
Faster Counting and Sampling Algorithms Using
Colorful Decision Oracle
Anup Bhattacharya # Ñ

National Institute of Science Education and Research, Bhubaneswar, India

Arijit Bishnu #Ñ

Indian Statistical Institute, Kolkata, India

Arijit Ghosh # Ñ

Indian Statistical Institute, Kolkata, India

Gopinath Mishra #Ñ

University of Warwick, Coventry, UK

Abstract
In this work, we consider d-Hyperedge Estimation and d-Hyperedge Sample problem in

a hypergraph H(U(H), F(H)) in the query complexity framework, where U(H) denotes the set of
vertices and F(H) denotes the set of hyperedges. The oracle access to the hypergraph is called
Colorful Independence Oracle (CID), which takes d (non-empty) pairwise disjoint subsets of
vertices A1, . . . , Ad ⊆ U(H) as input, and answers whether there exists a hyperedge in H having
(exactly) one vertex in each Ai, i ∈ {1, 2, . . . , d}. The problem of d-Hyperedge Estimation and
d-Hyperedge Sample with CID oracle access is important in its own right as a combinatorial
problem. Also, Dell et al. [SODA ’20] established that decision vs counting complexities of a
number of combinatorial optimization problems can be abstracted out as d-Hyperedge Estimation
problems with a CID oracle access.

The main technical contribution of the paper is an algorithm that estimates m = |F(H)| with m̂

such that

1
Cd logd−1 n

≤ m̂

m
≤ Cd logd−1 n.

by using at most Cd logd+2 n many CID queries, where n denotes the number of vertices in the
hypergraph H and Cd is a constant that depends only on d. Our result coupled with the framework
of Dell et al. [SODA ’21] implies improved bounds for the following fundamental problems:
Edge Estimation using the Bipartite Independent Set (BIS). We improve the bound obtained

by Beame et al. [ITCS ’18, TALG ’20].
Triangle Estimation using the Tripartite Independent Set (TIS). The previous best bound for

the case of graphs with low co-degree (Co-degree for an edge in the graph is the number of
triangles incident to that edge in the graph) was due to Bhattacharya et al. [ISAAC ’19, TOCS
’21], and Dell et al.’s result gives the best bound for the case of general graphs [SODA ’21]. We
improve both of these bounds.

Hyperedge Estimation & Sampling using Colorful Independence Oracle (CID). We give an
improvement over the bounds obtained by Dell et al. [SODA ’21].

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms

Keywords and phrases Query Complexity, Subset Query, Hyperedge Estimation, and Colorful
Independent Set oracle

Digital Object Identifier 10.4230/LIPIcs.STACS.2022.10

Related Version Full Version: https://arxiv.org/abs/2201.04975

© Anup Bhattacharya, Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022).
Editors: Petra Berenbrink and Benjamin Monmege; Article No. 10; pp. 10:1–10:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bhattacharya.anup@gmail.com
https://sites.google.com/site/anupbtcs
mailto:arijit@isical.ac.in
https://www.isical.ac.in/~arijit/
mailto:arijitiitkgpster@gmail.com
https://sites.google.com/site/homepagearijitghosh/
mailto:gopianjan117@gmail.com
https://sites.google.com/view/gopinathmishra/
https://doi.org/10.4230/LIPIcs.STACS.2022.10
https://arxiv.org/abs/2201.04975
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Faster Counting and Sampling Algorithms Using Colorful Decision Oracle

1 Introduction

Estimating different combinatorial structures like edges, triangles and cliques in an unknown
graph that can be accessed only through query oracles is a fundamental area of research in
sublinear algorithms [13, 14, 11, 12]. Different query oracles provide unique ways of looking
at the same graph. Beame et al. [1] introduced an independent set based subset query
oracle, named Bipartite Independent Set (BIS) query, to estimate the number of edges
in a graph using polylogarithmic queries. The BIS query answers a YES/NO question on
the existence of an edge between two disjoint subsets of vertices of a graph G. The next
natural questions in this line of research were problems of estimation and uniform sampling
of hyperedges in hypergraphs [9, 3, 4]. In this paper, we will be focusing on these two
fundamental questions, and in doing so, we will improve all the previous results [2, 9, 3, 4].

