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Abstract—Cloud computing systems (CCSs) enable the sharing
of physical computing resources through virtualisation, where a
group of virtual machines (VMs) can share the same physical
resources of a given machine. However, this sharing can lead
to a so-called side-channel attack (SCA), widely recognised as
a potential threat to CCSs. Specifically, malicious VMs can
capture information from (target) VMs, i.e., those with sensitive
information, by merely co-located with them on the same physical
machine. As such, a VM allocation algorithm needs to be cognizant
of this issue and attempts to allocate the malicious and target VMs
onto different machines, i.e., the allocation algorithm needs to
be security-aware. This paper investigates the allocation patterns
of VM allocation algorithms that are more likely to lead to a
secure allocation. A driving objective is to reduce the number
of VM migrations during allocation. We also propose a graph-
based secure VMs allocation algorithm (GbSRS) to minimise SCA
threats. Our results show that algorithms following a stacking-
based behaviour are more likely to produce secure VMs allocation
than those following spreading or random behaviours.

Index Terms—Cloud computing, side-channel attacks, virtual
machine allocation

I. INTRODUCTION

The paradigm of cloud computing systems (CCSs) focuses
on sharing the physical computing resources, e.g., CPU and
RAM, among cloud users through virtualization technology.
Virtualization allows cloud users to access the computing
resources hosted on physical machines (PMs) through virtual
machines (VMs) [1]. As a result, sharing physical computing
resources leads to security threats among co-located VMs in
CCSs [2].

In particular, we consider the side-channel attacks (SCAs),
which can occur when a malicious VM shares the same PM
with a target VM, a VM that contains sensitive information.
The SCAs depends on collecting related information about
the co-located VMs, such as execution time through a cache-
based attack, then analysing the collected bits of information
for profiling and attacking the target VMs. Subsequently, the
impact of SCAs expands from software to hardware level. [3].
As such, and to overcome the SCAs, we focus on developing
an algorithm that allocates the malicious and targets VMs on
distinct PMs, i.e., the allocation algorithms avoid malicious co-
location. Therefore, in this paper, we focus on producing a
secure VMs allocation that avoids malicious co-residency.

In our previous work [4], we address the issue of identifying
the VMs with malicious or normal behaviour; thus, isolating
them from other VMs. Moreover, we assume that the cloud
service provider (CSP) can analyse the behaviours of the VMs
using a learning model and categorise them into three prede-
fined classes, malicious, target and normal VMs. Then, allocate
the VMs based on the outcome of the classification from the
learning model. Classifying the VMs depends on detecting the
malicious behaviour of cloud users by analysing the abnormal
activities of their VMs, or other computing components that
they utilised [5].

The main contributions of this paper are as follows: (i) we
consider several VM allocation algorithms and investigate their
ability to return a secure allocation potentially. The three classes
of algorithms we study are (a) spreading, (b) stacking and (c)
random VMs allocation behaviours. The spreading behaviour
will attempt to spread the VMs across all the available PMs,
e.g., round-robin fashion. On the other hand, the stacking will
attempt to stack VMs on PMs, possibly resulting in fewer PMs
being used, e.g., a Bin-Packing algorithm. Finally, the random
allocation behaviour allocates the VMs to PMs randomly, as
long as the resources are available at that PM. Moreover,
(ii) we propose a secure graph-based stacking algorithm (Gb-
SRS) to obtain a secure VM allocation in the cloud system.
GbSRS follows a stacking-based behaviour, similar to bin-
packing; however, bin-baking is not classified as a secure-
aware algorithm which requires adaptation to be secure [6].
Our algorithm considers the outcome of the VMs behaviour
analysis and the load correlation of the resources during the
allocation. Additionally, (iii) we study the impact of several
factors on the quality of the VM allocation, such as VMs
arrival time, the proportion of specific VM types and the
PMs resources structure (i.e., how their available resources
vary during allocation). We simulate our allocation algorithms
extensively under several suitable scenarios. Our results show
that our proposed algorithm outperforms state-of-the-art VM
allocation algorithms in terms of security.

