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Abstract

The “minimal class approach” consists of studying downwards-closed properties of

hereditary graph classes (such as boundedness of a certain parameter within the

class) by identifying the minimal obstructions to those properties. In this thesis, we

look at various hereditary classes through this lens. In practice, this often amounts

to analysing the structure of those classes by characterising boundedness of cer-

tain graph parameters within them. However, there is more to it than this: while

adopting the minimal class viewpoint, we encounter a variety of interesting notions

and problems – some more loosely related to the approach than others. The thesis

compiles the author’s work in the ensuing research directions.
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Chapter 1

Introduction

A thesis is often written like a novel: it starts with a (hopefully) gripping exposi-

tion, then the reader is guided through a (hopefully) exciting narrative, and at the

end, they are offered a (hopefully) satisfying resolution. To manage the reader’s

expectation, we warn them right away that the current work does not completely

abide by that formula. Perhaps a more apt analogy for it would be a collection of

short stories. The common setting of those stories is the world of structural graph

theory.

Graph theory as a whole is a particularly active area of mathematics. The

discipline undoubtedly owes some of its popularity to its many applications, but

this does not stop it from exhibiting large amounts of beautiful theory. Broadly

speaking, its structural branch attempts to express, characterise, and more gener-

ally understand various graph phenomena in terms of the configurations that occur

in graphs. As a tongue-in-cheek example, a structural graph theorist might charac-

terise trees as acyclic connected graphs, and remark that they always have a vertex

of degree 1. In contrast, an extremal graph theorist might be interested in the fact

that any graph with n vertices and at least n edges must contain a cycle; an enumer-

ative combinatorist will derive Cayley’s formula, which states that there are nn−2

labelled trees on n vertices; an algorithmic graph theorist will note that trees make

for especially nice data structures; an algebraic one will point out that the Tutte

polynomials of forests are particularly simple; and the list could go on.

This is, of course, a parodic oversimplification. In actuality, all of those

fields, and several others, overlap significantly. As a consequence, the boundaries

between the various areas inevitably become blurry. This thesis is no exception;

if the author had to put labels on it, he might say that our study will feature

algorithmic, enumerative, and occasionally extremal and algebraic aspects. Several
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times, we will even venture outside of graph theory, and into the neighbouring world

of permutation patterns.

In spite of (or, perhaps, elaborating on) our short story analogy, the reader

must not think that the work is disjointed. Indeed, it is tightly bound together by

a few common themes, and by many “recurring characters” – notions which make

their appearance across several of our short stories. Because of this, we do not

give an in-depth discussion of the literature and background at this stage. Instead,

we will address these matters in the individual chapters where they are relevant.

Nevertheless, in the next chapter, we will give a quick overview of the common

themes permeating the work, together with a “character list” in which we introduce

some of the recurring notions. But first, let us go through the outline of the thesis.

Chapter 2 lays out the common preliminaries.

Chapter 3 concerns a graph parameter called lettericity, originally introduced

in [Pet02] to investigate well-quasi-orderability by induced subgraphs. Its study

leads us into the world of permutations, where we reveal some intricate structural

connections between lettericity and a notion called geometric griddability [Alb+13].

Chapter 4 introduces a new graph parameter that we call functionality. Its

original motivation is enumerative, but its study leads to many questions that are

interesting in their own right.

In each of Chapters 5 to 8, we restrict ourselves to individual classes, and

investigate various structural and parametric problems within those classes. More

specifically:

Chapter 5 is devoted to the class of cographs, for which we exhibit an in-

triguing hierarchy of graph parameters.

Chapter 6 concerns the bipartite analogues of cographs, for which we inves-

tigate the boundedness of linear clique-width.

In Chapter 7, we examine the class of bipartite permutation graphs, and

produce some results on lettericity within the class, as well as bounds on the size of

certain universal constructions.

In Chapter 8, we look at the class of so-called quasi-chain graphs, which is an

extension of the well-studied class of bipartite chain graphs. We provide a structural

characterisation of quasi-chain graphs, and once more, we study lettericity within

the class.

Finally, Chapter 9 compiles together a few loose results which are interesting

enough to be mentioned, but perhaps not consequential enough to deserve their own

chapters.
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Chapter 2

Preliminaries

In this chapter, we introduce the basic notation and terminology that we will (strive

to) consistently use throughout the thesis. Among other things, we also present

some of the “recurring characters” we mentioned, as well as the main concepts

that will guide our study. Since most of what we discuss here appears in many

introductory courses, textbooks or in the combinatorial folklore, we assume the

reader will have some familiarity with the notions. As such, we will not dwell too

long on the explanations, and we will omit illustrations and examples most of the

time. Without further ado, let us begin.

2.1 A short disclaimer

Our notation will be as standard as possible. In particular, we believe it is safe

for the reader to assume that any piece of notation which is not explicitly defined

means exactly what they think it means. Nevertheless, we provide here a very short

list of symbols which have different variants in the literature, and thus may present

some ambiguity; we hope that we did not miss anything essential from this list.

The symbol “:=” means “is defined to be”.

N := {0, 1, 2, . . . }.

For n ∈ N, [n] := {1, . . . , n} (and in particular, [0] := ∅).

The subset relation is denoted by “⊆”, and the proper subset relation is de-

noted by “(”.

The disjoint union of two sets is denoted by ].
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Given sets A and B, the difference of A and B, denoted A \ B or A − B,

consists of all elements of A which are not elements of B.

Given a set A, we denote by Ak the set of ordered k-tuples of elements from

A. We denote by
(
A
k

)
the set of (unordered) k-subsets of A (that is, subsets of

A with k elements).

Given two functions f, g : N → R, we write f = O(g) if there exists C > 0

and N ∈ N such that, for all n ≥ N , f(n) ≤ Cg(n). We write f = Ω(g) if

g = O(f), and f = Θ(g) if f = O(g) and f = Ω(g).

Given two functions f, g : N → R, we write f = o(g) if f(n)/g(n) → 0 as

n→∞, and f ∼ g if f(n)/g(n)→ 1 as n→∞.

2.2 Graphs

We will use very standard graph terminology, and avoid giving an exhaustive list of

definitions for all the terms – the reader is invited to consult, for instance, Diestel’s

book [Die00] for more details. Let us briefly summarise our particular implementa-

tion of the terminology.

An undirected graph G is a pair (V,E), where V is a set whose elements we

call vertices, and E ⊆
(
V
2

)
is a set whose elements we call edges. We note that this

definition does not allow loops or multiple edges. Such graphs are also referred to

as simple graphs. Unless otherwise specified, all graphs will be simple.

We say two vertices u and v are adjacent, or neighbours, if {u, v} ∈ E. We

will often denote edges by simply concatenating the vertices they contain (that is, we

may write uv instead of {u, v}). If u ∈ e for a vertex u and edge e, we say u and e are

incident. The neighbourhood of a vertex v in G is the set of neighbours of v, denoted

NG(v) (the subscript is omitted when there is no ambiguity). The complement of

a graph G = (V,E) is the graph G := (V,
(
V
2

)
− E). Given two graphs G and H,

their disjoint union G+H is the graph with vertex set V (G) ] V (H) and edge set

E(G)]E(H). Their join G×H is the graph G+H (that is, the graph with vertex

set V (G)] V (H), and edge set E(G)]E(H)] (V (G)× V (H)). The disjoint union

of n copies of G is denoted by nG.

A directed graph (or digraph for short) consists, like in the undirected case,

of a set V of vertices and a set E of edges, but this time, we require E ⊆ V 2

(that is, the edges are ordered pairs of vertices). Since we will sometimes work with

undirected graphs and some auxiliary directed graphs simultaneously, we will call

vertices “nodes” and edges “arcs” in the directed setting.
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We will almost exclusively work with finite graphs. We will usually work

with unlabelled graphs, in which vertices are only distinguished by the way they

connect to one another. This is in contrast with labelled graphs, in which vertices

come with labels (usually unique and from the set [|V |]).

Let G and H be two graphs. A function ϕ : V (G) → V (H) is a graph

isomorphism if it is a bijection which preserves adjacency, in the sense that vertices

u, v ∈ V (G) are adjacent if and only if vertices ϕ(u), ϕ(v) ∈ V (H) are adjacent.

If such an isomorphism exists, G and H are said to be isomorphic. We will avoid

discussing foundational issues, and abuse terminology by saying “graph” when we

mean “isomorphism class of graphs” (for instance, we will talk about the (unique)

complete graph on n vertices).

There are several natural order relations defined on graphs. The one we are

most concerned with is the induced subgraph relation: for any subset X ⊆ V (G),

the subgraph of G induced by X, denoted G[X], is the graph (X,E(G) ∩
(
X
2

)
). For

a vertex v ∈ V (G), we write G − v := G[V (G) \ {v}]. A graph H is an induced

subgraph of G, written H ≤i G, or simply H ≤ G, if it is (isomorphic to) G[X] for

some X ⊆ V (G). Put differently, H is induced in G if it can be obtained from G by

deleting a set of vertices, together with all incident edges. In this case, we also say

G contains H (as an induced subgraph).

There are of course other notions of containment: subgraphs, where in addi-

tion to vertex deletion, we also allow edge deletion; spanning subgraphs, where we

only allow edge deletion; and minors, where we allow vertex deletion, edge deletion,

and edge contraction (in which two adjacent vertices u and v are replaced with a

single vertex w whose neighbourhood is the union N(u) ∪N(v) \ {u, v}).
A clique in G is a subset of vertices that are pairwise adjacent, and an

independent set, or stable set, is a subset of vertices that are pairwise non-adjacent

(that is, an independent set is a clique in G). Cliques and independent sets together

are sometimes referred to as homogeneous sets. Given a set A ⊆ V (G) and a vertex

v /∈ A, we say v dominates A if v is adjacent to every vertex in A. A dominating

vertex is a vertex v that dominates V (G) \ {v}. An isolated vertex is a vertex which

is dominating in G. Given two disjoint sets A,B ⊆ V (G), we say A and B are

complete to each other if every vertex in A dominates B (and vice-versa). We say

A and B are anticomplete to each other if they are complete to each other in G.
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2.3 Partial orders

A partial order on a set X is a binary relation that is reflexive, antisymmetric and

transitive. A set X together with a partial order ≤ on X is called a poset. We

write “x ≤ y” rather than “(x, y) ∈ ≤”. A partial order ≤ on X is said to

be total, or linear, if any two elements of X are comparable (that is, if for any

x, y ∈ X, we have either x ≤ y or y ≤ x). Given a poset (X,≤), a chain is a set

of pairwise comparable elements (that is, a subset of X totally ordered by ≤). An

ascending, respectively descending chain is a (finite or infinite) sequence x1, x2, . . .

with x1 ≤ x2 ≤ . . . , respectively x1 ≥ x2 ≥ . . . . An antichain is a set of pairwise

incomparable elements.

A poset (X,≤) is well-founded if it contains no infinite strictly descending

chain. It is well-quasi-ordered (“wqo” for short) if it is well-founded, and it contains

no infinite antichains. We note that all of the graph containment notions described

above are well-founded, but not necessarily wqo (only the minor relation is wqo: this

is the statement of Robertson and Seymour’s famous graph minor theorem [RS04]).

One can equivalently define well-quasi-orderings as follows:1 an infinite se-

quence x1, x2, . . . in (X,≤) is good if there exists i < j with xi ≤ xj (the first “<”

denotes the usual order on N). (X,≤) is wqo if and only if every infinite sequence

is good.

2.4 Hereditary classes

A graph class, graph property, or graph family is a collection of graphs closed under

isomorphisms. Once more, we will avoid foundational issues, and identify isomorphic

graphs, so that our “classes” can be treated like sets. A class is said to be hereditary

if, in addition, it is closed under taking induced subgraphs (“downwards-closed”).

Unless otherwise specified, every class we work with will be assumed to be hereditary.

An important principle in combinatorics is that downwards-closed classes of

objects can be characterised by minimal obstructions.2 Graphs are, of course, no

exception: for a (hereditary) class X of graphs, let Obs(X ) be the (possibly infinite)

set of minimal graphs that are not in X . In other words, any graph G ∈ Obs(X )

satisfies G /∈ X and G−v ∈ X for any v ∈ V (G); Obs(X ) consists of all graphs with

this property. The set Obs(X ) is also called the set of minimal forbidden induced

subgraphs for X , sometimes also denoted by Forb(X ). Then, by standard theory, a

1This equivalence and a number of others are more or less folklore; one of their early appearances
in writing is in [Hig52].

2All we need to assume is well-foundedness of the relation – see Subsection 2.3
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graph is in X if and only if it does not contain any of the graphs from Obs(X ) (as

induced subgraphs). We note that, directly from the minimality condition, Obs(X )

is an antichain.

Since every class admits a characterisation by minimal forbidden induced

subgraphs, it can be useful to define classes via their sets of obstructions. To do

this, for any set S of graphs, we write Free(S) for the class of graphs that do not

contain any graph in S as an induced subgraph. We also say a graph is S-free to

mean that it is in Free(S). We may omit the set brackets, or replace them with

parentheses, when S consists of a small number of graphs (to produce expressions

like “Free(G)”, or “(G,H)-free graphs)”. As discussed above, for any class X , we

have X = Free(Obs(X )). We also have S ⊇ Obs(Free(S)) for any set S, with

equality when S is an antichain.

Another way to specify classes of graphs is via the notion of hereditary closure:

the hereditary closure of a set (or sequence) A of graphs consists of all graphs that

are induced in some graph G ∈ A. Alternatively, the hereditary closure of a set A

is the (inclusion-wise) smallest hereditary class containing all members of A.

A graph G is called n-universal for a class X if G contains all n-vertex

graphs from X . It is called proper if, in addition, G ∈ X . A universal sequence

for X can be defined in a number of ways; the most standard is, perhaps, as a

sequence X1, X2, . . . , where Xn is n-universal for X . Alternatively, it may simply

be defined as a family X1, X2, . . . such that X is contained in the hereditary closure

of the Xi. The distinction will not matter to us, so we will use the term loosely to

mean either of those things, as appropriate. The sequence is called proper if every

member belongs to X (in which case X must be equal to the hereditary closure of

the sequence).

2.5 Graph parameters

A graph parameter is a function that assigns to each graph a real number (in practice,

the parameters we work with will often be natural number-valued). A parameter κ

is hereditary if it does not increase when taking induced subgraphs (in other words,

G ≤ H =⇒ κ(G) ≤ κ(H)). Like with classes, we will assume our parameters are

hereditary, unless otherwise stated. Given a class X and a parameter κ, we say κ is

bounded in X (or X is of bounded κ) if there is a constant C such that for all G ∈ X ,

κ(G) ≤ C. If no such constant exists, we say κ is unbounded in X .

Many of the problems that we study in this thesis are of the form “When is

κ bounded in X ?” for a specific parameter κ, and for a class X belonging to a given

7



collection of classes. This collection is often going to be the set of subclasses of a

fixed class that we will refer to as our universe.

A very fruitful approach to answering such questions is the so-called “minimal

class approach”. Note that the set of classes in which a parameter κ is bounded

is downwards-closed under inclusion. The idea is to then attempt to characterise

boundedness of κ by producing a set M(κ) of minimal classes in which κ is not

bounded. Ideally, by analogy with the sets of obstructions for individual classes, we

would then like to conclude that κ is bounded in a class from our universe if and only

if it does not contain one of the “minimal obstacles” in M(κ). This might not work

in general, since the poset of classes we are considering might not be well-founded

under inclusion.3 Nevertheless, in the many cases where it does work, the approach

yields beautiful results, and valuable insight into the relevant problems.

It is worth noting that looking for minimal obstacles to the boundedness of

parameters can be viewed as a Ramsey-type problem. Indeed, recall the special case

of Ramsey’s classical theorem, which asserts the ubiquity of cliques and independent

sets:

Theorem 1 (Ramsey’s theorem [Ram30]). For any p, q ∈ N, there exists R =

R(p, q) ∈ N such that every graph on at least R vertices contains either a clique of

size p, or an independent set of size q.

This theorem can be restated as follows:

Theorem 2 (Ramsey’s theorem, minimal classes version). Let κ(G) := |V (G)| be

the order of a graph. Then κ is bounded in a class X if and only if X does not

contain the class K of all cliques, or the class K of all edgeless graphs.

More generally, questions about boundedness of a parameter κ can be re-

stated as: “What unavoidable structures arise when κ is large?”. As such, paramet-

ric questions can often be viewed as structural ones, and vice-versa.

We would also like to note that this point of view is not limited to examining

the boundedness of parameters. Indeed, the same approach applies to any situa-

tion in which we are aiming to characterise downwards-closed sets of classes, such

as classes in which a problem is not NP-hard, or classes which admit a universal

construction of a certain size.

3In fact, it is another folklore result that the set of subclasses of a given class X is is well-founded
under inclusion if and only if X is wqo under induced subgraphs.
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2.6 Bipartite graphs

A graph is called k-partite (k ∈ N) if its vertex set can be partitioned into k in-

dependent sets (called parts in this context). The case where k = 2 is particularly

interesting: those graphs are called bipartite. The same graph may admit several

different partitions into two independent sets (so-called bipartitions) – in fact, a bi-

partite graph has a unique bipartition if and only if it is connected. To address this,

bipartite graphs are often given with a fixed bipartition. In such cases, we write

G = (A,B,E) to emphasise that A and B are the two parts under consideration. In

particular, V (G) = A ]B, and it is understood that any edge connects an element

of A with an element of B.

When working with graphs with a distinguished bipartition, it is useful to

think of them as coloured bipartite graphs. Given a graph (A,B,E), we will call

the vertices in A black and the vertices in B white. To make everything work

smoothly in this setting, we need to tweak a bit our definition of isomorphism:

two coloured bipartite graphs are isomorphic if there is an adjacency and colour-

preserving bijection between them. As a consequence, other definitions need to be

modified appropriately: for instance, induced subgraphs need to admit a colour-

preserving embedding. We omit further details.

Keeping track of bipartitions in this way allows us to unambiguously define

bipartite analogues of graph operations. More specifically, given two (coloured)

bipartite graphs G1 = (A1, B1, E1) and G2 = (A2, B2, E2), their bipartite disjoint

union is the graph G1 +b G2 := (A1 ] A2, B1 ] B2, E1 ] E2) (when there is no

possibility of confusion, we may drop the b subscript). The bipartite complement of

G is the graph G̃ := (A,B, {{a, b} : a ∈ A, b ∈ B} \E). The bipartite join of G1 and

G2 is the graph G1 ×b G2 := ˜̃G1 +b G̃2. Finally, the skew-join of G1 with G2 is the

graph G1 oG2 := (A1 ]A2, B1 ]B2, E1 ] E2 ] {{a, b} : a ∈ A1, b ∈ B2}).
We may also define a reflection operation on coloured bipartite graphs, which

swaps the colours: the reflection of G = (A,B,E) is the graph GR := (B,A,E). Ad-

ditionally, from any coloured bipartite graph, we may obtain an uncoloured bipartite

graph by “forgetting” the colouring – this is simply the graph G = (A ∪B,E).

Also recall the standard result which characterises bipartite graphs as those

graphs which do not contain any odd cycles.
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2.7 Cographs

There are many tools that can be used to capture various features of the structure of

graphs. One such tool is modular decomposition. Let G be a graph, and u, v ∈ V (G).

We say a vertex w 6= u, v distinguishes u and v if it is adjacent to exactly one of u and

v. A module of G is a subset A of V (G) such that no vertex in V (G)\A distinguishes

two vertices from A. As such, modules generalise connected components (and co-

connected components, i.e., connected components of G). ∅, singletons and V (G)

are trivial modules. A graph in which those are the only modules is called prime.

One can recursively decompose any graph into non-trivial modules. As is

always the case with decompositions, one can record this information in a rooted

tree: the modular decomposition tree. Modular decomposition has many structural

and algorithmic uses, but we will never use it in its full generality, so we omit the

details.

There is a class of graphs with particularly nice modular decompositions,

called cographs (short for “complement reducible graphs”). This class can be defined

as the smallest class containing the one vertex graph, and closed under disjoint

unions and complements. Cographs have been rediscovered several times. They

have been extensively studied, and admit many known characterisations (see, e.g.,

[BLS99] and the references therein). In particular, a graph G is a cograph if and

only if it satisfies any of the following equivalent conditions:

� G is P4-free (where P4 is the path on four vertices).

� For any induced subgraph H ≤ G, either H or its complement is disconnected.

� For any induced subgraph H ≤ G with |V (H)| ≥ 2, H contains a module

of size 2 (the vertices in such a module are called twins; the literature some-

times distinguishes between true and false twins according to whether they

are adjacent, respectively non-adjacent).

� G has clique-width at most 2.4

These properties imply that cographs have very nice properties with respect

to modular decomposition, and those properties are captured in their representation

by cotrees. A cotree is a rooted tree whose internal nodes (that is, the non-leaf nodes)

are labelled with the numbers 0 and 1 (or equivalently, with “+” and “×”). From

a cotree T , one can construct a cograph GT as follows: the leaves of T correspond

4See Subsection 2.9 for a definition.

10



to single vertices. Inductively, for any node x of T with children y1, . . . , ys, the

subtree T x rooted at x corresponds to the graph GTx obtained by taking the disjoint

union
∑

iGT yi or the join
∏
iGT yi according to whether x is labelled 0/+ or 1/×

respectively.

Indeed, it is clear that every graph encoded by a cotree is a cograph, and it is

not difficult to see that every cograph has a cotree representation. This follows from

the fact that, for any cographG, exactly one ofG and its complementG is connected.

As such, even though cotree representations are in general not unique, we will abuse

terminology and say the cotree TG of a cograph G to refer to a special cotree. This

cotree is obtained from G by starting with a root vertex labelled 0 or 1 according to

whether G is disconnected or connected; the children of this root then recursively

correspond to the connected or co-connected components of G respectively.5

2.8 Intersection graphs

Many classes of graphs are defined as the intersection graphs of other classes of

objects. For example, an interval graph is a graph whose vertices correspond to

intervals on the real line, and for which two vertices are adjacent whenever the

corresponding intervals intersect. Another example is given by line graphs: given

a graph G, its line graph L(G) is the graph whose vertices are the edges of G,

and for which two vertices are adjacent whenever the corresponding edges intersect.

Given an intersection graph G, an intersection model for G is simply a set of the

appropriate objects whose intersection graph is isomorphic to G.

One class of intersection graphs that we are particularly interested in is

the class of permutation graphs. They are the intersection graphs of line segments

between two parallel lines (although perhaps a more natural way to define them is

as the inversion graphs of permutations – see Chapter 3).

2.9 Clique-width

Clique-width is a graph parameter whose boundedness has nice algorithmic conse-

quences. While we will only use its linearised version (that we will define in Chap-

ter 6), we briefly discuss clique-width here, since it is useful background knowledge.

The clique-width cw(G) of a graph G is the smallest number of labels needed

to construct G by means of the following operations:

1. Create a vertex v with label i;

5This is effectively a special case of the modular decomposition tree.
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2. Take the disjoint union of labelled graphs G and H;

3. Add all edges between vertices labelled i and vertices labelled j for labels i 6= j;

4. Rename label i to label j.

Using those operations, one can produce clique-width expressions that can

be represented by trees whose leaves correspond to vertex creation operations, and

whose internal vertices correspond to one of the other operations. One then con-

structs graphs from those expressions in the obvious way.

Intuitively, clique-width can be obtained by minimising the number of labels

needed to construct a graph G over all such expressions; the linearised version,

linear clique-width, is what we obtain when we only allow expressions whose tree is

“path-like”.

We note that there is a host of other width parameters in the literature, such

as treewidth, branch-width, rank-width, and several others. We will occasionally

use facts about those parameters (that we will state as we go along), but we will

never need to work with their definitions, so we omit them.

2.10 A short glossary of notation

Some common graphs:

Kn – the complete graph ([n],
(

[n]
2

)
).

Cn – the cycle ([n], {12, 23, . . . , (n− 1)n, n1}).

Pn – the path ([n], {12, 23, . . . , (n− 1)n}).

Km,n – the complete bipartite graph Km ×Kn.

Mn – the induced matching nK2.

Sunn – the graph obtained from Cn by adding a pendant vertex6 to each vertex.

Hn – the graph obtained from Pn+1 by adding two pendant vertices to each end

of the path.

Sk,l,m – the tree with no vertices of degree 4 or more, a single vertex v of degree 3,

and three leaves at distances k, l and m from v respectively.

6We say v is pendant to w if N(v) = w.
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Some parameters:

χ – chromatic number (the smallest k such that V (G) admits a partition into k

independent sets).

z – co-chromatic number (the smallest k such that V (G) admits a partition into

k homogeneous sets).

ω – clique number (the size of the largest clique).

α – independence number (the size of the largest independent set).

cw – clique-width.

tw – treewidth.
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Chapter 3

Lettericity and geometric

griddability

In this chapter, we will study two notions – letter graph representations [Pet02],

from the world of graphs, and geometric grid classes [Alb+13], from the world of

permutations. We will see that, despite being defined in seemingly unrelated ways,

the two notions have a close relationship between them. This stems from the fact

that they capture the same structural data of their respective combinatorial objects:

a partition of their elements into simple “bags”, and a linear ordering of the elements

interacting nicely with this partition.

In Section 3.1, we introduce the necessary terminology and notation. Sec-

tion 3.2 presents the results published in our paper [Ale+20b]. We prove a conjecture

from that paper in Section 3.3, and finally, Section 3.4 provides a discussion about

a further direction of research.

3.1 Letter graphs and griddability: preliminaries

3.1.1 Letter graphs and lettericity

The notion of letter graphs was introduced in [Pet02]. Our terminology differs

only superficially from the one used there. We will need some basic notions from

the theory of formal languages; rather than defining them separately in the most

general setting possible, we will introduce the relevant definitions as we go along,

and adapt them to our restricted setting.

Our starting point is a finite digraph D = (Σ, A) that we will call the decoding

digraph, or simply decoder. We call Σ a (finite) alphabet, and we refer to its elements

(that is, the vertices of D) as letters (or symbols). Now let Σ∗ be the set of finite
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sequences of elements of Σ. We will refer to them as words (or strings) over Σ. The

main idea is now to construct graphs from words in Σ∗ by “decoding” them using

D. The intuition is that each of the indices 1, . . . , n of the word w = w1w2 . . . wn

corresponds to a vertex, and their adjacency depends (in a straightforward way

dictated by the arcs in D) only on the relative order of the indices and on the

symbols appearing at those indices. Formally, we have the following definition:

Definition 3. Let D = (Σ, A) be a decoder, and let w = w1w2 . . . wn ∈ Σ∗. The

letter graph G(D, w) is the finite simple graph defined by

� V (G(D, w)) = [n];

� E(G(D, w)) = {{i, j} : (wmin(i,j), wmax(i,j)) ∈ A}.

The map sending w to G(D, w) is called the decoding map.

Some examples are in order.

Example 4. In Figure 8.1, we show on the left a decoding digraph D, and on the

right the letter graph G = G(D, acdbad). Notice how, for each letter l ∈ V (D), the

set {i : wi = l} forms either a clique or an independent set, according to whether

the loop (l, l) is in D or not. Similarly, notice how, for two letters l1, l2, the sets

As = {i : wi = ls}(s = 1, 2) are complete to each other if D contains both arcs

(l1, l2) and (l2, l1), and anticomplete to each other if D contains none of the two

arcs. Finally, the least trivial situation is when D contains exactly one of the arcs

(l1, l2). For instance, we note in the figure that D has the arc (a, c), but not the arc

(c, a). This tells us that in G(D, w), we connect each a to every c appearing after

it, but not to any of the cs appearing before it.

Example 5. The simplest non-trivial example of a decoder is D = ({a, b}, {(a, b)})
(that is, D is a digraph with two vertices and a single directed arc between them).

Graphs with this decoder are exactly the bipartite chain graphs; in particular, if

w = abab . . . ab is the concatenation of the word ab n times, the graph G(D, w) is

the prime chain graph on 2n vertices (see Figure 3.2). The indices in the figure

indicate the order in which the vertices appear in w.

Example 6. For our final example, we remark that any graph G has a letter graph

representation G ∼= G(D, w), if we put V (D) = V (G) and E(D) = {(u, v), (v, u) :

{u, v} ∈ E(G)} (w can be any word containing each letter exactly once).

This last example also shows that the question of interest for this notion

is not simply “can we represent a given graph as a letter graph?”. Instead, we
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(b) Letter graph G(D, acdbad)

Figure 3.1: A letter graph
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b4
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Figure 3.2: The prime chain graph on 10 vertices

want to investigate what happens when we fix a decoder, and consider all graphs

representable with that particular decoder. Since, for a given size of the alphabet

Σ, there are only finitely many possible decoders, this is more or less the same as

studying what happens when we bound the number of letters. To this end, we have

the following definitions:

Definition 7. Let G be a graph. The lettericity let(G) of G is the smallest n ∈ N
such that G is isomorphic to a letter graph over a decoder D = (Σ, A) with |Σ| = n.

For a decoder D, we write LD for the class of graphs representable as letter

graphs with that decoder, and call it the class of letter graphs with decoder D. For

a natural k, the class of k-letter graphs Lk is the (finite) union
⋃
D:|V (D)|=k LD.

Remark 8. The classes LD (and, as a consequence, Lk) are hereditary. Indeed, it

is easy to check that any induced subgraph H of G ∼= G(D, w) can be written as

G(D, w′) where w′ is obtained from w by deleting the entries not corresponding to

vertices of H.

Remark 9. The definition immediately shows that not every class has bounded
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lettericity, since lettericity is bounded below by co-chromatic number.

In [Pet02], Petkovšek characterises k-letter graphs as follows.

Proposition 10 ([Pet02], Proposition 1). A graph G is a k-letter graph if and only

if

1. there is a partition V1, V2, . . . , Vp of V (G) with p ≤ k such that each Vi is either

a clique or an independent set in G, and

2. there is a linear ordering L of V (G) such that for each pair of distinct indices

1 ≤ i, j ≤ p, the intersection of E(G) with Vi × Vj is one of the following four

types (where L is considered as a binary relation, i.e., as a set of pairs):

i. L ∩ (Vi × Vj);

ii. L−1 ∩ (Vi × Vj);

iii. Vi × Vj;

iv. ∅.

One of the main reasons the notion of letter graphs is interesting is that Σ∗

comes with a natural partial order called subword (or subsequence) embedding, that

interacts nicely with the induced subgraph partial order:

Definition 11. Let w = w1w2 . . . wn and w′ = w′1w
′
2 . . . w

′
n′ be two words over an

alphabet Σ. We say w is a subword (or subsequence) of w′ (denoted w ≤ w′) if

n ≤ n′, and there is an increasing injection ι : [n] → [n′] such that wi = w′ι(i) for

i = 1, . . . , n. ι is called a subword or subsequence embedding.

Lemma 12. Let G ∼= G(D, w) and G′ ∼= G(D, w′) for some decoder D and words

w,w′. If w ≤ w′, then G ≤i G′.1

Proof. Suppose w ≤ w′, and let ι be the subword embedding. For i < j, we note

that i is adjacent to j in G if and only if (wi, wj) is in the decoder. Similarly, ι(i) is

adjacent to ι(j) in G′ if and only if (w′ι(i), w
′
ι(j)) is in the decoder. By construction,

(wi, wj) = (w′ι(i), w
′
ι(j)), so that i is adjacent to j if and only if ι(i) is adjacent to ι(j).

But this is precisely the same as saying ι : V (G) → V (G′) is an induced subgraph

embedding.

1The converse of this lemma is the content of Remark 8, so that w ≤ w′ if and only if G ≤i G′.
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This simple fact allows us to use order-theoretic results, namely Higman’s

Lemma [Hig52], on the classes LD (and in general, on classes of bounded lettericity).

Theorem 13 (Restricted version of Higman’s Lemma, [Hig52], Theorems 1.2 and 4.3).

The subword relation defined above is a wqo when the alphabet is finite.

Theorem 14 ([Pet02], Theorem 8). The classes Lk are wqo by the induced subgraph

relation.

Corollary 15. Any class of bounded lettericity is wqo.

Theorem 14 makes graph lettericity an important parameter when studying

wqo of classes of graphs under the induced subgraph relation, since it provides non-

trivial examples of wqo classes of graphs, and it also gives a useful method for

proving certain classes are wqo. The theorem also provides an alternative argument

that not all classes of graphs have bounded lettericity, since any class containing

all cycles (or, indeed, any other infinite antichain) must have unbounded lettericity.

Let us construct one explicit example of graphs of high lettericity:

Example 16. Let n ∈ N. We have let(nK2) = n. Indeed, it is easy to see that n

letters are enough to represent the graph (just use one letter per edge). If we had

let(nK2) < n, then there would be 3 vertices with the same letter, say a. Denote

their appearances in the word w representing nK2 by a1, a2 and a3, so that a2 lies

between the other two in w. We note that no vertex can be adjacent to only the

vertex corresponding to a2, which is a contradiction, since every vertex in nK2 has

degree 1.

Before moving on, we mention one more result shown in [Pet02].

Theorem 17 ([Pet02], Theorem 9). For each k, the class Lk is characterised by

finitely many minimal forbidden induced subgraphs.

Sketch of proof. Let Sk be the set of minimal forbidden induced subgraphs for Lk.
If G ∈ Sk, then for any vertex v of G, G − v is in Lk. It is not too difficult to see

that this implies G ∈ L2k+1. The claim follows, since L2k+1 is wqo and Sk is an

antichain.

3.1.2 Monotone and geometric griddability

The study of permutations as combinatorial objects is a rich and rapidly developing

area of research. Topics of interest include enumerative problems, and well-quasi-

orderability. A detailed history of the field, albeit interesting, is outside our scope;

we will instead only introduce the notions immediately relevant to us.
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For our purposes, a permutation is a linear order on [n] for some n ∈ N –

in other words, a string in which every number in [n] appears exactly once, such

as “41325” or “7654321”. We will refer to the characters in the string as digits or

elements. Permutations come with a natural partial order on them called pattern

containment:

Definition 18. Let w = w1w2 . . . wt and w′ = w′1w
′
2 . . . w

′
t′ be two words in N∗. We

say w is order-isomorphic to w′ if t = t′, and for all 1 ≤ i, j ≤ t, wi ≤ wj if and only

if w′i ≤ w′j .
Now let σ and π be two permutations. We say σ is a pattern of π (or π

contains σ as a pattern) if π contains a subsequence that is order-isomorphic to σ.

If π contains no such subsequence, we say π avoids σ.

Example 19. The permutation 2713564 contains 1423 as a pattern. Indeed, the

subsequence 2735 is order-isomorphic to 1423.

As another example, the permutations that avoid 21 as a pattern are exactly

the increasing permutations 1, 12, 123, 1234, . . . .

Pattern containment is analogous to the induced subgraph relation, and we

can define permutation classes as sets of permutations closed under (isomorphisms

and) pattern containment. By the same general theory as in the case of graphs, any

permutation class X can be characterised uniquely in terms of its set of minimal

avoided patterns Av(X ), also known as the basis of X .

Remark 20. Now is a good time to point out that in the study of permutations

on the one hand, and graphs on the other, completely analogous concepts might

have different terminology associated to them. This difference might be subtle – for

instance, graph theorists usually use the word “hereditary” to specify when a graph

class is closed under taking induced subgraphs, while in the permutation literature,

classes are often closed under pattern containment from the definition. We will do

our best to avoid any ambiguities caused by this, but the reader should be warned

that, when we deem the risk of confusion to be low, we will liberally borrow from one

field to refer to concepts from the other, like saying a graph “avoids” another (as an

induced subgraph). Similarly, we might use more general terminology from standard

combinatorial theory, like saying “minimal obstructions” (or “minimal obstacles”) to

refer to either minimal forbidden induced subgraphs for a graph class, or to minimal

avoided patterns for a permutation class.

We may identify a permutation π on [n] with its plot, the set of points

{(i, π(i)) : 1 ≤ i ≤ n} in the plane. More generally, [Alb+13] describes a rigorous
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framework for this geometric perspective on permutations. We do not need the full

generality of their framework2, but the gist of it is as follows: call a set of points

in the plane independent if no two points lie on the same vertical or horizontal line.

We may define a permutation as an equivalence class of finite independent sets of

points, where two such sets are equivalent if, roughly speaking, we can get from one

of them to the other by vertical and horizontal stretching or shrinking.

As an example, Figure 3.3 illustrates the plot of 614253 (axes are omitted),

which is a representative for its equivalence class. The only thing that matters is the

relationship between the vertical and horizontal orderings of the six points. More

concretely, if we label the points in increasing order from the bottom to the top,

then reading the labels from left to right yields 614253. The full equivalence class

consist of exactly the (independent) sets of points with this property.

6

1

4

2

5

3

Figure 3.3: Geometric representation of π = 614253.

We will now talk about two tools used to study permutation classes: mono-

tone and geometric griddability. The notion of monotone griddability was developed

over several papers, by successively generalising previous notions. Some of the steps

that led to the definition that we have today can be found in [Atk99; AMR02; MV02].

The definitions we give here are more or less equivalent to the ones introduced in

[HV06].

2Indeed, [Alb+13] and to some degree [HV06] present everything with an added level of for-
malism. This has the benefit of making the geometric theory of permutations and the tools we
are about to describe fairly robust, but it does so at the price of brevity. Since our focus is not
on permutations themselves, but rather on their relationship to graphs (and, as we will see, to an-
other combinatorial structure capturing some of their order properties), we will take some shortcuts
along the way. Our aim here is to give the minimum amount of rigour necessary for developing an
intuition in working with those tools; for the reader’s peace of mind, we stress that everything we
discuss in this subsection could be done carefully and in more detail.
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Let s, t ∈ N. An s× t gridding Γ is a set of s+ 1 vertical and t+ 1 horizontal

lines in the plane. This partitions the rectangle in the plane defined by the extremal

lines into st regions that we will call the cells of the gridding. The cells are labelled

Zij , where the first index counts from left to right, and the second from bottom to

top.3

Definition 21. Let π be a permutation and M = (αij) an s× t matrix with entries

in {0,±1}. We say π is monotonically griddable by M (or just “griddable” for short)

if there exists an s× t gridding Γ such that:

� If αij = 0, then π ∩ Zij = ∅.

� If αij = 1, then π ∩ Zij is increasing.

� If αij = −1, then π ∩ Zij is decreasing.

We say such a Γ is a monotone gridding of π by M – see Figure 3.4 for an

example.
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Figure 3.4: A monotone gridding of 614253 by

(
−1 −1
1 1

)
.

We note that monotone griddability is well-defined: if the plot of a permu-

tation π is griddable by some matrix, then so is every other representative for π

(we may simply stretch the gridding with the plot to get to any independent set of

points in the equivalence class of π). We also note that if π is griddable by a matrix

M , then so is any subpattern σ of π. This motivates the following definitions:

3In particular, whenever we use matrices, we will follow the same (non-standard) indexing
convention: an s× t matrix M = (aij) has s columns and t rows; the indices i, j count the entries
of M from left to right, and from bottom to top respectively.
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Definition 22. Let M be a 0/±1 matrix. The grid class of M , denoted Grid(M), is

the class of permutations monotonically griddable by M . A class X of permutations

is called monotonically griddable if X ⊆ Grid(M) for some fixed 0/±1 matrix M .

Huczynska and Vatter [HV06] give a characterisation of monotone griddable

classes in terms of minimal non-griddable classes. To state it, we first need a defi-

nition:

Definition 23. Let π ∈ Sm and σ ∈ Sn. We define their direct sum π ⊕ σ by

(π ⊕ σ)(i) =

π(i) if i ∈ [m],

σ(i−m) +m if i ∈ [m+ n] \ [m],

and similarly their skew sum π 	 σ by

(π 	 σ)(i) =

π(i) + n if i ∈ [m],

σ(i−m) if i ∈ [m+ n] \ [m].

Figure 3.5 illustrates the geometric meaning of the direct and skew sums.

π

σ

π ⊕ σ

π

σ

π 	 σ

Figure 3.5: Direct and skew sum of two permutations

Theorem 24 ([HV06], Theorem 2.5). A permutation class is monotone griddable

if and only if it does not contain arbitrarily long direct sums of 21 or skew sums of

12.

In other words, a class X of permutations is monotone griddable if and only

if it does not contain the class of all (subpatterns of) direct sums of 21 or the class

of all (subpatterns of) skew sums of 12.
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We now discuss the second, stronger notion of griddability that we men-

tioned, introduced in [Alb+13] and called geometric griddability. The definition is

very similar to that of monotone griddability, where we start with a 0/±1 matrix

M and a gridding whose cells correspond to entries of M . However, instead of sim-

ply requiring that π is monotone in the cells of the gridding, we put the stronger

condition that the entries of π in each cell lie on one of the diagonals.

Definition 25. Let π be a permutation and M = (αij) an s× t matrix with entries

in {0,±1}. We say π is geometrically griddable by M if there exists an s× t gridding

Γ such that:

� If αij = 0, then π ∩ Zij = ∅.

� If αij = 1, then π ∩ Zij lies on the main diagonal4 of Zij .

� If αij = −1, then π ∩ Zij lies on the antidiagonal of Zij .

We say such a Γ is a geometric gridding of π by M – see Figure 3.6 for an

example. The union of the diagonals and antidiagonals on which the entries of π

may lie is called the standard figure of M .

Remark 26. Without loss of generality, we may apply some normalisations so that

the cells in any monotone or geometric gridding correspond to unit squares, with

the bottom left corner of the bottom left cell at (0, 0). Indeed, since we allow ver-

tical and horizontal stretching, those normalisations do not affect the permutations

geometrically griddable by M . In particular, we will assume the standard figure is

subject to those normalisations.

Similarly to (monotone) griddability, we define geometric griddability of

classes as follows:

Definition 27. Let M be a 0/±1 matrix. The geometric grid class of M , denoted

Geom(M), is the class of permutations geometrically griddable by M . A class X of

permutations is called geometrically griddable if X ⊆ Geom(M) for some fixed 0/±1

matrix M .

It is clear from the definition that any permutation geometrically griddable

by a matrix is monotonically griddable by that matrix. Concisely, for any 0/±1

matrix M , Geom(M) ⊆ Grid(M). Is the converse true? As one might expect, the

answer is in general negative:

4That is, the straight line segment connecting the bottom left corner with the top right one.
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Figure 3.6: A geometric gridding of 614253 by

(
−1 −1
1 1

)
.

Example 28. Let π = 2413 and M =

(
−1 1

1 −1

)
. Then π ∈ Grid(M), but

π /∈ Geom(M). That π ∈ Grid(M) is easy to see – we can grid it with one element

per cell. To see that π /∈ Geom(M), one can derive a contradiction by first noting

(via simple case analysis) that there must be one element per cell, then seeing that,

going around in a clockwise cycle starting at say 2, the distance from each element

to the centre of the figure should strictly decrease, leaving no place to put 1 (see

Figure 3.7).

Does it ever happen that Grid(M) and Geom(M) coincide? The answer is

“yes”, and the matrices M for which this is the case are characterised in [Alb+13].