1.1 Our query oracle, results and the context
A hypergraph H is a set system (U(H), F(H)), where U(H) denotes a set of n vertices and
F(H), a set of subsets of U(H), denotes the set of hyperedges. A hypergraph H is said
to be d-uniform if every hyperedge in H consists of exactly d vertices. The cardinality of
the hyperedge set is denoted as m(H) = |F(H)|. We will access the hypergraph using the
following oracle1 [6].

▶ Definition 1.1 (Colorful Independent Set (CID)). Given d pairwise disjoint subsets of
vertices A1, . . . , Ad ⊆ U(H) of a hypergraph H as input, CID query answers Yes if and only
if m(A1, . . . , Ad) ̸= 0, where m(A1, . . . , Ad) denotes the number of hyperedges in H having
exactly one vertex in each Ai, where i ∈ {1, 2, . . . , d}.

Note that the earlier mentioned BIS is a special case of CID when d = 2. With this
query oracle access, we solve the following two problems.

d-Hyperedge-Estimation
Input: Vertex set U(H) of a hypergraph H with n vertices, a CID oracle access to H,
and ε ∈ (0, 1).
Output: A (1 ± ε)-approximation m̂ to m(H) with probability 1 − 1/nΩ(d).

Note that Edge Estimation problem is a special case of d-Hyperedge-Estimation
when d = 2.

d-Hyperedge-Sample
Input: Vertex set U(H) of a hypergraph H with n vertices, a CID oracle access to H,
and ε ∈ (0, 1).
Output: With probability 1−1/nΩ(d), report a sample from a distribution of hyperedges
in H such that the probability that any particular hyperedge is sampled lies in the interval[
(1 − ε) 1

m , (1 + ε) 1
m

]
.

This area started with the investigation of Edge Estimation problem by Dell and
Lapinskas [7, 8] and Beame et al. [1], then Bhattacharya et al. [3, 4] studied d-Hyperedge-
Estimation for d = 3, and more recently Dell et al. [9] gave algorithms for d-Hyperedge-
Estimation and d-Hyperedge-Sample for general d. Beame et al. [1] showed that Edge

1 In [6], the oracle is named as Generalized Partite Independent Set oracle. Here, we follow the
same suit as Dell et al. [9] with respect to the name of the oracle.

A. Bhattacharya, A. Bishnu, A. Ghosh, and G. Mishra 10:3

Estimation problem can be solved using O
(

log14 n
ε4

)
BIS queries. Having estimated the

number of edges in a graph using BIS queries, a very natural question was to estimate the
number of hyperedges in a hypergraph using an appropriate query oracle. This extension is
nontrivial as two edges in a graph can intersect in at most one vertex but the intersection
pattern between two hyperedges in a hypergraph is more complicated. As a first step towards
resolving this question, Bhattacharya et al. [3, 4] considered d-Hyperedge-Estimation in
3-uniform hypergraphs using CID queries. They showed that when co-degree of any pair of
vertices in a 3-uniform hypergraph is bounded above by ∆, then one can solve d-Hyperedge-
Estimation using O

(
∆2 log18 n

ε4

)
CID queries. Recall that co-degree of two vertices in a

hypergraph is the number of hyperedges that contain both vertices. Dell et al. [9] generalized
the results of Beame et al. [1] and Bhattacharya et al. [3, 4], and obtained a similar (with
an improved dependency in terms of ε) result for the d-Hyperedge-Estimation problem
for general d. Apart from d-Hyperedge-Estimation problem, they also considered the
problem of d-Hyperedge-Sample. The results of Dell et al. [9] are formally stated in the
following proposition:

▶ Proposition 1.2 (Dell et al. [9]). d-Hyperedge-Estimation and d-Hyperedge-Sample
can be solved by using Od

(
log4d+8 n

ε2

)
and Od

(
log4d+12 n

ε2

)
CID queries, respectively. 2

Currently, the best known bound (prior to this work) for solving d-Hyperedge-Estimation
problem, for general d, is due to Dell et al. [9], but note that for constant ε ∈ (0, 1), Beame
et al. [1, 2] still have the best bound for the Edge Estimation problem.

