researchers shifted towards using metaheuristic as it provides a near-optimal

solution with a reasonable computation [11]. Recently, many solutions are

advanced regarding the optimization of the offloading process in the edge

networks. Offloading task to MCC/MEC platforms has been received lots of

attention from the research community [22, 43, 114, 123]. However, published

studies have not considered the optimization of execution latency subject to task

precedence with task constraints and user mobility ; this has also been noted by

recent works [69, 86, 91, 112].

Existing works on offloading optimisation of the assignment of tasks to the

edge resources can be categorized based on the optimization objective into:

(i) minimizing the response time (delay) in task execution [63, 66, 73, 111],

(ii) maximising the energy saving of user equipment [30, 60, 78, 129]. Some

studies also considered both energy consumption and delay, opting to strike

a balance [20, 70, 116, 118]. Unlike prior work, we focus on optimizing the

execution delay in the presence of precedence constraints, i.e., dependent tasks

with task constraints, while factoring in the user mobility pattern, which affects

reachability to the edge nodes. A comparative summary of related works is

shown in Table 2.12. In this section, we are going to summarize some recent

studies of optimization problem of the computation offloading approach in

Mobile Cloud Computing (MCC) and Mobile Edge Computing (MEC).

2.3.1 Task Offloading Optimization in MCC

The authors in [88] proposed a novel framework that involved queue-based

algorithm and hybrid heuristic in optimizing the task assignment process in

MCC [88]. The architecture of the framework was divided into two main

stages. In the first stage, a queue model is used to represent the clouds and

cloudlets into queue structure to reduce the drop rate of the user’s tasks. In

this stage, Queue based Decision marker (QDM) unit is utilized to estimate

the probability of appointing each task to a cloudlet or public cloud. This

2This table shows a comprehensive overview about the recent works in the optimization
task offloading studies subject to delay optimisation , energy saving, and both of the energy
and delay objectives in edge networks of mobile edge computing and mobile cloud computing.
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is to minimize mean response time. The inputs of this unit are capacity of

cloudlets/cloud and all the users requests and initial queue. The functionality

of this unit is dependent on the model-driven from the queue theory. The

output of QDM and the duration of communication between each user and

cloudlets/cloud are the inputs of the subsequent stage. In second stage, two-

nature inspired algorithms including Genetic algorithm (GA) and Ant colony

optimization (ACO) are hybridized to empower the searching process in finding

near-optimal task assignment that considers the duration of communication

between each user and cloudlets/cloud with the eventual desired outcome

being the minimizing the consumption time of offload-able tasks and power

consumption in the mobile battery.

In [53] , computation offloading in MCC is formulated as an optimization

problem. Grey Wolf optimizer (GWO) [75] is an optimization algorithm inspired

by hunting behavior and leadership hierarchy of GWO in nature. In this paper,

researchers proposed an adaptation version of GWO to find the best solution

for computation offloading for MCC workflow. In practical, GWO iteratively

generated candidate solutions that attempt to minimize the task execution time

in workflow and energy consumption in mobile devices. Focusing specifically

on a mobile cloud environment, researchers exerted tremendous efforts to gain

high-quality assurance and optimal utilization of resources for mobile devices.

Peng et al. in [82] proposed a joint optimization approach based on dynamic

voltage and frequency scaling technique and whale optimization algorithm

(WOA) [74], to optimize task completing time and energy consumption of mobile

devices. In the estimation of these two optimization objectives, several factors

are considered, which are task execution position, task execution sequence,

and operating voltage and frequency. Moreover, the fitness function utilized

in WOA is multi-objectives, where weight scores are assigned for both task

completion time and energy consumption. The experimental results proved

that the joint optimization approach is a promising and effective approach

capable to provide adequate solutions for running the mobile cloud system in

a seamless manner with respect to saving energy and parallel task scheduling.

In a recent research [106], an efficient hybridization model based on Queue-

Ant Colony Optimization and Artificial Bee Colony Optimization Algorithm,

referred as (QAnt-Bee), was proposed as a means to allocate the offloaded

tasks to the most accurate cloudlets in MCC environment by optimizing the

processing delay of tasks and energy consumption, and the rejected rate of

offloaded tasks. Since the resource allocation is considered as NP-hard complete

problem.

Ge et al. [41] proposed an improved version of particle swarm optimization

(MPSO) to more effectively optimize the resource allocation of task offloading

plans in a shortened time. In MPSO, a task movement strategy that allows the
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movement of task position in current cloudlet to another one. In the context

of optimization, this strategy allows the solution to exchange their variables

in order to increase the exploration rate and thus avoid becoming stuck in

local optima. The experimental results proved that the MPSO algorithm could

produce better and effective solutions when compared with PSO.

2.3.2 Task Offloading Optimization in MEC

In mobile edge computing (MEC), several algorithms have been applied to

solve the problem of task offloading along with the transmit power allocation.

This paper [122] studied the problem of computation offloading for MEC in 5G

systems. In particular, this paper focused on improving the energy consumption

of system entities offloading the required tasks. The problem was formulated

as an optimization problem where the energy consumption is to be minimized,

taking into account the delay requirements. Both task transmission (fronthaul

and backhaul) and task computation at MEC server were considered in the

formulation model. To solve this problem, the authors proposed using an

artificial fish swarm algorithm (AFSA). This heuristic algorithm provides a

global convergence, obtaining the global optimization solution for the problem

under consideration. The efficiency of the proposed algorithm was evaluated

and compared with other related algorithms.

Wang et al. [111] studied the problem of task assignment in MEN for multi-

task multi-user situations. In particular, this paper considered minimizing the

task execution delay on MEN. The problem was formulated as an optimization

problem where task properties, user mobility, and network constraints were

considered as a constraint satisfaction problem. Then, the authors proposed a

heuristic algorithm to solve this problem. The proposed algorithm proceeds as

follows. First, users send a message, which includes general information about

their tasks, to the central controller of MEN. Particularly, this message contains

the data size, execution load, local execution time, and the likely output data

size. The central controller , then, allocates each task to a sBS where the delay

is the shortest. A sBS, which needs to execute two or more tasks, performs

the task with the minimal execution time. Further, the central controller

re-allocates those tasks which are not under execution. The process continues

until each task is allocated to the optimal sBS. If the local execution time

remains shorter than that of the optimal sBS, the task is executed locally at the

user end. It is noteworthy that the proposed algorithm considers user mobility

prediction during the allocation process. A set of simulation experiments was

conducted to evaluate the performance of the proposed algorithm and the

results showed that the task execution delay is significantly reduced when the

user mobility is considered.
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The research in [128] studies the problem of task offloading along with the

transmit power allocation in MEC systems. It found that both the execution

latency and energy consumption were considered to be reduced so that the

overall performance is enhanced. The problem was formulated as an optimiza-

tion problem aiming at minimizing the weighted sum of executing delay and

energy consumption. This paper first used the flow shop scheduling to achieve

the optimal task offloading for a given transmit power. Further, it employed

convex optimization to determine the optimal transmit power for a given task

offloading decision. The results showed that the delay performance improves

when both the radio and computational resources are relatively balanced. Fur-

ther, the proposed algorithm reduces the energy consumption significantly

while offering near-optimal delay performance.

In [49], authors study the problem of task offloading and resource allocation

in MEC. The problem was formulated as a bilevel optimization problem in which

the offloading decision was considered as the upper-level optimization problem

whereas the resource allocation was considered as the lower-level optimization

problem. Further, the aim of the upper-level problem is to minimize the energy

consumption of all users and the aim of the lower-level problem is to minimize

the total computations of all users. This bilevel problem, then, was solved

using a bilevel optimization approach. In particular, ACS 3 is first used to

generate offloading decisions for the upper-level optimization problem. If these

decisions are considered feasible, then the monotonic optimization method is

employed to calculate the optimal allocations of resources. The performance

of the obtained joint solution is evaluated. This process continues until the

best combinations have been achieved. The simulation results showed that

the probabilistic technique provides efficient solutions for two sets of instances

with about 400 mobile users.

Mao et al. [72] consider the problem of task offloading along with resource

allocation in MEC systems. The aim is to minimize both the energy consump-

tion and the monetary cost for mobile users. The problem was considered

from game theory perspectives. Hence, the authors proposed a game model

that includes a cloud and wireless resource allocation algorithm. The sim-

ulation results showed that the proposed algorithm minimize the cost with

low complexity. Further, compared with existing algorithms, the larger is the

size of the task’s data is, the less the energy consumption and completion

time is. There are other studies which employ the same classification of the

optimisation objective like works with minimising the delay [66, 66], works

with maximising energy saving [19, 60, 78, 124, 129], and works with the both

objectives [17, 70, 72, 116].

3Ant Colony System (ACS) is a probabilistic technique for solving computational problems
which can be reduced by finding good paths through graphs.
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Figure 2.3: Process of Computation Offloading in Mobile Cloud Computing

Apart from the abovementioned studies in Table 2.1, our focus is on

minimising the execution latency of dependent tasks in a mobile edge network.

The constraints considered in our work are user mobility, multi offloading

systems, task precedence as DAG, and distributed edge environment. We

develop offloading algorithms that minimise the job completion time with

consideration to the user mobility in edge.

2.4 Offloading in Static Environment

Frameworks in Mobile Cloud Computing focused on the problems regarding

offloading decision-making and application partitioning in offloading tasks from

mobile devices to the main cloud without considering user mobility or changes

that could happen in the network connection during offloading operations

[22, 54, 55]. They have solved making offloading decision making problem and

application partitioning problem by using a mechanism which consists of (1)

a Partitioner (section 2.4.1), (2) a Profiler (section 2.4.2), and (3) a Solver

(section 2.4.3) [57]. This mechanism helps to decide whether it is favorable to

offload the task to the cloud side or just execute it locally in the mobile device

as summarized in Figure 2.3 [31].
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2.4.1 Partitioner

The partitioner is used to annotate which portion of the application is considered

as a offload-able task. Annotated partition is achieved through results from

application analysis made on codes of computation. It is determined based on

whether the codes are accessing native resources of the mobile environment, or

not. Mobile environment comprises either native resources including access to

I/O interfaces, GPS, Camera, native services inclusive of the particular mobile

environment, or any other hardware embedded to the mobile devices [31].

2.4.2 Profiler

Profiler is used to monitor offloading parameters that will help the framework

Solver to make the final decision whether to offload the task or not. Therefore,

the profiler will be the important factor in making the final decision in the

solver part. Profiler can monitor decision parameters such as CPUs or energy

power. Some frameworks used monitor software such as ThinkAir framework

which uses power-Tutor software to track various program related parameters.

It extracts overall the execution time for a particular method, CPU cycles, and

memory allocation of a particular thread, method call numbers, and executed

instruction numbers [55]. Other some frameworks used monitor device such as

CloneCloud framework [22] utilizes Monsoon Power device to monitor three

system variables: CPU activity (active and idle state), Screen (on/off state),

and Network interface during active state (transferring/receiving) or idle state.

2.4.3 Solver

Solver of the computation offloading frameworks in MCC is the part which

makes the feasible offloading decision based on the available partitions and

decision metric developed by using parameters from profiler or directly utilizing

profiler parameters for optimizing solution of the decision. The solver can be

categorized based on its location whether it is located on the mobile device,

or in remote cloud/server, or in both [31]. In this work, the solver is used for

assigning a value to decision variable based on minimization of expected cost

of a particular partitioned application. It is used to make a final offloading

decision by the framework and situated in the mobile device user [22]. Another

work uses a linear program solver in both side of mobile device and cloud

as shown in Figure 2.4 to solve a global optimization problem developed by

using input such as annotation and graphs from the annotated call graph

model developed for partitioning model of the framework. Energy used during

the local execution, remote execution, time spent for local as well as remote

execution are taken as decision making metrics for the solver as shown in

Figure 2.4 [23].
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Other intensive frameworks in MCC have used the same mechanism of binary

Figure 2.4: Solver in Mobile Device Side and Server Side of MAUI [23] Frame-
work

variable decision without considering the network fluctuations [22, 23, 54, 55, 57].

Mobile Edge Computing was produced to overcome the network fluctuations

that will happen after offloading decision is made [69].

2.5 Offloading in Dynamic Environment

Recent works in the Mobile Edge Computing dealing with the dynamic com-

putation offloading are focusing on the task offloading optimization problem in

the edge. Offloading optimization problem in computation offloading of MEC

can be categorized into three kinds: optimization of reduction of delays in tasks

offloading in the edge, optimization of energy consumption in tasks execution

in the edge and the combination of the optimization of energy consumption

and execution delays of the tasks in the edge.

2.5.1 Minimising Latency

Liu et al. [66] proposed a framework to minimise the execution delays in tasks

of MEC like this work of reducing the delay in execution task for a single

user, which uses the single dimensioned search algorithm. The result of this

algorithm is a policy in making an offloading decision based on the queue state

of the application buffer. Alongside with this property of wireless media was

considered as well.

Plachy et al. [84] consider the variety in spatial position of sBs while

offloading. The sBs chosen by the users are responsible for the execution of

tasks offloaded, but the results obtained in the user devices are sent through

another sBs having the highest RSSI of the wireless connections. Although the
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consideration of spatial diversity is remarkable, the work is done considering

offloading of the single task only.

On the other hand, user mobility affects the scheduling on the edge so this

work proposed a framework to reduce the task execution scheduling in mobile

edge network during user mobility. They have considered the information of

user mobility and the information of tasks and sBSs resources and have used

lightweight heuristics solution to get fast scheduling during task offloading

on sBSs with different users equations [111]. The main objective of the task

scheduling in this framework is to maximize the using of MEC to reduce

the delay time with all users during offloading tasks to the sBS. They have

considered a set of users as U within which each user (i) has own computation

task (j) that will be assigned to a set of base station as sBS. In the route of

user mobility there are a sequence of sBS in user path Pi and (k) belongs to

one of the paths in Pi that contains a set of sBS. Each task of Ti,j should be

executed in the edge once time only along the user trajectory Pi. The problem

modeled as an optimization problem as follows:

max
De

1

|U |
∑
i∈U

∑
j∈Ti

di,j(t
l
i,j − tedgei,j )

s.t.∀ti,j ,
∑
k∈Pi

de(i,j),k <= 1

2.5.2 Energy Saving

Studies regarding optimization of maximising energy saving, this research [78]

demonstrated a framework for reducing the mobile device energy consumption

by optimizing the transferring time and the data size offloaded to the edge

network AP during offloading process. In [60] authors consider the dynamicity

in the state of the channel in transmitting tasks through wireless means and

presents a scheme for tasks scheduling and offloading them. The scheme is

designed such that it can make proper usage of the wireless connections and

user buffers, so that, the energy consumption in task execution is reduced.

Zhang et al. [129] proposed a framework is demonstrated for offloading

the computation, in mobile edge computation, for multiple devices and also

construct an optimization problem is constructed in order to minimise the

energy consumption in these devices. Another study has advanced the work on

this topic by considering the possible occurrence of collisions and interference

due to multiple users trying in accessing single sBs, which can incur high-energy

consumption in the user devices. In a way, the offloading was modeled in the

game theory with multiple users, and shown that this is always compatible

with Nash equilibrium [19]. This research [124] minimized the mobile devices
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energy consumption by centralizing framework for multiuser MEC system.

They have used orthogonal frequency-division multiple access (OFDMA) and

time-division multiple access (TDMA) with the purpose of reducing the energy

consumption of mobile devices. Finally, [123] authors proposed a framework

to harvest mobile device energy from a base station or able to offload tasks to

sBSs for the same purpose of saving energy.

2.5.3 Energy and Latency Optimization

Some other works perform a combined the optimization of energy consumption

and execution delays in the tasks. Through these, it is seen that minimization

in the task delays, most of which can be executed faster in mobile devices than

in the edge network, contribute to the high power consumption in MEC. Some

of these works designate a level limit of energy consumption and minimizes the

delays in the tasks without crossing the set limit. For example, this research

[70] presents a flexible scheme in offloading, considering the single user, for

decreasing the delay in execution in energy harvesting devices, where these

devices increase the complexity in the offloading algorithms.

Mao et al. [72] proposed a model of task offloading with optimizing the

allocation of the power to reduce the delayed weighted sum in computation

along with the consumption of energy. They designed an algorithm namely

low complexity sub-optimal algorithm. It has been illustrated in this work

that the implementation of this algorithm has reached minimum latency in

execution with significant energy saving in a device. To find out the optimal

tradeoff between complexity and delay, a lightweight approximation is used.

This research [116] shows the use of a sequential game model with multiple

stages for realizing the concurrent requirements regarding the energy and delay

at the same time.

2.6 Open Issues in Edge Distributed Environment

Task offloading in edge networks have been received lots of attention from the

research community as we have seen in the related works inTable 2.1. However,

existing related works still have open issues that need to be addressed in respect

of offload-able tasks in the distributed environment which can be classified into:

(i) dependent task-awareness problem in the edge with distributed environment,

(ii) mobility-awareness problem in the edge with distributed environment.

2.6.1 Offload-able Tasks with Dependencies in Edge

Offloading applications with concurrent tasks (as shown in Figure 2.5)to MEC

makes the offloading more complex. As noted for decades of studies in task
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scheduling [105, 109], the applications in ecosystems (mobile devices) could

consist of a number of tasks with dependencies, which are modeled as a directed

acyclic graph DAGs. A task-call graph is used to determine the dependencies

among tasks in the application [71]. As we observed in existing works of

MCC/MEC, current studies have not solved the problem of offloading the

dependent tasks to the edge when considering the user mobility in distributed

environment and task constraints [52, 67, 98, 121].