To state this characterisation, we need the notion of cell graph of a matrix M : for

a matrix M , the vertices of the cell graph are the non-zero entries of M , and two

vertices are adjacent if the corresponding entries share a row or a column, and all

entries between them are 0 (see Figure 3.8).

The full characterisation says that Grid(M) = Geom(M) if and only if the

cell graph of M is a forest, and is an immediate consequence of the following:

Theorem 29 ([Alb+13], Theorem 3.2). If the cell graph of M is a forest, then

Grid(M) = Geom(M).

Theorem 30 ([Alb+13], Theorem 6.1). Every geometrically griddable class is wqo.

Theorem 31 ([MV02], Theorem 2.2). Grid(M) is wqo if and only if the cell graph

of M is a forest.
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1?

Figure 3.7: An attempt to geometrically grid 2413.−1 1 0 1 0 −1
1 1 0 0 −1 1
0 0 1 0 0 1


(a) The matrix M (b) Its cell graph.

Figure 3.8: A matrix and its cell graph.

Theorem 29 is shown by induction, the main insight being that we have a

lot of freedom to move the entries of a permutation lying in a leaf of the cell graph.

Theorems 30 and 31 together imply the converse of Theorem 29. It is worth

noting that Theorem 30 is (besides enumerative results) one of the big reasons

geometrically griddable classes are interesting. It is also the first hint suggesting

that the notions of geometric griddability and graph lettericity are related (compare

with Theorem 14).

The last item we discuss in this subsection is the proof of Theorem 30. The

proof, which is a straightforward generalisation of work from [VW11], consists of

defining a finite alphabet Σ depending on M , then producing an order preserving,

surjective map ϕ : Σ∗ → Geom(M). Σ∗ is wqo by Higman’s lemma, and Theorem 30

then immediately follows. To describe the map requires a bit of preparation; we start
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with a result which, despite being a simple technicality, proves to be very useful.

We need a quick definition:

Definition 32. We say an s× t, 0/±1 matrix M = (αij) is a partial multiplication

matrix if there exist column and row signs c1, . . . , cs, r1, . . . , rt ∈ {±1} such that αij

is either 0 or the product cirj .

Proposition 33 ([Alb+13], Proposition 4.2). Every geometric grid class is the

geometric grid class of a partial multiplication matrix.

Sketch of proof. We define a refinement M×k of a matrix M by replacing each entry

with a k × k matrix. 0s and 1s are replaced with the 0 and identity matrices

respectively, and −1 is replaced with a matrix with −1s on the antidiagonal, and 0s

everywhere else. It is not difficult to see that Geom(M) = Geom(M×k) for any k,

and that M×2 is always a partial multiplication matrix.

From now on, we will assume unless otherwise specified that we are working

with partial multiplication matrices; the column and row signs will often be repre-

sented by arrows to the left of and above the standard figure of the matrix – as in

Figure 3.9. Which arrow direction corresponds to which sign is immaterial, as long

as it is consistent. The partial multiplication matrix condition says exactly that

those arrows can be chosen to always “agree” with the diagonals in the cells. This

choice of signs also yields a distinguished corner for each cell, as indicated in the

figure by the large black dots.

Let us now describe the map ϕ. We define the cell alphabet of the matrix

M = (αij) as the set Σ := {akl : αkl 6= 0}, that is, the letters akl correspond to non-

zero entries of M . From a word w = w1w2 . . . wt ∈ Σ∗, we construct a permutation

π ∈ Geom(M) as follows: choose a set 0 < d1 < d2 · · · < dt < 1 of distances, then

for 1 ≤ i ≤ t, if wi = akl, place a point xi on the diagonal of cell Zkl at infinity-norm

distance di of the distinguished corner of that cell. Figure 3.9 illustrates this with

M =

(
−1 −1

1 1

)
; then Σ = {a11, a12, a21, a22}. If we let w = a12a11a21a22a12a21,

then choosing di = i
7 for i = 1, . . . , 6 produces the permutation 614253. The circled

numbers are the indices i corresponding to each entry – one can interpret them as

the order in which we insert the elements of the permutation into the picture.

It is not difficult to see that ϕ is well defined, in that its value does not depend

on the choice of distances. Moreover, it is onto and order preserving ([Alb+13],

Proposition 5.3). ϕ is not injective, since changing the relative order in which we

add elements from independent cells (that is, cells that do not share a row or a
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Figure 3.9: ϕ(a12a11a21a22a12a21) = 614253.

column) does not alter the permutation.5

3.1.3 Permutation graphs

Permutations can be related to graphs via the notion of permutation graphs. To

a permutation π on [n] we associate its inversion graph Gπ, whose vertex set is

[n] and whose edges are the pairs {i, j} that are inverted by π, in the sense that

(i− j)(π(i)− π(j)) < 0. The class of permutation graphs consists of all graphs that

are the inversion graph of some permutation. It has several known characterisations

(for instance, as intersection graphs of line segments between two parallel lines, as

graphs that are simultaneously comparability and co-comparability [DM41] or as

comparability graphs of a poset of order dimension at most two [BFR72]), including

a minimal forbidden induced subgraph one [Gal67].

The mapping from permutations to their permutation graphs is not injective,

since for instance, both 2413 and 3142 have P4 as their permutation graph. However,

prime graphs with respect to modular decomposition have only two permutation

representations that are inverse to each-other (in the function sense) [Gal67]. We

5In fact, as shown in [Alb+13], for any permutation π, ϕ−1(π) is an equivalence class of words
where we are allowed to swap pairs of consecutive letters corresponding to independent cells. Such
an equivalence class is called a trace, and the map ϕ could be made bijective by defining it instead
on the so-called trace monoid Σ∗ modulo this equivalence relation. Those objects have been studied
relatively thoroughly, e.g., in [Die90]. We do not need to concern ourselves with these facts for the
time being.
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also note that, if σ contains π as a pattern, then Gσ contains Gπ as an induced

subgraph.

The inversion graph of a permutation is particularly easy to read from its

geometric plot: two vertices are adjacent if and only if one appears to the bottom

right of the other (see Figure 3.10).

6

1

4
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5

3

Figure 3.10: Permutation graph of 614253.

This observation allows us to easily translate properties of (classes of) per-

mutations into properties of the corresponding (classes of) permutation graphs. For

instance, any increasing, respectively decreasing sequence in a permutation π cor-

responds to an independent set, respectively a clique in Gπ. Similarly, if π admits

a gridding by say M =
(

1, 1
)

, then Gπ is a bipartite chain graph (the entries of π

in each of the cells correspond to an independent set in Gπ, and it is not difficult to

see the neighbourhoods of the vertices in each part form a chain under inclusion).

In general, if a class X is monotonically griddable by a matrix M , then there

exists a k such that in the corresponding graph class GX , any graph G admits a

partition into at most k bags, where each bag is a clique or an independent set.

Those bags correspond to the non-empty cells of the gridding of the permutations

by M . Moreover, between any two bags we have either no edges, all possible edges,

or a bipartite chain graph according to the relative positions of the corresponding

cells.

3.1.4 Hypergraphs

We only use hypergraphs superficially, and we therefore keep this subsection short.

A hypergraph H is a pair H = (X,E), where X is a set and E is a set of non-empty

subsets of X called hyperedges. Due to the extreme generality of this definition,
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there are several valid ways to make sense of a subhypergraph and of hypergraph

isomorphism. We will use the following:

Definition 34. Let H = (X,E) be a hypergraph. Write X = {xi : i ∈ I}, E = {ei :

i ∈ J}, where I and J are finite index sets.

Given a set A ⊆ X, the subhypergraph H[A] induced by A is defined as

H[A] = (A, {e ∩A : e ∈ E and e ∩A 6= ∅}).

Given a subset L ⊆ J of the hyperedge index set, the partial hypergraph gen-

erated by L is the hypergraph (X, {ei : i ∈ L}). One may think of subhypergraphs

as induced subgraphs, and partial hypergraphs as spanning subgraphs.

Suppose H = (X,E) and J = (Y, F ) are two hypergraphs using the same

hyperedge index set J . We say H is isomorphic to J if there exists a bijection

ψ : X → Y and a permutation π of J such that ψ(ei) = fπ(i) for all i ∈ J . We say

H is strongly isomorphic to J , written H ∼= J , if the permutation π above is the

identity.

Finally, a hypergraph is called downwards closed if every subset of a hyper-

edge is a hyperedge.

3.2 Characterisation, recognition and an intriguing con-

nection

The results presented in this section are the product of joint work together with

Vadim Lozin, Dominique de Werra and Viktor Zamaraev. The work was published

in [Ale+20b].

In Subsection 3.2.1, we conduct a case study of the class of letter graphs with

a fixed decoder D. We investigate the problem of characterisation and recognition

for graphs from that particular class in order to obtain an idea of how we may

approach this problem in general.

In Subsection 3.2.2, we use the map ϕ : Σ∗ → Geom(M) described in Sub-

section 3.1.2 to show that the class GGeom(M) of permutation graphs has bounded

lettericity, and we show a converse statement when the class of permutation graphs

has lettericity at most 2.
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3.2.1 Characterisation and recognition of 3-letter graphs

In [Pet02], Petkovšek characterises and enumerates the classes of 2-letter graphs with

each possible decoder. In this subsection, as a “proof of concept”, we analyse the

class of 3-letter graphs with decoder {(a, b), (b, c), (c, a)}. We provide a structural

characterisation, a recognition algorithm, and a minimal forbidden induced subgraph

characterisation for graphs in this class.

Characterisation of 3-letter graphs over the decoder {(a, b), (b, c), (c, a)}

To characterise 3-letter graphs, we need a few observations about 2-letter graphs.

Let G = (V,E) be a graph and A an independent set in G. We will say that a linear

order (a1, a2, . . . , ak) of the vertices of A is

- increasing if i < j implies N(ai) ⊆ N(aj),

- decreasing if i < j implies N(ai) ⊇ N(aj),

- monotone if it is either increasing or decreasing.

By definition, each part of a chain graph (i.e., a 2K2-free bipartite graph)

admits a monotone ordering. Let G = (A ∪ B,E) be a chain graph given together

with a bipartition V (G) = A∪B of its vertices into two independent sets. We fix an

order of the parts (A is first and B is second), a decreasing order for A, an increasing

order for B, and call G a properly ordered graph. This notion suggests an easy way

of representing a 2K2-free bipartite graph as a 2-letter graph.

Let G = (A ∪ B,E) be a properly ordered 2K2-free bipartite graph. To

represent G as a 2-letter graph, we fix the alphabet Σ = {a, b} and the decoder

P = {(a, b)}. The word ω representing G can be constructed as follows. To each

vertex of A we assign letter a and to each vertex of B we assign letter b. The a

letters will appear in ω in the order in which the corresponding vertices appear in

A and the b letters will appear in ω in the order in which the corresponding vertices

appear in B. The rule defining the relative positions of a vertices with respect to b

vertices can be described in two different ways as follows:

R1 an a vertex is located between the last b non-neighbour (if any) and the first

b neighbour (if any),

R2 a b vertex is located between the last a neighbour (if any) and the first a

non-neighbour (if any).
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It is not difficult to see that both rules R1 and R2 define the same word and this

word represents G.

Now we turn to 3-letter graphs. Let G = (A ∪ B ∪ C,E) be a graph whose

vertex set is partitioned into three independent sets A, B, C such that

(a) G[A ∪B], G[B ∪ C] and G[C ∪A] are 2K2-free bipartite graphs,

(b) there are no three vertices a ∈ A, b ∈ B, c ∈ C inducing either a triangle K3

or an anti-triangle K3.

We call any graph satisfying (a) and (b) nice. Our goal is to show that a graph G is

a 3-letter graph over the decoder {(a, b), (b, c), (c, a)} if and only if it is nice. First,

we prove the following lemma.

Lemma 35. Let G = (A∪B ∪C,E) be a nice graph. Then each of the independent

sets A, B and C admits a linear ordering such that all three bipartite graphs G[A∪B],

G[B ∪ C] and G[C ∪A] are properly ordered.

Proof. We start with a proper order of G[A ∪ B], in which case the order of B is

increasing with respect to A. Let us show that the same order of B is decreasing

with respect to C.

Consider two vertices bi and bj of B with i < j, i.e., bi precedes bj in the

linear order of B and hence N(bi)∩A ⊆ N(bj)∩A. To show that the linear order of

B is decreasing with respect to C, assume the contrary: bj has a neighbour c ∈ C
non-adjacent to bi. Without loss of generality, we may suppose that the inclusion

N(bi)∩A ⊆ N(bj)∩A is proper, since we can, if necessary, reorder all vertices with

equal neighbourhoods in A decreasingly with respect to their neighbourhoods in C,

which keeps the graph G[A ∪ B] properly ordered. According to this assumption,

bj must have a neighbour a ∈ A non-adjacent to bi. But then either a, bj , c induce

a triangle K3 (if a is adjacent to c) or a, bi, c induce an anti-triangle K3 (if a is not

adjacent to c). A contradiction in both cases shows that the linear order of B is

decreasing with respect to C.

Similar arguments show that the order of A which is decreasing with respect

to B is increasing with respect to C. Now we fix a linear order of C which is

increasing with respect to B and conclude, as before, that it is decreasing with

respect to A. In this way, we obtain a proper order for all three graphs G[A ∪ B],

G[B ∪ C] and G[C ∪ A] (notice, in the last graph C is the first part and A is the

second).

Theorem 36. A graph G is a 3-letter graph over the decoder {(a, b), (b, c), (c, a)} if

and only if it is nice.
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Proof. If G is a 3-letter graph over the decoder {(a, b), (b, c), (c, a)}, then obviously

Va (the set of vertices labelled by a), Vb and Vc are independent sets and condition

(a) of the definition of nice graphs is valid for G. To show that (b) is valid, assume

G contains a triangle induced by letters a, b, c. Then b must appear after a in the

word representing G, and c must appear after b. But then c appears after a, in

which case a is not adjacent to c, a contradiction. Similarly, an anti-triangle a, b, c

is not possible and hence G is nice.

Suppose now that G = (A ∪ B ∪ C,E) is nice. According to Lemma 35,

we may assume that A, B and C are ordered in such a way that each of the three

bipartite graphs G[A ∪B], G[B ∪ C] and G[C ∪A] is properly ordered.

We start by representing the graph G[A ∪ B] by a word ω with two letters

a, b according to rules R1 or R2. To complete the construction, we need to place the

c vertices

- among the a vertices according to rule R1, i.e., every c vertex must be located

between the last a non-neighbour alnn (if any) and the first a neighbour afn

(if any),

- among the b vertices according to rule R2, i.e., every c vertex must be located

between the last b neighbour bln (if any) and the first b non-neighbour bfnn (if

any).

This is always possible, unless

- either afn precedes bln in ω, in which case afn is adjacent to bln and hence

afn, bln, c induce a triangle K3,

- or bfnn precedes alnn in ω, in which case bfnn is not adjacent to alnn and hence

alnn, bfnn, c induce an anti-triangle K3.

A contradiction in both cases shows that ω can be extended to a word representing

G.

Note that this theorem can be viewed as a specialisation of Theorem 10.

Recognition of 3-letter graphs over the decoder {(a, b), (b, c), (c, a)}

In this section, we show how we can determine whether a graph G can be represented

as a 3-letter graph over the cyclic decoder {(a, b), (b, c), (c, a)}. In order to do that,

we will assume that G does indeed have such a representation ω, and derive various

properties of ω.
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If G has a twin v for a vertex u (i.e., N(v) = N(u)), then any word repre-

senting G− v can be extended to a word representing G by assigning to v the same

letter as to u and placing v next to u. This observation shows that we may assume

without loss of generality that

� G is twin-free.

Due to the cyclic symmetry of the decoder, we may also assume without loss of

generality that

� the last letter of ω is c.

Then

� the first letter is not a, since otherwise the first and the last vertices are twins.

Assume that the first letter of ω is b. Then according to the decoder

(b1) no vertex between the first b and the last c is adjacent to both of them,

(b2) every vertex non-adjacent to the first b and non-adjacent to the last c must be

labelled by a,

(b3) every vertex non-adjacent to the first b and adjacent to the last c must be

labelled by b,

(b4) every vertex adjacent to the first b and non-adjacent to the last c must be

labelled by c.

If the first letter is c, we have instead that:

(c1) no vertex between the first c and the last c is adjacent to both of them,

(c2) every vertex adjacent to the first c and non-adjacent to the last c must be

labelled by a,

(c3) every vertex non-adjacent to the first c and adjacent to the last c must be

labelled by b,

(c4) every vertex non-adjacent to the first c and non-adjacent to the last c must

be labelled by c.

This discussion, together with conditions (a) and (b) from the previous sub-

section, leads to the following recognition algorithm:
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Algorithm: Recognition of 3-letter graphs over the cyclic decoder {(a, b), (b, c), (c, a)}
Input: A graph G

Output: true if G is a 3-letter graph over the cyclic decoder, false otherwise

1: set G′ := G

2: while G′ has a pair of twins do

3: remove one of the twins from G′

4: for each ordered pair (u, v) of distinct vertices in G′ do

5: if u and v have no common neighbours then

6: if u and v are adjacent then

7: set A := N(u) ∪N(v)

8: set B := N(u) ∪N(v) ∪ {u}
9: set C := N(u) ∪N(v) ∪ {v}

10: else

11: set A := N(u) ∪N(v)

12: set B := N(u) ∪N(v)

13: set C := N(u) ∪N(v) ∪ {u, v}
14: if G[A ∪ B], G[B ∪ C] and G[C ∪ A] are 2K2-free bipartite graphs and

there are no vertices a ∈ A, b ∈ B, c ∈ C inducing either a triangle or an

anti-triangle then

15: return true

16: return false

Theorem 37. The 3-letter graphs over the decoder {(a, b), (b, c), (c, a)} can be rec-

ognized in polynomial time.

Proof. It is easy to see that the above algorithm terminates, and correctness follows

from the above discussion together with Theorem 36.

To determine its complexity, let n be the number of vertices of the graph and

m the number of edges. Note first that the ‘while’ loop at line 2 takes O(n3) time

per iteration and iterates at most n times.

Lines 6 to 14 can be implemented in linear time. It takes O(n + m) time

to recognize chain graphs (see, e.g., [HK07]), and the condition on triangles and

anti-triangles can be checked in O(n2.376) time (finding triangles can be reduced to

matrix multiplication, see, e.g., [IR77], and we can use for instance the Coppersmith-

Winograd algorithm after some straightforward preprocessing in order to detect the

appropriate kinds of triangles or anti-triangles). Finally, the ‘for’ loop at line 5 is

iterated through at most n2 times. This gives O(n4.376) time complexity overall.

We remark that the above algorithm can be made constructive without an
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increase in complexity. We just need to make two modifications as follows: first, we

use Theorem 36 to produce a word representing the twin-free graph G′. Second, we

record the twins we removed to obtain G′ from G and once we have a word for G′,

we use the recorded information to obtain a word for G.

Minimal forbidden induced subgraphs for 3-letter graphs over the de-

coder {(a, b), (b, c), (c, a)}

To determine the list of minimal forbidden induced subgraphs for our class, we will

rely on our earlier characterisation of graphs in this class as “nice” (Theorem 36).

We start with a preparatory result.

Lemma 38. Let G be a graph and let H1 and H2 be nice subgraphs of G with disjoint

vertex sets V (H1) = A1 ∪ B1 ∪ C1 and V (H2) = A2 ∪ B2 ∪ C2. If the subgraphs

induced

� by A1 ∪B2, B1 ∪ C2 and C1 ∪A2 are complete bipartite,

� by A1 ∪A2, A1 ∪ C2, B1 ∪A2, B1 ∪B2, C1 ∪B2 and C1 ∪ C2 are edgeless,

then the subgraph induced by V (H1) ∪ V (H2) = (A1 ∪ A2) ∪ (B1 ∪ B2) ∪ (C1 ∪ C2)

is nice.

Proof. By assumption, A1∪A2 and B1∪B2 are independent sets. Let us show that

these two sets induce a chain graph. First, it is not difficult to see that A1∪(B1∪B2)

induces a chain graph, because G[A1 ∪ B1] is a chain graph and G[A1 ∪ B2] is

complete bipartite. Similar arguments show that A2∪ (B1∪B2), (A1∪A2)∪B1 and

(A1 ∪A2)∪B2 all induce chain graphs. Therefore, if the subgraph of G induced by

A1 ∪ A2 and B1 ∪B2 contains an induced 2K2, then this 2K2 contains exactly one

vertex in each of the four sets, which is impossible. This contradiction shows that

the subgraph of G induced by A1 ∪A2 and B1 ∪B2 is a chain graph.

By symmetry, (B1 ∪ B2) ∪ (C1 ∪ C2) and (C1 ∪ C2) ∪ (A1 ∪ A2) also induce

chain graphs. It remains to show that no 3 vertices a ∈ A1 ∪ A2, b ∈ B1 ∪ B2,

c ∈ C1 ∪C2 induce a triangle or an anti-triangle. Since H1 and H2 are nice, we may

assume without loss of generality that two of the vertices belong to H1 and one to

H2. Also, due to the symmetry of the decoder, we may assume that a ∈ A1, b ∈ B1,

and c ∈ C2. Then a, b, c induce neither a triangle (since a is not adjacent to c) nor

an anti-triangle (since b is adjacent to c).

We are now ready to prove the characterisation in terms of minimal forbidden

induced subgraphs.
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Theorem 39. A graph G is a 3-letter graph over the decoder {(a, b), (b, c), (c, a)} if

and only if it is (K3, 2K2 +K1, C5 +K1, C6)-free.

Proof. For the “only if” direction, it is straightforward to check that none of the

four graphs in our list is nice and that they are minimal with that property. For the

“if” direction, we split the analysis into two cases.

Assume first that G is 2K2-free. If, in addition, it is C5-free, then G is 2K2-

free bipartite, i.e., a chain graph (since it has no 2K2, K3, C5, and the absence of

2K2 forbids longer odd cycles), hence it is nice, with one of the 3 sets being empty.

So suppose G has an induced C5. Label its vertices clockwise by v1, . . . , v5 (whenever

indices are added in this proof, the addition will be modulo 5). Any vertex of G not

in the C5

� has to be adjacent to at least one vertex in the C5, since otherwise an induced

C5 +K1 arises,

� cannot have a single neighbour in the C5, since otherwise an induced 2K2 can

be easily found,

� cannot be adjacent to 3 or more vertices or to 2 consecutive vertices in the

C5, since G is K3-free.

Hence the vertices of G can be partitioned into 5 sets V1, . . . , V5 such that the vertices

in Vi are adjacent to exactly vi−1 and vi+1 in the C5 (note vi ∈ Vi for i = 1, . . . , 5).

Each Vi is an independent set (since they share a common neighbour, and triangles

are forbidden), and adjacency between them is easy to determine:

� if ui ∈ Vi, ui+1 ∈ Vi+1, then ui and ui+1 are adjacent, since otherwise ui,

vi−1, ui+1, vi+2 induce a 2K2,

� if ui ∈ Vi, ui+2 ∈ Vi+2, then ui and ui+2 are non-adjacent, since otherwise

ui, vi+1, ui+2 induce a triangle.

This determines all adjacencies in G, and it is easy to check that G is nice, e.g.,

with partition (V1 ∪ V4), (V2 ∪ V5), V3.

Now we turn to the case when G contains an induced 2K2. We denote one

of the edges of the 2K2 by uw and partition the vertices of G into three subsets as

follows (observe that there are no vertices adjacent to both u and w, since triangles

are forbidden):

U is the set of vertices adjacent to w (u belongs to U). Since triangles are

forbidden, U is an independent set.
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W is the set of vertices adjacent to u (w belongs to W ). Since triangles are

forbidden, W is an independent set.

X is the set of vertices adjacent neither to u nor to w. The subgraph induced by

X must be K2 +K1-free, since otherwise an induced copy of 2K2 +K1 would

arise. It is not difficult to see that the (K2 +K1,K3)-free graphs that are not

edgeless are precisely the complete bipartite graphs. Therefore, the vertices

of X can be split into two independent sets with all possible edges between

them. We call these independent sets C1 and A2 (this notation is chosen for

consistency with Lemma 38) and observe that each of them is non-empty,

because X contains the other edge of the K2.

Since G is K3-free, no vertex of G can have neighbours in both C1 and A2. Thus

W can be partitioned into three subsets as follows:

A1 is the vertices of W that do have neighbours in C1 (and hence have no neigh-

bours in A2),

C2 is the vertices of W that do have neighbours in A2 (and hence have no neigh-

bours in C1),

W ′ is the set of remaining vertices of W , i.e., those that have neighbours neither

in C1 nor in A2.

We partition U into three subsets in a similar way:

B1 is the vertices of U that do have neighbours in C1 (and hence have no neigh-

bours in A2),

B2 is the vertices of U that do have neighbours in A2 (and hence have no neigh-

bours in C1),

U ′ is the set of remaining vertices of U , i.e., those that have neighbours neither

in C1 nor in A2.

We note that

� Every vertex of A1 is adjacent to every vertex of B2. Indeed, if a1 ∈ A1 is not

adjacent to b2 ∈ B2, then u,w, a1, b2 together with a neighbour of a1 in C1

and a neighbour of b2 in A2 induce a C6.

� Every vertex of B1 is adjacent to every vertex of C2 by similar arguments.
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� Every vertex of U ′ is adjacent to every vertex of W ′. Indeed, if u′ ∈ U ′ is not

adjacent to w′ ∈W ′, then u′, w′, w together with any two vertices c1 ∈ C1 and

a2 ∈ A2 induce a 2K2 +K1.

� Every vertex of W ′ is adjacent to every vertex in B1 or to every vertex in

B2. Indeed, if a vertex w′ ∈ W ′ has a non-neighbour b1 ∈ B1 and a non-

neighbour b2 ∈ B2, then w′, w, b1, b2 together with a neighbour of b1 in C1 and

a neighbour of b2 in A2 induce a C5 +K1.

� Every vertex of U ′ is adjacent to every vertex in A1 or to every vertex in C2

by similar arguments.

The above sequence of claims shows that we can move the vertices from W ′ to either

A1 or C2 and those from U ′ to either B1 or B2 in such a way that the two subgraphs

G[A1 ∪B2] and G[B1 ∪ C2] are complete bipartite.

To sum up, we have partitioned G into independent sets A1, A2, B1, B2, C1,

and C2, such that G[A1 ∪ B2], G[B1 ∪ C2] and G[C1 ∪ A2] are complete bipartite,

while G[A1 ∪ A2], G[A1 ∪ C2], G[B1 ∪ A2], G[B1 ∪ B2], G[C1 ∪ B2] and G[C1 ∪ C2]

are edgeless. To apply Lemma 38 it remains to show that G[A1 ∪ B1 ∪ C1] and

G[A2 ∪B2 ∪ C2] are nice.

Because of the 2K2 + K1-freeness, the subgraph induced by the set of non-

neighbours of any vertex is 2K2-free. Therefore, each of G[A1 ∪ B1], G[B1 ∪ C1]

and G[C1 ∪ A1] is 2K2-free, since they are induced by non-neighbours of a2, u, w,

respectively (where a2 is an arbitrary vertex in A2, which exists because A2 is not

empty). We do not need to worry about triangles, since they are forbidden anyway.

Finally, if there was an anti-triangle induced by a1 ∈ A1, b1 ∈ B1, c1 ∈ C1, then

together with u and any vertex a2 ∈ A2 they would induce a 2K2 +K1. This shows

that G[A1 ∪B1 ∪C1] is nice. The other subgraph is treated analogously. Therefore,

by Lemma 38 G is nice.

3.2.2 Geometric griddability versus bounded lettericity

We first show that geometric griddability of a class X of permutations implies

bounded lettericity of the corresponding class GX of permutation graphs. This uses

the map ϕ defined at the end of Subsection 3.1.2.

Theorem 40. Let X be a class of permutations that is geometrically griddable by

a partial multiplication matrix M . Then the corresponding class GX of permutation

graphs has bounded lettericity.
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Proof. It suffices to prove this in the case X = Geom(M). For this, we let Σ be the

cell alphabet of M = (αij), and consider the surjective mapping ϕ : Σ∗ → Geom(M)

defined earlier. To get |Σ|-letter representations for the permutation graphs of the

permutations in Geom(M), we carefully construct a decoder D with vertex set Σ.

For each permutation π ∈ Geom(M), we then pick any element w ∈ ϕ−1(π). It is

then routine to check that the letter graph G(D, w) is in fact isomorphic to Gπ. It

remains to show how the decoder D is constructed.

As in Figure 3.10, we observe that two points xi and xj of a permutation

π ∈ Geom(M) correspond to a pair of adjacent vertices in Gπ if and only if one of

them lies to the left and above the second one in the plane. Therefore, if

� αij = 1, then the points lying in the cell Zij form an independent set in the

permutation graph of π. Therefore, we do not include the pair (aij , aij) in D.

� αij = −1, then the points lying in the cell Zij form a clique in the permutation

graph of π. Therefore, we include the pair (aij , aij) in D.

� two cells Zij and Zkl are independent with i < k and j < l, then no point of

Zij is adjacent to any point of Zkl in the permutation graph of π. Therefore,

we include neither (aij , akl) nor (akl, aij) in D.

� two cells Zij and Zkl are independent with i < k and j > l, then every point of

Zij is adjacent to every point of Zkl in the permutation graph of π. Therefore,

we include both pairs (aij , akl) and (akl, aij) in D.

� two cells Zij and Zkl share a column, i.e., i = k, then we look at the sign

(direction) ci associated with this column and the relative position of the two

cells within the column.

– If ci = 1 (i.e., the column is oriented from left to right) and j > l (the

first of the two cells is above the second one), then only the pair (aij , ail)

is included in D.

– If ci = 1 and j < l, then only the pair (ail, aij) is included in D.

– If ci = −1 (i.e., the column is oriented from right to left) and j > l (the

first of the two cells is above the second one), then only the pair (ail, aij)

is included in D.

– If ci = −1 and j < l, then only the pair (aij , ail) is included in D.

� two cells Zij and Zkl share a row, i.e., j = l, then we look at the sign (direction)

rj associated with this row and the relative position of the two cells within

the row.
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– If rj = 1 (i.e., the row is oriented from bottom to top) and i < k (the

first of the two cells is to the left of the second one), then only the pair

(akj , aij) is included in D.

– If rj = 1 and i > k, then only the pair (aij , akj) is included in D.

– If rj = −1 (i.e., the row is oriented from top to bottom) and i < k, then

only the pair (aij , akj) is included in D.

– If rj = −1 and i > k, then only the pair (akj , aij) is included in D.

This shows that geometrical griddability of a permutation class implies bounded

lettericity of the corresponding class of permutation graphs. In [Ale+20b], we con-

jectured the converse – that if the class of permutation graphs corresponding to a

class of permutations has bounded lettericity, then that class of permutations must

be geometrically griddable. This converse direction proved to be a bit more tricky

than expected; we will show the general case in Section 3.3. Before that, let us show

it in the case where the lettericity is (at most) 2.6

Theorem 41. Let X be a class of permutations and GX the corresponding class

of permutation graphs. If GX is a class of 2-letter graphs, then X is geometrically

griddable.

Proof. Let Σ = {a, b}, and fix a decoder D. Consider a graph Gπ ∈ GX and represent

it by a word over Σ with the decoder D.

Assume first that D contains either both of (a, b) and (b, a), or none of them.

Then we have either all possible edges between the set of vertices of Gπ labelled by

a and the set of vertices of Gπ labelled by b, or none of them. It is then not difficult

to see that in the first case, X is contained in the geometric grid class of the matrix

on the left, and in the second case, X is contained in the geometric grid class of the

matrix on the right: ma 0 0

0 mb 0

0 0 ma

 and

 0 0 mb

0 ma 0

mb 0 0

 ,

6As a warning to the reader prone to disappointment, we mention that the ad-hoc proof for
lettericity 2 that we are about to present does not seem to generalise nicely. We have chosen not to
omit it from the text because first, it provides a chronologically accurate account of our progress
on the problem, and second, it gives a concrete, hands-on example that might help the reader gain
more familiarity with the notions in play. The reader who is not looking for those things may skip
it without fear of losing insight into the general case.
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where ma (resp. mb) denotes either 1 if (a, a) /∈ D (resp. (b, b) /∈ D) or −1 if

(a, a) ∈ D (resp. (b, b) ∈ D).

Now suppose only one of (a, b) and (b, a) is in D. Without loss of generality

assume it is (a, b), since the other case is similar.

If only one of (a, a) and (b, b) is in D, then Gπ is a threshold graph. In this

case, π can be placed in the figure of(
−1 1

1 −1

)

known as the ×-figure. Indeed, according to Proposition 5.6.1 in [Wat07], a per-

mutation can be placed in the ×-figure if and only if it avoids 2143, 3412, 2413

and 3142. The first two of these permutations have permutation graphs 2K2 and

C4, while the last two both have P4 as their permutation graph. Since a graph is

threshold if and only if it is (P4, C4, 2K2)-free, we conclude that π can be placed in

the ×-figure, since Gπ is threshold.

The cases when either both or none of (a, a) and (b, b) belong to D are

complementary to each other. Therefore, we may assume without loss of generality

that none of them belongs to D. Then Gπ is a chain graph, and hence it is K3

and 2K2-free. Hence π avoids 321 and 2143. It is known [Atk99] that the class

of permutations avoiding 321 and 2143 is the union of two classes: the class A1

avoiding 321, 2143 and 3142, and the class A2 avoiding 321, 2143 and 2413.

A short case analysis shows that any permutation in A1 can have at most one

drop (i.e., two consecutive elements such that the first one is larger than the second

one), hence it can be placed in the figure of
(

1 1
)

. Similarly, any permutation in

A2 consists of two increasing subsequences such that all the elements of one of them

are greater than every element of the other, hence it can be placed in the figure of(
1

1

)
.

The difference between the two classes can be illustrated as follows. For the

class A1, the word representing Gπ as a 2-letter graph can be read at the top of

the diagram representing π (see the left diagram in Figure 3.11), while for the class

A2, this word can be read at the bottom of the diagram (see the right diagram in

Figure 3.11).
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a b a b a b

b b b a a a

b b b a a a

a b a b a b

Figure 3.11: The diagrams of two permutations π such that Gπ is the graph of the
word ababab with D = {(a, b)}.

3.3 Bounded lettericity implies geometric griddability

While the implication from geometric griddability to bounded lettericity is rela-

tively straightforward, a proof for the converse direction had eluded us for some

time. One of the reasons behind this is that it is not clear how to construct all

permutations with a fixed permutation graph G ∼= G(D, w) by using the given letter

graph representation of G.7

In order to overcome those difficulties, we had to adjust our perspective

slightly. This enabled us to develop a framework which allows a conceptually easy

(if a bit messy) proof that bounded lettericity implies geometric griddability. Our

framework is inspired by the ideas described in [VW11, Section 3] – however, the

scope of [VW11] is limited to certain monotone classes of permutations. Our present

work provides a substantially more elaborate iteration of those ideas, and adapts

them to a more general setting that includes all monotone classes of permutations,

as well as graph classes of bounded lettericity. Our emerging point of view also

shows some potential in tackling further problems regarding geometric griddability,

such as characterising it via minimal obstacles. We recognise that our perspective

and the new definitions that come with it are not yet completely optimised: one

might rightfully question in places why we have made certain choices over others

7Enumerating the permutations with a given permutation graph without any further conditions
should be feasible – we did not look too much into it. The problem is that if we do it without using
the letter graph representation of the permutation graph, we are effectively ignoring the information
that is supposed to imply geometric griddability in the first place.
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concerning notation and terminology. We ask the reader to indulge us in this regard

for the time being. The reader deserves, of course, a more concrete explanation of

why we believe this new perspective is the “right tool for the job”; we postpone that

discussion until the beginning of Subsection 3.4.2, when the nature of the “tool”

and of the “job” will be clearer.

3.3.1 Locally ordered hypergraphs

The main insight in this subsection is that letter graph expressions on the one hand,

and monotone griddings of permutations by a partial multiplication matrix on the

other, share a common structure. This structure can be expressed in terms of the

existence of “local orders” on appropriate subsets of the elements. Let us illustrate

what we mean by this:

Example 42. Let M be a 0/±1 s × t partial multiplication gridding matrix, and

let π be a permutation together with a monotone M -gridding. Write r1, . . . , rs and

c1, . . . , ct for the rows and columns of M . Then for each ri and cj , we get a linear

order ≤ri and ≤cj respectively on the elements from that row or column. It is

given by the order in which the elements of π appear according to the direction

corresponding to ri or cj (we will refer to this order as the matrix order, or the

order induced by M). Since the matrix is monotone, ≤ri and ≤cj must agree on the

points of π appearing in cell Aij . For instance, in Figure 3.9, we have:

� 1 ≤r1 2 ≤r1 3;

� 6 ≤r2 5 ≤r2 4;

� 6 ≤c1 1 ≤c1 4;

� 2 ≤c2 5 ≤c2 3.

Example 43. Let Ω be a finite alphabet, and D be a decoding digraph. Let w be

a word with entries in Ω. For any a, b ∈ Ω, we get a linear order ≤ab defined on

the set {x ∈ V (G(D, w)) : wx = a or wx = b}. The order is simply the one induced

from w. In particular, for any fixed letter a and any other letter l, all orders ≤al
agree on the letter class of a (that is, on the set {x ∈ V (G(D, w)) : wx = a}).

Those two examples are similar, but they have different roles. The first exam-

ple illustrates the local order structure coming from a (not necessarily geometrical)

gridding matrix M . There is no guarantee that there is a global linear order on

the whole permutation that restricts to each of the ≤ri and ≤cj on the appropriate
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subsets.8 The second example shows instead a situation in which such a global order

already exists, and the local orders described simply come from it. In this light, we

can imagine the two examples as “before and after” pictures of what we are trying

to achieve. Indeed, the main theme throughout this section will consist of being

given some orders defined locally, and studying when and how they can be “glued

together” into a globally defined linear order. As it turns out, in the case of per-

mutations, this is possible exactly when the M -gridding can be made geometrical.

Before we show this, we start with some definitions whose aim is to abstract the

structure described above.

Definition 44. A locally ordered hypergraph (“LOH” for short) H is a hypergraph

(X,E) with no isolated vertices, where any hyperedge e ∈ E has a linear order ≤e
on its elements, which we call the local order of e. In addition, we have the following

local consistency condition: for any edges e, e′ ∈ E, ≤e and ≤′e agree on e∩ e′.

We further define an equivalence relation on the elements of X: x ∼ y if they

have the same sets of incident edges. The equivalence classes are called the cells of

H.

To accommodate the structure coming from griddings by non-partial multi-

plication matrices, we also propose the following definition:

Definition 45. A semi-LOH (“sLOH” for short) is like a LOH, except the local

consistency condition is replaced with the following slightly weaker one:

local semi-consistency condition: on any cell Aei1 ,...,eir , any two linear orders

induced by ≤ei1 , . . . ,≤eir either agree, or are reverses of each-other.

In particular, any LOH is also a sLOH.

Definition 46. A LOH H has the global consistency property (or is globally con-

sistent) if there exists a linear order ≤ on its vertices which restricts to ≤e on each

hyperedge.

An alternative way of defining global consistency is as follows: construct a

directed graph on X, with arcs (x, y) for any elements x 6= y with x ≤e y for some e.

Call this digraph the conflict graph conf(H) of H. Then using topological sorting,

H is globally consistent if and only if its conflict graph is acyclic. We note that

8In the particular case from Figure 3.9, since the gridding is actually geometrical, such an order
does in fact exist. Indeed, the distance-from-distinguished-corner order given by 6 ≤ 1 ≤ 2 ≤ 5 ≤
4 ≤ 3 is an example.
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conflict graphs can also be constructed in the same way for sLOHs (although some

subsets might simply have all possible arcs between them).9

Definition 47. Let H and K be LOHs with labelled hyperedges. A LOH isomor-

phism φ : H → K is a strong hypergraph isomorphism that preserves the local

orders. We say H and K are isomorphic as LOHs (written H ∼= K) if there is a

LOH isomorphism between them.

As illustrated in Example 42, a permutation π with a gridding by a partial

multiplication matrix M gives rise to a LOH HM (π), each of whose hyperedges

consists of the entries of π lying in a row or a column of M . The local orders ≤e are

given by the directions associated with the row or column corresponding to e, and

the cells of HM (π) correspond to the cells of M containing elements of π. Notice

that HM (π) depends on π, M , and the gridding of π by M .

We would now like to show that, as expected, permutations with griddings

by a fixed matrix M are uniquely determined by their LOHs. For this, let π be

a permutation together with a gridding consistent with M . Let us consider the

elements in row i of the gridding. Denote them by x1, . . . , xl, ordered in the direction

associated with that row. Denote by ρiπ the sequence of indices of the columns

of x1, . . . , xl in that order. Construct sequences γiπ for the columns analogously.

As an example, letting π = 614253 with the gridding from Figure 3.9, we have

ρ1
π = (1, 2, 2), ρ2

π = (1, 2, 1), γ1
π = (2, 1, 2) and γ2

π = (1, 2, 1) (recall the rows are

indexed from bottom to top).

Lemma 48. Let π1, π2 be two permutations with griddings compatible with an s ×
t partial multiplication matrix M . Suppose π1 and π2 have the same number of

elements in each cell of the gridding, and that ρiπ1 = ρiπ2 and γjπ1 = γjπ2 for all

1 ≤ i ≤ s and 1 ≤ j ≤ t. Then π1 and π2 are the same permutation.

Proof. The proof is by induction on the number of elements of the permutations.

The base case is trivial. Let x1, x2 be the topmost elements in π1 and π2 respectively

(say they lie in row i of the gridding). The fact that ρiπ1 = ρiπ2 implies x1 and x2

are in the same column j, and therefore in the same cell (i, j). Let π′1 and π′2 be

the permutations we get by removing x1 and x2 from π1 and π2 respectively. These

new permutations satisfy the conditions of the lemma. Indeed, the first condition is

clearly satisfied, while for the second, we note that, for α = 1, 2, the sequence ρiπ′α
is ρiπα with either the first or the last entry removed (depending on the direction

9We will forget about sLOHs for now – they are only briefly useful in the next subsection as
“placeholders”, until we show that a certain sLOH is, in fact, a LOH.
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of row i), while γjπ′α
is γjπα with either the first or the last occurrence of i removed

(depending on the direction of column j). Hence the permutations with one point

removed are equal; but x1 and x2 also have the same position in the horizontal order

(the one corresponding to either the first or last occurrence of i in γjπα). Hence π1

and π2 themselves must be equal.

Lemma 49. Let π1 and π2 be two permutations with griddings compatible with a

partial multiplication matrix M . Suppose HM (π1) ∼= HM (π2) are strongly isomor-

phic, with the hyperedge labellings coming from the rows and columns of M . Then

π1 = π2.

Proof. Note that, due to the strong isomorphism of the LOHs, the permutations

have the same number of elements in each cell, and that HM (πα) (α = 1, 2) uniquely

determines the ρiπα and γjπα . Indeed, ρiπα can be obtained from HM (πα) as the

sequence of column hyperedges to which the vertices in the ith row hyperedge belong,

in the order given by ≤ri , and similarly for the γjπα . By Lemma 48, we are done.