Our main result is an improved coarse estimation technique, named Rough Estimation,
and is stated in the following theorem. The significance of the coarse estimation technique
will be discussed in Section 1.2.

▶ Theorem 1.3 (Main result). There exists an algorithm Rough Estimation that has
CID query access to a d-uniform hypergraph H(U, F) and returns m̂ as an estimate for
m = |F(H)| such that

1
Cd logd−1 n

≤ m̂

m
≤ Cd logd−1 n

with probability at least 1 − 1/nΩ(d) using at most Cd logd+2 n CID queries, where Cd is a
constant that depends only on d and n denotes the number of vertices in H.

Coarse estimation gives a crude polylogarithmic approximation for m, the number of hy-
peredges in H. This improvement in the coarse estimation algorithm coupled with importance
sampling and the algorithmic framework of Dell et al. [9] gives an improved algorithm for
both d-Hyperedge-Estimation and d-Hyperedge-Sample problems.

▶ Theorem 1.4 (Improved bounds for estimating and sampling). d-Hyperedge-Estimation
and d-Hyperedge-Sample problems can be solved by using Od

(
log3d+5 n

ε2

)
and Od

(
log3d+9 n

ε2

)
CID queries, respectively.

2 Dell et al. [9] studied d-Hyperedge-Estimation and d-Hyperedge-Sample where the probability
of success is 1 − δ for some given δ ∈ (0, 1), and have showed that d-Hyperedge-Estimation and
d-Hyperedge-Sample can be solved by using Od

(
log4d+7 n

ε2 log 1
δ

)
and Od

(
log4d+11 n

ε2 log 1
δ

)
CID

queries, respectively. In Proposition 1.2, we have taken δ = nO(d). But both the results of Beame et
al. [1, 2] and Bhattacharya et al. [3, 4] are in the high probability regime.

In this paper, we work with success probability to be 1 − 1/nΩ(d) for simplicity of presentation and
compare our results with all previous results in a high probability regime.

STACS 2022

10:4 Faster Counting and Sampling Algorithms Using Colorful Decision Oracle

The details regarding how Theorem 1.3 can be used together with the framework of Dell et
al. [9] to prove Theorem 1.4 will be discussed in Section 5.

Using Theorem 1.4, we directly get the following improved bounds for Edge Estimation
and d-Hyperedge-Estimationin 3-uniform hypergraph by substituting d = 2 and d = 3,
respectively.

▶ Corollary 1.5.
(a) Edge Estimation can be solved using O

(
log11 n

ε2

)
queries to Bipartite Independent

Set (BIS) oracle.
(b) d-Hyperedge-Estimation in a 3-uniform hypergraph can be solved using O

(
log14 n

ε2

)
CID queries.

The above corollary gives the best bound (till now) for the Edge Estimation. Recall that
Bhattacharya et al. [3, 4] proved that when the co-degree of a 3-uniform graph is bounded by
∆ then d-Hyperedge-Estimation in that hypergraph can be solved using O

(
∆2 log18 n

ε4

)
CID queries. For fixed ε ∈ (0, 1) and ∆ = o(log n) the bound obtained by Bhattacharya et
al. [3, 4] is asymptotically better than the bound we get from Dell et al. [9], see Proposition 1.2.
Note that Corollary 1.5 (b) improves the bounds obtained by Bhattacharya et al. [3, 4] and
Dell et al. [9] for all values of ∆ and ε ∈ (0, 1).

1.2 Fundamental role of coarse estimation
The framework of Dell et al. [9] is inspired by the following observation. Let us consider
t = O

(
log n

ε2

)
independent subhypergraphs each induced by n/2 uniform random vertices.

