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Causality Relations and Hidden Variable Theories
for the Mermin-Peres Square

Hollis Williams∗
∗School of Engineering, University of Warwick, Coventry CV4 7AL,UK

It is well-known that eigenvalues in quantum mechanics cannot be assigned to physical properties
independently of the measurement context. We argue that it might be possible to relate the contexts
of the Mermin-Peres magic square using causality relations in a way which makes explanations using
hidden variable models unnecessary and unappealing.

I. INTRODUCTION

It is commonly believed that the advent of quantum me-
chanics overthrew classical mechanics, but identifying ex-
actly what it is about the experimental predictions of
quantum mechanics which cannot be recovered in some
sense by classical theories has turned out to be a no-
toriously thorny issue. A debate has raged for many
decades as to whether it is possible for quantum mechan-
ical phenomena to be explained by classical hidden vari-
able theories which introduce unobserved deterministic
hidden realities. The Kochen-Specker theorem is a foun-
dational result which states that noncontextual hidden
variable theories cannot explain the fundamental rela-
tions between physical properties [1]. This in turn im-
plies that quantum mechanics can be interpreted instead
as a contextual hidden variable theory. There have now
been many related proofs of the Kochen-Specker theorem
and no hidden variables, including Greenberger-Horne-
Zeilinger–type proofs, a state-independent proof and
observable-based geometric and graph theoretic proofs
[2-4]. However, the ultimate significance of the theorem
is still unclear, especially as the notion of contextual-
ity has never been given a fully satisfactory explanation.
The issue is not helped much by the fact that noncontex-
tual hidden variable models work for some problems [5,
6]. In fact, it can be shown that given a certain commu-
nication trade-off, classical local hidden variable theories
can always be augmented to simulate quantum entangled
systems [7].

More generally, contextuality (or noncontextuality) is
a property of any system of random variables, where each
variable is labelled by its content (the property being
measured) and its context (the set of circumstances under
which the measurement is recorded, which includes the
other random variables with which it is recorded). There
are several possible notions of contextuality and measures
of contextuality, including the contextual fraction, which
can take values between 0 and 1 [8]. Such a measure
has to take into account the fact that a context can have
a measurement-dependent part and a state preparation
part. Weak measurements can recover contextual values
because their measurement interaction is too weak to es-
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tablish its own context. On the computational side, it
has been shown that various notions of contextuality are
necessary resources for a range of quantum procedures
(including a class of quantum computation schemes on
qubits) [9-11].

The main issue with hidden variables on the physical
side is their apparently ad hoc introduction into the the-
ory to rescue probabilistic measurement outcomes. It has
recently been argued that quantum uncertainties differ
from classical fluctuations because microscopic fluctua-
tions include quantum coherence [12]. Context is estab-
lished by some particular combination of state prepara-
tion dynamics and measurement, where the state prepa-
ration brings quantum fluctuations into the system and
the measurement then samples the fluctuations in a spe-
cific quantum coherent way. For this reason, it would
obviously be very interesting if there were a more physi-
cal explanation as to why properties of a system depend
on the context. In fact, it is not immediately clear that
the Kocken-Specker theorem and related no-go theorems
actually have a physical interpretation without setting
some further requirements [13]. This would perhaps be
more satisfying than the above logical and mathematical
proofs, since it would show that hidden variable theories
are somehow aesthetically unappealing or even unneces-
sary, and that they can be cut away in some philosophi-
cal sense. This is only a statement of principle, however,
since as stated earlier hidden variable models can often
be useful depending on the problem in question.

The discussion of quantum fluctuations and contextu-
ality is clearly linked to the measurement problem, since
several measurement theories in the literature suggest
that these fluctuations represent a dynamical random-
ness [14, 15]. Quantum contextuality enters here because
by contextuality the different possible results which we
observe in different measurements come from the same
randomness, but they appear as different sets of possi-
bilities depending on the measurement dynamics. Since
it is impossible to measure or observe a system without
using a coherent context, it follows by this type of ar-
gument that contextuality cannot be separated from the
measurement problem.

Discussions of contextuality and noncontextuality are
intimately connected with the Kochen-Specker theorem.
However, there is a problem with the usual claim that
the Kochen-Specker theorem removes the possibility of
explaining quantum mechanical systems with noncontex-
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tual hidden variable models, since the standard proofs
of the theorem are not valid if one allows the post-
measurement probability distribution for the hidden vari-
ables to depend on the choice of the set of mutually com-
muting observables chosen for the measurement [16, 17].
Rather than looking for an observable-based proof of the
Kochen-Specker theorem, we will here try to argue that
one can use causality relations to relate the measurement
contexts for a particular arrangement of operators called
the Mermin-Peres square such that hidden variable mod-
els are unnecessary.