We are now ready to show that geometric griddability of a permutation is

the same as global consistency of its LOH.

Lemma 50. Let M be a partial multiplication gridding matrix. Suppose π is a

permutation monotonically griddable by M . Then HM (π) is globally consistent if

and only if π is geometrically griddable by M .

Proof. If π is geometrically griddable by M , then any preimage of π by the map ϕ

described in Subsection 3.1.2 gives the required linear order on the LOH.

For the converse, let ≤ be a global order on HM (π) that agrees with all the

local orders ≤e. We construct a new permutation π′ as follows: we start by putting

points in the standard figure of M one by one, in the order given by ≤. The points

are placed on the main diagonals, in the same cells as the corresponding points

from π, with increasing distance from the distinguished corners of their respective

cell. Clearly, π′ is a permutation geometrically gridded by M . If we show that it is

actually equal to π, we are done. By Lemma 49, it suffices to show that HM (π′) ∼=
HM (π). But this follows by construction: the LOHs are strongly isomorphic as

hypergraphs, and the orders on the hyperedges are given by the ≤e for π, and by

the corresponding subsets of ≤ for π′, which by assumption agree.
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3.3.2 Showing bounded lettericity implies geometric griddability

At the heart of our result is the following fact: if a permutation π has a monotone

gridding by a (not necessarily partial multiplication) matrix M and a permutation

graphGπ of lettericity k, then π is geometrically griddable by a partial multiplication

matrixM ′ whose size only depends on the size ofM and on k. The proof is somewhat

technical and notation-heavy. However, the concept behind it is very transparent,

so we will begin by describing it.

The permutation π has two sLOHs associated with it: one coming from its

gridding by M , as in Example 42, and one LOH coming from the letter graph

representation of Gπ, as in Example 43. As noted in the previous section, the letter

graph LOH is globally consistent by assumption; Lemma 50 tells us that what we

are really after is global consistency of the matrix sLOH.

The problem is that those two sLOHs will in general differ. There is, however,

a straightforward solution: we take a “common refinement” of them. The idea is

to modify in tandem the matrix and the decoder so that, while still representing

the same permutation, the information coming from the two refined sLOHs now

coincides (and in particular, the new matrix sLOH is now a LOH, i.e., the gridding

is by a partial multiplication matrix). This allows us to conclude that the new

matrix LOH is, as required, globally consistent.

In practice, this is implemented as follows: in the gridding of π by M , we

add some vertical and horizontal lines originating from the letter classes of Gπ. This

produces a gridding by a new matrix M ′, which we use in turn to split the old letter

classes and produce a new letter graph representation of Gπ. After some further

modifications, the resulting LOHs agree, up to flipping the orders on connected

components of the cell graph of the new matrix. Since the size of M ′ will depend,

by construction, only on M and k, this turns out to be enough for our purposes.

Notation and set-up

Our proof has a lot of moving parts. We therefore devote this sub-subsection to

setting up the necessary notation and language, and to establishing some preliminary

results.

Throughout the rest of this section, π will denote a fixed permutation, with

permutation graph Gπ. We will assume that π admits a gridding by a fixed s × t
matrix M . We will also assume that Gπ ∼= G(D, w), where w is a fixed word over

some alphabet Ω of size k, andD is a decoder. As described above, from these objects

associated with π, we will produce new ones. Those new objects will be denoted by
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the addition of a prime symbol to the old objects’ notation – for instance, the new

matrix by which we will grid π will be denoted by M ′.

Given a letter graph representation G(E , z) of Gπ, for a letter a, we denote

by let(E , z, a) the letter class of a, i.e., the vertices of Gπ (and, by extension, the

elements of π) with letter a in z. When the letter graph representation for Gπ that

we are using is clear from the context, we will just write let(a) instead of let(E , z, a).

For a cell Z in a gridding of π by a matrix, we will denote by πZ the set of

points of π lying in Z.

The next remark shows that we may work with a somewhat simplified set-up.

Remark 51. We may assume that each letter of Ω occurs in at most one cell of M .

Indeed, note that if a letter a occurs in more than one cell of the gridding by M , we

may replace it with letters a1, a2, . . . , ar where each ai appears in a single cell, and

r is bounded above by the total number of cells. Hence the size of the new alphabet

is bounded above by kst, which is a function of s, t and k. The decoder can easily

be modified accordingly.

In view of this remark, we will write celN (a) for the (from now on by as-

sumption unique) cell of a matrix N in which letter a appears; if the matrix N is

clear from context, we will simply write cel(a). Moreover, it might happen that a

letter has an empty letter class in some letter graph representation; we will say that

such a letter is empty.

Remark 52. We assume without loss of generality that in the letter graph repre-

sentation G(D, w), there are no empty letters in Ω.

Finally, we will call two letters a and b:

� N -cellmates if celN (a) = celN (b);

� N -collinear if celN (a) 6= celN (b), but celN (a) and celN (b) share a row or a

column;

� N -unrelated otherwise.

As usual, we will omit the N when the matrix is clear from context.

We call a pair of letters a, b in a decoder E symmetric if either none or both

of (a, b) and (b, a) are in E , and asymmetric otherwise. For two distinct letters a

and b, their letter classes (and, by extension, the letters themselves) are complete to

each other if every vertex in let(a) is adjacent to every vertex in let(b), and the letter

classes are anticomplete to each other if there are no edges between the vertices in

let(a) and the vertices in let(b).
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Remark 53. Without loss of generality, we may further simplify the set-up by

assuming that the pair a, b is symmetric in D whenever let(a) and let(b) are com-

plete or anticomplete to each other in G(D, w). Conversely, if let(a) and let(b) are

not complete or anticomplete to each other, it must be that the pair a, b is asym-

metric. In addition, the same assumptions can be made about any letter graph

representation G(E , z) of Gπ.

As described at the beginning of this subsection, our plan is to show that,

after a suitable refinement, the letter graph LOH and the matrix LOH are more

or less the same. As such, we need to introduce some language that enables us to

describe this statement.

Given a letter representation G(E , z) of Gπ, we will denote by ≤z the linear

order on the elements of π coming from z. We will refer to this order as a word

order. Given a gridding of π by a partial multiplication matrix N , we will denote

by ≤N the relation obtained by taking the union of the row and column orders in

the matrix. Note that this relation is antisymmetric on π, but it is not an order

relation in general; however, abusing notation, we will refer to it as a local matrix

order. Given an order relation � its reverse �r is defined by x �r y if and only if

y � x.

Definition 54. Suppose π has an N -gridding and Gπ has a letter graph repre-

sentation G(E , z). Let a 6= b be letters in E . We say that {a, b} is (N, z)-forward

if

≤N ∩(let(a)× let(b)) =≤z ∩(let(a)× let(b))

and (N, z)-backward if

≤N ∩(let(a)× let(b)) =≤rz ∩(let(a)× let(b)).

In other words, a pair of distinct letters is forward if the local matrix order agrees

with the word order when comparing elements from the two letter classes, and

backward if the local matrix order agrees with the reverse word order.

Similarly, we say the individual letter a is (N, z)-forward (respectively (N, z)-

backward) if the local matrix order agrees with the word order (respectively the

reverse word order) on the letter class let(a).

When the matrix and letter graph representation are clear from context, we

may drop the “(N, z)-”.

A priori, a given letter or pair of letters does not need to be forward or

backward – the matrix order and the word order might agree in some parts of
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the letter classes, but not others. Of course, as one might expect, the nature of the

problem gives us some control over when that can happen, as shown in the following

lemma.

Lemma 55. Let a, b be distinct asymmetric letters in a letter graph representation

G(E , z) of Gπ. Then the pair {a, b} is either (M, z)-forward or (M, z)-backward.

Proof. By our Remark 53, it suffices to restrict ourselves to M -collinear pairs of

letters (since all other pairs of letters are symmetric). Assume without loss of

generality that the cells of a and b share a column in M , with the cell of a above

the cell of b, and that (a, b) ∈ E . Moreover, suppose that the direction associated

with the column is left to right. The let(b)-neighbours in Gπ of a point x ∈ let(a)

are all the points in let(b) lying to the right of x, in other words, all the points in

let(b) succeeding x in the column’s order. Those points are also exactly the points

y ∈ let(b) such that y ≥z x.

The refinement of the matrix and decoder

Let us now describe the construction of the new matrix M ′ in which we are planning

to geometrically grid π. This construction is done graphically, by adding some

vertical and horizontal lines to the M -gridding of π. For each letter a, we add 4

lines to the figure: a horizontal line just before10 the first element of let(a) in the

row order, a horizontal line just after the last element of let(a) in the row order, a

vertical line just before the first element of let(a) in the column order, and a vertical

line just after the last element of let(a) in the column order. The lines thus induced

by a letter a split the row of cel(a) into three horizontal stripes that we will denote

by R1
a, R

2
a and R3

a, and the column of cel(a) into three vertical stripes C1
a , C2

a and

C3
a (with indices increasing in the row or column’s direction – see Figure 3.12 for an

illustration).

Notation. For any letter b sharing a row with a, we write let(b)ta := let(b) ∩ Rta
for any 1 ≤ t ≤ 3. Similarly, for any letter b sharing a column with a, we write

let(b)ta := let(b) ∩ Cta. We note that this is well-defined if b is a cellmate of a, since

let(b)∩Rta = let(b)∩Cta in that case. In particular, we have let(a)ta = let(a) if t = 2,

and ∅ otherwise.

Adding those lines for every letter indeed produces, in the obvious way, a

gridding of π by a larger matrix M ′, whose size depends only on M and k, and

10By “just before”, we mean before, but after any element preceding it.
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Figure 3.12: Lines induced by the letter class of a (drawn in red)

whose row and column orders are inherited from the ones in M . As stated at the

beginning of the subsection, this geometric operation now induces a refinement of

the decoder. Specifically, the lines we added to the figure suggest to us another

alphabet Ω′, decoder D′ and word w′ representing Gπ as a letter graph, obtained

by splitting the original letter classes. Let us describe explicitly how this new letter

graph description is constructed.

Every cell Z of the M -gridding has several new lines going through it, some

vertical and some horizontal. This set of lines induces a partition of the elements

of πZ into non-empty intervals with respect to the matrix order. Similarly, for each

letter a with cel(a) = Z, the lines partition let(a) into non-empty intervals. This

is illustrated in Figure 3.13, where the numbers indicate the cells of M ′ containing

those successive intervals, in increasing order.

For each letter a ∈ Ω with cel(a) = Z, the new alphabet Ω′ contains letters

a1, a2, . . . where let(ai) is the ith interval in the partition described above. The new

word w′ is obtained from w in the obvious way, by replacing appearances of the

old letters with the appropriate new ones.11 It is clear that, for any new letter ai,

11This is, indeed, the obvious candidate for the new word w′. We will work with this word for
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7

Figure 3.13: Lines through a cell Z

celM ′(ai) is unique and thus well-defined. Moreover, by construction, we have the

following:

Remark 56. For each pair of M -collinear letters or M -cellmates a, b, each letter

class let(ai) in the partition of let(a) into intervals is contained in one of the sets

let(a)tb (t = 1, 2 or 3). In addition, if ai and bj are M ′-collinear or M ′-cellmates,

then let(ai) ⊆ let(a)tb and let(bj) ⊆ let(b)tb for the same t, which must thus be equal

to 2.

The new decoder D′ is obtained as follows. Any pair of M ′-cellmates or M ′-

unrelated letters is complete or anticomplete. We make these pairs symmetric in D′

in the obvious way. We now turn to pairs of M ′-collinear letters. We note, from

Remark 56, that an M ′-collinear pair ai, bj cannot originate from a pair a, b that is

complete or anticomplete, since let(ai) ⊆ let(a)2
b , and thus there are a’s between the

first and last b’s. By Remark 53, the pair a, b is asymmetric; we then make the pair

ai, bj asymmetric, letting {ai, bj} inherit its orientation in D′ from the orientation

of {a, b} in D.

now, however, we remark here that we will perform some minor modifications to it in Lemma 59,
without changing the letter graph represented by it.
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Remark 57. By Lemma 55, it follows that any pair of M ′-collinear new letters

is either (M,w′)-forward or (M,w′)-backward. Since the local matrix order on M ′

is inherited from the one on M , any such pair is in fact either (M ′, w′)-forward or

(M ′, w′)-backward. It is not difficult to see that forwardness or backwardness of the

new pair is inherited from the old pair.

Proof of the main result

In this sub-subsection, we complete the proof of the result. Our first step is to build

up on Remark 57 and show that forwardness and backwardness satisfy a transitivity-

like property in the new decoder D′ and matrix M ′.

Lemma 58. Let ai, bj , cl ∈ Ω′ be three letters such that ai, bj are M ′-collinear and

bj , cl are M ′-collinear. Then ai, bj and bj , cl are either both (M ′, w′)-forward or both

(M ′, w′)-backward.

Proof. Suppose without loss of generality that ai, bj is (M ′, w′)-forward. We need

to show that the pair bj , cl is also (M ′, w′)-forward. As in the end of the last section,

we note that a, b and b, c are each asymmetric, and from Remark 57, a, b is (M,w)-

forward.

We claim that w must contain a subword bacb or bcab. Indeed, by Remark 56,

let(ai) ⊆ let(a)2
b and let(cl) ⊆ let(c)2

b , hence a and c each occur at least once between

the first and last occurrences of b in the local matrix order, and thus in w. Suppose

bacb is a subword of w (the case for bcab is identical), and write it as b′acb′′ to

distinguish between the initial and final copy of b. Note that forwardness of a, b

implies that b′ ≤M a and a ≤M b′′. Since the local matrix order restricts to a partial

order on the row or column containing a and b, we obtain b′ ≤M b′′. By symmetry,

backwardness of b, c would imply b′′ ≤M b′. Since b′ 6= b′′, that is impossible, hence

b, c is (M,w)-forward, from which bj , cl is (M ′, w′)-forward as required.

Lemma 58 immediately implies that for a given letter ai, the collinear pairs

containing ai are either all (M ′, w′)-forward or all (M ′, w′)-backward. Call such a

letter (M ′, w′)-quasi-forward or (M ′, w′)-quasi-backward respectively. A letter with

no letters collinear to it is vacuously both. A posteriori, this implies that M ′ must

be a partial multiplication matrix. Indeed, there can be no cell where the row and

column orders are reverses of each other, since they must both either agree with the

forward or the reverse of the order from w′. It follows that the sLOH coming from

the gridding of π by M ′ is in fact a LOH.
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Note that the cellmates of ai are either all quasi-forward or quasi-backward

(if there is a letter collinear to ai, this follows from Lemma 58, otherwise it follows

by vacuity). We thus extend this definition to cells: call a non-empty cell (M ′, w′)-

quasi-forward if the letters in it are quasi-forward, and (M ′, w′)-quasi-backward if it

is not quasi-forward. Thus every cell is either quasi-forward or quasi-backward.

Quasi-forwardness and quasi-backwardness are almost the properties we re-

quire of our cells. Indeed, it would be great if we could strengthen those properties

in the obvious way, defined as follows: a cell Z is forward if ≤M ′ and ≤w′ agree

on Z, and backward if ≤M ′ and ≤rw′ agree on Z. As it stands, cells do not have to

be forward or backward. However, the next lemma shows that we may modify w′

slightly so that the required strengthening holds.

Lemma 59. We may change w′ without affecting the letter graph G(D, w′)12 such

that any quasi-forward cell is forward, and any quasi-backward cell is backward.

Proof. Without loss of generality, let Z be a quasi-forward cell. We show that, after

the appropriate modifications, Z is forward.

Let C be the set of letters collinear to letters in Z, and let w′1, w
′
2, . . . be the

successive non-empty intervals of w′ appearing strictly between elements of the set⋃
cl∈C

let(cl). Suppose x, y ∈ πZ such that x ∈ w′s, y ∈ w′t with s < t. Then, a copy

of a letter collinear to the letters of x and y appears between x and y, and hence,

as in the proof of Lemma 58, quasi-forwardness of Z implies x ≤M ′ y if and only if

x ≤w′ y.

If x and y are in the same interval ws, then no letter collinear to the letters

of x and y appears between them. In other words, all letters between them form

symmetric pairs with the letters of x and y. In this case, we may swap x and y in

w′, without changing the letter graph G(D′, w′). In general, we can permute the

elements of πZ appearing in each interval as necessary to ensure that ≤M ′ and ≤w′
agree on πZ in each interval. Repeating this for each cell of M ′ produces a modified

word w′ with the desired properties.

Using Lemma 59, we assume for the remainder of the section that w′ is such

that every quasi-forward cell is forward, and every quasi-backward cell is backward.

We are now ready to finish our proof:

12In particular, these changes do not retroactively interfere with the previous lemmas. This can
be checked rigorously by working in a suitable trace monoid over Ω; in this terminology, what we
have shown so far depends only on the trace of w′, and in the current lemma, we merely replace w′

with another word from the same trace. For simplicity, we omit the details.
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Theorem 60. Let X be a class of permutations, and let GX be the corresponding

class of permutation graphs. If GX has lettericity bounded by some constant k, then

X is geometrically griddable.

Proof. First, we claim that X is monotonically griddable. Indeed, note that the

classes of matchings and co-matchings have unbounded lettericity, hence GX ⊆
Free(nK2, nK2) for some n. This means that X cannot contain arbitrarily large

skew sums of 12 or direct sums of 21, which from [HV06] implies that X is monoton-

ically griddable by a matrix N : we take this as our fixed matrix M used throughout

the section.

We now claim that each permutation in X is geometrically griddable by some

matrix of bounded size. For a fixed permutation π, this matrix is the matrix M ′ we

have constructed in Section 3.3.2. To see that π is indeed geometrically griddable by

M ′, we use Lemma 50. It thus suffices to show that HM ′(π) is globally consistent.

This is a consequence of Lemmas 58 and 59. Together, they immediately

imply that on any connected component of the cell graph of M ′, ≤M ′ is a subset

of either ≤w′ or ≤rw′ . Connected components of the cell graph induce connected

components of the conflict graph conf(HM ′(π)), hence we see that the conflict graph

is acyclic as required.

Since there is a finite number of such potential matrices M ′ of size bounded

in terms of s, t and k, X is geometrically griddable by any matrix containing all

matrices of that size as submatrices.

3.4 Further directions: characterising geometric grid-

dability

The authors of [Alb+13] leave determining “the precise border between griddability

and geometric griddability” as an open problem. One way to achieve this would be

by describing minimal obstacles to geometric griddability analogous to the ones for

griddability described in Theorem 24. Theorems 40 and 60 show that conceptually,

looking for obstacles to geometric griddability is the same as looking for obstacles to

bounded lettericity within the class of permutation graphs.13 One may then ask how

much more difficult it would be to identify minimal obstacles to bounded lettericity

in general, that is, without restricting ourselves to permutation graphs.

So far, the question is not yet settled: minimal classes of unbounded let-

tericity have only been identified in very specific settings. Several of those special

13In practice, one would have to carefully translate a prospective result from one language to the
other, but there is no reason to expect significant difficulties there.
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cases will appear later in this thesis; we will identify the obstructions within various

classes, namely:

� cographs, in Section 5.2;

� bipartite permutation graphs, in Section 7.1;

� the so-called quasi-chain graphs, in Section 8.2.

In addition to those, the author is only aware of one other such result appearing in

the literature. This result is the content of [FV21], in which Ferguson and Vatter

identify the obstacles to bounded lettericity among classes with finitely many prime

graphs.

In the rest of the current section, we will attempt to move one step closer to

the general solution by investigating lettericity in a setting modelled after monotone

grid classes of matrices whose cell graph is a cycle. Subsection 3.4.1 is devoted to

understanding lettericity within this universe. For the sake of concreteness, we

will first present our result – a complete list of minimal classes in this setting –

in a purely graph-theoretic language. In Subsection 3.4.2, we examine a tentative

formulation of those notions and results in a more abstract LOH setting. Finally, in

Subsection 3.4.3, we take a step back and observe the structural hierarchy of graph

and permutation classes emerging from our discussion.

Before doing any of that, a good place to start is the following proposition,

which provides a sanity check that bounded lettericity can, in fact, be characterised

via minimal classes.

Proposition 61. Let X be a hereditary class of unbounded lettericity. Then there

exists a hereditary class X ′ ⊆ X of unbounded lettericity such that the class X ′ ∩
Free(G) has bounded lettericity for any G ∈ X ′.

Proof. If X is minimal of unbounded lettericity, we are done. Otherwise, X contains

a graph G such that X ∩ Free(G) still has unbounded lettericity. Pick a graph

G0 ∈ X0 := X with this property that has the minimum possible number of vertices,

and put X1 := X0 ∩ Free(G0). Repeat the process for as long as possible, putting

Xk+1 := Xk ∩ Free(Gk), where Gk ∈ Xk is a minimum graph such that Xk+1 has

unbounded lettericity. There are two cases:

� The process stops at some k. This means we have found a subclass Xk = X ∩
Free(G0, ..., Gk−1) of unbounded lettericity such that forbidding any further

G ∈ Xk yields a class of bounded lettericity, and Xk is the minimal class we

were looking for.
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� Otherwise, the process goes on forever, and we get an infinite strictly descend-

ing chain X0 ) X1 ) . . . of classes, all of which have unbounded lettericity.

Let Xlim be their intersection, that is, Xlim = X ∩ Free(G0, G1, ...).

Note that this limit class cannot have bounded lettericity. Indeed, suppose

Xlim has lettericity at most t. The Gis are by construction incomparable via

the induced subgraph relation (since at each stage, they are chosen to be

minimal), and from [Pet02], they all have lettericity bounded above by 2t+ 1

(since for any v ∈ Gi, i ∈ N, Gi − v is in Xlim). This is a contradiction, since

classes of bounded lettericity are well-quasi-ordered (Theorem 14).

Moreover, Xlim is minimal of unbounded lettericity. To see this, note first that,

by construction, |Gi| ≤ |Gj | for i ≤ j, and |Gn| → ∞ as n → ∞ (since there

are only finitely many graphs of a given size). Suppose we can forbid G ∈ Xlim

with |G| = k, and we are still left with a class of unbounded lettericity. But

then, by construction, G would have appeared in the sequence (Gi) before any

graphs of size at least k + 1, contradicting G ∈ Xlim = X ∩ Free(G1, G2, ...).

With this in mind, we can now ask: what are the minimal classes of un-

bounded lettericity? One such class, as we have already seen in Example 16, consists

of induced matchings.

Remark 62. By symmetry, one sees that the complements of matchings are also an

example. In fact, one can produce more examples by taking various complements

that correspond intuitively to making changes in the decoder. For instance, let us

consider a letter graph expression for, say, a clique co-matched to an independent

set. By at most doubling the number of letters, we can obtain an expression that

uses each letter in either the clique or the independent set (but not both); making

appropriate changes to the decoder, the same word will then express a matching

between two independent sets (that is, an induced matching). From here, it is easy

to see that the class of graphs consisting of a clique co-matched to an independent

set is another minimal class of unbounded lettericity. In the cases we study, one is

usually safe to assume that, if a class is minimal of unbounded lettericity, so are

the classes obtained from it by complementing homogeneous sets, or edges between

homogeneous sets. We will not dwell on the details, since they are immaterial to our

discussion. In the remainder of the chapter, we will use the word “complements” to

refer to all of the classes obtained from a given class via such complementations.
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Of course, this list is far from complete. Let us present some different kinds

of obstacles.

3.4.1 Chain circuits

We will work in a locally consistent setting, modelled after monotonically griddable

classes by a partial multiplication matrix.14 Keeping in mind that Remark 62 ap-

plies, we will simplify our setting as much as possible in order to illustrate a new

type of obstacle to bounded lettericity. In the universe of permutations, this type

of obstacle lies between monotone and geometric griddability; compare this with

matchings and their complements, which lie “before” monotone griddability. We

start with the following definition:

Definition 63. Let k ≥ 3. A k-chain circuit (k-CC for short) is a graph whose

vertex set can be partitioned into k independent sets (or “bags”) A1, . . . , Ak with

indices modulo k, such that:

� the only edges appear between consecutive Ai;

� the edges between consecutive Ai induce chain graphs;

� if we order the vertices from Ai in decreasing order with respect to their

neighbourhoods in Ai+1, then that order is increasing with respect to the

neighbourhoods in Ai−1.

We will refer to {Ai : 1 ≤ i ≤ k} as the chain circuit partition, and we will assume

the vertices in each bag are ordered as described above. If v comes before w in the

order, we write v � w, and we say v is “to the left” of w (and w is “to the right”

of v). Given a chain circuit, we can also define its chain circuit complement by

complementing all edges between consecutive bags. It is clear that the graph thus

obtained is still a chain circuit.

Remark 64. This definition is a generalisation of the “nice” graphs studied in

Section 3.2.

Among k–chain circuits, we look at two subclasses of graphs. First, we

introduce some notation:

14In fact, the obstacles we will describe have a natural interpretation in the setting of permuta-
tions. They are structurally similar to the infinite antichains produced in [MV02] and depicted in
Figure 2 of the paper.
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Notation 65. Let Ck,l denote the chain circuit obtained by taking a union of l k–

cycles, with the j-th cycle labelled v1,j , v2,j , ..., vk,j (the first index is modulo k), and

by adding edges between vertices vi,m and vi+1,n whenever m < n. See Figure 3.14

for two representations of the graph C4,4.

(a) Bags in a cycle
with chain graphs between them. (b) Vertical cycles with

matchings between them

Figure 3.14: Two representations of the chain circuit C4,4.

The classes we are interested in are the class Ck of all graphs Ck,l and their

induced subgraphs, and the class C̃k of their CC-complements. Our first result is

that Ck and C̃k have unbounded lettericity:

Theorem 66. Ck and C̃k have unbounded lettericity.

Proof. Without loss of generality, we may restrict ourselves to letter graph expres-

sions that use each letter in only one of the k bags, since the minimum number of

letters across all letter graph expressions is at most a factor of k away from the min-

imum number of letters in expressions with this property. By Remark 62, it suffices

to prove the statement for Ck. Suppose, for a contradiction, that the lettericity is

bounded. If this is the case, then for any t ∈ N, we can find N ∈ N such that t

cycles in some word representation of Ck,N are represented by the same subword.

In particular, those t cycles form an induced Ck,t using only k letters. Since this can

be done for any t, this shows the lettericity would in fact be bounded by at most

k, and we should be able to express any Ck,i with one letter per bag. Some quick

case analysis shows the only way this would be possible is, up to symmetry, with a
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cyclic decoder (ai, ai+1) (modulo k). However, it is impossible to represent even a

single cycle Ck in this way.

We now want to show that Ck and C̃k are minimal of unbounded letterictiy.

In fact, we show a stronger result: in the universe of k-CCs, by forbidding any two

chain circuits from Ck and C̃k respectively, we obtain a class of bounded lettericity.15

Another way to state this is that Ck and C̃k are the only minimal classes of unbounded

lettericity among k-CCs. Because of how those classes are defined, it suffices to show

this in the case where we forbid Ck,i and C̃k,j for some i, j ≥ 1. We will do the proof

by induction on i+ j.

We will use, like in the previous section, a conflict graph. Rather than going

through a LOH construction (which we will return to in the next subsection), let us

for now define this conflict graph directly from the k-CC.

Definition 67. Let G be a k–chain circuit with CC-partition {Ai : 1 ≤ i ≤ k}. The

conflict graph conf(G) of G is the directed graph with vertex set V (G), and arcs

(v, w) whenever

� v ∈ Ai, w ∈ Ai+1 for some i (modulo k), and {v, w} ∈ E(G), or

� w ∈ Ai, v ∈ Ai+1 for some i (modulo k), and {v, w} /∈ E(G).

The conflict graph of G gives us a way of describing obstacles to representing

G with one letter per bag and a cyclic decoder. Specifically, conf(G) has an arc from

v to w exactly when the entry of v is forced to appear before the entry of w in such

a representation. In particular, if such a representation of G does exist, conf(G) is

acyclic.

In fact, as one expects in view of Lemma 50 the converse is also true:

Lemma 68. Suppose that G is a k–chain circuit and that conf(G) is acyclic. Then

there is a word w on letters a1, . . . , ak such that G = GDc(w), where Dc is the

cyclic decoder {(ai, ai+1) : i ∈ Z/kZ}.

Proof. By standard results, conf(G) admits a topological ordering w, i.e., a linear

ordering of the vertices such that if (x, y) is an arc, then x comes before y in w. It

is routine to check that with a cyclic decoder, w represents G.

We are now ready to prove the result. We start with a base case for our

induction.

15Here, by “forbidding chain circuits” we mean that no copy of the underlying graphs appears as
an induced subgraph that respects the cyclic ordering of the bags. We will skip the details for now.
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Lemma 69. The subclass of k-chain circuits obtained by forbidding Ck,1 and C̃k,1

has bounded lettericity.

Proof. From Lemma 68, it is enough to show that if G avoids the two graphs,

then its conflict graph is acyclic. Suppose not, and find a shortest directed cycle

v1, . . . , vt = v1, with vr ∈ Air (i.e., the ir are the indices of the bags successively

visited by the cycle). Let us note a few facts about the sequence ir.

(i) ir+1 − ir = ±1 mod k for 1 ≤ r < t.

(ii) We may assume without loss of generality that i1 = 1. Indeed, we can permute

the labels of the bags cyclically to make sure that this is the case. We may

also assume that i2 = 2, since otherwise we can work in G̃ instead. Indeed,

conf(G̃) is just conf(G) with all arcs reversed, and G avoids Ck,1 and C̃k,1 if

and only if its CC-complement does.

(iii) For any j ∈ Z/kZ, j and j+1 appear consecutively at most once (and similarly

for j+1 and j). Indeed, suppose the cycle visits bags j and j+1 in that order

twice, through vertices v ∈ Aj , w ∈ Aj+1 the first time, and v′ ∈ Aj , w′ ∈ Aj+1

the second time. Since G[A1 ∪A2] induces a chain graph, and we know v ∼ w
and v′ ∼ w′ in conf(G), we must have v ∼ w′ or v′ ∼ w. In either case, we

have a “shortcut” through our cycle, which shows it is not minimal, contrary

to our assumption. An analogous argument shows the statement for j+ 1 and

j.

(iv) For any j ∈ Z/kZ, j and j+1 appear consecutively, or j+1 and j do. Indeed,

suppose that there is a j such that the cycle has no edge between Aj and

Aj+1. We may assume, after changing our choice and doing some relabelling

if necessary, that j = k, and that the cycle does pass through A1. Let v1 be

the leftmost vertex of the cycle in A1. Label its position in A1 by 0. Further,

label by 0 the position of the leftmost neighbour v2 ∈ A2 of v1. Proceeding

similarly, label by 0 the position of the leftmost neighbour vi ∈ Ai of vi−1, for

i ≤ k. Note that if v ∈ Ai (1 ≤ i < k) has a non-negative label, then so do

all its neighbours in Ai+1 by construction, and if v ∈ Ai (1 < i ≤ k) has a

non-negative label, then all its non-neighbours in Ai−1 have (strictly) positive

labels. This means that in our set-up, the cycle cannot actually return to v1.

The above observations imply that the sequence of ir is (up to starting the cycle at

another point, working with G̃ instead of G and relabelling bags if necessary) either:
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� 1, 2, . . . , k, 1. In this case, G contains a Ck,1 (or a C̃k,1 if we were working with

G̃, as described in (ii)).

� 1, 2, . . . , k, 1, k, . . . , 2, 1, i.e., our cycle goes around the chain circuit, but in-

stead of reaching its starting point v1, it reaches another vertex v′ ∈ A1 before

looping back around. However, this is impossible: v′ must be to the right of v1

(otherwise the neighbour of v′ preceding it in the cycle is also adjacent to v1

and we can find a shorter cycle), and we can use the same indexing argument

as in (iv) to conclude that the cycle cannot return to v1.

Remark 70. One cannot help but notice a vague and superficial similarity between

the arguments of the above proof and certain exercises from basic homotopy theory,

such as determining the winding number of loops. This is perhaps a stretch of the

imagination, but it would be interesting (and outside our current scope) to look

into whether there is something underlying this similarity. If the reader is willing

to suspend their disbelief, let us dream together for a moment: what if there is

an illuminating topological setting which gives elegant, satisfying interpretations

and proofs for all the LOH-related phenomena we are attempting to formalise and

explain? It is, of course, possible, that questions related to this in a not necessarily

obvious way were already asked and answered – if the reader happens to have any

insight or interest in this matter, they are kindly invited to contact the author.

Theorem 71. Among k-chain circuits, the classes Ck and C̃k are the only minimal

classes of unbounded lettericity.

Proof. We have shown the base case in Lemma 69. We need to show how the

induction step works. Suppose thus that we have a k-chain circuit G with chain

partition {A1, ..., Ak}, and with no Ck,p and C̃k,q for some p, q ∈ N. We are going to

split our chain circuit in a way which allows us to use the inductive hypothesis. We

may assume without loss of generality that G has a Ck,1 as an induced subgraph

(if not, consider its CC-complement and use Remark 62; if its CC-complement also

has no Ck,1, then we are in the base case). Starting with any vertex vi ∈ Ai of the

cycle, we colour the edge to its leftmost neighbour in Ai+1 blue. We repeat this

process with that leftmost neighbour, and keep doing this until we reach a vertex

we have visited before. The process terminates, since any visited vertex in Ai has a

neighbour in Ai+1 (specifically, the appropriate vertex in the cycle we started with).

We thus obtain a blue cycle Cb. Similarly, construct a red cycle Cr by starting with
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vi and colouring in red the edge to its rightmost neighbour in Ai−1, and like before,

repeating the process. See Figure 3.15 for an illustration.

Figure 3.15: The red and blue spirals

Now let GL be the induced subgraph strictly to the left of the blue cycle, let

GR be the subgraph strictly to the right of the red cycle, and let GM be the middle

subgraph (including the red and blue cycles). That is, for each Ai, G
L contains the

vertices of Ai strictly to the left of the vertex in Cb ∩ Ai, GR contains the vertices

strictly to the right of the vertex in Cr∩Ai, and GM contains the remaining vertices.

Write GLi := GL ∩Ai (extending the notation to GR and GM in the obvious way).

Now notice that by construction, each of GL and GR is Ck,p−1-free, since

a Ck,p−1 in GL together with the blue cycle would give a Ck,p, and similarly for a

Ck,p−1 in GR together with the red cycle. Hence the inductive hypothesis applies,

and there is a c (depending on p) such that GL and GR can each be represented by

a word with c letters.

Moreover, the edges between the three parts are easy to describe: for any i,

we have no edges between GRi and GMi+1 ∪GLi+1, because of how we constructed our

red cycle, and no edges between GLi and GMi−1∪GRi−1 because of how we constructed

the blue cycle. We also have all possible edges between GLi and GMi+1 ∪ GRi+1, as

well as all possible edges between GRi and GMi−1 ∪ GLi−1 because of the properties

of chain circuits. Given these structural features, it is clear that if we have words

representing each of GL, GM and GR with c1, c2 and c3 letters respectively, we can

construct a word representing G using c1 + c2 + c3 letters with a carefully chosen
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decoder.

To prove the theorem, it remains to show that we can express GM using a

number of letters that only depends on p. Before we do this, note that, although the

blue and red cycles are not uniquely defined (we might get different red and blue

cycles if we choose a different starting cycle), the partition we get at the end into

GL, GM and GR still satisfies the properties we have described so far. In particular,

we may assume without loss of generality that the cycle we start with is given by

vertices v1, . . . , vk with vi ∈ Ai, such that vi+1 is the leftmost neighbour of vi for i

modulo k (in other words, it is the blue cycle).

Now start with vk ∈ Cb and consider the sequence of vertices that we get

by repeatedly taking the rightmost vertex in the previous bag modulo k. Label the

vertices of this sequence as vi,j , where i is the bag of the vertex, and j counts the

number of times the sequence has visited that bag after this vertex (so vk becomes

vk,1, and the sequence continues with vk−1,1, . . . , v1,1, vk,2, . . . ). One can picture this

sequence as a spiral winding around the chain circuit, ending at the red cycle. Note

that this spiral is indeed winding “to the right”, more precisely, for all i, if j2 > j1,

vi,j2 is to the right of vi,j1 in the usual CC-ordering (or the two vertices are equal).

To see this, observe that if a vertex of the sequence is to the right of a cycle (i.e.,

to the right of the vertex of the cycle lying in the corresponding bag), so are all

following vertices.

Put S0 := Cb, and let Sj (j > 0) be the cycles induced by vertices vi,j (note

that those are indeed cycles, since the chain circuit property together with the above

observation implies that vk,j is adjacent to v1,j). Write GMj for the set of vertices

strictly between Sj and Sj+1. Finally, write Ai,j for Ai ∩GMj .

The following statements hold:

� V (GM ) =
⋃

1≤i≤k
j≥0

Ai,j ∪
⋃
j≥0

Sj .

� The number of disjoint Sj is bounded as a function of p. To see why, assume

that S1, S2, . . . , S2r+1 are all disjoint for some r ∈ N. One can check that, by

construction, S1, S3, . . . , S2r−1, S2r+1 induce a Ck,r. As Ck,p is forbidden, it

follows that r < p. Since the sequence (vi,j) becomes periodic once it repeats

a vertex, it follows that

|{vi,j : i ≥ 1, j ≥ 0}| < k(2p+ 1).

From [Pet02], we know that if the lettericity of a graph is l, then adding a

vertex produces a graph of lettericity at most 2l+1. In view of the second statement
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above,
⋃
j≥0

Sj has size at most k(2p+2), so it suffices to show that GM \
⋃
j≥0

Sj can be

expressed using a bounded number of letters. We claim that this can be done using

one letter ai,j for each non-empty set Ai,j . This is enough, since from the above

discussion, |{(i, j) : Ai,j 6= ∅}| < k(2p+2). To see how one can construct a word and

decoder representing GM \
⋃
j≥0

Sj , let us examine the edges between those sets. Let

Ai1,j1 and Ai2,j2 be two such sets. If i1 − i2 6= ±1 mod k, then there are no edges

between Ai1,j1 and Ai2,j2 , so write i for i1 and assume without loss of generality

that i2 = i+1 mod k. All of the following claims follow straightforwardly from our

construction of the Ai,j and the properties of chain circuits.

� If i 6= k, we have:

– No edges between Ai,j1 and Ai+1,j2 when j2 < j1.

– All possible edges Ai,j1 and Ai+1,j2 when j2 > j1

� For i = k, we have:

– No edges between Ak,j1 and A1,j2 when j2 < j1 − 1

– All possible edges between Ak,j1 and A1,j2 when j2 ≥ j1.

The key is now to notice that all of the non-trivial adjacencies appear between

consecutive bags in the following sequence that “spirals around” the chain circuit

(some of the bags might be empty):

Ak,0, Ak−1,0, . . . , A1,0, Ak,1, Ak−1,1, . . . , A1,1, Ak,2, . . . .

One helpful way of conceptualising this is by thinking of the red edges as

“impermeable” to edges crossing them from top right to bottom left, and to non-

edges crossing them from top left to bottom right.

Any two consecutive bags in the above sequence induce chain graphs. As

described in Section 3.2, we can realise the subgraph consisting of the edges between

consecutive bags by using one letter ai,j for each bag Ai,j ; the decoder then contains

the (ordered) pairs of letters corresponding to consecutive bags. The construction of

the word can be done inductively: if we have a word describing the subgraph up to

a certain bag Ai,j in the sequence, we can add the letters corresponding to vertices

from the next bag by placing them carefully among the letters of bag Ai,j (see Sub-

subsection 3.2.1 for more details). To make the word represent GM \
⋃
j≥0

Sj , all we

need to do is add pairs (ai1,j1 , ai2,j2) and (ai2,j2 , ai1,j1) to the decoder whenever the

corresponding bags have all possible edges between them.
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3.4.2 Local consistency: a LOH perspective

Let us start by giving, a posteriori, a short defense for the introduction of LOHs.

First, note that they provide a language that is strictly more general than monoton-

ically gridded permutations. For instance, one can associate LOHs to chain circuits

in a straightforward way; while k-CCs with an even k have analogues in the word

of monotonically gridded permutations, those with an odd k do not, since any cycle

in the cell graph of a matrix has even length. However, for our purposes, there is

no need to treat k-CCs differently based on the parity of k.

Second, and perhaps most importantly, note that LOHs provide a much

cleaner environment to work in than the one given by either gridded permutations

or lettericity. Indeed, gridding matrices and decoders come with a lot of superfluous

information. We almost exclusively care only about bags with non-trivial relation-

ships between them: collinear cells, or pairs of letters with exactly one arc between

them in the decoder. We usually do not even care which one of the two arcs appears

in the decoder, or whether the row or column’s signs are 1 or -1. This information

is not useful during most proofs; it is in fact just a burden that needs to be carried

around, and that often obfuscates the real intuition behind the arguments. It thus

makes sense to separate the useful information from the rest, which is what LOHs

attempt to do.

In summary, the problems of characterising bounded lettericity and geomet-

ric griddability concern the passage from a locally consistent to a globally consistent

regime.16 LOHs abstract the notion of local consistency, and thus provide what we

feel is a more natural setting for those problems. We believe it would be very benefi-

cial to the subject to develop a general theory of LOHs. Such a theory would not only

help make the link between lettericity and geometric griddablity more transparent

and reliable, but it would also, in all likelihood, provide a more elegant formulation

for several existing results, such as the antichain constructions in [MV02].

With all of this being said, it is natural to ask how the statements we have

shown about the lettericity of chain circuits translate into statements about the

geometric griddability of certain classes of permutations. And indeed, one finds

that Theorem 71 can be used to produce a characterisation of obstacles to geometric

griddability within classes that are monotonically griddable by a matrix with one

cycle in its cell graph. Rather than stating that characterisation explicitly and

16For lettericity, the story is a bit more complicated – see the next subsection.
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proving it directly (which would be tedious), let us try to find a more general

analogue to Theorem 71 in the language of LOHs. The optimal formulation of such

a statement is not yet clear, but let us nevertheless see what we can do. To produce

the “correct” statement, we need a few ingredients:

� First, we would like a description of the end state we are trying to achieve (that

is, the notion that we are trying to characterise). For graphs, this is bounded

lettericity, and for permutations, it is geometric griddability. Naturally, the

corresponding notion for LOHs is global consistency.

� We need to make the scope of such a statement precise. The holy grail would

be a statement that characterises global consistency among all (classes of)

LOHs.17 However, it might be necessary or helpful to restrict ourselves to

certain kinds of LOHs, for instance the ones coming from monotone gridding

by matrices with one cycle in the cell graph. The cell graph construction

itself does not seem to generalise nicely to LOHs, however the row-column

intersection graph [VW11, p. 2] easily generalises to the line graph of the

LOH. It would therefore make sense to specify the scope of what we want to

show by putting conditions on said line graph.

� We need some way to express the obstacles to achieving the desired end state.

The obvious candidate for LOHs is by specifying forbidden structures in the

conflict graphs.18 The most straightforward first choice is forbidding a “cycles-

in-a-chain” structure modelled on the chain circuits Ck,l. It is not yet clear

whether we want to forbid those as induced subgraphs, or more restrictively,

as subgraphs; for a direct (non-generalised) analogue of Theorem 71, this

distinction does not seem to matter.