The probability, that a particular hyperedge is present in a subhypergraph induced by
n/2 many uniform random vertices, is 1

2d . Denoting X as the sum of the numbers of the
hyperedges present in the t subhypergraphs, observe that 2d

t X is a (1 ± ε)-approximation of
m. If we repeat the procedure recursively O(log n) times, then all the subhypergraphs will
have a bounded number of vertices in terms of d, at which point the number of hyperedges
can be determined exactly by using Od(1) CID queries. However, the number of induced
subhypergraphs in the worst case can become as large as Ω

(
(log n)log n

)
.

To have the number of subhypergraphs bounded at all point of time, they use importance
sampling. It is about maintaining the weighted sum of some variables whose approximate
value is known to us. The output will be a bounded number of variables and some weight
parameters such that the weighted sum of the variables estimates the required sum. The
objective of the importance sampling procedure in Beame et al. [1, 2] and Bhattacharya et
al. [3, 4], are also the same 3. However, Dell et al. improved the importance sampling result
by the use of a particular form of Bernstein inequality and by a very careful analysis.

To apply importance sampling, it is required to have a rough estimate (possibly with a
polylogarithmic approximation factor) of the number of hyperedges in each subhypergraph
that are currently present for processing – this is what exactly coarse estimation does. The
objective of coarse estimation in Beame et al. [1, 2] and Bhattacharya et al. [3, 4] are also the
same 4. But all these frameworks have a commonality. The approximation guarantee and
the query complexity of the coarse estimation has a direct bearing on the query complexity
of the final algorithm.

3 In fact, Bhattacharya et al. [3, 4] directly use the importance sampling developed by Beame et al. [1, 2]
4 Note that the main merit of the framework of Dell et al. [9] over Beame et al. [1, 2] and Bhattacharya

et al. [3, 4] is not only that it generalized to hypergraph, but also the dependence on ε is 1/ε2 in Dell et
al. [9]’s work as opposed to 1

ε4 in Beame et al. [1, 2] and Bhattacharya et al. [3, 4].

A. Bhattacharya, A. Bishnu, A. Ghosh, and G. Mishra 10:5

Therefore, any improvement in the coarse estimation algorithm will directly improve
the query complexities of d-Hyperedge-Estimation and d-Hyperedge-Sample. In this
paper, we focus on improving the coarse estimation algorithm.

1.3 Setup and notations
We denote the sets {1, . . . , n} and {0, . . . , n} by [n] and [n∗], respectively. A hypergraph H
is a set system (U(H), F(H)), where U(H) denotes the set of vertices and F(H) denotes
the set of hyperedges. The set of vertices present in a hyperedge F ∈ F(H) is denoted
by U(F) or simply F . A hypergraph H is said to be d-uniform if all the hyperedges in H
consist of exactly d vertices. The cardinality of the hyperedge set is m(H) = |F(H)|. For
A1, . . . , Ad ⊆ U(H) (not necessarily pairwise disjoint), F(A1, . . . , Ad) ⊆ F(H) denotes the
set of hyperedges having a vertex in each Ai, and m(A1, . . . , Ad) is the number of hyperedges
in |F(A1, . . . , Ad)|.

Let E[X] and V[X] denote the expectation and variance of the random variable X. For an
event E , the complement of E is denoted by E . The statement “a is a (1 ± ε)-approximation
of b” means |b − a| ≤ ε · b. For x ∈ R, exp(x) denotes the standard exponential function ex.
In this paper, d is a constant, and Od(·) and Ωd(·) denote the standard O(·) and Ω(·), where
the constant depends only on d. We use logk n to denote (log n)k. By polylogarithmic, we
mean Od

(
logO(d) n

εΩ(1)

)
in this paper.