The paper is structured as follows: We present a survey of
the literature and related work in Section II. We present our
system model and a formalisation of the problem we focus on
in Section III. We develop our algorithms in Section IV, and



we present their results in Section V. We conclude the paper
in Section VI.

II. RELATED WORK

The paper aims to develop a secure VM allocation algorithm
in CCSs to defend against SCAs by mitigating the chance of
malicious co-residency. This paper is based on our previous
work [4], where we studied the problem of the VMs allocation
when they are independent of each other. However, in this
paper, we will consider the dependent VMs, represented as
graphs, to examine the effect of secure allocation on the graph-
based allocation.

The areas that tackled SCAs focused on either finding a so-
lution logically on the VMs level or physically on the hardware
level. As such, some areas focus on VMs clustering during the
allocation by grouping the VMs based on specific predefined
criteria. For example, in [7], a group-based allocation policy
was proposed to create a balance between optimizing the
resources and obtaining a secure VM allocation. Moreover, in
[8], they group the VMs based on risk factors obtained from
network connectivity between the VMs or the PMs hosting
them. While in [9], they group the VMs and allocate them based
on conflict-free groups between VMs. In other words, a VM has
a minimum conflict with the other VMs in which they share
the same PM. Similarly, some solutions aim to allocate the
VMs based on predefined security standards or controls [10].
Further, in some cases, based on a user security profile defined
by the user [6]. For instance, [11] proposed a method that places
the VMs allocation process mainly by maintaining the same
security standard level of the shared VMs. Furthermore, the
work in [12] aims to migrate the VMs while ensuring that the
VMs hosted on the same PM share the same security level.

On other domains, [13] and [14] focus on finding an allo-
cation, or migration, for the VMs to limit the time of VMs
co-location. However, this requires the malicious VM to obtain
a co-location with the target VM in a considerable amount
of time. Thus, these algorithms try to minimise this time of
VMs sharing the same PM, and therefore, migrate the VMs
that trigger the time limit.

In other areas, in [15] and [16], they focused on modifying
the hardware structure of the CCSs to minimise the leakage
information through the side channel. Finally, some researches
focus on developing an algorithm that manipulates the schedul-
ing component of the cloud system. For example, in [17], an
algorithm deliberately delays the VMs arrival to a specific
time to reduce the chance of being allocated with malicious
VMs. While in [18], their algorithm tries to migrate the VM
frequently to keep tracking the target VMs difficult to the
malicious VM. Furthermore, some considered factors that affect
the VM allocation, such as VMs number [19]. Alternatively,
some consider an optimisation-driven solution to tackle this
issue and obtain a secure allocation [20].

III. VIRTUAL MACHINE ALLOCATION MODEL

In this section, we present the VMs allocation model that we
assume in this paper. The model includes the PMs architecture

and VMs relation, which we view as a graph-based architecture.
First, the PMs architecture, or data centre topology, is modelled
as a Fat-Tree architecture to represent the relation between
VMs, PMs and network components [21]. Second, unlike our
previous work in [4], in this paper represent the VMs relation
as a weighted undirected graph, representing the relationships
and interactions between VMs.

A. System (Physical) Model

We assume that the CCS is structured as a Fat-Tree archi-
tecture, with three layers of switches: a core switch Sc, a set
of aggregation switches Sa and a set of edge switches Se [22].
The edge switch s ∈ Se connects the PMs directly and also
connects to upper linked switches Sa. An aggregation switch
s ∈ Sa distributes the communication links from uplinks and
downlinks, while the core switch Sc connects the CCS to the
outside world. The switches are the inside vertices of the tree,
while the PMs are the tree’s leaves.

Furthermore, the CCS consists of a set P of (k+1) PMs, and
each PMi ∈ P, 1 ≤ i ≤ k has the same set of resources, but
in varying quantities, e.g., one PM may have more CPU cores
or more memory size than another, i.e., we assume the system
to be heterogeneous. We denote by R(PMi), the amount of
physical resources available on machine PMi. We assume a
special PM, denoted by PM0, upon which unallocated VMs
reside. Additionally, there is a non-empty set V of VMs, and
each VM j ∈ V may have a different set of resource type
requirements, i.e., we assume the VMs to be heterogeneous, as
for the PMs.