1

1

2

2

3

3

4

4

5 9 6 10 7 11 8 12

1413

Figure 2.5: Tasks with Dependencies

In the real world, the edge networks have multi-user systems and multi-

server systems, which exist studies of offloading dependent tasks, lack this

assumption. The process of uploading, downloading and execution in the case

of multi-user and multi-server systems are seriously affected by constraints of

the dependent tasks during the offloading process. For example, the output of

the concurrent task might be used as the input for other tasks, which makes

the order of execution in the multi edge nodes sophisticated [71]. A work on

[52] is a dependent task scheduling as DAG with multi-user constructed a (1+

ϵ)-approximation strategy and they consider only one centralized edge server

to minimize the latency.

Liu et al. [67] consider dependent tasks placement in edge with only one

user and centralized edge servers to reduce the application completion time.

This research [121] proposes industrial application modeled in DAG with multi

devices and only a centralized server to minimize the energy consumption of

devices and cloud cost. Shu et al. [99] proposed a fine-grained task offloading

algorithm with multi-users. The authors however assumed a centralized server

in the edge that computes the offloading schedule prior to the offloading process.

However, such work is not scalable in MEN networks when the number of users

is high due to the server becoming a performance bottleneck. To address this

open issue, in our work, we develop offloading algorithms for dependent tasks
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in a distributed edge environment as we will explain in the next chapters.

2.6.2 Mobility- Awareness in Distributed Edge Environment

Mobility awareness is still a significant problem in mobile cloud/edge computing

networks because of sending/receiving jobs from different edge nodes as shown

in Figure 2.6. The majority of existing works in task assignment to edge network

make the assumption that the users are stationary during task offloading and

the communication between mobile devices and edge nodes are always available

[14, 24, 120]. The authors of [123] discussed the task assignment with resource

allocation for multi users in a single edge server while assuming that the users

can access the edge server anytime and anywhere, which is unrealistic in the

real world. Another study [14] suggested an online solution for the deployment

of stream based on the task assignment of multi-user systems in the edge.

Figure 2.6: User Mobility Among Edge Network Nodes

They predict the application response time by using a queueing theory-

based model and they then develop an optimization model to reduce the delay.

However, they do not consider the user mobility in the edge. This framework

[111] assumes all properties are known in advance: task attributes, network

conditions, and user mobility (with in-dependent offload-able tasks). They

develop an optimization model to reduce the latency in task execution and

they consider user mobility with a centralized server as a (static environment)

with predefined properties. However, such scenarios are limited in a distributed

edge environment.

Ultimately, current works in edge networks (summarized in Table 2.1) have

not considered a distributed offloading for offload-able jobs of dependent tasks

with task constraints with multi offloading systems in the edge network during

the user mobility. In this thesis, we address all these issues together by develop-

ing offloading algorithms for user devices mobile with hosting dependent tasks
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with the aim of reducing completion latency in distributed edge environment.

We formalise the offloading problem as a constraint satisfaction problem and

we construct optimisation models for the offloading algorithms to approximate

the optimal solution.

2.7 Summary

Overall, there are a large number of offloading techniques in edge networks.

Two of the biggest categories are (i) offloading in static environment and (ii)

offloading in dynamic environment of the edge. The optimisation aim in both

of these techniques can be categorized into three kinds: (i) optimization of

minimising the delay of the tasks offloading in the edge, (ii) optimization of

maximising the energy saving of UE during task offloading to the edge and

(iii) the combination of the optimization of energy consumption and execution

delays of the tasks in the edge. Existing related works in MCC/MEC still have

open issues with (i) dependent tasks offloading in the edge with distributed

environment, and (ii) mobility-awareness problem in the edge with distributed

environment. We develop heuristic and fully distributed offloading algorithms

to minimize the average completion time of offload-able dependent tasks with

task constraints while factoring in user mobility which affects reachability to

the edge nodes.
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Table 2.1: Comparative Summary of Related Works
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Chapter 3

Models and Experimental Setup

In order to investigate ways to schedule dependent tasks offloading in multi

edge nodes and develop models to provide an efficient offloading algorithm in

distributed edge environment, the problem first needs to be formally stated.

The offloading process will be achieved in two different platforms i.e. clients

(mobile devices or IoT devices as edge users) and cloudlets (which are the

remote resources of the edge). In this chapter the formal definition of the

offloading and task scheduling problem in distributed edge environment will be

described. We will define the important models as shown in Figure (3.1) that

we need to construct during the offloading process as: clients model, dependent

tasks model, edge nodes model, and the user mobility model.

This chapter describes how ns-3 is applied when testing algorithms exper-

imentally, a process which is undertaken to quantify the performance of the

algorithms. There are some parts to show in this section with ns-3 simulation.

In the ns-3 simulation allows to have different scenarios during the simulation,

but the real deployment in Chapter-5 allows the real scenario to be examined.

In order to explain the configuration of the ns-3 simulation in our work a

number of points will need to be explained. The two main points are: (i)

what main models we use in the offloading process, (ii) what simulator will be

used and the configurations. This chapter will detail these points, as well as

explained how the simulation and deployment environments were set up, and

how the algorithms were performed.

3.1 Offloading Models in Edge Network

In our work, offloading in edge will consist of multiple users, each having a

mobile device1, moving from a starting point to a destination point and a

network, called edge network2 , that contains a number of powerful computing

1We will use the terms edge user, client, and user device interchangeably.
2We will use the terms edge nodes, remote resources, and cloudlet interchangeably.
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nodes known as cloudlets as shown in Figure (3.1). In our work, we model

the task graph as DAG to solve the scheduling problem of the offload-able

dependent tasks with user mobility as previous works have not covered this

problem in distributed edge environment [92, 96, 111]. In our work, our

objective is to minimise the finish time of jobs with offload-able dependent

tasks for every user. This problem is known to be NP-hard [67]. Such task

scheduling is a special case of the problem we pose here, making our problem

intractable in the general case. The task scheduling problem is in its general

form NP-complete, therefore it is not possible to find an optimal solution in

polynomial-time unless P = NP [58, 59]. An optimal assignment indicates

that based on some objective function, the mapping method obtains the best

solution (schedule) for the problem [79]. We now detail each model as follows:

user1

user1

user n

user m

user

Figure 3.1: Computational Offloading Models

3.1.1 Edge User Model

In client model, we consider IoT devices or mobile devices making the of-

floading decision for all jobs to be run remotely in the edge side (Cloudlets).

Code profiler, system profiler, and decision module in static environment will

determine the correct decision regarding which job will be offloaded or not to

have the right decision and that will be limited with the user mobility and

other challenges in the distributed environment [27, 36]. The main objective

of our work is to minimize the execution delay of the job in the edge after

making the offloading decision while taking into consideration the distributed

variables i.e. user mobility and dependent tasks. We consider a set of n users
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U = {U1, . . . , Un}, each having a mobile device with various forms of network

connectivity such as Bluetooth or WiFi. Each device has limited computa-

tional resources to run resource-heavy applications (or jobs). We assume each

wireless network interface to be associated with its own range. Each user runs

a job, which consists of a set of tasks. To bridge the gap between the resource

demands of the job and the resources available on the user’s device, a user

will run the job on the edge network to save energy and to potentially boost

performance. We assume a user will run only one job at a time.

3.1.2 Application Model

Applications (Jobs) 3 in our work have a set of tasks which can be dependent

tasks or independent tasks. Independent tasks can be executed at any time

without considering sequence constraints during the offloading process. On

the other hand, a job with dependent tasks will have to consider the sequence

ordering constraints during the offloading and will be modeled as a directed

acyclic graph (DAG). The application with dependent tasks has precedence

constraints i.e. a child task cannot begin its execution before the completion of

all its parent tasks. The task offloading mechanism will be highly dependent

on the type of the task. In our work, we model the task graph as DAG to solve

the scheduling problem of the offload-able dependent tasks as previous works

have not covered this problem in distributed edge environment.

The root level of the DAG contains independent tasks, while other levels of

the DAG contain dependent tasks. In our work, our objective is to minimise

the finish time of jobs with offload-able dependent tasks for every user. A job

Ji (job of user i) consists of a set of tasks Ti = {T 1
i . . . T k

i }, with dependence

between the tasks. As such, we model a job as Ji = (Ti, Di) where Di ⊆ Ti×Ti

and (T j
i , T

l
i ) ∈ Di means that task T l

i depends on task T j
i . We assume a set of

nodes Ei ⊆ Ti, called entry nodes, which are tasks that are independent. We

also assume a set Xi ⊂ Ti called exit nodes that are tasks with no successor,

i.e. output of those tasks will return to the users. A task can be associated

with various metadata and, in this thesis, we focus on the following: ⟨task size,

number of instructions⟩. T =
⋃n

i=1 Ti will denote the set of all tasks in the

system.

3.1.3 Edge Network Model

A cloudlet is a computer that is resource rich, i.e., it has a powerful CPU,

sufficient memory and other resources to run resource-hungry applications [111].

We assume a cloudlet to a buffer large enough to be able to queue execution

requests [65]. After execution, a cloudlet will take one of three steps: (i) it will

3We will use the terms Applications and Jobs interchangeably.
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pass the (final) result directly to the user if the user is in range, (ii) pass the

(intermediate) result to another cloudlet which has, in its buffer, a task that

is dependent on the result or (iii) if the user is out of range, pass the (final)

result to another cloudlet which will forward it onto the user. We assume a

cloudlet to have a number of communication interfaces, e.g., WiFi, ethernet.

We assume each wireless network interface to be associated with its own range.

An ecosystem device in our work can communicate with a cloudlet if both fall

within the range of each other. We assume an edge network to consist of a set

of cloudlets C = {C1 . . . Cm}. Cloudlets have a network interconnecting them

and we model the edge network as a graph G = (C,L), where L ⊆ C × C is a

set of (symmetric) links between a pair of cloudlets. We assume the network to

be heterogeneous, i.e., cloudlets have the same set of computational resources

(e.g., memory, CPU) but vary in capabilities or amount [111].

3.1.4 Mobility Model

We consider a mobility model, which tracks users movements and distance

change relative to the cartesian coordinates over time. We have used a waypoint

mobility model (future positions known a priori) and we have not used a random

mobility model (future positions not known a priori) for the complexity analysis

of the results. In a waypoint mobility model consists of a list of waypoints

that determine the path of the users, and where each waypoint consists of the

position and the time at which user reaches that position [15]. While in a

random waypoint mobility model, users walk randomly in different directions.

When the future positions not known a priori (random waypoint mobility

model), the user can take a long time to be in the range of a cloudlet that can

make the result analysis impossible in some scenarios.

We assume that the edge users move between edge nodes. As the user is

mobile, the communication with edge nodes will have limited range based on

the communication means i.e. WiFi connection that changes as the user moves

among other cloudlets in the edge. Thus, we model mobility as a user who is

mobile among a set of cloudlets C1... Ci with a sequence of periods during the

user mobility. Thus, also we define a function Ri that captures the cloudlets

that are in range of the edge user Ui at any given time τ in order to identify a

set of cloudlets which are in the range 2C . It is also to be noted that the set of

cloudlets can be null if there is no cloudlet in the range at a given time τ), as

follows:

Ri : τ → 2C
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3.2 Offloading Design and Network Simulation

In the offloading design, we consider three important components: (i) mobile

applications with several related tasks, (ii) user devices which run the app

during user mobility, (iii) high processing cloudlets distributed along the users

path. The mobile application consists of a set of dependent tasks and we assume

that each application can be divided into multiple dependency tasks. The

user devices are resource-constrained, with a low computation processor CPU

and more energy consumption to run heavy applications as augmented reality

applications and other applications that require more resources. The Cloudlets

are heterogeneous machines that are not resource constrained, i.e., they have a

powerful CPU and have sufficient memory to run resource-hungry applications.

We denote cloudlets as C = {C1 . . . Cm} and they have interconnection networks

among them a graph G = (C,L), where L is a (symmetric) link between a pair

of cloudlets. We simulate our work in a discrete-event network simulator which

is primarily used for networking and offloading research purposes [89, 113].

A discrete-event simulation can be used to simulate all layers of computer

networks, including signal processing simulation in a physical layer, medium

access simulation in a link layer, routing simulation in a network layer, protocols

simulation in a transport layer, and has also the ability of varying simulations

in an application layer. A discrete-event simulation has an important benefit

which is the repeatability, i.e. different algorithms can be simulated and

evaluated under exactly the same (random) environment parameters. The

discrete-event network simulator which was used in our work is called ns-3

simulation as we will explain in next section.

3.2.1 Network Simulator ns-3

There are several simulator tools that can be used to model the system that

is being developed, such as ns-3 and OMNET++. However, in this work,

ns-3 was chosen due to the support provided for modelling the network and

mobility during the task offloading. The ns-3 simulator was developed to

provide an open network simulation platform mainly for use in communication

research and networking simulation. ns-3 provides models with a simulator that

enable networking simulations with different layers. Using ns-3 is beneficial for

simulation of some difficult scenarios that cannot be tested in the real world,

studying system performance in a highly controlled environment and learning

how networks work. ns-3 simulation gives the users the ability of using a set of

libraries that can be combined with external software libraries while some other

simulations do not support this feature. Operating Systems like Linux, MacOS

and Windows that can build Linux code will be able to run the ns-3 simulation.
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C++ and Python are the main languages that ns-3 use for simulation. In

addition, the ns-3 simulation is free software which is not supported of any

company and it is for research and education purpose [89, 113].

3.2.2 Network Elements in ns-3

The ns-3 simulator has elements for all of the various network parts that

simulate in computer network area. We use ns-3 for simulating networks and

connections during the offloading process. As ns-3 is basically a discrete network

simulator, the events have to be pre-programmed with timings and durations.

The events could be anything related to network like setting up connections,

sending/receiving data through sockets, or connecting to Wifi/LTE, etc. In

particular there are some important components that we used in the simulation:

• Node:

In networking, a device that connects to a network is called a host or end

system. In ns-3 simulator, we do not use the term host as it is related

to the Internet or protocols, we use the term Node to express the same

meaning of the host during the simulation. Node is the fundamental

unit of ns-3 simulator and it constructs the models in our work for the

user devices, edge nodes (cloudlets) and other routers or servers in the

network.

Nodes simulates and abstract any computing device in the simulation.

We represented this abstraction in C++ by the class Node which provides

methods for computing devices representations and management through

simulations. Node refers to any entity or object that will be in the

network simulation with some behaviors i.e. user devices (IoTDs or

mobile devices), and edge nodes (cloudlets or servers). We can simplify

some other simulation terms which are related to the node object as

follows:

– Node Container: A container class that can be used to store a set

of nodes.

– NetDevice: This interface defines the API which the IP and ARP

layers need to access to manage an instance of a network device

layer. It gives a meaning to the node.

– NetDeviceContainer: A container class that can be used to store a

set of net devices.

– IpV4AddressHelper: This helper class is used to assign ipv4 address

to net devices.
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– InternetStackHelper: This helper class is used to aggregate IP, TCP,

and UDP functionality to existing Nodes. It is used to install

internet on the nodes.

– WifiHelper: This class is used to create Wifi Net Device with manual

properties.

– YansWifiPhyHelper: It is used to create and manage PHY objects

of the YansPhy.

– WifiMacHelper: It is used to create the MAC layer of Wifi Net

Device.

– MobilityHelper: This is a helper class which is used to install

Mobility Model for the user device node.

– TypeId: It is a unique identifier for interfaces in ns-3. In our

simulation, we retrieve things like TCP or UDP socket using TypeId.

– Socket: A low level BSD socket API. We use this mechanism for

communication between user device nodes and cloudlet nodes.

According to ns3 simulation, to create a node or multiple of nodes we use

NodeContainer topology helper that provides a professional method to

create, manage and access Node objects in multi user devices and edge

nodes (cloudlets) during the simulation. The container holds a pointer of

objects. For example, NodeContainer holds a pointer to a node object,

NetDeviceContainer holds a pointer to a net device object. So we declare

a smart pointer called deviceNode for the devices. Then we create an

object from Node class using CreateObject to create multi nodes for

modeling user devices and cloudlets in the edge network.

• Application:

Software can be classified into two main categories. The first category is

the software that handles computer resources such as processor, memory,

and network, which is called system software. System software usually

does not directly benefit a user. The second category is called application

software. Application software uses the resources organized by the system

software to accomplish user goals. So we build the ns-3 application

to accomplish tasks during the offloading process. After creating the

connection means between nodes, the application enables sending and

receiving of packets for offload-able tasks.

• Channel:

All data requires requires a medium through which it can move.The same

concept is applied in ns-3 simulation. We model a medium which is called

the ’channel to transmit task’s packets’ between nodes in the offloading
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environment. This channel is the basic communication abstraction and ns-

3 represented it in C++ by the class ’Channel’ to help in communication

between nodes (i.e. mobile devices and cloudlets).

• Topology Helpers:

Topology Helpers comes with many classes which help node configurations

and adding of some manual properties. For example, when it is necessary

to connect Net Devices to Nodes and Net Devices to Channels for the

configurations of user devices or cloudlets, topology helper is the right

choice to make this setting. Many operations are done to setup Net Device

with many configurations, connect the Net Device to a Channel then

install it on a Node. Other operations would be required and complication

will be increased if we have multiple devices and multi channels to be

connected together. We use topology helper objects that make those

operations configure in the professional methods during simulation of the

offloading environment.

3.2.3 Network Models in ns-3

The ns-3 has a solid simulation core which uses many network models for

multi-purposes. ns-3 models are well documented, ready to use and debugged,

and cater to the needs of the entire simulation workflow, from simulation

configuration to trace collection and analysis [89, 113]. We will go through

some ns-3 models that we have used in the offloading environment work as

follows:

• WIFI Model:

Ns-3 supports Wi-Fi physical layer model called YansWifiPhy and we use

this model in both Mobile Device node and Cloudlet node for their com-

munication in the edge. To install WiFi model, we use ns-3’s WifiHelper

with standard 802.11n operated at 2.4 GHz. We use default channel

width which is 20 Mhz. The bandwidth rate would be HtMCS0 and the

bandwidth speed with this configuration comes around 10 to 40 Mbps.

The configurations are done using WifiPhyHelper (YansWifiPhyHelper).

