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The problem of (∆+1)-vertex coloring a graph of maximum degree ∆ has been extremely well-studied over the
years in various settings and models. Surprisingly, for the dynamic setting, almost nothing was known until
recently. In SODA’18, Bhattacharya, Chakrabarty, Henzinger and Nanongkai devised a randomized algorithm
for maintaining a (∆ + 1)-coloring with O (log∆) expected amortized update time. In this paper, we present
an improved randomized algorithm for (∆ + 1)-coloring that achieves O (1) amortized update time and show
that this bound holds not only in expectation but also with high probability.

Our starting point is the state-of-the-art randomized algorithm for maintaining a maximal matching
(Solomon, FOCS’16). We carefully build on the approach of Solomon, but, due to inherent differences between
the maximal matching and (∆ + 1)-coloring problems, we need to deviate significantly from it in several
crucial and highly nontrivial points.1

1 INTRODUCTION
Vertex coloring is one of the most fundamental and most well-studied graph problems. Consider
any integral parameter λ > 0, an undirected graph G = (V ,E) with n nodes andm edges, and a
palette C = {1, . . . , λ} of λ colors. A λ-coloring in G is simply a function χ : V → C which assigns
a color χ (v ) ∈ C to each vertex v ∈ V . Such a coloring is called proper iff no two neighboring
nodes inG get the same color. The main goal is to compute a proper λ-coloring in the input graph
G = (V ,E) such that λ is as small as possible. Unfortunately, this problem is NP-hard and even
extremely hard to approximate: for any constant ϵ > 0, there is no polynomial-time approximation
algorithm with approximation factor n1−ϵ unless P , NP [12, 22, 32]. Vertex coloring remains
NP-hard even in graphs of small chromatic number. In particular, recognizing 3-colorable graphs is
a classic NP-hard problem [15], and there is a deep line of work on coloring 3-colorable graphs in
polynomial time with as few colors as possible [21].
Since the problem is computationally hard in general, much of the work on vertex coloring

has focused on restricted families of graphs in different settings. In the static case, results have
included settings such as bounded arboricity, with the classic paper by Matula and Beck [28] in
the sequential setting, and more recent results in a variety of models including the streaming [5],
Congested Cliqe [5, 16], MPC [5], the general graph query [5], and Local models [2, 3, 5, 24];
other graph classes in which various vertex coloring problems were explored in the static case
include bounded treewidth graphs [1, 13, 20], bounded clique-width graphs [14, 23], n-uniform
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hypergraphs [29], bounded diameter [10, 26, 27], and bounded degree graphs [11]. In the dynamic
case, past results on restricted families of graphs have focused on the class of bounded arboricity
graphs [18, 31].

Obviously it is always possible to ∆ + 1 color a graph G = (V ,E) with maximum degree ∆, and
a simple linear time algorithm can achieve this goal in the classical centralized off-line setting.
Achieving the same goal in different computational models is however not trivial. For example this
problem was extensively studied in the distributed literature, both as a classical symmetry breaking
problem, and due to its intimate connections with other fundamental distributed problems such as
maximal matching and maximal independent set (MIS) [25].

In this work we study the (∆ + 1)-coloring problem in the fully dynamic setting. Here, the input
graph G = (V ,E) changes via a sequence of updates, where each update consists of the insertion
or deletion of an edge in G. There is a fixed parameter ∆ > 0 such that the maximum degree in G
remains upper bounded by ∆ throughout this update sequence. We want to design an algorithm
that is capable of maintaining a proper (∆+ 1)-coloring in such a dynamic graphG . The time taken
by the algorithm to handle an update is called its update time. We say that an algorithm has an
amortized update time of O (γ ) iff starting from an empty graph,2 it takes at most O (t · γ ) time
to handle any sequence of t updates. Our goal is to ensure that the amortized update time of our
algorithm is as small as possible. Our focus is on amortized time bounds, and we henceforth use
the phrase “update time” to refer to “amortized update time”.

There is a naive dynamic algorithm for this problem that has O (∆) update time, which works as
follows. Suppose that we are maintaining a proper ∆ + 1-coloring χ : V → C in G . At this point, if
an edge gets deleted from the graph, then we do nothing, as the coloring χ continues to remain
proper provided that ∆ remains fixed throughout the update sequence. Otherwise, if an edge uv
gets inserted into G, then we first check if χ (u) = χ (v ). If not, we do nothing. If yes, then we pick
an arbitrary endpoint x ∈ {u,v}, and by scanning all its neighbors we identify a blank color c ′ ∈ C
for x (one that is not assigned to any of its neighbors). Such a blank color is guaranteed to exist,
since x has at most ∆ neighbors and the palette C consists of ∆ + 1 colors. We now recolor the node
x by assigning it the color c ′. This results in a proper (∆ + 1)-coloring in the current graph. The
time taken to implement this procedure is proportional to the degree of x , hence it is at most O (∆).
Bhattacharya et al. [7] significantly improved the O (∆) time bound, obtaining the following result.

Theorem 1.1. [7] There is a randomized dynamic algorithm that can maintain a ∆ + 1-coloring in a
dynamic graph with O (log∆) update time in expectation.

A fundamental open question left by [7] is whether one can improve the update time to constant.
A constant update time is the holy grail for any graph problem that admits a linear time (static)
algorithm, and thus far was obtained only for a handful of problems. Building on the algorithm of
Baswana et al. [4], in FOCS’16 Solomon [30] presented a randomized algorithm for maintaining a
maximal matching with constant update time. Remarkably, Solomon’s algorithm was the first to
achieve a constant update time for any nontrivial problem in general dynamic graphs. A maximal
matching provides a 2-approximation for both the maximum matching and the minimum vertex
cover. An alternative deterministic primal-dual approach, introduced by Bhattacharya et al. [8],
maintains a fractional “almost-maximal" matching, and thus a (2 + ϵ )-approximation for the
maximum matching size, and also an integral (2 + ϵ )-approximation for the minimum vertex cover.
This line of work culminates in the SODA’19 paper of Bhattacharya and Kulkarni [9], which achieves
an update timeO (1/ϵ2). There is an intimate connection between the two approaches, which is hard
2In this paper, when we refer to an empty graph, we mean a graph that has n vertices and no edges. However, our algorithm
can be modified to handle insertions and deletions of vertices with 0 degree. Such vertices are inserted into and deleted
from the bottommost level of our structure.
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to formalize, but at a very high level, the randomness encapsulated within the maximal matching
algorithms of [4, 30] naturally correspond to the fractional deterministic almost-maximal solutions
of [6, 8, 9, 17].
Our main result is summarized in Theorem 1.2 below. We design a randomized algorithm for

(∆ + 1)-coloring with O (1) update time in expectation and with high probability (for a sufficiently
long update sequence). This constitutes a dramatic improvement over the update time of [7] as stated
in Theorem 1.1. As with most existing randomized dynamic algorithms, both Theorems 1.1 and 1.2
hold only when the adversary deciding the next update is oblivious to the past random choices
made by the algorithm. We emphasize that, unlike several related results in the literature–including
the previous result for (∆ + 1)-coloring [7], our bound holds also with high probability.

Theorem 1.2. There is a randomized algorithm for maintaining a (∆ + 1)-coloring in a dynamic
graph that, given any sequence of t updates, takes total time O (n logn + n∆ + t ) in expectation and
with high probability. The space usage isO (n∆+m), wherem is the maximum number of edges present
at any time. For t = Ω(n logn + n∆), we obtain O (1) amortized update time in expectation and with
high probability.

To provide a very quick explanation of our bound: the factor ofO (n∆) comes from our data struc-
ture for maintaining free colors in Lemma 2.1, and the factor of O (n logn) comes from Lemma 3.14
and 3.15 in our analysis.
Previouswork:We start with a high level overview of the dynamic algorithm in [7]. They maintain
a hierarchical partition of the node-set V into O (log∆) levels. Let ℓ(v ) ∈ {1, . . . , log∆} denote the
level of a node v ∈ V . For every edge (u,v ) ∈ E, say that u is a same-level-neighbor, down-neighbor
and up-neighbor of v respectively iff ℓ(u) = ℓ(v ), ℓ(u) < ℓ(v ) and ℓ(u) ≥ ℓ(v ). The following
invariant is maintained.

Invariant 1.3. Each node v ∈ V has Ω(2ℓ(v ) ) down-neighbors and O (2ℓ(v ) ) same-level neighbors.