In this paper, we assume that all the resource needs of a
VM j ∈ V can be met by any PM in the CCS. We denote by
N(VM j), the amount of resources needed by VM j . We also
assume that ∀ 1 ≤ i, j ≤ k, i ̸= j, PMi is able to communicate
with PMj in the CCS through the connected switches, i.e., the
CCS is connected.

B. VMs Allocation Model

The VMs allocation model we assume in this paper is that of
a weighted undirected graph G(V ,E ,L), where the V is the
set of VMs, the set E of edges represents the relation between
two VMs (VM i, V M j) and L is an edge labelling function that
returns the label on an edge e ∈ E. We call such a model the
VMs load correlation model (see Figure 1(C)). Such a model
exists for each of the three types of VMs we assume, namely
normal (set N), target (set T) and malicious (set M), under the
following constraints:

• V = T ∪M ∪N
• T ∩M = ∅ ∧ T ∩N = ∅ ∧M ∩N = ∅
1) VMs Type: Based on the learning model assumed in our

previous paper [4], a VM will be classified as either being a
target, malicious or a normal VM. Starting with the set of VMs
(see Figure 1 (A)), we initially assume that all VMs of the same
type form a fully connected graph, called a VMs Type graph,
in that all VMs of the same type can potentially communicate
with each other (see Figure 1 (B)).
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2) VMs Load Similarity: As a system administrator may
wish for related VMs to be co-located, we propose a VMs
load similarity metric to capture the similarity of two VMs
in terms of resource requirements. A VM Type graph is thus
refined into a VMs load similarity graph by labelling the edge
between VMs by the similarity metric between the two VMs
(see Figure 1 (C)) and only keeping the edge with the highest
value for each vertex.

Fig. 1. The Model for VMs Type and Load Correlation.

The load similarity of two VMs, VM i and VM j , denoted
by vmλ is computed as follows:

vmλ(VM i, V M j) =
N (VM i)

N (VM j )
(1)

The VMs Type graph Gλ,λ∈{T,M,N} = (V,E) is converted
into a VM load similarity graph G′

λ,λ∈{T,M,N} = (V ′, E′, L)
as follows:

• V = V ′

• L(u, v) = vmλ(u, v)
• ∀(u, v), (u, v′) ∈ E, v ̸= v′ · (u, v) ∈ E′ ⇔ L(u, v) ≥

L(u, v′)

As such, VMs with high load similarity may be co-located
under appropriate resource availability. Moreover, we model the
VM allocation and VM migrations similarly to our previous
work but with adding the changes related to the graph-based
architecture. Furthermore, we consider the allocation A to be
secure if ∀m ∈ M,∀t ∈ T : A(m) ̸= A(t) ̸= PM0, i.e., an
allocation is secure if no malicious VM is co-located with a
target VM . Similarity, the VMs migration is secure if both the
start and the end allocations are secure. Consequently, we need
to reduce the cost of a VM migration. As such, we define the
Cost∆ of VM migration ∆ = Move(Ai, Ai+1) as follows:
Denoting by MP(PMi ,PMj ), the shortest path between PMi

and PMj in the CSS graph.

Cost∆ =
∑

∀v∈Move(Ai,Ai+1),Ai(v)=s∧Ai+1(v)=e

cost(MP (s, e))

(2)
where cost(MP (s, e)) is the sum of delay of each switch and
link on that path MP (s, e).

IV. ALGORITHM FOR SECURE ALLOCATION

This paper aims to develop a secure allocation algorithm
while minimising the cost of VMs migrations. Thus, we pro-
pose our graph-based security-aware heuristic, called Graph-
based Secure Random Stacking (GbSRS), shown in Algorithm
1, as well as a migration algorithm called Graph-based VM
Migration (GbM), to migrate the VMs securely while reducing
the cost of VM migration. GbSRS is an extension of our
previous algorithm called secure random stacking (SRS), where
both algorithms follow the same process of producing as many
secure allocations as possible; however, they have different
allocations steps [4]. Thus, in this paper, we will only be
explaining the changes from our previous work, which allocates
the dependant VMs based on their graph-based connectivities.