We set a RangePropagationLoss Model to determine the range of devices

connection during the offloading process to be up to 40 meters. Commu-

nication range between nodes in the edge environment is very important

to be considered as a real world scenario i.e. if any device during the

offloading process tries to communicate with a cloudlet where is locate

in above 40-m would not be connected and the offloading process will be

fail. In short, the mobile device nodes cannot read beacons or detect any

signal if the cloudlet is located outside the communication range.
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• LTE Model:

We use LTE model with LTEHelper and EPCHelper to support the

communication between cloudlets in the edge. LTEHelper is used for in-

stalling LTE Net devices on UE (cloudlets) and eNB (base station) Nodes.

We use EPCHelper for creating PGW node and we build only one eNB

base station and all UE (cloudlets) are connected to this eNB base station

as an edge network. UE Net device is installed on all cloudlets nodes and

the communication between cloudlets happens over the LTE network.

RemoteHost is created manually with internet installed using Internet-

StackHelper and later linked wired to PGW using PointToPointHelper.

Suitable routing is done using IpV4StaticRoutingHelper .

• Point to Point Model:

We use ns-3 point-to-point model to simulate a wired connection between

eNB base station and the PGW in the edge network. The model of Net

Device has the following attributes during the communication: address

(for mac address of the devices), data rate (for the data transmit rate),

InterframeGap (for delay time between frames), Rx (for tracing received

packets), and drop (for tracing dropped packets).

• Mobility Model:

Mobility Model tracks objects movements and distance change relative

to the cartesian coordinates over time. There are subclasses of the base

class ’MobilityModel’ that are used for different movements types. Mo-

bilityModel uses the class PositionAllocator to set the start position

of objects. After running the simulation, PositionAllocator only will

be used again to determine the future position points. We have used

two mobility models, one for stationary cloudlets nodes ConstantPo-

sitionMobilityModel and the another model for moving mobile device

nodes WayPointMobilityModel. The ConstantPositionMobilityModel is

installed on cloudlet nodes since they are stationary. We would give them

a position during installation and they will remain the same throughout

the simulation.The Waypoint Mobility Model is installed on mobile de-

vices to simulate them walking like users and we set a list of waypoints

that determines the path of the users, each waypoint consists of the

position and the time at which device reach that position. There are two

methods for the waypoint mobility model that enable users to access the

next waypoint: NextWaypoint and the number of waypoints that have

been passed WaypointsLeft.

• Propagation Model:

Signal propagation faces various limitation that affect signal transmission
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during the offloading process. We use Propagation Loss Model basically

to define how the signal of WiFi will be affected between two connected

devices in the edge. Propagation loss model takes into consideration two

factors when computing the received signal power, the transmitted signal

power and the distance between transmitter to receiver. Propagation loss

model can be designed to be a serial chain of different loss models and the

total power received is the power after passes all the loss models. There

are several propagation losses models, our focus will be on RangePropa-

gationLossModel. As its name indicated this loss model affected only by

the traveling distance (distance from the transmitter to the receiver). We

use the MaxRange method (in meters) to determine the range distance in

meters as (40-m) during the communication between mobile devices and

cloudlets. If signal travels within MaxRange it will not face any losses

and the received power will be exactly equals the transmitted power. If

we do not install a loss model, the wifi signal is going to remain constant

also if the device is near to cloudlet or too far away from the cloudlet

during the offloading process. Therefore, in this model the wifi signal

is affected by the distance between the two WiFi devices based on the

range of communication i.e. in case of the user device is far away from

the cloudlet, the signal is going to be bad and vice versa.

• Packet Socket Class:

Socket is a gate that enables data transmission between devices in the

offloading environment. We use TCP socket and UDP socket for send

and receive data between nodes in the edge network during the offloading

process. TCP socket is used for ’Reliability’. TCP uses three way hand-

shake to initiate the communication (SYN, ACK, SYN-ACK). In Socket

API, Connect() function is used to connect to the destination IP address,

and Send() function is used to send a packet to the endpoint. To receive

the same, TCP/UDP socket sink (endpoint) has to be installed. Hence,

Packet sinks are installed (using PacketSinkHelper) on mobile device

nodes and cloudlet nodes. TCP communications take place between

cloudlet to cloudlet transmissions. ’UDPSocketSender’ is a helper class

made to handle UDP transmissions. UDP is a connectionless protocol

and C++ ns-3 callbacks are implemented to know when or where the data

is transferred (sent/received). We use UDP socket for the communication

between mobile device to cloudlet and from cloudlet to mobile devcie

nodes. We use basically an Internet Protocol IpV4 which identify the

unique IP Address for all endpoint nodes in the edge environment. In

ns-3, Ipv4Address instance is used to store IP Address in nodes. We

locally store the instance of IpV4Address inside both cloudlet nodes and
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user device nodes instance to keep hold of their LTE/Wifi address. The

IP addresses of the cloudlet/mobile device nodes have to be known before

we can communicate through TCP/UDP socket and the ARP (Address

Resolution Protocol) helps to make this process.

3.2.4 Application Representation in ns-3

We represent the application 4 by a directed acyclic graph J = (T,D), where

T is a set of tasks with dependencies and D is the set of edges between

dependencies as we see in the Figure 3.2. Each edge (i, j) ∈ D represents the

precedence constraints between tasks during the offloading process. The task

Ti as a parent task should be completed before the task Tj as a child task

in the graph theory that we model in the ns-3. Output data as a task result

is a (t x t) matrix of communication data between dependencies during the

offloading, where data Ti,r is the amount of data required to be sent from task

Ti to Tj in edge nodes. In a given task graph, tasks in root level of the graph

are called entry tasks and the tasks in the last level without any child task are

called exit tasks. In our work, we modeled many different DAGs in random

graph generation and fixed generation which they have different properties in

each graph.

We modeled three main elements in DAG: the parent task, the child task

which depends on the parent task and the finish time of parent task which is

also the start time of child task. We also design Edge Class that holds the

three elements then design DAG Class that uses the Edge Class to manage the

task generation. The main methods in DAG Class: AddEdge Method (to build

up the DAG by adding nodes), ComputeParentNodes Method (to get the root

tasks (tasks of level 0), SetWeight Method (to set the start time of child node),

and GetNextNode Method (to get the child task id with least start time). In

ns-3 simulation, application with set of tasks are represented as dummy tasks

with size of bytes. During the offloading process we upload/download tasks

with size of bytes through socket between nodes of mobile devices and cloudlets.

Tasks will be ordered during the offloading based on the DAG logic and each

task will have metadata i.e. task-id, task-size, task-number-of-instructions,

dependencies and etc. The parent tasks will start execution time in free ready

time but the child tasks will start the execution time after the completion time

of the parent tasks. We will go in details of DAGs we use in our work in next

chapters.

4We will use the terms Applications and Jobs interchangeably.

38



Figure 3.2: Directed Acyclic Graph (DAG) Design

3.2.5 Simulation Configuration and Experiments

In this section the simulation environment and the configurations that were

used in ns-3 to generate the results are described. We first define the values

and parameters that we used :

• Map Area: 0.5 x 0.5 km

• Number of User Devices: 10 to 50 Devices

• Number of Edge Cloudlets : 30 Cloudlets

• Cloudlet uplink/downlink: 40 Mbps / 40 Mbps

• Cloudlet CPU frequency: 2 GHz & CISC

• Cloudlet coverage radius: 40-50 meters

• Central Cloudlet CPU frequency: 2 GHz & RISC

• CPU Cycles Required by One Task: 2× 109 ~ 2× 1010

• Acceleration Ratio between CISC & RISC: 10~50

• Input Data Size: 1.0~4.0 MB

• Mobility Model: WayPoint Mobility Model

• User Moving Speeds: 0.5, 1.0, 1.5, 2, 3 [m/s]

We used the WiFi-Phy 802.11-n standard configuration in ns-3 as we model

the cloudlet network as a mobile edge network [46]. The WiFi frequency is
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set at 2.4 GHz. The protocol used for the communication between an user

device nodes and a cloudlet nodes is UDP socket with Type-Id. The cloudlet

transmission range is set to 40-50 meters and the communication between

cloudlets happens over an LTE network [110]. We consider an edge network with

30 heterogeneous cloudlet nodes that are uniformly distributed over the setup

area. All cloudlets have fixed positions in all the experiments. and they are

directly connected to a base station. All cloudlets can communicate with each

other via the base station via LTE. We run thousands of experiments with some

changes in the simulation settings as we will explain in the next chapters. The

cloudlet has a task queue which works on scheduling algorithms i.e. first comes

first serves basis FCFS or priority algorithm with non-preemptive scheduling

algorithm [65]. A newly uploaded task is added to the back (end) of the queue

based on the type of scheduling algorithm. The front task of the queue is

popped (removed) on the following conditions: a) the task is solved and the

results are sent to the child tasks b) the task is solved and the task is an

end task (has no child tasks), so in this case, the results are delivered to the

user-device/cloudlet on request.

We use a waypoint mobility model, where each user devcie moves in straight

lines between end points with a given time at a given user speed [61]. Given

the uniform distribution of cloudlets over the map area, and the user device

nodes uniformly distributed over the setup area. Users move between edge

nodes (cloudlets) with defining communication range as 40 meters to be able

to offload tasks in this range. User know the starting position and the end

position and they move in speed constant during the journey. We install WiFi

module on each user device and we create 10 . . . 50 users moving at a constant

speed in a given run [46]. Based on previous research, e.g., [111], we set the

input data size of each task to be in the region of 1 MB to 4 MB. The CPU

cycles requirement ranges from 2 × 109 cycles per task (cpt) to ~ 2 × 1010

cpt. Besides the difference in CPU frequencies between the cloudlets and user

device, we additionally set the impact of acceleration rate on CISC and RISC

processors as the same CPU settings in [111]. We consider users to travel at 5

different speeds, namely 0.5, 1.0, 1.5, 2.0, and 3 m/s during the experiments.

The user device uploads a given task to the cloudlet that will minimise the

completion of the task. It will then either obtain the results from the same

cloudlet or a cloudlet close to it when the result is ready.

3.2.6 Example of Offloading in ns-3

In this example, we used the same settings as defined in the previous section.

A mobile device moves at a constant speed of 1 m/s to offload tasks in different

sizes to the edge nodes. The same sequence of sets of edge nodes was laid along
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the path of the mobile device, from a start position to the end position. We

used a total job size as 10 MB and 35 MB in 10 tasks. The job has the same

precedences, i.e., the job can be represented using the same DAG. The reason

for this example is to explain the impact of completion time with changes of

task sizes as we see in Figures: (3.3 and 3.4). As we see in this example we

have different job sizes with the same user speed. The X-axis represents the

task id, while the Y-axis represents the completion time. We compare the

results between Local (execute the tasks with the same settings locally in CPU

processor as RISC) and Offload (execute tasks in the edge nodes).

As can be observed from this example, when the the total job size is small

(10 MB), it is finished earlier in the edge nodes and it takes more time to be

executed locally (i.e., on the mobile device). This is due to the case that the

simulation setup of the cloudlet resources are powerful with the CISC and it is

faster than RISC five times. On the other hand, when the size of the job is

higher, then the jobs takes longer to execute as we see in the example of (35 MB)

Figure 3.4. From a total job of size 10 to 35 MB, the completion time becomes

more significant as the job size increases in local execution and in the edge. In

next chapters, we are going to explain in details how the user speeds affect the

offloading with considering the delay time, different user speeds, different job

sizes and other important factors with multi user-device/edge-nodes during

the offloading process.
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Figure 3.3: Total Job Size 10 MB with User Speed 1 m/s
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3.3 Summary

In this chapter, we defined the models of the offloading dependent tasks prob-

lem in distributed edge networks. We explained the important models that

we should construct during the offloading process as: clients model, depen-

dent tasks model, edge nodes model, and the user mobility model. Also, we

described how the abstract models in ns-3 simulation are applied when testing

algorithms experimentally, which is undertaken to quantify the performance

of the algorithms. Overall, we discussed main points on what main models

we use in the offloading process, and what simulator will be used and the

configurations.
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Chapter 4

Problem Definition of

Computational Offloading

The growth in resource hungry and real-time applications has led to a corre-

sponding increase in the computational requirements on hardware (HW) to

support such applications as augmented reality, multimedia, video editing,

face recognition, and gaming [101]. Often, these applications may be hosted

on devices such as smartphones. However, the limitations of smartphones on

battery power, memory capacity to store data and, most importantly, limited

processing capacity need to be tackled properly in the era of computationally

intensive applications development [57]. Computation offloading mechanism is

one possible solution, which encourages the users of mobile devices to transfer

the computational jobs to a remote-based computer such as a cloud (in mobile

cloud computing - MCC) or cloudlet (in mobile edge computing - MEC) [56][21].

The remote server has huge computation resources and is able to perform the

operations faster than smartphones [28].

The main difference between cloud and cloudlet lies in the computing

latency, making cloudlet more suitable. Recent works in MEC mostly focused

on solving the offloading problem with users being static during task offloading

and the communication links between mobile devices and edge nodes are always

available [14, 52, 121, 123]. However, such assumptions are not valid with

mobility users being a significant challenge in MEC networks that need to be

addressed. This challenge is exacerbated when a job contains dependent tasks,

i.e., tasks that cannot execute without a previous one has completed. Several

real-world applications are available, where dependent tasks exist: for example,

a GPS navigator application [99], smart access control based on face recogni-

tion [3], smart vehicular networks [103], and some virtual reality applications

[33]. Most current works on offloading in MEC networks focus on independent

tasks, where tasks are offloaded according to their suitability for an edge node.

An important issue is to resolve then is offloading the constrained tasks on
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heterogeneous servers during the user mobility. When such dependencies exist

between tasks, i.e., a task t depends on task s, then task t can only be executed

after s has completed. Current works in offloading suffer from at least one

of these several limitations: (i) assume independent tasks, (ii) assume static

users, (iii) assume a central server that performs the offloading on behalf of

users or (iv) focus on a single user. On the other hand, in this thesis, we

address all these challenges together by developing the algorithms for offloading

dependent tasks by multiple mobile users. However, the precedence constraints

on tasks while considering the user mobility in a distributed edge environment

have not been taken considered in similar previous works, e.g.,[67, 98, 111, 121].

1) Complex Offloading of Dependent Tasks to Edge: Modern

applications are typically composed of constrained tasks (including heavy

computational instructions) that can be represented as a Directed Acyclic

Graph (DAG) as task models, as in Figure 4.1. For example, applications

with dependent tasks are included in more than 75% of 4 million applica-

tions in the Alibaba data-trace [67]. Another example of a video processing

application from Facebook has a set of constrained tasks to complete the

video [126]. Specifically, the majority of applications could be dependent due

to various precedence constraints, i.e. a child task cannot be begun before

the completion of all its parent tasks. Moreover, the high data transmission

between cloudlets in the MEC networks will typically occur when child/parent

tasks are placed on different cloudlets. The dependent tasks scheduling in

the edge with communication between heterogeneous edge resources make the

constrained task offloading more complex and challenging in MEC. Previous

works consider the communication between mobile devices and edge servers

are always reliable without user mobility affection during task offloading, such

as in [52, 67, 98, 121]. In this thesis, we model the application1 as a DAG

with a sequence of dependent tasks and we consider the MEC as a distributed

environment with multiple users mobility in multi-server systems. In MEC

offloading, the main aim is to reduce the offloaded task completion time by

selecting the most suitable cloudlet in the execution.

2) How to Map Subtasks for Multi-User Systems with Multi-

Server Systems: In the edge side, the uploading time and execution time

play a significant role in the average execution time for offloaded tasks, and

may have a direct effect on the decisions to offload. Therefore, to minimise

the average latency during offloading, we need to organize all of the offload-

ing techniques of various users. However, the issue of offloading subtasks of

multi-user systems and multi-server systems becomes even more difficult as:

1We will use the terms Applications and Jobs interchangeably.
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Figure 4.1: Dependency Task Models

(a) the offloading time may be influenced by the number of contending users

decided by the offloading decisions of other nearby users to the same edge

server and (b) each user can offload a set of tasks, which will also have a major

effect on the scheduling of dependent tasks on each server. To address these

difficulties, We develop the fully distributed offloading algorithm for dependent

tasks hosted on a large number of mobile devices, with the aim of reducing

completion latency.

3) How User Mobility Affecting Task Offloading in Edge Networks:

The user mobility during task offloading is the main property of MEC, which

often presents a significant impact on the efficiency of the task execution. We

assume that the mobile edge users will move between edge nodes during a

given mobility period and the future positions and mobile patterns are known

a priori. There are two main ways by which the mobility of users affects

the execution times. Firstly, dynamic workload distribution, which varies

with time, is due to the mobility of users, and some connected mobile users

in each edge server vary. Secondly, the uploading server and task-executing

server in mobile environments are possibly different servers, due to the internal

communication of MEN and workload of computation, and rarely the same.

Still, it has been observed that the work being done in the field of MEC, often

found to disregard user mobility. The intuitive model based mobility of users

has been included in few works [73, 111], yet these are found to be weak in

including the exact impact of user mobility, contributing to the poor efficiency

in dependent task executions with multi-user systems in heterogeneous edge

nodes. Our thesis will present a novel approach of dependency tasks scheduling

algorithms with user mobility in MENs to minimize the delay of task execution

during the offloading process.

Apart from previous studies in chapter 2 either in the computation of-

floading of the dynamic network environment (MEC) or the stable network

environment (MCC), mobility aware scheduling for dependent offloaded tasks

in the distributed edge environment is still not covered in the area of research.
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In this thesis, we are focusing to minimize the dependent offloaded tasks delay

in the edge that will affect the completion time of offload-able tasks after

offloading decision is made. For the above challenges, we present algorithms

for developing an offloading schedule that attempts to minimize the average

completion time of offloaded jobs as we will explain in details in next chapters.