In order to ensure that Invariant 1.3 holds, the nodes need to keep changing their levels as the
input graph keeps getting updated via a sequence of edge insertions/deletions. It is important to
note that the subroutine in charge of maintaining this invariant is deterministic and has O (log∆)
amortized update time.
The algorithm in [7] uses a separate (randomized) subroutine to maintain a proper (∆ + 1)-

coloring in the input graph, on top of the hierarchical partition. To appreciate the main intuition
behind this recoloring subroutine, consider the insertion of an edge (u,v ) at some time-step τ , and
suppose that both u and v had the same color just before this insertion. Pick any arbitrary endpoint
x ∈ {u,v}. The algorithm picks a new color for x as follows. Let Cx ⊆ C denote the subset of colors
that satisfy the following property at time-step τ : A color c ∈ C belongs to Cx iff (a) no up-neighbor
of x has color c , and (b) at most one down-neighbor of x has color c . Since the node x has at
most ∆ neighbors and the palette C consists of ∆ + 1 colors, a simple counting argument (see the
proof of Lemma 3.2) along with Invariant 1.3 implies that the size of the set Cx is at least Ω(2ℓ(x ) ).
Furthermore, using appropriate data structures, the set Cx can be computed in time proportional
to the number of down-neighbors and same-level neighbors of x , which is at most O (2ℓ(x ) ) by
Invariant 1.3. The algorithm picks a color c ′ uniformly at random from the set Cx , and then recolors
x by assigning it the color c ′. By definition of the set Cx , at most one neighbor (say, y) of x has the
color c ′, and, furthermore, if such a neighbor y exists then ℓ(y) < ℓ(x ). If the down-neighbor y
exists, then we recursively recolor y in the same manner. Note that this entire procedure leads to
a chain of recolorings. However, the levels of the nodes involved in these successive recolorings
form a strictly decreasing sequence. Thus, the total time taken by the subroutine to handle the edge
insertion is at most ∑ℓ(x )

ℓ=1 O (2ℓ ) = O (2ℓ(x ) ).
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Now comes the most crucial observation. Note that each time the algorithm recolors a node x , it
picks a new color uniformly at random from a set of size Ω(2ℓ(x ) ). Thus, intuitively, if the adversary
deciding the update sequence is oblivious to the random choices made by the algorithm, then in
expectation at least Ω(2ℓ(x )/2) = Ω(2ℓ(x ) ) edge insertions incident on x should take place before
we encounter a bad event (where the other endpoint of the edge being inserted has the same color
as x ). The discussion in the preceding paragraph implies that we need O (2ℓ(x ) ) time to handle the
bad event. Thus, overall we get an amortized update time of O (1) in expectation.

Our contribution: To summarize, the algorithm in [7] has two components – (1) a deterministic
subroutine for maintaining the hierarchical partition which takes O (log∆) amortized update time,
and (2) a randomized subroutine for maintaining a proper (∆ + 1)-coloring which takes O (1)
amortized update time. The analysis of the amortized update time of the first subroutine is done
via an intricate potential function, and it is not clear if it is possible to improve the update time of
this subroutine to O (1).

To get an overall update time of O (1), our algorithm merges these two components together in
a very careful manner. Our starting point is to build on the high-level strategy used for maximal
matching in [30]. Suppose that we decide to recolor a node x during the course of our algorithm
(either due to the insertion of an edge incident on it, or because one of its up-neighbors took up
the same color as x while recoloring itself). Let ℓ(x ) be the current level of x . We first check if the
number of down-neighbors of x is Ω(3ℓ(x ) ). If the answer is yes, then we move up the node x to the
minimum level ℓ′(x ) > ℓ(x ) where the number of its down-neighbors becomes Θ(3ℓ′ (x ) ), following
which we recolor the node x in the same manner as in [7]. In contrast, if the answer is no, then we
find a new color for x that does not conflict with any of its neighbors and move the node x down to
the smallest possible level. Thus, in our algorithm, the hierarchical partition itself is determined by
the random choices made by the nodes while they recolor themselves. This makes the analysis of
our algorithm significantly more challenging than that of [7], as Invariant 1.3 is no longer satisfied
all the time.
Furthermore, our analysis is more challenging than that of [30] in one central aspect, which

we discuss next. As mentioned, due to the oblivious adversary assumption, at least Ω(3ℓ(x )/2) =
Ω(3ℓ(x ) ) edge insertions incident on node x are expected to occur before a bad event is encountered,
i.e., when the other endpoint x ′ of the edge being inserted has the same color as x . Importantly, the
color of that other endpoint x ′ at the time of that edge insertion (x ,x ′) might have been chosen
after the color of x was chosen, which may create dependencies between the (random variables
corresponding to the) colors of x and x ′. A similar reasoning was applied to the maximal matching
problem [4, 30]; if the matched edge incident on a node x , denoted by (x ,x ′), was sampled uniformly
at random among Ω(3ℓ(x ) ) edges incident on x , then Ω(3ℓ(x ) ) edge deletions incident on x are
expected to occur (among the sampled ones) before a bad event is encountered, where the bad
event here is that the deleted edge on x is its matched edge (x ,x ′). There is an inherent difference,
however, between these two bad events. In the maximal matching problem, the time step of the bad
event is fully determined by the adversarial updates that occur after the creation of that matched
edge (under the oblivious adversary assumption), and in particular it is independent of future
random choices made by the algorithm. On the other hand, in our coloring problem the time step
of the bad event may depend on random choices made by the algorithm after the random color of x
has been chosen, due to nodes that become neighbors of x in the future and whose colors are chosen
after x ’s color has been chosen. Thus, we must cope with subtle conditional probability issues that
did not effect the analysis in [4, 30]. Note that in our analysis, the value of ∆ is the maximum ∆
over the course of the edge updates. The main difficulty with getting our running time for ∆ that
is the maximum degree of the current graph is that a single update may decrease the maximum
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degree of the current graph by 1; and so every vertex which is colored with the (∆ + 1)-th color
needs to be recolored in our algorithm and recoloring all such nodes may be expensive in total.
Specifically, we think it may be possible to modify our algorithm to obtain a (deg(v ) + 1)-coloring
where deg(v ) is the current degree of vertex v , in which case, the returned coloring will trivially
be a (∆current + 1)-coloring. So far no work has obtained such a dynamic (deg(v ) + 1)-coloring in
O (1) amortized running time; it is an interesting open question whether there exists a dynamic
algorithm that maintains a (deg(v ) + 1)-coloring for all vertices v ∈ V in the input graph in O (1)
amortized time per update. Furthermore, it is an open question to obtain (∆current + 1)-coloring
with high probability in O (1) amortized running time.
Independent work: Independently of our work, Henzinger and Peng [19] have obtained an
algorithm for (∆+ 1)-vertex coloring withO (1) expected amortized update time. Note that our work
achieves (∆ + 1)-vertex coloring with O (1) amortized update time not only in expectation, but also
with with high probability.

2 OUR ALGORITHM
Consider a graph G = (V ,E) with |V | = n nodes that is changing via a sequence of updates (edge
insertions and deletions). The graph initially starts off as empty (containing n vertices and no edges).
Let ∆ > 0 be a fixed integer such that the maximum degree of any node in the dynamic graph G is
always upper bounded by ∆. In other words, ∆ represents the maximum degree that any vertex
can take throughout the update sequence. Let C = {1, . . . ,∆ + 1} denote a palette of ∆ + 1 colors.
Our algorithm will maintain a proper ∆ + 1-coloring χ : V → C in the dynamic graph G.
A hierarchical partition of the node-set V : Fix a parameter L = ⌈log3 (n − 1)⌉ − 1. Our dy-
namic algorithm will maintain a hierarchical partition of the node-set V into L + 2 distinct levels
{−1, 0, . . . ,L}. We let ℓ(v ) ∈ {−1, 0, . . . ,L} denote the level of a given node v ∈ V . The levels of
the nodes will vary over time. Consider any edge (u,v ) ∈ E in the dynamic graph G at any given
point in time: We say that u is an up-neighbor of v iff ℓ(u) ≥ ℓ(v ), and a down-neighbor of v iff
ℓ(u) < ℓ(v ).
Notations: Fix any node v ∈ V . Let Nv = {u ∈ V : uv ∈ E} denote the set of neighbors of v .
Furthermore, let C+v = {c ∈ C : c = χ (u) for some u ∈ Nv with ℓ(u) ≥ ℓ(v )} denote the set of
colors assigned to the up-neighbors of v . We say that c ∈ C is a blank color for v iff no neighbor of
v currently has the color c . Similarly, we say that c ∈ C is a unique color forv iff c < C+v and exactly
one down-neighbor of v currently has the color c .Cv , as defined before,3 then, consists of the blank
and unique colors of v . Finally, for every ℓ ∈ {−1, . . . ,L}, we let ϕv (ℓ) = |{u ∈ Nv : ℓ(u) < ℓ}|
denote the number of neighbors of v that currently lie below level ℓ. We are now ready to describe
our dynamic algorithm.
Preprocessing: In the beginning, the input graph G = (V ,E) has an empty edge-set, i.e., E = ∅,
and the algorithm starts with any arbitrary coloring χ : V → C. All the relevant data structures
are initialized. Subsequently, the algorithm handles the sequence of updates to the input graph in
the following manner.
Handling the deletion of an edge: Suppose that an edge (u,v ) gets deleted from G. Just before
this deletion, the coloring χ : V → C maintained by the algorithm was proper (no two adjacent
nodes had the same color). So the coloring χ continues to remain proper even after the deletion of
the edge. So the deletion of an edge does not lead to any change in the levels of the nodes and the
coloring maintained by the algorithm.

3Cv denotes the subset of colors that satisfy the following property at timestep τ : A color c ∈ C belongs to Cv iff (a) no
up-neighbor of v has color c and (b) at most one down-neighbor of v has color c .
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Handling the insertion of an edge: This procedure is described in Figure 1. Suppose that an
edge (u,v ) gets inserted into G . If, just before this insertion, we had χ (u) , χ (v ), then we call this
insertion conflict-less, and otherwise conflicting. In case of a conflict-less insertion, the coloring
χ continues to remain proper even after insertion of the edge. In this case, the insertion does
not lead to any change in the levels of the nodes or the colors assigned to them. Otherwise, we
pick the endpoint x ∈ {u,v} that was most recently recolored and call the subroutine recolor(x ).
Such a choice of which vertex to recolor is crucial for our proof of the running time. This call to
recolor(x ) changes the color assigned to x and it might also change the level of x . However, there
is a possibility that the new color assigned to x might be the same as the color of (at most one)
down-neighbor of x . If this is the case, then we go to that neighbor of x it conflicts with, and keep
repeating the same process until we end up with a proper coloring in G.