A. Graph-based Secure Random Stacking (GbSRS)

The input of the GbSRS algorithm is the unallocated set of
VMs, represented in a graph g, and the output is the secure
allocation produced under the available resources, denoted as
A. The GbSRS performs three attempts to allocate a given
VM, vmi. The first attempt, in line 1, will try to allocate
the vmi on the same PM, pmj , of the connected VM from
the load similarity graph. Each VM is connected initially with
another VM by how similar they are, based on their required
resources. The function getConnectedVM (vmi), in line 2, will
be triggered to retrieve the VM with the highest load similarity
of the connected VMs.

The second attempt, in line 9, aims to allocate the unallocated
VM to one of the PMs connected to the edge switch of the con-
nected VMs. The function getAllocatedConnectedVM (vmi),
in line 10, is triggered to return all the connected VMs, from
the VMs type graph, that already allocated. This step aims to
know the edge switch linked to the connected VMs, to retrieve
all PMs connected to this edge switch. As such, in line 12, the
function getEdgeSwitch() will be triggered to return the edge
switch of the connected VM. From this information, in line
13, the list of PMs linked to the selected edge switch will be
retrieved and therefore considered for an allocation.

Afterwards, the list of PMs is sent a getHighestFRPMs
function to select the most two highest fullness ratio PMs
only out of the available PMs. And the outcome is then
the stored list of elected PMs, denoted as ElectedPMsList ,
as explained previously in [4]. Then, in line 16, the algo-
rithm randomly selected the PMs among the elected PMs
and assigned them as candidates for allocation. The function
getRandomPM (ElectedPMsList) is responsible for selecting
a random PM among the list of the elected PMs and store as
a candidate PM. Subsequently, if the candidate PM is suitable,
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Algorithm 1 Graph-based Secure Random Stacking (GbSRS).
Input: g = G(V ,E ,L)
Output: A

1: for vmi ∈ g do
2: vmλ ← getConnectedVM (vmi) {First Attempt}
3: if vmλ.getPM() ̸= null then
4: pmj ← vmλ.getPM()
5: if (pmj .suitablePM(vmi)) then
6: A← Assign(vmi, pmj)
7: end if
8: end if {Second Attempt}
9: if A = null then

10: vmτ ← getAllocatedConnectedVM (vmi)
11: if vmτ ̸= null then
12: edgei ← vmτ .getEdgeSwitch()
13: pms← edgei.getPMsList()
14: ElectedPMsList .add(getHighestFRPMs(vmi , pms)
15: for Counter < ElectedPMsList.size() do
16: pmi ← getRandomPM (ElectedPMsList)
17: if (pmi.suitablePM(vmi)) then
18: A← Assign(vmi , pmi)
19: end if
20: end for
21: end if
22: end if {Third Attempt}
23: if A = null then
24: Third attempt will be on aggregation switch
25: Last attempt steps is similar to GbSS algorithm
26: end if
27: end for
28: return A

it will be considered a host for the vmi and added to the A, in
line ??.

The third attempt will repeat the same process as the second
attempt but with PMs linked to the same aggregation switch.
This step will increase the number of available PMs to be
selected for an allocation. If these attempts failed to obtain a
secure VM allocation, then the VM migration, will be triggered
in order to produce another allocation. Finally, if all the above
attempts failed, including the VMs migration, the GbSRS will
try to allocate the vmi on any PMs in the P regardless of graph
connection constraints.

In this work, we consider the resources of the VMs and
PMs are multidimensional, meaning each one of them has a
set of resources representing them. For example, the resources
are RAM, CPUs with their cores, storage, network switches
and other resources are represented as. Thus, we calculated the
multidimensional resources that performed in the FR function
as follow:

FR =
VM ram

PM ram
+

VM cpu

PM cpu
(3)

In Eq (3), we compare the upcoming VM with each PMs,

considering the RAM and CPU specifications. If the result of
the computation is equal to two, then the PM is a perfect match
for the VM and this PM will be the first one selected for
possible allocation.