� Finally, we need some way of determining whether we have reached the end

state. What we mean by this is the following: for chain circuits, we have

bounded lettericity if we are able to split each bag into a bounded number of

letter classes using (a bounded number of) red and blue edges. For monoton-

ically gridded permutations, we have geometric griddability if we are able to

split the gridding via (a bounded number of) horizontal and vertical lines into

a geometric gridding by a matrix of bounded size.

17To talk about classes of LOHs, we would need to define sub-LOH containment – this can be
done in the obvious way in terms of subhypergraph containment.

18An alternative would be to describe obstacles directly in terms of sub-LOHs, but the chances
are that such a description would just be the conflict graph one in disguise.
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With this in mind, we propose the following definition:19

Definition 72. Let H = (X,E) be a LOH with local hyperedge orders ≤e, and let

x ∈ X. The split of H at x is the LOH Hx = (X \ {x}, E′), where

E′ := {e ∈ E : x /∈ e} ∪ {e∩ {y ∈ e : y <e x} : x ∈ e} ∪ {e∩ {y ∈ e : y >e x} : x ∈ e}

(we only consider non-empty sets in the union). The local orders on the new hyper-

edges are inherited from H.

The intuition behind splitting a LOH at an element x is that we remove all

of the comparisons between elements smaller than x and elements larger than x.

In other words, splitting a LOH brings us closer to global consistency, since we are

deleting arcs in the conflict graph. In the monotone gridded setting, it is analogous

to adding the horizontal and vertical lines through x to the gridding – just as the

row and column of the gridding to which x belongs get split into two, so do all

hyperedges of the LOH containing x. Indeed, this is also the role of the red and

blue edges from the proof of Theorem 71. We can thus define a parameter for LOHs

measuring how far they are from being globally consistent:

Definition 73. The global inconsistency of a LOH is the smallest number of splits

needed to make the LOH globally consistent.

Now our question becomes: what conditions do we need to put on the LOHs

in some given class to guarantee that their global inconsistency is bounded? Let us

formulate an analogue of Theorem 71 in this language.

Definition 74. A LOH is k-cyclic if its line graph is a cycle on k vertices.

Notation 75. Let Ck,l be as in Notation 65, enhanced with an orientation of the

edges from vi,j to vi+1,j′ for all appropriate i, j, j′.

Theorem 76. Let k, l ∈ N be fixed. Let X be a class of k-cyclic LOHs such that

their conflict graphs avoid Ck,l as an induced subgraph. Then X has bounded global

inconsistency.

This statement can be proved in a way completely analogous to Theorem 71;

we can define a way of gluing together LOHs such that one of them is “smaller”

than the other – this allows us to use an induction argument. The red and blue

edge construction can then be reproduced by defining a notion of “infimum” and

19To make this definition smoother, one could try to work with an alternative definition of LOHs
that makes them downwards closed. Let us stick with the original definition for now.
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“supremum” for elements in some hyperedge of the LOH (strictly speaking, we need

to be a bit more careful than that and make sure the infimum and supremum are

in the appropriate cells). The heart of the argument stays the same, so we skip the

details.

While Theorem 76 and its implications for the study of lettericity and geo-

metric griddability is a step in the right direction, much remains to be done in order

to fully understand the subject. We will elaborate on this in the next subsection.

3.4.3 A hierarchy of structure: the missing pieces

As we approach the end of the first chapter, a big picture begins to emerge – one of

its main features is the transition from local to global consistency. Our understand-

ing of this transition is incomplete, but quickly growing; this is however not the

whole story. There is another transition at play here, namely the one that brought

us from disorder to local consistency in the first place. In the universe of permu-

tations, this initial transition is in big part understood: its description is given by

Huczynska and Vatter in Theorem 24. In the universe of graphs, the situation is

more complicated. Our first instinct might be to forbid the graph analogues to the

obstacles from Theorem 24 and see what happens. Those analogues are induced

matchings and their complements.20 This problem has already been studied and

to a large degree solved by Atminas in [Atm17]; the paper provides an impressive

general result characterising the structure of graphs without star forests and their

complements. A special case of that result concerns graphs without large match-

ings and complements. Atminas shows that those graphs can be partitioned into

a bounded number of homogeneous bags (the bound only depends on the size of

the matchings and complements we are forbidding) such that the edges between

any pair of bags form a chain graph. However, this is not yet the locally consistent

regime of LOHs: the “nice” orders from the chain graphs need not agree on each

bag. This raises a second question of what lies between this intermediate regime

and local consistency. We summarise this discussion in Figure 3.16, and leave two

open problems that we then examine in more detail. But first, let us give an official

parametric definition of local consistency in the universe of graphs (and use this

chance to introduce another parameter):

Definition 77. Let G be a graph. A chain partition of G is a partition of V (G)

into homogeneous sets A1, . . . , At such that, for each 1 ≤ i, j ≤ t, the subgraph

consisting of Ai, Aj and the edges between them is 2K2-free. We define the chain

20We are using “complements” in the loose sense of Remark 62.
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co-chromatic number γ(G) of G as the smallest natural number t such that V (G)

admits a chain partition into t bags.

A locally consistent chain partition of G is a partition of V (G) into totally

ordered homogeneous sets A1, . . . , At such that, for each 1 ≤ i, j ≤ t, the subgraph

consisting of Ai, Aj and the edges between them is a properly ordered chain graph

in the sense of Sub-subsection 3.2.1 (i.e., vertices in Ai are arranged in decreasing

order with respect to their neighbourhoods in Aj and vertices in Aj are arranged

in increasing order with respect to their neighbourhoods in Ai, or vice-versa). We

define the locally consistent chain co-chromatic number λ(G) of G as the smallest

natural number t such that V (G) admits a locally consistent chain partition into t

bags. A class of graphs is locally consistent if λ is bounded in it.

Remark 78. We may define a parameter λ′ slightly stronger than λ by only re-

quiring the ordering of the vertices in Ai to be either increasing or decreasing with

respect to their neighbourhoods in Aj – call such a chain partition locally semi-

consistent. In Sub-subsection 3.4.3, we will give an example of a class which has

bounded λ′ and unbounded λ. In the world of permutations, bounded λ′ is analo-

gous to monotone griddability; the previously defined semi-LOHs are an analogue

to LOHs for the study of bounded λ′.

Note that γ(G) ≤ λ′(G) ≤ λ(G) ≤ let(G) for any graph G. Also note that,

like with chain circuits, we may attach LOHs to graphs of bounded λ in a straight-

forward way – in this sense, locally consistent classes of graphs are analogous to

monotonically griddable classes of permutations by a partial multiplication matrix.

All permutations

Monotone griddability [HV06]

Geometric griddability

All graphs

Forbid skew sums
of 12 and direct
sums of 21

1

Bounded lettericity

Forbid matchings
and complements

Bounded γ [Atm17]

Bounded λ

1

2

Figure 3.16: A hierarchy of structure
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Open problem 79. What lies between local and global consistency? This question

has several formulations that are more or less equivalent in spirit:

� What are the minimal classes of permutations that are monotonically griddable

by a partial multiplication matrix, but not geometrically griddable?

� What are the minimal classes of unbounded lettericity, but bounded λ?

� What are the obstacles to bounded global inconsistency in the conflict graphs

of LOHs?

Open problem 80. Other than matchings and complements, what are the obstacles

to local consistency in the universe of graphs? In other words, what are the minimal

classes of unbounded λ, but bounded γ?

Between local and global consistency

Theorem 76 provides an answer to Problem 79, but only in a restricted setting. One

full answer to the problem would be a generalisation of the theorem to all LOHs

with a bounded number of hyperedges, rather than just the k-cyclic ones. The key

question then becomes: are there other obstacles to bounded global inconsistency

than the cycles-in-a-chain structure? What do they look like?

At this point, our research on the problem enters the realm of speculation,

and the notions we are working with start to lose their sharpness. We believe

there is nevertheless some value in presenting a few loose ideas and tricks that show

potential. One of the current strategies for tackling the question consists of trying to

show there are essentially no other types of obstacles by using Theorem 76 as a black

box, and applying it repeatedly. The general intuition is the following: working in

a LOH with at most t hyperedges, we would try to show that any obstacle to global

consistency must occur inside a k-cyclic LOH constructed from the original one. If

we manage to bound the size of k in terms of t, there will be a bounded number of

cyclic LOHs containing these obstacles. If indeed, all obstacles do come from cyclic

LOHs, then by forbidding cycles-in-a-chain, we should be able to use Theorem 76 on

each of those cyclic LOHs, which would yield a bound on the global inconsistency

only depending on t.

Let us discuss some specifics in order to illustrate these ideas. The easiest

unsolved instance of the problem consists of two chain circuits with a common cell; a
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concrete example of this is the monotone grid class of the matrix

1 1 0

1 1 1

0 1 1

 . Iden-

tifying all obstacles to bounded global inconsistency (i.e., to geometric griddability)

in this class will be a big step forward towards our goal.21 There are two “simple

cycles” in the cell graph of the matrix: the one given by the four entries in the top

left, and the one given by the four entries in the bottom right. Call them A and

B respectively. Using Theorem 76, if we forbid C4,p (p ∈ N) in the conflict graph,

we are able to “clean out” all circuits that lie entirely in one of A or B. Any other

obstacle to global consistency must somehow involve both A and B.

So what kinds of obstacles are there that can involve both A and B? It turns

out that our cycles-in-a-chain make another appearance here. Imagine working in

a “virtual” chain circuit that starts in the middle cell of the matrix, goes around A

once, then around B; the middle cell thus occurs twice as a bag, but we treat those

occurrences as disjoint copies. One may then construct new cycles-in-a-chain struc-

tures such as the one depicted in Figure 3.17: we go around cycle A (represented by

red arcs), arrive to the left of where we started, then go around cycle B (represented

by blue arcs) to get back to the start. In order to eliminate those structures, we may

use Theorem 76 applied to this virtual chain circuit, provided C8,p is forbidden as

a not necessarily induced subgraph of the conflict graph (while the two occurrences

of the middle cell are independent in the virtual chain circuit, in the actual conflict

graph, the two sets are complete to each other, with all arcs oriented in the same

direction).

We note that this kind of obstacle is still, in some sense, periodic. What

makes the problem messier at this stage is the possibility that aperiodic obstacles

exist. One can think of them by analogy with the aperiodic fundamental antichains

described in [MV02, Section 5]. The general idea of the construction presented there

is that we produce an aperiodic word on A and B, and go around the cycles in the

order indicated by the word.22 Since geometrically griddable classes are wqo, we

had better be able to destroy all but a finite number of the elements in such an

antichain by forbidding the appropriate graphs. Could it be that those graphs are

just our old cycles-in-a-chain, or is some fundamentally different kind of obstacle

hiding somewhere in there?

21The author is optimistic that it is only a matter of time before progress is made in this direction;
either we will manage to show that forbidding the cycles-in-a-chain obstacles is enough to guarantee
bounded global inconsistency in this class, or we will find another type of obstacle.

22The construction in [MV02] is slightly more involved than that, but the details do not matter
for this discussion.
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Figure 3.17: A “figure 8” obstacle

Let us try to start answering that question. Sticking with the above example,

consider a walk in the conflict graph. When we start in a bag and go around one

of the simple cycles in the line graph of the LOH, we end up somewhere in the

original bag. By applying Theorem 76 on the (boundedly many) simple cycles, we

gain some control of where we end up: for instance, by construction, in the split

LOH, we may not return to where we started by just walking repeatedly around the

same simple cycle in the original line graph. However, as in Figure 3.17, we might

be able to return to the start (and thus produce a circuit in the conflict graph) by

walking around different cycles of the line graph in succession. This means that, in

order to eliminate all circuits, we need to apply Theorem 76 to the “virtual chain

circuits” coming from certain concatenations of simple cycles in the line graph.23

If we manage to show that it suffices to do it only for a bounded number of such

concatenations, we are done.

One way to go about this would be by stating and proving some kind of

Ramsey-type result: if our (not necessarily chordless) circuit in the original conflict

graph is long enough, the sequence of cells visited is going to have some repeated

subsequences. We would want to use this in order to find a certain structure that

would have been destroyed by our bounded number of applications of Theorem 76.24

23Additionally, we need to distinguish between the two possible directions in the simple cycles.
24In fact, this is how we originally found the example from Figure 17: a certain number of

73



Indeed, it would be enough to show that any circuit above a certain size in the

original conflict graph had an arc that was eliminated by one of a bounded number

of splits.

One final item that we would like to mention in connection with this problem

is scalability. Suppose we have completely solved the problem in the above instance:

how do we generalise the solution? We do not yet know, but we have a perspective

that might prove helpful in that regard. It begins from the noteworthy remark

that there is a finite set of “obvious candidates” for a global order – in the world

of permutations, they are the ones coming from spanning trees of the cell graph.

Indeed, if the cell graph is already a tree, the unique candidate actually happens to

work (Theorem 31). In the k-cyclic setting, it is possible to reinterpret the problem

as follows: fix a spanning path of the cell graph; from this, using the methods from

[VW11], we may produce in a systematic way a total order on the elements of the

permutation. All arcs of the conflict graph between consecutive cells along the path

are “forward”, in the sense that they agree with the order. The only “backward”

arcs may only occur between the cells corresponding to the ends of the path (i.e.,

along the unique edge of the cell graph not belonging to the spanning tree). It

should be possible to rewrite Theorem 76 in this setting, where the focus is on

controlling those backward arcs. In the general case, we would be looking at the

order given by a spanning tree,25 and the backward arcs would appear along the

edges not in it. While the fundamental difficulties we encountered before are still

there, it is possible that a spanning tree/backward arc-focused perspective gives a

cleaner interpretation of the problem, and thus a better path towards a solution.

Between bounded γ and local consistency

So far, we have seen two fundamentally different kinds of obstacles to bounded

lettericity. First, we saw the matchings and their complements, which are the only

minimal classes of unbounded γ.26 Then, we saw the cycles-in-a-chain constructions

that live between local and global consistency – we are trying to determine whether

they are the only minimal classes of unbounded lettericity but bounded λ.

There is one place left to look for minimal classes of unbounded lettericity:

“backwards paths” like the red ones from the figure guarantees by simple arguments that certain
configurations of their endpoints are unavoidable; one such configuration leads to the given obstacle.

25Could the choice of the spanning tree matter? Perhaps we would have something to gain by
considering multiple spanning trees simultaneously.

26Strictly speaking, we have not yet shown unboundedness of γ in those classes, or their mini-
mality with respect to this property, but this is not difficult; the difficult part of the statement is
what was proved in [Atm17], namely that those are the only minimal classes.
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among classes of unbounded λ, but bounded γ. Of course, we need to start by

making sure that those kinds of classes actually exists within the universe of all

graphs (as opposed to the universe of permutation graphs, where the two parameters

seem to be equivalent). To do this, let us start by trying to construct an example

as simple as possible.

Consider a graph G whose vertex set consists of three independent sets A,

B and C on n vertices each, and assume G[A ∪ B] and G[B ∪ C] are prime chain

graphs, while G[A ∪ C] is edgeless. In the scope of the current discussion, we will

call graphs with this structure linked chain graphs. Let us order the vertices in B

in increasing order with respect to their neighbourhoods in A, and label them by

1, . . . , n. Since G[B ∪ C] is a prime chain graph, there is a unique permutation

π ∈ Sn such that the ordering π(1), . . . , π(n) has decreasing neighbourhoods in C.

We call π the linking permutation of G. See Figure 3.18 for an illustration.

A

B

C

1 2 3 4 5 6

6 1 4 2 5 3

Figure 3.18: A graph with linking permutation 614253

It is clear that every linked chain graph G has γ(G) ≤ 3, and that G is

uniquely determined by its linking permutation. Can we construct a sequence of

permutations πn such that the corresponding sequence of linked chain graphs Gn has

unbounded λ? Note that if the sequence of permutation graphs Gπn has bounded

chromatic number (that is, if each π can be partitioned into a fixed number of in-

creasing subsequences), say at most t, then λ(Gn) ≤ t+2. Indeed, we may partition

B into t smaller bags, each corresponding to one of the increasing subsequences, and

one easily checks that this new partition is locally consistent.

A similar argument applies if Gπn has bounded clique cover number. If
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Gπn has bounded co-chromatic number,27 one can obtain a locally semi-consistent

partition into a bounded number of bags (that is, the graphs have bounded λ′, but

not necessarily bounded λ).

We will start by looking for permutations whose family of permutation graphs

has unbounded co-chromatic number. Such families are easy to construct. For in-

stance, we may let πn be the permutation on n2 elements given by the concatenation

w1w2 . . . wn, where wi lists the elements of {x : 1 ≤ x ≤ n2 and x ≡ i mod n} in

decreasing order (see Figure 3.19). For the sequence (πn)n≥1, one checks that the

size of the maximum homogeneous set in the corresponding permutation graphs is

sublinear, which immediately implies unbounded co-chromatic number.

Figure 3.19: The permutation π7

To show that the corresponding family of linked chain graphs has indeed un-

bounded λ, and in fact unbounded λ′, we first need a corollary to van der Waerden’s

theorem on arithmetic progressions. Let us start by recalling the theorem:

Theorem 81 (van der Waerden’s Theorem [Wae27]). For any p, k ∈ N, there exists

a number N ∈ N such that if [N ] is coloured with p different colours, then there are

at least k integers in arithmetic progression whose elements are the same colour.

Corollary 82. For any p, k ∈ N, there exists a number N ∈ N such that if [N ] ×
[N ] is coloured with p different colours, then there are two arithmetic progressions

X = {x1, . . . , xs} and Y = {y1, . . . , yt} of length at least k such that X × Y is

monochromatic.

Proof. We first use van der Waerden’s theorem to find a number N1 such that any

colouring of [N1] with p colours contains a monochromatic arithmetic progression of

27Unbounded co-chromatic number implies both the chromatic number and clique cover number
are unbounded, but not vice-versa – [Zve00] provides a characterisation of the graphs for which the
converse implication holds.
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length at least k. Note that there are at most
(
N1

2

)
possibilities for that arithmetic

progression (it is uniquely determined by its first two terms). We then use van der

Waerden’s theorem a second time to find a number N2 such that any colouring of

[N2] with p
(
N1

2

)
colours contains an arithmetic progression of length at least k.

Suppose now that [N1]× [N2] is coloured with p colours. By choice of N1, for

each 1 ≤ i ≤ N2, the set [N1]× i contains a monochromatic arithmetic progression

X ′ of length at least k. Colour i with the pair (X ′, c), where c is the colour of X ′.

This gives a colouring of [N2] with (at most) p
(
N1

2

)
colours, and hence there is a

monochromatic arithmetic progression Y of length at least k. Suppose its colour is

(X, c); then by construction, X × Y is monochromatic with colour c.

We apply Corollary 82 to the plots of the permutations πn. Indeed, the

corollary directly implies the following: for any p and t, there exists N such that

whenever we partition the plot of πN into at most p pieces, one of the pieces contains

πt as a subpattern. With this, we are ready to prove our result.

Theorem 83. Let πn be the permutation on n2 elements given by the concatenation

w1w2 . . . wn, where wi lists the elements of {x : 1 ≤ x ≤ n2 and x ≡ i mod n}
in decreasing order. Let Gn be the linked chain graph with linking permutation πn.

Then (λ′(Gn))n≥1 is unbounded.

Proof. The proof is similar in concept to the one of Theorem 66: we show that if

all Gn have locally semi-consistent partitions with a bounded number p of bags,28

then in fact, they have locally semi-consistent partitions with only 3 bags. In other

words, the partition of the linked chain graphs into sets A,B,C should already be

a locally semi-consistent partition. This is clearly not the case for n ≥ 2, as one can

find three vertices in B whose A-neighbourhoods are in strictly decreasing order,

but whose C-neighbourhoods are in neither increasing nor decreasing order (and so,

no ordering of B will be locally semi-consistent).

Suppose now that everyGn has a locally semi-consistent partition into p bags.

Label the vertices of A by x1, . . . , xn2 in decreasing order of their B-neighbourhoods;

label the vertices of B by y1, . . . , yn2 in increasing order of their A-neighbourhoods

(so that yπn(1), . . . , yπn(n2) is decreasing with respect to the neighbourhoods in

C); finally, label the vertices of C by z1, . . . , zn2 in increasing order of their B-

neighbourhoods.

28By replacing p by 3p if necessary, we may assume that each bag is contained entirely in A, B
or C.
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Let A1, . . . , Ap1 , B1, . . . , Bp2 , C1, . . . , Cp3 be the parts lying in A, B and C

respectively (so that p = p1 + p2 + p3). We use the labelling described above to

obtain, from the partitions of A,B and C, three partitions of [n2]. Define:

� A′i := {j ∈ [n2] : xj ∈ Ai};

� B′i := {j ∈ [n2] : yj ∈ Bi};

� C ′i := {j ∈ [n2] : zπ−1
n (j) ∈ Ci} (take note of the π−1

n in the index).

Now consider the common refinement of the three partitions (A′i), (B
′
i) and

(C ′i). This is a partition D′1, . . . , D
′
r of [n2], with r ≤ p3. From this refinement, we

construct a new partition (Di) of V (Gn) by putting Di := {xj : j ∈ D′i} ∪ {yj :

j ∈ D′i} ∪ {zπ−1
n (j) : j ∈ D′i}. By construction, for each i, there exist i1, i2, i3 such

that Di ⊆ Ai1 ∪ Bi2 ∪ Ci3 . This means that the induced subgraph Gn[Di] has

λ′(Gn[Di]) = 3, since the partition (Ai) ∪ (Bi) ∪ (Ci) of V (G) is by assumption

locally semi-consistent.

We claim Gn[Di] is, in fact, a linked chain graph whose linking permutation

is the subpattern of πn induced by the indices in D′i. To see this, note that the

neighbourhood of yj in A is the interval x1, . . . , xj , while its neighbourhood in C is

the interval zπ−1
n (j), . . . , zn2 . Thus by construction, any vertex yj ∈ B ∩Di has its

rightmost neighbour from A and its leftmost neighbour from C also in Di. From this,

writing B∩Di = {yj1 , . . . , yjs} with j1 < · · · < js, it is easy to see that this ordering

of the vertices in B ∩ Di is strictly increasing with respect to the neighbourhoods

in A ∩Di, and the ordering yπn(j1), . . . , yπn(jt) is strictly decreasing with respect to

the neighbourhoods in C ∩Di. But πn reorders the yjl in exactly the same way as

the the subpattern of πn induced by the indices in D′i reorders {1, . . . , t}, and so our

claim follows.

Finally, to arrive at our contradiction, we use Corollary 82 (and the para-

graph after it): the D′i are a partition of [n2], and thus of the plot of πn, into at most

p3 parts. It follows that, for any fixed t, if n is large enough, one of those parts,

say the ith, will contain πt as a pattern. By removing the appropriate vertices of

Gn[Di], we can produce a locally semi-consistent partition of Gt into 3 bags, which

is not possible for t ≥ 2, as discussed at the beginning of the proof.

This construction shows that, as far as local (semi-)consistency is concerned,

things can go wrong even when there is a single bag where two chain graphs meet.

A first step to understanding λ is an exhaustive analysis of this setting; one would
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perhaps aim for a clean characterisation of bounded λ among linked chain graphs

in terms of some conditions on the linking permutations.

In the general setting of bounded γ, we would be dealing with several bags

A1, . . . , Ap; it would make sense to attempt to generalise the notion of “linking

permutation” by associating to each bag Ai a set of permutations πij→k, which

intuitively describe how we need to permute the bag Ai to get from an ordering that

makes G[Ai ∪Aj ] properly ordered to one that makes G[Ai ∪Ak] properly ordered.

Of course, there are several complications here:

1. To properly order G[Ai∪Aj ], we would need to re-order Ai and Aj in tandem.

Working with linking permutations restricted to one bag does not seem fit for

this job.

2. The chain graphs between pairs of bags will not, in general, be prime, so the

permutations πij→k will not be uniquely defined. How do we decide which ones

to use?

3. The linking permutations alone do not suffice to characterise boundedness of λ;

one must also take into account the interactions between them. As an example,

one can construct graphs of bounded λ′ but unbounded λ by arranging bags

in a cycle with properly ordered prime chain graphs between successive bags,

except for one pair of bags where we “twist” the ordering in one of the bags

– see Figure 3.20 for an illustration. That those graphs have unbounded λ

is essentially a (simpler) variant of Theorem 83 to show that more bags do

not help, together with the remark that, by uniqueness of the good orderings

between bags, we may not make the partition in the figure locally consistent by

simply reordering. In this example, the linking permutations are deceivingly

simple: they are either the identity, or its reverse. This shows that we must

track, in some way, what happens between different bags – a tool like the cell

graph of gridding matrices might be useful here.

4. Assuming we obtain a characterisation of bounded λ in terms of conditions on

the linking permutations and their interactions, how do we transform it into

a minimal class characterisation?

Dealing with those difficulties is a good subject for future research. We re-

mark that the first point in the list can be mitigated by using local semi-consistency:

we may refine our search for minimal obstacles by first looking at what happens when

λ′ is bounded. Once we understand the boundary between λ and λ′ (that is, the

boundary between monotone griddable classes, and monotone griddable classes by

79



Figure 3.20: Graphs of bounded λ′ but unbounded λ

a partial multiplication matrix), we may look for obstacles to bounded λ′: in this

setting, it makes sense to talk about linking permutations defined on individual

bags. Something worth investigating is whether it is possible and meaningful to

generalise the definition of local semi-consistency (which is like local consistency,

except the local orders may be reverses of each other) by specifying various other

conditions on the local orders in each bag (for example, we could allow them to be

cyclic permutations of the vertices).
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Chapter 4

Functionality

Graphs of bounded degeneracy can be constructed from a single vertex by adding

vertices of small degree one at a time. Cographs can be constructed from a sin-

gle vertex by adding twin vertices1 one at a time (for various characterisations of

cographs, together with references, see, e.g., [BLS99]). What do these examples have

in common? In both cases, there is a vertex whose neighbourhood is in some sense

“easy to describe”: we only need a bounded number of other vertices to express it.

In this chapter, we define and study a new graph parameter called functionality,

which attempts to capture that intuition.

In Section 4.1, we define functionality and discuss the motivation behind it;

in doing so, we place our definition in the broader context of graph enumeration

and representation. In Section 4.2, we present our results from [AAL19], where we

originally introduced the parameter. Finally, in Section 4.3, we provide some further

results and insights into it, and propose a few open questions emerging from our

study.

4.1 Background and motivation

4.1.1 The (labelled) speed of hereditary classes

Let X be a hereditary class. Write Xn for the set of labelled n-vertex graphs in

X . The sequence |Xn| is called the speed, or the growth rate of X ; we say X is

logarithmic, linear, exponential, . . . if its speed is logarithmic, linear, exponential,

. . . in n. Numerous results on this subject appear in the literature – the interested

reader is invited to consult, for instance, [BBW00] and the references therein. We

summarise here only the background directly relevant to us.

1We allow both true and false twins, that is, the twin vertices may be adjacent or non-adjacent.
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Clearly, any class has speed at most 2(n2), since that is the total number

of labelled graphs on n vertices. Interestingly, not every asymptotic behaviour

between constant speed and this upper limit actually occurs. In fact, there are

strong restrictions on what the growth rates can be. In an effort to characterise

the possible speeds, [Ale92; Ale97] and independently [SZ94] describe a hierarchy of

distinct layers of classes, with gaps between them. For instance, it turns out that

any sublinear class is, in fact, constant – there are no classes with, say, logarithmic

growth.

Alekseev [Ale97] provides a characterisation of the bottom four layers in the

hierarchy via minimal classes not belonging to those layers, as well as a structural

description for the bottom three – the constant, polynomial and exponential layers.

Those three layers have a relatively simple structure; for instance, if a class belongs

to the exponential layer, then graphs from it can be partitioned into a bounded

number (that is, the bound depends only on the class) of homogeneous sets that

are pairwise either complete or anticomplete to each other. The fourth layer is

where things get interesting. This is the so-called factorial layer, in which classes

have speed 2Θ(n logn). Many well-studied classes lie in this layer: permutation and

interval graphs [Spi03], line graphs [LMZ12], all proper minor-closed classes (such

as forests) [Nor+06] to name just a few.

Using Alekseev’s characterisation, a class is superexponential if and only if

contains at least one of nine minimal classes. Three of those minimal classes are

subclasses of bipartite graphs: induced matchings, their bipartite complements and

chain graphs. The other six can be obtained from those three by replacing one,

respectively both of the parts with cliques. This tells us that it is relatively easy

to determine when a class of graphs is at least factorial. Determining whether a

class is at most factorial can be a bit more tricky; there are, however, a variety of

useful techniques to that end, many of which are discussed in [Spi03]. One general

approach is to attempt representing graphs from that class as “space efficiently” as

possible: if we manage to do it using only O(n log n) bits for each graph, then the

class must be at most factorial. It goes without saying that the motivation behind

the study of graph representations extends far beyond purely enumerative purposes

– Spinrad’s monograph [Spi03] surveys the topic in detail.

Remark 84. We emphasize that the speed is defined in terms of labelled graphs.

In particular, if the number of unlabelled graphs in a class is factorial, it follows

that its speed is also factorial (since there are at most n! possible labellings for an

n-vertex graph). The converse need not be true: there are classes with exponentially

many unlabelled graphs, but factorially many labelled ones. An example is given by
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graphs of bounded lettericity. Indeed, their definition via words immediately yields

an exponential upper bound for unlabelled graphs; a factorial lower bound for the

labelled graphs follows immediately from Alekseev’s minimal class characterisation

(as chain graphs have bounded lettericity). In the context of functionality, we will

require the ability to refer to vertices using short labels, hence we will assume,

throughout this chapter, that graphs come with a labelling of the vertices by the

numbers 1 to n.

4.1.2 Implicit graph representations

There is one particularly interesting kind of graph representation, namely implicit

representation (also known as adjacency labelling scheme, or just labelling scheme),

introduced in [KNR88] and independently in [Mul88]. The idea is to store the

graphs’ adjacency information locally: each vertex is assigned a label of size O(log n)

in such a way that adjacency of a pair of vertices can be determined solely from

reading their labels. Most sources then put some computational constraints on how

adjacency is determined from the labels; it is usually expected that adjacency is at

the very least computable (see, e.g., [Mul88]), and we often impose time polynomial

in the size of the labels (see, e.g., [KNR88]). Not all graph classes admit implicit

representations; it is clear from the prescribed label size that any class with an

implicit representation must be at most factorial.

We will avoid giving formal definitions for implicit representations, since we

do not need them for our discussion. After going through a few examples, there

should in practice be no ambiguity as to what we (in our limited scope) mean when

saying a class “has an implicit representation”. The archetypal example is given by

interval graphs:

Example 85. Let G be an interval graph on n vertices. Starting with an interval

intersection model for G, we number the endpoints of the intervals in increasing

order of their appearance on the real line (see Figure 4.1 for an illustration; we may

assume without loss of generality that no two intervals share an endpoint). We then

label each vertex with the two numbers of the corresponding interval’s endpoints2

– those are two integers between 1 and 2n, so the label size is indeed O(log n).

Adjacency can be readily determined from those labels: x and y are non-adjacent

if and only if the largest of the numbers stored at x is smaller than the smallest of

the numbers stored at y, or vice-versa.

2How we depict these labels is entirely a matter of implementation. We may simply think of
them as pairs (i, j) with i < j.

83



1

2 3

4

5

6

7

8

9

10

11

12

Figure 4.1: Implicit representation of interval graphs

We provide a second less standard, yet unsurprising example.

Example 86. Graphs of bounded lettericity also have implicit representations. Let

us describe a labelling scheme for graphs of lettericity at most k. Given such a

graph, we start by finding a k-letter graph expression for it; for each vertex, we

record its position in the expression (O(log n) bits), and its letter. It is clear that

the O(log n) bits stored at a pair of vertices are enough to determine whether or

not the vertices are adjacent – the decoder can be considered part of the adjacency

computing algorithm or, if we want to keep avoiding digressions into formal defini-

tions, we may simply store it at each vertex (since it is just a constant amount of

information).

As one might expect, the big question concerning implicit representations is:

which classes actually admit them? This question takes the form of the Implicit

Graph Conjecture.

Conjecture 87 (Implicit Graph Conjecture [KNR88] – the usual formulation).

Every factorial hereditary class of graphs admits an implicit representation with

polynomially computable adjacency.

As of the writing of Spinrad’s monograph, it was not known whether the

additional computational restrictions affected which classes are representable [Spi03,

p. 22]. This has recently changed: in his thesis [Cha17], Chandoo undertakes a

valiant effort to streamline some of the aspects surrounding implicit representations.

Among other things, he develops a complexity theory for implicit representation,

which yields a strict hierarchy of graph classes based on the time complexity of the

algorithm required to determine adjacency from the labels. The hierarchy does not

necessarily remain strict when staying in the universe of hereditary classes3 – in

Chandoo’s own words, “The graph classes used to demonstrate these separations [in

complexity] are far removed from any natural graph class” [Cha17, p. 2].

3Such a result would have implied that certain factorial hereditary classes do not have implicit
representations with polynomially computable adjacency.
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We remark that there exists a purely graph-theoretical, extremal-flavoured

version of the conjecture, which circumvents the technicalities regarding computa-

tional complexity. This version is weaker than the usual statement of the Implicit

Graph Conjecture; it relates implicit representations with the existence of small

vertex-induced universal graphs [Mul88; KNR88; Spi03; Cha17]:

Conjecture 88 (Implicit Graph Conjecture – a weaker, graph-theoretical variant).

Let X be a factorial hereditary class. Then there exists a vertex-induced universal

graph for Xn of size polynomial in n.

Without going too much into detail, the idea behind the (pseudo-)equivalence

of the two versions is as follows: given an implicit representation for a class X with

labels of size c log n, we may treat all strings on c log n bits as the vertices of our uni-

versal graph, with adjacency determined by the appropriate procedure. Conversely,

a universal graph suggests a (not necessarily computable) way of determining ad-

jacency: the label of a vertex simply describes its embedding into the universal

graph.

The author is somewhat mystified by the Implicit Graph Conjecture. Suc-

cinctly put, it sounds too good to be true – why should one expect to always find a

nice representation for factorial hereditary classes, especially when many adjacency

labelling schemes seem to use very ad-hoc, class-specific constructions?4 Indeed, to

highlight the unpredictability of implicit representations, we put forward the case

of cographs. While implicit representations for them are known, we are not aware

of a direct and transparent way to obtain one from their emblematic features (such

as cotrees). Instead, we need to go the long way around: we can represent them as

permutation (or circle) graphs and use their intersection models, or we can use the

fact that their clique-width is bounded.

On the other hand, a counterexample also seems out of reach, though there

are a few candidates, i.e., factorial hereditary classes for which an implicit repre-

sentation is not known. Among the more prominent candidates are some classes of

intersection graphs, such as disk graphs [Spi03, p. 53].

Remark 89. In the context of implicit representations, we could distinguish be-

tween the labels produced by the adjacency labelling scheme and the “names” we

give the vertices when working with labelled graphs. However, those names take

4For many known classes admitting implicit representations, the representations seem to emerge
directly from known characterisations of the class (or can be obtained via simple reductions – see
[Atm+15] and [Cha17, sec. 3.3]). There are, of course, more sophisticated examples, like that of
classes of bounded clique-width [Spi03, p. 165], but proving the conjecture seems unachievable with
the current techniques.
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only O(log n) bits anyway, so whether or not we consider them part of the adjacency

labels is immaterial.

With all of this in mind, we are finally ready to start talking about function-

ality.

4.1.3 Functionality: a very short history

In [All09], Allen investigates the speed of monogenic classes of bipartite graphs –

that is, classes of bipartite graphs defined by a unique minimal forbidden induced

subgraph. He provides an almost complete description of the set of graphs G for

which the class of G-free bipartite graphs has at most factorial speed.5 One of the

arguments used in the enumeration was that in some of the classes, all graphs had

a pair of vertices such that the symmetric difference of their neighbourhoods was

small (that is, bounded by a constant). Later, that argument was generalised in

[Atm+15] using the notion of functional vertices. Let G be a graph with adjacency

matrix A, and denote by A(v, w) the entry of the matrix corresponding to vertices

v and w.

Definition 90 ([Atm+15]). We say a vertex y ∈ V (G) is a function of the set

X = {x1, . . . , xk} ⊆ V (G) \ {y} (or simply a function of the vertices x1, . . . , xk) if

there exists a Boolean function f : {0, 1}k → {0, 1} of k variables such that for any

vertex z ∈ V (G) \ (X ∪ {y}), we have A(y, z) = f(A(x1, z), . . . , A(xk, z)). Abusing

notation, we will write y = f(x1, . . . , xk) to mean that y is a function of x1, . . . , xk,

and the Boolean function in the definition is f .

In other words, y is a function of X if the adjacency of every other vertex to

y can be determined from its adjacency to X. In yet other words, y is a function of

X if each of the 2k sets of the form {z ∈ V (G) \ (X ∪ {y}) : N(z) ∩X = A} (where

A runs over subsets of X) is either complete or anticomplete to y.

We give two simple and natural examples:

Example 91. Vacuously, any vertex y is a function of V (G) \ {y} (any function

works). Less vacuously (but still somewhat trivially), any vertex y is a function of

N(y) or of N(y) – the function f is constantly 0 or 1 respectively.

Example 92. The first non-trivial example is given by twin vertices: if x and y are

twins (adjacent or non-adjacent), then each of them is a function of (the singleton

containing) the other – the function f is the identity. More generally, for any two

5The only remaining open case, that of P7-free bipartite graphs, is settled later in [LZ17].
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vertices x and y, any of them is a function of the set containing the other and the

symmetric difference of their neighbourhoods.

The initial motivation behind the definition was that, if each graph in some

hereditary class X has a vertex which is a function of a set of bounded size (say by k),

then X is at most factorial [Atm+15, Theorem 2]. The proof consists of constructing

inductively a “functional representation” of size O(n log n) bits for each graph in X .

Indeed, given a graph G ∈ X , we find a vertex y which is a function of at most k

other vertices. We then remove y from G, and record:

� the label of y;

� the labels of the vertices x1, . . . , xk′ (k′ ≤ k) of which y is a function;

� a function f such that y = f(x1, . . . , xk′);

� the adjacency of y to x1, . . . , xk′ .

We then repeat the process with G′ := G − y, which must contain another

vertex which is a function of at most k vertices. We keep doing this until we run

out of vertices. It is clear that G can be recovered from the recorded information,

and that at each step, O(log n) bits are recorded. We note that this is by no means

an implicit representation, since we cannot recover adjacency of two vertices solely

from the bits that we recorded when we removed them.6

Despite its origins as a purely enumerative tool, we felt the notion of func-

tional vertices deserved to be studied in its own right. To this end, we propose in

[AAL19] the following definitions:

Definition 93. Let G be a graph, and y a vertex of G. The functionality funG(y)

of y is the minimum size of a set X such that y is a function of X. We omit the

subscript when the graph is clear from context. The functionality of G is

fun(G) := max
H⊆G

min
y∈V (H)

funH(y),

where the maximum is taken over induced subgraphs of G.

This makes functionality into a hereditary graph parameter akin to degen-

eracy. Indeed, degeneracy captures the fact that every (induced) subgraph of G

6If we try to use the above functional representation to naively construct an implicit one by
recursively producing labels for the vertices, we very quickly run into difficulties: the size of the
labels snowballs uncontrollably due to the adjacency information described in the fourth bullet
point.
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has a vertex of small degree, while functionality captures the fact that every in-

duced subgraph of G has a vertex whose neighbourhood can be expressed in terms

of few other vertices. In fact, functionality strictly generalises degeneracy: it follows

from Example 91 (and from the above definition) that fun(G) ≤ degen(G) for any

graph G, and so every class of bounded degeneracy is of bounded functionality. The

converse fails, e.g., for cliques.

By Example 92, fun(y) is small if there is a vertex x that is “almost twin”

to y, in the sense that the size of the symmetric difference of their neighbourhoods

is small. It turns out this special case of small functionality occurs often enough to

deserve its own parameter:

Definition 94. Let G be a graph, and let x, y be vertices of G. Abusing notation,

we will say “the symmetric difference of x and y” to mean the symmetric difference

of their neighbourhoods, excluding x and y themselves. We define sd(x, y) to be

the size of the symmetric difference of x and y. Abusing notation once more, the

symmetric difference of G is

sd(G) := max
H⊆G

min
x,y∈V (H)

sd(x, y),

where the maximum is taken over induced subgraphs of G.

As discussed above, fun(G) ≤ sd(G) + 1, so that bounded symmetric differ-

ence implies bounded functionality.7

The next section follows our work from [AAL19], in which we examine the

behaviour of symmetric difference and functionality on various classes, and begin to

place them into the vast hierarchy of graph parameters.

4.2 Graph functionality

4.2.1 Graphs of small functionality

Our first result compares clique-width to functionality. As it turns out, graphs of

bounded clique-width have bounded functionality, and in fact even bounded sym-

metric difference:

Theorem 95. For any graph G, sd(G) ≤ 2 cw(G)− 2.

Proof. Since clique-width is hereditary, it suffices to show that any graph of clique-

width k has a pair of vertices with symmetric difference at most 2k − 2. Let G be

7We shall see in the next section that this implication is strict.
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a graph of clique-width k and let T be a rooted tree corresponding to a k-clique-

width expression that describes G. For a node v of the rooted tree T , let T v be

the subtree of T induced by the node v and all its descendants. We can choose v

in such a way that T v has more than k leaves, and neither of the two children of v

has this property (if no such v exists, we are done, since G has at most k vertices).

Since T v has more than k leaves, at least two of them, say x and y, have the same

label at node v. On the other hand, T v has at most 2k leaves by the choice of v.

Therefore, G contains at most 2k − 2 vertices that distinguish x and y, since the

two vertices are not distinguished outside of T v. In other words, sd(x, y) ≤ 2k − 2

as required.

What about the converse? Does every class of bounded symmetric difference

also have bounded clique-width? The answer is no. A counterexample is given by

unit interval graphs: clique-width is unbounded in them [GR00], and symmetric

difference is bounded, as we show in the next theorem.

Theorem 96. The symmetric difference of unit interval graphs is at most 1.

Proof. Since the class of unit interval graphs is hereditary, it suffices to show that

each unit interval graph has a pair of vertices with symmetric difference at most 1.

Let G be a unit interval graph with n vertices and assume without loss of

generality that G has no isolated vertices (by adding isolated vertices to a graph,

we do not increase its symmetric difference). Take a unit interval representation for

G = (V,E) with the interval endpoints all distinct. We label the vertices v1, . . . , vn

in the order in which they appear on the real line (from left to right), and denote

the endpoints of interval Ii corresponding to vertex vi by ai < bi. We will bound

S :=
n−1∑
i=1

sd(vi, vi+1).