Procedure recolor(x ) (see Figure 2), depending on whether ϕx (ℓ(x ) + 1) < 3ℓ(x )+2 or not, calls
one of the procedures det-color(x ) and rand-color(x ).
det-color(x ): This subroutine first picks a blank color (say) c for the node x . By definition no
neighbor of x has the color c . It now recolors the node x by setting χ (x ) ← c . Finally, it moves the
node x down to level −1, by setting ℓ(x ) ← −1. It then updates all the relevant data structures.
rand-color(x ): This subroutine works as follows. Let ℓ = ℓ(x ) be the level of the node x when
this subroutine is called. Step 04 in Figure 2 implies that at that time we have ϕx (ℓ + 1) ≥ 3ℓ+2. It
identifies the minimum level ℓ′ > ℓ where ϕx (ℓ′ + 1) < 3ℓ′+2. Such a level ℓ′ must exist because
ϕx (L + 1) ≤ (n − 1) < 3L+2. The subroutine then moves the node x up to level ℓ′, by setting
ℓ(x ) ← ℓ′, and updates all the relevant data structures. After this step, the subroutine computes the
set Cx ⊆ C of colors that are either blank or unique for x , next called palette. It picks a color c ∈ Cx
uniformly at random, and recolors the node x with color c , by setting χ (x ) ← c . It then updates all
the relevant data structures. If c happens to be a blank color for x , then no neighbor of x has the
same color as c . In other words, this recoloring of x does not lead to any new conflict. Accordingly,
in this case the subroutine returns NULL. Otherwise, if c happens to be an unique color for x , then
by definition exactly one down-neighbor (and zero up-neighbors) of x also has color c . Let this
down-neighbor be y. In other words, the recoloring of x creates a new conflict along the edge (x ,y),
and we need to recolor y to ensure a proper coloring. Thus, in this case the subroutine returns the
node y.

01. If χ (u) = χ (v ), Then
02. Let x ∈ {u,v} be the endpoint was most recently recolored.
03. While x , NULL:
04. x ← recolor(x ).

Fig. 1. Handling the insertion of an edge uv .

It is not difficult to come up with suitable data structures for the algorithm described above
such that the following result holds (more details in Appendix A). Due to the complexity of the
data structures from the need to maintain many low-level details, we defer the full details of such
structures to Appendix A so as not to interrupt the core ideas and analysis in this paper. However,
we describe the main functionalities of the data structures here as is necessary in our main analysis.

Lemma 2.1. There is an implementation of the above dynamic algorithm such that:
(1) The preprocessing time is O (∆n);
(2) The space usage is O (∆n +m), wherem is the maximum number of edges present at any time;



Fully Dynamic (∆ + 1)-Coloring in O (1) Update Time 7

01. If ϕx (ℓ(x ) + 1) < 3ℓ(x )+2, Then
02. det-color(x ).
03. Return NULL.
04. Else :
05. y ← rand-color(x ).
06. Return y.

Fig. 2. recolor(x ).

(3) Each deletion and conflict-less insertion takes O (1) time deterministically;
(4) Procedure det-color(x ) takes time O (3ℓ(x ) );
(5) Procedure rand-color(x ) takes time O (3ℓ′ (x ) ) where ℓ′(x ) > ℓ(x ) is the new level of node x at

the end of the procedure.

Proof. We now justify the five claims made in the statement of the lemma. A full, detailed
implementation section of the data structures can be found in Appendix A.1.
(1) We initialize a dynamic arrayUv for each vertexv that containsO (logn) entries (specifically,

let L be the set of non-empty levels for v , the dynamic array contains O (L) entries) that
stores the up-neighbors of v . Each index of the arrayUv contains a pointer to a linked list
containing the up-neighbors of v at that level. For example, suppose thatw is an up-neighbor
ofv at level i . Then, the i-th entry ofUv contains a linked list which containsw . We initialize
another linked list Dv which contains the down-neighbors of v . Furthermore, we initialize
two linked lists, C+v and Cv . C+v contains exactly one copy of each color held by up-neighbors
stored inUv . C\C+v then represents the colors of the down-neighbors stored in Dv that are
not in C+v and the blank colors. The palette Cv containing the unique and blank colors of v
can thus be computed from C\C+v . EachUv has size O (1) initially when there are no edges
(see Appendix A for details); C+v and Cv each has size O (∆); and Dv is initially empty. Thus,
the preprocessing time necessary to initialize these structures is O (∆n). 4 More details on
these structures can be found in Section A.1.

(2) The total space used byDv for all v isO (m) sinceDv for vertex v stores at most the number
of neighbors of v . All other data structures are initialized during preprocessing. Therefore,
the space cost of the other data structures is O (∆n). For each edge e = (u,v ), we maintain
pointers that represent e between copies of u and v in the various data structures. Refer to
Section A.1 for a detailed description of the pointer management.

(3) Deleting an edge uv requires deleting u fromUv and v from Du (or vice versa). Inserting an
edge uv requires inserting u intoUv and v into Du (or vice versa). The colors for u and v
can be moved in between C+v and Cv and between C+u and Cu via a set of pointers connecting
the colors to the vertices. Refer to Fig. 3, 4 and Section A.3 for a detailed description of these
elementary operations. The total cost of these operations is then O (1).

(4) In this procedure det-color(v ), the level of v is set deterministically to −1 and the color for
v is chosen deterministically from its set of blank colors. In this case, all the data structures
of vertices in levels [−1, ℓ(v )] (where ℓ(v ) is the old level of v) must be updated with the
new level of v . Due to the existence of pointers in between vertices and its neighbors in Dv
andUv in all the data structures, the cost of updating each individual neighbor is O (1). To
update the colors of the data structures requires following O (1) pointers for eachw ∈ Dv .

4We require such a list of blank and unique colors for each vertex v in order to ensure our running time. It is an interesting
open question whether we can remove the need for such lists of blank and unique colors.
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By the definition of recolor(v ) (which calls det-color(v )), ϕv (ℓ(v ) + 1) < 3ℓ(v )+2. Hence,
there are O (3ℓ(v ) ) neighbors in levels [ℓ′(v ), ℓ(v )] to update and the cost of the procedure is
O (3ℓ(v ) ). Refer to Section A.1 and Fig. 7 for a complete description of this procedure.

(5) Since ℓ′(v ) > ℓ(v ), all the data structures of vertices in levels [ℓ(v ), ℓ′(v )] must be updated
with the new level of v . The data structures can be updated in the same way as given above.
Since ℓ′(v ) > −1 (it must be, by definition of the procedure), then, ϕv (ℓ′(v ) + 1) < 3ℓ′ (v )+2.
Hence, this procedure takes O (3ℓ′ (v ) ) time. Refer to Section A.1 and Fig. 8 for a complete
description of this procedure.

□

Again, a complete, detailed description of our data structures (with pseudocode) can be found in
Appendix A.

3 ANALYSIS
We assume that our graph is empty at the end, meaning no edges exist on the graph after we
perform all the updates in our update sequence. To ensure we end with an empty graph, we append
additional edge deletions at the end of the original update sequence. Since we begin with an empty
graph, this at most doubles the number of updates in our update sequence, but simplifies our
analysis. Because edge deletions will never cause a recoloring of any vertex and the number of
updates increases by at most a factor of 2, an amortized runtime bound of our algorithm with
respect to the new update sequence will imply the same (up to a factor of 2) amortized bound with
respect to the original sequence. We now show that our dynamic algorithm maintains the following
invariant.
Invariant 3.1. Consider a vertex v at level ℓ(v ) ≥ 0 at a given point of time τ . When v was most
recently recolored prior to τ , it chose a color uniformly at random from a palette of size at least
3ℓ(v )+1/2+ 1. Furthermore, at that time v has at least 3ℓ(v )+1 down-neighbors. For ℓ(v ) = −1, the color
of v is set deterministically.

Lemma 3.2. Invariant 3.1 holds for all vertices at the beginning of each update.