4.1 Problem Challenges

In the traditional computation offloading [22, 23, 54, 55], dynamic allocation

of the tasks in MENs for estimated delay time is unknown. After offloading

decision is made, the offload-able task execution in MEN is hidden from

mobile users. In addition, the traditional offloading considered MEN as a

stable environment with no user mobility, which is a main feature of the MEC.

Current studies have not covered the issue of offloading tasks with dependencies

in distributed edge environment with considering user mobility [17, 49, 66, 111].

In our thesis, we address these problems, either the resource usage estimation

should be done in MEN end C, or a feedback mechanism should be established

for letting the mobile device users U know about the MENs resources (cpu,

queue delay, ..etc ). In addition, we consider dependent tasks in Directed

Acyclic Graph Ji = (Ti, Di) as computation intensive tasks of the edge, which

is a sensitive case during user mobility of computation offloading in the MEN.

Since the communication between edge user U and the edge node C, will be

within the defined range µi.

As a result, to provide the storage facility as well as a computation platform

for mobile device users, the Cloudlets C are constructed in an edge network.

The users are mobile, and their connection may transfer from one Cloudlet

C to another Cloudlet C due to their mobility µi while executing dependent

tasks Ji = (Ti, Di) in the MENs.

For example, an augmented reality navigator should be able to load the map

of some indoor location and also be able to note the mobility of users around

the location. The information regarding the location should be displayed in the

user augmented reality display, but as the user is roaming from one Cloudlet

C to another Cloudlet C throughout the location, the outcome of computation

of the augmented reality application should be delivered to the user through a

different Cloudlet C than that chosen for the execution of the task.

In this situation, scheduling of dependent tasks should be done carefully

so that the independent-tasks (root tasks in level 0) are executed in the most

suitable Cloudlet C, which is near to the user U and must offer the sufficient

resource for the user for finishing the execution of the independent-task to

release and allow the dependent task (child task) to be fired.

To solve this issue, we defined start time ST and finish time FT with each
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task T in a directed acyclic graph (DAG) to schedule dependent task during

offloading in the edge. So, when a lightweight task is offloaded, this can be

executed within the designated period, i.e. as long as the user U establish

a connection to a particular Cloudlet C, the task should be scheduled such

that it is executed in the connected Cloudlet and must be returned to the

user immediately. But if the task offloaded is of heavy weight, which would

be quite large to finish in a single currently, connected Cloudlet of the user,

the task is to be executed in one Cloudlet and then transfer a task result to

another nearby Cloudlet C which fall in the user trajectory. So, through this

mechanism, the Cloudlet C, which is connected to the user when they roam

around the location, can be used for downloading the task result to the user.

This mechanism will help to make the computation offloading in MEN during

user mobility more efficient and effective with reducing the delay time during

the offloading process.

Current studies and recent studies [17, 49, 66, 111, 111] assume at least

one of these assumptions to avoid the challenges that we solve and cover in

our thesis:

• Assuming independent tasks (without considering the issue of offload-able

dependent tasks),

• Assuming static users (without considering the user mobility during the

offloading process and task roaming between edge nodes),

• Assuming a central server that performs the offloading on behalf of users,

• Focusing on a single user (without considering the multi systems during

the offloading process from both sides: edge users side and edge nodes

side).

4.2 Model Definitions

In this section, we introduce a number of extra concepts that are required for

defining the problem and are based on those introduced in Chapter 3.

4.2.1 System Model

We have explained the system model in Chapter:3 with details of edge user

model, application model, edge network model and mobility model.

Definition 1 (Schedule)

S : T × τ → C ∪ {⊥} (4.1)
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The scheduler S essentially captures the time at which which a given task

T j
i ∈ T is resident on a cloudlet Ck ∈ C.

Definition 2 (Decision Variable) We define a decision variable d(T j
i , Ck)

to ensure that all the jobs can be offloaded to the cloudlets as follows:

d(T j
i , Ck) =

1, if task T j
i is executing on MEC Ck

0, otherwise
(4.2)

where d(T j
i , Ck) = 1 representing that task T j

i has been offloaded and will

execute on the edge node Ck.

4.3 Problem Statement

We view the task offloading problem as a scheduling problem whereby a job

can be offloaded to an edge node (cloudlet) only if the mobile device is within

communication range of that node during the offloading process. Given a set of

users, each with a job to execute and an edge network, our offloading algorithms

will offload and schedule the the different tasks of a job onto cloudlet nodes

such as to minimize the offloaded job completion time. More specifically, we

should decide 1) the task placement to best edge node during the offloading, 2)

the user mobility at different speeds during offloading, and 3) the uploading,

execution and downloading order of the jobs on edge nodes. The main objective

is to develop offloading algorithms for scheduling a job that consists of a set of

dependent tasks onto an edge network so as to minimise the completion time

of the job.

Formally, the problem specification is as follows.

Given:

• A network G = (C,L) where

• C is the set of all cloudlets in the edge.

• L is the set of links between cloudlets in the edge.

• U is the set of all users with offloading tasks.

• Tasks are represented as directed acyclic graph Ji = (Ti, Di)

Each cloudlet Ci ∈ C has processor capabilities, queue store and queue capacity

to execute tasks during the offloading process. Edge users will move between

edge nodes and each user will offload a task to a cloudlet, where the job is

represented as Directed Acyclic Graph (DAG) Ji = (Ti, Di). Each job has a set
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of dependency tasks and each user has at least one job Ji during the mobility

as :

U = {U1, · · · , Un},where each Ui = (Ji, µi)

Ji = (Ti, Di),with Ti = {T 1
i , · · · , T

|Ti|
i }

(4.3)

Mobility is a function that takes a time instant and returns the set of cloudlets

in mobile user range as µi : τ → 2C .

To capture the completion of a job under a schedule S (Definition 1 -

Eq 4.1), we define the finish time (FT) of a job Ji (of user Ui) under schedule

S, as follows:

FT (Ji, S) = maxt∈Ti(FT (t, S)) (4.4)

We define the offloading time of a task T j
i of user Ui on cloudlet Ck, denoted

by OT (T j
i , Ck), as the minimum time t when S(T j

i , t) = Ck, i.e.,

OT (T j
i , Ck) = min{t|S(T j

i , t) = Ck} (4.5)

We say that a task T j
i has not been offloaded if ∀t ≥ 0, ST (T j

i , t) = ⊥. The
scheduler will take a set of tasks from all users and the time and will return the

cloudlet where a task has been offloaded to. Our main objective is to minimize

the finish time job Ji of a user i during offloading process to the edge as:

argminS FT (Ji, S),∀i, 1 ≤ i ≤ n (4.6)

We also define a binary variable as follows, to capture the offloading schedule

of a task on a cloudlet:

T j,k
i =

1, if ∃t > 0, S(T j
i , t) = Ck

0, otherwise
(4.7)

After that, we develop offloading algorithms as we will explain in next chapters.

We also consider the high level constraints of such offloading schedules and

subsequently consider the actual offloading timing process in our algorithms.

4.4 Computational Offloading Constraints

In this work, we have developed a computational offloading model to calculate

the total time required for a job to finish execution during the offloading process.

The total time consists of five times, namely the start time, the queue waiting

time, the execution time, the reply transfer time and the result downloading

time.

The start time of a task is the time at which a task is ready to to be
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Figure 4.2: The relationship between different times during offloading.

executed. For a dependent task t, the start time can only occur after all of t’s

parents have completed and their results transferred to the cloudlet where t

resides. The queue time is the time the task t is waiting in the queue of the

cloudlet to be executed. The task execution time is the time the CPU takes

to complete the execution of task t in the cloudlet. The (result) transfer time

is the time it takes to transfer the result of the execution from one cloudlet

to another, based on the type of dependency.The result download time is the

time of sending the job result back to the IoTD and we consider the type of

dependency during the downloading process. Next, we will explain the edge

time in more details.

1) Start Time: The start time of a (dependent) task on a given cloudlet

can only occur after (all) its parent(s) tasks have completed.

∀Ui ∈ U,∀(T k
i , T

l
i ) ∈ Di, ∃Cm, Cn ∈ C, T k,m

i = 1

∧T l,n
i = 1⇒ ST (T l

i , Cn) ≥ FT (T k
i , Cm)

(4.8)

2) Queue Time: The queue time (Q(T j
i , Ck)) of a task T j

i on a cloudlet

Ck is the time during which that task is in the queue of the cloudlet before

execution.

Q(T j
i , Ck) =

idx(T j
i ,Ck)∑

t=1

E(t, Ck), t ∈ T j
i

(4.9)

3) Execution Time: The execution time (ET ) of task T on cloudlet Ck

is the time it takes for the task to complete execution on Ck. Denoting the

CPU frequency of cloudlet Ck by Ck.freq, the execution time of the number
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of instructions of the task is thus given by

ET (T,Ck) =
(T.num of inst.)

(Ck.freq)
(4.10)

4) Result Transfer Time: The result transfer time (TT ) is the time to

transfer the result from one cloudlet to another. The task result r will be

divided by uploading and downloading rates of the nodes in the edge which is

(T u,d) :

TT (T j
i .r, Cs, Cd) =

size(T j
i .r)

T u,d(Cs, Cd)

Cs, Cd ∈ C

(4.11)

(T j
i .r) is the task result that will be sent to the cloudlet destination Cd that

requires the result. Cs is the source cloudlet that will send the result to Cd.

5) Downloading Time: The transferring time (DT ) is the time to download

the result from a cloudlet to IoTD as:

DT (T j
i .r, Cn) =

size(T j
i .r)

T d(Cn)
(4.12)

The edge completion time CT for the task T j
i will be the total of the five

edge times and will depend on the type of dependency between tasks. There

are two scenarios to model the edge completion time.

The first scenario is the completion time of a (parent-task):

T j,k
i ∧ T l,m

i ∧ (T j
i , T

l
i ) ∈ Di ⇒ CT (T j

i , Ck) = OT (T j
i , Ck)

+ Q(T j
i , Ck) + ET (T j

i , Ck) + TT (T j
i .r, Cs, Cd)

(4.13)

The second scenario is the completion time of a (leaf-task):

T j,k
i ∧ ∀n ∈ Ti, (T

j
i , n) ̸∈ Di ⇒

CT (T j
i , Ck) = OT (T j

i , Ck) +Q(T j
i , Ck) + ET (T j

i , Ck)

+ TT (T j
i .r, Cs, Cd) +DT (T j

i .r, Cn)

(4.14)

4.5 An Example as a Case Study

In this section, a simple example as a case study is presented to show the

offloading process (see Figure 4.3, and Figure 4.4). The application of user
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Figure 4.3: Case Study: Example DAG for a job with 8 Tasks for user i.

Ui, Ji
2, consists of a set of eight tasks, Ji = {T 1

i , . . . , T
8
i }, with dependency

constraints, as shown in Figure 4.3. The job Ji has a set of entry tasks

Ei = {T 1
i , T

2
i , T

3
i } and a set of exit tasks Xi = {T 8

i }. Task T 4
i is dependent

on tasks T 2
i and T 3

i while task T 8
i is dependent on it. During the offloading

process, task T 4
i cannot start until both tasks T 2

i and T 3
i have completed.

Likewise, T 8
i cannot complete until T 4

i has finished. When T 8
i has finished,

then the user Ui can download the result.

In this example case study, the edge network has 13 cloudlets, denoted

C1, . . . , C13, as in Figure 4.4. The mobility model is the waypoint model and,

at specific times, a given set of cloudlets are in range, e.g., during the first

part of the movement, denoted by µ(1), the cloudlets that are in range are

{C1, C4}, during the second part, it is cloudlets {C2, C3}.
At the beginning the scheduler will offload the root tasks (T 1

i , T
2
i , T

3
i ) to

different cloudlets, as shown in Figure 4.4. Scheduler start allocating the tasks

at the root level of DAG (as one by one) (T 1
i , T

2
i , T

3
i ) in such a way as to

minimise the completion time of each task. Since root tasks (T 1
i , T

2
i , T

3
i ) do

not have predecessor tasks, their respective start times ST will be equal to

zero (i.e., they are ready to execute right at the start˙.The algorithm will then

proceed in a breadth-first-search fashion to allocate tasks to cloudlets.

To simulate waiting time, we add the delay time on the available cloudlets

C1, C4, C3, and C2, as shown in Figure (4.4): ( 1s, 1s, 2s, and 2s) respectively.

Finished time FT for the root tasks will be taken on the account the delay time

and the total time of the uploading, execution, downloading and transferring

times between edge nodes during the offloading process. The uploading,

execution, downloading and transferring times are all set to 0.25s, giving a

total equal of 1.0s to be added to the delay time during mapping process.

For example, the start time of task T 5
i is equal to 3.0s and the delay time

2We will use the terms Applications and Jobs interchangeably.

52



Figure 4.4: Illustration for Proposed Case Study

of the best cloudlet C7 is equal to 4.0s, so the updated delay time will be equal

to 1.0s. As the user is moving, we will add it to the start time of mapping

with the defined time of uploading, execution, downloading, transferring to

give a completion time of (5.0s), as seen in Figure 4.4.

4.6 Summary

In this chapter, the distributed offloading problem in edge networks has been

addressed and we explained the main challenges with task offloading in dis-

tributed environment. Current works in offloading suffer from at least one of

these several limitations: (i) assume independent tasks, (ii) assume static users,

(iii) assume a central server that performs the offloading on behalf of users or

(iv) focus on a single user. On the other hand, in this thesis, we address all

these challenges together by developing the algorithms for offloading dependent

tasks by multiple mobile users. Overall, we give a simple example as a case

study to explain more the offloading process with dependent tasks and the

user mobility.
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Chapter 5

Scheduling of Dependent Tasks in

Edge Networks Using a Centralised

Delay Server

Cloud computing has enabled the on-demand availability of computing re-

sources and power to end users. Often, the cloud resources predominant today

have functions that are distributed over multiple locations, remote from the

actual users. Due to issues of communication latency, these services are now

being put at the periphery of the network, now called edge computing. When

these services are being accessed by mobile users, such a network is called a

Mobile Edge Network (MEN). A MEN consists of a number of base stations

or cloudlets that execute tasks on behalf of users, i.e., users offload tasks to

the MEN nodes which then execute them before returning the results to the

users. This chapter focuses on the novel problem of scheduling dependent

tasks on the MEN with the objective of reducing the completion time of the

job. We formalise the problem as a constraint satisfaction problem and we

provide a heuristic for scheduling the dependent tasks. We conduct simulation

experiments in the ns-3 network simulator to study the performance of the

proposed heuristic and we have implemented the datasets in CPLEX (PULP)

optimization. We run a deployment with Face Recognition app (android studio)

and Flask server side. Our results show that (i) it is impossible to obtain a

schedule when the speed is very high, (ii) when the speed is low, it is better

to allow the tasks to run locally on the mobile device and (iii) when a MEN

schedule is obtained, the reduction in completion time is proportional to the

size of a job. For instance, in our work, we obtained completion times reduction

of ≈ 45%.
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Figure 5.1: System Model

5.1 Models

In this chapter, we developed the model as a constraint satisfaction problem

with a user device (client), the edge nodes (cloudlets), and a mobility model

which considers different speeds of movement. We provide a heuristic algorithm

for scheduling the dependent tasks during user mobility and we perform

extensive simulations using ns-3 with three different job graphs. We model

the problem using Integer Linear Programming (ILP) in CPLEX and PULP

[13, 45] and obtain the optimal offloading strategy. Finally, we create a small

testbed by using Flask server and obtain a set of dependent tasks using a Face

Recognition Application [39, 100]. We provide further details in next sections.

5.1.1 System Model

The system model is depicted in Figure 5.1. The system consists of a client

moving along a given trajectory and MEN of cloudlets. Given that the schedul-

ing problem is intractable, exponential complexity seems unavoidable (unless

P=NP). An optimal solution to the scheduling problem can be obtained when

network-wide information is available. However, to avoid the exponential

complexity and to obtain a good schedule in reasonable time, our system model

will provide network-wide information and we seek a heuristic approach. In

the following sections, we provide information about the various aspects of the

network that are needed.

Delay Server: To gather network wide information, we further assume that
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there is a server that, when queried at time τ , returns the delay associated with

each cloudlet at τ . This server is required as it will allow the user to decide

whether to postpone offloading a task to the MEN to a later cloudlet (rather

than one which is currently in range). In essence, this delay server allows the

user to get network-wide delay, i.e., the delay server simulates the case where

there are multiple users in the network.

The client, cloudlet and mobility models are as explained in Chapter 4

5.1.2 Offloading Model

Definition 3 (Schedule) We first define a schedule as follows: a schedule

is function S : T × τ → C that takes a task T j
i ∈ T and a given time t and

returns the cloudlet c onto which T j
i needs to be at t.

Thus, the problem is as follows: Given a job J = (T,D), where T is the set

of tasks and D the dependencies between the tasks, a set C of cloudlets, a

mobility pattern (sequence of sets of cloudlets), which we denote by µ, develop

a schedule such that certain constraints are satisfied, which we detail below.

Tasks and the node of the edge have the following metadata:

• node: The node on which the task will be offloaded to, based on the

schedule.

• size: The size of the task, in terms of code footprint and data.

• result: The result of the task after completion.

• offloading time: The time at which the task is offloaded to the selected

node.

• start time: The time at which the task execution starts on the selected

node.

• execution time: The (worst case) execution time of the task on the

selected node.

• finishtime: The time at which the task completes on the selected node.

• uprate: the rate at which data can be uploaded, i.e., upload speed.

• freq: The frequency of the node’s CPU.

• delay: The delay associated with the node at a given time.

Henceforth, we will denote by t.x (resp. n.x), the value of attribute x of task t

(resp. node n). We will also denote a task using small letters whereas we will
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use capital letters to denote a set of tasks.

