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Abstract
We give a new proof of a sumset conjecture of Furstenberg that was first proved by
Hochman and Shmerkin in 2012: if log r/ log s is irrational and X and Y are ×r - and
×s-invariant subsets of [0, 1], respectively, then dimH(X + Y ) = min(1, dimH X +
dimH Y ). Our main result yields information on the size of the sumset λX + ηY uni-
formly across a compact set of parameters at fixed scales. The proof is combinatorial
and avoids the machinery of local entropy averages and CP-processes, relying instead
on a quantitative, discrete Marstrand projection theorem and a subtree regularity
theorem that may be of independent interest.

Keywords Sums of Cantor sets · Hausdorff dimension of sumsets · Discrete
Marstrand theorem · Subtree regularity · Furstenberg’s sumset conjecture

1 Introduction

Given r ∈ N, a set X ⊆ [0, 1] is ×r -invariant if it is closed and Tr X ⊆ X , where
Tr : [0, 1] → [0, 1] is the map x �→ r x (mod 1). In the late 1960’s, Furstenberg
conjectured1 that if r and s are multiplicatively independent positive integers (that is,

1 To the authors’ knowledge, the sumset conjecture (1.1) does not appear in print but was known to have
originatedwithFurstenberg. The intersection conjecture (1.2), on the other hand, is one of several conjectures
stated in [9].
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log r/ log s is irrational) and X and Y are ×r - and ×s-invariant, respectively, then

dimH
(
X + Y

) = min
(
1, dimH X + dimH Y

)
, and (1.1)

dimH
(
X ∩ Y

) ≤ max
(
0, dimH X + dimH Y − 1

)
. (1.2)

The sumset conjecture (1.1)was resolved byHochman and Shmerkin [12], who proved
a more general result concerning the dimension of sums of invariant measures. It also
follows by more recent results of Shmerkin [23] and Wu [24], who independently
resolved a generalization of the intersection conjecture (1.2). We give a more detailed
account of this recent history later in the introduction.

The purpose of this article is to give a new, combinatorial proof of Furstenberg’s
sumset conjecture (1.1). Denoting the unlimited γ -Hausdorff content by Hγ

>0 (see
Definition 2.2), our main theorem is as follows.

Theorem A Let r and s be multiplicatively independent positive integers, and let
X ,Y ⊆ [0, 1] be×r- and×s-invariant sets, respectively. Define γ = min

(
dimH X+

dimH Y , 1
)
. For all compact I ⊆ R\{0} and all γ < γ ,

inf
λ,η∈I Hγ

>0

(
λX + ηY

)
> 0. (1.3)

Beyond implying (1.1), Theorem A gives finer quantitative information on the size
of the sumset λX + ηY in terms of the unlimited γ -Hausdorff content uniformly over
the parameters λ and η. The uniformity in the result, which does not appear to follow
from [12], has found use in recent applications concerning digit problems; see, for
example, [11] and [3]. See Remark 5.1 below for some further discussion on this
uniformity.

Our proof of (1.1) differs from other proofs in the literature in that it completely
avoids the machinery of CP-processes and local entropy averages. Instead, it features
an elementary, combinatorial approach that builds on the work of Peres and Shmerkin
in [22]. Important ingredients in the proof include a quantitative discrete Marstrand
theorem (Theorem 3.2) and a subtree regularity theorem (Theorem 4.7), both of which
may be of independent interest.

1.1 History and Context

In a highly influential work in geometric measure theory, Marstrand [18] related the
Hausdorff dimension of a Borel set E ⊆ R

2, dimH E , to theHausdorff dimension of its
images under orthogonal projections and its intersectionswith lines.More specifically,
he showed that for almost every line L ⊆ R

2, dimH(πL E) = min
(
1, dimH E

)
, where

πL is the orthogonal projection R2 → L , and that for almost every line L intersecting
E , dimH(E ∩ L) = max

(
0, dimH E − 1

)
.2

2 Marstrand considered sets of positive, finite Hausdorff measure. His results imply the ones stated here
when combined with the fact that any Borel set of Hausdorff dimension γ > 0 can be approximated from
above and below by sets with positive, finite (γ ± ε)-Hausdorff measure. For a more modern take on these
theorems, see Corollary 9.4 and Theorem 10.10 in [19].
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Images of a Cartesian product X × Y under orthogonal projections are, up to
affine transformations which preserve dimension, sumsets of the form λX + ηY ,
while intersections of X × Y with lines are affinely equivalent to sets of the form
λX ∩ (ηY + σ). Thus, Marstrand’s theorems in the case E = X × Y imply the
following.

Theorem 1.1 ([18, Theorems II and III]) Let X and Y be Borel subsets of [0, 1]. For
Lebesgue-a.e. λ, η, σ ∈ R,

dimH
(
λX + ηY

) = min
(
dimH(X × Y ), 1

)
, and (1.4)

dimH
(
λX ∩ (ηY + σ)

) ≤ max
(
0, dimH(X × Y ) − 1

)
. (1.5)

Improving (1.4) and (1.5) by replacing the Lebesgue-typical projection or inter-
section of X × Y with a concrete projection or intersection is not possible in general
[13] but can be done in special cases when the sets X and Y are structured. Fursten-
berg’s conjectures (1.1) and (1.2) can be contextualized as such: when r and s are
multiplicatively independent and X × Y is the product of a ×r - and a ×s-invariant
set, results for the Lebesgue-typical projection and intersection should hold for the
orthogonal projection to, and the intersection with, the line x = y. These conjectures
join a host of results and conjectures by Furstenberg and others that aim to capture the
independence between base-r and base-s structure when r and s are multiplicatively
independent.

Conjectures (1.1) and (1.2) were recently resolved, both proven in more general
forms. In the following theorem, we have combined special cases of the results by
Hochman and Shmerkin [12], Shmerkin [23], andWu [24] that aremost relevant to this
work. Note that dimM denotes the upper Minkowski dimension (see Definition 2.1).

Theorem 1.2 ([12] and [23, 24]) Let r and s be multiplicatively independent positive
integers, and let X ,Y ⊆ [0, 1] be ×r- and ×s-invariant sets, respectively. For all
λ, η ∈ R\{0} and all σ ∈ R,

dimH
(
λX + ηY

) = min
(
dimH X + dimH Y , 1

)
, and (1.6)

dimM
(
λX ∩ (ηY + σ)

) ≤ max
(
0, dimH X + dimH Y − 1

)
. (1.7)

A number of partial results preceded those in Theorem 1.2, both formultiplicatively
invariant sets and for attractors of iterated function systems (IFSs). Carlos Moreira
[20] considered sumsets of attractors of IFSswith certain irrationality and non-linearity
conditions. Peres and Shmerkin [22] proved (1.6) for attractors of IFSs with rationally
independent contraction ratios; this resolved (1.6) in the special case that X and Y are
restricted digit Cantor sets with respect to multiplicatively independent bases. (This
work of Peres and Shmerkin is particularly relevant to the arguments in this paper, as
we explain in detail in Sect. 5.1.)

Hochman and Shmerkin [12] developed Furstenberg’s CP processes [9] and intro-
duced local entropy averages to prove (1.6) both for invariant sets and measures and
for attractors of IFSs satisfying some general minimality conditions. Wu [24] com-
bined the CP process machinery with Sinai’s factor theorem from ergodic theory to
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resolve (1.7) for invariant sets and attractors of regular, self-similar IFSs. Shmerkin
[23] resolved (1.7) utilizing tools primarily from additive combinatorics, proving an
inverse theorem for the decay of Lq norms of certain self-similar measures of dynam-
ical origin. Yu [25] and Austin [1] gave dynamical proofs of (1.2), simplifying some
aspects of earlier proofs.

The sumset and intersection theorems are closely related: fibers of orthogonal
projections are precisely those lines with which intersections are considered. It is
not surprising, then, that the intersection theorem can be used to deduce the sum-
set theorem. For example, if for arbitrary sets X ,Y ⊆ [0, 1] we know that for all
γ > max

(
0, dimH X + dimH Y − 1

)
, there exists δ0 > 0, for all 0 < δ < δ0, and for

all balls B of diameter δ,

N (
X ∩ (Y + B), δ

) ≤ δ−γ ,

thenwecandeduce that dimH(X+Y ) = min(1, dimH(X×Y )
)
. This type of uniformity

is made explicit in Shmerkin [23] and Yu [25] and may be implicit in the other proofs
of the intersection conjecture. It is possible to deduce Theorem A from Shmerkin’s
main result in [23]; we explain the details in the course of another argument in [11].
Despite the fact that every proof of the intersection conjecture can be counted as a
proof of the sumset conjecture, we believe our approach still has merit: it is the most
elementary proof to date; it exposes uniformity important in certain number-theoretic
applications; and it features tools which may be of independent interest.

Theorem A has a geometric formulation in terms of orthogonal projections; while
we will not make particular use of the theorem in this form, it is worth formulating for
its historical connection to the topic. Let πθ : R2 → R

2 be the orthogonal projection
onto the line that contains the origin and forms an angle θ with the positive x-axis.
The proof of the equivalence between Theorem A and Theorem B is standard and not
needed in this work, so it is omitted.

Theorem B Let r and s be multiplicatively independent positive integers, and let
X ,Y ⊆ [0, 1] be×r- and×s-invariant sets, respectively. Define γ = min

(
dimH X+

dimH Y , 1
)
. For all compact I ⊆ (0, π)\{π/2} and all γ < γ , infθ∈I Hγ

>0

(
πθ (X ×

Y )
)

> 0.

1.2 Overview of the Paper

The paper is organized as follows. In Sect. 2, we organize the terminology, notation,
and basic facts we need from discrete and continuous fractal geometry, including some
properties of ×r -invariant subsets of [0, 1] and an equidistribution lemma. Section3
contains a proof of Theorem 3.2, our discrete Marstrand projection theorem. Sec-
tion4 features notation and terminology for trees and the subtree regularity theorem,
Theorem 4.7. Finally, we prove Theorem A in Sect. 5.
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2 Preliminary Definitions and Results

The positive and non-negative integers are denoted by N and N0, respectively. For
x ∈ R, denote the fractional part by {x} and the integer part (or floor) by �x	. The
Lebesgue measure on the real line is denoted by Leb. Throughout the paper, Rd is
equipped with the Euclidean norm which we denote by | · |. Given two positive-valued
functions f and g, we write f 
a1,...,ak g or g �a1,...,ak f if there exists a constant
K > 0, depending only on the quantities a1, . . . , ak , for which f (x) ≤ Kg(x) for all
x in the domain common to both f and g. We write f �a1,...,ak g if both f 
a1,...,ak g
and f �a1,...,ak g.