Proof. During the preprocessing step the color of each node v is set deterministically to some
arbitrary color and ℓ(v ) = −1. Hence the claim holds initially. The color of v changes only due to a
call to recolor(v ). Let ℓ(v ) and ℓ′(v ) denote the level of v at the beginning and end of this call. If
recolor(v ) calls det-color(v ), the color of v is set determinstically and ℓ′(v ) = −1. Hence the
invariant holds. Otherwise, recolor(v ) invokes rand-color(v ). The latter procedure sets ℓ′(v )
to the smallest value (larger than ℓ(v )) such that ϕv (ℓ′(v ) + 1) < 3ℓ′ (v )+2. Recall that ϕv (ℓ) is the
number of neighbors of v of level smaller than ℓ. This implies that the number of down-neighbors
of v (at level ℓ′(v )) are ϕ := ϕv (ℓ

′(v )) ≥ 3ℓ′ (v )+1.
It is then sufficient to argue that the palette used by rand-color(v ) has size at least ϕ/2 + 1. We

use exactly the same argument as in [7]. One has |C \C+v | = (∆+1)− |C+v | since C+v contains exactly
one copy of each color occupied by an up-neighbor of v . Since the degree of any vertex is at most ∆
and the number of down-neighbors of v is ϕ, |C+v | ≤ (∆ − ϕ) since the number of colors occupied
by the up-neighbors is at most the number of up-neighbors. Then, |C \ C+v | = (∆ + 1) − |C+v | ≥
(∆ + 1) − (∆ − ϕ) = ϕ + 1, where equality holds when v has degree ∆ and up-neighbors of v all
have distinct colors. For any color c ∈ Cv that is occupied by at most one down-neighbor of v ,
c is a blank or unique color. Let x be the number of down-neighbors of v that occupy a unique
color. Then, the size of v’s palette is at least |Cv | ≥ |C \ C+v | − (ϕ − x )/2; this is due to the fact that
there can be at most (ϕ − x )/2 colors that are occupied by at least two down-neighbors of v . Then,
|Cv | ≥ |C \ C

+
v | − (ϕ − x )/2 ≥ 1 + ϕ − (ϕ − x )/2 ≥ ϕ/2 + 1. □
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Let t be the total number of updates. Excluding the preprocessing time, the running time of our
algorithm is given by the cost of handling insertions and deletions. By Lemma 2.1-3, the total cost
of deletions and insertions that do not cause conflicts is O (t ). We thus focus on insertions that
cause conflicts. Modulo O (1) factors, the total cost of the latter insertions is bounded by the total
cost of the calls to recolor(·).
Epochs: It remains to bound the total cost of the calls to recolor(·). To that aim, and inspired by
[4], we introduce the following notion of epochs. An epoch E is associated with a node v = v (E),
and consists of any maximal time interval in which v does not get recolored. So E starts with a
call to recolor(v ), and ends immediately before the next call to recolor(v ) is executed. Note that
even if v gets recolored with the same color that it occupied before, the epoch still ends and a new
epoch begins. Observe that there are potentially multiple epochs associated with the same node v .
Notice that by construction, during an epoch E the level and color of v (E) does not change: we
refer to that level and color as ℓ(E) and χ (E), resp. By Eℓ we denote the set of epochs at level ℓ.
We define the cost c (E) of an epoch E as the time spent by the call to recolor(v (E)) that starts it,
and then we charge the cost of every epoch E at level ℓ(E) = −1 to the previous epoch involving
the same node v (E).

Lemma 3.3. Excluding the preprocessing time, the total running time of the dynamic algorithm is
given by: O (

∑
ℓ
∑
E∈Eℓ

c (E)) = O (
∑

ℓ |Eℓ | · 3ℓ(E) ).

Proof. By the above discussion and Lemma 2.1 (points 4-5), the cost of any epoch E is given by
c (E) = O

(
3ℓ(E)

)
. The claim follows. □

A classification of epochs: It will be convenient to classify epochs as follows. An epoch E is
final if it is not concluded by a call to recolor(v (E)). Thus, for a final epoch E, v (E) keeps the
same color from the beginning of E till the end of all the updates. Otherwise E is terminated. A
terminated epoch E, v = v (E), terminates for one of the following possible events: (1) some edge
(u,v ) is inserted, with χ (u) = χ (v ), hence leading to a call to recolor(v ); (2) a call to recolor(w )
for some up-neighborw ofv forces a call to recolor(v ) (without the insertion of any edge incident
to v). We call the epochs of the first and second type original and induced, resp. In the second case,
we say that the epoch E ′ that starts with the recoloring ofw induces E.

Lemma 3.4. The total cost of induced epochs is (deterministically) at most O (1) times the total cost
of original and final epochs.

Proof. Let us construct a directed epoch graph, with node set the set of epochs, and a directed
edge (E, E ′) iff E ′ induced E. Notice that, for any edge (E, E ′) in the epoch graph, ℓ(E ′) > ℓ(E).
Observe also that this graph consists of a collection of disjoint, directed paths starting at original,
induced, or final epochs and ending at original and final epochs. Let us charge the cost of each
induced epoch E to the root r (E) of the corresponding path in the epoch graph. All the cost is
charged to original and final epochs, and the cost charged to one epoch E of the latter type is at
most ∑ℓ<ℓ(E) O (3ℓ ) = O (3ℓ(E) ). The claim follows. □

Lemma 3.5. Given any sequence of t updates, the total cost of final epochs is (deterministically)O (t ).

Proof. By Invariant 3.1, for any final epoch E, v = v (E) and ℓ = ℓ(E), v must have at least 3ℓ+1
down-neighbors at the beginning of E. Since by assumption at the end of the process the graph is
empty, there must be at least 3ℓ+1 deletions with one endpoint being v during E. By charging the
O (3ℓ ) cost of E to the later deletions, and considering that each deletion is charged at most twice,
we achieve a average cost per deletion in O (1), hence a total cost in O (t ). □
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A classification of levels: Recall that Eℓ denotes the set of epochs at level ℓ. We now classify the
levels into 3 types, as defined below.
• A level ℓ is induced-heavy iff at least 1/2-fraction of the epochs in Eℓ are induced.
• A level ℓ is final-heavy iff (a) it is not induced-heavy and (b) at least 1/8-fraction of the epochs
in Eℓ are final.
• A level ℓ is original-heavy iff it is neither induced-heavy nor final-heavy. Note that if a level
ℓ is original-heavy, then ≥ 3/8-fraction of the epochs in Eℓ are original.

Henceforth, we say that an epoch is induced-heavy, final-heavy and original-heavy if it respectively
belongs to an induced-heavy, final-heavy and original-heavy level. We use the term “cost of a level
ℓ” to refer to the total cost of all the epochs at level ℓ.

Lemma 3.6. The total cost of all the induced-heavy levels is (deterministically) at most O (1) times
the total cost of all the original-heavy and final-heavy levels.

Proof. We perform charging level by level, starting from the lowest level −1. Given a level ℓ, if
it is either original-heavy or final-heavy then we do nothing. Otherwise, we match each epoch
E ∈ Eℓ that is either original or final with some distinct induced epoch E ′ ∈ Eℓ . We next charge the
cost of E (as obtained from the proof of Lemma 3.4) to E ′. Finally, we charge the cost of E ′ to some
original or final epoch E ′′ at a higher level following the same scheme as in the proof of Lemma
3.4. At the end of this process, only original and final epochs at the original-heavy and final-heavy
levels are charged. By an easy induction, when we start processing level ℓ the total charge on an
original or final epoch at level ℓ coming from the lower levels is at most ∑ℓ′<ℓ O (3ℓ′ ) = O (3ℓ−1).
The lemma follows. □

Lemma 3.7. Given any sequence of t updates, the total cost of all the final-heavy levels is (determin-
istically) at most O (t ).

Proof. Note that at each final-heavy level at least 1/8-fraction of the epochs are final. Thus, the
cost of the other epochs given by Lemma 3.3 can be charged to the final epochs in the layer. There
is already O (3ℓ ) cost charged to the final epoch; thus, the additional cost of other epochs in the
same level only increases this cost by an 8-factor. The proof now follows from Lemma 3.5. □

Corollary 3.8. The total cost of the dynamic algorithm, excluding the preprocessing time and a term
O (t ), is O (1) times the total cost of the original-heavy levels.

Proof. It follows from the above discussion and Lemmas 3.6, 3.7. □

Bounding the Cost of the Original-Heavy Levels: It now remains to bound the total cost of
the original-heavy levels. Recall that at each original-heavy level, at least 3/8-fraction of the epochs
are original. Thus, using a simple charging scheme, the task of bounding the total cost of all the
original-heavy levels reduces to bounding the total cost of all the original epochs in these levels.
At this point, it is tempting to use the following argument. By Invariant 3.1, for each epoch E,
ℓ = ℓ(E), the corresponding color χ (E) is chosen uniformly at random in a palette of size at least
3ℓ(E)/2 + 1. Therefore, if E is original, we expect to see at least Ω(3ℓ ) edge insertions having v (E)
as one endpoint before one such insertion causes a conflict with v (E). This would imply an O (1)
amortized cost per edge insertion. The problem with this argument is that, conditioning on an
epoch E being original, modifies a posteriori the distribution of colors taken at the beginning of
E. For example, the choice of certain colors might make more likely that the considered epoch is
induced rather than original. To circumvent this issue, we need a more sophisticated argument
that exploits the fact that we are considering original epochs in original-heavy levels only.
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We define the duration dur (E) of an epoch E, v = v (E), as the number of edge insertions of
type (u,v ) that happen during E, plus possibly the final insertion that causes the termination of E
(if E is original). We also define a critical notion of pseudo-duration psdur (E) of E as follows. Let
(v,u1), . . . , (v,uq ) be the subsequence of insertions of edges incident to v in the input sequence
after the creation of E. For each ui in the sequence of updates, let χ (ui ) represent the color of ui
right before the creation of E. Consider the sequence of colors χ (u1), . . . , χ (uq ). Remove from this
sequence all colors not in the palette C used by E to sample χ (E), and then leave only the first
occurrence of each duplicated color. Let χ (1), . . . , χ (k ) be the obtained subsequence of (distinct)
colors. We assume that χ (1), . . . , χ (k ) is a permutation ofC (so that k = |C |), and otherwise extend
it arbitrarily to enforce this property. We define psdur (E) to be the index i such that χ (i ) = χ (E).
In other words, psdur (E) is equal to the number of distinct colors in χ (u1), . . . , χ (uj ) that are also
in C where χ (uj ) is the first occurrence of the color χ (E). Such a j exists since j = i if the first
occurrence of χ (E) is at index i .