Given a job J = (T,D), we define a function called FinishT imeS , the

finish time of the job T under schedule S as follows:

FinishT imeS(T ) = max{t.finishtime | t ∈ T} (5.1)

The objective of the scheduling problem is to minimize the execution time

of the job, i.e., maximising the reduction in execution time as compared to a

local computation. Thus, we formulate the objective as follows:

Minimize:

argmaxMS |FinishT imeMS(T )− FinishT imeLS(T )| (5.2)

Subject to:

∀t ∈ T, S(t) ̸= ⊥ (5.3)

µ(FinishT imeMS(T )) ̸= ∅ (5.4)

∀t1, t2 ∈ T, t1.node ̸= t2.node (5.5)

∀t ∈ T · t.node ∈ µ[t.OffloadT ime] (5.6)

∀t1 → t2 ∈ D, t2.starttime > t1.finishtime (5.7)

As we can see with the above constraints, the first condition captures the fact

that all tasks need to be offloaded to an edge node. The second constraint is

that, the client needs to be within communication range of a cloudlet when

the job finishes so it can receive the final result. Since µ is the sequence

of sets of cloudlets (mobility model), this means that, at the time the job

completes, there should still be at least one cloudlet within the range. The

third constraint means no two tasks can be offloaded to the same cloudlet. The

fourth one means a task can only be offloaded to a node with which it is in

direct communication with. For the last constraint, where there are two task

dependencies, the dependent task can only start after the main task completes.

Local Finish time: The objective is to maximise the difference in comple-

tion time between an offloaded job and the job being run locally on the device.

The local completion time of the job is given by :

F (T, L) =
∑
ti∈T

e(ti), (5.8)
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Finish Time in Edge: We now detail how the various attributes of a

task is computed when a job is offloaded. The following are two important

constraints:

∀t1 → t2 ∈ D · t2.starttime ≥ (t1.finishtime+ TransferringT ime(

t1.result.size, t1.node, t2.node))
(5.9)

∀t1 → t2 ∈ D · (t2.offloadtime ≤ t1.finishtime+ TransferringT ime(

t1.result.size, t1.node, t2.node))

(5.10)

The first condition means that the start time of a dependent task t2 has to

be after the finish time of the main task t1 and after the result has been

transferred from the node executing t1 to the node executing t2. The second

condition means that a dependent task t2 has to have been already offloaded

to a selected node before its main task has finished executing and the result

has been transferred to the required node, i.e., the result will ”wait” for the

task. The offload time of a task t on cloudlet c is given by:

t.offloadtime = τ + ⌈ (t.size)

(c.uprate)
⌉

t.node = c, τ = min{α|c ∈ µ(α)}
(5.11)

A task is offloaded onto a cloudlet as soon as the cloudlet becomes in direct

communication with the mobile device and it is resident on the edge node. The

completion time of a task is given by:

t.finishtime = t.starttime+ t.executiontime (5.12)

After a task has been offloaded, the latest it will wait before starting

execution is either when the delay is expired or when the results it depends on

become available:

t.starttime = t.offloadtime+max(t.node.delay, t′.resulttime+

TransferringT ime(t′.result.size, t′.node, t.node)), t′ → t
(5.13)

The execution time of a task on an edge node will depend on the number

instructions of the task and the cloudlet computation resources:

t.executiontime = ⌈ (t.size)

(t.node.freq)
⌉ (5.14)

The result time of a task is the time at which all the results needed from its
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parents tasks become available. This is computed as follows:

t.resulttime = max{p.starttime+ p.executiontime(p.node)+

TransferT ime(p.result, p.node, t.node)|p→ t}
(5.15)

The last term, TransferTime, denotes the time taken for transferring results

between nodes of the edge network, as the MEN is completely connected.

TransferTime takes in three parameters, (r, s, d), where r denotes the result of

the task, s denotes the source of the results and d denotes the recipient node

of the result. Thus, TransferTime is given as follows:

TransferringT ime(r, s, d) =
(r.size)

(Tx.rate(s, d))
(5.16)

5.2 Integer Linear Programming (ILP) Model:

We develop ILP (Integer Linear Programming) Model to find the optimum

allocations of the offloading dependency tasks to the edge with the minimum

finish time as shown in Figure 5.2. We defined the linear objective function,

constraints, decision variables and the solver. The objective function was

represented as a linear equation to find the optimal dependency tasks allocation

in the edge with the best minimum execution time during the allocation

process.We defined the constraints as linear inequalities to delimit the solutions

to the problem and the optimal solution that meets the conditions sought by

the main objective function. We defined three constraints: (i) each task among

dependencies should be allocated to only one cloudlet, (ii) the cloudlets in the

edge cannot be reused more than one time, (iii) representing dependency in the

DAG with parent and child tasks as shown in the DAG of Figure 5.2. Since

we consider the user mobility as a sequence of a set of cloudlets in the path of

the user, the child task should be allocated to the cloudlet node that follows

the parent task’s cloudlet node. So, we represent the user mobility paths as

a sequence of cloudlets that have unique (IDs) in ascending order, where the

selected cloudlet node ID for the child task should be greater than the cloudlet

ID for the parent task. We have represented the decision variable in the model

as a binary variable (0,1) to allocate the dependency tasks to the cloudlets in

a simplex method using the CPLEX Solver [13].

The resource allocation problem is as follows: Given a job J = (T,D),

where T is the set of tasks and D the dependencies between the tasks, a set

C of cloudlets, a mobility pattern (sequence of sets of cloudlets with unique

(IDs) in ascending order to represent the user mobility). Tasks and the nodes

of the edge (cloudlets) have the following metadata that are represented as

numbers in the ILP model. Cloudlet (C): the edge node to which the task
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will be allocated based on the allocation decision, where it has unique CPU

capabilities (cfreq.) for each node in the edge. Task size (ti): the number of

task instructions that will be executed on the edge node. Server delay time

(cd): the delay associated with the edge node (cloudlet) at a given time. After

defining the variables with numbers , we defined the allocator (ALOC) as a

binary decision variable with (0, 1):

ALOCT
C =

1, if tasks T allocate to the node on the edge C

0, Otherwise
(5.17)

Given a job J = (T,D), we define a function called Completion Time (CT) ,

the total completion time of the task T under the allocator ALOC as follows:

CTt,c = max{Execution T ime (t,c) + Edge Delay T ime (cd)}

where,Execution T ime (t,c) = ( ti / cfreq.)
(5.18)

The objective of our allocation problem is to minimize the execution time of

the job and allocate the dependency tasks to the best cloudlet in the edge that

satisfying the objective. Thus, we formulate the objective as follows:

Minimize:

min
∑

∀t∈T ,∀c∈C
ALOCt

c · CTt,c (5.19)

Subject to: ∑
∀c∈C

ALOCt
C = 1 (5.20)

∑
∀t∈T

ALOCt
c ≤ 1 (5.21)

∑
m+ALOCtl

CID +ALOCtk
`CID

= 1

CID < `CID, ∀(CID, `CID) ∈ C

StartT ime(tl) ≥ FinishT ime(tk), ∀(tk → tl) ∈ D

where, m is defined as a binary variable (0, 1)

(5.22)

5.3 Integer Linear Programming (ILP) Evaluation

We installed Python 3.6 with the PULP module [44, 45, 76, 77]. The experiment

was carried out using Linux (Ubuntu) with processor CPU: Intel i5-2400 4

cores, GPU: NVD9, and RAM: 16 GiB. We modeled the dependency tasks

with DAG of (8-tasks) as shown in (Figure 5.2), and we modeled the edge

network as (30-cloudlets) which have unique IDs. Each task has its unique

number of instructions and each cloudlet has unique CPU capability and delay
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time groups. We defined global variables that keep track of the total tasks

and cloudlets and arrays to store datasets of cloudlet CPU, cloudlet delay

times and the number of instructions in the tasks. To define the optimization

problem in PULP we used the function LpProblem to define the ILP problem

and LpMinimize to specify it as a minimization problem based on our objective.

We created a new array called ”completion˙time” to store the computations

of the total completion time for a given task to a given cloudlet as mentioned

above in equation (5.18). We defined the allocator (ALOC) as a binary decision

variable to represent the strategy of resource allocation based on our objective

as mentioned in equation (5.17).

We have represented the dependency tasks of DAG with child task and

parent task as the order of the DAG in (Figure 5.2) shows. To model the

mobility model in the ILP, we have to make sure the cloudlet selected for the

child node was be greater than that of the parent nodes. All cloudlets have a

unique (IDs) in ascending order which helped to determine the order of the

cloudlets. We used the same datasets of the delay groups in ILP model and

SOLVER

Dependency Tasks

t1 --> Cloudlet-1
t2 --> Cloudlet-3

t8 --> Cloudlet-30

t1

t5

t7 t2

t4 t3

t6

t8 Cloudlet-1

Cloudlet-2

Cloudlet-3

Cloudlet-30

:

:

:

CPLEX-Solver 

User Mobility

ALLOCATOR
(ALLOC)

Figure 5.2: ILP System Model

ns-3 simulation with the Heuristic algorithm. We have compared the results of

the ILP model as optimal solutions and the Heuristic algorithm results that

we got in ns-3. In the ILP model, we run the experiment with different delay

groups (10 delay groups) with 5 increased groups and 5 decreased groups as

shown in (Figure:5.3, and Figure 5.4).

We used two different sets of delay time groups as follows: (i) the further

away a cloudlet is from the starting point, the higher is the delay. We call

this set the increasing delay set and, (ii) the further away a cloudlet is from

the starting point, the lower is the delay. We call this set the decreasing delay

set. The increasing delay sets are labelled delay D-0 to delay D-4, while the

decreasing delay sets are labelled delay D-5 to delay D-9.

Increased delay groups with heuristic algorithm with different user speeds
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were close to the optimal results from the PULP. With delay groups, D-1 to D-4

with respect to the network variables and user speeds, our heuristic algorithm

was almost optimal as shown in (Figure 5.3). This is due to the fact that the

smallest task completion times happen at the start of the journey, thereby

reducing the job completion time. So with small delay groups in the edge it is

better to offload the task early and make it run on the edge.

On the contrary, as observed for the decreased delay groups, D-5 to D-9,

our heuristic algorithm was far from the optimal solution as shown in (Figure

5.4), even accounting for the network fluctuation and user speeds. This is due

to the fact that a user cannot know that shorter delay will happen at a later

time and can thus defer the offload, i.e., due to the user having only local

delay information. As a result, it is better to run the task locally in the mobile

device when the edge has a pressure of the delay time.

5.4 Heuristics Offloading Algorithm

In this section, we present a heuristic offloading algorithm that returns a

schedule for a job with dependent tasks in an edge system. As previously

mentioned, the mobile device will query the delay server for the delays at the

various edge nodes. Our heuristic will then use the delays and the edge network

to determine an offloading schedule that will reduce the computation time of

the job. The multiprocessor scheduling problem with precedence constraints is

known to be an NP-complete problem. To circumvent the complexity of the

problem, we developed a heuristic that would provide good enough solutions

for several instances of the problem. The heuristic attempts to reduce the

completion time of the job by reducing the finish times of individual jobs. The

heuristic is shown in Algorithm 1. We will explain the algorithm in details as

follows:

• (Lines 1-15): To attempt to reduce the completion time, the heuristic

shown in Algorithm 1 offloads tasks as soon as possible onto an edge

node even before the parents have completed. Since no dependency exists

for the root tasks, they can be scheduled as soon as they are ready. Thus,

if there are r tasks, then the first r edge nodes need to be selected and

tasks assigned to them in such a way that reduces their completion times.

• (Lines 16-22): The scheduling algorithm then uses this information to

decide when and where to schedule child tasks. The set of possible nodes

where a task T can be scheduled is calculated based on the computation

times of its parents. Specifically, the set of nodes will comprise those
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nodes that are directly reachable from when one of its parents first starts

executing till the last of its parents completes.

• (Lines 23-41): The last check, i.e., the decision whether to offload or

not, is based on whether the completion time is smaller than the local

computation time. This can happen, for example, when the delays on

the edge network are commensurate with the mobility time. Among the

possible nodes, we assign nodes to tasks so as to reduce the completion

time of the task (Line 28). Of course, it is possible that no schedule

exists if, for example, the user is moving too fast and runs out of edge

nodes. Then, the algorithm assigns values to task attributes according

to equations derived earlier.
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We will illustrate the algorithm with an example of DAG (8-tasks) as

shown in Figure 5.5, which consists of three levels and 8 dependency tasks as :

(t1 → t5), ((t1, t2)→ t7), ((t2, t3)→ t4), (t3 → t6) and (t4 → t8). We consider

in this example the user mobility pattern has a sequence of set of cloudlets

in different time unit as: µ(1) = {C1, C4}, µ(2) = {C2, C3}, µ(3) = {C5},
µ(4) = {C7, C8}, µ(5) = {C6, C9}, µ(6) = {C10, C12}, µ(7) = {∅}, µ(8) =
{C13, C11}. Scheduler will check the set of cloudlets are bigger than or equal

to the set of tasks before mapping process (Line 1-6). In level 0 of DAG we

have root tasks: (t1, t2, t3) and on the first two unit times of mobility model

we have µ(1) = {C1, C4}, µ(2) = {C2, C3}. Scheduler will sort root tasks

according to task ids and allocate each to set cloudlets in mobility pattern

after check: |µ(1) ∪ µ(2)|≥ |R| whereas, |R| is the set of root tasks in level 0

(Line 7-8). In level 1 of DAG we have set of dependent tasks (t5, t7, t4, t6) with

start time bigger than or equal to the maximum finish time of the root tasks

(t1, t2, t3). In the level 2 (t8) will start after max finish time of (t4) and the

process of mapping will be completed with this task as it is the last leaf node

of the DAG. Scheduler will calculate maximum finish time for set tasks and do

mapping with set capable cloudlets in different unit time. After calculating

the expected delay time and execution time for set tasks with set of cloudlets,

scheduler will assign tasks to set of cloudlets that help to reduce delay time

with dependency tasks (Line 10-21). To start with the new level of the DAG,

scheduler will check the DAG to offload all tasks at the current level to the

available cloudlets with repeating previous steps (Line 22-34). The offloading

to the edge will be recommended when the completion time in the local device

take long time of the task execution (Line 36-41).

We implemented the heuristics algorithm in a ns-3 simulation as shown in

(Section-5.5) and we implemented it with a real life application of dependency

tasks as shown in (Section-5.6). In the real deployment, we configured two

parts of the system: client (mobile device) as one user and six edge nodes

as (cloudlets). The deployment was run at the University of Warwick with

user walking mobility. We created a Facial Recognition application in Android

studio modelling the recognized pictures as dependency tasks in six levels of

the DAG. We will go with details in the next sections.

5.5 ns-3 Simulation

In this section, we first present the experimental setup for the simulation

experiment conducted to evaluate the proposed heuristic algorithm. We then

present a sample of the results of the evaluation with ns-3 with different DAG(s)

as shown in Figure 5.5. We will summarize them as follows:
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5.5.1 ns-3 Experimental Setup

The scheduler was written in C++. It takes the following as input: (i) the job

(as a directed acyclic graph), (ii) the delays of the various edge nodes, (iii) the

mobility model and (iv) the edge system topology. The scheduler then returns

the offloading schedule for the task set. The client then used the generated

schedule to offload the task in real-time. For the actual offloading, we used

ns-3, an open and extensible discrete network simulator for internet systems.

It provides various communication technologies, such as Wi-Fi functionality, in

order to simulate a wide variety of communication scenarios. The parameters

and the values used in the simulations are summarized in Table 5.1.

Table 5.1: Simulation Settings in Chapter 5

Parameter Value / Range

Total Job Size 10 ~35 MB
Mobility Model WayPoint Mobility Model
Cloudlet Position Constant Position Mobility
Moving Speed of the Mobile User 0.5, 1.0, 1.5, 2, 3 [m/s]
Cloudlets Uplink/Downlink DsssRate 5 ~ 11 Mbps
Intra MEN Transmission Rate 1000 Mbps
Cloudlet CPU Frequency & Instruction Set 2.0 Ghz & CISC
Mobile Device CPU Frequency & Instruction Set 2.0 Ghz & RISC
Acceleration ratio between CISC and RISC 10 ~ 50
CPU Cycles Required by One Task 2× 108 ~ 2× 109

The ratio of input/output data size 2:1
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t4t7

t3

t6t5

t1 t2

t4t7

t3

t11 t10 t8 t9

t12 t13 t14 t15

t3t1

t2t4

Figure 5.5: Directed Acyclic Graphs with (4 -Tasks, 8 -Tasks, and 15 - Tasks )

We used the WiFi-Phy 802.11-b standard configuration in ns-3 as we have

modelled the cloudlet subsystem as a mobile edge network (MEN) in our work

[46][89]. The data transmission uplink/downlink speed between a mobile device

and a cloudlet is set to be in the range of 5 Mbps to 11 Mbps with the WiFi-Phy

model. Furthermore, the data transmission uplink/downlink between cloudlets

is set at 1 Gbps, as an Ethernet connection in a point-to-point model. We have

used the waypoint mobility model for the client moving with the mobile device.
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Each object in a waypoint mobility model determines its speed and position at

a given time from a set of waypoint objects. The protocol used for the com-

munication between a mobile device and a cloudlet is UDP socket with Type-Id.

Client Setup: Our simulation setup also includes a client with a mobile

device moving at a constant speed at a run. Five different speeds, namely

0.5, 1, 1.5, 2, and 3 m/s, are used in our experiments. The same sequence of

sets of cloudlets was laid along the path of the mobile device, from a start

position to an end position, and the mobile device offloads tasks according

to the schedule generated by the scheduler. We used jobs of sizes1 [10 . . . 35]

MB, in steps of 5MB. The jobs have the same precedences, i.e., the jobs can

be represented using the same DAG. The reason for this is to understand the

impact of different parameters on the resulting schedule.

Network Setup: The simulation process was repeated for all tasks in (DAG)

with different groups of delay times, speeds, and task sizes. We focused on two

different sets of delay times, measured in minutes, as follows: (i) the further

away a cloudlet is from the starting point, the higher is the delay. We call this

set the increasing delay set and, (ii) the further away a cloudlet is from the

starting point, the lower is the delay. We call this set the decreasing delay set.