Note that any neighbour of vi which is not a neighbour of vi+1 needs to have

its right endpoint between ai and ai+1. Similarly, any neighbour of vi+1 but not of

vi needs to have its left endpoint between bi and bi+1. In other words, sd(vi, vi+1) is

bounded above by the number of endpoints in (ai, ai+1)∪ (bi, bi+1) (we say bounded

above and not equal, since it might happen that bi lies between ai and ai+1, without

contributing to the symmetric difference).

The key is now to note that any endpoint can be counted at most once in the

whole sum S, since all (ai, ai+1) are disjoint (and the same applies to the (bi, bi+1)),

and the a’s are only counted when they appear between b’s (and vice-versa). In fact,
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a1 and bn are never counted in S, and if a2 is between b1 and b2, then v1 must be

isolated, so a2 is not counted either. The sum is thus at most 2n − 3. Since it has

n− 1 terms, one of the terms, say sd(vt, vt+1), must be at most 1, as required.

We have just shown that symmetric difference is strictly stronger than clique-

width. We now turn to the gap between functionality and symmetric difference. We

know from the last section that functionality is stronger than symmetric differ-

ence; is this comparison also strict? The answer is yes: an example of a class with

bounded functionality, but unbounded symmetric difference is given by none other

than permutation graphs. To show this, we will once more use the geometric per-

spective described in Subsection 3.1.2. We supplement that perspective by defining,

in the obvious way, a notion of “geometric neighbourhood” of a point (illustrated

in Figure 4.2).

Definition 97. The geometric neighbourhood of a point x is the union of two regions

in the plane: the one above and to the left of x, and the one below and to its right.

It is clear from this definition that the set of points of π lying in the geometric

neighbourhood of x is precisely the set of neighbours of vertex x in the permutation

graph of π.

6

1

4

2

5

3

Figure 4.2: Representation of π = 614253, with the geometric neighbourhood of 4
shaded
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We start by showing that permutation graphs have bounded functionality.

The main idea of the proof is to find a point whose geometric neighbourhood can

be neatly “approximated” using the neighbourhoods of points near it.

Theorem 98. The functionality of permutation graphs is at most 8.

Proof. Since the class of permutation graphs is hereditary, it suffices to show that

every permutation graph contains a vertex of functionality at most 8. Let G be a

permutation graph corresponding to a permutation π. The proof will be given in

two steps: first, we show that if there is a vertex with a certain property in G (yet

to be specified), then this vertex is a function of 4 other vertices. Second, we show

how to find vertices that are “close enough” to having that property.

Step 1: Consider the plot of π. Among any 3 horizontally consecutive points,

one is vertically between the two others. We call such a point vertical middle (in the

permutation from Figure 4.2, the vertical middle points are 4, 2 and 3). Similarly,

among any 3 vertically consecutive points, one is horizontally between the two oth-

ers, and we call this point horizontal middle (in Figure 4.2, the horizontally middle

points are 2, 5 and 4).

Now let us suppose that π has a point x that is simultaneously a horizontal

and a vertical middle point. Then x is part of a triple x, b, t (not necessarily in that

order) of horizontally consecutive points, where b is the bottom point (the lowest

in the triple) and t is the top point (the highest in the triple). Also, x is part of a

triple x, l, r (not necessarily in that order) of vertically consecutive points, where l

is the leftmost and r is the rightmost point in the triple (see Figure 4.3 (a) for an

illustration).

In general, x can be at any of the 9 intersection points of pairs of 3 consecutive

vertical and horizontal lines, i.e., x is somewhere in X (see Figure 4.3 (b)). We also

have l ∈ L, r ∈ R, t ∈ T and b ∈ B for the surrounding points (see Figure 4.3 (b)).

The important thing to note is that, since the points are consecutive, those are the

only points of the permutation lying in the shaded area X ∪ L ∪ R ∪ T ∪ B. Any

point different from x, l, r, t, b lies in one of Q1, Q2, Q3 or Q4.

It is not difficult to see that the geometric neighbourhood corresponding to

(N(r) ∩N(b)) ∪ (N(l) ∩N(t)) (see Figure 4.3 (a)) will always contain Q2 and Q4,

and will never intersect Q1 or Q3. Therefore, the function that describes how x

depends on {l, r, t, b} can be written as follows:

f(xr, xb, xl, xt) = xrxb ∨ xlxt,

where xr, xb, xl, xt are Boolean variables corresponding to points r, b, l, t, respec-

91



x

l
r
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(a) The geometric region corresponding to
(N(r) ∩N(b)) ∪ (N(l) ∩N(t))

XL R

T

B

Q1Q2

Q3 Q4

(b) Partition of the plot

Figure 4.3: A middle point x and its four surrounding points

tively, and the Boolean AND is simply denoted by juxtaposition of the variables. In

other words, a vertex y 6∈ {x, l, r, t, b} is adjacent to x if and only if

f(A(y, r), A(y, b), A(y, l), A(y, t)) = 1.

Step 2: Let us relax the simultaneous middle point condition to the following

one: amongst every 5 vertically (respectively horizontally) consecutive points, call

the middle three weak horizontal (respectively vertical) middle points. For instance,

in Figure 4.2, the weak horizontal middle points are 4, 2, 5 and 3, and those same

points are also the weak vertical ones. Note that if the number of points is divisible

by 5, at least 3
5 of them are weak vertical and at least 3

5 of them are weak horizontal

middle points. Using this observation it is not hard to deduce that if there are at

least 13 points, then more than half of them are weak vertical and more than half

of them are weak horizontal middle points, and so there must exist a point x that

is simultaneously both. We only need to deal with this case, as the functionality of

any graph on at most 12 vertices is at most 6 (every vertex has at most 6 neighbours

or non-neighbours).

Now x is simultaneously a weak vertical and a weak horizontal middle point,

and so there must exist consecutive horizontal, respectively vertical quintuples l,

x, m1, m2, r and t, x, m3, m4, b (not necessarily in that order) for which x is a

weak middle point (and m1, m2, m3 and m4 are the other weak middle points in

their respective quintuples). By removing m1, m2, m3 and m4 from the graph, we

find ourselves in the configuration of Step 1 and conclude that x is a function of
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{l, r, t, b} in the reduced graph. Therefore, in the original graph, x is a function of

{l, r, t, b,m1,m2,m3,m4}, concluding the proof.

We next show that permutation graphs have unbounded symmetric differ-

ence.

Theorem 99. For any t ∈ N, there is a permutation graph G with sd(G) ≥ t.

Proof. Given a permutation graph G corresponding to a permutation π and two

vertices x1, x2 of G, the symmetric difference of their neighbourhoods can be repre-

sented geometrically as an area in the plane (see Figure 4.4). More precisely, a vertex

different from x1 and x2 lies in the symmetric difference of their neighbourhoods if

and only if the corresponding point of the plot of π lies in the shaded area.

x1

x2

Figure 4.4: Geometric symmetric difference of two points x1 and x2

In order to prove the theorem, it suffices, for each t ∈ N, to exhibit a set St

of points in the plane (with no two on the same vertical or horizontal line) such that

for any pair x1, x2 ∈ St, there are at least t other points of St lying in the geometric

symmetric difference of x1 and x2. Indeed, such a set can be interpreted as the

plot of a permutation, and in the corresponding permutation graph, the symmetric

difference of the neighbourhoods of any pair of vertices is at least t.

We construct sets St in the following way (see Figure 4.5 for an example

– incidentally, the corresponding permutations are the same ones we used in Sub-

subsection 3.4.3 for their large co-chromatic number):

� start with all the points with integer coordinates between 0 and t inclusive;
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� apply to those points the counterclockwise rotation about the origin sending

the vector (1, 0) to the unit vector with direction (t + 1, 1) (applying this

rotation ensures none of the points share a horizontal or a vertical line).

Figure 4.5: The set S6

To see that these sets have indeed the desired property, let x1, x2 ∈ St. For

simplicity, we will use the coordinates of the points before the rotation. Suppose

x1 = (a1, b1) and x2 = (a2, b2). There are four possible cases (after switching x1 and

x2 if necessary):

� If a1 = a2 and b1 < b2, then the t points (k, b2), (l, b1) with k < a1 < l are in

the symmetric difference.

� Similarly, if b1 = b2 and a1 < a2, then the t points (a1, k), (a2, l) with k <

b1 < l are in the symmetric difference.

� If a1 < a2 and b1 < b2, the following points all lie in the symmetric difference

of x1 and x2:

(1) Points (a1, k) with k < b1 (in the bottom region).

(2) Points (a1, k) with b1 < k ≤ b2 (in the left region).

(3) Points (a2, k) with b2 < k (in the top region).

(4) Points (a2, k) with b1 ≤ k < b2 (in the right region).

In particular, (1) and (3) account for at least b1 + t − b2 points, while (2)

and (4) account for 2(b2 − b1) others. We conclude that in total, at least

t+ (b2 − b1) > t points lie in the symmetric difference of x1 and x2.

� If a1 < a2 and b1 > b2, the following points all lie in the symmetric difference

of x1 and x2:
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(1) Points (k, b2) with a1 ≤ k < a2 (in the bottom region).

(2) Points (k, b1) with k < a1 (in the left region).

(3) Points (k, b1) with a1 < k ≤ a2 (in the top region).

(4) Points (k, b2) with a2 < k (in the right region).

Summing up, we find once more at least t points in the symmetric difference.

Remark 100. We note that, in conjunction with Theorem 95, this result yields an

alternative (and in our opinion, ever so slightly easier) proof of the already known

fact [GR00] that permutation graphs have unbounded clique-width.

The final class that we consider in this subsection is the class of line graphs

(the line graph of a graph G is the intersection graph of its edges). This is another

class of unbounded clique-width (see, e.g., [GW07]).

Theorem 101. The functionality of line graphs is at most 6.

Proof. Let G be a graph and H be the line graph of G. Since the class of line graphs

is hereditary, it suffices to prove that H has a vertex of functionality at most 6. We

will prove a stronger result showing that every vertex of H has functionality at most

6.

Let x be a vertex in H, i.e., an edge in G. We denote the two endpoints of

this edge in G by a and b. Assume first that both the degree of a and the degree of

b are at least 4. Let Y = {y1, y2, y3} be a set of any three edges of G different from

x that are incident to a, and let Z = {z1, z2, z3} be a set of any three edges of G

different from x that are incident to b.

We claim that a vertex v 6∈ {x} ∪ Y ∪ Z is adjacent to x in H if and only if

it is adjacent to every vertex in Y or to every vertex in Z. Indeed, if v is adjacent

to x in H, then the edge v intersects the edge x in G. If the intersection consists

of a, then v is adjacent to every vertex in Y in the graph H, and if the intersection

consists of b, then v is adjacent to every vertex in Z in the graph H. Conversely,

let v be adjacent to every vertex in Y , then v must intersect the edges y1, y2, y3 in

G at vertex a, in which case v is adjacent to x in H. Similarly, if v is adjacent to

every vertex in Z, then v intersects the edges z1, z2, z3 in G at vertex b and hence v

is adjacent to x in H.
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Therefore, in the case when both a and b have degree at least 4 in G, the

function that describes how x depends on {y1, y2, y3, z1, z2, z3} in the graph H can

be written as follows: f(y1, y2, y3, z1, z2, z3) = y1y2y3 ∨ z1z2z3.

If the degree of a is less than 4, we include in Y all the edges of G distinct

from x which are incident to a (if there are any) and remove the term y1y2y3 from

the function. Similarly, if the degree of b is less than 4, we include in Z all the

edges of G distinct from x which are incident to b (if there are any) and remove the

term z1z2z3 from the function. If both terms have been removed, the function is

defined to be identically 0, i.e., no vertices are adjacent to x in H, except for those

in Y ∪ Z.

One may hope to generalise this result and show bounded functionality for

the line graphs of k-uniform hypergraphs (that is, intersection graphs of families of

k-subsets). It turns out that this is a substantially more difficult task; in [AAL19],

we only manage to solve it for k = 3, with an upper bound of 462 (we omit the

proof here).

4.2.2 Graphs of large functionality

In the previous section, we saw several examples of classes with bounded function-

ality. It is natural to now ask what classes have unbounded functionality. The

first obvious example consists of all superfactorial classes. Indeed, this follows im-

mediately from the discussion in Subsection 4.1.3 about functional vertices and

functional representations. This allows us to compare functionality with another

significant graph parameter, VC-dimension:

Definition 102. A set system (X,S) consists of a set X and a family S of subsets

of X. A subset A ⊆ X is shattered if for every subset B ⊆ A there is a set C ∈ S
such that B = A ∩ C. The VC-dimension of (X,S) is the cardinality of a largest

shattered subset of X.

The VC-dimension of a graph G = (V,E) was defined in [Alo+06] as the VC-

dimension of the set system (V, S), where S the family of closed neighbourhoods of

vertices of G, i.e., S = {N [v] : v ∈ V (G)}. We denote the VC-dimension of G by

vc(G).

It is shown in [Loz18] that the only minimal classes of unbounded VC-

dimension are bipartite, co-bipartite and split graphs. Since all of those classes

are superfactorial (Ω(2n
2/4) graphs on n vertices), bounded functionality implies

bounded VC-dimension.
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Of course, the fact that, say, the class of bipartite graphs (or even less help-

fully, the class all graphs) has unbounded functionality does not actually give us

much insight into which individual graphs have high functionality. In particular,

it would be interesting to construct specific graphs in which every vertex has high

functionality. Another interesting item to find would be a factorial class of graphs

of unbounded functionality, that is, a class which has unbounded functionality for

non-trivial reasons. The example of hypercubes fulfills both of these criteria (and

also shows that VC-dimension is strictly stronger than functionality).

Definition 103. Let Vn = {0, 1}n be the set of binary sequences of length n and

let v, w ∈ Vn. The Hamming distance d(v, w) between v and w is the number of

positions in which the two sequences differ. The hypercube Qn is the graph with

vertex set Vn = {0, 1}n, in which two vertices are adjacent if and only if the Hamming

distance between them equals 1.

Theorem 104. Functionality of the hypercube Qn is at least (n− 1)/3.

Proof. By symmetry, it suffices to show that the vertex v = 00 . . . 0 ∈ Vn has

functionality at least (n − 1)/3. Suppose v is a function of vertices in a set S ⊆
Vn \{v}. To provide a lower bound on the size of S, and hence a lower bound on the

functionality of v, for each i = 1, 2, . . . , n consider the set Si = {w ∈ S : d(w, v) = i},
i.e., the set of all binary sequences in S that contain exactly i 1s. Also, consider the

following set:

I = {i ∈ {1, 2, . . . , n} : ∃z = z1z2 . . . zn ∈ S1 ∪ S2 ∪ S3 with zi = 1}.

Suppose |I| ≤ n − 2. Then there exist two positions i and j such that for any

sequence z = z1z2 . . . zn ∈ S1 ∪ S2 ∪ S3, we have zi = 0 and zj = 0. Consider the

following two vertices:

� u = u1u2 . . . un with uk = 1 if and only if k = i,

� w = w1w2 . . . wn with wk = 1 if and only if k = i or k = j.

We claim that u and w are not adjacent to any vertex z ∈ S. First, it is not

hard to see that for any z ∈ S1∪S2∪S3 we have d(z, u) ≥ 2 and d(z, w) ≥ 2. Indeed,

any z ∈ S1 ∪ S2 ∪ S3 differs from u and w in position i, i.e., zi = 0 and ui = wi = 1,

and there must exist a k 6= i, j with zk = 1 and uk = wk = 0. Also, it is not difficult

to see that d(z, u) ≥ 2 and d(z, w) ≥ 2 for any vertex z ∈ S \ (S1 ∪S2 ∪S3), because

any such z has at least four 1s, while u and w have at most two 1s. Therefore, by

definition, u and w are not adjacent to any vertex in S.
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We see that the assumption that |I| ≤ n−2 leads to the conclusion that there

are two vertices u,w ∈ Qn \ (S ∪ {v}) which are non-adjacent to any vertex in S,

but have different adjacencies to v. This contradicts the fact that v is a function of

the vertices in S. So, we must conclude that I has size at least n−1. As each vertex

in S1 ∪ S2 ∪ S3 has at most three 1s, we conclude that S1 ∪ S2 ∪ S3 must contain at

least |I|/3 = (n− 1)/3 vertices. This completes the proof of the theorem.

As it turns out, the hereditary closure of hypercubes (that is, the class con-

taining all hypercubes and their induced subgraphs) has factorial speed of growth.

This result is due to appear in [Ale+21a].

Theorem 105 ([Ale+21a]). The hereditary closure of hypercubes is a factorial class.

Proof. Let Q be the hereditary closure of the hypercubes Qn. It is not hard to see

that this class contains the class of trees, therefore Q has at least factorial speed

of growth. It remains to show that it has at most factorial speed of growth, and

for this, it suffices to restrict our attention to connected graphs in Q. Indeed, if

we show that the set of connected graphs in Q has at most factorial speed, then

prime graphs (a subset of the connected graphs) have at most factorial speed, which

implies at most factorial growth of Q [Atm+15, Theorem 1].

Let G ∈ Q be a connected graph on n vertices. By definition of Q, G embeds

into Qm for some m. We claim that, in fact, G embeds into Qn−1. If m < n, this is

clear. Otherwise, using an embedding into Qm, each vertex of G corresponds to an

m-digit binary sequence. For two adjacent vertices, the sequences differ in exactly

one position. From this, it follows inductively that the n vertices of G all agree in

at least m− (n− 1) positions. The coordinates on which they agree can simply be

removed; this produces an embedding of G into Qn−1.

Now write x1, . . . , xn for the vertices of G, and let ϕ : V (G) → {0, 1}n−1

be an embedding of G into Qn−1. Without loss of generality, we may assume that

ϕ(x1) = (0, 0, . . . , 0). Consider a spanning tree of G rooted at x1, and for i =

2, 3, . . . , n, define p(i) to be the index of the parent of xi. Since xi and xp(i) are

connected, ϕ(xi) and ϕ(xp(i)) differ exactly in one position: we denote it by d(i).

We claim that G can be restored from the sequence p(2), d(2), p(3), d(3), . . . ,

p(n), d(n). Indeed, this information is enough to identify all children of x1, then

determine their images via ϕ; proceeding inductively, one obtains the embeddings of

all vertices of G into Qn−1. Finally, we note that the above sequence uses O(n log n)

bits (since it consists of 2(n− 1) integers of size at most n).
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4.3 Further directions of research

Functionality is a very new parameter, and as such, we are still in the process of

trying to understand it and to place it in the general graph-theoretic landscape.

We recognise that, at the moment, we do not have a concrete, practical utility for

it. That is not to say that such a niche cannot exist!8 In many applied situa-

tions concerning graph representation, however, it seems that whatever functional

representations do, implicit representations do better.

Nevertheless, the study of functionality provides, at the very least, a new

source of counterexample candidates to the Implicit Graph Conjecture. Indeed, as-

suming the conjecture is true, each class of bounded functionality should have an

implicit representation. We note that functional representations seem more diffi-

cult to obtain than implicit ones. This is what we would expect; after all, implicit

representations give us the freedom to individually change each of the Θ(log n) bits

for each vertex, while functional ones use somewhat clunky blocks of information

that effectively describe how a vertex’ neighbourhood relates to the neighbourhoods

of other vertices. Despite this, it is not at all obvious how to go from bounded

functionality to implicit representations. As a sidenote, using recent results from

[Har19], it can be shown that the hereditary closure Q of hypercubes (a factorial

class of unbounded functionality) does admit an implicit representation.9 In gen-

eral, we believe it would be interesting to further examine the relationship between

functionality and implicit representations in conjunction with the Implicit Graph

Conjecture, and try to give constructive answers for questions such as:

Open problem 106. Does every class of bounded functionality admit an implicit

representation?

With all that said, we firmly believe that functionality deserves to be more

thoroughly studied in its own right, forgetting its origin and ties to representation

8For instance, representing a vertex’ adjacency as a function could be of interest in the area
of graph learning and graph mining, since it makes graphs amenable to the techniques of Logical
Analysis of Data [Lej+19]. Moreover, a parameter similar to symmetric difference called twin-width
has recently been introduced independently in a series of preprints starting with [Bon+20b]. It
is easy to see that bounded twin-width implies bounded symmetric difference, but it is not clear
whether the converse implication holds; at any rate, the authors of [Bon+20b] propose algorithmic
applications for twin-width. Later in the preprint series [Bon+20a], they also show that classes of
bounded twin-width admit implicit representations.

9We remark that this is a non-trivial result: the labels coming from the hypercubes themselves
may be too large for some of the graphs in Q to constitute an implicit representation. Equivalently,
we have seen in the proof of Theorem 105 that (connected) n-vertex graphs from Q are in fact
embeddable into Qn−1; what the result is really saying is that it is possible to embed all n-vertex
graphs from Q into some fixed graph of size polynomial in n.
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and enumeration. There are several reasons for that – let us go through a few of

them.

First, functionality has the potential to provide us with unexpected insight

into various graph classes. For instance, the fact that cographs always have twin

vertices has been known for some time [BLS99], but who would have guessed that

permutation graphs always have a vertex whose neighbourhood can be neatly de-

scribed in terms of at most 8 (perhaps even at most 4, if we are looking to optimise

Theorem 98) other vertices? While this might seem like an arcane piece of knowl-

edge at this point in time, it is not inconceivable that such a fact might prove itself

useful in the future, when deriving other results about permutation graphs. There

are many classes that are in a similar situation. Perhaps functionality could even

be used to systematically obtain characterisations for them as the smallest classes

closed under certain operations (such as adding a vertex with specific functional

relations). We leave this as an open problem:

Open problem 107. Determine whether the class of permutation graphs can be

characterised as the smallest hereditary class closed under the addition of vertices

whose neighbourhood is of the form (N(r) ∩ N(b)) ∪ (N(l) ∩ N(t)), where r, b, l,

t are pre-existing vertices. Do similar characterisations hold for other well-studied

classes?

Second, besides shedding light onto individual classes, functionality can also

provide insight into various parameters. For example, Theorem 95 tells us that

bounded clique-width implies the existence of vertices that are “almost twins”.

What similar results can be derived from boundedness of other parameters? Could

these results be used to gain a better understanding of when these parameters are

bounded? In this parametric direction, we also point out that functionality appears

unusually strong for a parameter whose boundedness implies factorial speed. In

particular, we do not know of a “naturally defined” parameter whose boundedness

implies factorial speed, and is strictly implied by the boundedness of functionality.

This raises the further questions of whether the existence of implicit representations

within factorial hereditary classes can be characterised via boundedness of a certain

hereditary parameter,10 and whether factorial speed itself can be characterised in

that way:11

10Chandoo [Cha17] studies a variation on this problem in the setting of formal languages; however,
in his complexity-focused analysis, he does not restrict the problem to factorial hereditary classes,
and he also allows non-hereditary parameters. Moreover, the parameters he does find do not have
particularly enlightening descriptions.

11In [Loz18], such parameters are identified for other jumps in the speed hierarchy. For instance,
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Open problem 108. Are there parameters whose boundedness lies “between”

bounded functionality and the existence of implicit representations? What about

between functionality and factorial speed of growth?

Open problem 109. Does the existence of implicit representations among factorial

hereditary classes admit a parametric characterisation? What about factorial speed

of growth?

Third, and somewhat more subjectively, we feel that the study of function-

ality comes with a very well-balanced mixture of challenge and intrigue – so much

so that we are surprised we did not find similar studies in the literature.12 Plainly

put, studying functionality is fun! The reader does not have to blindly believe us.

Instead, they are cordially invited to pick their favourite factorial class or their

favourite parameter, and try to determine how it relates to functionality. As a

small sample of specific classes for which the boundedness of functionality is not yet

known, we suggest the following (some are motivated by results from the previous

section, and some by their relevance in studying implicit representations):

Open problem 110. For each of the following classes, determine whether or not

they have bounded functionality/symmetric difference:

� interval graphs;

� k-interval graphs;

� graphs of bounded boxicity (see [Rob69]);

� line graphs of k-regular hypergraphs;

� comparability graphs of partial orders of dimension k;

� (unit) disk intersection graphs;

� line segment intersection graphs.

Hopefully, the above discussion will have convinced the reader that function-

ality is worthy of further consideration, if for no other reason than the sheer number

a class is subfactorial if and only if it has bounded neighbourhood diversity. That being said, there
is no obvious reason this should be the case here; after all, factorial speed is a global property of
the class, while a parametric description would express it as a local property of each graph. We
note this kind of global-local interplay is also featured in the Implicit Graph Conjecture, hence a
negative answer here would certainly be of great interest.

12The author dreads the day when it is brought to his attention that the ideas we have presented
here appear in a foreign operational research journal from the 90s, using very different terminology...
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of interesting questions engendered by its study so far. To finish this chapter, we

present one final problem on the topic, together with our progress so far, and some

possible avenues towards a solution. The problem is as follows:

Open problem 111. What is, asymptotically, the minimum number of vertices

among graphs of functionality at least k? Equivalently: what is, asymptotically, the

maximum value of functionality among graphs on at most n vertices?

Write m(k) for the minimum number of vertices in a graph of functional-

ity at least k. It is clear that m(k) is realised by a graph where every vertex has

functionality at least k – by analogy with degeneracy, we call such a graph a func-

tional k-core. Our aim is to find asymptotic bounds for m(k). From the example of

hypercubes it follows that m(k) ≤ 2 · 8k for all k. But what about lower bounds?

One immediately notices that m(k) > 2k, since in a graph of size 2k, every

vertex has either degree or co-degree smaller than k. But this leaves a very wide

gap of possible growth speeds for m(k). Ideally, we would like to be able to say at

the very least whether the growth is polynomial or exponential. The following is

the only non-trivial lower bound we have managed to obtain so far:

Theorem 112. m(k) = Ω(kα) for any 1 ≤ α < 2.

Notation 113. Given two vertices u, v we will denote by ι(u, v) the number of

vertices other than u and v that have identical adjacency to u and v, and by δ(u, v)

the number of vertices other than u and v that have different adjacency to u and v.

Proof. To prove the theorem, we need a bit of setup. We consider functionality from

a slightly different perspective: to say that vertex y is not a function of vertices

x1, . . . , xk is the same as saying that there are two vertices w and w′ that have the

same adjacency to each of the xis, but different adjacencies to y. In that sense, the

pair {w,w′} provides a witness that y is not a function of x1, . . . , xk. Thus, for a

graph G = (V,E) with |V | = n to be minimal of functionality at least k + 1, every

pair (S, y) with S ⊆ V, |S| = k and y ∈ V \ S needs such a witness {w,w′} with

w,w′ /∈ S ∪ {y}. The main idea of the proof consists of showing that if n = O(kα)

for some 1 ≤ α < 2, then for large k, there will not be enough witnesses in some

sense.

We need to be careful though: a “brute force” counting argument does not

appear to work. Indeed, there are n
(
n−1
k

)
pairs (S, y), and there are

∑
{w,w′}⊆V

(
ι(w,w′)

k

)
δ(w,w′)
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“witness slots” (we are counting for how many different (S, y) each pair of vertices

can be a witness). While there are graphs where the two numbers are equal (for

example C5), the expression on the right is difficult to control even for n linear in

k. Indeed, the problem is that many vertices will be witnesses to the same (S, y),

and this brute force method of counting does not account for that, meaning this

approach loses a lot of power.

We need to do something a bit more sophisticated instead. For notational

reasons, we will assume from now on that our graph has n + 1 vertices. If we look

from the perspective of a single vertex y, the only possible pairs witnessing y is not

a function of S (for any given set S of k vertices) consist of a neighbour of y and

a non-neighbour of y. The number of such pairs is bounded above by n2/4 (the

bound is achieved when the vertex has degree n/2). Moreover, we know that each

k-subset of V \ {y} must have the same adjacency to at least one of those pairs. In

other words, for each pair (u, v) of vertices, let Iu,v be the set of vertices that have

the same adjacency to u and v; then the sets Iu,v cover all k subsets of V \ {y}, in

the sense that every k-subset is contained in some Iu,v.

Now note that we can bound the size ι(u, v) of the Iu,vs above: if we assume

that every vertex of G has functionality at least k + 1, this means that for any two

vertices u and v, δ(u, v) is at least k. From this, ι(u, v) is at most n− 1− k. So our

discussion from last paragraph implies that there is way of covering all k-subsets of

an n-set with at most n2/4 subsets of size at most n−1−k. There is already theory

regarding such coverings (see e.g. [Sch64]). Let C(n, t, k) denote the minimum

number of t-subsets of an n-set required to cover all k-subsets (the names of the

variables have been changed from [Sch64] to suit our purposes). Our discussion so

far showed that, if some vertex in a graph G with n + 1 vertices has functionality

at least k + 1, then

C(n, n− 1− k, k) ≤ n2

4
.

Using the so-called Schönheim bound [Sch64], the left hand side of he above

inequality is bounded below by⌈
n

n− 1− k

⌈
n− 1

n− 2− k
. . .

⌈
n− k + 1

n− 2k

⌉⌉⌉
≥
(

n

n− (k + 1)

)k
.

Putting everything together, we have(
n

n− (k + 1)

)k
≤ n2

4
.

103



As functions of n, the left hand side is decreasing (tending to 1), while the right

hand side is increasing. So if we assume that n ≤ β(k+ 1)α for some 1 ≤ α < 2 and

β > 0, we may substitute for n and write l := k + 1 to obtain(
βlα

βlα − l

)l−1

≤ β2l2α

4
.

Rewrite the left hand side as(
βlα−1

βlα−1 − 1

)l−1

=

(
1 +

1

βlα−1 − 1

)l−1

.

Taking logarithms of both sides of the inequality yields

(l − 1) log

(
1 +

1

βlα−1 − 1

)
≤ 2α log l + 2 log β − log 4.

Using the expansion log(1 + x) = x− x2

2 +O(x3), we obtain:

(l − 1)

(
1

βlα−1 − 1
+

1

2(βlα−1 − 1)2
+O((βlα−1)−3)

)
= O(log l).

The leading term on the left hand side has order l2−α, thus the above fails

when α < 2. The theorem follows.

We note that the above proof only assumes the existence of a single vertex

of high functionality. In order to improve on the bound, a good place to start would

be trying to gain a better understanding of functional k-cores (and use the fact that

all vertices have high functionality).

There is one more line of reasoning that might prove helpful in solving this

and other problems. Suppose y is a function of a set X = {x, z1, . . . , zk}, where

{z1, . . . , zk} is the symmetric difference of x and y. What we are really saying is

that y is a twin of x, as long as we ignore the vertices z1, . . . , zk. It this sense, y is

a “simple” function of X, since its adjacency outside X only depends on a single

vertex in X. It might make sense to try and formalise this idea; we propose the

following definition:

Definition 114. Let f : {0, 1}k → {0, 1} be a Boolean function. The f -degeneracy

of a graph G is the minimum t such that in every induced subgraph H ⊆ G, we may

remove t vertices to obtain a graph H ′ in which there exist vertices y, x1, . . . , xk

with y = f(x1, . . . , xk).
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Degeneracy can be though of the special case where f is identically 0 (abusing

notation, we may put k = 0 in the above definition); symmetric difference is the

case when f : {0, 1} → {0, 1} is the identity. We note that if f : {0, 1}k → {0, 1},
the functionality of G is bounded above by its f -degeneracy plus k. There are

many directions in which we can go from here; it would be natural, for instance, to

define F -degeneracy for a set of functions. We could also look into how properties of

Boolean functions (such as reducibility as a direct product) translate into properties

of the corresponding parameters (and classes where those parameters are bounded).

We leave this as an open-ended direction for further research.
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Chapter 5

The micro-world of cographs

In this chapter, we present our joint work with Vadim Lozin and Dominique de

Werra [ALW21]. We take our magnifying glass out of the drawer and focus on the

class of cographs. This class has relatively simple structure, as highlighted by the

cotree description of cographs, and by myriad of other known characterisations (see

the Introduction). Nevertheless, cographs constitute a rich and complex world in

which many popular graph parameters jump to infinity on very specific subclasses.

An example of this phenomenon is given by linear clique-width: a sophisticated

approach shows that there are exactly two minimal subclasses of cographs where

it is unbounded [BKV17]. Our analysis reveals several additional instances of this

phenomenon.

5.1 Well-quasi-order and beyond: a prelude to our anal-

ysis

In general, it is possible for a hereditary parameter κ to be unbounded in a hereditary

class X , without there being a minimal subclass Y ⊆ X in which κ is unbounded. We

can easily construct examples: for instance, if we let κ(G) be the largest k such that

Ck is induced in G and assume κ is unbounded in X , then X must contain infinitely

many cycles. Forbidding any one cycle Ci does not bound κ in X ∩ Free(Ci), and

hence no class in which κ is unbounded is actually minimal with that property.

What if we were to restrict ourselves to the universe of cographs? If a pa-

rameter κ is unbounded in a subclass X of cographs, can we infer the existence of a

minimal class Y ⊆ X where κ is unbounded? Indeed, we can! The class of cographs

is well-quasi-ordered by the induced subgraph relation [Dam90], and it is a very

standard result that wqo of a class X under induced subgraphs is equivalent to well-
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foundedness of the set of subclasses of X under inclusion. For completeness (and as

a warm-up exercise), let us prove this fact now – our claim about the existence of

minimal classes will then follow immediately from it.

Proposition 115. Let Z be a hereditary class. Z is wqo under induced subgraphs

if and only if the set of hereditary subclasses of Z is well-founded under inclusion.

Proof. For the “only if” direction, suppose that Z is wqo, and let Z1 ⊇ Z2 ⊇ . . .

be a descending chain of classes. Write Z∗ :=
∞⋂
i=1
Zi. Let T be the set of minimal

forbidden induced subgraphs for Z∗, and let S := T ∩Z, so that Z∗ = Z ∩ Free(S).

Then S is an antichain in Z, and thus finite. Each element in S stops appearing at

some point in the chain, hence there must exist a k such that Zk ⊆ Z∩Free(S) = Z∗.
This shows the chain is eventually stationary.

For the “if” direction, we show the contrapositive: if Z is not wqo, then

there exists an infinite antichain G1, G2, . . . of graphs in Z. Putting Zi := Z ∩
Free(G1, . . . , Gi), we obtain an infinite, strictly descending chain of subclasses of

Z.

Corollary 116. For any parameter κ, if X is a class of cographs of unbounded κ,

then X contains a class Y that is minimal of unbounded κ.

Proof. If X0 := X itself is minimal, we are done. Otherwise, find G0 ∈ X0 such that

X1 := X0∩Free(G0) has unbounded κ. In general, if Xi is not minimal, find Gi ∈ Xi
such that Xi+1 := Xi ∩Free(Gi) has unbounded κ. Since X0 ) X1 ) . . . is a strictly

descending chain, it must be finite by the previous proposition. Thus the process

must terminate with some minimal class Xk.

For the rest of the chapter, we will forget that there exist any graphs other

than cographs. In particular, unless stated otherwise, whenever we say “class”,

we will mean “subclass of cographs”. Moreover, when we say a parameter κ1 is

stronger than a parameter κ2, we will mean that boundedness of κ2 in a subclass

X of cographs implies boundedness of κ1 in X . The above discussion implies that

(un)boundedness of any parameter κ can be uniquely characterised in terms of a

set M(κ) of minimal classes where κ is unbounded.1 Among other things, this

makes comparisons between parameters particularly straightforward, as shown in

the following lemma:

1One may in fact identify a parameter κ with the set B(κ) of classes in which p is bounded.
This set is downwards closed under inclusion. From this point of view, the theory of parameters
is completely analogous to the theory of hereditary classes: the set M(κ) corresponds to the set
of minimal forbidden induced subgraphs. This perspective also legitimises seemingly incomplete
turns of phrase such as “characterising κ via minimal classes”.
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Lemma 117. Parameter κ1 is stronger than κ2 if and only if for every minimal

hereditary class F1 ∈ M(κ1), there is a minimal hereditary class F2 ∈ M(κ2) such

that F2 ⊆ F1.

Proof. To prove the “if” direction, assume that for every minimal hereditary class

F1 where κ1 is unbounded, there is a minimal hereditary class F2 where κ2 is

unbounded such that F2 ⊆ F1. Now let X be a κ2-bounded hereditary class. Since

any minimal class where κ1 is unbounded contains a class where κ2 is unbounded,

it follows X cannot contain any minimal class where κ1 is unbounded, and so by

Corollary 116, X is κ1-bounded, showing κ1 is stronger than κ2.

Conversely, suppose κ1 is stronger than κ2, and let F1 be a minimal heredi-

tary class where κ1 is unbounded. Since κ1 is stronger, κ2 is also unbounded in F1,

and by Corollary 116, F1 contains a minimal class F2 where κ2 is unbounded, as

required.

It turns out that we can even say a bit more about the sets M(p), namely that

they must be finite. The reason for this is that the set of subclasses of cographs under

inclusion is not just well-founded, but it is actually itself well-quasi-ordered! This

is a surprisingly non-trivial fact tied to the notion of better-quasi-ordering (“bqo”,

for short). This notion has a fascinating history dating back to Nash-Williams in

the 1960s [Nas65]. However, even defining it properly would be a long digression

outside of the scope of this chapter. We will therefore content ourselves with a

short bulleted list attempting to cover the main ideas and motivation behind the

definition, as well as the facts that are relevant to this chapter. The reader wishing

to dive deeper into this alluring rabbit hole may consult the first part of [AH07] and

the references therein for a gentle, algorithmic algebra-flavoured introduction to the

topic.2

Here is our rough understanding of bqo and the main facts about it that

are important to us. We stress that this is only a very diluted, incomplete and

non-rigorous introduction to the notion, and we certainly make no claim that it is

the best or only way to conceptualise it:

� The notion of wqo is of great practical importance, but it lacks certain desirable

algebraic properties. Specifically, it does not “lift” to the power set of a quasi-

order. This can be formulated in a general, order-theoretic setting; for our

modest graph-theoretic purposes, what this means is that there might exist

2Another very good and much more comprehensive introduction can be found in [FBS20]; that
manuscript is however still unfinished.

108



a class Z of graphs (not necessarily cographs) which is wqo under induced

subgraphs, but whose set of subclasses is not wqo under inclusion.

� The stronger notion of bqo “fixes” this problem: in our setting, if a class of

graphs is bqo under induced subgraphs, its set of subclasses is also bqo under

inclusion. More explicitly, we may think of bqo as follows: if a class X is

bqo under induced subgraphs then it is wqo under induced subgraphs, and

its set of (downwards-closed) subclasses is wqo under inclusion, and the set of

downwards-closed sets of subclasses is also wqo under inclusion,3 and so on,

to infinity and beyond.4

� The “definition” above is fundamentally algebraic; it can be rephrased in terms

of fixed points of a certain function, and there is much theory in that direction.

There is an equivalent definition that is purely combinatorial. Usual wqo can

be defined by the absence of a certain structure in our poset: a so-called bad

sequence in which there are no elements ai ≤ aj with i < j. A sequence is a

function from N to our poset; one can generalise this by defining an array to

be a function from a block to our poset. Without going too much into detail,

bqo can be expressed as the absence of bad arrays indexed by appropriately

defined blocks.

� It turns out that proving bqo of a certain poset is not always as difficult as

the ostensibly obscure definition might lead us to believe. In particular, any

finite poset is trivially bqo, and bqo is preserved by certain constructions. To

see what we mean by “certain constructions”, we look at Kruskal’s famous

Tree Theorem: if (X,≤) is wqo, then the set of finite trees labelled by X is

wqo under tree embedding. In fact, the original motivation for introducing the

notion of bqo was to extend Kruskal’s theorem to infinite trees: in [Nas65],

Nash-Williams proves that infinite (in addition to finite) trees are actually bqo.

Later, Laver [Lav71, Theorem 2.2] extended this to labelled trees, provided the

set of labels is bqo.

� We are close to showing (or more accurately, compiling old results from which

it follows that) cographs are bqo under induced subgraphs. A map f : (X,≤
)→ (Y,�) is called a quasi-embedding if, for all a, b ∈ X, f(a) � f(b) =⇒ a ≤

3Remark that, as described in a previous footnote, parameters can be thought as downwards-
closed sets of subclasses, and their inclusion is just the reverse of the “stronger than” relation. In
other words, in a bqo class, parameters are wqo by their relative strength!

4This is no exaggeration. The definition of bqo requires wqo to hold after any finite number of
applications of a certain power set construction, but also after a transfinite number of them – a
step that the author of this thesis is not yet completely comfortable with.
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b. It is immediate from the definitions that, if there exists a quasi-embedding

X → Y , and Y is wqo, then X is wqo. This remains true when replacing “wqo”

with “bqo” (see, e.g., [AH07], Lemma 5.3). Damaschke’s proof that cographs

are wqo [Dam90] consist of exhibiting a quasi-embedding from cographs to the

set of finite trees labelled by 4 labels. But as seen in the previous bullet point,

this set is bqo!

The additional strength of bqo (as opposed to just wqo) can appear subtle

at first, but it is in fact very effective, and allows us to derive concrete results about

cographs. For a poset (X,≤), we denote by L(X) the set of downwards-closed sets

of X. The strength of bqo can be summarised with the following proposition (see,

e.g., [AH07]).

Proposition 118. Suppose (X,≤) is bqo. Then (X,≤) is wqo, and (L(X),⊆) is

bqo.

As an immediate consequence, we draw the following conclusions.

Corollary 119. The set of hereditary subclasses of cographs is wqo by inclusion.

Corollary 120. The set of parameters is wqo by their strength in the class of

cographs.

In particular, we note that, for any parameter κ, the set M(κ) of minimal

subclasses of cographs in which κ is unbounded is an antichain, and hence finite as

claimed. We are now ready to begin our analysis.

5.2 A hierarchy of parameters

Let us start by presenting straight away the outcome of our study, which we sum-

marise in the following Hasse diagram, in Figure 5.1:

The parameters, which we will define later in the section where necessary, are

compared by their strength (with stronger parameters higher up in the diagram).

Each of them is given with the set M(κ) of minimal classes where it is unbounded.

The featured classes are as follows (X denotes the class of complements of graphs

in X ):

Q the class of quasi-threshold graphs, i.e., (P4, C4)-free graphs (see, e.g., [YCC96]).

T the class of threshold graphs. This is the class of (P4, C4, 2K2)-free graphs, i.e.,

the intersection of Q and Q.
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matching number
(M, B, K)

achromatic number
(M, K)

neighbourhood diversity
(M, M, T )

lettericity
(M, M)

boxicity
(M)

vertex degree
(S, K)

H-index
(F , B, K)

tree-width, degeneracy
(B, K)

chromatic number
(K)

co-chromatic number
(U , U)

linear clique-width, contiguity
(Q, Q)

Figure 5.1: A Hasse diagram of graph parameters within the universe of cographs

U the class of P3-free graphs, i.e., graphs every connected component of which

is a clique.

K the class of complete graphs.

F the class of star forests, i.e., graphs every connected component of which is a

star. This is the class of (P4, C4,K3)-free graphs, i.e., the class of bipartite

graphs in Q.

M the class of graphs of vertex degree at most 1. This is the class of (P3,K3)-free

graphs, i.e., the class of bipartite graphs in U .

B the class of complete bipartite graphs (an edgeless graph is counted as complete

bipartite with one part being empty). This is the class of (P 3,K3)-free graphs,

i.e., the class of bipartite graphs in U .