Lemma 3.9. For an original epoch E, psdur (E) ≤ dur (E) deterministically.

Proof. Let (v,ui ) be the edge insertion that causes the termination of E, so that dur (E) = i . Let
j ≤ i be the smallest index with χ (uj ) = χ (ui ). Let C be the palette used by v to sample χ (ui ). The
value of psdur (E) equals the number of distinct colors in the set χ (u1), . . . , χ (uj ) that are also inC .
The latter number is clearly at most j ≤ i . (In this proof we crucially used the following property: If
the insertion of an edge (x ,y) creates a conflict, in the sense that both x and y have the same color,
then our algorithm changes the color of the node z ∈ {x ,y} that was most recently recolored.) □

We say that an epoch E is short if psdur (E) ≤ 1
32e 3

ℓ(E) , and long otherwise. The following critical
technical lemma upper bounds the probability that an epoch is short.

Lemma 3.10. An epoch E is short with probability at most 1
16e , independently from the random bits

used by the algorithm other than the ones used to sample χ (E).

Proof. Let C be the palette from which v = v (E) took its color c = χ (E) uniformly at random.
Let us condition on all the random bits used by the algorithm prior to the ones used to sample
χ (E). Notice that this fixes C and the permutation χ (1), . . . , χ ( |C |) of C used for the definition of
psdur (E) (see the paragraph before Lemma 3.9). The random bits used after the sampling of χ (E)
clearly do not affect psdur (E). The probability that psdur (E) = i , i.e. χ (i ) = χ (E), is precisely
1/|C |. The latter probability is deterministically at most 2

3ℓ (E) by Invariant 3.1. In particular, this
upper bound holds independently from the random bits on which we conditioned earlier. The claim
then follows since

IP[E is short] = IP
[
psdur (E) ≤

3ℓ(E)
32e

]
=

3ℓ(E)
32e ·

1
|C |
≤

1
16e .

□

We next define some bad events, that happen with very small probability. Recall that Eℓ is the
set of epochs at level ℓ. We define Eshor t

ℓ
(resp., Elonд

ℓ
) as the collection of all epochs in Eℓ that are

short (resp., long).

Lemma 3.11. Consider any x ≥ 0, and let Ax
ℓ
be the event that |Eℓ | > x and |Eshor t

ℓ
| ≥

|Eℓ |

4 . Then
IP(Ax

ℓ
) ≤ 4

2x /2 .

Proof. Fix two parameters q and j, with j ≥ q/4, and consider any q level-ℓ epochs E1, . . . ,Eq ,
ordered by their creation time. We argue that the probability that precisely j particular epochs
E (1), . . . ,E (j ) among these q are short is at most

(
1
16e

) j
. Let B (i ) be the event that E (i ) is short,
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1 ≤ i ≤ j . By a simple induction and Lemma 3.10, we have that IP(B (i ) | B (1) ∩B (2) ∩ . . . B (i−1) ) ≤ 1
16e .

Consequently, we get: IP(B (1) ∩B (2) ∩ . . .∩B (j ) ) = IP(B (1) ) · IP(B (2) | B (1) ) · . . . · IP(B (j ) | B (1) ∩B (2) ∩

. . . ∩ B (j−1) ) ≤
(

1
16e

) j
.

There are
(
q
j

)
choices for the subsequence E (1) . . . E (j ) . Thus, we get: IP[|Eℓ | = q∩|Eshor tℓ

| = j] ≤(
q
j

) (
1
16e

) j
. Since

(
q
j

)
≤ (

eq
j )

j ≤ (4e ) j , we have
(
q
j

) (
1
16e

) j
≤ 1

4j . Hence, IP(A
x
ℓ
) =
∑
q>x
∑q

j=q/4 IP[|Eℓ | =
q ∩ |Eshor t

ℓ
| = j] ≤ ∑q>x

∑q
j=q/4

1
4j ≤

∑
q>x

4
3 ·

1
2q/2 ≤

4
2x /2 . □

Corollary 3.12. For a large enough constant a > 0 and x = 2a log2 n, let A denote the event that Ax
ℓ

happens for some level ℓ. Then IP(A) = O (
logn
na ).

Proof. It follows from Lemma 3.11 and the union bound over all levels ℓ. □

Lemma 3.13. Let д be the number of level-ℓ epochs with duration ≥ δ , and INℓ be the set of input
insertions of edges incident to vertices at level ℓ. Then д ≤ 2|INℓ |/δ .

Proof. Observe that for the duration of the concerned epochs, we consider only insertions in
INℓ . Furthermore, each such insertion can influence the duration of at most 2 such epochs. The
claim follows by the pigeon-hole principle. □

Let c (Eℓ ) = O (3ℓ · |Eℓ |) be the total cost of the epochs in level ℓ. We next relate the occurrence
of event ¬Ax

ℓ
to the value of the random variable c (Eℓ ) for original epochs.

Lemma 3.14. If ¬Ax
ℓ
occurs and level ℓ is original-heavy, then c (Eℓ ) = O ( |INℓ | + 3ℓx ).

Proof. If |Eℓ | ≤ x , then we clearly have c (Eℓ ) = O (3ℓx ). For the rest of the proof, we assume
that |Eshor t

ℓ
| < |Eℓ |4 , or equivalently: |Elonд

ℓ
| ≥ 3

4 · |Eℓ |. Let E
∗
ℓ
⊆ Eℓ be the set of original epochs at

level ℓ. As the level ℓ is original-heavy, we have: |E∗
ℓ
| ≥ 3

8 · |Eℓ |. Since |E
lonд
ℓ
| ≥ 3

4 · |Eℓ |, applying
the pigeon-hole principle we infer that at least q ≥ |Eℓ |

8 level-ℓ epochs are original and long at the
same time. Specifically, we get: |E∗

ℓ
∩ E

lonд
ℓ
| ≥ 1

8 · |Eℓ |, or equivalently: |Eℓ | ≤ 8 · |E∗
ℓ
∩ E

lonд
ℓ
|.

Any epoch E ∈ E∗
ℓ
∩ E

lonд
ℓ

has duration dur (E) ≥ psdur (E) ≥ 3ℓ
32e by Lemma 3.9 and the

definition of long epochs. Hence by applying Lemma 3.13 with δ = 3ℓ
32e , we can conclude that the

number of such epochs is at most 2 |I Nℓ |

3ℓ/(32e ) =
64e |I Nℓ |

3ℓ . Hence, we get: |Eℓ | ≤ 8 · |E∗
ℓ
∩ E

lonд
ℓ
| ≤

8 · 64e3ℓ · |INℓ |. The lemma follows if we multiply both sides of this inequality by the O (3ℓ ) cost
charged to each epoch in Eℓ . □

We are now ready to bound the amortized update time of our dynamic algorithm. Recall that t
denotes the total number of updates.

Lemma 3.15. For any fixed sequence of t updates, with probability 1−O (logn/na ), the total running
time of our algorithm is O (t + an logn + ∆n).

Proof. By Lemma 2.1-1, the preprocessing time is O (∆n). The total cost of deletion and conflict-
less insertions is O (t ), due to Lemma 2.1-3. Let us condition on the event ¬A, which happens with
probability 1 −O (logn/na ) by Corollary 3.12. Then the total cost of the original-heavy levels is
O (
∑

ℓ ( |INℓ | + 3ℓa logn)) = O (t + n logn) by Lemma 3.14. The lemma now follows from Corollary
3.8. □

In order to prove that the amortized update time of our algorithm isO (1) in expectation, we also
need the following upper bound on its worst-case total running time.
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Lemma 3.16. Our algorithm’s total runtime is deterministically O (tn2 + n logn + ∆n).

Proof. The preprocessing time is O (n logn + ∆n) and the total cost of deletions and conflict-
less insertions is O (t ) deterministically. Each conflicting insertion starts a sequence of calls to
recolor(·) involving some nodes w1, . . . ,wq . A given node w can appear multiple times in the
latter sequence. However, the sequence ends when some nodew∗ is moved to level −1, and in all
other cases the level of w is increased by at least one. This means that the total cost associated
with nodew is O (

∑
ℓ 3ℓ ) = O (n). The lemma follows by summing over the n nodes and the O (t )

insertions. □

Hence we can conclude:

Lemma 3.17. The total expected running time of our algorithm is O (t + n logn + ∆n).

Proof of Lemma 3.17. When the event ¬A happens, the total cost of the algorithm isO (t + ∆n)
by Lemma 3.15. If instead the eventA happens, then the cost isO (tn2+∆n) by Lemma 3.16. However
the latter event happens with probability at most O (

logn
na ) by Corollary 3.12. So this second case

adds o(t ) to the total expected cost for a > 2. □

We now have all the ingredients to prove the main theorem of this paper.

Proof of Theorem 1.2. Consider the dynamic algorithm described above. The space usage
follows from Lemma 2.1-2 and the update time from Lemmas 3.15 and 3.17. □

A (∆ + 1)-COLORING UPDATE DATA STRUCTURES
In this section, we give a full detailed description of the data structures used by our dynamic
algorithm.

The update algorithm is applied following edge insertions and deletions to and from the graph.
In this section, we provide a complete description of the update data structures and algorithm. The
pseudocode of this algorithm can be found in Appendix B. We begin with a description of the data
structures and invariants that will be maintained by our algorithm. Throughout, we use the phrase
mutual pointers between two elements a and b (i.e. specifically, we use the phrase “mutual pointers
between a and b”) to mean pointers from a to b and from b to a (hence the pointers are mutual).