The increasing delay sets are labelled delay 0 to delay 4, while the decreasing

delay sets are labelled delay 5 to delay 9. We used 30 cloudlets, with each

cloudlet (ci) being labelled with the distance from the starting point. For

example, cloudlet (c5) is 120 m away from the starting point. We used 10

delay sets, with 5 increasing delay sets and 5 decreasing delay sets; the delay

associated with each cloudlet is indicated in the delay array. We run a total

of 300 experiments during the simulation (5 speeds, 6 job sizes and 10 delay

distributions), excluding the baseline computation carried out on the local

device.

5.5.2 ns-3 Evaluation and Results

In this section, we now present the results of our simulation experiments. We

observed that there is an increased relation between the completion time and

the completion distance through the results in ( Figures: 5.6, 5.7, 5.8) and

(Figures: 5.9, 5.10, 5.11). Also we observed that there is an increased relation

between the completion distance and the speed through the results in (Figures:

5.14, 5.15) and (Figures: 5.12, 5.13). Due to reasons of space, we will present

only a sample of the results as follows.

Completion Time: We first investigate the impact of speed on the

1We use the terms Job Size and Total Task interchangeably
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completion time. The results are shown in the Figure 5.6 for DAG with 4 tasks,

Figure 5.7 for DAG with 8 tasks, and Figure 5.8) for DAG with 15 tasks. In

all figures, the X-axis represents the size of the job completed (in MB), while

the Y-axis represents the average completion time. As can be observed, when

the job is fairly small (10-20 MB) in Figures: 5.6, 5.7, 5.8, it is better to

execute the job locally (i.e., on the mobile device). This is due to the case

that the delay associated with each cloudlet induces a large enough temporal

overhead compared to the computation time of the jobs. If all the delays are

small enough to compare with the execution times of the tasks (i.e., the queues

are small), then it may be possible to schedule a job in the MEN. On the other

hand, when the size of the job is higher in Figures: 5.6, 5.7, 5.8, then the

heuristic suggests that the job is scheduled in the MEN, as the jobs takes longer

to execute. Then, the total computation time of the job in the cloudlet is less

than the local computation time. From a job of size 20-35 MB, the reduction

in completion time becomes more significant as the job size increases.

Completion Distance: In this part, we have the distance graphs which are

related to the same graphs in the completion time part: (Figures: 5.6, 5.7, 5.8).

The Figure 5.9 (for DAG with 4 tasks), Figure 5.10 (for DAG with 8 tasks),

and Figure 5.11 (for DAG with 15 tasks) show the type of schedule that is

being produced. As we see in (Figures: 5.9, 5.10, 5.11) when the size of a job

increases, the completion distance increases too. Similar to completion times,

this is due to the fact that it takes longer for job to complete and thus the user

needs to move further.. Also, as the speed increases, it can be clearly observed

that the completion distance increases. This is due to the fact that, as the

speed increases, by the time a task completes, the user has already moved a

significant distance. As such, the later tasks are executed on cloudlets that are

further away from the starting point.

Impact of Very High Speed: In Figures: 5.12, and 5.13), the X-axis

represents the total task size (in MB) (it is a total job size for all 8 tasks),

while the Y-axis represents the average completion time. In Figures: 5.14, and

5.15), the X-axis represents the total task size (in MB) (it is a total job size

for all 8 tasks), while the Y-axis represents the distance in meter.

From Figures: 5.14, and 5.15), we can see that the completion distance

increases direct relation to the user’s speed. This suggests that there may be

a cut-off speed at which no schedule exists. Focusing on a small 10MB job

(see the first graph in ( Figure 5.12), it can be observed that all 8 tasks are

scheduled when the delay increases as the user moves along the path (delay

groups 0-4). This suggests that, before the delay got large, all the tasks were

already scheduled. It can also be observed that it was only better for the job

to be scheduled in the MEN for delay groups 0 and 1, i.e., for very small delays.

When the delays get larger, it becomes more beneficial to execute the job
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Figure 5.6: Average Completion Time for ( DAG with 4 - Tasks )
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Figure 5.7: Average Completion Time for ( DAG with 8 - Tasks )

locally. On the other hand, when the delay decreases as the user moves (delay

groups 5-9), some tasks were not scheduled. This can be better understood

by looking at the completion distance of the tasks. For the decreasing delay

group, tasks are scheduled later (on later cloudlets) and the user’s journey is

over before all tasks could complete.

As similar scenario is observed when a large job is executed (see Figure
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Figure 5.8: Average Completion Time for ( DAG with 15 - Tasks )

Figure 5.9: Average Distance (meter) for ( DAG with 4 - Tasks )

5.12). When increasing delays are encountered, scheduling becomes impossible.

In contrast to results ( Figure 5.13), as the size of the job is larger, it is more

beneficial to execute in the MEN for larger delays as it takes longer to execute

the tasks locally. On the other hand, when the decreasing delay groups are

used, some tasks could not be scheduled, while the tasks that were scheduled

completed when the user was far from its starting point.
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Figure 5.10: Average Distance (meter) for ( DAG with 8 - Tasks )

Figure 5.11: Average Distance (meter) for ( DAG with 15 - Tasks )

5.6 Real Deployment with Face Recognition Appli-

cation and Flask Server

This area of work was carried out with the deployment of one user and

six edge nodes at the department of Computer Science in the University of

Warwick as shown in Figure 5.18. For this we have used a Facial Recognition
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Figure 5.12: High Speed with Job Size (10-mb)
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Figure 5.13: High Speed with Job Size (35-mb)
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Figure 5.14: High Speed (distance) with Job Size (10-mb)
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Figure 5.15: High Speed (distance) with Job Size (35-mb)
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Figure 5.16: Representation of A Directed Acyclic Graph (DAG) with Datasets of
Pictures

application with the dependency relating to pictures in six levels of the DAG.

The deployment was in two environments: the mobile device (Android) acting

as one user and personal computers (Linux with Flask Server) acting as

cloudlets of edge nodes [39, 125]. A cloudlet here is a node which is connected

to the Internet and which can be accessed remotely for various purposes like

computation, website, server purposes, etc. It can be of any configuration

(GPU, CPU, Memory, OS, etc.). We decided to use Facial Recognition as

dependency tasks based on our core DAG framework. We started by uploading

one image first, which typically contains one face in the image as shown in the

figures (5.16 and 5.17), the face from the first image will be trained and store

as a reference for all next levels of the DAG.

We created datasets with sizes of: 10, 15, 20, 25, 30, 35 (MB) and each dataset

was considered as a dependency task. The dataset consisted of a collection of

images and each dataset size amounted to the net sum of the size of all the

images in the same dataset. The core logic lies in the processing of the dataset

in the mobile device/ cloudlet. After receiving the dataset, it is processed

by reading each image one by one. The faces from each image are extracted

and compared to previously recognized faces (in the first instance it will only

make a comparison with the face extracted from the first image as a reference).
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Figure 5.17: Representation of A Directed Acyclic Graph in Deployment

Figure 5.18: The Map of Cloudlets Deployment at University of Warwick
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When a particular face matches (found/recognized) with previous faces, we

will train the neighbor faces of the same image. If there are no matches found

we will simply ignore the image and proceed to the next image in the dataset.

We keep iterating this procedure till the end of dataset. Another case is when

faces are repeated multiple times, we keep track of count of repetition of faces

and we also assign a unique generated name for each of them. Then, the same

procedure was repeated for the next dataset on the DAG. At the end, we

display the results of all faces recognized along with their count and display

the details of the task as shown in figure (5.19).

We have used a library called FaceNet for face recognition, which was

developed by Google in the early 2015 and was later open sourced [80, 95]. It

was very useful since it had the option of one shot learning. One shot learning

was essential here since the entire network can be trained by only one facical

image. In order to simplify the use of Facenet model, we generated the model

manually with complicated procedures and exported it as (.h5) and (.pb). The

(.h5) port was created for server side of the cloudlet, which uses Keras on top

of Tensorflow. The (.pb) port was created for Android, which has support for

Tensorflow only. In our work, we have used the Facenet model to take one

input and produce one output. The inputs here are the pixels of face of image,

which have been arranged in a particular order. The output produced is an

encoding/embedding and we stored this encoding of the person in the memory.

Later, if we want to predict someone’s face we should compare their encoding

with the encoding of all previously determined faces (encodings) to see if they

match. For the arrangement of pixels, we consider the image to have 3 channels

Red, Green, and Blue channels. So for each location (2d) on the image we get

access to 3 channels to denote the pixels. We have fixed size for face (96 x

96) in order to make one shot learning accurate. If the face detected is larger

or smaller than this resolution, I will be scaled to 96 x 96. So the total data

would be around 96 x 96 x 3 = 27648. We store them in an array by default

order from face detection using MTCNN. Later we ”Transpose” them with

Permutation of (2, 0, 1) and later divide all the elements of array by 255. Now

this array is considered as an input for our Facenet model.

We use Android Studio software from Google as an environment for devel-

oping the face recognition application [100]. We start the creation by creating

the UI layout. We use RelativeLayout as a base for creating layout as it offers

more flexibility for alignment of inner elements compared to LinearLayout.

We use the default Google material design components for UI and we add

buttons for local, offload, uploading first image, and similarly for dataset. Later,

we have added Recyclerview to display results to our own design (padding,

divider) and content (count, face image, name). Now we start adding the

Tensorflow-Android Gradle to the framework, which contains helper classes
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for implementing the facenet model into any android device. We have imple-

mented our FaceNetHelper class to facilitate loading, unloading, preprocessing,

processing, and computing purposes. The Facenet models are stored as Assets

on Android. They are stored on Assets directory, which will be loaded by

FacenetHelper. For communication with server side, we use a library called

OkHttp with Picaso for working with Flask server on the cloudlet. It provides

a layer to handle get request, post requests along with uploading of datasets to

the cloudlet. In the server side with edge nodes, we have used a web framework,

which is called Flask. Flask is written in Python and it helps to facilitate the

interaction between the cloudlet and mobile device. Flask is basically a web

application framework that could be used to serve web content (http) over

the Internet. In the beginning we initialize all the modules like Keras Engine,

Facenet (loading keras model) and other things before we initialize the flask

web server. Apart from this we create two directories. One for storing the

images to be detected ”Todetect” and another is for storing the trained faces

”Images”. The face images are labeled as assigned person name (PERSON˙1,

PERSON˙2, ... etc).

5.6.1 Testbed Evaluation and Results

In our work, we have two main parts in the implementation: mobile device (as

a user) and the edge nodes (as a cloudlets). We have used Android Studio in

Java to build the face recognition application for the mobile device side. We

have used Galaxy J7 Prime model with Exynos 7870 octa-core processor to run

the experiment of the user side. In the edge side, we have used a Flask server,

which is installed on each node. We have used six heterogeneous processors

with six edge nodes of the edge as personal computers with [Linux OS]. We

have deployed all nodes in the path of user mobility within 200 meters. We

have installed Flask servers in all of cloudlets and we generated the APK file to

the android mobile device. We test the offloading as a user walking within the

range of communication all nodes in the edge. We run the experiment many

times with respecting the network fluctuations. The sizes of the offloaded tasks

were: 10,15,20,25,30, and 35 (MB) respectively. We created datasets with sizes

of: 10, 15, 20, 25, 30, 35 (MB) and each dataset was considered as a dependency

task. The dataset consisted of a collection of images and each dataset size

amounted to the net sum of the size of all the images in the same dataset. We

run the experiment many times to get the average of completion time during

the user mobility in different network conditions. As we see in figure (5.21), we

investigate the impact of user mobility on the completion time. The result is

shown in the first graph as a good condition of the signal communication that

means user was close to the edge during the mobility. The X-axis represents the
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(a) First Screen (b) Second Screen (c) Third Screen

Figure 5.19: Face Recognition Application in Client Side

Figure 5.20: The Flask Server in Cloudlet Side

size of the job completed (in MB), while the Y-axis represents the completion

time. As can be observed, when the job is fairly small (10-20 MB), it is better

to execute the task locally on the mobile device. This is due to the case that

the communication time for offloading/downloading-required time that will

not count locally. If the network stable during communications then it may be

possible to schedule the smaller sized tasks in the edge. On the other hand,

when the size of the task is bigger, it is better that the task is executed in the

edge, as the tasks takes longer to execute locally in a mobile device. As we

see from the results, the total completion time of the tasks in the cloudlet is

less than the local completion time in mobile device handling larger task sizes.

The result of the ns-3 simulation with the big size task matches the result of

the real deployment.
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Figure 5.21: Testbed: Face Recognition Application and Flask Server with
Tasks Dependency during Network Fluctuation

5.7 Summary

In this chapter, we focused on scheduling a mobile job that consists of dependent

tasks on a set of cloudlets involving user mobility on the edge. Given that

the problem is in general intractable, we provided a heuristic that returns a

schedule that will potentially reduce the computation time in the cloudlet.

We developed an ILP model with the optimal solution and implemented it in

CPLEX solver with the same datasets using a ns-3 simulation. We conducted

a range of simulation experiments using ns-3 with a range of job sizes, mobility
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speed and delay distributions. Finally, we run a real deployment of the heuristic

with a Face Recognition Application and Flask Server. Our results show that,

under certain conditions, it is impossible for the heuristic to return a proper

schedule. We have studied the relationship between delay, speed and job size

and shown that the completion time gain increases with the size of the job.

Overall, we have presented the a heuristic algorithm that returns a schedule

that will potentially reduce the computation time of dependent mobile tasks

in edge computing networks.
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Chapter 6

A Fully Distributed Computational

Offloading Algorithm for Mobile

Edge Computing

Mobile edge computing (MEC) is an emergent technology that helps bridge the

gap between resource-constrained IoT devices (IoTD) and the ever-increasing

computational demands of the mobile applications they host. Edge network

enables the IoTDs to offload computationally expensive tasks to the nearby

edge nodes for better quality of service such as lower latency. Most of the

proposed offloading techniques focus on centralised approaches with a small

number of mostly static IoTDs hosting independent tasks. In this chapter,

we address three major problems: (i) that algorithms assume some central

nodes where information is recorded, (ii) nodes are not mobile and (iii) tasks

are independent. To the best of our knowledge, we develop the first fully

distributed offloading strategy for mobile devices hosting dependent tasks,

where a dependent task cannot start until its parent has completed, with the

aim of reducing completion latency. The main contributions in our work are

summarized as follows: (i) we provide a formalisation of the dependent tasks

offloading problem as an optimisation problem, (ii) we develop a fully dis-

tributed algorithm for offloading the dependent tasks in the edge network, (iii)

we conduct extensive experiments using the ns-3 simulation engine to evaluate

the effectiveness of our distributed algorithm in terms of minimising the task

completion time in the edge, and (iv) we also study the bottlenecks caused

by the algorithms, in this case, queue waiting time and we study the impact

of mobility on the bottleneck. Experiment results show that our offloading

algorithm provides significant improvements in performance compared to the

base case of offloading to a central cloudlet. We provide in-depth profiling

of the network and observe the impact of mobility patterns on completion times.
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6.1 Models

Recent works in edge networks mostly focused on solving the offloading problem

with users being static during task offloading and the communication links

between mobile devices and edge nodes are always available, e.g., [14, 52, 121,

123]. However, such availability assumption is not valid, with mobility users

being a significant challenge in MEC networks that need to be addressed.

Also, to ease the development of offloading strategies, it is typically assumed

that some information about the edge environment is available in a central

repository, e.g., [111]. Similarly, such assumption is limiting as such a server

becomes a bottleneck in the system. These challenges are exacerbated when a

job contains dependent tasks, where a task cannot start executing without its

parent task having completed.

The system consists of multiple users, each having a mobile internet of

thing (IoT) device1, moving from a starting point to a destination point and a

network, called an edge network, that contains a number of powerful computing

nodes known as cloudlets as shown in Figure 6.1. We detailed each component

of the system in Chapter:3 and we have some assumptions that we added in

Edge Network Model as we will explain in this section.

6.1.1 Cloudlet and Edge Network Model

A cloudlet is a computer that is resource rich, i.e., it has a powerful CPU,

sufficient memory and other resources to run resource-hungry applications [111].

We assume a cloudlet to have a large enough buffer which queues execution

requests. We assume a cloudlet will execute tasks in the buffer in a FIFO

fashion [65]. After execution, a cloudlet will take one of three steps: (i) it will

pass the (final) result directly to the user if the user is in range, (ii) pass the

(intermediate) result to another cloudlet which has, in its buffer, a task that

is dependent on the result or (iii) if the user is out of range, pass the (final)

result to another cloudlet which will forward it onto the user. We assume a

cloudlet to have a number of communication interfaces, e.g., WiFi, ethernet.

We assume each wireless network interface to be associated with its own range.

A IoT device can communicate with a cloudlet if both fall within the range

of each other. We assume an edge network to consist of a set of cloudlets

C = {C1 . . . Cm}. Cloudlets has an interconnection network among them and

we model the edge network as a graph E = (C,L), where L ⊆ C × C is a set

of (symmetric) links between a pair of cloudlets. We assume the network to

be heterogeneous, i.e., cloudlets have the same set of computational resources

(e.g., memory, CPU) but vary in capabilities or amount [111]. We also assume

1We will use the terms user and device interchangeably.
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Figure 6.1: System Model

the existence of a base station to which all cloudlets are connected and is

responsible for the inter-cloudlet communication, making the edge network

fully connected.

6.2 Problem Formalisation

Our main objective is to develop a fully distributed algorithm for offloading a

job of dependent tasks onto an edge network so as to minimise the completion

time of the job.