II. THE MERMIN-PERES SQUARE

We start with the four-dimensional Hilbert space for a
pair of spin-1/2 particles. Any observable for a single
spin-1/2 particle can be written as a linear combination
of the elements of the Pauli group. The Mermin-Peres
magic square consists of nine operators arranged in a
square matrix as

 σ̂x ⊗ 1 1⊗ σ̂x σ̂x ⊗ σ̂x
1⊗ σ̂y σ̂y ⊗ 1 σ̂y ⊗ σ̂y
σ̂x ⊗ σ̂y σ̂y ⊗ σ̂x σ̂z ⊗ σ̂z

 , (1)

where σ̂i denote the usual Pauli matrices [18, 19]. We

will denote by V̂ij the operator in row i and column j.
The operators in each row and each column are mutu-
ally commuting and can therefore be measured jointly.
Note that the product of the three operators V̂11V̂12V̂13 =
V̂21V̂22V̂23 = V̂31V̂32V̂33 = +1⊗1, as does V̂11V̂21V̂31 and
V̂12V̂22V̂32. However, V̂13V̂23V̂33 = −1⊗1. The operators
which sit in the same row or the same column commute,
but an operator anti-commutes with an operator which
is not in its row or column. Contextual hidden variable
models have been constructed for the magic square [13].
It has also been shown that a noncontexual hidden vari-
able theory is possible for the Mermin-Peres square if
one allows hidden variable states that can be disturbed
via measurement, hence the pre-measurement value of
an observable can be different from its post-measurement
outcome [16].

Assume that the values of the product operators are
not changed by changing the context, in which case it
should not matter if the an operator is measured in a
row of the magic square rather than a column. If we
multiply the products of the three operators in each row,
we obtain

(V̂11V̂12V̂13)(V̂21V̂22V̂23)(V̂31V̂32V̂33) = +1. (2)

On the other hand, if we multiply the products of the
three operators in each column, we obtain

(V̂11V̂21V̂31)(V̂12V̂22V̂32)(V̂13V̂23V̂33) = −1. (3)

This would appear to be something of a paradox given
that the same operators are involved in both cases, so the
values of the product operators must somehow depend on
whether they appear in a row or a column of the square.

In [16], similar relations are written down for a collec-
tion of functions Vij : Ω → R such that the outcome of

measuring the operator V̂ij is Vij(ω), where ω ∈ Ω and
Ω is a set of hidden variables. If Ω and all the Vij are
known, the operator relations for products of rows and
columns suggest a similar relation in the hidden variables
model. Although it is clearly possible to give the magic
square a formal interpretation as a noncontextual hidden
variables model, it is perhaps less obvious why this in-
terpretation should be necessary or desirable. There are
of course other arguments in the literature which try to
show that hidden variable theories are unphysical, but
our suggestion is somewhat different and we will instead
argue that hidden variable theories are in some sense un-
necessary or superfluous [20, 21].

We will start by setting down some notation. Let
S denote the set of observables, where Ai denotes an
observable. In our case, there are nine observables so
S = {A1, ..., A9}. A context Sα is taken to be a subset of
S composed only of mutally commuting operators, where
α labels different contexts. The α-th context is written
as Sα = {Akα1 , ..., Akαm}, where the subscript takes values
between 1 and 9 and m is the number of observables in
the context. In essence, contexts are defined as differ-
ences amongst procedures that are operationally equiva-
lent, so it is possible to have a theory in which a notion
of noncontextuality can be defined although there is no
notion of context [22]. There are a total of six contexts
for the Mermin-Peres square:

S1 = {A1, A2, A3}, S2 = {A4, A5, A6}, (4a)

S3 = {A7, A8, A9}, S4 = {A1, A4, A7}, (4b)

S5 = {A2, A5, A8}, S6 = {A3, A6, A9}. (4c)

To match with the notation used in [16], A1 = V̂11,

A6 = V̂23, and so on. Note that the simplest Kocken-
Specker set which admits a symmetric parity proof has
seven contexts [23]. A value assignment v assigns a value
to an observable in Ai ∈ S, where v(Ai) is an eigenvalue

of the corresponding operator Âi. In the Mermin-Peres
square, all of the operators square to the identity opera-
tor, so v(Ai) = ±1.

III. CAUSALITY RELATIONS

As stated before, the set of operators in a row or a column
(ie. a context) mutually commute in the Mermin-Peres
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square. As an example, the three operators in S3 com-
mute, so they share a common eigenstate. One could
choose the singlet state |ψ〉 such that

(σx ⊗ σy) |ψ〉 = − |ψ〉 , (5a)

(σy ⊗ σx) |ψ〉 = − |ψ〉 , (5b)

(σz ⊗ σz) |ψ〉 = − |ψ〉 . (5c)

An initial state can be an eigenstate of σx⊗σy +σy⊗σx
without being an eigenstate of each operator individually.
Alternatively, the same eigenstate may have a different
eigenvalue, so in general the eigenvalue νσx⊗σy,σy⊗σx for
the sum of two operators will differ from the eigenval-
ues of the individual operators νσx⊗σy and νσy⊗σx . For
example, with the above singlet state, one can have