A.1 Hierarchical Partitioning and Coloring Data Structures
Our algorithm maintains the following set of data structures which we divide into two groups: the
data structures responsible for maintaining our hierarchical partitioning and the data structures
used to maintain the set of colors associated with each vertex. Let C be the set of all ∆+1 colors. The
first group of data structures is a hierarchical partitioning of the vertices of the graph into different
levels according to some procedures that maintain a set of invariants. A vertex at a level has some
number of neighbors in other levels of the hierarchical partitioning structure. We refer to neighbors
at the same or higher levels of the hierarchical partitioning structure as the up-neighbors. We
refer to neighbors at lower levels of the hierarchical partitioning as the down-neighbors. Different
data structures will be used to maintain the colors of the down-neighbors and the colors of the
up-neighbors of a vertex. We can obtain the palette, Cv , defined to consist of the blank and unique
colors, by scanning through the list C \ C+v .
The second group of data structures deals with maintaining the colors of the vertices, inspired

by the structures given in [7]. For the following data structures, we use logarithms in base 3 unless
stated otherwise.

Let C be the set of all ∆ + 1 colors:
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• Hierarchical Partitioning: We maintain the following data structures necessary for our
hierarchical partitioning.

(1) For each vertex v :
(a) Nv : a linked list containing all neighbors of v .
(b) Dv : a linked list containing all down-neighbors of v .
(c) Uv : a dynamic array where each index corresponds to a distinct level ℓ ∈ {0, . . . , log3 (n−

1) − 1}.Uv [ℓ] holds a level number, a pointer to the head of a non-empty doubly linked
list containing all up-neighbors of v at level ℓ, and the size of the non-empty doubly
linked list of neighbors. If this list is empty, then the corresponding pointer is not stored.

(2) For any vertex v and any neighbor u in Dv , let uDv represent the copy of u ∈ Dv ,
vUu [ℓ(v )] be the copy of v ∈ Uu [ℓ(v )], vNu be the copy of v ∈ Nu , and, finally uNv
be the copy of u ∈ Nv . We maintain the following pairs of pointers, where for each
pair, there exists a pointer from the first element in the pair to the second and vice
versa: (uDv ,vUu [ℓ(v )]), (uDv ,vNu ), (uDv ,uNv }), (vUu [ℓ(v )],vNu ), (vUu [ℓ(v )],uNv }), and
(vNu ,uNv }). In other words, there exists two pointers (one forwards and one backwards)
between every pair of elements in {uDv ,vUu [ℓ(v )],vNu ,uNv }. The set of pointers means
that given an edge insertion or deletion, we are able to quickly access the endpoints of the
edge in each data structure once we locate one copy of an endpoint in memory.

(3) We define ϕv (ℓ) to be the number of neighbors of v with level strictly lower than ℓ. We
calculate the appropriate values for ϕv (ℓ) as follows. For any level, ℓ′ < ℓ(v ), we look
through all neighbors stored inDv (defined above) to calculate ϕv (ℓ′). For levels ℓ′ ≥ ℓ(v ),
we use the sizes of the linked lists inUv (defined above) to calculate ϕv (ℓ′).

• Coloring: We maintain the following data structures for our coloring procedures. These
structures are similar to the structures used in [7].

(1) A static array χ of size O (n) where χ[i] stores the current color of the i-th vertex.
(2) For each vertex v :
(a) C+v : a doubly linked list of exactly one copy of each color occupied by vertices in Uv .

Each color contains a counter µ+v (c ) counting the number of vertices inUv that is colored
color c .

(b) The counters µ+v (c ) are stored in a static array of size ∆ + 1 where index i contains the
number of vertices inUv that is colored with color i .

(c) Cv : a doubly linked list of colors in C\C+v that are blank or unique.
(d) A static array Pv of size ∆ + 1 containing mutual pointers (i.e. the pair of pointers from

element a to element b and from element b to element a) to each color c in Cv or C+v and
to each of two additional nodes representing each color in C. Let ic be the index of color
c in Pv . Suppose that c ∈ Cv . Let pc and p+c be the two additional nodes representing c .
Then Pv [ic ] contains pointers to c ∈ Cv , pc , and p+c . In addition, if c ∈ Cv , then it has
mutual pointers to pc . If, instead, c ∈ C+v , then it has mutual pointers to p+c instead. In
other words, pc receives pointers from nodes in Cv (and has outgoing pointers to nodes
in Cv ) and p+c receives pointers from nodes in C+v (and has outgoing pointers to nodes in
C+v ).

We define the set of blank colors for v to be colors in Cv which are not occupied by any vertex in
Dv . We define the set of unique colors of v to be colors in Cv which are occupied by at most one
vertex in Dv .

We now describe the pointers from the hierarchical partitioning structures to the coloring
structures and vice versa.
• Each color c in C+v has a pointer to p+c and vice versa.
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• Each color c ′ in Cv has a pointer to pc ′ and vice versa.
• Each vertex u ∈ Uv contains mutual pointers to the node p+c representing its color in Pv
that it is currently colored with. The color c is also in C+v and has mutual pointers to p+c .
• Each vertex u ∈ Dv contains mutual pointers to pc representing its corresponding color in
Pv . If its color is in Cv , then mutual pointers also exist between pc and c in Cv .
• Each edge (u,v ) contains two pointers, one to u ∈ Nv and one to v ∈ Nu . u and v also
contain pointers to edge (u,v ).

Initial Data Structure Configuration, Time Cost, and Space Usage. There exist no edges in the
graph initially; thus all vertices can be colored the same color. Such an arbitrary starting color is
chosen. Before any edge updates are made, we assume that all vertices are on level −1, colored with
the arbitrary starting color. Thus, all colors are also initially in Cv .

Before any edge insertions, the only structures that we initialize are an empty dynamic arrayUv
for each vertex v , the list of all colors C, and χ . When the first edge that contains vertex v as an
endpoint is inserted, we initializeNv , Dv ,Uv , C+v , Cv , µ+v for v (as well as the associated pointers).
The time for initializing these structures is O (n∆) which means that the preprocessing time will
result in O (1) amortized time per update assuming Ω(n∆) updates.

The dynamic arrays in our data structure are implemented as follows. When the array contains
no elements, we set the default size of the array to 8. Whenever the array is more than half full, we
double the size of the array. Similarly, whenever the array is less than 1/4 full, we shrink the size of
the array by half. Then, suppose we have an array which just shrank in size or doubled in size and
the size of the array is L. We require at least either L/4 insertions or deletions to double or halve
the size of the array again. Thus, the O (L) cost of resizing the array can be amortized over the
L/4 updates to O (1) cost per update. Given that our algorithm is run on a graph which is initially
empty, all dynamic arrays in our structure are initially empty and initialized to size 8.
We note a particular choice in constructing our data structures. In the case of Uv , given our

assumption of the number of updates, we can also implement Uv as a static array instead of a
dynamic array. The maximum number of levels is bounded by log3 (n − 1) + 1. Thus, if we instead
implementedUv as static arrays instead of dynamic arrays, the total space usage (and initialization
cost) would be O (n logn), amortizing to O (1) per update given Ω(n logn) updates. There may
be reasons to implement Uv as static arrays instead of dynamic dynamic arrays such as easier
implementation of basic functions. However, we choose to use a dynamic array implementation
for potential future work for the cases when the number of updates is o(n logn + n∆). The key
property we can potentially take advantage of in using the dynamic array implementation is that
the total space used (and the total time spent in initializing the data structure) is within a constant
factor of the number of edges in the graph at any particular time.

Usefulness of the Pointers. Pointers between the various data structures used for the hierarchical
partitioning and for maintaining the coloring allows for us to quickly update the state following an
edge insertion or deletion. For example, when an edge uv is inserted or deleted, we get pointers to
v ∈ Nu and u ∈ Nv , and through these pointers we delete all elements u ∈ Dv ,v ∈ Uu [ℓ(v )],v ∈
Nu ,u ∈ Nv and potentially move a color from C+u to Cu . The exact procedure for handling edge
deletions is described later.

A.2 Invariants
Our update algorithm and data structures maintain the following invariant (reproduced again here
for readability).

Invariant A.1. The following hold for all vertices:
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(1) A vertex in level ℓ was last colored using a palette of size at least (1/2) 3ℓ+1 + 1. As a special
case, a vertex in level −1 was last colored using a palette of size 1 (in other words, it was colored
deterministically).

(2) The level of a vertex remains unchanged until the vertex is recolored.

A.3 Edge Update Algorithm
We now describe the update algorithm in detail. The data structures are initialized as described in
Section A.1. Then, edge updates are applied to the graph. Following an edge insertion or deletion,
the procedure handle-insertion(u,v ) or handle-deletion(u,v ), respectively, is called. The
descriptions of the insertion and deletion procedures are given below.

Procedures handle-insertion(u,v ) and handle-deletion(u,v ). handle-deletion(u,v ) is
called on an edge deletion uv . This case would not result in any need to recolor any vertices since
a conflict will never be created. Thus, we update the relevant data structures in the obvious way
(by deleting all relevant entries in all relevant structures); details of this set of deletions are given
in the pseudocode in Fig. 4.