S the class of stars, i.e., graphs of the form K1,n and their induced subgraphs.

In the rest of this section, we derive, for each parameter, the minimal class

characterisations shown in Figure 5.1 (definitions for the parameters, or quick re-

minders thereof, will be provided as necessary). We start with the parameters for

which such a characterisation is easy to obtain from known results, then consider

the remaining parameters one by one.
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5.2.1 Results that are immediate, or follow quickly from known

facts

Directly from Ramsey’s Theorem we derive the following conclusion.

Proposition 121. The class K of complete graphs and the class of S of stars are

the only two minimal hereditary classes of graphs of unbounded maximum vertex

degree.

To report more results, we denote by

α(G) the independence number of G, i.e., the size of a maximum independent set in

G,

ω(G) the clique number of G, i.e., the size of a maximum clique in G,

χ(G) the chromatic number of G, i.e., the minimum number of subsets in a partition

of V (G) such that each subset is an independent set,

y(G) the clique partition (also known as clique cover) number, i.e., the minimum

number of subsets in a partition of V (G) such that each subset is a clique.

Clearly, the class K of complete graphs is the only minimal hereditary class

of unbounded clique number, i.e., by forbidding a complete graph we obtain a class

of bounded clique number. Additionally, it is not difficult to see that K is a minimal

hereditary class of unbounded chromatic number. However, it is in general not the

only minimal hereditary class of unbounded chromatic number. In other words,

forbidding a complete graph does not guarantee a bound on the chromatic number.

Moreover, as shown by Erdős [Erd59], chromatic number is unbounded even in

the class of (C3, C4, . . . , Ck)-free graphs for any value of k, which means that in

the universe of all hereditary classes, chromatic number cannot be characterized

by means of minimal classes where this parameter is unbounded. On the other

hand, when we restrict ourselves to cographs such a characterisation is possible by

the discussion from the previous section. To obtain it, we note that cographs are

perfect, and hence ω(G) = χ(G) for any cograph G. As a result, we obtain:

Proposition 122. The class K of complete graphs is the only minimal hereditary

subclass of cographs of unbounded clique number and chromatic number.

The degeneracy of a graph G is the smallest value of k such that every induced

subgraph of G has a vertex of degree at most k. It is known (and easily seen; see,

e.g., [KBH01]) that tree-width is bounded below by degeneracy. Moreover, it is not

112



difficult to show that the class K of complete graphs and the class of B of complete

bipartite graphs are minimal hereditary classes of unbounded degeneracy. Similarly

to chromatic number, in the universe of all hereditary classes, neither degeneracy

nor tree-width admit a characterization in terms of minimal classes where these

parameters are unbounded. On the other hand, we claim that in the universe of

cographs, those two minimal classes are the only ones:

Proposition 123. The class K of complete graphs and the class of B of complete

bipartite graphs are the only two minimal hereditary subclasses of cographs of un-

bounded degeneracy and tree-width.

Proof. To prove the claim, it suffices to show that for any s and p, the tree-width of

(P4,Ks,Kp,p)-free graphs is bounded by a constant. For this, we refer the reader to

the following result from [ALR12]: for every t, p, s, there exists a z = z(t, p, s) such

that every graph with a (not necessarily induced) path of length at least z contains

either an induced Pt or an induced Kp,p or a clique of size s. From this result it

follows that (P4,Ks,Kp,p)-free graphs do not contain (not necessarily induced) paths

of length z(4, p, s). It is well known (see, e.g., [FL89]) that graphs of bounded path

number (the length of a longest path) have bounded tree-width.

The matching number of a graph G is the size of a maximum matching in G.

The following result was proved in [DDL13].

Lemma 124. For any natural numbers s, t and p, there is a number N(s, t, p) such

that every graph with a matching of size at least N(s, t, p) contains either a clique

Ks or an induced bi-clique Kt,t or an induced matching pK2.

A natural corollary from this result is the following characterization of the

matching number in terms of minimal hereditary classes where this parameter is

unbounded.

Theorem 125. M, B and K are the only three minimal hereditary classes of graphs

of unbounded matching number.

The vertex cover number of a graph G is the size of a minimum vertex cover

in G. It is well known that the vertex cover number is never smaller than the

matching number and never larger than twice the matching number. Therefore, the

characterization of matching number given in Theorem 125 applies to the vertex

cover number as well.

Theorem 126. M, B and K are the only three minimal hereditary classes of graphs

of unbounded vertex cover number number.
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The neighbourhood diversity of a graph was introduced in [Lam12] and can

be defined as follows.

Definition 127. Let us say that two vertices x and y are similar if there is no

vertex z distinguishing them (i.e., if there is no vertex z adjacent to exactly one

of x and y). Vertex similarity is an equivalence relation. We denote by nd(G) the

number of similarity classes in G and call it the neighbourhood diversity of G.

Neighbourhood diversity was characterized in [Loz18] by means of nine min-

imal hereditary classes of graphs where this parameter is unbounded. Six of these

minimal classes contain a P4. Therefore, when restricted to cographs, neighbour-

hood diversity can be characterized by three minimal classes as follows.

Theorem 128. M, M, and T are the only three minimal hereditary subclasses of

cographs of unbounded neighbourhood diversity.

5.2.2 Co-chromatic number

The co-chromatic number of G, denoted z(G), is the minimum number of subsets

in a partition of V (G) such that each subset is either a clique or an independent set

[EGS90]. It is not difficult to see that the co-chromatic number can be arbitrarily

large in the class of P3-free graphs, where each graph is a disjoint union of cliques.

Therefore, it is also unbounded in the complements of P3-free graphs, also known

as complete multipartite graphs. In what follows, we show that these are the only

two minimal subclasses of cographs of unbounded co-chromatic number.

Lemma 129. Let n,m, t be positive integers with t ≥ 2. If G is a (nKt,mKt)-free

cograph, then z(G) ≤ 2m+n−1(t− 1).

Proof. Call a partition of V (G) good if it contains at least t − 1 cliques and t − 1

independent sets (empty sets in the partition may count as either). We prove by

induction on m+ n that G admits a good partition into 2m+n−1(t− 1) sets, each of

which is a clique or an independent set.

If m + n = 2 (n = m = 1), then G is Kt-free. Hence χ(G) = ω(G) ≤ t − 1;

we add empty sets to the partition until we reach 2(t− 1) sets in total. This makes

the partition good, and we have proved the basis for the induction. In general, put

G′ := G. We are in one of the following three cases:

(a) G′ = G1 +G2, and both G1 and G2 are Kt-free, OR G′ = G1 ×G2, and both

G1 and G2 are Kt-free.
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(b) G′ = G1 +G2, and both G1 and G2 contain a Kt, OR G′ = G1×G2, and both

G1 and G2 contain a Kt.

(c) G′ = G1 + G2, G1 contains a Kt and G2 is Kt-free, OR G′ = G1 × G2, G1

contains a Kt and G2 is Kt-free.

As long as we are in case (c), iteratively put G′ := G1. We end up with a

graph G′ in either case (a) or (b). Note first that any good partition of G′ extends

to a good partition of G without increasing the number of sets. Indeed, at each

step, G2 was either Kt-free and anticomplete to the rest of the graph or Kt-free and

complete to the rest of the graph. The disjoint union of all Kt-free G2s is again

Kt-free and hence can be partitioned into at most t − 1 independent sets, and we

take the union of each of these sets with one of the independent sets in the good

partition of G′ injectively. Similarly, the join of the Kt-free G2s can be partitioned

into at most t − 1 cliques, each of which we join to one of the cliques in the good

partition of G′ injectively.

Now, if G′ is in case (a), then G′ is Kt-free or Kt-free and we act like in the

base case to obtain a good partition of G′ (and therefore of G) in 2(t − 1) sets. If

G′ is in case (c), then G1 and G2 are both either (n− 1)Kt-free or (m− 1)Kt-free.

In either case, the inductive hypothesis applies, and we have a good partition of G′

of size at most

2m+n−2(t− 1) + 2m+n−2(t− 1) = 2m+n−1(t− 1).

Like before, this extends to a partition of G, concluding the proof.

Lemma 129 naturally leads to the following conclusion.

Theorem 130. The class U of P3-free graphs and the class U of P 3-free graphs are

the only two minimal hereditary subclasses of cographs of unbounded co-chromatic

number.

5.2.3 Lettericity

A definition of lettericity can be found in Subsection 3.1.1. As a quick and relevant

refresher, we give the following example (compare with Example 5). Consider the

alphabet Σ = {a, b} and the decoder D = {(a, a), (a, b)}. Then the word ababababab

describes the graph represented in Figure 5.2. This graph can be constructed from a

single vertex by means of two operations: adding a dominating vertex (corresponds

to adding letter a as a prefix) or adding an isolated vertex (corresponds to adding
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letter b as a prefix). The class of all graphs that can be constructed by means of

these two operations coincides with the class T of threshold graphs defined at the

beginning of this section as (2K2, C4, P4)-free graphs [MP95]. The above discussion

shows that a graph is threshold if and only if it is a letter graph over the alphabet

Σ = {a, b} with the decoder D = {(a, a), (a, b)}.
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Figure 5.2: The letter graph of the word ababababab (the oval represents a clique).
We use indices to indicate in which order the a-letters and the b-letters appear in
the word.

Now recall (from Example 16) that the class M of induced matchings has

unbounded lettericity; since let(G) = let(G) for any graph G, the same is true for

the class M.

Theorem 131. M andM are the only two minimal hereditary subclasses of cographs

of unbounded lettericity.

Proof. To prove the theorem, we will show that for any natural numbers p, t ≥ 2,

the lettericity of a (P4, pK2, tK2)-free graph G is at most 2p+t−3. This will be shown

by induction on p + t. Moreover, we will show that G can be represented with a

decoder D containing a source letter, i.e., a letter a such that (a, b) ∈ D for any

letter b, and a sink letter, i.e., a letter b such that (b, a) 6∈ D for any letter a.

If p = t = 2, then G is a threshold graph and its lettericity is at most 2,

because any threshold graph can be represented over the decoder D = {(a, a), (a, b)}.
In this decoder, a is a source letter and b is a sink letter.

Assume that every (P4, pK2, tK2)-free graph with p+t ≤ k can be represented

as a letter graph over an alphabet of at most 2p+t−3 letters with a decoder containing

a source vertex a and a sink vertex b. Consider now a (P4, pK2, tK2)-free graph G

with p+ t = k + 1.

The presence of source and sink letters in the decoder allows us to assume

that G has neither dominating nor isolated vertices. Indeed, if v is dominating, then

a word for G can be constructed from a word for G − v by adding a source letter

as a prefix, and if v is isolated, then a word for G can be constructed from a word

for G− v by adding a sink letter as a prefix. Therefore, in the rest of the proof we

assume that G has neither isolated nor dominating vertices.
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Case 1: G is disconnected. Denote by G1 a connected component of G and

by G2 the rest of the graph. Observe that each of G1 and G2 contains a K2, since

otherwise G has an isolated vertex. Therefore, each of G1 and G2 is (p− 1)K2-free

and hence we can apply induction to each of G1 and G2. In other words, G1 can be

represented by a word w1 over an alphabet Σ1 of size at most 2p+t−4 with a decoder

D1 containing a source vertex a1 and a sink vertex b1, and G1 can be represented by

a word w2 over an alphabet Σ2 of size at most 2p+t−4 with a decoder D2 containing

a source vertex a2 and a sink vertex b2 (we assume that A1 and A2 are disjoint).

Then the word w = w1w2 represents G over the alphabet Σ1 ∪ Σ2 of size at most

2p+t−3 with the decoder D = D1 ∪ D2. In this decoder, b2 is a sink letter. To

guarantee the presence of a source letter, we add to D the pair (a2, c) for every

c ∈ Σ1. This extension transforms a2 into a source letter and does not change the

graph represented by the word w, since every letter from Σ1 appears in w before

any appearance of a2.

Case 2: G is connected. In this case, G is disconnected and (P4, tK2, pK2)-

free. A similar argument as above gives a representation for G with at most 2p+t−3

letters, and complementing the corresponding decoder produces one for G (note that

when doing that, sink letters become source letters and vice-versa).

5.2.4 Boxicity

The boxicity box(G) of a graph G is the minimum dimension in which G can be

represented as an intersection graph of hyper-rectangles. Equivalently, it is the

smallest number of interval graphs on the same set of vertices whose intersection

is G. The next lemma was shown in [Rob69]; we give here a proof for the sake of

completeness.

Lemma 132. box(nK2) = n.

Proof. To see that box(nK2) ≤ n, note that K2n without an edge is an interval

graph, and nK2 is the intersection of n such graphs. Conversely, note that two

different matched non-edges in nK2 cannot belong to the same interval graph (since

the corresponding four vertices would induce a C4, which is not an interval graph).

Hence we need at least n interval graphs to obtain nK2 as an intersection.

Lemma 133. Let G1 and G2 be two graphs. Then

box(G1 +G2) ≤ max(box(G1),box(G2)) and box(G1 ×G2) ≤ box(G1) + box(G2).
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Moreover, if G2 is a clique, then box(G1 ×G2) = box(G1).

Proof. Suppose G1 =
s⋂
i=1

Ai and G2 =
t⋂
i=1

Bi where the Ai and Bi are interval

graphs, and assume without loss of generality that s ≥ t. Put Ci = Ai + Bi for

1 ≤ i ≤ t and Ci = Ai +K|G2| for t < i ≤ s. Put Di = Ai ×K|G2| for 1 ≤ i ≤ s and

Di = K|G1| ×Bi−s for s < i ≤ s+ t.

The Ci and Di are interval graphs, and with the obvious labellings of Ci and

Di, we have G1 +G2 =
s⋂
i=1

Ci and G1 ×G2 =
s+t⋂
i=1

Di.

For the final claim, if G2 = K|G2| is a clique, then G1×G2 =
s⋂
i=1

(Ai×K|G2|),

and each of those is an interval graph.

Theorem 134. M is the only minimal hereditary subclass of cographs of unbounded

boxicity.

Proof. Let n ≥ 2. We prove by induction on n that (P4, nK2)-free graphs have

boxicity at most 2n−2. The result is true for n = 2, since (P4, C4)-free graphs are

known to be interval graphs (see, e.g., [BLS99]).

For the induction step, suppose the result is true for some n ≥ 2, and let

G be a cograph that is (n+ 1)K2-free. By Lemma 133, we may assume that G is

connected, and in particular that G = G1×G2 where neither of the cographs G1 or

G2 is a clique. But then G1 and G2 each have a K2, and so they are both nK2-free.

The induction hypothesis applies, and another application of Lemma 133 gives us

that box(G) ≤ box(G1) + box(G2) ≤ 2n−2 + 2n−2 = 2n−1 as required.

5.2.5 H-index

The H-index h(G) of a graph G is the largest k ≥ 0 such that G has k vertices of

degree at least k. This parameter is important in the study of dynamic algorithms

[ES12]. Clearly, H-index is unbounded for cographs, since it is unbounded for

complete graphs. To characterize this parameter in terms of minimal subclasses of

cographs with unbounded H-index, we start with an auxiliary lemma.

Lemma 135. Let G1, . . . , Gt be graphs. Then

h

(
t∑
i=1

Gi

)
≤

t∑
i=1

h(Gi), and h(G1×G2) ≤ min(h(G1)+|V (G2)|, h(G2)+|V (G1)|).

Proof. For the first bound, note that for any j, 1+
∑

i h(Gi) > h(Gj). In particular,

by definition of the H-index, each Gj has at most h(Gj) vertices of degree 1 +
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∑
i h(Gi) or more, and so

∑
j Gj has at most

∑
j h(Gj) vertices of degree at least

1 +
∑

i h(Gi), from which the claim follows.

For the other bound, note that G1×G2 has at most |V (G2)| vertices of degree

at least h(G1) + |V (G2)|+ 1 coming from G2, and at most h(G1) coming from G1,

since5 degG1×G2
(v) = degG1

(v) + |V (G2)| for any v ∈ G1, and G1 does not have

more than h(G1) vertices of degree h(G1) + 1. By definition of the H-index, we

obtain that h(G1×G2) ≤ h(G1) + |V (G2)|, and the claim follows by symmetry.

Theorem 136. K, B and the class F of star forests are the only minimal hereditary

subclasses of cographs of unbounded H-index.

Proof. One can check that those are, indeed, minimal hereditary classes of un-

bounded H-index. To see they are the only ones, let p, q, r, s ≥ 1. We will show by

induction on p + r that if G avoids Kp, Kq,q and rK1,s, then the H-index of G is

bounded by a constant H(p, q, r, s). For the base case, note that if p = 1, this is

trivial, and if r = 1, then G is (Kp,K1,s)-free and therefore the maximum vertex

degree in G is bounded by R(p, s). This in turn implies that h(G) ≤ R(p, s). We

may thus assume p, r ≥ 2.

If G = G1×G2 is a join of non-empty graphs, then not both G1 and G2 have

more than R(p, q) vertices. Indeed, if both do, then either one of them contains

a clique of size p, which is forbidden, or they both have independent sets of size

q, which again cannot happen since Kq,q is forbidden. Without loss of generality,

we may assume that |V (G2)| ≤ R(p, q). In this case, by Lemma 135, h(G) ≤
h(G1)+R(p, q). Since |V (G2)| ≥ 1, G1 is Kp−1-free, so by the induction hypothesis,

h(G1) is bounded by H(p− 1, q, r, s).

If G =
t∑
i=1

Gi is a union of connected graphs, we may write G = G1 +

. . . Gl + G′, where G1, . . . , Gl each have a K1,s, and G′ is K1,s-free (we may have

l = 0). Since Kp and K1,s are forbidden for G′, the maximum vertex degree, and

hence the H-index of G′, is bounded by R(p, s). Moreover, if l ≥ 2 and so two of

the components of G do have a K1,s, then we may write G as the union of two

graphs that are (r − 1)K1,s-free, and by Lemma 135, h(G) ≤ 2H(p, q, r − 1, s).

Finally, if only one component has a K1,s, then that component is a join of non-

empty graphs and we obtain, again by Lemma 135 and from the previous paragraph,

h(G) ≤ H(p− 1, q, r, s) +R(p, q) +R(p, s).

5When a vertex v appears in more than one graph, we write degG(v) for the degree of v in graph
G.
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Combining the above, we obtain

H(p, q, r, s) ≤ max(H(p− 1, q, r, s) +R(p, q) +R(p, s), 2H(p, q, r − 1, s)).

5.2.6 Achromatic number

A complete k-colouring is a partition of G into k independent sets (the “colour

classes”) such that any two independent sets in the partition have at least one edge

between them. The achromatic number ψ(G) of a graph G is the maximum number

k such that G admits a complete k-colouring. Computing this parameter is a difficult

task even for cographs and interval graphs [Bod89].

Note that the class K of complete graphs and the classM of matchings have

unbounded achromatic number. Indeed, this is clear for complete graphs, and we

note that
(
n
2

)
K2 admits a complete n-colouring where each edge of the matching

joins two of the colour classes. We claim that among cographs, those are the only

minimal classes of unbounded achromatic number. To show this, we start with a

short lemma.

Lemma 137. Let r, s ∈ N. The class of (Kr, sK2, P4)-free graphs has bounded

neighbourhood diversity.

Proof. From Theorem 128, the only minimal subclasses of cographs where neigh-

bourhood diversity is unbounded areM,M and T . Kr belongs to bothM and T ,

while sK2 belongs to M.

We are now ready to prove the main result of this subsection.

Theorem 138. K and M are the only minimal hereditary subclasses of cographs of

unbounded achromatic number.

Proof. It suffices to show that for any r, s ∈ N, the class of (Kr, sK2, P4)-free graphs

has bounded achromatic number. Let G be a graph in this class. By Lemma 137,

the class has bounded neighbourhood diversity. In other words, there is a constant k

(independent of G) such that the vertex set of G can be partitioned into k similarity

classes, each similarity class being a clique or an independent set. Moreover, since

the size of cliques is bounded by r, we may further assume that each of these

similarity classes is an independent set. Let G′ be the quotient of G by this partition,

i.e., the graph whose vertices are the independents sets, with two vertices being

adjacent if and only if the corresponding sets are complete to each other.
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Now consider a t-colouring of G, and interpret the colours as vertices of

the complete graph Kt. From each edge e of G′, we obtain a complete bipartite

subgraph of Kt as follows: if the edge e in G′ joins independent sets A1 and A2,

then the two sets are complete to each other, so the sets of colours I1, I2 ⊆ V (Kt)

appearing in A1 and A2 respectively are disjoint. The complete bipartite graph Be

corresponding to e has I1 and I2 as its parts. With this set-up, the t-colouring is

complete if any only if the edges of the graphs Be
e∈E(G′) cover the edges of Kt.

From [FH96], we need at least dlog2(t)e complete bipartite graphs to cover Kt. It

follows that t ≤ 2|E(G′)| ≤ 2(k2), as required.

5.2.7 Contiguity

The notion of contiguity was introduced in [Gol+95] and was motivated by the

need of compact representations of graphs in computer memory. One approach to

achieving this goal is finding a linear order of the vertices in which the neighbourhood

of each vertex forms an interval. Not every graph admits such an ordering, in

which case one can relax this requirement by looking for an ordering in which the

neighbourhood of each vertex can be split into at most k intervals. The minimum

value of k which allows a graph G to be represented in this way is the contiguity of

G, denoted cont(G).

In [CG14], it was shown that the maximum contiguity of n-vertex cographs

is Θ(log n), implying that this parameter is unbounded in the class of cographs.

In what follows, we identify two minimal hereditary subclasses of cographs of un-

bounded contiguity.

Lemma 139. Contiguity is unbounded in the class Q of (P4, C4)-free graphs and in

the class of their complements.

Proof. Let G be a graph and v a vertex of G. In a linear order of V (G), the number

of intervals representing the neighbourhood of v differs from the number of intervals

representing the non-neighbourhood of v by at most 1. Therefore, the contiguity is

bounded in a class X of graphs if and only if it is bounded in the class of complements

of graphs in X. Thus, it suffices to prove the lemma only for (P4, C4)-free graphs

(quasi-threshold graphs).

Every quasi-threshold graph can be recursively constructed from one-vertex

graphs by applying one of the following two operations [YCC96]: disjoint union of

two quasi-threshold graphs G and H, denoted G+H, and addition of a dominating

vertex v to a quasi-threshold graph G, denoted v ×G.
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Let G be a quasi-threshold graph of contiguity k. In particular, for any linear

order L of V (G), there exists a vertex u whose neighbourhood consists of at least k

intervals in L. To prove the lemma, we will show that the contiguity of the graph

H = v × (G+G+G) is strictly greater than k.

Let L be an arbitrary linear order of V (H), and consider the order Lv that

we obtain by restricting L to H − v, as well as the orders L1, L2 and L3 that we

obtain by further restricting Lv to the vertices of each of the three copies of G.

Find vertices u1, u2, u3 ∈ V (H) belonging to each of the copies of G such that in its

respective copy, the neighbourhood of ui consists of at least k intervals in Li. Since

Li is a restriction of Lv, the neighbourhood of ui in H − v still consists of at least

k intervals in Lv (the number of intervals cannot increase when removing vertices).

Now, the neighbourhood of ui in H consists of those at least k intervals in

Lv, together with v. Note that v can only be adjacent to (or inside) at most one

of these intervals. Moreover, since the ui have disjoint neighbourhoods in H − v,

v cannot be adjacent to intervals coming from all three neighbourhoods. In other

words, there is an i ∈ {1, 2, 3} such that ui has a neighbourhood consisting of at

least k + 1 intervals in L (one of which consists only of v). Since L was arbitrary,

this shows the contiguity of H is at least k + 1, as required.

Lemma 140. For any pair of graphs H ∈ Free(P4, C4) and K ∈ Free(P4, 2K2),

there is a constant c(H,K) such that the contiguity of (P4, H,K)-free graphs is at

most c(H,K).

Proof. We prove the lemma by induction on |V (H)| + |V (K)|. For the basis of

the induction we observe that if one of H and K consists of two vertices, then the

statement is obvious.

Now assume that both H and K contain more than two vertices and let

G be a (P4, H,K)-free graph. Below we analyse various cases depending on the

structure of H and K. Our analysis is based on the following observations (the first

one can be derived by restricting orders like in the previous lemma, and the second

immediately follows by a double complementation argument):

(a) if G is disconnected and G1, . . . , Gp are the components of G, then cont(G) =

maxi cont(Gi);

(b) if G is connected and G1, . . . , Gp are the co-components (components of the

complement) of G, then cont(G) ≤ maxi cont(Gi) + 2.
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Assume first that H contains a dominating vertex v and let H ′ = H − v. By

the inductive assumption, there is a constant c(H ′,K) bounding the contiguity of

(P4, H
′,K)-free graphs. If G is connected, then each co-component of G is H ′-free

and hence by (b), cont(G) ≤ c(H ′,K) + 2. If G is disconnected, then as in the

previous sentence, the contiguity of each component of G is at most c(H ′,K) + 2

and hence by (a), the contiguity of G is at most c(H ′,K) + 2.

If K contains an isolated vertex, then the arguments are similar. Therefore,

in the rest of the proof we assume that H is disconnected and K is the complement

of a disconnected graph. We represent H as H ′ +H ′′, where H ′ is a component of

H and H ′′ is the rest of the graph. Similarly, we represent K = K ′×K ′′, where K ′

is a co-component of K and K ′′ is the rest of the graph.

Assume without loss of generality that G is disconnected. If each of the

components of G′0 := G is H ′-free, then by the inductive assumption the contiguity

of each component, and hence of G′0, is at most c(H ′,K). Suppose now that one of

the components of G′0 contains H ′ as an induced subgraph. Denote that component

by G′1, and the rest of the graph by G1. Note that each of the components of G1 is

H ′′-free, and hence, by (a), G1 has contiguity at most c(H ′′,K). Applying similar

arguments to G′1, we see that either all of its co-components are K ′-free, or it can

be expressed as the join of two graphs G′2 and G2 such that G′2 is disconnected and

contains K ′ as an induced subgraph, and G2 has contiguity bounded by a constant

depending on H and one of K ′,K ′′.

Continue in this way for as long as possible. We produce two sequences Gi

and G′i such that G′i = G′i+1 ?Gi+1, where ? stands for + when i is even and × when

i is odd, G′i is connected and contains H ′ when i is odd/disconnected and contains

K ′ when i is even, and all Gi have contiguity uniformly bounded by some constant

depending only on H and K. Since |G′i| strictly decreases as i increases, there exists

a k such that every component or co-component of G′k (according to whether k is

even or odd respectively) is H ′, respectively K ′-free. Put Gk+1 := G′k.

Assuming without loss of generality that k is even, we have, by construction,

that G = G1 + (G2 × (G3 + . . . (Gk ×Gk+1))), and each Gi has contiguity bounded

by, e.g., c′(H,K) := max(c(H,K ′), c(H,K ′′), c(H ′,K), c(H ′′,K)) + 2.

Let Li, 1 ≤ i ≤ k+ 1, be a linear order on the vertices of Gi that witnesses a

contiguity of at most c′(H,K), and consider the linear order on V (G) given by the

concatenation L := L1L3 . . . Lk+1Lk . . . L4L2. We claim that this order witnesses a

contiguity of at most c′(H,K) + 2 for G. Indeed, the neighbourhood in G of any

vertex v ∈ Gi consists of its neighbours in Gi, together with some of the Gj , as

follows:
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� If i is even, the neighbourhood outside of Gi of v consists of
⋃
j>i

V (Gj) ∪⋃
j<i
j even

V (Gj).

� If i is odd, the neighbourhood outside of Gi of v consists of
⋃
j<i
j even

V (Gj).

Note that each of the indexed unions above corresponds to an interval in L.

Thus the neighbourhood of v consists of at most c(H,K) := c′(H,K) + 2 intervals

in L, as required.

Combining the two lemmas above we obtain the main result of this subsection

as follows.

Theorem 141. The class Q of quasi-threshold graphs and the class of their com-

plements are the only two minimal hereditary subclasses of cographs of unbounded

contiguity.

5.3 Conclusions and further directions

We first point out that, despite its relatively narrow scope (namely its restriction to

the class of cographs), this study provides us with valuable insight into the general

behaviour of various parameters. For instance, in [Ale+21a], we show that H-index

is characterised by the same minimal classes in the universe of all graphs. Such a

result might have been deemed too ambitious to approach, had we not known what

happens in the cograph case. It would be interesting to look further into this: is

it possible to formulate general conditions on a parameter which guarantee that its

boundedness can be understood by only looking a few well-behaved classes (such as

cographs)? What would those classes be?

Our study could also be continued by investigating many other interesting

parameters that are unbounded in the class of cographs. Such examples include Dil-

worth number [Gho19], distinguishing number [AB20], shrub-depth [Gan+19], rank

[CHY08], metric dimension [VW19], etc. We remark that not many “interesting”

subclasses of cographs occur in our analysis. More concretely, we note that in our

hierarchy from Figure 5.1, we have 13 (more or less arbitrarily chosen) different pa-

rameters, and the union of their corresponding sets M(κ) only contains 11 different

classes (8 if we count up to complements). In addition, some of the extra parameters

suggested above (namely Dilworth number, distinguishing number and shrub-depth,
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but potentially the others as well) can be characterised without extending this list

any further. What makes those classes special?

It is not difficult to see that any class X appearing in some M(κ) must be

atomic, in the sense that it cannot be written as the union of two proper subclasses.

This property is equivalent to the joint embedding property, whereby if X contains G

and H, then it must contain a graph containing both G and H as induced subgraphs

(Fräıssé [Fra54] studied these notions, albeit in a more general setting). Conversely,

for any atomic class X , one can artificially cook up a parameter κX with M(κX ) =

{X} (just let κX (G) be the largest n such that G contains every n-vertex graph in

X as an induced subgraph). However, even when restricting our search to atomic

classes, only a select few seem to occur when studying “natural” parameters. It

is difficult, for instance, to imagine a parameter occurring “in the wild” for which

the class of star forests of degree at most 7 is a minimal class. Understanding this

phenomenon is a challenging research problem: how can we formalise what makes

a parameter κ “natural”, and how is that “naturality” reflected in M(κ)?

A third research direction concerns algorithmic problems. Just like with

boundedness of parameters, the set of classes where a certain problem can be solved

efficiently is also downwards closed under inclusion. Hence within the universe of

cographs, it can be characterised via (finitely many) minimal classes not belonging

to it. Examples of problems that are NP-complete in the whole class include achro-

matic number [Bod89], harmonious colouring [K A07], k-path partition [K

A07] and induced subgraph isomorphism [BHH12]. It is known that each of

these problems is still NP-complete in the class of quasi-threshold graphs; what are

the minimal classes with this property?

Finally, one more series of questions stems from our observation that cographs

are bqo. It appears that bqo properties under the induced subgraph relation have

not yet been studied in depth. In particular, as far as the authors are aware, many

fundamental questions in this area remain unanswered, the most immediate being:

is every wqo class of graphs in fact bqo? We note that this is not the case for quasi-

orders in general. For instance, the so-called Rado structure6 [Rad54] is a wqo, but

its power set is not wqo under inclusion. In fact, this structure universal with this

property, in the sense that it injects isomorphically into any quasi-order that is ω-

good, but not ω2-good ([Rad54; Lav76; Jan99; FBS20] show various reformulations

6For brevity, we skip the construction; a very transparent and well-illustrated description of the
structure can be found in [Jan99]. The point is that we are dealing with a very explicit, relatively
simple quasi-order.
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and variations on this statement).7 This suggests a very concrete and accessible

first question in this direction: does there exists a Rado structure of graphs under

induced subgraphs? We also note that bqo of graphs under the minor relation is

already an open problem (see, e.g., [DK05]).

7Up to some details that we will ignore, what this means for our purposes is that any class of
graphs that is wqo under induced subgraphs but whose set of subclasses is not wqo under inclusion
must contain a copy of the Rado structure.
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Chapter 6

Linear clique-width of

bi-cographs

We now move our magnifying glass over the bipartite analogues of cographs, the so-

called bi-cographs, and present our joint work with Mamadou Kanté, Vadim Lozin

and Viktor Zamaraev [Ale+20a]. We once more expand on Brignall, Korpelainen

and Vatter’s work from [BKV17], but in a different direction. This time, instead of

staying in the class of cographs and studying other parameters, we study the same

parameter as them, namely linear clique-width, but in the bipartite setting.1 More-

over, our approach to identifying minimal classes of unbounded linear clique-width

is different from theirs; in particular we do not make use of well-quasi-orderability.

6.1 Preliminaries and some basic results

6.1.1 Linear clique-width

Linear clique-width is the “linearised version” of clique-width: it is what we obtain

if we require our clique-width expressions to be “path-like”, instead of general trees.

More explicitly, it is like clique-width, except we do not allow disjoint unions –

instead, we have to introduce the vertices one by one:

Definition 142. The linear clique-width of a graph G, denoted by lcw(G), is the

smallest number of labels needed to construct G by means of the following three

operations:

1We will identify two minimal classes of unbounded linear clique-width among bi-cographs. We
remark that in [Ale+20a], we go a bit further and identify two additional boundary classes for
linear clique-width among all bipartite graphs, and conjecture that the list (which consists of four
classes) is complete. However, for the sake of brevity, we do not do that here.
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� add a new vertex with label i (we denote this operation simply by i),

� add all edges between vertices labelled i and vertices labelled k, for i 6= k

(denoted by i× k),

� relabel vertices labelled i to k (denoted by i→ k).

A linear clique-width expression A for a graph G is an ordered sequence of

these three operations that constructs G.

Example 143. The following sequence constructs a path Pk with three different

labels, showing that lcw(Pk) ≤ 3 for any value of k:

1, 2, 1× 2, (3, 2× 3, 2→ 1, 3→ 2)k−2. (6.1)

This example can be extended to S2,2,2-free trees, that is, caterpillars, with-

out increasing the number of labels.

We will be working with coloured bipartite graphs. The linear clique-width

of a coloured bipartite graph is simply the linear clique-width of the underlying un-

coloured graph. In this setting, it will be helpful to consider an auxiliary parameter

that we will call bipartite linear clique-width.

Definition 144. The bipartite linear clique-width (or bi-linear clique-width, for

short) of a coloured bipartite graph G, denoted by blcw(G), is the minimum number

of labels necessary to construct G (as an uncoloured graph) via a linear clique-width

expression, but only allowing any given label to be used for either black or white

vertices (we will call those labels black or white respectively).

The following is clear from the definition because it suffices to copy each

label, and to reserve one copy for black, and the other for white vertices.

Remark 145. Let G′ be a colouring of a bipartite graph G. Then, lcw(G) ≤
blcw(G′) ≤ 2 · lcw(G).

It follows that, in a class of coloured bipartite graphs, linear clique-width

is bounded if and only if bi-linear clique-width is bounded. The benefit of this

auxiliary parameter is that it is well-behaved when taking bipartite complements,

unions or joins, as we show in the next two lemmas:

Lemma 146. If G is a coloured bipartite graph, then blcw(G̃) ≤ blcw(G) + 1.
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Proof. Let A′ be an expression using blcw(G) labels such that each label is either

black or white. We claim that we can modify A′ to find a linear clique-width

expression that uses blcw(G)+1 labels, in which vertices are connected to all of their

already constructed neighbours immediately as they are inserted. Indeed, say that

a new vertex v is inserted in A′ with label l. Whether an already constructed vertex

w is a neighbour of v only depends on its label, so we can say that the set of already

constructed neighbours of v is a union
⋃
k∈Λ{w : w has label k}, where Λ is a set of

labels. In A′, the label l might already be in use, so if we tried to connect v to all its

already constructed neighbours right away, we might inadvertently add some extra

edges (that do not appear in G) to the already constructed graph, between vertices

labelled l and some other vertices. However, using a new, reserved label to insert v

allows us to go around this. We can immediately connect it to all of its neighbours

without changing the already constructed graph, and afterwards change the reserved

label to the original label used for inserting v in A′. Proceeding inductively allows

us to modify A′ to an expression giving G with the desired properties.

A linear clique-width expression for G̃ can be obtained from this modified

expression by instead connecting newly inserted vertices to their non-neighbours in

G of opposite colour that have already been inserted.

Lemma 147. If G1, . . . , Gr are coloured bipartite graphs with bi-linear clique-widths

at most k1, . . . , kr respectively, then their disjoint union
r∑
i=1

Gi and their join
r∏
i=1

Gi

have bi-linear clique-width at most max{k1, k2 + 2, k3 + 2, . . . , kr−1 + 2, kr + 2}.

Proof. We will prove the statement for the join
r∏
i=1

Gi. The case of the union is

similar and we omit the details.

First, we construct G1 using labels 1, 2, . . . , k1 in such a way that no vertices

of different colour ever receive the same label, then we relabel all black vertices to

1 and all white vertices to 2. Next, we construct G2 using labels 3, 4, . . . , k2 + 2

(which are now unused). To construct the bipartite join, we then connect vertices

labelled by 1 to all vertices labelled by white labels, except 2, and we connect vertices

labelled 2 to all vertices labelled by black labels, except 1. Finally, we relabel all

black vertices to 1 and all white vertices to 2. In this way we construct G1×G2 using

at most max{k1, k2 + 2} labels where in the end all black vertices are labelled 1 and

all white vertices are labelled 2. Proceeding in the same way with G3, G4, . . . , Gr we

will construct the join
r∏
i=1

Gi with at most max{k1, k2 +2, k3 +2, . . . , kr−1 +2, kr+2}

labels.
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6.1.2 Bi-cographs

The main object of study in this chapter is the class of bi-complement reducible

graphs, introduced in [GV97].

Definition 148. A coloured bi-complement reducible graph (or coloured bi-cograph

for short) is a coloured bipartite graph defined recursively as follows:

(i) A graph on a single black or white vertex is a coloured bi-cograph.

(ii) If G1, G2 are coloured bi-cographs, then so is their disjoint union G1 +G2.

(iii) If G is a coloured bi-cograph, then so is its bipartite complement G̃.

A bi-cograph is a bipartite graph obtained from a coloured bi-cograph by

forgetting the colouring.

It is not difficult to see that (iii) in the above definition could be replaced

by:

(iii’) If G1, G2 are coloured bi-cographs, then so is their bipartite join G1 ×G2.

In [GV97], the authors also provide an induced subgraph characterisation for

(uncoloured) bi-cographs:

Proposition 149. A bipartite graph is a bi-cograph if and only if it is (P7, S1,2,3,

Sun4)-free.

By analogy with quasi-threshold graphs (see Subsection 5.2.7 for a charac-

terisation/possible definition), we introduce the class of bi-quasi-threshold graphs:

Definition 150. A coloured bi-quasi-threshold graph is a coloured bipartite graph

defined inductively as follows:

(i) A graph on a single black or white vertex is a coloured bi-quasi-threshold

graph.

(ii) If G1, G2 are coloured bi-quasi-threshold, then so is their disjoint union G1 +

G2.

(iii) If G is a coloured bi-quasi-threshold graph, then the bipartite join of G with

a single black vertex is a coloured bi-quasi-threshold graph.
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Remark 151. Note the asymmetry in this definition: we do not allow white dom-

inating vertices while constructing a coloured bi-quasi-threshold graph. However,

once we have finished constructing it, we can forget the colouring to obtain an

(uncoloured) bi-quasi-threshold graph.

Throughout the remainder of the chapter, we denote by L the class of all

(uncoloured) bi-quasi-threshold graphs, and by L̃ the class of uncoloured bipartite

graphs obtained from bipartite complements of coloured bi-quasi-threshold graphs.

The following lemma provides a characterisation of coloured bi-quasi-threshold

graphs, that we then use to obtain a characterisation of bi-quasi-threshold graphs.

Lemma 152. The following are equivalent for a coloured bipartite graph G:

(a) G is a coloured bi-quasi-threshold graph;

(b) G contains no induced P5 with white centre;

(c) any two black vertices of G have either comparable or disjoint neighbourhoods.

Proof. (a)⇒(b): A P5 with white centre is not in L, since it is not a disjoint union,

and it does not have a black dominating vertex. Moreover, from the definition, L is

hereditary, hence no graph in L contains a P5 with white centre.

(b)⇒(c): If two black vertices x and y have incomparable and non-disjoint

neighbourhoods, then x, y together with a private neighbour of each and with a

common neighbour induce a P5 with white centre.

(c)⇒(a): We want to show that, assuming (c), either G is disconnected, or it

has a black dominating vertex (then use induction, and the fact that the condition

(c) is hereditary). Suppose G is connected, and let b be a black vertex with a

maximal (under set inclusion) neighbourhood. Let w be a white vertex non-adjacent

to b (which exists because we assume that b is not a black dominating vertex), and

consider a shortest path P from b to w (which exists, since G is connected). Write

its vertices as b = b0, w1, b1, . . . , bk−1, wk = w (where the vertices wi are white, and

the vertices bi are black). If k > 1, then w1 is a common neighbour to b and b1, hence

by (c) and maximality of the neighbourhood of b, N(b1) ⊆ N(b). In particular, w2

and b are adjacent, and we have a shorter path between b and w, contradicting the

choice of P . This shows k = 1, i.e., b and w are in fact adjacent, so b must be a

dominating vertex.

We can now give a forbidden induced subgraph characterisation of the class

L.
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Theorem 153. A bipartite graph G is bi-quasi-threshold if and only if G is (P6, C6,

domino, Sun4)-free.

Proof. The “only if” direction comes from the fact that any colouring of one of

the four graphs in black and white contains a P5 with white centre, hence by the

previous lemma, none of the four graphs is bi-quasi-threshold.

Conversely, suppose G is (P6, C6, domino, Sun4)-free. We show that there

is a colouring of G in black and white such that there is no P5 with white centre.

This is clear if G is P5-free, so assume it is not. Without loss of generality, we can

assume, in addition, that G is connected. Now find a P5 induced by a, b, c, d and e

such that the neighbourhood of its middle vertex is maximal among all P5’s. Denote

by S the part of G containing a, c and e, and by T the other part.

Let x ∈ T be a neighbour of a. Then x is not a neighbour of e, otherwise

a, b, c, d, e, x induce either a C6 or a domino (depending on whether c and x are

adjacent). Additionally, x must be a neighbour of c, otherwise the six vertices

induce a P6. With this in mind, let B be the set of neighbours of a and c, let D be

the set of neighbours of e and c (in particular, b ∈ B and d ∈ D), and let Nc be the

set of neighbours of c that are not neighbours of a or e.

Suppose now that a vertex y in T is a non-neighbour of c (i.e., y /∈ B∪Nc∪D,

and then y is also a non-neighbour of a and e). Find a path from y to c. Such a path

must pass through B ∪Nc ∪D = N(c). Let c′ be the vertex of the path just before

N(c), and assume without loss of generality that y is adjacent to c′. Let z′ ∈ N(c)

be a neighbour of c′.