2.1 Continuous and Discrete Fractal Geometry

In this section, we lay out the notation, tools, and results we need from continuous and
discrete fractal geometry. A good general reference for the standard material in this
section is [19, Ch. 4]. In the definitions that follow, ρ, γ, c > 0, d ∈ N, and X ⊆ R

d

is non-empty.

Definition 2.1 • The set X isρ-separated if for all distinct x1, x2 ∈ X , |x1−x2| ≥ ρ.
• The metric entropy of X at scale ρ is

N (X , ρ) = sup
{|X0|

∣∣ X0 ⊆ X is ρ-separated
}
.

• The lower Minkowski dimension of X is

dimM X = lim inf
δ→0+

logN (X , δ)

log δ−1 . (2.1)

The upper Minkowski dimension, dimM X , is defined analogously with a limit
supremum in place of the limit infimum. If dimM X = dimM X , then this value is
the Minkowski dimension of X , dimM X .

It is a well-known fact which we will use without further mention that if
ρ < 1, then dimM X = lim infN→∞ logN (X , ρ−N )

/
log ρN and dimM X =

lim supN→∞ logN (X , ρ−N )
/
log ρN .
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Definition 2.2 • The unlimited γ -Hausdorff content3 of X is

Hγ
>0(X) = inf

{
∑

i∈I
δ
γ

i

∣∣∣∣ X ⊆
⋃

i∈I
Bi , Bi open ball of diameter δi

}

.

Note that when X is compact, the index set I may be taken to be finite.
• The Hausdorff dimension of X is

dimH X = sup{γ ∈ R | Hγ
>0(X) > 0}

= inf{γ ∈ R | Hγ
>0(X) = 0}.

In the following definition, we introduce two notions meant to capture the
dimensionality of discrete sets.

Definition 2.3 • (cf. [15,Definition 1.2]) The set X is a (ρ, γ )c-set if it isρ-separated
and for all δ ≥ ρ and all open balls B of diameter δ,

∣∣X ∩ B
∣∣ ≤ c

(
δ

ρ

)γ

. (2.2)

• The discrete Hausdorff content of X at scale ρ and dimension γ is

Hγ
≥ρ(X) = inf

{
∑

i∈I
δ
γ

i

∣∣∣
∣ X ⊆

⋃

i∈I
Bi , Bi open ball of diameter δi ≥ ρ

}

.

Note that when X is compact, the index set I may be taken to be finite.

In the definition of a (ρ, γ )c-set, we think of ρ as being positive and close to 0,
γ ∈ [0, d] as the “dimension” of the set, and c > 0 as an uninteresting parameter
that exists only to make our arguments explicit. The inequality in (2.2) guarantees
that the points of a (ρ, γ )c-set cannot be too concentrated in any ball. It follows
from that inequality that the maximum cardinality of a (ρ, γ )c set in [0, 1]d is on the
order of ρ−γ . A (ρ, γ )c-set with cardinality � ρ−γ can be thought of as a discrete
approximation to a set with Hausdorff dimension γ ; this is made more precise in
Remark 2.5 below and is realized inLemma2.13. In fact, if the discrete approximations
of a set X ⊆ R

d at all scales ρ > 0 are (ρ, γ )c-sets, then the Assouad dimension (cf.
[7, Section 2.1]) of the set X is at most γ . More precisely, the Assouad dimension of
X is the infimum of the set of γ ’s for which there exists c > 0 such that for all ρ > 0,
the set X rounded to the lattice ρZd is a (ρ, γ )c-set.

The discrete Hausdorff content at scale ρ is a “ρ-resolution” analogue of the unlim-
itedHausdorff content. ThediscreteHausdorff contents of two sets that look the sameat
scale ρ are approximately equal. The following lemma provides a connection between
the discrete and the continuous regimes that will be useful in the proof of Theorem A.

3 The unlimited γ -Hausdorff content is sometimes denoted in the literature byHγ∞. We choose to useHγ
>0

because it is more consistent with the notation introduced in Definition 2.3.
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Lemma 2.4 Let X ⊆ R
d be compact. For all γ ≥ 0,

lim
ρ→0+ Hγ

≥ρ(X) = Hγ
>0(X). (2.3)

Consequently, if limρ→0 Hγ
≥ρ(X) > 0, then dimH X ≥ γ .

Proof Let γ ≥ 0. The limit in (2.3) exists because the function ρ �→ Hγ
≥ρ(X) is non-

increasing as ρ tends to 0+ and is bounded from below by Hγ
>0(X). Equality in the

limit follows from the fact that X is compact, allowing for the index set in the definition
ofHγ

>0(X) to be taken to be finite. If limρ→0 Hγ
≥ρ(X) > 0, thenHγ

>0(X) > 0, and it
follows from the definition of the Hausdorff dimension that dimH X ≥ γ . ��
Remark 2.5 It would be natural to define the metric entropy at scale ρ and dimension
γ of the set X as

N (X , (ρ, γ )c) = sup
{|X0|

∣∣ X0 ⊆ X is a (ρ, γ )c-set
}
.

Using a max flow, min cut argument similar to the one in [2, Ch. 3], it can be shown
that for X compact,

N (
X , (ρ, γ )c

)

ρ−γ
�c,d Hγ

≥ρ(X). (2.4)

Thus, (ρ, γ )c-sets of cardinality � ρ−γ can be thought of as discrete fractal sets of
dimension γ . We will not need (2.4); the interested reader can consult [6, Prop. A1]
for some details.

The following is a discrete version of the well-known mass distribution principle,
cf. [2, Lemma 1.2.8].

Lemma 2.6 Let μ be a Borel probability measure on R
d , and let ρ, κ > 0. If for

all balls B of diameter δ ≥ ρ, μ(B) ≤ κδγ , then the support suppμ of μ satisfies
Hγ

≥ρ(suppμ) ≥ κ−1.

Proof Let ε > 0, and let {Bi }i∈I be a cover of suppμ with ball Bi of diameter δi ≥ ρ

and with
∑

i∈I δ
γ

i ≤ Hγ
≥ρ(suppμ) + ε. Then the conclusion follows because ε > 0

was arbitrary. ��
Denote by [X ]δ the closed δ-neighborhood of X :

[X ]δ:=
{
z ∈ [0, 1] ∣∣ ∃x ∈ X with |z − x | ≤ ε

}
.

Lemma 2.7 Let a ≥ 1 and ρ > 0. If X ,Y ⊆ R are compact and X ⊆ [Y ]aρ , then

Hγ
≥ρ(X) 
a Hγ

≥ρ(Y ).
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Proof Let {Bi }i∈I be a collection of open balls covering Y and where Bi has
diameter ri ≥ ρ and

∑
i∈I r

γ

i < 2Hγ
≥ρ(Y ). Since X ⊆ [Y ]aρ , it follows that

X ⊆ ⋃
i∈I [Bi ]aρ and [Bi ]aρ is a ball of diameter ri + 2aρ ≤ (2a + 1)ri . Therefore

Hγ
≥ρ(X) ≤ ∑

i∈I ((2a + 1)ri )γ ≤ 2(2a + 1)Hγ
≥ρ(Y ). ��

2.2 Multiplicatively Invariant Subsets of the Reals and Their Finite
Approximations

In this section, we record some basic facts about multiplicatively invariant subsets of
[0, 1] and their discrete approximations.

Definition 2.8 Let r ∈ N and X ⊆ [0, 1].
• The map Tr : [0, 1] → [0, 1] is defined by Tr x = {r x}, where {·} denotes the
fractional part of a real number.

• The set X is ×r -invariant if it is closed and Tr X ⊆ X .

The Hausdorff and Minkowski dimensions of a multiplicatively invariant set coin-
cide. As a consequence of this regularity, the Hausdorff dimension of products of such
sets is also well-behaved. We record these facts here for later use.

Theorem 2.9 ([8, Proposition III.1]) If X ⊆ [0, 1] is ×r-invariant, then dimH X =
dimM X.

Lemma 2.10 If X ,Y ⊆ [0, 1] are×r ,×s-invariant, respectively, thendimH(X×Y ) =
dimH X + dimH Y .

Proof This follows immediately from [19, Corollary 8.11] and the fact that dimH X =
dimM X . ��

Sincewewillwork almost exclusivelywithfinite approximations tomultiplicatively
invariant sets, we establish some useful notation.

Definition 2.11 Let X ⊆ [0, 1] be ×r -invariant. For n ∈ N0, the set Xn denotes the
set X rounded down to the lattice r−n

Z. That is, the point i/rn is an element of Xn if
and only if X ∩ [i/rn, (i + 1)/rn) is non-empty.

The next results show that finite approximations to a multiplicatively invariant set
are multiplicatively invariant and are discrete models of fractal sets as captured by
Definition 2.3.

Lemma 2.12 Let X ⊆ [0, 1] be ×r-invariant. For all n ∈ N, Tr Xn ⊆ Xn−1.

Proof Let n ∈ N, and let i/rn ∈ Xn with i ∈ {0, . . . , rn −1}. Write i = i0+dn−1rn−1

with i0 ∈ {0, . . . , rn−1 − 1} and dn−1 ∈ {0, . . . , r − 1}. Note that Tr (i/rn) = i0/rn−1

and Tr ((i + 1)/rn) = (i0 + 1)/rn−1. We must show that i0/rn−1 ∈ Xn−1.
Since i/rn ∈ Xn , there exists x ∈ X ∩ [i/rn, (i + 1)/rn). Since Tr x ∈ X , Tr x ∈

X∩[i0/rn−1, (i0+1)/rn−1). It follows by the definition of Xn−1 that i0/rn−1 ∈ Xn−1,
as was to be shown. ��
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Lemma 2.13 Let r ≥ 2, and let X ⊆ [0, 1] be a ×r-invariant set. For all γ >

dimH X, there exists c > 0 such that for all sufficiently large N ∈ N, the set XN is a
(r−N , γ )c-set.