B. Graph-based VM Migration (GbM)

Compare to the migration algorithm presented in our previ-
ous work [4], the GbM aims to minimize the number of VM
migrations, hence the migration cost. As such, the algorithm
finds a suitable PM for the migrated VMs randomly only if
the Cost of migration to the selected PM is less than ∆. We
define the cost ∆ in Eq 2 as the cost of VM migration from one
PM to another, and where it should not exceed the predefined
threshold.

V. RESULTS AND DISCUSSION

This section will evaluate the proposed algorithm and com-
pare it with existing ones, following a different VMs allocation
behaviour. As stated earlier, our proposed algorithm follows
a stacking-based behaviour; therefore, we compare it with
state-of-the-art algorithms that follow a spread and random
behaviour.

Moreover, We utilise a simulation environment called a
Network CloudSim, an open-source cloud simulation environ-
ment specified for network-related simulations in the cloud
environment [23]. Further, we utilised the Azure VMs traces
published by the Microsoft team, which contains the VMs
workload of Azure [24]

Furthermore, we study the effect of different VM allocation
behaviours on obtaining a secure VMs allocation under certain
situations. These situations are the arrival of specific VMs
impacts on the secure allocation. And, the amount of VMs
type impacts or whether the structure of PMs (heterogeneity)
resources and how they differ from each other can affect the
secure allocation.

Additionally, following our previous work [4], we compared
our algorithm behaviour, stacking-based behaviour, against al-
location algorithms behaviours such as spreading and random,
explained in [25] and [26], respectively. This section will refer
to the spreading behaviour as Round Robin (RR), while the
random behaviour as (Rand), for simplicity. Furthermore, we
added a unique behaviour that combines the spreading and
random behaviours, called Previously Selected Servers First
(PSSF), explained in [27].

A. Simulation Setup

We design the cloud data centre of this experiment as a Fat-
Tree architecture with three levels, as in [22]. The root level,
which is the core switch, is linked to a sublevel of aggregation
switches. These aggregation switches are linked to a sublevel
of edge switches. In which these edge switches are linked to
the PMs. Finally, the PMs are hosting the VMs based on the
allocation Algorithm behaviour. The following sections will
explain the setup in more detail.
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TABLE I
TYPE OF VMS ARRIVALS

Type Order Detail
MTN S(MTN)-G(M)-S(MTN)-G(T)-S(MTN)-G(N)-S(MTN)
NMT S(NMT)-G(N)-S(NMT)-G(M)-S(NMT)-G(T)-S(NMT)
TNM S(TNM)-G(T)-S(TNM)-G(N)-S(TNM)-G(M)-S(TNM)

1) Arrival of VMs: We consider three VMs arrival times,
i.e., when the VMs are arrived and allocated on a PM. The
goal is to show the effect of VMs arrival time, based on its
type, on the overall malicious co-residency for each algorithm
class. As described in Table I, the three arrival times are MTN,
NMT and TNM. MTN captures the case where the malicious
VMs (M) arrived first, then the target VMs (T), and finally the
normal VMs (N). The same concept applies to the other two
types.

Furthermore, the order detail in Table I, shows how the VMs
exactly are arrived in each experiment. To demonstrate, in the
MTN arrival type, the VMs in any experiment is divided into
seven groups; each group will arrive in the same sequence
described in the table under the order detail column. For
example, out of seven groups, the first group is S(MTM), where
the S refer to a Single VM arrival. Here, the malicious, target
and normal VM will arrive in a single alternative sequence.
Precisely, single (M)- then single (T)- then single(N), then the
process is repeated until this group of VMs arrived. Then the
second group, G(M), means that a group of malicious VMs will
arrive second. Then the third group will repeat the same order
as the first group. After that, the fourth group G(T), means that
a group of target VMs will arrive fourth. Then the rest of the
seven groups will arrive until the last VM arrives. The same
concept will apply to the other two types of VM orders, NMT
and TNM. The motivation for configuring the VMs arrival in
such order, specificity, starting with single VMs followed by
a group of VMs instead of the opposite, makes the allocation
more challenging for the algorithms. Moreover, to mimic the
real-world scenario of VMs arrival as much as possible.