(σx ⊗ σy + σy ⊗ σx) |ψ〉 = 0. (6)

If we perform a measurement of an eigenvalue of σx⊗σy
and determine it to be +1 or −1, the value of σy ⊗ σx
depends on the other eigenvalue νσx⊗σy and so is writ-
ten as σy ⊗ σx(νσx⊗σy ). The value for the eigenvalue of
the second operator must now logically be equal to the
difference between the two eigenvalues:

σy ⊗ σx(νσx⊗σy ) = νσx⊗σy,σy⊗σx − νσx⊗σy , (7)

where the difference is again equal to ±1 for the singlet
state. The same argument also works in reverse, so that
we have

σx ⊗ σy(νσy⊗σx) = νσy⊗σx,σx⊗σy − νσy⊗σx , (8)

Re-arranging and suppressing the arguments, one can
then argue that

σx ⊗ σy + σy ⊗ σx = νσy⊗σx,σx⊗σy (9)

is effectively a causality relation which relates the possi-
ble contexts defined by measuring either of the two com-
muting operators. In particular, equation (9) relates the
context defined by a possible measurement of σy ⊗ σx
(which can either be S3 or S4) to the context defined by
a measurement of σx⊗σy (which can either be S3 or S5).

As is implicit in the example above, the context defined
by the measurement of the first operator need not be the
same as the context defined by the measurement of the
second operator. In the weak values framework, a context
is always represented by a certain combination of initial
and final conditions [24]. However, in our example above,

there is not a definite choice of contexts when measuring
both σx⊗ σy and σy ⊗ σx so that the initial singlet state
|ψ〉 defines the causality relation (9) without definitely
referring to a context where it is used. When measuring
σx ⊗ σy, the usual causality relation is expressed in the
eigenstate basis of the other observable σy ⊗ σx as

〈
νσx⊗σy

∣∣ψ〉 =
∑

νσy⊗σx

〈
νσx⊗σy

∣∣ νσy⊗σx〉 〈νσy⊗σx ∣∣ψ〉 .
(10)

This relates the outcome of measuring σx⊗σy to the fluc-
tuations in the initial condition |ψ〉, where the Hilbert
space inner products

〈
νσy⊗σx

∣∣ψ〉 represent the depen-
dence of σx⊗σy on the eigenvalues obtained for σy⊗σx.

This suggests that the transition probability amplitude
which is written with a summation taken using a basis of
eigenstates of σx ⊗ σy (or oppositely with σy ⊗ σx) rep-
resents the same causality relation. For this reason, we
argue that a causality relation relates different measure-
ment contexts in a definite way and that hidden variable
theories should be effectively unnecessary to explain the
value assignments which are observed for the Mermin-
Peres square. The causality relations which relate the
contexts in S are reproducible, so it should not be nec-
essary to ponder hidden realities. However, in order to
make this a firm conclusion it would be necessary to show
that the way that the values of physical properties change
when the context is changed is implied by the form of
the causality relations. This would require a statistical
treatment of measurement contexts and how they emerge
from the causality relations between the initial and final
conditions [24].

IV. CONCLUSIONS

In conclusion, we have made an attempt to argue that
considering reproducible causalities which relate different
contexts for the Mermin-Peres magic square might mean
that contextual or noncontextual hidden variable theo-
ries are not needed. This is especially appealing given
the complexity and ad hoc nature of the hidden variable
models which have been constructed to explain the mea-
surement results which one sees for the square [16]. This
would avoid the absolute necessity of introducing con-
textual hidden variables into the Mermin-Peres square,
either as true hidden variables or as complex weak val-
ues which nevertheless assign contextual values to exper-
imental outcomes. It would be an even more difficult
question as to whether there is a general explanation for
context dependence of physical properties in any scenario
which always makes hidden variable theories undesirable.

Note also that we have not used weak values in our ar-
gument, although a connection has previously been sug-
gested between weak values and incompatibility of quan-
tum theory with noncontextual hidden variable models
[25-29]. It is also worth pointing out that when incor-
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porating weak values into our discussion, it is not nec-
essarily relevant whether those weak values can be ob-
served experimentally, although the literature often con-
centrates on whether or not these values can be observed.
Similar discussions in the literature are phrased in terms
of weak values, but we have tried to avoid weak values
here because of their still somewhat controversial status
(mostly because of the practical difficulties inherent in
measuring them) [12]. In summary, it might be possible
to avoid invocation of noncontextual and even contexual
hidden variable theories to explain the measurement re-
sults which can be obtained with a very simple quantum
mechanical system (the Mermin-Peres square). The eva-
sion of complex weak values is also desirable, since one
still needs somewhat ad hoc constructions to explain how
these complex values relate to deterministic real-valued
variables which are needed for uncertainty relations [28].
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