Proof Let γ > dimH X . Because γ > dimM X (cf. Theorem 2.9), there exists c0 > 0
such that for all N ∈ N,

|XN | ≤ c0r
Nγ . (2.5)

using the fact that X is ×r -invariant, that T n
r is injective on half-open intervals of

length r−n , Lemma 2.12, and the bound in (2.5), for all 0 ≤ n ≤ N and for all
i ∈ {0, . . . , rn − 1},

∣∣∣∣XN ∩
[
i

rn
,
i + 1

rn

)∣∣∣∣ ≤ ∣∣T n
r XN

∣∣ ≤ ∣∣XN−n
∣∣ ≤ c0r

(N−n)γ . (2.6)

Put c = 2rγ c0. To show that XN is a (r−N , γ )c-set, let B ⊆ R be a ball of diameter
δ ≥ r−N . Put n = �− logr δ	 so that r−(n+1) < δ ≤ r−n , and note that a union of two
intervals of length rn of the form above suffice to cover B. Therefore,

∣∣XN ∩ B
∣∣ ≤ 2c0r

(N−n)γ ≤ c

(
δ

r−N

)γ

,

as was to be shown. ��
Lemma 2.14 Let r ≥ 2, and let X ⊆ [0, 1] be non-empty and ×r-invariant. For all
γ > dimH X and all sufficiently large N ∈ N,

r N dimH X ≤ |XN | ≤ r Nγ .

Proof Let γ > dimH X . Because γ > dimM X (cf. Theorem 2.9), we have that
|XN | ≤ r Nγ for all but finitely many N ∈ N. It remains to show the lower bound.

Let M, N ∈ N. Since
[ i
r N

, i+1
r N

)
, i = 0, 1, . . . , r N − 1, forms a partition of [0, 1),

we have

∣
∣XN+M

∣
∣ =

r N−1∑

i=0

∣∣
∣∣XN+M ∩

[
i

r N
,
i + 1

r N

)∣∣
∣∣ .

Note that XN+M ∩ [ i
r N

, i+1
r N

)
is non-empty if and only if X ∩ [ i

r N
, i+1

r N
)
is non-empty,

which happens exactly when i/r N ∈ XN . Hence

∣
∣XN+M

∣
∣ =

∑

i/r N∈XN

∣∣
∣∣XN+M ∩

[
i

r N
,
i + 1

r N

)∣∣
∣∣ . (2.7)
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It follows from (2.6) that
∣∣XN+M ∩ [ i

r N
, i+1

r N
)∣∣ ≤ |XM |, which combined with (2.7)

shows that |XN+M | ≤ |XN ||XM |. In view of this sub-additive property, it follows
from Fekete’s Lemma that the sequence |XN |1/N converges to its infimum, i.e.,

lim
N→∞ |XN |1/N = inf

N∈N |XN |1/N .

It follows from dimH X = dimM X that rdimH X = limN→∞ |XN |1/N . Therefore,
rdimH X = infN∈N |XN |1/N , and hence r N dimH X ≤ |XN | for all N ∈ N, as desired. ��

The following notation, borrowed from [22], allows us to easily compare powers
of r and powers of s. This is useful when considering the finite approximations to the
Cartesian product of a ×r - and a ×s-invariant set.

Definition 2.15 For n ∈ N0, we set n′ = �n log r/ log s	 to be the greatest integer so
that sn

′ ≤ rn . (The bases r and s do not appear in this notation but should always be
clear from context.)

Recall from Definition 2.11 that XN is the set X rounded to the lattice r−N
Z.

Extending this notation to Y , the set YN is the set Y rounded to the lattice s−N
Z. Since

r−N is approximately equal to s−N ′
(where N ′ is as defined in Definition 2.15), the

set YN ′ is the discrete approximation to Y that is on a scale closest to the scale of
XN . Therefore, the sets XN and YN ′ will always be considered in the same context,
as opposed to the sets XN and YN .

Corollary 2.16 Let 2 ≤ r < s, let X ,Y ⊆ [0, 1] be non-empty ×r- and ×s-invariant
sets. For all ξ > dimH X + dimH Y , there exist c1, c2 > 0 and M0 ∈ N such that
for all N ≥ M0, the sets XN × YN ′ and XN × YN ′+1 are (c1r−N , ξ)c2 -sets satisfying
r N (dimH X+dimH Y ) ≤ |XN × YN ′ | ≤ r Nξ and r N (dimH X+dimH Y ) ≤ |XN × YN ′+1| ≤
r Nξ .

Proof Let ξ > dimH X + dimH Y . Let g > dimH X and h > dimH Y be such that

dimH(X × Y ) < g + h < ξ.

Applying Lemma 2.13 and Lemma 2.14, there exist c, d > 0 such that for sufficiently
large N ∈ N, the set XN is a (r−N , g)c-set satisfying r N dimH X ≤ |XN | ≤ r Ng and YN ′
is a (s−N ′

, h)d -set satisfying sN
′ dimH Y ≤ |YN ′ | ≤ sN

′h . Since r N (dimH X+dimH Y ) =
r N dimH Xr N dimH Y ≥ r N dimH XsN

′ dimH Y , |XN ×YN | ≤ |XN ×YN+1| and g+ h < ξ ,
it follows that for sufficiently large N ∈ N, one has r N (dimH X+dimH Y ) ≤ |XN ×YN ′ | ≤
r Nξ and r N (dimH X+dimH Y ) ≤ |XN × YN ′+1| ≤ r Nξ .

Set c1 = s−1 and c2 = sgcd. Since sN
′
< r N < sN

′+1, the sets XN ×YN ′ and XN ×
YN ′+1 are c1r−N -separated. Since XN is a (r−N , g)c-set, it is a (c1r−N , g)sgc-set.4

Let B ⊆ R
2 be a ball of diameter δ ≥ c1r−N . Note that

∣
∣(XN × YN ′) ∩ B

∣
∣ ≤ sgc

(
δ

c1r−N

)g

d

(
δ

s−N ′

)h

4 More generally, if 0 < c1 < 1, then every (δ, γ )c-set is a (c1δ, γ )
c−γ
1 c

-set. This is a quick exercise left

to the reader.
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≤ sgc

(
δ

c1r−N

)g

dch1

(
δ

c1r−N

)h

≤ c2

(
δ

c1r−N

)ξ

,

which shows that the set XN × YN ′ is a (c1r−N , ξ)c2 -set. By a similar calculation,

∣∣(XN × YN ′+1) ∩ B
∣∣ ≤ sgc

(
δ

c1r−N

)g

d

(
δ

s−(N ′+1)

)h

≤ sgc

(
δ

c1r−N

)g

d

(
δ

c1r−N

)h

≤ c2

(
δ

c1r−N

)ξ

,

which shows that the set XN × YN ′+1 is a (c1r−N , ξ)c2 -set. ��

2.3 A Quantitative Equidistribution Lemma

The main result in this short section, Lemma 2.18, gives a lower bound on the number
of visits of an equidistributed sequence to a set as a function only of the measure and
topological complexity of the set’s complement. This result is certainly not new; we
state it explicitly here for convenience in a way that highlights the uniformity in the
quantifiers.

For U ∈ N, denote by IU the collection of those subsets of [0, 1) that are a union
of no more than U disjoint intervals of the form [a, b).

Lemma 2.17 For any uniformly distributed sequence (xn)n∈N0 ⊆ [0, 1), U ∈ N, and
ε > 0, there exists N0 ∈ N such that for all N ≥ N0 and all B ∈ IU ,

1

N

∣∣{0 ≤ n ≤ N − 1 | xn ∈ B}∣∣ ≤ Leb(B) + ε.

Proof Let (xn)n∈N0 ⊆ [0, 1) be uniformly distributed, U ∈ N, and ε > 0. The
discrepancy of (xn)

N−1
n=0 (cf. [14, Ch. 2, Def. 1.1]) is

DN = sup
I

∣∣∣∣
{0 ≤ n ≤ N − 1 | xn ∈ I }

N
− Leb(I )

∣∣∣∣ ,

where the supremum is taken over all half-open intervals I in [0, 1). Because (xn)n is
uniformly distributed, DN → 0 as N → ∞ (cf. [14, Ch. 2, Thm. 1]). By the definition
of discrepancy, for any half-open interval I ⊆ [0, 1),

1

N

∣∣{0 ≤ n ≤ N − 1 | xn ∈ I }∣∣ ≤ Leb(I ) + DN .

It follows that for every B ∈ IU ,

1

N

∣∣{0 ≤ n ≤ N − 1 | xn ∈ B}∣∣ ≤ Leb(B) +UDN .
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Let N0 ∈ N be large enough so that for all N ≥ N0, UDN ≤ ε. The conclusion
follows. ��
Lemma 2.18 Let β > 0. For any uniformly distributed sequence (xn)n∈N0 ⊆ [0, β)

with respect to the Lebesgue measure, U ∈ N, and ε > 0, there exists N0 ∈ N such
that for all N ≥ N0 and all J ⊆ [0, β) whose complement is covered by a union of no
more than U many disjoint, half-open intervals of total Lebesgue measure less than
εβ/2,

1

N

∣
∣{0 ≤ n ≤ N − 1 | xn ∈ J }∣∣ ≥ 1 − ε.

Proof Let (xn)n∈N0 ⊆ [0, β) be uniformly distributed, U ∈ N, and ε > 0. Let N0 be
from Lemma 2.17 with (xn/β)n∈N0 , U , and ε/2.

Let N ≥ N0 and J ⊆ [0, β). Put B = [0, β)\J , and note that by assumption,
B/β ∈ IU and Leb(B/β) < ε/2. It follows from Lemma 2.17 that

1

N

∣∣{0 ≤ n ≤ N − 1 | xn/β ∈ B/β}∣∣ < ε.

Therefore,

1

N

∣
∣{0 ≤ n ≤ N − 1 | xn ∈ J }∣∣ ≥ 1 − ε,

as was to be shown. ��

3 A Discrete Marstrand Projection Theorem

In this section, we prove a discrete analogue of Marstrand’s projection theorem from
geometric measure theory. The theorem – stated for sumsets in the introduction as
Theorem 1.1 – says that for every Borel set A ⊆ [0, 1]2, for Lebesgue-a.e. θ ∈ [0, π),
dimH πθ A = min(1, dimH A), where πθ : R

2 → R
2 is the orthogonal projection

onto �θ , the line that contains the origin and forms an angle θ with the positive x-axis.
Marstrand’s theorem and its relatives have enjoyed much recent attention: we refer
the interested reader to the survey [5] and to the end of this section where we put
Theorem 3.2 into more context.

The key idea behindMarstrand’s theorem is that of “geometric transversality” and is
captured in the following lemma. The proof follows from a simple geometric argument
and is left to the reader. An immediate consequence of the lemma is that there are not
many projections which map two distant points close together.