2) Switches and PMs Structure: In this paper, we structured
the linkage between PMs and switches: A maximum of four
PMs are connected to each edge switch. Each aggregation
switch is connected by a maximum of two edges, which means
that each aggregation switch can be connected by eight PMs
maximum. Finally, all the aggregation switches are connected to
one core switch. The number of PMs in each experiment will
accommodate the required resources of the VMs. Moreover,
we designed the available resources to be limited compare to
the demanded resources. Hence, it makes it challenging for
the algorithms to find a secure allocation. Additionally, as we
presented in our earlier work [4], we consider three types of
PMs structure, or level of PMs heterogeneity, High, Medium
and Low heterogeneous PMs, which indicates how much the
PMs are different from each other concerning the available
resources.

3) VMs Structure: As stated earlier, we have utilised the
VMs traces of the Azure cloud data centre; however, we only
use one VM from each user id, resulting in 6687 VMs for
each experiment. This step aims to produce a different set of
demanded resources for each arriving VM, i.e., heterogeneous
VMs. Also, it makes the allocation of the VMs more challeng-
ing to the proposed algorithms. After collecting the data set
from Azure traces, we then utilise the VM information and
create the VMs on Network CloudSim simulation. Then, we
arrange the VMs according to their created time and assign a
type for each VM, either T, M or N. Moreover, we consider
the possibility of each VM type number in each experiment.
In other words, how many target, malicious or normal VMs
in each experiment. For example, from 1 to 7 in Figure 2, the
experiments have a different VMs structure based on VM type.
In the first experiment, the number of target VMs is higher than
malicious and normal VMs, while in the second experiment,
the number of normal VMs is high than target VMs, and
normal VMs. Until reaching the seven experiments, which an
indication of the end of VMs type number possibilities examine.
Afterwards, from 8 to 14, the same possibilities of VMs type
number are repeated. Consequently, a different VM structure
based on VM type is considered to identify whether a specific
amount of VM type affects the overall secure allocation.

B. Result of malicious co-residency

In the Figures 2 to 4, we compare our algorithm, GbSRS,
that follows a stacking-based behaviour with RR, Rand and
PSSF. The objective is to calculate the percentage of PMs with
malicious co-residency, denoted as (Mpms), as explain in [4].

In general, the algorithms GbSRS and Rand perform better
than the PSSF and RR in most situations. This initial observa-
tion is an indication that the spreading behaviour allocation
often leads to higher levels of malicious co-residency than
the stacking or the random behaviour. Arguably, the Rand
algorithm will always produce a different allocation in each
simulation run due to its random behaviour. However, the Mpms

are lower than anticipated in most situations, which is good
for this behaviour. The possible reason for this outcome is the
data centre design for the experiment and how the VMs are
allocated. It influences the Rand algorithm to behave partially
in a stacking-based manner while randomly selecting from the
PMs available in each aggregation switch.

Moreover, the Mpms of the spreading behaviour algorithms,
RR and PSSF, are often higher, because the VMs spreading
across the entire available PMs, and the chance for a malicious
user to obtain a malicious co-residency is higher. The more
the malicious user has many VMs, the more the chance of
malicious co-residency occurs. In other cases, the amount and
spreading of target VMs help increase the Mpms, even if the
malicious user has a fewer number of available VMs.

In addition, our proposed algorithm is performing as well as
the Rand algorithm. Definitely, with more available PMs, the
Mpms will be lower, and while with limited available PMs, the
Mpms could perform worse in some situations. However, the
lower Mpms is due to the stacking behaviour conducted during
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Fig. 3. Mpms for VMs Arrival Time NMT

the allocation. As such, the algorithm’s behaviour leads to stack
the connected VMs as much as possible while leaving available
PMs freely for future allocation. Even if the malicious user
can increase the VMs amount, it will be challenging to achieve
malicious co-residency. Furthermore, in RR and PSSF, the spike
of the amount malicious or target VMs could potentially lead
to higher Mpms, in some cases, the spike of both together.
Because it occupied the available PMs, depending on the time
of VMs arrival, that potentially needed for obtaining a secure
allocation.