Procedure handle-insertion(u,v ) is called on an edge insertion handle-insertion(u,v ). The
pseudocode for this procedure is given in Figure 3. If edge uv does not connect two vertices that are
colored the same color (i.e. if the insertion is conflict-less), then we only need to update the relevant
data structures with the inserted edge. Namely the vertices are added to the structures maintaining
the neighbors of u and v . If u is on a higher level than v , then u is added toUv and v is added to
Du (and vice versa). If u and v are on the same level, then u is added toUv and v is added toUu .
Furthermore, the colors that are associated with the vertices are moved in between the lists C+v
and Cv as necessary. See the pseudocode in Fig. 3 for exact details of these straightforward data
structure updates.

In the case that edge uv connects two vertices of the same color (i.e. if the insertion is conflicting),
we need to recolor at least one of these two vertices. We arbitrarily recolor one of the vertices u
or v using procedure recolor (i.e. recolor(u) as given in the pseudocode in Fig. 6). Procedure
recolor is the crux of the update algorithm and is described next.

Whenever a conflict is created following an edge insertion uv , procedure recolor(u) is called on
one of the two endpoints. This procedure is described below.

Procedure recolor(v ). The pseudocode for this procedure can be found in Figure 6. The procedure
recolor(v ) makes use of the level of v as well as the number of its down-neighbors to either
choose a blank color deterministically to recolor v or to determine the palette from which to select
a random color to recolor v . Recall that all vertices start in level −1 before any edges are inserted
into the graph.

The procedure recolor(v ) considers two cases:
• Case 1: ϕv (ℓ(v ) + 1) < 3ℓ(v )+2. In other words, the first case is when the number of down-
neighbors and vertices on the same level as v is not much greater than 3ℓ(v )+1. We show in
the analysis that in this case, we can find the colors of all the neighbors in Dv and pick a
color in Cv that does not conflict with any such neighbors (or the color that it currently has).
Thus, we deterministically choose a blank color to recolor v , creating no further conflicts.
The procedure to choose a blank color for v , det-color(v ), is described in the following.
• Case 2: ϕ (ℓ(v ) + 1) ≥ 3ℓ(v )+2. In this case, the number of down-neighbors and vertices on the
same level as v is at least 3ℓ(v )+2 and it will be too expensive to look for a blank color since
we need to look at all neighbors in Dv to determine such a color and the size of Dv could be
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very large. Thus, we need to pick a random color from Cv to recolor v by running Procedure
rand-color(v ) as described below.

Procedures det-color(v ) and rand-color(v ). When called, the procedure
det-color(v ) starts by scanning the list Cv to find at least one blank color that we can use to color
v . By the definition of (∆+ 1)-coloring, there must exist at least one blank color with which we can
use to color v . We can deterministically find a blank color in the following way. The elements in
Cv are stored in a doubly linked list. We start with the first element at the front of the list and scan
through the list until we reach an element that does not have a pointer to a vertex in Dv . We can
determine whether a color c ∈ Cv has a pointer to a vertex in Dv by following the pointer from c
to pc . From pc , we can then determine whether any vertices in Dv are colored with c .

Let this first blank color be cb . We assign color cb to v , update χ (iv ) to indicate that the color of
v is cb , and update the lists C+w and/or Cw of allw ∈ Dv . To update all C+w and Cw , we follow the
following set of pointers:
(1) Fromw ∈ Dv , follow pointers to reachw ∈ Nv .
(2) Fromw ∈ Nv , follow pointers to reach v ∈ Nw .
(3) From v ∈ Nw , follow pointers to reach v ∈ Uw [ℓ(v )].
(4) Let c be the previous color of v as recorded in C+w . From v ∈ Uw [ℓ(v )], follow pointers to

reach c ∈ C+w .
(5) Decrement µ+w (c ) by 1. Delete mutual pointers between v and p+c . If now µ+w (c ) = 0, remove

c from C+w , append c to the end of Cw , delete mutual pointers between c and p+c , and add
mutual pointers between c and pc .

(6) Use Pw to find cb in either C+w or Cw . If cb ∈ C+w , increment µ+w (cb ) by 1. Otherwise, if
cb ∈ Cw , remove cb from Cw , append cb to the end of C+w , increment µ+w (cb ) by 1, delete
mutual pointers between cb and pcb , and create mutual pointers between cb and p+cb . Create
mutual pointers between v ∈ Uw [ℓ(v )] and p+cb .

After the above is done in terms of recoloring the vertex v , set-level(v,−1) is called to bring
the level of v down to −1. The description of set-level(v,−1) is given in the following. See the
pseudocode for det-color(v ) in Fig. 7 for concrete details of this procedure.

The procedure rand-color(v ) employs a level-rising mechanism. We mentioned before the concept
of partitioning vertices into levels. Each level bounds the down-neighbbors of the vertices at that
level, providing both an upper and lower bound on the number of down-neighbors of the vertex.
Because there are at most log3 (n − 1) levels, the number of vertices in each level is thus exponen-
tially increasing. The procedure rand-color(v ) takes advantage of this bound on the number of
down-neighbors of the vertex v to find a level to recolor v with a color randomly chosen from
its Cv . Specifically, rand-color(v ) recolors v at some level ℓ∗ higher than ℓ(v ), with a random
blank or unique color occupied by vertices of levels strictly lower than ℓ∗. At level ℓ∗, it attempts to
select a color c within time O (3ℓ∗ ); this can only occur if |Dv | = O (3ℓ∗ ). Upon failure, it calls itself
recursively to color v at yet a higher level. Again, set-level(v, ℓ∗) is called every time v moves to
a high level.

Procedure set-level(v, ℓ). Procedures det-color(v ) and rand-color(v ) may set the level of
v to a different level, in which case the procedure set-level(v, ℓ) is called with the new level ℓ as
input. Let ℓ(v ) be the previous level of v . The procedure does nothing if ℓ = ℓ(v ). Otherwise:
If v is set to a lower level ℓ < ℓ(v ): we need to update the data structures of vertices in levels

[ℓ + 1, ℓ(v )]. For each vertex w ∈ Dv where ℓ + 1 ≤ ℓ(w ) ≤ ℓ(v ), we make the following data
structure updates:
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(1) Deletew from Dv . Delete the mutual pointers betweenw and pc . Letw’s color be c . Move
w ’s color, c , in Cv to C+v if c is currently in Cv . Delete the mutual pointers between c and pc .
Create mutual pointers between c and p+c . Incrementw’s color count µ+v (c ) by 1.

(2) Addw toUv [ℓ(w )]. Add mutual pointers betweenw and p+c where c isw’s color.
(3) Delete v fromUw [ℓ(v )]. Let v’s color be c ′. Delete the mutual pointers between v and p+c ′ .

Decrement v’s color count µ+w (c ′) by 1. If µ+w (c ′) is now 0, move c ′ from C+w to Cw , delete the
mutual pointers between c ′ and p+c ′ , and create mutual pointers between c ′ and pc ′ .

(4) Add v to Dw . Add mutual pointers between v and pc ′ where c ′ is v’s color if c ′ was moved
to Cw .

(5) Add mutual pointers between all elements v ∈ Dw ,w ∈ Uv [ℓ(w )],v ∈ Nw ,w ∈ Nv .
(6) Add mutual pointers between all copies of the same element: i.e.w ∈ Dv ,w ∈ Nv , and/or

w ∈ Uv [ℓ(w )].
(7) Maintain mutual pointers between Pv [ic ], pc , and p+c . Maintain mutual pointers between
Pw [ic ′], p+c ′ , and pc .

If v is set to a higher level ℓ > ℓ(v ): we need to update the data structures of vertices in levels
[ℓ(v ), ℓ − 1]. Specifically, for each non-empty listUv [i], with ℓ(v ) ≤ i ≤ ℓ − 1, and for each vertex
w ∈ Uv [i], we perform the following operations:

(1) Deletew fromUv [i]. Let c be the color ofw . Delete the mutual pointers betweenw and p+c .
Decrement µ+v (c ) by 1. If µ+v (c ) = 0, then move c from C+v to Cv , delete the mutual pointers
between p+c and c , and add mutual pointers between pc and c .

(2) Addw to Dv , create mutual pointers betweenw and pc (where c isw ’s color), delete v from
Dw , and add v toUw [ℓ]. Let v’s color be c ′. Delete the mutual pointers between v and pc ′ .
Add mutual pointers between v and p+c ′ . If c

′ is currently in Cw , move v’s color, c ′, in Cw to
C+w , delete mutual pointers between c ′ and pc ′ , and add mutual pointers between c ′ and p+c ′ .
Increment µ+w (c ′) by 1.

(3) Add mutual pointers between all elementsw ∈ Dv ,v ∈ Uw [ℓ],v ∈ Nw ,w ∈ Nv .
(4) Maintain mutual pointers between Pv [ic ], pc , and p+c . Maintain mutual pointers between
Pw [ic ′], pc ′ , and p+c ′ .

The full pseudocode of this procedure can be found in Fig. 5.