Lemma 3.1 For all nonzero x ∈ R
2 and all ρ > 0, the set of angles θ ∈ [0, π) for

which |πθ x | ≤ ρ is contained in at most two balls of diameter 
 ρ|x |−1.

The results in this section add to a number of other discrete Marstrand-type theo-
rems in the recent literature: [17, Lemma 5.2], [16, Prop. 3.2], [10, Lemma 3.8], [22,
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Prop. 7], [21, Prop. 4.10] to name a few. Let us highlight some distinguishing features
of LemmaA 3.1 and Theorem 3.2 that play an important role in this work. Analogues
of Lemma 3.1 more commonly found in the literature, such as the one in [19, Lemma
3.11], bound the measure of the set of projections which map x close to 0. The result
in Lemma 3.1 uses coverings to capture topological information on the set of projec-
tions. This information is carried into Theorem 3.2 and is important in the application
to Theorem A. Another useful feature of Theorem 3.2 is the allowance of a subset
A′ in (3.1); this will allow us to treat sets in Theorem A that exhibit multiplicative
invariance without necessarily being self-similar.

3.1 A Discrete Projection Theorem

Our discrete analogue of Marstrand’s theorem, Theorem 3.2, reaches a conclusion
similar to that of Marstrand’s by quantifying the size of the set E of exceptional
directions, those directions in which the image of the set A is small. On a first reading,
it is safe to think of γ < 1, n ≈ ρ−γ , δ = 1, and m ≈ ρ−(γ−ε). In this case, the set
A is a discrete analogue of a set of Hausdorff dimension γ and the set E is the set of
exceptional directions in which the set A loses at least a proportion ρε of its points.

Theorem 3.2 Let γ, ρ, c > 0. Put γ = min(γ, 1). If A ⊆ [0, 1]2 is a (ρ, γ )c-set with
n:=|A| > − log c, then for all δ > 0 and all 0 ≤ m ≤ δ2n

/
4, the set

E = {
θ ∈ [0, π)

∣∣ ∃A′ ⊆ A, |A′| ≥ δn, N (πθ A
′, ρ) ≤ m

}
(3.1)

satisfies

N (E, ρ) 
γ,c ρ−1 m

δ2n

{
n1−γ /γ if γ �= 1

log n if γ = 1
.

Proof Let A ⊆ [0, 1]2 be a (ρ, γ )c-set of cardinality n > − log c. Let δ > 0, and let
0 ≤ m ≤ δ2n

/
4.

Define S(θ) = {
(a1, a2) ∈ A2

∣∣ |πθ(a1 − a2)| < ρ
}
. Let E ′ be a maximal ρ-

separated subset of E ; thus, |E ′| = N (E, ρ). The goal is to bound
∑

θ∈E ′
∣∣S(θ)

∣∣ from
above and below to get the desired bound on |E ′|.

Let θ ∈ E ′ and A′ be the subset of A corresponding to θ . Since the set πθ A′ lies
on a line andN (πθ A′, ρ) ≤ m, there exists a collection {B}B∈B of no more than 2m
closed balls B of diameter ρ whose union covers πθ A′. By Cauchy-Schwarz,

(δn)2 ≤ |A′|2 ≤
(

∑

B∈B

∣∣{a0 ∈ A′ | πθa0 ∈ B}∣∣
)2

≤ ∣∣B∣∣
∑

B∈B

∣∣{a0 ∈ A′ | πθa0 ∈ B}∣∣2

≤ 2m
∑

B∈B

∣∣{a ∈ A | πθa ∈ B}∣∣2
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= 2m
∑

B∈B

∣∣{(a1, a2) ∈ A2 | πθa1, πθa2 ∈ B}∣∣

≤ 2m
∣∣S(θ)

∣∣.

It follows that

δ2n2

2m
|E ′| ≤

∑

θ∈E ′

∣∣S(θ)
∣∣. (3.2)

Now we use Lemma 3.1 to bound the right hand side of (3.2) from above: for
a1, a2 ∈ [0, 1]2, the set

�(a1, a2) = {
θ ∈ [0, π)

∣∣ ∣∣πθ (a1 − a2)
∣∣ < ρ

}

is contained in at most two balls of diameter 
 ρ/|a1 − a2|. Therefore,
N (�(a1, a2), ρ) 
 1/|a1 − a2|, and using the fact that E ′ is ρ-separated, we see
that

∑

θ∈E ′
1S(θ)(a1, a2) =

∑

θ∈E ′
1�(a1,a2)(θ) ≤ K

1

|a1 − a2|

for some constant K depending on the result in Lemma 3.1. It follows that

∑

θ∈E ′

∣∣S(θ)
∣∣ =

∑

θ∈E ′

∑

a1,a2∈A

1S(θ)(a1, a2)

= n|E ′| +
∑

a1,a2∈A
a1 �=a2

∑

θ∈E ′
1�(a1,a2)(θ)

≤ n|E ′| + K
∑

a1,a2∈A
a1 �=a2

|a1 − a2|−1,

and so we are left to bound the second term from above.
For � ∈ N0, let H� = {x ∈ R

2 | |x | ∈ [ρe�, ρe�+1)}. Breaking up the sum∑ |a1 − a2|−1 by fixing a1 and partitioning the a2’s by shells, and using the fact that
A is ρ-separated, we see

∑

a1,a2∈A
a1 �=a2

|a1 − a2|−1 =
∑

a1∈A

∞∑

�=0

∑

a2∈A∩(a1+H�)

|a1 − a2|−1

≤ ρ−1
∑

a1∈A

∞∑

�=0

e−�
∣∣A ∩ (a1 + H�)

∣∣.
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Since A is a (ρ, γ )c-set, for all � ≥ 0,
∣∣A ∩ (a1 + H�)

∣∣ ≤ c
(
2ρe�+1

/
ρ
)γ
. On the

other hand,
∑∞

�=0

∣∣A ∩ (a1 + H�)
∣∣ = |A| − 1. It follows then from the fact that

� �→ e−� is decreasing that
∑∞

�=0 e
−�

∣∣A ∩ (a1 + H�)
∣∣ ≤ ∑�0

�=0 2
γ ce�(γ−1)+γ , where

�0 = �log((n/c)1/γ )� is the smallest value such that the set A could be contained in
a ball of diameter ρe�0 about a1. Therefore,

ρ−1
∑

a1∈A

∞∑

�=0

e−�
∣
∣A ∩ (a1 + H�)

∣
∣ 
γ,c ρ−1

∑

a1∈A

�0∑

�=0

(
eγ−1)�


γ,c ρ−1n

{
n1−γ /γ if γ �= 1

log n if γ = 1
.

Combining the upper and lower bounds on
∑

θ∈E ′
∣∣S(θ)

∣∣, we see that there exists
a constant K depending on the result in Lemma 3.1, γ , and c such that

δ2n2

2m
|E ′| ≤ n|E ′| + Kρ−1n

{
n1−γ /γ if γ �= 1

log n if γ = 1
.

Dividing both sides by n and using the fact that m ≤ δ2n/4, we see that

δ2n

4m
|E ′| ≤

(
δ2n

2m
− 1

)
|E ′| ≤ Kρ−1

{
n1−γ /γ if γ �= 1

log n if γ = 1
,

which rearranges to the desired conclusion. ��

3.2 A Corollary for Oblique Projections

The proof of Theorem A will feature oblique projections instead of orthogonal ones.
The following corollary concerns oblique projections and is stated in a way that will
make it immediately applicable in the proof of Theorem A.

Denote by �t : R
2 → R the oblique projection �t (x, y) = x + t y. Let ϕ :

(0, π/2) → R be the diffeomorphism ϕ(θ) = log tan θ . Note that�eϕ(θ) is the oblique
projection that is the “continuation” of the orthogonal projection πθ , meaning that the
points (x, y), (�eϕ(θ) (x, y), 0), and πθ(x, y) are collinear.

Corollary 3.3 Let 0 < γ1 < γ2 < γ3 < γ4 be such that γ1 < 1 and

2(γ4 − γ2) < γ3 − γ1. (3.3)

For all compact I ⊆ R, all ε, c1, c2, c3 > 0, all sufficiently small ρ > 0 (depending
on all previous quantities), and all (c1ρ, γ4)c2 -sets A ⊆ [0, 1]2 with |A| ≥ ρ−γ3 , there
exists T ⊆ I with the following properties:

123



Combinatorica

(I) the set I\T can be covered by a disjoint union of not more than ερ−1/2-many
half-open intervals of length ρ, a cover of total Lebesgue measure less than ε.

(II) for all t ∈ T and all A′ ⊆ A with |A′| ≥ ρ−γ2 , there exists a subset A′
t ⊆ A′ with

|A′
t | ≥ ρ−γ1 such that the points of �et A′

t are distinct and c3ρ-separated.

Proof Let I ⊆ R be compact and ε, c1, c2, c3 > 0. Let σ ∈ (
γ4 − γ2, (γ3 − γ1)/2

)
.

Let ρ > 0 be sufficiently small (to be specified later, but depending only on the
quantities introduced thus far). Let A ⊆ [0, 1]2 be a (c1ρ, γ4)c2 -set with |A| ≥ ρ−γ3 .
Put γ4 = min(1, γ4), n = |A|, δ = ρσ , and m = 2c3ρ−γ1 . Note that since A is a
(c1ρ, γ4)c2 -set contained in a ball of diameter

√
2, n ≤ 2c2(c1ρ)−γ4 .

We want to apply Theorem 3.2 with γ4 as γ , c1ρ as ρ, c2 as c, and with A, n, δ, and
m as they are. We see that the inequality n > − log c2 holds for ρ sufficiently small,
as does m ≤ δ2n/4 since σ < (γ3 − γ1)/2. Since the conditions of Theorem 3.2 hold,
the set E ⊆ [0, π) defined in (3.1) satisfies

N (E, ρ) 
γ4,c2 ρ−1 m

δ2n
n1−γ4/γ4 log n


γ4,c1,c2,c3 ρ−1 ρ−γ1

ρ2σ ρ−γ3γ4/γ4
log

(
ρ−γ4

)
.

(3.4)

Let J = ϕ−1(I ), and put T = I\ϕ|J (E). Since the map ϕ|J is bi-Lipschitz,

N (ϕ|J (E), ρ) �I N (E, ρ).

Combining this with (3.4) and the fact that σ < (γ3 − γ1)/2, we have that for suffi-
ciently small ρ,N (I\T , ρ) ≤ ερ−1/6. It follows that the set I\T can be covered by a
disjoint union of not more than ερ−1/2-many half-open intervals of length ρ, a cover
of total measure less than ε. This establishes (I).