6.2.1 Problem Definition

Given a set U of users, with each user Ui having a job Ji to execute, and an

edge network E, our distributed offloading algorithm allocate the dependent

tasks onto cloudlet nodes so as to minimise the job completion time. Some of

the challenges are: (i) a mobile user can only communicate with cloudlets that

are in range, and (ii) a user can offload a task only after all of its parent tasks

have been offloaded.
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Table 6.1: Key Notations in Chapter 6

Symbols Definitions

OT (T j
i , Ck) Offloading time of a task T j

i on a selected
cloudlet Ck

U The set of all users with offloading tasks

ST (T j
i , t) Start time of a task T j

i of user Ui in a given time
τ

C The set of all Cloudlets in the edge
ET (t, Ck) The execution time of a task t on a selected

cloudlet

T j
i jth task of user i

WT (T j
i , Ck) Waiting time of T j

i in the buffer of selected
cloudlet

S Offloading scheduling function
τ A given time.

FT (Ji/(t), S) Finish time (FT) of Ji (/task t) under schedule
S

Qτ The state of the queue at a given period of time
τ

TT (rji , s, d, T ) Time to transfer result of T j
i from cloudlet s to

d for task T .

6.2.2 General

We define an offloading scheduling function as S : T × τ → C ∪ {⊥} and define

the finish time (FT) of a job Ji under schedule S, as follows:

FT (Ji, S) = maxt∈Ti(FT (t, S)),∀i, 1 ≤ i ≤ n (6.1)

The scheduler essentially captures the times during which a task is resident

on a cloudlet. We then define the offloading time of a task T j
i on cloudlet Ck,

denoted by OT (T j
i , Ck), as the minimum time τ when S(T j

i , t) = Ck, i.e.,

OT (T j
i , Ck) = min{t|S(T j

i , t) = Ck} (6.2)

We say that a task T j
i has not been offloaded if ∀t ≥ 0, ST (T j

i , t) = ⊥. Our

main objective is to minimise the finish time of job Ji:

argminS FT (Ji, S),∀i, 1 ≤ i ≤ n (6.3)

We define a binary variable as follows, to capture the offloading schedule of
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a task on a cloudlet:

T j,k
i =

1, if ∃t > 0, S(T j
i , t) = Ck

0, otherwise
(6.4)

6.2.3 Constraints

We initially consider the high level constraints of such offloading schedules and

subsequently consider the actual offloading timing process.

6.2.3.1 High Level Constraints

The offloading process has a number of properties, namely (i) fairness, (ii)

completeness, (iii) no duplication and (iv) validity.

• Fairness: The scheduler considers some notion of fairness during task

offloading, preventing a user from hogging a given cloudlet. Specifically,

a user cannot offload more than one of its tasks to the same cloudlet:

∀Ui ∈ U, ∀Ck ∈ C, ∀l, l′, 1 ≤ l, l′ ≤ |Ji|, l ̸= l′·

T l,k
i = 1⇒ T l′,k

i = 0
(6.5)

• Completeness: The scheduler will also allocate all tasks of a job to a

cloudlet, for example, to reduce energy consumption on local devices

(though energy usage minimisation is not an objective).

∀Ui ∈ U,∀T l
i ∈ Ti,∃Ck ∈ C · T l,k

i = 1 (6.6)

• No duplication: The scheduler will also ensure that a task in only allocated

once to a cloudlet.

S(T j
i , t

′) ̸= ⊥ ∧ S(T j
i , t

′′) ̸= ⊥ ∧ 0 < t′ ≤ t′′ ⇒

S(T j
i , t

′) = S(T j
i , t

′′)
(6.7)

• Validity : The offload scheduler also considers the communication range

during offloading of tasks to the edge network. We assume a function Ri

that captures the nodes that are in range of a user Ui at a given time, as

follows:

Ri : τ → 2C (6.8)

Then, a user will only offload to a cloudlet if that cloudlet is in range of
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the user at the given time.

OT (T j
i , Ck) = t⇒ Ck ∈ Ri(t) (6.9)

6.2.3.2 Timing Level Constraints

Now that we have provided the high level properties of the offloading

scheduler, we now consider the finer (i.e., timing) details of the offloading

process.

• Start time: The start time of a (dependent) task on a given cloudlet can

only occur after (all) its parent(s) tasks have completed.

∀Ui ∈ U,∀(T k
i , T

l
i ) ∈ Di, ∃Cm, Cn ∈ C, T k,m

i = 1

∧T l,n
i = 1⇒ ST (T l

i , Cn) ≥ FT (T k
i , Cm)

(6.10)

• As a cloudlet will have waiting tasks in its buffer, the start time (ST ) of

a task on a cloudlet is equal to the sum its offload time onto that cloudlet

and its waiting time on that cloudlet. WT is the queue waiting time.

T j,k
i ⇒ ST (T j

i , Ck) = OT (T j
i , Ck) +WT (T j

i , Ck) (6.11)

• Waiting time: The waiting time (WT ) of task t on Ck is the time during

which t is in Ck’s buffer, equal to the sum of execution times of other

tasks before t in the queue.

W (T j
i , Ck) =∑

t∈{ts|S(ts,t′)=Ck,0≤t′<OT (T j
i ,Ck)}

ET (t, Ck) (6.12)

• Execution time: The execution time (ET ) of task T on cloudlet Ck is the

time it takes for the job to complete execution on Ck. Denoting the CPU

frequency of cloudlet Ck by Ck.freq, the execution time of the number

of instructions of the task is thus given by

ET (T,Ck) =
(T.num of inst.)

(Ck.freq)
(6.13)

This definition has been used in previous works, e.g., [111]. However,

the actual execution time may be affected due to issues such as caching

among others.
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• Finish time: The finish time for the task T j
i will depend on the type of

dependency. There are two scenarios to consider, to model the finish

time.

The first scenario is the finish time of a (parent) task T j
i :

T j,k
i ∧ T l,m

i ∧ (T j
i , T

l
i ) ∈ Di ⇒

FT (T j
i , Ck) = ST (T j

i , Ck) + ET (T j
i , Ck) +

TT (T j
i .result, Ck, Cm, T l

i )

(6.14)

The second scenario is the finish time of a leaf task, where the final action

is user Ui downloading the result:

T j,k
i ∧ ∀t ∈ Ti, (T

j
i , t) ̸∈ Di ⇒

FT (T j
i , Ck) = ST (T j

i , Ck) + ET (T j
i , Ck) +

TT (T j
i .res, Ck, Cm, Ui) +

(T j
i .res.size)

(Cm. downrate)

(6.15)

• InterCloud Result Transfer time: The intercloud transfer time (TT ) is

the time it takes to transfer the result from one cloudlet to another.

TT (T.res, csrc, cdest, tdest) =
(T.res.size)

(Tx.rate(csrc, cdest))
(16)

6.2.4 Problem Complexity

The problem of scheduling of tasks with precedence constraints to satisfy a

deadline is known to be NP-hard [67]. Such scheduling is a special case of the

problem we pose here, making our problem intractable in the general case. In

this chapter, we provide a distributed algorithm to minimise the finish time of

jobs for every user.

6.3 A Fully Distributed Offloading Algorithm

In this section, we present a fully distributed greedy scheduling algorithm for

task offloading that attempts to minimise the completion time of offloaded jobs.

The user process (see Algorithm 1) and the cloudlet process (see Algorithm 2)

will each execute their respective protocol to manage the interactions between

them.

Each process is made up of a set of variables and a set of actions. Figure 6.2

shows the interleaving of actions from a client perspective with a cloudlet.

Figure 6.2 shows a case where the user remains in the range of a cloudlet between

the time it gets in its range and the time the cloudlet has completed execution
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of the task. As shown in algorithms 1 and 2, After initialization processes in

both sides, the advertise presents in a time unit for a communication purpose

between IoTD and the cloudlet. The client will send the IoTD-id as (i) and

the cloudlet will give the cloudlet-id (J), cloudlet capabilities (J.CPU), and

the cloudlet queue length (J.QL) as show in both sides. First, we will explain

the details of the client process and then the cloudlet process.
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Figure 6.2: Client Interactions With Cloudlets
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Algorithm 1 : User Process i

1: Variables:
2: TaskL : DAG of tasks : t1 · · · tni ← Job Graph
3: ExecT ime[]: Array of execution times.
4: CurrentT : Task
5: CList: List of cloudlets info < id, cpu, ql >
6: Temp[]: Array of unack’ed cloudlet assignment
7: ADV,RESET : Timers
8: WaitFor[]: Array of set of cloudlet ids init ∅
9: allocT []: array of cloudlet id init ⊥

10: result: RES ← Assume result is of type RES
11: THR: Threshold ← Maximum time of ExecT ime[] in selected cloudlets
12:

13: Action Adv
14: upon timeout < ADV, α > expires do ← Advertise Presence
15: BCAST < HEARTBEAT, i >;
16:

17: Action Reset
18: upon timeout < RESET, β > expires do ← Reset Cloudlet List
19: CList := ∅ ;
20:

21: Action Gather
22: upon rcv < HEARTBEAT, (CLid,CLcpu,CLq) > do ← EDGE Infor-

mation (id, cpu, queue)
23: CList := CList ∪ {(CLid,CLcpu,CLq)} ;
24:

25: Action Select
26: upon < TaskL ̸= ∅ > do { ← Choosing Cloudlet
27: if CList ̸= ∅ then {
28: currentT := head ( TaskL );
29: ∀ C ∈ CList do {
30: execT ime[C] := ( size(currentT )

C.cpu )+ C.ql};
31: if execT ime[C] <= THR then { % do not delay offloading
32: temp[currentT ] := argminC execTime[] ← cloudlet with lowest

exec time
33: ∀ p , currentT ∈ p.children do{
34: waitFor[currentT ] := waitFor[currentT ] ∪ {allocT [p]};
35: send < i, (currentT, waitFor[currentT ]), temp[currentT ] >
36: set < timer , β >}}};
37: fi;

38: fi;
39:

40: Action Ack
41: upon rcv < ACK( k, i, t) i > do ← Confirmation Process
42: allocT [t] := k ;
43: TaskL := tail(TaskL);
44: execT ime[] := ∞ ;
45:

46: Action Result
47: upon rcv < RESULT, (i, r) > do ← Receiving Result from cloudlet
48: result := r;
49:

50:
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Algorithm 2 : Cloudlet Process J

1: Variables
2: src[]: array of client id.
3: allC := init ∅, src[ ] :=⊥ ,
4: QL := Queue of tasks in Cloudlets, ← Initialization Process
5: Dest: set of (cloudlet id, client id, task id)
6: Action C-Adv
7: upon < timeout, ∂ > do ← Advertise Presence
8: BCAST < HEARTBEAT, (J, J.cpu, J.ql) >;
9: Action C-Gather

10: upon rcv < HEARTBEAT, k > do ← Collect Clients List
11: allC := allC ∪ {k} ;
12: Action C-Reset
13: upon < timeout, ∂ > do ← Refresh Clients List
14: allC := ∅;
15: Action C-Req
16: upon rcv < c, (t, pc), J > do{← Receive Client Request
17: QL := QL ˆ ⟨(c, t)⟩ ; ← Add Tasks (t) to the Queue (FIFO)
18: src[t] := c;
19: ∀ d ∈ pc do{
20: send < DEPEND, < J, c, t >, d >;← From (DAG)}
21: send < ACK, < J, c, t >, c > };
22: Action C-Proc
23: upon < task (τ) finish processing > do{ ←After Execution
24: if Dest ̸= ∅ then
25: ∀c ∈ Dest do
26: send <J , (c.i, c.t, τ.result), c >;
27: proc := head(QL);
28: QL := tail(QL);

29: else
30: %send result to client; look for cloudlet which has client in its range
31: send < SEARCH, (src[τ ], τ.id, τ.result), ⊥>};
32: fi;
33:

34: Action C-Check
35: upon rcv < L, cid, ct, res) , J > do
36: Res := Res ∪ {(cid, ct, res)};
37: if head(QL) ∈ Res then ← Checking if result is available for task
38: Exec(head(QL)); ← Executing on processor
39: QL := tail(QL);

40: fi;
41:

42: Action C-Depend
43: upon rcv < DEPEND, ( L, i, t) , J> do
44: Dest := Dest ∪ {(L,i,t)};
45:

46: Action C-Return
47: upon rcv < SEARCH, ( s, t, r) , ⊥> do
48: if s ∈ allC then
49: send < RESULT, (i, r) > ← Downloading Process

50: fi;
51:

52:
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Algorithm 1 (for a user) has six actions after defining the variables (Line

1-12), explained below:

• Action Adv: This action sends ⟨HEARTBEAT ⟩ messages to advertise

the presence of a client (or device) i to cloudlets within its range (Line

13-15).

• Action Reset causes a client to reset the list of cloudlets within its range.

As the device moves, the set of cloudlets within the range of a client will

change and the client will periodically reset its list to only keep current

cloudlets (Line 17-19).

• Action Gather will enable a client to listen to heartbeats from cloudlets,

to determine the cloudlets that it can communicate with. The information

the client receives about a cloudlet is the following: (i) cloudlet id, (ii)

cloudlet CPU capability and (iii) cloudlet (buffer) waiting time (Line

21-23).

• Action Select selects the cloudlet that returns the shortest completion

time for a given task, among all cloudlets that are within range at that

given time. This action is the one where the client offloads the task to the

selected cloudlet. It also sends information about any task dependency

to the selected cloudlet. A parameter Threshold THR is used to enable

a user to decide whether it wants to postpone offloading. As such, the

threshold parameter will enable edge nodes to share in task computation,

thereby achieving load balancing (Line 25-38).

• Action Ack is an action that enables a client to receive an acknowledge-

ment from a cloudlet that it has accepted an offload request, by queuing

the task in its buffer. Once an Ack has been received for a task, then the

client proceeds to schedule the next task in the list (Line 40-44).

• Action Result is an action that enables a client to receive the final result

from the selected cloudlet (Line 46-50).

Similarly, Algorithm 2 shows the eight actions of a cloudlet after defining

the variables (Line 1-5):

• ActionC-Adv: This action causes the cloudlet to send a ⟨HEARTBEAT ⟩
message to advertise its presence and capabilities to clients (or devices)

that are within its communication range (Line 6-8).

• Action C-Gather: This action, similar to the client processes, allows

cloudlets to collect the identities of clients that are in their neighbourhood

(Line 9-11).
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• Action C-Reset: This action, similar to the client processes, allow

cloudlets to reset their list of clients in their vicinity. This needs to be

done due to client mobility (Line 12-14).

• Action C-Req: This action queues the request of a client for task

offloading and sends an Ack back when the task has been enqueued. It

also tracks task dependencies (Line 15-21).

• Action C-Proc: This action executes when an task has finished executing,

sending its results to dependents (Line 22-32).

• Action C-Check: This action checks whether results are available before

a dependent task is executed. Else, the task is blocked (Line 34-40).

• Action C-Depend: This action allows a processor to send the result of

a completed task to nodes that have tasks dependent on it (Line 42-44).

• Action C-Return: This action causes a cloudlet to push the result to a

client (Line 46-52).

Table 6.2: Simulation Parameters in Chapter 6

Parameter Value / Range

Map Area 0.5 x 0.5 km
Number of IoTD 10 to 50 Devices
Number of Edge Cloudlets 30 Cloudlets
Cloudlet uplink/downlink 40 Mbps / 40 Mbps
Cloudlet CPU frequency 2 GHz & CISC
Cloudlet coverage radius 40-50 meters
Central Cloudlet CPU frequency 2 GHz & RISC
CPU Cycles Required by One Task 2× 109 ~ 2× 1010

Acceleration ratio between CISC & RISC 10~50
Input Data Size 1.0~4.0 MB
Mobility Model WayPoint Mobility Model
IoTD Moving Speeds 0.5, 1.0, 1.5, 2 [m/s]

6.4 ns-3 Experimental Setup:

This section will first detail the setup for the simulation experiments conducted

in ns-3 to evaluate the performance of the proposed distributed algorithm. We

will subsequently present a sample of the results of the evaluation. The param-

eters of the experiments are shown in Table 6.2. To evaluate the performance

of our proposed algorithm, we use the ns-3 network simulator [16]. We use

parameters that have been used in related works and will be specified whenever

required.
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Figure 6.3: The Variation of Average Completion Times (a, b, c, d) with
Small Threshold = 12s
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Figure 6.4: The Variation of Average of Buffer Size (e, f, g, h) with
Small Threshold = 12s
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Figure 6.5: The Variation of Average of Maximum Buffer Size (i, j, k, l)
with Small Threshold = 12s
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Figure 6.6: The Variation of Average Completion Times (a, b, c, d) with
Large Threshold = 100s
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Figure 6.7: The Variation of Average of Buffer Size (e, f, g, h) with
Large Threshold = 100s
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6.4.1 General:

We have used the WiFi-Phy 802.11-n standard configuration in ns-3 as we

model the cloudlet network as a mobile edge network [46]. The WiFi frequency

is set at 2.4 GHz. The protocol used for the communication between an IoTD

and a cloudlet is UDP socket with Type-Id. The cloudlet transmission range is

set to 40-50 meters. Communication between cloudlets happens over an LTE

network [110]. The other parameters and values used in the simulation setup

are summarized in Table 6.2.

6.4.2 Cloudlet and Edge Network Setup:

We consider an edge network with 30 heterogeneous cloudlets that are uniformly

distributed over the setup area. All cloudlets have fixed positions in all the

experiments. We divided the map into a left side and a right side. The model

assumed is as depicted in Figure 6.1, where all cloudlets are directly connected

to a base station. All cloudlets can communicate with each other via the

base station via LTE. The reason for this is to study the impact of traffic

communication on the cloudlet’s buffer size. We run two types of experiments:

(i) asymmetric mobility and (ii) symmetric mobility. In the asymmetric one,

the IoTDs are split into two groups: 70% of users move from left to the right

side and 30% move from right to left direction to induce higher traffic. The

second experiment is symmetric mobility with 50% on both side of the map.