If c′ has a non-neighbour b′ in B, then a, b, c, z′, c′, y is a P6, contradicting that

G is P6-free. Symmetrically, if c′ has a non-neighbour d′ in D, then y, c′, z′, c, d′, e is

a P6, contradicting again that G is P6-free. Therefore, B∪D ⊆ N(c′). We also have

that Nc ⊆ N(c′), otherwise if z ∈ Nc \N(c′), then G[{a, b, c, d, e, z, c′, y}] induces a

Sun4. We can therefore conclude that N(c) ⊂ N(c′), contradicting the choice of the

P5 a, b, c, d, e because a, b, c′, d, e is also a P5.

We can thus conclude that S has a vertex c dominating T . If there was

another P5 with its centre in T , then that other P5 cannot contain c and would

induce with c a domino. Hence if we colour S black and T white, we obtain a

colouring of G with no P5’s with white centre, and by Lemma 152, we can conclude

that G is bi-quasi-threshold.
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6.2 Unboundedness of linear clique-width

The main result of this section is the unboundedness of the linear clique-width of L
and L̃. To prove the result we will use an auxiliary graph parameter which bounds

linear clique-width below.

Let G be a graph and A a linear clique-width expression for G. Note that A

defines a linear order of the vertex set of G, i.e., a permutation π in the symmetric

group S(V (G)). Let us denote by Sπ,i the set consisting of the first i elements of

the permutation, and by Ai the maximal prefix of A containing only vertices from

this set. If two vertices in Sπ,i have different neighbourhoods outside of the set, then

they must have different labels in Ai, since otherwise in the rest of the expression we

would not be able to add a neighbour to one of them without adding it to the other.

Therefore, denoting by µπ,i(G) the size of the set {N(x) ∩ (V (G) \ Sπ,i) | x ∈ Sπ,i},
we conclude that A uses at least

µπ(G) := max
i
µπ,i(G)

different labels to construct G. As a result, the linear clique-width is bounded from

below by2

µ(G) := min
π∈S(V (G))

µπ(G).

Therefore, to prove the main result of the section, it suffices to show that µ(G) is

unbounded in the classes under consideration. In order to do that, we will need a

technical lemma describing the behaviour of µ(G) in some situations.

We introduce some notation for the coming part. Given a graph G and a

linear order π of its vertices, we will write v < w if v appears before w in the order,

and v < S if v appears before every vertex of a set S. Notice that the order on a

graph induces an order on all of its subgraphs in the obvious way.

Every i ∈ {1, . . . , n} corresponds to a cut in G with respect to π, which

separates the first i vertices in π from the rest of V (G). It will be useful to mark

cuts for which µπ,i(G) is large. We will insert symbols α, β, . . . into our ordered list

of vertices to mark such cuts. If α marks a cut with µπ,i(G) ≥ t, then a set of t

vertices in Sπ,i with pairwise different neighbourhoods outside of Sπ,i will be called

a diversity witness of size t for α. The largest t such that there exists a diversity

witness of size t for α will be called the diversity of (the cut at) α.

2This parameter, or variations thereon, appear throughout the literature in the study of clique-
width, NLC-width, and their linear variants; for example, a clique-width version of it was used in
[LR07a], while in [HMP12], the parameter is called groupnumber. [HMP12] gives further relevant
references.
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For a coloured bipartite graph G, we define µ(G) as µ(G′) with G′ obtained

from G by forgetting the colouring.

Let H be a connected coloured bi-quasi-threshold graph with µ(H) = t ≥ 2.

Since H is connected and has at least two vertices, it contains both white and black

vertices. Let G = v × (H + H + H) for a black vertex v, and label the vertices

of the three copies of H by A = {ai : 1 ≤ i ≤ n}, B = {bi : 1 ≤ i ≤ n}, and

C = {ci : 1 ≤ i ≤ n}, respectively.

Lemma 154. µ(G) ≥ t+ 1.

Proof. To prove the lemma, we fix an arbitrary permutation π of V (G) and show

that µπ(G) ≥ t + 1. Let α, β, and γ be the three cuts of diversity of at least t

in the three copies of H with respect to the restrictions of π into A, B, and C,

respectively. Without loss of generality we assume that α ≤ β ≤ γ in π. Let B′ ⊂ B
be a diversity witness of size t for β in B, i.e., B′ < β, |B′| = t, and the vertices of

B′ have pairwise different neighbourhoods in the subset of B to the right of β.

Assume first that a vertex a of A appears after β. Since µ(H) ≥ 2, there exist

vertices of A before α (and in particular before β). Therefore, since H is connected,

there must be an edge aiaj such that ai < β < aj . Since, by the definition of G,

none of the vertices in B′ is adjacent to aj , the set B′ ∪ {ai} is a diversity witness

of size t + 1 for β, i.e., µπ(G) ≥ t + 1. This conclusion allows us to assume, from

now on, that

� A < β and, by a similar argument, β < C (we need t ≥ 2 to make sure we do

indeed have vertices of C after γ, and hence after β).

Suppose v < β. Since C has at least one white vertex, v has a neighbour in

C and hence B′ ∪ {v} is a diversity witness of size t + 1 for β, i.e., µπ(G) ≥ t + 1.

Therefore, in the rest of the proof we assume that

� v > β.

Assume B′ contains a vertex bi with no neighbour bj > β in B (observe that

if such a vertex exists, then it is unique in B′, since otherwise B′ is not a diversity

witness). If bi is white, then for any black vertex ak ∈ A, the set B′ ∪ {ak} is a

diversity witness of size t+1 for β, because bi is adjacent to v, while ak is not (by the

definition of G), and every vertex of B′ different from bi has a neighbour to the right

of β, while ak does not. Similarly, if bi is black, then for any white vertex ak ∈ A,

the set B′ ∪ {ak} is a diversity witness of size t + 1 for β in G, because bi is not

adjacent to v, while ak is, and every vertex of B′ different from bi has a neighbour

in B to the right of β, while ak does not. In both cases, we have µπ(G) ≥ t+ 1.
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The above discussion allows us to assume that every vertex of B′ has a

neighbour in the subset of B to the right of β. Then for any vertex ak ∈ A, the set

B′ ∪ {ak} is a diversity witness of size t+ 1 for β in G, since ak has no neighbours

in B, i.e., µπ(G) ≥ t+ 1.

Theorem 155. Linear clique-width is unbounded in the classes L and L̃.

Proof. Let G2 ' P4 given with any colouring. It is easy to see that G2 is a connected

coloured bi-quasi-threshold graph with µ(G2) ≥ 2. DefiningGk = v×(Gk−1+Gk−1+

Gk−1) for k > 2, we conclude by Lemma 154 that Gk is a connected coloured bi-

quasi-threshold graph with µ(Gk) ≥ k. Therefore, for each k, the class L contains a

graph of linear clique-width at least k. For the class L̃, a similar conclusion follows

from Lemma 146 and Remark 145.

6.3 Minimality and uniqueness

The goal of this section is to show that the two classes of unbounded linear clique-

width identified in the previous section are minimal hereditary classes where this

parameter is unbounded. Moreover, we prove a more general result showing that

the classes L and L̃ are the only two minimal hereditary classes of bi-cographs where

the linear clique-width is unbounded.3

For a coloured bipartite graph G = (B,W,E), it will sometimes be useful

to work with the coloured graph we obtain by swapping the colours. To this end,

recall that the reflection GR of G is the coloured bipartite graph (W,B,E).

In order to prove the main result of the section, we will use the notion of

bi-cotrees, the bipartite analogues of cotrees also defined in [GV97]:

Definition 156. Let G be a coloured bi-cograph. The bi-cotree TG of G is the

rooted labelled tree constructed as follows:

� Start with the root, which corresponds to G.

� For any internal node, label it by 0 if the corresponding subgraph is discon-

nected, and by 1 if it is not (in which case, its bipartite complement is discon-

nected). The children of the node then correspond to connected components,

respectively bi-co-components.

3Note the similarity with the results from [BKV17]: among cographs, linear clique-width is char-
acterised by quasi-threshold graphs and their complements. Among bi-cographs, it is characterised
by bi-quasi-threshold graphs and their bipartite complements.
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� For any leaf, label it by 0 if the corresponding vertex in the graph is white,

and by 1 if the corresponding vertex in the graph is black.

Remark 157. The construction given here only defines “the (unique) bi-cotree of

a coloured bi-cograph”. As the authors of [GV97] point out, if we instead define

bi-cotrees as labelled trees giving sets of instructions for constructing a coloured

bi-cograph, then different bi-cotrees might yield the same bi-cograph. This is in

contrast to the usual cotrees of cographs, and happens because there exist discon-

nected coloured bipartite graphs whose bipartite complement is also disconnected.

Note that the bi-cotree TGR of GR is obtained from the bi-cotree TG of G by

changing the labels of the leaves from 0 to 1 and from 1 to 0.

Over the next few lemmas, we will be talking about the presence of certain

trees in the bi-cotrees of coloured bi-cographs. We will use the following definition

of tree containment:

Definition 158. Let S and T be two rooted trees. We say S is contained or appears

in a tree T , if there is an embedding φ : S ↪→ T with the following properties:

� If x, y ∈ V (S) and x is an ancestor of y, then φ(x) is an ancestor of φ(y).

� If x, y, z ∈ V (S) and x is the lowest common ancestor of y and z, then φ(x) is

the lowest common ancestor of φ(y) and φ(z).

� If S and T are labelled, then φ preserves labels.

We say that S is contained in T internally if no vertex of S is mapped to a leaf of

T .

Our proof strategy for minimality and uniqueness is as follows: we first

show that the bi-cotrees of coloured bi-cographs of large bi-linear clique-width must

contain large perfect binary trees. We then show that, in particular, certain labelled

perfect binary trees must appear in those bi-cotrees in a very specific way. Finally,

we show that the latter implies that a family of coloured bi-cographs of unbounded

bi-linear clique-width contains either colourings of graphs in L or in L̃.

For h ∈ N, let Bh denote the unlabelled perfect binary tree of height h (i.e.,

the binary tree where every internal node has two children, and all leaves have the

same depth h). Let Bh,0 and Bh,1 further denote perfect binary trees of height h,

with all vertices labelled 0 or 1 respectively.

Lemma 159. Let G be a coloured bi-cograph and h be a natural number. If TG does

not contain Bh, then the bi-linear clique-width of G is at most 2h.
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Proof. We prove the lemma by induction on h. The result holds for h = 1, since

forbidding B1 means no node has two children, and G is trivial. Suppose the state-

ment holds for some h ≥ 1. We will prove that the bi-linear clique-width of any

graph G whose bi-cotree TG does not contain Bh+1 is at most 2h + 2. We proceed

by induction on the height of the bi-cotree. Clearly, the statement holds for any

graph with the bi-cotree of height at most h − 1, as in this case the bi-cotree does

not contain Bh, and the bi-linear clique-width of the graph is at most 2h ≤ 2h+ 2

by the induction hypothesis for h. Assume now that the statement holds of any

graph with bi-cotree of height at most r ≥ 0 and suppose that the height of TG is

r + 1. Let x be the root of TG. Then at most one of the subtrees rooted at the

children of x contains Bh, otherwise TG would contain a Bh+1. If none of those

subtrees do, we are done, since by the inductive hypothesis for h, the subgraphs

corresponding to each child of x have bi-linear clique-width at most 2h, and their

join or disjoint union can be constructed using two additional labels. Otherwise,

let b be the bi-linear clique-width of G, let x1 be the child whose induced subtree

contains a Bh, and b1 the bi-linear clique-width of the graph corresponding to x1.

Then, by Lemma 147, we have b ≤ max{b1, 2h + 2}. Since the height of the tree

rooted at x1 is at most r− 1, by the inductive hypothesis for r we have b1 ≤ 2h+ 2,

which implies b ≤ 2h+ 2, and hence the lemma.

We next consider Bh,0 and Bh,1. We first show that if one of those trees

appears in a certain way in the bi-cotree of a coloured bi-cograph, then that coloured

bi-cograph contains either all coloured bi-quasi-threshold graphs up to a certain size,

or their bipartite complements.

Definition 160. Let G be a coloured bi-cograph, h be a natural number, and

i ∈ {0, 1}. We say Bh,i is meaningfully embedded in TG, if the following hold:

� Bh,i is internally contained in TG with embedding φ.

� Let x be a node in Bh,i and let y be a child of x. Let P be the path in TG

between φ(x) and φ(y). Then there exists a vertex z on P labelled by 1 − i
such that the subtree rooted at z excluding the branch containing φ(y) has a

leaf in TG corresponding to a black vertex (i.e., a leaf labelled 1).

Lemma 161. Let G be a coloured bi-cograph, let h be a natural number, and i ∈
{0, 1}. Furthermore, suppose that Bh,i is meaningfully embedded in TG. Then if

i = 0, G contains all coloured bi-quasi-threshold graphs on at most h vertices as

induced subgraphs, and if i = 1, G contains bipartite complements of coloured bi-

quasi-threshold graphs on at most h vertices as induced subgraphs.
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Proof. We assume that i = 0. The case of i = 1 is analogous and we omit the

details.

We will prove by induction on h that G contains every coloured bi-quasi-

threshold graph on at most h vertices as a coloured induced subgraph. If B1,0 is

meaningfully embedded in TG, write x for the embedding of the root and y1, y2 for

the embeddings of its two children. By definition, there is a vertex labelled 1 on the

path between x and y1, and that vertex is not a leaf. It follows that G has at least

one edge, and hence it contains both a black and a white vertex, i.e., it contains

every coloured bi-quasi-threshold graph on 1 vertex as a coloured induced subgraph.

Assuming the statement holds for some h ≥ 1, suppose that Bh+1,0 is mean-

ingfully embedded in TG. Like before, write x for the embedding of the root, and

write y1, y2 for the embeddings of its two children. Each of the subtrees of TG rooted

at y1 and y2 have a meaningfully embedded Bh,0, so the corresponding induced sub-

graphs of G contain all coloured bi-quasi-threshold graphs on h vertices. Since x is

labelled 0, G contains the disjoint union of any two such subgraphs, and the second

condition in the definition of meaningful embeddings implies that G contains the

join of any such subgraph with a single black vertex. The recursive construction of

bi-quasi-threshold graphs then implies, as required, that G contains every coloured

bi-quasi-threshold graph on h+ 1 vertices.

The next two lemmas give a Ramsey type result on the presence of large

meaningfully embedded Bh,i.

Lemma 162. Let r ≥ 1. There exists n = n(r) ∈ N such that any red-blue colouring

of Bn contains internally a monochromatic Br.

Proof. We will show by induction on r that the recursion n(r + 1) = n(r) + r + 2,

n(1) = 3, defines a desired function.

To prove the base case r = 1, let x be the root of a coloured B3, y1, y2 its

children, and zj (1 ≤ j ≤ 4) its grandchildren (z1 and z2 are the children of y1, and

z3 and z4 are the children of y2). All of those nodes are internal, since they all have

descendants (the nodes on the last level of the B3). Without loss of generality, we

may assume that x is red. If a vertex in {y1, z1, z2} and a vertex in {y2, z3, z4} are

also red, we are done, so assume not. Then in one of the two triples, all vertices are

blue, and we are also done.

For the induction step, assume that for some r ≥ 1 any red-blue colouring of

Bn(r) contains internally a monochromatic Br, and consider Bn(r+1) = Bn(r)+r+2.

By the induction hypothesis, the top n(r) levels of the Bn(r+1) contain without loss

of generality a red internal Br. The leaves of the red Br are embedded at level at
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most n(r) − 1, so their children are at level at most n(r), and the subtrees rooted

at those children have height at least r + 2. Either those subtrees each contain a

red internal node, in which case we have a red internal Br+1, or there is one such

subtree with all internal nodes being blue, in which case we have a blue internal

Br+1.

Lemma 163. Let r ≥ 1, and let G be a coloured bi-cograph. There exists m =

m(r) ∈ N such that if TG contains Bm, then either TG or TGR contains a meaning-

fully embedded Br,0 or Br,1.

Proof. The proof consists of two applications of Lemma 162. First, we colour red

the nodes of TG labelled 0 and blue the nodes labelled 1. Since containment is

transitive, this guarantees that if TG contains Bn(r), then it contains an internal

monochromatic Br, i.e., a Br,i for some i ∈ {0, 1}.
For the second application of the lemma, we start with an internal copy of

Bn(r),i in TG. It follows from the definition of the bi-cotree, that for any internal

node labelled by i, any of its internal children is labelled by 1− i. This implies that

for a node x ∈ Bn(r),i and a child y of x, the path P between φ(x) and φ(y) contains

at least one node labelled 1− i, and for every such node, the subtree rooted at it has

leaves outside the branch containing φ(y). Now, for each non-root node y ∈ Bn(r),i

with parent x, pick a vertex z labelled 1− i on the path between φ(x) and φ(y); if at

least one of the leaves in the tree rooted at z excluding the branch containing φ(y)

is black, colour y red. Otherwise colour it blue. Colour the root arbitrarily. It can

be checked that a red internal Br corresponds to a Br,i meaningfully embedded in

TG, while a blue internal Br corresponds to a Br,i meaningfully embedded in TGR .

Thus putting m(r) = n(n(r)) completes the proof.

We are ready to prove the main result of the section.

Theorem 164. Let H ∈ L and K ∈ L̃. The class of (H,K)–free bi-cographs has

bounded linear clique-width.

Proof. Suppose thatG is an (H,K)–free bi-cograph, and let r = max{|V (H)|, |V (K)|}.
Let G′ be a colouring of G and let TG′ be the bi-cotree of G′. By Lemma 161, there

is no meaningfully embedded Br,i in TG′ or in TG′R . By Lemma 163, TG′ contains

no Bm(r). Finally, by Lemma 159, blcw(G′) ≤ 2m(r), and by Remark 145 we can

conclude that lcw(G) ≤ 2m(r).

139



Chapter 7

Bipartite permutation graphs

In this chapter, we shift our gaze to the class of bipartite permutation graphs.

We present our joint work with Vadim Lozin and Dmitriy Malyshev [ALM21]. In

that paper, we examine several properties within the class of bipartite permutation

graphs: well-quasi-orderability, boundedness of certain parameters, complexity of

certain problems and the existence of universal graphs of a certain size. In each

case, we attempt to characterise those properties via minimal obstacles (given as

minimal classes where the property does not hold). For brevity, we include here

only a selection of the results. In Section 7.1, we provide an upper bound for the

lettericity of a bipartite permutation graph, proving a conjecture from [Teh+20].

In Section 7.2, we discuss universal bipartite permutation graphs and make some

progress towards a question asked in [Atm+13].

As one might expect, the class BP of bipartite permutation graphs, first

studied in [SBS87], is the intersection of the classes of bipartite graphs and per-

mutation graphs. They can be described as the inversion graphs of permutations

avoiding 321 as a pattern (see, e.g., [Wat07, Section 5.7.2]). The main result we will

use regarding this class is the universal construction described by Lozin and Rudolf

in [LR07b], and presented in Figure 7.1. We emphasize that this figure contains two

representations of the same graph. In most of our considerations the square repre-

sentation is preferable; we denote a graph of this form with n rows and n columns

by Hn,n. It is shown in [LR07b] that Hn,n is a bipartite permutation graph which

contains every n-vertex bipartite permutation graph as an induced subgraph.
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Figure 7.1: Universal bipartite permutation graph Hn,n for n = 4.

7.1 Lettericity of bipartite permutation graphs

While our main result from this section is stated in the (now familiar) language of

lettericity, the question it answers was formulated in a slightly different terminology:

the one of Parikh word representability.

Parikh word representable graphs were introduced in [BM16] as follows. Let

A = {a1 < a2 < . . . < ak} be an ordered alphabet, and let w = w1w2 . . . wn be

a word over A. The Parikh graph of w has {1, 2, . . . , n} as its vertex set and two

vertices i < j are adjacent if and only if there is p ∈ {1, 2, . . . , k − 1}, such that

wi = ap and wj = ap+1. The reader might recognise those graphs as letter graphs

with decoder {(a1, a2), (a2, a3), . . . , (ak−1, ak)} for some k ∈ N.

In [Teh+20], it was shown that the class of Parikh word representable graphs

coincides with the class of bipartite permutation graphs (an alternative proof of this

result can be obtained by comparing the universal graph from Figure 7.1 with the

definition of lettericity). Moreover, it was conjectured that every bipartite permu-

tation graph with n vertices admits a Parikh word representation over an alphabet

of bn2 c+ 1 letters. In this section, we prove the conjecture which, in the language of

lettericity, is equivalent to the following theorem:

Theorem 165. Let G be a bipartite permutation graph with n vertices. Then G has

lettericity bounded above by bn2 c+1. More precisely, it admits a letter graph represen-

tation with k ≤ n
2 +1 letters a1, . . . , ak and decoder {(a1, a2), (a2, a3), . . . , (ak−1, ak)}.

Proof. We first deal with the case when G is connected, and assume n ≥ 2. We

know that G can be expressed as a letter graph on letters a1, . . . , an with decoder

{(ai, ai+1) : 1 ≤ i ≤ n− 1}.
Among all expressions w1w2 . . . wn with that decoder, writing l(j) for the

index of the letter in position j of the word, pick one that minimises
n∑
j=1

l(j) (i.e., an
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expression that minimises the sum of the indices of the letters in w). Let us state

some properties of this expression:

� a1 appears at least once in w. If not, we can shift all indices down by 1.

� The last letter is a2. Indeed, the last letter cannot be a1, since that would

mean G has an isolated vertex. If the last letter is at, for some t ≥ 3, we can

remove it, and add an at−2 at the beginning of w: this new expression still

represents G, but the sum of indices is smaller.

� Denote by r the largest index occurring in w. Let 2 < t ≤ r, and let wj = at

be the rightmost appearance of at in w. Then there is an at−1 to the right of

wj in w. Note that this holds for t = r – otherwise, as before, we may replace

this rightmost ar with an ar−2 in the beginning of the word. Recursively, for

r > t > 2, the rightmost at is thus to the right of the rightmost at+1, and must

have an at−1 to its right by the same argument as above. It follows that the

rightmost occurrence of at has to its right at least one ai for each 2 ≤ i < t,

and no ai for i > t.

� Let 2 ≤ t ≤ r, and let wj = at be the rightmost occurrence of at. Then there

is an at−1 to the left of wj in w. Indeed, since G is connected, the vertex j

has a neighbour. But as shown above, there are no at+1s to the right of wj ,

hence that neighbour must be an ai−1 to its left.

The above discussion implies that w uses letters 1, r at least once, and letters

2, . . . , r − 1 at least twice (since for 2 ≤ t < r, letter at appears after the rightmost

at+1 by the third bullet point, and before the rightmost at+1 by the fourth). Since

G has n vertices, this implies r ≤ n
2 + 1.

If G is disconnected, writing Gi, 1 ≤ i ≤ s for its connected components,

we can produce words w(Gi) as above for each Gi, where G1 uses letters 1 to ar1 ,

G2 uses letters ar1 to ar2 , and so on. We then obtain a word representing G by

concatenating w(Gs), w(Gs−1), . . . , w(G1) in that order. The resulting word uses

once more each letter twice, except for possibly the first and the last one.

The upper bound in Theorem 165 is tight and attained on graphs of vertex

degree at most 1 (see [Teh+20] for arguments given in the terminology of Parikh

word representability or [ALW21] for arguments given in the terminology of let-

tericity). In the rest of this section we show that, within the universe of bipartite

permutation graphs, the class of graphs of vertex degree at most 1 is the only ob-

stacle for bounded lettericity, i.e., it is the unique minimal subclass of bipartite

permutation graphs of unbounded lettericity.
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Theorem 166. For each p, there is an f(p) such that the lettericity of pK2-free

bipartite permutation graphs is at most f(p).

Proof. Let G be a pK2-free bipartite permutation graph. Then G has at most

p − 1 nontrivial connected components, i.e., components of size at least 2. Each

component can be embedded, as an induced subgraph, into the universal graph Hn,n

with at most 3p − 2 rows, since any connected induced subgraph of the universal

graph occupying at least 3p − 1 rows contains an induced P3p−1 and, hence, an

induced pK2. Therefore, any component of G requires at most 3p − 2 letters to

represent it. Altogether, we need at most (p − 1)(3p − 2) + 1 letters to represent

G.

7.2 Universal graphs within the class of bipartite per-

mutation graphs

As shown in [LR07b], the class of bipartite permutation graphs contains a universal

element of quadratic order, i.e., a graph with n2 vertices that contains all n-vertex

bipartite permutation graphs as induced subgraphs. On the other hand, for the

class of chain graphs, we have an n-universal graph on 2n vertices, i.e., a universal

graph of linear order. This raises many questions regarding the growth rates of

order-optimal universal graphs for subclasses of bipartite permutation graphs. One

of the most immediate questions is identifying a boundary separating classes with

a universal graph of linear order from classes where the smallest universal graph

is super-linear. In this section, we show that the class of star forests is a minimal

hereditary class with a super-linear universal graph.

Before we present the result for star forests, let us observe that in general not

every hereditary class X contains a universal graph, and even if it does, an optimal

universal construction for X does not necessarily belong to X . In order to circumvent

these difficulties (and to ensure downwards closure of the set of classes with, say,

linear universal graphs), we will only consider universal constructions consisting

of bipartite permutation graphs. In other words, whenever we look for universal

constructions for some class X ⊆ BP, we allow any bipartite permutation graphs,

and only bipartite permutation graphs, to appear in our universal constructions.

In the following lemma we first describe a star forest of order O(n · log(n))

containing all n-vertex star forests as induced subgraphs, and then we show that

this construction is (asymptotically) order-optimal in the universe of all bipartite

permutation graphs. To simplify notation, throughout this section we denote the
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star K1,n by Sn.

Lemma 167. The minimum number of vertices in a bipartite permutation graph

containing all n-vertex star forests is Θ(n · log(n)).

Proof. Let F ∗ be the star forest Sbn1 c+Sbn2 c+ . . .+Sb n
n−1c+Sbnnc. It is a bipartite

permutation graph, and it has n connected components and
n∑
i=1

(bni c + 1) vertices.

As bxc < x, for any x, F ∗ has O(
n∑
i=1

n
i ) vertices. Recall that the n-th harmonic

number
n∑
i=1

1
i is equal to ln(n) +γ+ εn, where γ = 0.577 . . . is the Euler–Mascheroni

constant and εn tends to 0 with n tending to infinity. Therefore, F ∗ has O(n · log(n))

vertices.

Let us show that F ∗ is a universal graph for n-vertex star forests. Indeed,

let F = Sa1 + Sa2 + . . .+ Sap be an n-vertex star forest, where a1 ≥ a2 ≥ . . . ≥ ap.

Clearly, i ·ai ≤ a1 + . . .+ai < n, for any 1 ≤ i ≤ p ≤ n. Hence, ai <
n
i and ai ≤

⌊
n
i

⌋
,

as ai is an integer. Therefore, for any i, Sai is an induced subgraph of Sbni c. Thus,

F is an induced subgraph of F ∗.

To prove a lower bound, let H be a bipartite permutation graph containing

all n-vertex star forests. It can be embedded, as an induced subgraph, into Hn′,n′

for some n′ (see Figure 7.1). Now let n1, n2, . . . be a list in non-increasing order

of the numbers of vertices of H embedded in each row of Hn′,n′ (so that n1 is the

number of vertices of H in a row of Hn′,n with the most vertices of H, and so on).

We show that ni ≥ 1
2

(⌊
n

10i

⌋
− 1
)

for any 1 ≤ i ≤
⌊
n
20

⌋
, implying that the graph H

has Ω(n · log(n)) vertices.

Let t ∈ {10i : i ∈ N} ∩ {1, . . . ,
⌊
n
2

⌋
}. By Ft, we denote the star forest with

t connected components, each isomorphic to Sbnt c−1. For any t, the graph Ft is

an induced subgraph of H and hence Ft must embed into Hn′,n′ . Since any two

consecutive rows of Hn′,n′ induce a chain graph, i.e., a 2K2-free graph, any row of

Hn′,n′ contains the centres of at most two stars of Ft. Each star intersects at most

3 consecutive rows of Hn′,n, hence a star can intersect the same row as at most 9

other stars. It is therefore possible to find t
10 stars Sbnt c−1 in Ft such that no two

of them intersect the same row of Hn′,n′ , and thus there are at least t
10 pairwise

distinct rows in Hn′,n′ , each of which contains at least 1
2

(⌊
n
t

⌋
− 1
)

vertices of H.

It follows that nt/10 ≥ 1
2

(⌊
n
t

⌋
− 1
)

or, changing indices, that ni ≥ 1
2

(⌊
n

10i

⌋
− 1
)

for

any 1 ≤ i ≤
⌊
n
20

⌋
as required.

Theorem 168. The class of star forests is a minimal hereditary class that does not

admit a universal bipartite permutation graph of linear order.
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Proof. Let X be any proper hereditary subclass of the class SF of star forests.

Then, X ⊆ SF ∩ Free(kSk) for some k. Therefore, every graph in X consists of at

most k−1 stars with at least k leaves and arbitrarily many stars with at most k−1

leaves. But then (k−1)Sn+nSk−1 is an n-universal graph for X of linear order.

The class of star forests is not the only obstruction to admitting a universal

graph of linear order. To see this, we show that the class of 3S6-free bipartite

permutation graphs requires a super-linear universal graph.

Lemma 169. Suppose H is a bipartite permutation graph containing all n-vertex

3S6-free bipartite permutation graphs as induced subgraphs. Then |V (H)| = Ω(n3/2).

Proof. To prove the statement, we will show there must be Ω(n3) pairs of vertices

in H, from which we immediately get

|V (H)|2 ≥
(
|V (H)|

2

)
≥ Ω(n3)

and so |V (H)| = Ω(n3/2).

We know H can be embedded as an induced subgraph into a universal graph

Hn′,n′ for some n′. The main idea is to construct a structure that is “rigid”, in

the sense that we can guarantee the distance (within the structure) between certain

vertices is not much greater than the distance in Hn′,n′ between the embeddings of

those vertices. To this end, we use a result due to Ferguson [Fer20], that states the

lettericity of the path Ps, for s ≥ 3, is precisely
⌊
s+4

3

⌋
.1 In our language, it follows

that any embedding of a chordless path Ps into Hn′,n′ uses at least
⌊
s+4

3

⌋
layers

(rows).

Since edges appear only between successive layers, the set of layers used by

an embedding of the path is an interval. Moreover, the ends of a chordless path

do not appear more than one layer away from the extremal layers in the interval,

otherwise a 2K2 forms between two of the layers. This implies that the distance

between the ends of a chordless path Ps must be at least
⌊
s+4

3

⌋
− 3 =

⌊
s−5

3

⌋
.

For each t, we construct in two steps a graph Qt as depicted in Figure 7.2.

It is easy to see that Qt is a bipartite permutation graph, since we can embed

the rows in the figure into successive layers of the universal graph. Moreover, writing

dG for the distance in a graph G, we have (using the triangle inequality and the

1The bounds from [Pet02] are sufficient for the proof, but make it a bit messier.
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q

p

Step 1: Start with a chordless path on
3t+ 7 vertices.

y

x

q

p

Step 2: Add a chordless path on t+ 3
vertices, connecting it to the previous path

as above.

Figure 7.2: The graph Qt for t = 3

above discussion, and assuming for now that Qt embeds into H),

dH(x, y) ≥ dH(p, q)− 2 ≥ t− 2

and

dH(x, y) ≤ dQt(x, y) = t+ 2.

We now construct bipartite permutation graphs Rn,t from Qt by replacing

x and y with independent sets X, Y of twins of size
⌊
n−4t−8

2

⌋
each, with the same

adjacencies as x and y respectively (we only construct those Rn,t for which the above

quantity is positive). We note that |V (Rn,t)| ≤ n by construction, and Rn,t is easily

seen to be 3S6-free, so that Rn,t is an induced subgraph of H. In addition, like with

the original x and y, each new pair x ∈ X and y ∈ Y has |dH(x, y)− t| ≤ 2.

For 3 ≤ t ≤
⌊
n
6

⌋
− 2, we have |X| = |Y | ≥

⌊
n
6

⌋
. In particular, each choice

of t ∈ I := {3, 4, . . . ,
⌊
n
6

⌋
− 2} ∩ {3 + 5i : i ∈ N} witnesses the existence in H of

|X||Y | ≥
⌊
n
6

⌋2
pairs of vertices, and since the pairs’ distance ranges for different

t ∈ I do not overlap, the sets of pairs are disjoint. Hence H must contain in total

at least

|I|
⌊n

6

⌋2
≥ 1

5

(⌊n
6

⌋
− 5
)⌊n

6

⌋2
= Ω(n3)

pairs, as claimed.
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Lemma 169 shows indeed that there are other obstructions to a linear uni-

versal graph, but it is not yet clear what those obstructions are. For instance, the

existence of a linear universal graph is a non-trivial question even for St-free graphs,

i.e., bipartite permutation graphs of maximum degree at most t − 1. In fact, it is

not clear whether every class with super-linear universal graphs contains a minimal

such class. We leave the continuation of this study as an open problem.

Open problem 170. Characterise the family of hereditary subclasses of bipartite

permutation graphs that admit a universal bipartite permutation graph of linear

order.

We conclude the chapter with one more related open problem. Theorem 165

shows that the graph Hn,n is not an optimal universal construction for the class of

bipartite permutation graphs, because all graphs in this class can be embedded into

Hn/2+1,n as induced subgraphs. However, this construction is still quadratic. On

the other hand, the following result provides an almost quadratic lower bound on

the size of a universal graph. We note that this also yields a lower bound on the

size of a shortest proper n-universal, 321-avoiding permutation – a problem asked

in [Atm+13].

Theorem 171. Suppose H is a bipartite permutation graph that contains all n-

vertex bipartite permutation graphs as induced subgraphs. Then |V (H)| = Ω(nα) for

any α < 2.

Proof. We show |V (H)| = Ω(n(2a−1)/a) for each a ∈ N. This is a generalisation of

Lemma 169, which deals with the case a = 2.

The proof of Lemma 169 generalises as follows. For a ∈ N, we get |V (H)| =
Ω(n2a−1/a) by counting a-sets of vertices. To do this, we associate to each a-set

the
(
a
2

)
-multiset consisting of distances between pairs of its vertices; we will refer to

this
(
a
2

)
-multiset as the “distance multiset (in H)” of the original a-tuple. In order

to determine that two a-sets are distinct, it is enough to show they have distinct

distance multisets.

We generalise the construction of the graphs Rn,t to graphs Rn,T , where T

is a set of a− 1 natural numbers, each at least 3. To construct Rn,T , we start with

Qmax(T ), but instead of inflating just the endpoints of the second path, we inflate

the first vertex, then the j + 3rd, for each j ∈ T . By putting an appropriate upper

bound (linear in n) on the size of elements in T , say λn, we can arrange that each

inflated set Xj has size linear in n, while ensuring |V (Rn,T )| ≤ n.

The set T can be viewed as a condition on the distance multiset in Rn,T

of certain a-sets: an a-set consisting of one vertex from each inflated set Xj has
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{t + 2 : t ∈ T} as a subset of its distance multiset in Rn,T . The distance multiset

in H might differ from the one in Rn,T , but like before, rigidity of the structure

ensures the two are within a small tolerance of each other. Therefore, as long as we

are careful in choosing what sets T we consider, we can ensure that different choices

of T will give rise to different distance multiset subsets in H. This is achieved by

choosing, like before, T ⊆ {3, . . . , λn} ∩ {3 + 5i : i ∈ N}.
One last hurdle is the following: in order to decide that two a-sets of vertices

are distinct, we actually need to compare them via their whole distance multisets,

not just via the a−1-subsets coming from the choice of T . We notice, however, that

the same distance multiset can account (conservatively) for at most
( (a2)
a−1

)
different

choices of T .

Altogether, each choice of T ⊆ {3, . . . , λn} ∩ {3 + 5i : i ∈ N} witnesses

the existence of Ω(na) a-sets of vertices in H, and each a-set is repeated overall at

most a constant number of times. Since there are Ω(na−1) choices for T , this shows

|V (H)|a ≥
(|V (H)|

a

)
= Ω(n2a−1), from which |V (H)| = Ω(n(2a−1)/a) as required.

We conjecture that the optimal universal graph is, in fact, quadratic.

Conjecture 172. The minimum number of vertices in a bipartite permutation

graph containing all n vertex bipartite permutation graphs is Ω(n2).

Establishing the optimal constant would then be a problem analogous to the

study of superpatterns from the world of permutations (see, for instance, [BDE14;

EV18]2).

2We remark that the study of superpatterns is usually done in the universe of all permutations,
while here we restrict ourselves to bipartite permutation graphs - this is the reason behind the
apparent discrepancy between the upper bound from [BDE14] and our lower bound from Theo-
rem 171.
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Chapter 8

Quasi-chain graphs

The last class we examine before putting our magnifying glass back in the drawer

is the class of so-called quasi-chain graphs. This is an extension of the more well-

studied class of chain graphs. In [Ale+21b], we define quasi-chain graphs and prove

various properties – some algorithmic, some structural and some parametric. As in

the previous chapter, we only present here a selection of the results: in Section 8.1,

we prove a structural theorem about the graphs. In Section 8.2, as is by now

tradition, we study lettericity in the class.

Before that, let us begin by defining the class under investigation, and by

providing a simple characterisation. We model our definition on the one for chain

graphs (via neighbourhood inclusion), except we relax that property as follows.

We say that a linear ordering (a1, . . . , a`) of vertices is good if for all i < j, the

neighbourhood of aj contains at most 1 non-neighbour of ai. We call a bipartite

graph G a quasi-chain graph if the vertices in each part of its bipartition admit a

good ordering. Alternatively, quasi-chain graphs are characterised as the (coloured)

bipartite graphs that do not contain an unbalanced induced copy of 2P3.1 Indeed,

in the unbalanced bipartition, one of the parts does not admit a good ordering

and hence quasi-chain graphs are free of unbalanced 2P3. On the other hand, if

a bipartite graph G does not contain an unbalanced induced copy of 2P3, then by

ordering the vertices in each part in a non-increasing order of their degrees we obtain

a good ordering, i.e., G is a quasi-chain graph.

The class of quasi-chain graphs is substantially richer and more complex

than the class of chain graphs. In particular, it is not well-quasi-ordered by in-

duced subgraphs [KL11a] and the clique-width is not bounded in this class [LV08].

Additionally, in [Ale+21b], we establish a bijection f between the class of all permu-

1Notice that 2P3 admits two bipartitions: one with parts of equal size (balanced) and the other
with parts of different sizes (unbalanced).
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tations and a subclass of quasi-chain graphs such that a permutation π contains a

permutation ρ as a pattern if and only if the graph f(π) contains the graph f(ρ) as

an induced subgraph. Together with the NP-completeness of the pattern match-

ing problem for permutations this implies the NP-completeness of the induced

subgraph isomorphism problem for quasi-chain graphs.

The order-preserving embedding of permutations into quasi-chain graphs also

implies the existence of infinite antichains of quasi-chain graphs with respect to

the induced subgraph relation and hence the unboundedness of lettericity. This

motivates our study of lettericity in this class.

In spite of the more complex structure, the quasi-chain graphs inherit some

attractive properties of chain graphs. Indeed, the structural characterisation that we

show in Section 8.1 implies that quasi-chain graphs admit an implicit representation

and that some algorithmic problems that are NP-complete for general bipartite

graphs admit polynomial-time solutions when restricted to quasi-chain graphs (we

omit the details here).

8.1 The structure of quasi-chain graphs

For two graphs G1 = (V,E1) and G2 = (V,E2) on the same vertex set we denote by

G1 ⊗G2 the graph G = (V,E1 ⊗ E2), where ⊗ denotes the symmetric difference of

two sets. The main result in this section is the following theorem.

Theorem 173. If a bipartite graph G = (A,B,E) is a quasi-chain graph, then

G = Z ⊗H for a chain graph Z and a graph H of vertex degree at most two such

that E(H)∩E(Z) and E(H)−E(Z) are matchings. Such a decomposition G = Z⊗H
can be obtained in polynomial time.

In the proof of this result, we use a word representation for our graphs,

which builds the 2-letter graph representation of chain graphs. As a reminder, there

is a bijective, order-preserving mapping between words over the alphabet {a, b}
(under the subword relation) and coloured chain graphs (under the coloured induced

subgraph relation). This mapping sends a word w to the graph whose vertices are

the entries of w, and we have edges between each a and each b appearing after it

in w. See Figure 8.1 for an example (the indices of the letters indicate the order of

their appearance in w).

We would like to extend this representation to graphs with the structure

claimed in Theorem 173. To do so, we enhance the letter representation described

above by introducing extra structure: bottom edges between pairs a, b with the a
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a1 a2

b1

a3

b2 b3

a4

b4

Figure 8.1: The graph corresponding to the word w = aababbab

appearing before the b in w and top edges between pairs a, b with the a appearing

after the b in w. We require, in addition, that the set of top edges forms a matching

and the set of bottom edges forms a matching, and interpret the bottom edges as an

instruction to remove the corresponding matching from the chain graph represented

by w, and the top edges as an instruction to add the corresponding matching. We

call such a word an enhanced word. For instance, w′ = aababbab is an enhanced

word obtained from w = aababbab by adding the bottom edge connecting the first

a to the first b and the top edge connecting the second b to the last a.

Naturally, we may define an enhanced subword containment relation: for two

enhanced words w and w′, w′ is an enhanced subword of w if it can be obtained from

w by removing entries. We may also extend the usual subword relation to enhanced

words by saying w′ is a subword of w if the underlying words obtained by removing

the top and bottom edges are subwords of each other. We note that any enhanced

subword is a subword, but not necessarily vice-versa: for instance, aab is a subword

of aab, but not an enhanced subword.

If G is the graph described by an enhanced word w, we say w is an enhanced

letter representation for G. In particular, w′ = aababbab is an enhanced letter

representation of the graph obtained from the graph in Figure 8.1 by removing

the edge a1b1 and adding the edge b2a4. It is immediate from our discussion that

Theorem 173 can be restated as follows.

Theorem 174. Any quasi-chain graph admits an enhanced letter representation

that can be found in polynomial time.

Proof. At the core of our proof is an induction on the number of vertices of the quasi-

chain graph G. The base case of the induction is trivial. To develop an inductive

step, we prove the following claim.

Claim 175. Let G = (A,B,E) be a quasi-chain graph. Then either G or its bipartite

complement has a vertex of degree at most 1.
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Proof. Let a1, . . . , at be the vertices of A in a non-increasing order of their degrees.

If a1 has fewer than 2 non-neighbours, we are done (since a1 then has degree at most

one in the bipartite complement). Otherwise, let b, b′ be two non-neighbours of a1.

Note that b and b′ have no common neighbour: if a was a common neighbour, then

it would have two private neighbours with respect to a1; since 2P3s are forbidden,

a would be adjacent to all but at most one of the neighbours of a1, from which

deg(a) > deg(a1), contradicting our premise. But then at least one of b and b′ has

degree at most one, since otherwise an induced 2P3 appears.

Since the existence of enhanced letter representations is invariant under bi-

partite complementation and reflection (swapping the parts), we may assume, by

reflecting and complementing if necessary, that G = (A,B,E) has a vertex y of

degree at most 1, and that y ∈ B.