To prove (II), let t ∈ T , and let A′ ⊆ A with |A′| ≥ ρ−γ2 . Since n ≤ 2c2(c1ρ)−γ4

and σ > γ4 − γ2, for sufficiently small ρ, ρ−γ2 ≥ δn. It follows that |A′| ≥ δn.
Because θ :=ϕ−1(t) /∈ E , N (πθ A′, ρ) ≥ m. It follows that N (πθ A′, c3ρ) ≥ ρ−γ1 .
By choosing points in A′ in each fiber of amaximally ρ-separated set of the projection,
we see that there exists a subset A′

t ⊆ A′ of cardinality at least ρ−γ1 such that the
orthogonal projection of the points in A′

θ onto �θ are disjoint and c3ρ-separated. Since
the oblique projection�et increases distances between points that lie on �θ , the images
of points of A′

t under �et are c3ρ-separated. ��

4 Trees and a Subtree Regularity Theorem

Trees are combinatorial objects that are convenient for describing fractal sets. We
will be concerned solely with finite trees throughout this work. After giving the main
definitions, we motivate their importance by explaining how they will be used in the
proof of Theorem A. We move then to prove the main result in this section.
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4.1 Preliminary Definitions

The following definitions describe the familiar notion of a rooted tree, a graph with
no cycles whose vertices can be arranged on levels and whose edges only connect
vertices on adjacent levels.

Definition 4.1

• A tree of height N ∈ N0 is a finite set of nodes � together with a partition
� = �0 ∪ · · · ∪ �N with |�0| = 1 and a parent function P : �\�0 → �\�N such
that for every n ∈ {1, . . . , N }, P(�n) = �n−1.

• The nodes in �n have height n. The single node with height 0 is the root and the
nodes with height N are called leaves.

• The node Q is the parent of each of its children, nodes in the setC�(Q):=P−1(Q).
• If Q is a node of height n, the induced tree based at Q is the tree�Q :=∪N−n

i=0 Ci
�(Q)

of height N − n with root Q and the same parent function as �, restricted to the
set �Q .

• A subtree of� is a tree�′ ⊆ � of the sameheight as�with parent function P|�′\�′
0
.

(A subtree is uniquely determined by its non-empty set of leaves �′
N ⊆ �N .)

Continuing with terminology inspired by genealogy trees, the ancestors of a node
Q are those nodes that lie between Q and the root. For the reasons described below
in Remark 4.4, it will be important to count the number of ancestors of Q that have
many children. To this end, we introduce the following terminology and notation.

Definition 4.2 Let � be a tree, c > 0, and ω ∈ [0, 1].
• The ancestry of Q ∈ �n is the set

A�(Q):={Pk(Q) | 1 ≤ k ≤ n}.

Note that |A�(Q)| is equal to the height of Q.
• The node Q is c-fertile if |C�(Q)| ≥ c. The set of c-fertile ancestors of Q is
denoted

F�,c(Q):={A ∈ A�(Q) | A isc − fertile}.

A node Q has (c, ω)-fertile ancestry if |F�,c(Q)| ≥ ω|A�(Q)|.
The following definitions allow us to capture the dimension of a finite tree by giving

costs to the nodes and measuring the cost of the least expensive cut.

Definition 4.3 Let � be a tree, r ∈ N, r ≥ 2, and γ > 0.

• A cut of� is a subset C ⊆ � such that for every leaf L of�,
({L}∪A�(L)

)∩C �= ∅.
• The γ -Hausdorff content of � with base r is

Hγ
r (�):=min

⎧
⎨

⎩

∑

Q∈C
r−height(Q)γ

∣∣∣
∣ C is a cut of �

⎫
⎬

⎭
.
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The main result in this section, Theorem 4.7, says, roughly speaking, that any tall
enough tree with Hausdorff content bounded from below and with a uniform upper
bound on the number of children of any node has a subtree in which most nodes have
fertile ancestry. Before making this statement precise and beginning with the details
of the proof, let us make two observations about the concept of fertile ancestry that
will help explain why it will be useful later on in the proof of Theorem A.

Remark 4.4

(I) The property of having fertile ancestry is preserved under a type of tree thinning
process that we will employ in the proof of TheoremA.More specifically, suppose
that � is a tree in which every node has either one child or at least cmany children
and in which every node has (c, ω)-fertile ancestry. Suppose further that for every
node Q, there exists a subset C̃(Q) ⊆ C�(Q) of the children of Q with |C̃(Q)| ≥
min

(
c̃, |C�(Q)|). These subsets naturally give rise to a subtree �̃ obtained by

thinning the tree �: the subtree �̃ is uniquely defined by the property that if Q
is a node of �̃, then C�̃(Q) = C̃(Q). It is not hard to see that every node in �̃

has (c̃, ω)-fertile ancestry, regardless of how the subsets of children C̃(Q) were
chosen.

(II) A tree in which every node has fertile ancestry necessarily has large Hausdorff
content. This is a simple consequence of themass distribution principle (or themax
flow-min cut theorem) for trees, the real analogue of which is stated in Lemma 2.6.
More specifically, let � be a tree, and consider a “flow” through � of magnitude 1
starting at the root that splits equally amongst children. The value of the flow at any
node Q with fertile ancestry can be bounded from above using the fact that many
times, much of the flow is split amongst a large set of children before reaching Q.
If all nodes of � have fertile ancestry, then the flow is not concentrated too highly
at any node. According to the mass distribution principle, the Hausdorff content
of a tree that supports such a flow is high.

4.2 A Subtree Regularity Theorem

We now proceed with the main results in this subsection. In the next two results, fix
r ≥ 2 and 0 < γ2 < γ3 < γ4 such that setting

A:= γ4 − γ3 + logr 2,

B:= γ3 − γ2 − logr 2,

ensures the quantity B is positive. The following lemma describes the fundamental
dichotomy behind Theorem 4.7.

Lemma 4.5 If � is a tree with the property that

every node in the tree has at most rγ4 many children, (4.1)

then at least one of the following holds:
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(I) there are at least rγ2 many children Q of the root, each of which satisfies

Hγ3
r (�Q) ≥ Hγ3

r (�)r−A;

(II) there is at least one child Q of the root satisfying

Hγ3
r (�Q) ≥ Hγ3

r (�)r B .

Proof Let � be a tree satisfying (4.1). Let Q1, Q2, …, QI be the children of the
root of �, ordered so that Hγ3

r (�Qi ) ≥ Hγ3
r (�Qi+1). If neither (I) nor (II) holds, then

Hγ3
r (�Q1) < Hγ3

r (�)r B and Hγ3
r (�Q�rγ2 �) < Hγ3

r (�)r−A. It follows by the ordering
of the Qi ’s and the definition of the Hausdorff content and induced trees that

Hγ3
r (�) ≤ r−γ3

I∑

i=1

Hγ3
r (�Qi )

=
�rγ2 	∑

i=1

r−γ3Hγ3
r (�Qi ) +

I∑

i=�rγ2 �
r−γ3Hγ3

r (�Qi )

< rγ2r−γ3Hγ3
r (�)r B + rγ4r−γ3Hγ3

r (�)r−A = Hγ3
r (�),

a contradiction. ��

Lemma 4.6 Every finite tree � that satisfies (4.1) has a subtree �′ with the property
that for all nodes Q in �′,

∣
∣F�′,rγ2 (Q)

∣
∣ ≥ |A�′(Q)|B + logr Hγ3

r (�)

A + B
. (4.2)

Proof We will prove the lemma by induction on the height N of the tree �. To verify
the base case, let � be the tree of height N = 0: a single node with no children.
Taking �′ = �, the inequality (4.2) for this single node follows from the fact that
logr Hγ3

r (�) = 0.
Suppose that N ∈ N is such that the theorem holds for all trees of height N − 1.

Let � be a tree of height N that satisfies (4.1). By Lemma 4.5, at least one of Case (I)
or Case (II) holds.

Suppose Case (I) of Lemma 4.5 holds. Let Q be any one of the rγ2 -many children
guaranteed by Case (I). By the induction hypothesis, there exists a subtree �′

Q of �Q

in which every node satisfies (4.2) with �Q in place of � and �′
Q in place of �′. Define

the subtree �′ of � to be the root node of � with the collection of at least rγ2 many
children Q, each of those children followed by its subtree �′

Q .
We will now verify that (4.2) holds for all nodes of �′. Let Q be any node of �′.

If Q is the root node of �′, then (4.2) holds because logr Hγ3
r (�) ≤ 0. (Indeed, that

Hγ3
r (�) ≤ 1 follows by considering the cut C:={Q} of �.) If Q is a non-root node of
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�′, then it belongs to one of the subtrees �′
S for some child S of the root of �′. By

property (4.2) for the subsubtree �′
S , we see

|F�′,rγ2 (Q)| − 1 = |F�′
S ,r

γ2 (Q)|

≥ |A�′
S
(Q)|B + logr Hγ3

r (�S)

A + B

≥ (|A�′(Q)| − 1)B + logr Hγ3
r (�) − A

A + B
.

This simplifies to the inequality in (4.2), verifying the inductive step if Case (I) of
Lemma 4.5 holds.

Suppose Case (II) of Lemma 4.5 holds. Let Q be the child guaranteed by Case (II).
By the induction hypothesis, there exists a subtree �′

Q of �Q in which every node
satisfies (4.2) with �Q in place of � and �′

Q in place of �′. Define the subtree �′ of �

to be the root of � with only the child Q followed by its subtree �′
Q .

We will now verify that (4.2) holds for all nodes of �′. Let Q be any node of �′. If
Q is the root node of �′, then (4.2) holds because logr Hγ3

r (�) ≤ 0. If Q is a non-root
node of �′, then by property (4.2) for the subtree containing Q, we see

|F�′,rγ2 (Q)| ≥ (|A�′(Q)| − 1)B + Hγ3
r (�) + B

A + B
.

This simplifies to the inequality in (4.2), verifying the inductive step if Case (II) of
Lemma 4.5 holds. The proof of the inductive step is complete, and the lemma follows.

��

Theorem 4.7 For all 0 < ε < 1, for all 0 < γ2 < γ3 < γ4 < γ3 + ε(γ3 − γ2), for
all sufficiently large r ∈ N, and for all V > 0, there exists N0 ∈ N for which the
following holds. For all N ≥ N0 and for all trees � of height N with Hγ3

r (�) ≥ V
that satisfy (4.1), there exists a subtree �′ of � such that all nodes Q ∈ �′ with height
at least N0 have (rγ2 , 1 − ε)-fertile ancestry in �′.