Mostly, the effect of PMs heterogeneity structure on the
Mpms is higher for all algorithms when it is low, i.e., the
set of available resources for the PMs are the same. Thus, it
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is an indication that to obtain a relatively secure allocation,
it is favourable to avoid allocating the VMs on the PMs
with the same structure. On the other hand, the medium and
high structure generally yields lower Mpms for some of the
algorithms. A possible reason for having either high or low
Mpms on the three PM structure is that each algorithm fits
a VM into a PM. Unfitted (VM to PM) allocation may skip
a perfect allocation due to spreading or random behaviour of
the algorithm, which leads to an increase in the Mpms. Our
algorithm GbSRS uses a fullness ratio function that calculates
the available space of PM compares to the demanded resources
from the VM. Then selected the PMs that mostly fitted to a
particular VM. Thus, it is a calculated relation between each
VM with the available PMs.

Overall, in RR and PSSF, the Mpms is relatively higher when
the majority of either the malicious or target VMs arrive firstly
in MTN and TNM, respectively. The reason is that the VMs,
for example, the malicious ones, are initially spread across the
available PM. Then, after some time, when the target VMs
arrive, fewer spaces will be available for secure allocation.
While our algorithm, which will stack the VMs to allow more
spaces for future VMs, thus, reducing the Mpms. In addition,
the Mpms for PSSF is worse when the majority of target VMs
arrives after the malicious ones. On the other hand, in Figure
3, when the majority of malicious and target VMs arrives last,
the Mpms is lower than other arrivals. This situation refers to
the fact that any target or malicious VMs can be allocated with
normal VMs. The migration process could potentially affect the
Mpms for this situation. Because most normal VMs arrive first,
which gives the algorithms a possibility for VM migration, a
free space is available for either a malicious VM or a target,
which result in reducing the chance of Mpms.

C. Result of VMs Migration

In Figure 5, we study the effect of VMs migration of the allo-
cation algorithms, denoted as Migvms [4]. The VMs migration
indicates the cost of VMs migration for each algorithm; the
Cost of VMs migration is explained in Eq (2). In other words,
the higher percentage of Migvms leads to a higher cost of VMs
migration.

Overall, RR, PSSF, and Rand algorithms are having a higher
Migvms compares to our proposed algorithm. The migration
Migvms reflect the cost percentage for each algorithm, where
it is clear that allocating the VMs in a stacking-based manner
leads to a lower cost of VMs migration. Therefore, GbSRS
performs better than other algorithms due to allocating the VMs
using the fullness ratio function. This stacking-based behaviour
produces a fitted allocation for each VM, thus minimising the
need for migration and VMs migration cost. On the other hand,
PSSF and RR algorithms show a similar behaviour because they
share similar allocation behaviour, spreading the VMs. This
leading to a significant amount of VMs migration, hence, a
high cost of migrating the VMs. In contrast to the Rand, it
shows an irregular pattern of Migvms for the situation due to
its randomness behaviour. Nevertheless, it has a high cost for

6



VMs migration in most cases examined, similar to RR and
PSSF.
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VI. CONCLUSION

This paper developed a model and algorithms that consider
the dependent VMs represented as graphs to examine their
effect on obtaining a secure VMs allocation on a graph-based
architecture data centre. We consider the load similarity of the
VMs and the type classification of the dependent VMs during
the allocation. Furthermore, we evaluated the graph-based VMs
allocation behaviours on obtaining a secure allocation and
investigated some factors that affect producing malicious co-
residency. Our results show that the data centre topology
impacted the overall outcomes of malicious co-residency and
the VM arrival times have also a significant impact on obtaining
a secure allocation. In future work, we will be extending the
study related to the proposed learning model framework that
classifies the VMs based on their activities into specific types
and allocates them subsequently. With the advancement of
machine learning tools and detailed datasets related to cloud
activities, it becomes possible to formulate and develop a model
for secure VMs allocation accordingly.
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