B PSEUDOCODE
In the below pseudocode, we do not describe (most of) the straightforward but tedious pointer
creation procedures. We assume that the corresponding pointers are created according to the
procedure described in Section A.1. In the cases where the pointer change is significant, we describe
it in the pseudocode.
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handle-insertion(u,v ):
(1) Nv ← Nv ∪ {u};
(2) Nu ← Nu ∪ {v};
(3) If ℓ(u) > ℓ(v ):
(a) Du ← Du ∪ {v};
(b) Uv [ℓ(u)]←Uv [ℓ(u)] ∪ {u};

(4) Else if ℓ(u) = ℓ(v ):
(a) Uv [ℓ(u)]←Uv [ℓ(u)] ∪ {u};
(b) Uu [ℓ(v )]←Uu [ℓ(v )] ∪ {v};

(5) Else:
(a) Dv ← Dv ∪ {u};
(b) Uu [ℓ(v )]←Uu [ℓ(v )] ∪ {v};

(6) update-color-edge-insertion(u,v, cu , cv );
(7) If color(u) = color(v ): /* if u and v have the same color */
(a) recolor(u); /* assuming u is the most recently colored */

Fig. 3. Handling edge insertion (u,v ).

handle-deletion(u,v ):
(1) Nv ← Nv \ {u};
(2) Nu ← Nu \ {v};
(3) If v ∈ Du :
(a) Du ← Du \ {v};
(b) Uv [ℓ(u)]←Uv [ℓ(u)] \ {u};

(4) Else if u ∈ Dv :
(a) Dv ← Dv \ {u};
(b) Uu [ℓ(v )]←Uu [ℓ(v )] \ {v};

(5) Else:
(a) Uu [ℓ(v )]←Uu [ℓ(v )] \ {v};
(b) Uv [ℓ(u)]←Uv [ℓ(u)] \ {u};

(6) Remove all associate color pointers and shift colors between Cu , C+u and Cw , C+w as
necessary;

Fig. 4. Handling edge deletion (u,v ).



20 Sayan Bhattacharya, Fabrizio Grandoni, Janardhan Kulkarni, Quanquan C. Liu, and Shay Solomon

set-level(v, ℓ):
(1) For allw ∈ Dv : /* updateUw regarding v’s new level */
(a) Uw [ℓ(v )]←Uw [ℓ(v )] \ {v};
(b) Uw [ℓ]←Uw [ℓ] ∪ {v};

(2) If ℓ < ℓ(v ): /* in this case the level of v is decreased by at least one */
(a) For allw ∈ Dv such that ℓ ≤ ℓ(w ) < ℓ(v ): /* reassign color pointers*/

(i) Dv ← Dv \ {w };
(ii) Delete mutual pointers betweenw and pcolor(w ) ;
(iii) If color(w ) ∈ Cv :

(A) Move color(w ) ∈ Cv to C+v ;
(B) Delete mutual pointers between color(w ) and pcolor(w ) ;
(C) Create mutual pointers between color(w ) and p+color(w )

;
(iv) Increment µ+v (color(w )) by 1;
(v) Uv [ℓ(w )]←Uv [ℓ(w )] ∪ {w };
(vi) Create mutual pointers between w and p+color(w )

if such pointers do not already
exist;

(vii) Uw [ℓ]←Uw [ℓ] \ {v};
(viii) Delete mutual pointers between color(v ) and p+color(v ) ;
(ix) Decrement µ+w (color(v )) by 1;
(x) If µ+w (color(v )) = 0:
(A) Move color(v ) ∈ C+w to Cw ;
(B) Delete mutual pointers between color(v ) and p+color(v ) ;
(C) Create mutual pointers between color(v ) and pcolor(v ) ;

(xi) Dw ← Dw ∪ {v};
(xii) Create mutual pointers between v and pcolor(v ) if such pointers do not already

exist;
(3) If ℓ > ℓ(v ): /* in this case the level of v is increased by at least one */ a
(a) For all i = ℓ(v ), . . . , ℓ − 1 and allw ∈ Uv [i]:

(i) Uv [i]←Uv [i] \ {w };
(ii) Decrement µ+v (color(w )) by 1;
(iii) If µ+v (color(w )) = 0: Move color(w ) from C+v to Cv ;
(iv) Dv ← Dv ∪ {w };
(v) Dw ← Dw \ {v};
(vi) Uw [ℓ]←Uw [ℓ] ∪ {v};
(vii) If color(v ) ∈ Cw : Move color(v ) from Cw to C+w ;
(viii) Increment µ+w (color(v )) by 1;

(4) ℓ(v ) ← ℓ;
aFor the sake of clarity and brevity, we do not describe the pointer deletions, creations, and changes in the case
where ℓ > ℓ(v ) because these changes are almost identical to the changes given above for the case ℓ < ℓ(v ).

Fig. 5. Setting the old level ℓ(v ) of v to ℓ.
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recolor(v ):
(1) If ϕv (ℓ(v ) + 1) < 3ℓ(v )+2: det-color(v );
(2) Else rand-color(v );

Fig. 6. Recoloring a vertex that collides with the color of an adjacent vertex after an edge insertion.

det-color(v ):
(1) For all c ∈ Cv :
(a) If c is not occupied by any vertexw ∈ Dv and c ∈ Cv : /* if c is a blank color, color v

with c */
(i) Set χ (iv ) = c;
(ii) For allw ∈ Dv :
(A) update-color(v,w, c ).

(iii) set-level(v,−1);
(iv) terminate the procedure; /* Note that the procedure will always terminate within

this if statement because a blank color always exists by definition of (∆+1)-coloring.
*/

Fig. 7. Coloring v deterministically with a blank color. It is assumed that ϕv (ℓ(v ) + 1) < 3ℓ(v )+2.

rand-color(v ):
(1) ℓ∗ ← ℓ(v );
(2) while ϕv (ℓ∗ + 1) ≥ 3ℓ∗+2: ℓ∗ ← ℓ∗ + 1;

/* ℓ∗ is the minimum level after ℓ(v ) with ϕv (ℓ
∗ + 1) < 3ℓ∗+2 */

(3) set-level(v, ℓ∗); /* after this call ℓ(v ) = ℓ∗ and 3ℓ∗+1 ≤ dout (v ) = ϕv (ℓ
∗) < 3ℓ∗+2 */

(4) Pick a blank or unique color c from Cv uniformly at random;
/* c is chosen with probability at most 2/3ℓ∗+1 and ℓ(w ) ≤ ℓ∗ − 1 */

(5) If c , color(v ): /* If c is not the previous color of v . */
(a) Set χ (iv ) = c;
(b) For all z ∈ Dv :

(i) update-color(v, z, c ).
(6) If c is a unique color (letw ∈ ϕv (ℓ∗) be the vertex that is colored with c):
(a) recolor(w );

Fig. 8. Coloring v at level ℓ∗ higher than ℓ(v ), with a random blank or unique color of level lower than ℓ∗.
If the procedure chose a unique color, it calls recolor (which may call itself recursively) to color w . It is
assumed that ϕv (ℓ(v ) + 1) ≥ 3ℓ(v )+2.
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update-color-edge-insertion(v,w, cv , cw ):
(1) If ℓ(v ) > ℓ(w ):
(a) Locate v ∈ Uw [ℓ(v )];
(b) Delete the mutual pointers (if they exist) between v and p+c ′ where c

′ is v’s previous
color; /* Note that v’s previous color could be located by following pointers from v .
*/

(c) Decrement µ+w (c ′) by 1 if pointers were deleted in the previous step; /* If no pointers
were deleted, thenw had no knowledge of v’s previous color and we do not need to
decrement */

(d) If µ+w (c ′) = 0:
(i) Move c ′ from C+w to Cw by appending c ′ to the end of the linked list representing
Cw ;

(e) Locate p+cv by following pointers from Pw ;
(f) Create mutual pointers between v and p+cv ;
(g) Increment µ+w (cv ) by 1;
(h) If cv is in Cw :

(i) Move cv from Cw to C+w by appending cv to the end of the linked list representing
C+w ;

(i) Locatew ∈ Dv .
(j) Delete the mutual pointers (if they exist) betweenw and pc ′′ where c ′′ isw ’s previous

color;
(k) Locate pcv by following pointers from Pv ;
(l) Create mutual pointers betweenw ∈ Dv and pcw ;

(2) Else if ℓ(v ) < ℓ(w ):
(a) /* Do the above except switch the roles of v andw as well as cv and cw . */

(3) Else:
(a) Locate v ∈ Uw [ℓ(v )] andw ∈ Uv [ℓ(w )];
(b) /* Do the above procedure given in the case when ℓ(v ) > ℓ(w ) for v ∈ Uw [ℓ(v )] for

both v ∈ Uw [ℓ(v )] andw ∈ Uv [ℓ(w )].*/

Fig. 9. Updates the data structures with v andw’s colors when an edge is inserted between v andw .
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update-color(v, cv ):
(1) Forw ∈ Dv :
(a) Locate v ∈ Uw [ℓ(v )];
(b) Delete the mutual pointers (if they exist) between v and p+c ′ where c

′ is v’s previous
color; /* Note that v’s previous color could be located by following pointers from v .
*/

(c) Decrement µ+w (c ′) by 1 if pointers were deleted in the previous step; /* If no pointers
were deleted, thenw had no knowledge of v’s previous color and we do not need to
decrement */

(d) If µ+w (c ′) = 0:
(i) Move c ′ from C+w to Cw by appending c ′ to the end of the linked list representing
Cw ;

(e) Locate p+cv by following pointers from Pw ;
(f) Create mutual pointers between v and p+cv ;
(g) Increment µ+w (cv ) by 1;
(h) If cv is in Cw :

(i) Move cv from Cw to C+w by appending cv to the end of the linked list representing
C+w ;

Fig. 10. Updates the color pointers of v of all of v’s down-neighbors when v changes color.
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