Proof Let 0 < ε < 1 and 0 < γ2 < γ3 < γ4 < γ3 + ε(γ3 − γ2). Let r ∈ N be
sufficiently large so that γ3−γ2−logr 2 > (1−ε)(γ4−γ2). Define A = γ4−γ3+logr 2
and B = γ3 − γ2 − logr 2, and note by the inequality in the previous sentence,
B/(A + B) > (1 − ε). Let V > 0. Choose N0 ∈ N such that

N0B + logr V

N0(A + B)
> 1 − ε, (4.3)

and note that for all N ≥ N0, the inequality in (4.3) holds with N0 replaced by N .
Let N ≥ N0, and let � be a tree of height N with Hγ3

r (�) ≥ V that satisfies (4.1).
By Lemma 4.6, there exists a subtree �′ of � such that for all nodes Q of �′, the
inequality in (4.2) holds.

123



Combinatorica

Let Q be a node of �′ with height at least N0. By (4.2) and (4.3), we see that

|F�′,rγ2 (Q)|
|A�′(Q)| ≥ |A�′(Q)|B + logr V

|A�′(Q)|(A + B)
> 1 − ε.

It follows that Q has (rγ2 , 1 − ε)-fertile ancestry in �′, as was to be shown. ��

5 Proof of the Sumsets Theorem

In this section, we prove Theorem A, the main theorem in this work. We restate it here
for the reader’s convenience.

TheoremA Let r and s be multiplicatively independent positive integers, and let
X ,Y ⊆ [0, 1] be×r - and×s-invariant sets, respectively. Define γ = min

(
dimH X +

dimH Y , 1
)
. For all compact I ⊆ R\{0} and all γ < γ ,

inf
λ,η∈I Hγ

>0

(
λX + ηY

)
> 0. (5.1)

Several auxiliary results go into the proof: the discrete version of Marstrand’s pro-
jection theorem in Sect. 3, the subtree regularity theorem for finite trees in Sect. 4, and
the quantitative equidistribution result in Sect. 2.3. We outline the proof of Theorem A
in Sect. 5.1 before presenting the full details in Sects. 5.2 and 5.3.

Remark 5.1 It is natural to ask about the value of the infimumC := infλ,η∈I Hγ
>0

(
λX+

ηY
)
that appears in (5.1), or, more precisely, how it depends on X and Y . The value

of C must depend on r , s, γ , γ , and I , but also on X and Y , at least to the extent that
it accounts for the Hausdorff content of X × Y . It follows from the proof of Theorem
A below that this is essentially the only sense in which C depends on X and Y .

More precisely, there exist γ3, γ4 > 0 (depending only on γ and dimH(X × Y ))
with γ3 < dimH(X × Y ) < γ4 such that taking M0 ∈ N and c1, c2 > 0 as given by
Corollary 2.16 when applied with γ4 as ξ , the quantity C depends only on M0, c1, c2,
r , s, I , γ , dimH(X × Y ), and Hγ3

>0(X × Y ), but otherwise not on X and Y .5

5.1 Outline of the Proof of Theorem A

Before beginning with the details of the proof of Theorem A, we explain the main
ideas behind it. To understand the argument, it helps to begin by assuming that the set
X × Y is self-similar in the sense that for every n ∈ N0, it is a union of approx-
imately rn(dimH X+dimH Y ) many translates of the set r−n X × s−n′

Y . (Recall that
n′ = �n log r/ log s	 so that s−n′ ≈ r−n .) This is the case, for example, if X and
Y are both restricted digit Cantor sets. In this case, Peres and Shmerkin [22] proved

5 As will be evident from the proof, our argument requires from γ3 only thatHγ3
>0(X ×Y ) > 0. Appealing

to a result such as [4, Theorem 3.1] it is possible to take γ3 = dimH(X × Y ). This improvement would
eliminate a parameter but ultimately would not simplify the argument.
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that for all λ, η ∈ R\{0}, dimH(λX +μY ) = γ . Our argument follows along the same
lines as theirs.

Recall that �t : R2 → R is the oblique projection �t (x, y) = x + t y. A quick
calculation shows that

�et (r
−n X × s−n′

Y ) = r−n�et rn/sn′ (X × Y ),

which implies that the images of the translates of r−n X × s−n′
Y under the map �et

are affinely equivalent to the image of the full set X × Y under the map �et rn/sn′ . It
follows that the set �et (X × Y ) contains affine images of the sets �et rn/sn′ (X × Y )

and hence that

dimH �et (X × Y ) ≥ sup
n∈N0

dimH �et rn/sn′ (X × Y ).

Thus, to bound dimH �et (X×Y ) from below, it suffices to show that there is some n ∈
N0 forwhich etrn/sn

′
is a “good angle” for X×Y , in the sense that dimH �et rn/sn′ (X×

Y ) > γ − ε. It follows from Marstrand’s theorem that the set of such “good angles”
for X × Y (indeed, for any set) has full measure in R, and it will be shown that the
sequence n �→ log(etrn/sn

′
) has image in [t, t + log s) and is the orbit of t under the

irrational x �→ x + log r (mod log s) translated by t . When combined, these facts
fall just short of allowing us to conclude the existence of n ∈ N0 for which etrn/sn

′

is a good angle: it is possible that the image of an equidistributed sequence misses a
set of full measure.

To make use of the above outline, one needs to gain some topological information
on the set of good angles from Marstrand’s theorem. This can be accomplished by
moving the argument to a discrete setting. Discretizing introduces a number of tech-
nical nuisances, but the core of the argument remains the same. Recall that Xn and
Yn′ are the sets X and Y rounded to the lattices r−n

Z and s−n′
Z, respectively. The

discrete analogue of Marstrand’s theorem in Theorem 3.2 tells us that the complement
of the set of “good angles” for a finite set such as Xn × Yn′ can be covered by a
disjoint union of few half-open intervals. This topological information combines with
the equidistribution of the irrational rotation described above to allow us to find many
n ∈ N0 for which etrn/sn

′
is a good angle for Xn × Yn′ .

The argument described thus far is essentially due to Peres and Shmerkin in [22]
and allows them to conclude that for all t ∈ R\{0}, dimH �et (X × Y ) = γ . We will
now describe the two primary modifications we make to this argument in the course
of the proof of Theorem A.

The first modification allows us to show that the discrete Hausdorff content of
�et (X × Y ) at all small scales is uniform in t . Ultimately, this uniformity stems from
the fact that the irrational rotation described above is uniquely ergodic: changing t
in the argument above changes only the point whose orbit we consider. Exposing the
uniformity in the argument after this is then mainly a matter of taking care with the
quantifiers in the auxiliary results.

The second modification allows us to handle sets X and Y which are only assumed
to be ×r - and ×s-invariant. Such sets need not be self-similar, but they do exhibit
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some “near self similarity” in the following sense. Consider the discrete set Xm for
some largem ∈ N. Because X is×r -invariant, the set X(n+1)m ∩[

i/rnm, (i+1)/rnm
)
,

when dilated by rmn and considered modulo 1, is a subset of Xm . While this set is
generally not equal to Xm , it is, by an averaging argument, very often of cardinality
greater than r−ε |Xm |. This is profitably re-interpreted in the language of trees: in the
tree with levels Xnm ×Y(nm)′ , n ∈ N0, many nodes have nearly the maximum allowed
number of children. The tree thinning result in Theorem 4.7 exploits this abundance
by finding a sufficiently “regular” subtree on which we focus our attention. Then, we
invoke our discrete analogue of Marstrand’s theorem – which provides information on
the set of angles that are good not only for the original set Xm ×Ym′ , but also for large
subsets of it – to further thin the subtree. Following the reasoning given in Remark 4.4,
the resulting subtree has fertile ancestry and hence has large Hausdorff content. By
the construction of the subtree, its image under �et is large, and this yields the lower
bound on the Hausdorff dimension in the conclusion of the theorem.

5.2 Proof of Theorem A

In this section and the next, let r , s, X , Y , and γ be given as in the statement of
Theorem A. The proof of Theorem A begins with a number of reductions, the last of
which in Claim 5.2 is a statement about the existence of measures on the images of
the discrete product sets under oblique projections. We prove Claim 5.2 in the next
subsection.

By Lemma 2.10, dimH(X × Y ) = dimH X + dimH Y . Note that if dimH X = 0,
then the conclusion is clear by considering, for any x ∈ X , images of the set {x} × Y .
The same is true if dimH Y = 0. Thus, we will proceed under the assumption that
dimH X , dimH Y > 0. Note that the set 1− X is ×r -invariant and that −λX + ηY is a
translate of the set λ(1− X) + ηY . The analogous statement holds for Y . Combining
these facts, it is easy to see that it suffices to prove Theorem A in the case that
I ⊆ (0,∞).

The next step is to formulate a statement sufficient to prove Theorem A in terms of
oblique projections of discrete sets. Recall that n′ = �n log r/ log s	 and that Xn , Yn′
are the sets X and Y rounded to the lattices r−n

Z and s−n′
Z, respectively. For n ∈ N0,

define

Qn = Xn × Yn′ and Q̃n = Xn × Yn′+1. (5.2)

Claim 5.2 For all compact I ⊆ R and all 0 < γ < γ , there existsm, N0 ∈ N such that
for all N ≥ N0 and all t ∈ I , there exists a probability measure μ supported on the
finite set �etQNm with the property that for all balls B ⊆ R of diameter δ ≥ r−Nm ,
μ(B) ≤ r N0mδγ .

To deduce Theorem A from Claim 5.2, let I ⊆ (0,∞) be compact and 0 < γ < γ .
Apply Claim 5.2 with Ĩ :={

log(η/λ)
∣∣ η, λ ∈ I

}
as I and γ as it is. Let m, N0 ∈ N

be as guaranteed by Claim 5.2.
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Note that by Lemma 2.4 and the fact that the function ρ �→ Hγ
≥ρ

(
λX + ηY

)
is

non-increasing (as ρ decreases),

inf
λ,η∈I Hγ

>0

(
λX + ηY

) = lim
ρ→0

inf
λ,η∈I Hγ

≥ρ

(
λX + ηY

)
.