For example, in an asymmetric experiment with 50 users, 35 users will be

walking left to the right and the other 15 users will move the other way. We

set up the starting point and the endpoint for all users to be in a straight

direction during the mobility. The cloudlet has a task queue which works on

first come first serve basis (FCFS) [65]. A newly uploaded task is added to the

back of the queue.

6.4.3 IoTD Device Setup:

We install WiFi module on each IoTD (client) device and we create 10 . . . 50

clients moving at a constant speed in a given run [46]. Based on previous

research, e.g., [111], we set the input data size of each task to be in the region

of 1 MB to 4 MB. The CPU cycles requirement ranges from 2× 109 cycles per

task (cpt) to ~ 2× 1010 cpt. Besides the difference in CPU frequencies between

the cloudlets and IoTDs, we additionally set the impact of acceleration rate on

CISC and RISC processors as the same CPU settings in [111]. We consider

users to travel at 4 different speeds, namely 0.5, 1.0, 1.5 and 2.0 m/s during

the experiments.
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Application-1 Application-2 Application-i

Figure 6.9: Job DAG for Gaussian Elimination [109]
assumed in this work

6.4.4 Task graph:

As stated before, we model the set of tasks as a DAG due to dependencies as

in Figure 6.9, e.g., [109]. We assume the job to be the Gaussian Elimination

algorithm, whose DAG consists of 4 tasks [109]. We use Breadth-First Search

algorithm (BFS) to order tasks in the DAG.The task parameters are set as

indicated in Table 6.2, which were used in [111].

6.4.5 User Mobility:

For mobility, we use a waypoint mobility model, where each IoTD moves in

straight lines between end points within a given time at a given user speed [61].

For each set of experiments, we set the offloading threshold to two values: (i)

a large one, at 100s and (ii) a small one at 12s.

In Figures 6.14 and 6.12, a higher proportion (70%) of users are moving

from left to right of the area. This will allow us to understand the impact of

user movement on various performance metrics. Each experiment is repeated

10 times and averages are computed accordingly.

6.5 Evaluation and Results

In this section, we now present the results of our simulation experiments. We

show the results that explain the impact of increasing the number of users with

different mobility speeds with big/small threshold to analysis the variation of

average completion times as shown in Figure 6.3, the variation of average of

buffer size as shown in Figure 6.4, and the variation of average of maximum

buffer size as shown in Figure 6.5. Due to reasons of space, we will present

only a sample of the results. We use S, M and B to denote small, medium and
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big jobs respectively.

6.5.1 Offloading to a Centralised Cloudlet

As a base case, we consider the case where each user offloads their 4 tasks to a

central cloudlet (see Figure 6.10). The X-axis represents the number of users

as: (10, 20, 30, 40, 50), while the Y-axis represents the completion time. As

can be observed, when the job is big (label B), the completion time increases.

Also as can be expected, the completion time increases linearly with increasing

number of users.

6.5.2 Average Completion Time

We analyse the average job completion times across all users (see Figures 6.3

and 6.6 (a, b, c, and d)). We make the following observations: (i) the average

completion time increases with increasing job size, (ii) average completion time

increases with increases number of users due to higher number of tasks to be

executed and (iii) the average completion time decreases with increasing speed,

due to the fact that a larger number of cloudlets become in range when users

are moving faster, thereby achieving some form of load spreading. Thus, the

possibility of offloading to a lightly loaded cloudlet becomes higher.

However, given that our algorithm has a threshold parameter to delay

offloading, we conjecture that a large threshold means that delay is not needed.

As such, a job may spend a longer time waiting in a buffer. On the other

hand, a smaller threshold means a delay is preferred. As such, load spreading

becomes possible and possibly leading to load balancing. This is corroborated

by the observations we make, as the average completion times are lower when

the threshold is smaller (see Figures 6.3 (a, b, c, and d) and 6.6 (a, b, c, and

d) respectively) across all speeds and job sizes.

6.5.3 Average Buffer Size/Waiting queue size

We now investigate the impact on buffer size, which we measure in seconds.

By buffer size, we mean the total execution time of the various tasks in the

buffer, that captures the current total waiting time in the buffer. We believe

that measuring buffer size in time units (i.e., seconds) is suitable due to our

focus on mminimizing completion time.

In Figures (6.4 and 6.7 (e, f, g, and h)), we observe that the average buffer

size (i) increases with job size, (ii) increases with the number of users (due to

increasing queue length) and (iii) shows very little variation with increasing

speed. We conjecture that this happens due to the fact that jobs are only

offloaded onto a similar set of cloudlets, irrespective of the speed and that the

set is dependent on the delay threshold. Also, since we conjecture that load
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Figure 6.11: Symmetric Mobility with a Big Threshold Value:
Variation of Average Buffer Size
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Figure 6.12: Asymmetric Mobility with a Big Threshold Value:
Variation of Average Buffer Size

Figure 6.13: Symmetric Mobility with a Small Threshold Value: Variation of
Average Buffer Size
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Figure 6.14: Asymmetric Mobility with a Small Threshold Value: Variation of
Average Buffer Size

balancing occurs at lower thresholds, we also observe that the average buffer

sizes decrease, thereby supporting our intuition (see Figures 6.4 (e, f, g, and h)

and 6.7 (e, f, g, and h) respectively).

6.5.4 Average Maximum Buffer Size

The maximum buffer size is in terms of a maximum waiting time as seconds

and we calculate the average of maximum waiting time of all offloadable tasks

in edge node buffer. To address the last observation, we analyse the average

maximum buffer size in the network in Figures (6.5 and 6.8 (i, j, k, and l)

respectively). We observe that similar patterns concerning the impact of job

sizes and number of users on maximum buffer sizes, when compared to average

buffer sizes.

However, we also observe that the average maximum buffer size is larger

than its corresponding average buffer size (see Figures 6.5 and 6.8 (i, j, k,

and l)) respectively). For example, the average buffer size for a large job for

40 users moving at 0.5 m/s is around 15s, while the average maximum buffer

size for the same large job for 40 users at the same speed is 20s. The same

pattern is observed at various speeds and across job sizes. This is due to the

fact that there are cloudlets that are receiving the “larger” proportion of tasks
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due to them being powerful and such cloudlets are located at the start of the

trajectory.

However, such pattern is not observed in Figures 6.5 (i, j, k, and l), where

the threshold is small. This is due to the fact that, irrespective of whether a

cloudlet is powerful, a user will prefer to delay (low threshold) when a queue

reaches a certain size. Thus, the maximum buffer size is reduced.

6.5.5 Buffer Size Profiling

Earlier, we observed that average buffer sizes were unchanged across various

speeds, when the threshold is high. To investigate this, we profile the size of

buffers in the network. The x-axis represent the distribution of the cloudlets

from left to right.

Figures 6.13 and 6.11 show the buffer profiles under symmetric mobility

with 50% of users starting from both right and left side while Figures 6.14 and

6.12 show the profiles under asymmetric mobility, where 70% of users start

from the left to right of the map area. As can be noticed, under symmetric

mobility and across all speeds, few cloudlets were used in the network, around

30%, when the threshold is high. Due to this, it means that, irrespective of

speed, most jobs are offloaded onto the “early” nodes, which means speed does

not have a noticeable impact on average buffer sizes. On the other hand, when

the threshold is low and at higher speeds, it can be noticed that the buffer size

at every node is roughly similar, supporting our intuition of load balancing at

lower thresholds.

Under asymmetric mobility, from Figures 6.14 and 6.12, under a low

threshold, it can be observed that most nodes are used for offloading, though

load balancing is not achieved, as in the symmetric case. But, as speed

increases, it can be observed that the middle nodes have higher buffer sizes.

This is because, as mobility is asymmetric, nodes from the left get filled quickly,

forcing later users towards the central nodes. For high threshold, the pattern is

different as users tend to adopt a “bin-packing” pattern, making central nodes

less busy.

6.6 Summary

In this chapter, we have formalised the problem of offloading of mobile and

dependent tasks onto an edge network. We have presented the first fully

distributed algorithm for such task offloading, using a delay threshold parameter

to encourage load balancing, thereby reducing completion times. We have

conducted extensive simulation using a standard network simulator, ns-3.

We have shown that our offloading algorithm provides significantly improves
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performance compared to the base case of offloading to a central cloudlet,

sometimes by up to a factor of 10. We have also shown the impact of mobility

patterns on the performance of the algorithm. Since low threshold values yield

good load balancing, there is a tradeoff to be made, whereby lower thresholds

may result in some jobs not completing as users keep looking for better options,

to ultimately run out of options. In all of our experiments, all jobs were

completed.
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Chapter 7

Conclusions and Future Work

This thesis has presented work on the development of algorithms for task

offloading in mobile edge network. However, as in most works, there are

assumptions that have been made and limitations exist in our approach.

In this chapter, we will discuss some of the limitations of the work and

provide avenues for future work as part of the conclusion.

7.1 Thesis Limitations

Computational offloading with dependent tasks and user mobility may be

considered from a variety of perspectives. Primarily this thesis is concerned

with issues that affect the offloading during the user mobility. The analysis of

these issues is conducted mainly in the user mobility mechanism and the edge

nodes connection with the user without failure.

Our user mobility model followed the assumption that the client is mobile

and its travel path is known apriori, i.e., waypoint model with the start

and endpoints known. Though this may be viewed as a limitation, such an

assumption is not unrealistic for the considered application scenario. Essentially,

the user is interested in getting the results of the tasks along the way; the

results may trigger a change of travel plan (in this case, this will be a considered

a “different user”), and thus would not affect the viability of the solution. It

is also worth mentioning that our solution can be still applied even if the

travel path is not known; in such a case only the current location and expected

intermediate destination (rendezvous point) will be specified along with the

tasks. The random waypoint model could be considered a more realistic model,

to be able moving in different directions. However we have not use random

waypoint model because it makes analysis of the results more difficult and

impossible in some scenarios.

Another assumption we have made is that any user can only offload a single

task to a cloudlet, on the assumption that resources should be shared across
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users. This in effect rules out users hogging resources. However, there can be

cases where offloading more tasks onto the same cloudlet can be beneficial,

especially if is expected that the will be lots of communication between the

tasks. We have not addressed this scenario in our work and this is an area for

future research.

Our work using a central delay server was used to be able to mimic the

fact that there are multiple users in the network, thereby allow speeding up

of the simulation experiments. This simplifying assumption was removed in

our distributed solution where each user had to compute the delay at each

server. In effect, the delay server provided network-wide information to users,

allowing them to know whether to defer an offload or not. On the other hand,

knowledge of users are only local and it is very difficult for a user to know if

deferring a task offload is going to be beneficial. We showed, through the use

of threshold, how the process of deferring offloading can be achieved without

knowing network-wide information and we showed that the load is more evenly

balanced when task deferring becomes possible.

7.2 Conclusion

This thesis has focused on developing offloading algorithms to present the novel

problem of offloading and scheduling dependent tasks during the user mobility

on edge networks. The aim is to minimise the completion time of the job

during the task offloading process. Current offloading works in MCC/MEC

suffer from at least one of these limitations: (i) assume independent tasks,

(ii) assume static users (without mobility), (iii) assume a central server that

performs the offloading on behalf of users or (iv) focus on a single user. In

this thesis, we address all these challenges together by developing heuristic

offloading algorithm and distributed offloading algorithm. Initially we outline

problems associated currently with offloading dependent tasks during the

user mobility on MEN. Next, we present a summary of the previous work

performed in developing techniques for computational offloading in mobile

cloud computing (MCC) and mobile edge computing (MEC). In chapter 3,

the information theoretic models focused on practice when the offloading

algorithms are simulated in ns-3 simulator, CPLEX with ILP model, and the

real deployment. Also, we have analyzed and defined the statement problem

of the offloading dependent tasks with explanation of the current offloading

challenges by using a case study. We developed a heuristic offloading algorithm

to offload a job that consists of dependent tasks on a set of cloudlets involving

user mobility on the edge. Given that the problem is in general intractable,

we provided a heuristic that returns a schedule that will potentially reduce

the computation time in the cloudlet. We developed an ILP model with the
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optimal solution and implemented it in CPLEX solver with the same datasets

using a ns-3 simulation. We conducted a range of simulation experiments using

ns-3 with a range of job sizes, mobility speed and delay distributions. Finally,

we ran a real deployment of the heuristic with a Face Recognition Application

and Flask Server.

Our results show that, under certain conditions, it is impossible for the

heuristic to return a proper schedule. We have studied the relationship between

delay, speed and job size and shown that the completion time gain increases

with the size of the job. Next, we have formalised the problem of offloading of

mobile and dependent tasks onto an edge network with multi-users. We have

presented the fully distributed algorithm for such task offloading, using a delay

threshold parameter to encourage load balancing, thereby reducing completion

times. We have conducted extensive simulation using an ns-3 simulator. We

have shown that our offloading algorithm provides significantly improves perfor-

mance compared to the base case of offloading to a central cloudlet, sometimes

by up to a factor of 10. We have also shown the impact of mobility patterns on

the performance of the algorithm. Since low threshold values yield good load

balancing, there is a tradeoff to be made, whereby lower thresholds may result

in some jobs not completing as users keep looking for better options, ultimately

leading to such users running out of options. In all of our experiments, all

jobs were completed. In summary, we developed the offloading algorithms

for mobile devices hosting dependent tasks, where a dependent task cannot

start until its parent has completed, with the aim of reducing completion

latency. We ran extensive simulations using ns-3, ILP model with the optimal

solution in CPLEX and deployment. Our results show that our offloading algo-

rithm provides significant improvement compared to offloading in current works.

7.3 Directions for Further Work

There are a number of future avenues of work that could be undertaken by

expanding on ideas presented in this thesis. This section will begin by describing

immediate ideas through which the algorithms presented could be explored

further, and then present a new area regarding the task offloading in edge

network.

7.3.1 Expand the Heuristic Algorithm with Offloading Failure

In Chapter 5, we formulate the offloading problem of dependent tasks in

edge as a constraint satisfaction problem and we provide a heuristic that

attempts to reduce the computation time of dependent tasks. This model does
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not consider the offloading failure that could happen in connection or in the

edge node during the offloading process. Offloading connection failure that

could happen during the communication between the edge users and the edge

nodes will affect the offloading process. Some connection issues that could

prevent the access to the edge nodes and cause connection failure would be,

for example, user mobility with high speed or weaker bandwidth of wireless

connection. Also, edge node failure or crashes during the offloading process.

Edge nodes may sometimes be unreachable due either to node failure or loss

of service due to being out of communication range. These issues affect the

performance of computational offloading. It is beneficial to extend our heuristic

offloading algorithm by considering solutions for the offloading failures. We

need to consider a waypoint mobility model for the mobility model during

task offloading. We need to use a dynamic programming technique to divide

the problem under consideration into sub problems in order to define the

toleration techniques for the failure assumptions. We will extend the current

heuristic and formulate the problem as an optimization problem involving (i)

task offloading process, (ii) task scheduling process, (iii) mobility mechanism,

and (iv) fault-recovery management as (failure manager). The failure manager

will trace and monitor the failure whether due to the communication failure or

node failure. All failure decisions should be reported in the extension part of

the fault recovery algorithm.

7.3.2 Expand the Distributed Algorithm with Job Priority

In Chapter 6, we developed a distributed offloading algorithm for mobile

devices hosting dependent tasks, where a dependent task cannot start until

its parent has completed, with the aim of reducing completion latency. This

model does not consider the task where a particular job requires priority

completion under time constraints during the offloading process. We can

extend the distributed offloading algorithm by considering two aspects of the

priority job: (i) considering the level of prioritisation set for urgent tasks

with non-preemptive priority queues in the cloudlet, (ii) in the process of

task offloading to the cloudlet, the waiting buffer is allocated on the basis of

priority with updating for new tasks. The system model with the extension

of priority job will consist of edge network model, priority and dependency

application model, computational offloading model and user mobility model.

Priority and dependency application model will consist of a set of tasks with

dependency constraints and application deadline. Each application can be

divided into multiple dependency tasks. We need to model the application Ai

(application of user i) as a directed acyclic graph DAG with entry tasks T ent.
i

(as independent tasks at the root level) and exit tasks T ext.
i (as last tasks at the
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last level). Entry tasks T ent.
i do not have any immediate predecessor tasks and

exit tasks T ext.
i do not have any immediate successor tasks. We model a set of

tasks in an application with dependency constraints Ti = {T 1
i . . . T j

i } between
entry tasks and exit tasks. As such, we will model the application as a directed

acyclic graph Ai = (Ti, Di) where Di ⊆ Ti × Ti and (T j
i , T

l
i ) ∈ Di means that

task T l
i depends on task T j

i . Entry tasks T ent.
i and exit tasks T ext.

i ⊆ Ti. A

task will be associated with the following meta-data, at least: ⟨the size of

input data, number of instructions of input data, the maximum delay allowed

to complete the task⟩. Each application has a maximum delay time Tmax
i i.e.

the completion time of the set of all tasks T =
⋃n

i=1 Ti in application(i) <=

Tmax
i . The deadline of the exit tasks T ext.

i in application(i) will be equal or

less than the Tmax
i . We will assume tasks belonging to different applications

are independent of each other i.e. T 1
i ∈ A1

i ̸= T 2
i ∈ A2

i , where 1 and 2 are two

different applications with the same user (i). We will assume tasks belonging

to the same application will have dependency requirements. Each job can be

described in these terms as Ti= {(T j
i .Size), (T

j
i .n), (T

j
i .r), (T

j(max)
i )}, T j

i ∈ Ti

represents one application i, where (T j
i .Size) is the size of input data for a

task j in application Ti, (T
j
i .n) is the number of instructions for a task j,

(T˙iˆj.r) is the task result, and (T
j(max)
i ) is the maximum deadline to complete

the application Ti. The maximum deadline for applications that do not have

priority is : (T
j(max)
i =∞) to be ordered on the normal queue (NQ) as FCFS.

The exit task of the application should be completed before the application

deadline:

(T ext.
i ≤ Tmax

i ) ∧ (Tmax
i = T

j(max)
i )
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