Now our induction hypothesis says that G′ := G[A ∪ (B − {y})] admits an

enhanced letter representation w′. If y is isolated in G, we may always produce a

representation w for G by adding b as a prefix to w′. The difficult case is when y has

degree 1 in G. Even then, we may easily produce a representation for G by adding

b as a prefix to w′ and linking it with a top edge to (the letter corresponding to)

the vertex x that y is pendant to, provided that x does not already have an incident

top edge in w′. In the rest of the proof we show that G′ admits an enhanced letter

representation in which x is not incident to a top edge.

To show this, we first observe that the mapping from enhanced letter repre-

sentations to graphs is not injective. As a very simple example, the enhanced words

ab and ba both represent the complete graph on two vertices, while ba and ab both

represent the edgeless graph on two vertices. In general, we may swap the above

pairs when the two letters appear next to each other. We may also swap consecutive

instances of the same letter, carrying over the top/bottom edges incident to them,

e.g., we may go from baaaab to baaaaab and vice-versa.

To prove the result, we assume, by contradiction, that in any enhanced letter

representation of G′ vertex x is incident to a top edge. Among all representations

of G′, look at the ones that minimise the distance between x and its top-matched

neighbour. Among those representations, pick one where the interval between x and

its top-matched neighbour has the minimum number of bottom edges. Write w∗ for

this representation, and denote by y′ the vertex top-matched to x. Given two letters

α and β in w∗ (two vertices in G′), we write α < β to indicate that α appears before

β in the word, and denote by α − β the interval of letters (vertices) that appear

strictly between α and β in w∗. In particular, y′ < x, since y′ ∈ B, x ∈ A and they

are top-matched. We now derive a number of conclusions about the interval y′ − x.
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(1) The interval y′−x is not empty, since otherwise we could remove the top edge

by swapping y′ and x, and due to its minimality, this interval starts with an

a, which we denote a∗, and ends with a b, which we denote b∗.

(2) The interval y′ − x does not contain abb as an enhanced subword, since other-

wise the vertices corresponding to the abb together with the vertices x, y and

y′ induce a 2P3 in G.

(3) The interval y′ − x contains at most two bs, which follows directly from (1)

and (2).

To obtain a contradiction, we analyze the following two cases.

Case 1: a∗ and b∗ are not bottom-matched. Then there is no b in the interval

a∗ − b∗. Indeed, if b′ belongs to this interval, then, according to (2), a∗ is bottom-

matched to b′. However, this contradicts the choice of w∗, because, according to (3),

this bottom edge can be removed by bringing a∗ next to b′ and swapping them. In

a similar way, in the absence of a second b, any bottom edge can be removed from

the interval y′ − x, implying that this interval has no bottom edges.

We note that at least one of b∗ and x must have a bottom-matched neighbour,

since otherwise we could reduce the interval by swapping b∗ and x and introducing

the bottom edge between them. If x has a bottom-matched neighbour, then x, y, y′

together with a∗, b∗ and the bottom-matched neighbour of x induce a 2P3. Therefore,

b∗ has a bottom-matched neighbour a′ with a′ < y′.

We also note that at least one of a∗ and b∗ must have a top-matched neigh-

bour, since otherwise we could bring a∗ next to b∗, swap them by introducing a top

edge, and then reduce the interval by swapping a∗ and x. If b∗ has a top-matched

neighbour, then y′, a′, x together with b∗, a∗ and the top-matched neighbour of b∗

induce a 2P3. If a∗ is has a top-matched neighbour, then x, y, y′ together with a∗, b∗

and the top-matched neighbour of a∗ induce another 2P3.

Case 2: a∗ and b∗ are bottom-matched. Clearly, the interval a∗ − b∗ is not

empty, since otherwise we could remove the bottom edge by swapping a∗ and b∗.

Also, to avoid an easy reduction to Case 1, we conclude that the letter to the right

of a∗ is a b (we denote it by b◦), and the letter to the left of b∗ is an a (we denote

it by a◦).

We note that either a∗ or b◦ is incident to a top edge, since otherwise we

could swap them by introducing the top edge b◦a∗ and then reduce the interval

y′−x by swapping y′ and b◦. Similarly, at least one of a◦ and b∗ is incident to a top

edge.
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If a∗ is incident to a top edge, then x, y, y′ together with a∗, b◦ and a top-

matched neighbour of a∗ induce a 2P3. If a◦ is incident to a top edge, then x, y, y′

together with a◦, b∗ and a top-matched neighbour of a◦ induce a 2P3. Therefore, b◦

is top-matched with a vertex a′ and b∗ is incident to a top edge. We can assume

that x < a′, since otherwise we could remove the top edge between b◦ and a′ by

bringing them next to each other and swapping. But then a∗, b◦, a′ together with

a◦, b∗ and a top-matched neighbour of b∗ induce a 2P3.

A contradiction in all cases shows that G′ admits an enhanced letter rep-

resentation in which x is not incident to a top edge and completes the inductive

step.

Our case analysis leads to a polynomial-time procedure for removing, if neces-

sary, the top edge incident to x, which can be outlined as follows. The contradictions

involving the appearance of a 2P3 concern cases that do not actually occur when we

apply our procedure, so we ignore them. When a contradiction to the minimality

in the construction of w∗ appears in the case analysis, we repeatedly execute the

operation that lead to the contradiction – we only need to iterate a linear number

of times. We invariably arrive at the situation where y′ and x appear next to each

other, and we simply swap them to remove the top edge.

To conclude the section, we observe that the converse to Theorem 174 does

not hold. In particular, 2P3 has 8 different enhanced letter graph representations (4

per colouring), up to moving the top/bottom edges between twin vertices.

8.2 Lettericity and wqo of quasi-chain graphs

It is shown in [KL11a] that quasi-chain graphs are not wqo under the induced

subgraph relation (and indeed, this also follows directly from the order preserving

embedding of permutations into quasi-chain graphs given in [Ale+21b]). To start

this section, let us provide a simple, explicit example of an infinite antichain in the

class.

Let Zn be the universal chain graph on 2n vertices, with the labelling given

in Figure 8.2a. Now let Qn be the graph obtained from Zn by deleting all edges of

the form (ai, bi+1) (those edges form a matching), then adding a pendant vertex to

each of a1 and bn, as shown in Figure 8.2b.

Lemma 176. (Qk)k≥4 is an infinite antichain of quasi-chain graphs with respect to

the induced subgraph relation.

154



b1

a1

b2

a2

b3

a3

b4

a4

b5

a5

b6

a6

(a) The universal chain graph Z6

b1
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a2

b3

a3

b4

a4

b5

a5

b6

a6

b′1

a′6

(b) The graph Q6 obtained from it

Figure 8.2: An infinite antichain of quasi-chain graphs

Proof. First, note that the graphs are indeed quasi-chain graphs. This follows

from the fact that the ordering a1, a2, . . . , an, a
′
n is good (and, by symmetry, so

is bn, bn−1, . . . , b1, b
′
1). Indeed, for i < j, aj has at most one private neighbour with

respect to ai, namely bj .

To see that the sequence (Qk)k≥4 is an antichain, let 4 ≤ m ≤ n, and label

the vertices of Qm as in Figure 8.2b, and the vertices of Qn by replacing as with

αs and bs with βs. Suppose ι : Qm → Qn is an induced subgraph embedding. By

symmetry and connectedness of Qm, we may assume ι maps a-vertices to α-vertices

and b-vertices to β-vertices, respectively.

Among ordered pairs of α-vertices with incomparable neighbourhoods, (α1, α2)

is the only one where the first vertex has 3 private neighbours with respect to the

second. This fact immediately forces ι(a1) = α1 and ι(a2) = α2. But then

ι(b2) = β2, since β2 is the only β-vertex non-adjacent to α1, implying that

ι(b3) = β3, since otherwise the image of b3 has no candidate neighbour for the

image of a3, implying that b1, b
′
1 are mapped to β1, β

′
1, implying that

ι(a3) = α3, since α3 is the only neighbour of β3 among not yet mapped vertices,

implying that

ι(b4) = β4, since β4 is the only β-vertex non-adjacent to α3 among not yet
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Figure 8.3: The double-chain graph D3

mapped vertices, etc.

Proceeding in this way, we conclude that ι(ai) = αi and ι(bi) = βi for all i ≤ m,

which is possible only if m = n.

Knowing that the full class of quasi-chain graphs is not wqo, a natural ques-

tion is to determine exactly what the obstacles to wqo are in this class. As a first

step towards its solution, let us identify the minimal obstacles to unbounded let-

tericity appearing within this class. For the reader’s ease, we recall here two facts

about lettericity that we are going to use.

Fact 177. For any graph G and vertex x of G, let(G) ≤ 2 let(G− x) + 1 ([Pet02]).

Fact 178. Chain graphs have lettericity at most 2 (see the previous section).

As we have seen before, the classM of graphs of degree at most one, and the

class M̃ of their bipartite complements, are minimal of unbounded lettericity (and it

is clear from the definition that they are quasi-chain graphs). We claim that, beside

M and M̃, there is only one more minimal class of unbounded lettericity among

quasi-chain graphs, defined as follows. As before, let Zn be the prime chain graph

on 2n vertices illustrated in Figure 8.2a. We construct double-chain graphs Dn as

follows: start with Z3n, then like in the construction of Q3n, delete all edges of the

form (ai, bi+1). Finally, delete all vertices whose index is divisible by 3. Dn can be

thought of as Zn, where we replace each vertical edge with a 2P2 – see Figure 8.3

for an illustration.

Let D be the class containing, for each value of n, the graph Dn and all

of their induced subgraphs. We note that the chain ordering inherited from the

starting graph Z3n is good in Dn, so that D is indeed a subclass of quasi-chain

graphs.2

2We remark that the class D is, up to some complementations, the cycles-in-a-chain construction
from Subsection 3.4.1. This gives an alternate proof for the next lemma.
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Lemma 179. D is a minimal hereditary class of unbounded lettericity.

Proof. We first show that any proper subclass of D has bounded lettericity. Indeed,

such a subclass is Dn-free for an appropriately large n, and any Dn-free graph G

contains at most n copies of induced 2P2s. This means we may remove at most

4n vertices from G to obtain a chain graph. Fact 178 and repeated application of

Fact 177 gives a bound on let(G) that only depends on n.

It remains to show that lettericity is unbounded in D. To see this, suppose

for a contradiction that the lettericity is bounded by k. The graph Dn consists of

n copies of induced 2P2s connected in a chainlike manner. Given a k-letter word

w representing Dn, we consider the subwords of w representing each of the 2P2s.

In particular, by the pigeonhole principle, for any t ∈ N, we may find an N large

enough such that t of the 2P2s in DN are represented by the same subword. Those

t copies of 2P2s induce a copy of Dt in DN whose letter graph representation only

uses 4 letters; in particular, since any Dt has such a representation, we may assume

k ≤ 4. A similar argument shows that for each Dn there must exist a representation

with letters a, b, c, d, where the four respective letter classes are (using the indexing

from Figure 8.3) A := {ai : i = 1 mod 3}, B := {bi : i = 1 mod 3}, C := {ai : i = 2

mod 3} and D := {bi : i = 2 mod 3}. Standard arguments show that, up to

symmetry, the decoder for this representation must be {(a, b), (a, d), (c, b), (c, d)}.
But even a single 2P2 cannot be expressed in this way – a contradiction.

We are ready for the main result of this section, which characterises classes

of bounded lettericity among quasi-chain graphs. In the proof, given two vertex-

disjoint bipartite graphs G1 = (A1, B1, E1) and G2 = (A2, B2, E2), we define the

skew-join of G1 with G2 as the graph (A1 ∪A2, B1 ∪B2, E1 ∪ E2 ∪A1 ×B2).

Theorem 180. Let X be a hereditary subclass of quasi-chain graphs. Then X has

bounded lettericity if and only if X excludes at least one graph from each of M,M̃
and D.

Proof. The “only if” direction is clear, since M,M̃ and D all have unbounded

lettericity. For the “if” direction, let X be a hereditary subclass of quasi-chain

graphs excluding a graph from each of the three classes. It suffices to show that the

classes Xs,t,n of (sP2, t̃P2, Dn)-free quasi-chain graphs have bounded lettericity for

all s, t, n ∈ N, since X is contained in such a class.

We prove the statement by induction on n. The statement is clearly true if

n = 1 for all s, t, since Xs,t,1 is a subclass of chain graphs, which have lettericity 2.
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Now suppose n ≥ 1, and let G = (A,B,E) ∈ Xs,t,n+1. By Theorem 173,

G = Z ⊗H, where Z is a chain graph, and E(H) ∩ E(Z), E(H) − E(Z) are both

matchings.

Let a1, . . . , ak be the vertices of A listed in non-increasing order with respect

to their neighbourhoods in Z. Each vertex ai gives a partition of A into a “left”

part Ali = {a1, . . . , ai} and a “right” part Ari = {ai+1, . . . , ak}, and a partition of B

into Bl
i = B − N(ai) and Br

i = N(ai). This produces a cut of Z into two smaller

chain graphs Z li := Z[Ali ∪Bl
i] and Zri := Z[Ari ∪Br

i ], and it is not difficult to see Z

is the skew-join of Z li with Zri , since Ali is complete to Br
i , while Ari is anticomplete

to Bl
i. Similarly, we obtain a cut of G into quasi-chain graphs Gli and Gri . We will

refer to those cuts as the cuts induced by ai.

These cuts are very neat in the chain graph Z, but how do they look in the

original quasi-chain graph G? Specifically, where do induced 2P2s in G appear with

respect to these cuts? The first thing to note is that, for any given cut, the edges

between Ari and Bl
i in G belong to E(H) − E(Z), and thus induce a matching.

Since G is sP2-free, there are at most s − 1 of them. Similarly, there are at most

t− 1 non-edges in G between Ali and Br
i . We call the (at most 2s+ 2t− 4) vertices

incident to those edges or non-edges i-dirty. We call an induced 2P2 in G i-bad if it

does not contain any i-dirty vertex (the reasoning being that the bad 2P2s do not

simply disappear when removing dirty vertices). We now claim that any i-bad 2P2

lies completely in Gli or in Gri (we call it left i-bad or right i-bad accordingly). To

see that this is indeed the case, we simply note that any 2P2 with vertices in both

Gli and Gri needs to have either a crossing edge between Ar and Bl, or a crossing

non-edge between Al and Br. Finally, we call the cut induced by ai perfect if there

are no i-bad 2P2s, good if there is both a left i-bad 2P2 and a right i-bad 2P2, and

bad if it neither good nor perfect. There are three possible cases:

i) There is an i such that the cut induced by ai is perfect. In this case, we note

that “cleaning the cut” by removing all i-dirty vertices from G yields a chain

graph G′. But we have removed a bounded number of vertices, hence Fact 178

and repeated application of Fact 177 give an upper bound on the lettericity of

G that only depends on s and t.

ii) There is an i such that the cut induced by ai is good. Then like before, cleaning

the cut yields a quasi-chain graph G′ which is a skew-join of the graphs G′l :=

G′ ∩ Gl and G′r := G′ ∩ Gr. By construction, G′l and G′r each have a 2P2;

since G (and hence G′) is Dn+1-free, it follows that G′l and G′r are both Dn-

free, and the inductive hypothesis applies. From the representations of G′l
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and G′r with a bounded number of letters, it is easy to construct one for their

skew-join G′, then use that representation to construct one for G like in the

previous case.

iii) Every cut is bad. This means that each ai has either a left or a right i-bad

2P2 (but not both). We note that a1 must have a right 1-bad 2P2, while ak

must have a left k-bad 2P2. Moreover, if a 2P2 is left, respectively right i-bad,

then it is left j-bad for any j ≥ i, respectively right j-bad for any j ≤ i. This

implies that there is one specific i0 such that a1, . . . , ai0 all have right bad

2P2s, while ai0+1, . . . , ak all have left bad 2P2s. We claim that no 2P2 can

be simultaneously i0- and i0 + 1-bad. Indeed, both vertices ai1 , ai2 ∈ A of

such a 2P2 would simultaneously need i1, i2 > i0 and i1, i2 ≤ i0 + 1, which is

impossible. It follows that cleaning both of the cuts induced by ai0 and ai0+1

leaves us with a chain graph, and we proceed as in the first case.

Theorem 180 gives us a characterisation of subclasses of quasi-chain graphs

of bounded lettericity. All of those subclasses are wqo, but a wqo class need not have

bounded lettericity – for instance, the minimal classesM,M̃ and D themselves are

wqo. For M and M̃, this is a special case of Theorem 2 from [KL11b]. As our last

result from this chapter, let us now show the claim for D.

Theorem 181. D is wqo by induced subgraphs.

Proof. It suffices to produce an order-preserving surjection from a wqo poset (X,≤)

to D ordered by the induced subgraph relation (this fact is standard – see, e.g.,

[VW11], Proposition 3.1).

Our poset X will be the set of words over a finite alphabet of incomparable

letters, ordered under the subword relation – wqo of this poset is a special case of

Higman’s Lemma. Note that a coloured 2P2 has, up to isomorphism, 9 distinct

non-empty induced subgraphs. Consider an alphabet Ω consisting of incomparable

letters A1, . . . , A9, where each letter corresponds (arbitrarily) to one of those induced

subgraphs. We define a map ϕ from the set Ω∗ of words over Ω to graphs inductively,

by defining ϕ(Ai) to be the corresponding induced subgraph of 2P2, and ϕ(Aiw
′) to

be the skew-join of ϕ(Ai) with ϕ(w′) (where Aiw
′ denotes the concatenation of Ai

with the word w′).

We note that the image of any word of length n is an induced subgraph of

Dn (see Figure 8.3), hence ϕ(Ω∗) ⊆ D. Since any induced subgraph of Dn can be
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obtained in this way, ϕ is surjective. Finally, it is straightforward to check that ϕ

is order-preserving.
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Chapter 9

Miscellanea

9.1 Linear Ramsey numbers versus co-chromatic num-

ber

In this section, we provide a counterexample which appeared in [Ale+21c]. To give

it some context, let us briefly mention two relevant conjectures concerning the sizes

of homogeneous sets in graphs from certain classes. The first is the Erdős-Hajnal

conjecture:

Conjecture 182 (The Erdős-Hajnal conjecture [EH89]). For any graph H, there

exists a δH > 0 such that all H-free graphs on n vertices have a homogeneous set of

size Ω(nδH ).

The conjecture thus states that, when we forbid any graph as an induced

subgraph, we should be able to find homogeneous sets of polynomial size. This is in

contrast to the class of all graphs: the standard lower bounds on Ramsey numbers

imply that in general, it is only possible to find homogeneous sets of logarithmic

size. For a survey on this conjecture, the reader is invited to consult [Chu13].

A related conjecture is the so-called Gyárfás-Sumner conjecture, which in its

original form [Gyá75; Sum81] states that forbidding a tree and a clique produces a

class of bounded chromatic number. Chudnovsky and Seymour showed [CS14] that

this conjecture is equivalent to the following:

Conjecture 183 (The Gyárfás-Sumner conjecture, alternative formulation). For a

finite set S of graphs, the following are equivalent:

� Free(S) has bounded co-chromatic number.

� S contains a disjoint union of cliques, a complete multipartite graph, a forest

and the complement of a forest.
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To see that Conjectures 182 and 183 do indeed share some similarities, we

note that bounded co-chromatic number does in fact tell us something about the

size of homogeneous sets. To make this precise, we first introduce some terminology.

For a class X , we consider the Ramsey numbers restricted to X . More specifically,

the number RX (p, q) is the smallest natural n such that every graph in X on at

least n vertices contains either a clique of size p or an independent set of size q (thus

the usual Ramsey numbers are the Ramsey numbers RX , with X the class of all

graphs). We say Ramsey numbers are linear in a class X if RX (p, q) = O(p + q).

We note that this terminology is not standard in the literature. Working with our

terminology has the advantage that exact values can be written explicitly (which

we often do in [Ale+21c]); however, when studying asymptotics, the more popular

perspective consists of looking for the size of the largest homogeneous set. In that

terminology, a class X has linear homogeneous subgraphs if any graph in X on n

vertices has a homogeneous set of size Θ(n). As a “dictionary” between the two

terminologies, we give the following lemma:

Lemma 184. Let X be a class of graphs. Then graphs in X have linear homoge-

neous subgraphs if and only if Ramsey numbers are linear in X. More generally, for

any 0 < δ ≤ 1, the following two statements are equivalent:

� There is a constant A such that max{α(G), ω(G)} ≥ A · |V (G)|δ for every

G ∈ X.

� There is a constant B such that RX(p, q) ≤ B(p+ q)
1
δ .

Proof. The second claim reduces to the first one when δ = 1, so we just prove the

stronger claim.

For the first implication, suppose there exists a constant A such that

max{α(G), ω(G)} ≥ A · |V (G)|δ

for all G ∈ X. Let H ∈ X, let p, q ∈ N, and suppose that |V (H)| ≥
(p+q
A

) 1
δ . Then

max{α(H), ω(H)} ≥ A · |V (H)|δ ≥ p+q, which means that H is guaranteed to have

an independent set of size p or a clique of size q, and this proves the first direction

(we can put, e.g., B = A−
1
δ ) in the statement of the lemma.

Conversely, suppose there exists a positive constant B such that for any

p, q ∈ N and G ∈ X, if |V (G)| ≥ B(p + q)
1
δ , then G has an independent set of size

p or a clique of size q. Let H be an arbitrary graph in X and let t be the largest

integer such that |V (H)| ≥ 2
1
δBt

1
δ = B(t + t)

1
δ . By the above assumption, H has

a clique or an independent set of size t, i.e., max{α(H), ω(H)} ≥ t. Notice, by
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definition of t, we have |V (H)| ≤ 2
1
δB(t + 1)

1
δ , i.e., |V (H)|δ ≤ 2Bδ(t + 1). Hence

if t = 0, then |V (H)|δ ≤ 2Bδ and therefore max{α(H), ω(H)} ≥ |V (H)|δ
2Bδ

≥ |V (H)|δ
4Bδ

.

On the other hand, if t ≥ 1, then |V (H)|δ ≤ 2Bδ(t + 1) ≤ 4Bδt and therefore

max{α(H), ω(H)} ≥ |V (H)|δ
4Bδ

, and putting, e.g., A = 1
4Bδ

concludes the proof.

We now note that, if a class X has co-chromatic number bounded by a

constant C, then the largest homogeneous set in each graph has at least 1
Cn vertices

(where n denotes the number of vertices in the whole graph). In other words,

bounded co-chromatic number immediately implies linear homogeneous sets. With

a little bit more work (omitted here, but shown in [Ale+21c]), we obtain that, among

classes defined by finitely many minimal forbidden induced subgraphs, those with

linear Ramsey numbers must satisfy the second point in Conjecture 183. Thus in the

universe of classes defined by finitely many minimal forbidden induced subgraphs,

according to Conjecture 183, the three notions – bounded co-chromatic number,

linear Ramsey numbers, and the avoidance of the four prescribed induced subgraphs

– should coincide.

Our main result in this section is a counterexample showing that those no-

tions do not coincide in the universe of all classes. Specifically, our example dis-

tinguishes between bounded co-chromatic number and linear Ramsey numbers in a

class.

To construct this counterexample, we consider the Kneser graphs KGa,b: the

vertices are b-subsets of a set of size a, and two vertices are adjacent if and only

if the corresponding subsets are disjoint. A well-known result due to Lovász says

that, if a ≥ 2b, then the chromatic number χ(KGa,b) is a− 2b+ 2 [Lov78].

Let us denote by X the hereditary closure of the family of Kneser graphs

KG3n,n, n ∈ N, i.e., X = {H : H is an induced subgraph of KG3n,n, for some n ∈
N}.

Theorem 185. The class X has linear Ramsey numbers and unbounded co-chromatic

number.

Proof. First, we note that by Lovász’s result stated above, it follows that χ(KG3n,n) =

3n−2n+ 2 = n+ 2. Also, it is not hard to see that the the size of the biggest clique

in KG3n,n is 3. It follows that the co-chromatic number of KG3n,n is at least n+2
3 .

As a result, the co-chromatic number is unbounded for this class.

Now consider any induced subgraph H of KG3n,n. We will show that α(H) ≥
|V (H)|

3 . Indeed, the vertices of the Kneser graph in this case are n-element subsets

of {1, 2, . . . , 3n}. For each i ∈ {1, 2, . . . , 3n} let Vi be the set of vertices of H
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containing element i. Then, as each vertex is an n-element subset, it follows that∑3n
n=1 |Vi| = n × |V (H)|. Hence, by the Pigeonhole Principle, there is an i such

that |Vi| ≥ |V (H)|
3 . As Vi is an independent set, it follows that α(H) ≥ |V (H)|

3 . This

implies that for any H ∈ X we have |V (H)| ≤ 3α(H) ≤ 3(α(H)+ω(H)), and hence

the Ramsey numbers are linear in the class X .

An interesting direction of further research is to try and better understand

the relationship between linear Ramsey numbers on the one hand, and bounded

co-chromatic number on the other. For instance, it would be interesting to produce

other examples like the one above – perhaps simpler ones. Alternatively, as an

additional step in the Gyárfás-Sumner conjecture, we could try to ensure that the

two notions coincide in the universe of classes defined by finitely many minimal

forbidden induced subgraphs.1

9.2 The girth of matched k-partite graphs

We start by introducing some terminology.

Definition 186. A matched k-partite graph is a k-partite graph in which the edges

between any two parts induce a perfect matching (and in particular, all parts have

the same size).

Fix labels from a common index set X for the vertices in each part. For

i < j, the matching between sets Ai and Aj can be interpreted as a permutation

πi,j ∈ SX , where πi,j sends the label of a vertex in Ai to the label of its matched

vertex in Aj . We can extend this notation to any pair (i, j) by setting πj,i = π−1
i,j ,

and πi,i = 1SX . This motivates the following definition.

Definition 187. Call a collection (πi,j)1≤i,j≤k of permutations of X symmetric if

πj,i = π−1
i,j , and πi,i = 1SX .

From now on, we will denote a matched k-partite graph by (G, k,X, P ) where

G is a k-partite graph with k-partition V (G) = ∪̇ki=1Ai, X is a common index set

for the vertices in each bag, and P = (πi,j)1≤i,j≤k is a symmetric collection of

permutations of X describing the matchings.

1A place to start would be to confirm that the class X from Theorem 185 is not defined by
finitely many minimal forbidden induced subgraphs; the author could not find relevant results in
the literature.
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Remark 188. We could have equivalently restricted ourselves to the “simpler”

case X = [n]. The reason we allow more general indexing sets is that the additional

structure of X will make some examples easier to write.

We would like to investigate the girth of matched k-partite graphs. In par-

ticular:

Question. Given k, g ∈ N with g ≥ 3, does there exists a matched k-partite graph

(G, k,X, P ) of girth at least g?

The answer to this question is trivially “yes” for k = 1, 2 (for an acyclic

graph, we define its girth to be infinity). Intuitively, we may expect the answer to

be “yes” in general, since increasing the size of X (i.e., the number of vertices in

each part) gives us a significant amount of freedom. The purpose of this section is

to show that this is indeed the case.

Note that any walk in (G, k,X, P ) is uniquely determined by its starting

vertex, and the sequence of independent sets it visits. We can thus identify walks

with pairs (x,w = i1i2 . . . ir), where x is the label of the starting vertex, and w is

the sequence of indices of the visited sets (i1 is the label of the set we start in).

Since every set is independent, no two consecutive entries of the sequence are the

same.

With this set-up, we see that only certain walks may represent cycles in G.

Indeed, a walk (x,w = i1i2 . . . ir) is closed if and only if i1 = ir, and x is a fixed point

of the permutation πw, defined as the composition πir−1,irπir−2,ir−1 . . . πi2,i3πi1,i2 .

And of course, any closed walk that does not visit any edge twice must contain a

cycle. This motivates the following definition:

Definition 189. Call a walk in G (and the corresponding sequence) potentially

cyclic if i1 = ir, and is 6= is+2 (indices modulo r) for any s.

With all of this in mind, to answer our original question, it suffices to answer

the following one in the positive:

Question. Given k, g ∈ N, is it possible to find a set X and a symmetric collection

P = (πi,j)1≤i,j≤k of permutations in SX such that for any potentially cyclic sequence

w of length at most g with entries in [k], πw has no fixed points?

Remark 190. Any cycle of length g can be represented by different potentially

cyclic sequences (we can start our walk at any vertex in the cycle, and go in either

direction). Define an equivalence relation w ∼ w′, where two potentially cyclic
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sequences are equivalent if they would represent the same cycle (i.e., if one of them

can be obtained from the other by reversing the order if necessary, and by repeatedly

applying the rule i1i2 . . . ir−1i1 7→ i2 . . . ir−1i1i2). If w ∼ w′, then πw has fixed points

if and only if π′w has fixed points. Hence it suffices to check that each potentially

cyclic sequence has an equivalent sequence whose corresponding permutation has

no fixed points.

We begin by pointing out that triangles can always be avoided.

Lemma 191. For any k ∈ N, there exists a matched k-partite graph (G, k,X, P ) of

girth at least 4.

Proof. If k ≤ 2, this is trivial, so we may assume that k ≥ 3. Put X = Zk−1, the

integers modulo k − 1. For 1 ≤ i < j ≤ k, put πi,j(x) = x + i − 1. Suppose G has

a triangle. Without loss of generality, it is represented by a walk (x, i1i2i3i1) where

i1 < i2 < i3. The condition that x is fixed by the permutation associated to this

walk amounts to saying that x+ i1 − 1 + i2 − 1− i1 + 1 = x mod (k− 1), i.e., that

i2 = 1. But by assumption, i2 > i1 ≥ 1, leading to a contradiction.

Now let us look at what happens when we fix k and try to avoid small cycles.

We start with k = 3.

Lemma 192. For any g ≥ 3, there exists a matched 3-partite graph of girth at least

g.

Proof. Note any cycle in G can be represented by a walk (x, 123123 . . . 1231). Put

X = Zdg/3e, and set π1,2 = π1,3 = π2,3 : x 7→ x + 1. For any walk (x,w =

1231), πw(x) = x+ 1. The fixed point condition tells us that the cycle is a concate-

nation of dg/3e such walks, which means its length is 3dg/3e ≥ g, as required.

For the case k = 3, we managed to construct an example where all the

permutations commute with each other (i.e., the subgroup of SX generated by P is

abelian). For k ≥ 4, constructing examples is not as straightforward:

Lemma 193. If k ≥ 4 and the subgroup 〈P 〉 of SX generated by P is abelian, then

(G, k,X, P ) has a cycle of length at most 10.

Proof. Let w = 12432134231. This is a potentially cyclic sequence of length 11, and

since all elements of P commute, πw = 1SX . In other words, a walk starting at any

vertex in A1 and visiting the bags in the order given by w satisfies the fixed point

condition. Any such walk must contain a cycle of length at most 10.
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Remark 194. In fact, the conclusion holds if we just assume there are 4 bags

Ais (1 ≤ s ≤ 4) such that the subgroup generated by the permutations πis,it with

1 ≤ s, t ≤ 4 is abelian. This tells us that if we want to find a matched k-partite

graph of high girth, we want to look for symmetric collections of permutations whose

generated subgroups of SX are not even “locally” abelian, in the sense that for any

4 bags, the permutations associated to the matchings between the bags cannot all

commute with each other.

In order to construct examples for general k, we need to find a symmetric

set of k2 permutations of a certain set X such that no word of length less than

g coming from a potentially cyclic sequence has any fixed points. We will borrow

some ideas from group theory. The author is grateful to Alex Wendland for a fruitful

discussion which pointed him towards the required group theoretic result. We need

some standard definitions (see, e.g., [Coh89]):

Definition 195. The free group FS over a set S of generators consists of all reduced

words that can be built from members of S and their inverses (a reduced word is

one that does not contain xx−1 as a subword for any x ∈ S). The group operation

is word concatenation.

Definition 196. A group G is called residually finite if for any element x that is

not the identity in G there is a homomorphism ϕ from G to a finite group such that

ϕ(x) 6= 1.

The main result we will use is the following:

Proposition 197 ([Coh89], pp. 7, 11). Free groups are residually finite.

Proof. We follow the proof given in [Coh89]. Let S = (xi)i∈I be a generating set,

and let w = xε1i1x
ε2
i2
. . . xεnin , where εi = ±1, and if ir = ir+1 then εr = εr+1 (i.e., w

is a reduced word in FS). We give a homomorphism f : FS → Sn+1 that does not

send w to 1. More precisely, we specify images for the xi in such a way that f(w)

sends 1 to n + 1. To achieve this, we want f(xir) to send r to r + 1 if εr = 1, and

r + 1 to r if εr = −1. A priori, there might be conflicts where xir = xi′r = xi, and

f(xi) sends r to two different numbers. This can only happen if xir = xir−1 , and

εr = 1 while εr−1 = −1. This is prevented by the fact that w is reduced. Note as

well that so far, two different numbers are mapped to the same s if xis−1 = xis = xi,

and εs−1 = 1 while εs = −1. This is again impossible, since w is reduced. We can

therefore extend each f(xi) to an element of Sn+1 if xi appears in w, and send the

xi not appearing in w to 1Sn+1 .
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In our setting, the proof of this theorem guarantees us that given a fixed

potentially cyclic sequence w of length g with entries in [k], we are able to find

a symmetric collection of permutations P ⊆ Sg+1 labelled by [k]2 such that the

composition of permutations corresponding to w is not the identity. This is a step

in the right direction. As a corollary to the theorem, we show that we can in fact

do this simultaneously for any finite number of sequences.

Corollary 198. Suppose x and y are two reduced non-identity elements in G =

FS of lengths n1 and n2 respectively. There is a homomorpshism ϕ from G to

Sn1+1 × Sn2+1 such that ϕ(x), ϕ(y) 6= 1.

Proof. From the proof of the theorem, we have homomorphisms ϕ1 : G→ Sn1+1 and

ϕ2 : G→ Sn2+1 such that ϕ1(x) 6= 1 and ϕ2(y) 6= 1. Define ϕ : G→ Sn1+1 × Sn2+1

by ϕ(z) := (ϕ1(z), ϕ2(z)). ϕ has the desired property.

In other words, we can guarantee that none of the permutations coming from

potentially cyclic walks of length less than g are the identity (since there are finitely

many such walks for fixed k). The last step is going from this to guaranteeing that

the permutations do not actually have any fixed points. This can be done via the

following “trick”:

Remark 199. Suppose that a permutation π of X is not the identity. Then the

regular action of π on SX (given by π · ρ := π ◦ ρ) has no fixed points.

This leads us to the main result of this section:

Theorem 200. Given k, g ∈ N with g ≥ 3, there exists a matched k-partite graph

(G, k,X, P ) of girth at least g.

Proof. To each potentially cyclic sequence w = i1i2 . . . ir of length less than g with

entries in [k], we associate as before a word of permutations πw := πir−1,irπir−2,ir−1 . . .

πi2,i3πi1,i2 . We need to find a set X, and a symmetric collection P of permutations of

X labelled by [k]2 such that none of the πw have any fixed points. Set X =
∏
πw

S|w|,

where w runs over potentially cyclic sequences of length less than g, with entries in

[k]. By the proposition, corollary and remark above, we can construct P ⊆ SX with

the desired properties.

While the proof shows existence of matched k-partite graphs of high girth,

the set X we have constructed gets very large very quickly (as a function of k and g).

In other words, we need many vertices per bag to achieve high girth. An interesting

question is how small we can make X given k and g.
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Another potential further direction concerns the chromatic number of matched

k-partite graphs. We note that it is not, in general, equal to the number of parts.

An example is given by a matched k-partite graph with k = 3, X = Z2, and

π1,2 = π1,3 : x 7→ x, and π2,3 : x 7→ x + 1. One can check that G is isomorphic to

C6, with chromatic number 2. A natural follow-up question is: what can we say

about the chromatic number given X and P? In particular, is it possible to achieve

simultaneously large chromatic number and large girth among matched k-partite

graphs?

9.3 Of two trees and 2-trees

Let n ∈ N, and let T1 = ([n], E1) and T2 = ([n], E2) be two trees with vertex set [n].

Let ϕ ∈ Sn (the symmetric group on n elements), and for sets U ⊆ [n] and E ⊆
(

[n]
2

)
,

write ϕ(U) := {ϕ(i) : i ∈ U} and ϕ(E) := {{ϕ(i), ϕ(j)} : {i, j} ∈ E} respectively.

The union of T1 and T2 along ϕ is the graph Gϕ(T1, T2) := ([n], ϕ(E1) ∪ E2). One

way of visualising this is to think of T1 and T2 as trees on disjoint copies of [n], and

then “glue together” each vertex of T1 and its image via ϕ in T2. See Figure 9.1 for

an illustration.

One might hope that, given two trees T1 and T2, the graph Gϕ(T1, T2) will

behave nicely for an appropriate choice of ϕ. To describe this expected “niceness”,

recall the definition of partial k-trees:

Definition 201. A k-tree is a graph that can be obtained by starting with Kk and

repeatedly adding vertices and connecting them to a clique of size k. A partial k-tree

is a (not necessarily induced) subgraph of a k-tree.

Note that k-trees are analogous to usual trees (which are the same as 1-trees):

the vertices we add are generalisations of leaves.

Bodlaender’s survey [Bod98] and the references therein provide several equiv-

alent characterisations of partial k-trees. The two that matter to us are the following:

� they are the graphs of treewidth at most k (though we will not discuss the

usual definition of treewidth here);

� they are the subgraphs of chordal graphs2 with maximum clique size k + 1.

Playing around with some simple examples might lead the reader to believe

that pairs of trees can always be glued together in a nice way. For instance, gluing

2A chordal graph is a graph with no induced cycle on 4 or more vertices.
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(b) The tree T2
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(c) Gϕ(T1, T2) with ϕ = 123456789
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(d) Gϕ(T1, T2) with ϕ = 675831294

Figure 9.1: The union of two trees along different permutations

a star to any tree always produces a partial 2-tree. To see this, note that the union

Gϕ(K1,n−1, T ) where T is a tree on n vertices is determined by the image of the

centre of the star via ϕ. Let x be this image, and root T at it. We may now easily

construct a 2-tree containing Gϕ(K1,n−1, T ): start with x and any of its children in

T ; then add all of the other children of x, connecting each of them to a previous child

and to x. Once we are done with the children of x, recursively add each successive

level, connecting each vertex to its parent, and to x. It is clear that the graph

constructed in this way is a 2-tree, and that it contains Gϕ(K1,n−1, T ).

Another simple argument shows that a path Pn can always be glued to a

given tree T to produce a partial 2-tree (just root T , and glue the path in the order

given by a depth-first search on T ). Note, however, that this time, not every ϕ

produces a partial 2-tree! For instance, P4 can be glued to itself in a “bad” way (see

Figure 9.2). Indeed, any chordal graph containing K4 has clique size greater than

3, so the gluing from the figure does not produce a partial 2-tree. Nevertheless, it is

tempting to hope that some ϕ should work given two fixed trees. This is, however,

not the case. It turns out that there are pairs of trees for which no union produces a
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1

32

Figure 9.2: G2413(P4, P4) = K4

partial 2-tree. In fact, it is even possible to construct trees for which any union has

arbitrarily large clique-width, and thus arbitrarily large treewidth,3 but the proof is

long, and we do not include it here.

Instead, in this section, we will investigate a subclass of trees which do admit

partial 2-tree unions. A caterpillar is a tree in which all vertices are within distance

1 of a path. The main result from this section is the following:

Theorem 202. Let T1 and T2 be two caterpillars on n vertices. Then there exists

ϕ such that Gϕ(T1, T2) is a partial 2-tree.

Proof. We start by (re-)labelling the caterpillars. For each of them, let x1, x2, . . . , xr

be the vertices in the central path (that is, the xi are the non-leaf vertices, and

consecutive xi are adjacent). Order the vertices by concatenating, for each i =

1, . . . , r, the leaves pendant to xi followed by xi itself. Then assign increasing labels

to the vertices, in this order. This is illustrated in Figure 9.3.

We now claim that that, with this labelling, the union of T1 and T2 along the

identity is chordal and K4-free; from the equivalent characterisations given above,

this is enough.

Let us show our claim. Note that the labelling of the caterpillars satisfies

the following properties:

(*) a vertex with label i has at most one neighbour with label j > i;

(**) if two vertices with labels i < j are adjacent, then for any s with i ≤ s < j,

the vertex with label s is adjacent to the vertex with label j.

Let us now colour the edges of T1 red and the edges of T2 black (like in the

figures), and let G = Gϕ(T1, T2) be their union along the identity ϕ (in G, edges are

allowed to be both red and black). We now note:

3Bounded treewidth implies bounded clique-width [LR07a].
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Figure 9.3: Two relabelled caterpillars T1 and T2

� G is K4-free. Indeed, it cannot contain a K4, since property (*) would imply

the vertex in the K4 with the smallest label has at most one black edge and

one red edge to vertices with greater labels, yielding a contradiction.

� G is chordal. To see this, consider a cycle in G, and let x be the vertex in the

cycle with the smallest label. Let y and z be its neighbours in the cycle, and

suppose that y has label smaller than z. Then by property (**), y must be

adjacent to z, and thus the cycle either has length 3, or is not induced.

While there are examples whose unions always have large treewidth, it is

not completely clear what causes this to happen. It is therefore interesting to see if

adding additional restrictions causes trees to have unions with small (not necessarily

2) treewidth. For instance, we can conjecture:

Conjecture 203. Let T1 and T2 be two trees whose vertices lie within distance t

from a central path. Then there exists f(t) and a permutation ϕ such thatGϕ(T1, T2)

has treewidth at most f(t).

There is another interesting subclass of trees for which we can investigate

this question. We may think of a caterpillar as a “path of stars”. A spider is a tree

which has one vertex with degree at least 3, and all other vertices of degree at most

2. In other words, we may think of it as a “star of paths”.

Conjecture 204. Let T1 and T2 be two spiders. Then there exists ϕ such that

Gϕ(T1, T2) is a partial 2-tree.
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“Twin-width II: small classes” (2020). Preprint, available at https:

//arxiv.org/abs/2006.09877.

[Bon+20b] E. Bonnet, E. Kim, S. Thomassé, and R. Watrigant. “Twin-width I:
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[DK05] R. Diestel and D. Kühn. “Graph minor hierarchies”. Discrete Appl.

Math 145 (2005), pp. 167–182.

[DM41] B. Dushnik and E. Miller. “Partially Ordered Sets”. American J. Math.

63.3 (1941), pp. 600–610.
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[Pet02] M. Petkovšek. “Letter graphs and well-quasi-order by induced sub-

graphs”. Discrete Math. 244 (2002), pp. 375–388.

[Rad54] R. Rado. “Partial well-ordering of sets of vectors”. Mathematika 1.2

(1954), pp. 89–95.

[Ram30] F. P. Ramsey. “On a problem of formal logic”. Proceedings of the Lon-

don Mathematical Society 30 (1930), pp. 264–286.

[Rob69] F. S. Roberts. “On the boxicity and cubicity of a graph”. Recent

Progress in Combinatorics (1969), pp. 301–310.

[RS04] N. Robertson and P. Seymour. “Graph Minors. XX. Wagner’s conjec-

ture”. J. Combinatorial Theory B 92 (2004), pp. 325–357.
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