The limit in the final expression exists because infλ,η∈I Hγ
≥ρ

(
λX + ηY

)
is non-

increasing and is bounded from below by zero.
Therefore, to show that (5.1) holds, it suffices to prove that

lim
N→∞ inf

λ,η∈I Hγ

≥r−Nm

(
λX + ηY

)
> 0. (5.3)

It follows from the fact that

dH (λXNm + ηY(Nm)′ , λX + ηY ) 
I ,r ,s r
−Nm,

where dH is the Hausdorff metric, and Lemma 2.7 that for all λ, η ∈ I ,

Hγ

≥r−Nm

(
λX + ηY

) �I ,r ,s Hγ

≥r−Nm

(
λXNm + ηY(Nm)′

)

�I ,r ,s Hγ

≥r−Nm

(
XNm + elog(η/λ)Y(Nm)′

)
.

(5.4)

Therefore, to show (5.3), it suffices to prove that

lim
N→∞ inf

t∈ Ĩ
Hγ

≥r−Nm

(
�etQNm

)
> 0. (5.5)

Combining the conclusion of Claim 5.2 with Lemma 2.6, we see that for all N ≥ N0
and t ∈ Ĩ , Hγ

≥r−Nm

(
�etQNm

) ≥ r−N0m . This shows that the limit in (5.5) is positive
and completes the deduction of Theorem A from Claim 5.2.

5.3 Proof of Claim 5.2

Choosing the parameter m and scale ρ. Recall that r , s, X , Y , and γ are as given
in the statement of Theorem A. Without loss of generality, we can assume that r < s.
Put β = log s, let 0 < γ < γ , and define ε:=γ − γ and γ0:=γ .

We claim that there exist γ1, γ2, γ3, and γ4 such that

(I) 0 < γ0/(1 − ε/2) < γ1 < γ2 < γ3 < dimH X + dimH Y < γ4;
(II) γ4 < γ3 + ε(γ3 − γ2)/6;
(III) γ1 < 1;
(IV) 2(γ4 − γ2) < γ3 − γ1 (this is the inequality in (3.3)).

To see why, note that if we put γ1 = γ0/(1 − ε/2), γ4 = γ3 = dimH X + dimH Y ,
and γ2 = γ1/3 + 2γ3/3, then the inequalities in (I) holds with “<” replaced by
“≤”, while the inequalities in (II), (III), and (IV) hold as written. It follows that γ1
and γ4 can be increased and γ3 can be decreased (with the corresponding change to
γ2 = γ1/3 + 2γ3/3) so that all of the strict inequalities hold.
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Let c1, c2, and M0 be the constants guaranteed by Corollary 2.16, when applied
with γ4 as ξ . Let I ⊆ (0,∞) be compact, and define Iβ = I + [0, β]. Let P > 0 be
a Lipschitz constant for all of the maps �et , t ∈ Iβ , and let c3 = 4Ps−1 + 1. Choose
m ∈ N large enough so that we can apply

• Theorem 4.7 with ε/6 as ε and rm as r ;
• Corollary 3.3 with Iβ as I , εβ/12 as ε and r−m as ρ;
• Corollary 2.16 with m as N (i.e., m ≥ M0).

Put ρ = r−m .
A uniformly distributed sequence. Let α = log

(
rm/sm

′)
and let R : [0, β) →

[0, β) be the transformation R : x �→ x + α (mod β). As β = log s and m′ =
�m log r/ log s	, we have

α/β = m log r/ log s − m′ = {
m log r/ log s

}
. (5.6)

Since log r/ log s is irrational,we conclude thatα/β is irrational,whereby the sequence
(Rn(0))n∈N0 is uniformly distributed on [0, β).

Claim 5.3 For all n ∈ N0,

(V) Rn(0) + (nm)′ log s = nm log r ;
(VI)

(
(n + 1)m

)′ =
{

(nm)′ + m′ if Rn(0) + α < β

(nm)′ + m′ + 1 if Rn(0) + α > β
.

Proof Since for alln ∈ N, Rn(0) = nα (mod β), using (5.6),we canwrite Rn(0)/β ={
nα/β

} = {
n{m log r/β}} = {

nm log r/β
}
. Recalling that (nm)′ = �nm log r/β	,

this establishes (V).
Next, note that for any real numbers x, y,

�x + y	 =
{

�x	 + �y	 if {x} + {y} < 1

�x	 + �y	 + 1 if {x} + {y} ≥ 1
.

The equality in (VI) follows from this by substituting x = nm log r/β and y =
m log r/β and using Rn(0)/β = {

nm log r/β
}
and (5.6). ��

Choosing the parameter N0. From Corollary 2.16, the sets Qm and Q̃m (defined
in (5.2)) are (c1ρ, γ4)c2 -sets and satisfy

ρ−γ3 ≤ |Qm |, |Q̃m | ≤ ρ−γ4 . (5.7)

Let T1 (resp. T2) be the subset of Iβ obtained from applying Corollary 3.3 with Iβ as
I , εβ/12 as ε andQm (resp. Q̃m) as A. Put T = T1 ∩T2. It follows from Corollary 3.3
that Iβ \ T is covered by a disjoint union of not more than U :=�2εβρ−1/24� many
half-open intervals of Lebesgue measure less than εβ/6.

Let N0 ∈ N be the larger of
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• the N0 from Theorem 4.7 with ε/6 as ε, rm as r , and 2−γ3Hγ3
>0(X × Y ) as V ;

• the N0 from Lemma 2.18 with (Rn(0))n∈N0 as (xn)n∈N0 and ε/3 as ε.

Fixing the parameters N and t . To prove Claim 5.2, we will show that for all
N ≥ N0 and all t ∈ I there exists a probabilitymeasureμ supportedon the set�etQNm

with the property that for all balls B ⊆ R of diameter δ ≥ ρN , μ(B) ≤ ρ−N0δγ . Let
N ≥ N0 and t ∈ I . From this point on, all new quantities and objects can depend on
N and t .
Constructing the tree�. Let� be the tree (seeDefinition 4.1) of height N with node
set at heightn ∈ {0, 1, . . . , N } equal toQnm . Associating the point (i/rmn, j/s(mn)′) ∈
Qnm with the rectangle

[
i

rmn
,
i + 1

rmn

)
×

[
j

s(mn)′ ,
j + 1

s(mn)′

)
,

parentage in the tree � is determined by containment amongst associated rectangles.
Denote by C�(Q) the children of the node Q in �. Denote by � : R2 ×R

2 → R
2 the

binary operation of pointwise multiplication.

Claim 5.4 Let n < N and Q ∈ Qnm .

(VII) If Rn(0) + α < β, then C�(Q) ⊆ Q + (r−nm, s−(nm)′) � Qm .
(VIII) If Rn(0) + α > β, then C�(Q) ⊆ Q + (r−nm, s−(nm)′) � Q̃m .
(IX) Hγ3

rm (�) ≥ 2−γ3Hγ3
>0(X × Y ).

Proof We first prove parts (VII) and (VIII). By Lemma 2.12, r Xn ⊆ Xn−1 (mod 1)
and sYn′ ⊆ Yn′−1 (mod 1). By (VI), if Rn(0)+α < β, then

(
(n+1)m

)′ = (nm)′+m′,
and hence (rnm, s(nm)′) �Q(n+1)m ⊆ Qm (mod 1), and in particular (rnm, s(nm)′) �
C�(Q) ⊆ Qm (mod 1). If Rn(0) + α > β, then

(
(n + 1)m

)′ = (nm)′ + m′ + 1,

and hence (rnm, s(nm)′) �Q(n+1)m ⊆ Q̃m (mod 1), and in particular (rnm, s(nm)′) �
C�(Q) ⊆ Q̃m (mod 1).

Write Q = (i/rnm, j/s(nm)′) and let Q′ ∈ C�(Q). Because Q′ is a child of Q, we
canwrite Q′ = Q+(i0/r (n+1)m, j0/s((n+1)m)′)where 0 ≤ i0 < rm and 0 ≤ j0 < sm

′
.

It follows that (rnm, s(nm)′) � (C�(Q) − Q) ⊆ Qm (in the first case Rn(0) + α < β)
or (rnm, s(nm)′) � (C�(Q) − Q) ⊆ Q̃m (in the second case Rn(0) + α > β), where
the containment now is understood without reducing modulo 1.

To prove (IX), take a cut {Q1, . . . , Q�} ⊆ � of � with node Qi at height ni . Then,
by construction of �, there exists a cover X ×Y ⊆ ∪�

i=1Bi where ball Bi has diameter
at most 2ρni . Since the cut was arbitrary, it follows thatHγ3

rm (�) ≥ 2−γ3Hγ3
>0(X ×Y ).

��
Constructing the tree �′. Combining (5.7) with (VII) and (VIII), it follows that
|C�(Q)| ≤ rmγ4 for every non-leaf node Q of �. The tree � has now been shown to
satisfy all the hypothesis of Theorem 4.7 (with ε/6 as ε, rm as r , and 2−γ3Hγ3

>0(X×Y )

as V ), thus there exists a subtree �′ of � with the property that every node with height
at least N0 has (rmγ2 , 1 − ε/6)-fertile ancestry in �′.
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Constructing the tree �′′. Now we will use Corollary 3.3, the corollary to the
discrete version of Marstrand’s theorem, to further thin out the tree �′; an outline for
this step was described in Remark 4.4 (I). For each non-leaf node Q ∈ �′, we will
define a subsetCm

�′(Q) ofC�′(Q). Define J = (T − t)∩[0, β). Since Iβ \T is covered
by at most U many half-open intervals of measure less than εβ/6, the same is true
for the set [0, β) \ J . Define J = {0 ≤ n ≤ N − 1 | Rn(0) ∈ J }. Note that for all
n ≥ N0, by Lemma 2.18, |J ∩ {0, . . . , n − 1}| ≥ (1 − ε/3)n.

Let Q be a non-leaf node of �′, and let n ∈ {0, . . . , N − 1} be the height of Q.
Consider the following cases:

(X) n /∈ J or |C�′(Q)| < ρ−γ2 . Select a single child Q′ of Q and put Cm
�′(Q) =

{Q′}.
(XI) n ∈ J , |C�′(Q)| ≥ ρ−γ2 , and Rn(0) + α < β. By Theorem 4.7 and (VII), the

set A′:=(rnm, s(nm)′) � (C�′(Q) − Q) is a subset ofQm of cardinality at least
ρ−γ2 . Since n ∈ J , we have that t + Rn(0) ∈ T . Applying Corollary 3.3 (II)
with t + Rn(0) in the role of t , there exists a subset A′

t ⊆ A′ with |A′
t | ≥ ρ−γ1

and such that the points of �et+Rn (0) A′
t are distinct and c3ρ-separated. Define

Cm
�′(Q) = Q+(r−nm, s−(nm)′)�A′

t so that (r
nm, s(nm)′)�(Cm

�′(Q)−Q) = A′
t .

(XII) n ∈ J , |C�′(Q)| ≥ ρ−γ2 , and Rn(0) + α > β. We do exactly as in (XI) with
Qm replaced by Q̃m and using (VIII) to get the set Cm

�′(Q).

Let �′′ be the subtree of �′ with the property that if Q is a non-leaf node of �′′, then
C�′′(Q) = Cm

�′(Q). We claim that

every node of �′′ with height at least N0 has(r
mγ1, 1 − ε/2) − fertile ancestry.

(5.8)

Indeed, let Q be a node of �′′ with height n ≥ N0. The ancestry of Q in �′ is
(rmγ2 , 1− ε/6)-fertile. Each rmγ2 -fertile ancestor of Q in �′ with height in the set J
is an rmγ1 -fertile ancestor of Q in �′′. Since

∣∣J ∩ {0, . . . , n− 1}∣∣ ≥ (1− ε/3)n, there
are at least (1− ε/2)n many rmγ2 -fertile ancestor of Q in �′ with height in the set J .
It follows that Q has (rmγ1, 1 − ε/2)-fertile ancestry in �′′.

Claim 5.5 If L1 and L2 are two distinct leaves of �′′ and n is maximal such that L1
and L2 have a common ancestor at height n, then |�et L1 − �et L2| ≥ ρn+1.

Proof Let Q be the common ancestor of L1 and L2 in �′′ of height n. Note that by the
definition of �′′ and maximality of n, it must be that Q has more than one child and
hence that n ∈ J . Let Q1 and Q2 be the children of Q in �′′ that are ancestors of L1
and L2, respectively. Note that Q1 �= Q2 but that Qi may be equal to Li .

We will show first that�et Q1 and�et Q2 are c3ρn+1-separated. Write Q = (p, q)

and Qi = (pi , qi ). Suppose that Rn(0) + α < β. It follows from (V) that

�et Qi = r−nm (
rnm�et (Qi − Q)

) + �et Q

= ρn
(
rnm(pi − p) + et+Rn(0)s(nm)′(qi − q)

)
+ �et Q

= ρn
(
�et+Rn (0)

(
(rnm, s(nm)′) � (Qi − Q)

)) + �et Q.

(5.9)
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By (XI), the points of�et+Rn (0)

(
(rnm, s(nm)′)�(Qi −Q)

)
, i = 1, 2, are c3ρ-separated.

It follows then from (5.9) that the points of �et Qi , i = 1, 2, are c3ρn+1-separated. A
similar argument works to reach the same conclusion if Rn(0) + α > β using (XII).

By the definition of theQnm sets, |Qi −Li | ≤ 2 s−1ρn+1. By the triangle inequality
and the fact that c3 = 4Ps−1 + 1,

∣
∣�et L1 − �et L2

∣
∣ ≥ ∣

∣�et Q1 − �et Q2
∣
∣ − ∣

∣�et (Q1 − L1)
∣
∣ − ∣

∣�et (Q1 − L1)
∣
∣

≥ (4Ps−1 + 1)ρn+1 − 4Ps−1ρn+1 ≥ ρn+1.

It follows that
∣∣�et L1 − �et L2

∣∣ ≥ ρn+1, as was to be shown. ��
Constructing the measure μ. The proof of Claim 5.2 will be concluded by demon-
strating that 1) the fertile ancestry property of �′′ in (5.8) guarantees that �′′ supports
a “measure” which is not too concentrated on any node (an outline for this step was
described in Remark 4.4 (II)); and 2) by Claim 5.5, the projection of this measure is
not too concentrated on any ball.

Let ν : �′′ → [0, 1] be the unique function that takes 1 on the root of �′′ and
has the properties that for all non-leaf nodes Q of �′′, ν is constant on C�′′(Q) and
ν(Q) = ∑

C∈C�′′ (Q) ν(C). (Colloquially, a mass of 1 begins at the root of �′′ and
spreads down the tree by splitting equally amongst the children of each node.) Let νN
be the function ν restricted to �′′

N , the set of leaves of �′′. By the defining properties
of ν, the function νN is a probability measure on �′′

N .
Since �′′

N ⊆ QNm , the measure μ = �et νN , the push-forward of νN through the
map �et , is a probability measure supported on the set �etQNm . We will conclude
the proof of Claim 5.2 by verifying that for all balls B ⊆ R of diameter δ ≥ ρN ,
μ(B) ≤ ρ−N0δγ0 . (Recall that γ0 = γ .)

Let B ⊆ R be an interval of length δ ≥ ρN . Put n = �logρ δ	 + 1 and note that
ρn < δ ≤ ρn−1. It follows from Claim 5.5 that there exists a node Q of �′′ with
height at least n with the property that if L is a leaf of �′′ with �et L ∈ B, then Q is
an ancestor of L . This implies that μ(B) ≤ ν(Q), and so it suffices to show that

ν(Q) ≤ ρ−N0δγ0 . (5.10)

If n ≤ N0, then ρ−N0δγ0 > 1 and (5.10) holds trivially. If n > N0, then by the
definition of ν and the fact that Q has (rmγ1, 1 − ε/2)-fertile ancestry (cf. (5.8)),

ν(Q) ≤ 1

rmγ1(1−ε/2)n
= ργ1(1−ε/2)n ≤ ρ−N0δγ0 ,

since (1 − ε/2)γ1 > γ0. This verifies (5.10), completing the proof of Claim 5.2 and
hence of Theorem A.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included

123



Combinatorica

in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Austin, T.: A new dynamical proof of the Shmerkin-Wu theorem. J. Mod. Dyn. 18, 1–11 (2022)
2. Bishop, C.J., Peres, Y.: Fractals in Probability and Analysis. Cambridge Studies in Advanced

Mathematics, vol. 162. Cambridge University Press, Cambridge (2017)
3. Burrell, S.A.,Han,Yu.:Digit expansions of numbers in different bases. J.NumberTheory 226, 284–306

(2021)
4. Falconer, K.: Techniques in Fractal Geometry. Wiley, Chichester (1997)
5. Falconer, K., Fraser, J., Jin, X.: Sixty years of fractal projections. In Fractal geometry and stochastics

V, volume 70 of Progr. Probab., 3–25. Birkhäuser/Springer, Cham, (2015)
6. Fässler, K., Orponen, T.: On restricted families of projections inR3. Proc. Lond.Math. Soc. (3) 109(2),

353–381 (2014)
7. Fraser, J.M.: AssouadDimension and Fractal Geometry. Cambridge Tracts inMathematics. Cambridge

University Press, Cambridge (2020)
8. Furstenberg, H.: Disjointness in ergodic theory, minimal sets, and a problem in Diophantine

approximation. Math. Syst. Theory 1, 1–49 (1967)
9. Furstenberg, H.: Intersections of Cantor Sets and Transversality of Semigroups. 41–59 (1970)

10. Glasscock, D.:Marstrand-type theorems for the counting andmass dimensions inZd . Combin. Probab.
Comput. 25(5), 700–743 (2016)

11. Glasscock, D., Moreira, J., Richter, F.K.: Additive transversality of fractal sets in the reals and the
integers. arXiv e-prints, arXiv:2007.05480, July (2020)

12. Hochman, M., Shmerkin, P.: Local entropy averages and projections of fractal measures. Ann. Math.
(2) 175(3), 1001–1059 (2012)

13. Kaufman, R., Mattila, P.: Hausdorff dimension and exceptional sets of linear transformations. Ann.
Acad. Sci. Fenn. Ser. A 1(2), 387–392 (1975)

14. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Pure and Applied Mathematics,
Wiley-Interscience, New York (1974)

15. Nets Hawk Katz and Terence Tao: Some connections between Falconer’s distance set conjecture and
sets of Furstenburg type. New York J. Math. 7, 149–187 (2001)

16. Yuri Lima and Carlos Gustavo Moreira: A combinatorial proof of Marstrand’s theorem for products
of regular Cantor sets. Expo. Math. 29(2), 231–239 (2011)

17. Lima, Y.,Moreira, C.G.: AMarstrand theorem for subsets of integers. Combin. Probab. Comput. 23(1),
116–134 (2014)

18. Marstrand, J.M.: Some fundamental geometrical properties of plane sets of fractional dimensions.
Proc. Lond. Math. Soc. 3(4), 257–302 (1954)

19. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces, volume 44 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, 1995. Fractals and rectifiability

20. Moreira, C.G.T.: Sums of regular Cantor sets, dynamics and applications to number theory. In
International Conference on Dimension and Dynamics (Miskolc, 1998), volume 37, 55–63. (1998)

21. Orponen, T.: On the packing dimension and category of exceptional sets of orthogonal projections.
Ann. Math. Pura Appl. (4) 194(3), 843–880 (2015)

22. Peres, Y., Shmerkin, P.: Resonance between Cantor sets. Ergodic Theory Dyn. Syst. 29(1), 201–221
(2009)

23. Shmerkin, P.: On Furstenberg’s intersection conjecture, self-similar measures, and the Lq norms of
convolutions. Ann. Math. (2) 189(2), 319–391 (2019)

24. Wu, M.: A proof of Furstenberg’s conjecture on the intersections of ×p- and ×q-invariant sets. Ann.
Math. (2) 189(3), 707–751 (2019)

25. Han, Yu.: An improvement on Furstenberg’s intersection problem. Trans. Am. Math. Soc. 374(9),
6583–6610 (2021)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2007.05480


Combinatorica

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	A combinatorial proof of a sumset conjecture of Furstenberg
	Abstract
	1 Introduction
	1.1 History and Context
	1.2 Overview of the Paper
	1.3 Acknowledgements

	2 Preliminary Definitions and Results
	2.1 Continuous and Discrete Fractal Geometry
	2.2 Multiplicatively Invariant Subsets of the Reals and Their Finite Approximations
	2.3 A Quantitative Equidistribution Lemma

	3 A Discrete Marstrand Projection Theorem
	3.1 A Discrete Projection Theorem
	3.2 A Corollary for Oblique Projections

	4 Trees and a Subtree Regularity Theorem
	4.1 Preliminary Definitions
	4.2 A Subtree Regularity Theorem

	5 Proof of the Sumsets Theorem
	5.1 Outline of the Proof of Theorem A
	5.2 Proof of Theorem A
	5.3 Proof of Claim 5.2

	References