1.4 Paper organization
In Section 2, we describe the notion of an ordered hyperedge, and define three other query
oracles that can be simulated by using Od(log n) CID queries. The role of ordered hyperedges
and these oracles are mostly expository purposes, i.e., they help us to describe our algorithms
and the calculations more neatly. Section 3 gives a brief overview of the proof of our main
technical result. In Section 4 we give the proof of our main result (Theorem 1.3). We describe
in Section 5 implications of our main result and how Theorem 1.3 can be used to prove
Theorem 1.4. The equivalence proofs of the CID oracle and its variants are discussed in
Section 2. Some useful probability results are given in Appendix A. Since we use different
types of oracles in the calculations, we have recalled all their definitions in Appendix B
for the ease of reference. Proofs omitted are marked with ⋆, and can be found in the full
version [5] of this paper.

2 Preliminaries: Ordered hyperedges, CID oracle, and its variants

Ordered hyperedges

We will use the subscript “o” to denote the set of ordered hyperedges. For example, Ho(U, Fo)
denotes the ordered hypergraph corresponding to H(U, F). Here Fo(H) denotes the set of
ordered hyperedges that contains d! ordered d-tuples for each hyperedge in H(U, F). Let
mo(Ho) denotes |Fo(Ho)|. Note that mo(Ho) = d!m(H). Also, let Fo(A1, . . . , Ad) denotes
the set {Fo ∈ Fo(H) : the i-th vertex of Fo is in Ai, ∀i ∈ [d]}. The corresponding number
for ordered hyperedges is mo(A1, . . . , Ad). Note that Fo(U(H), . . . , U(H)) = Fo(H).

CID oracle and its variants

Note that the CID query takes as input d pairwise disjoint subsets of vertices. We now define
two related query oracles CID1 and CID2 that remove the disjointness requirements for the
input. Then we extent CID2 to the ordered setting. We show that both query oracles can be

STACS 2022

10:6 Faster Counting and Sampling Algorithms Using Colorful Decision Oracle

simulated, with high probability, by making Od(log n) queries to the CID oracle. The oracles
CID1 and CID2 will be used in the description of the algorithm for ease of exposition.
CID1: Given s pairwise disjoint subsets of vertices A1, . . . , As ⊆ U(H) of a hypergraph H

and a1, . . . , as ∈ [d] such that
∑s

i=1 ai = d, CID1 query on input A
[a1]
1 , A

[a2]
2 , · · · , A

[as]
s

answers Yes if and only if m(A[a1]
1 , . . . , A

[as]
s) ̸= 0. Here A[a] denotes the set A repeated

a times.
CID2: Given any d subsets of vertices A1, . . . , Ad ⊆ U(H) of a hypergraph H, CID2 query

on input A1, . . . , Ad answers Yes if and only if m(A1, . . . , Ad) ̸= 0.
CIDo

2: Given any d subsets of vertices A1, . . . , Ad ⊆ U(Ho) of an ordered hypergraph Ho,
CIDo

2 query on input A1, . . . , Ad answers Yes if and only if mo(A1, . . . , Ad) ̸= 0.

Observe that the CID2 query is the same as the CID query without the requirement
that the input sets are disjoint. For the CID1 query, multiple repetitions of the same set is
allowed in the input. It is obvious that a CID query can be simulated by a CID1 or CID2
query. Also, CIDo

2 is the ordered analogue of CID2 . Using the following observation, we
show how a CIDo

2, CID1 , or a CID2 query can be simulated by a polylogarithmic number
of CID queries.

▶ Observation 2.1 (⋆, Connection between query oracles). Let H(U, F) denote a hypergraph
and Ho(U, Fo) denote the corresponding ordered hypergraph.

(i) A CID1 query to H(U, F) can be simulated using Od(log n) CID queries with probability
1 − 1/nΩ(d).

(ii) A CID2 query H(U, F) can be simulated using Od(1) CID1 queries.
(iii) A CID2 query H(U, F) can be simulated using Od(log n) CID queries with probability

1 − 1/nΩ(d).
(iv) A CIDo

2 query to Ho(U, Fo) can be simulated using a CID2 query to H(U, F).

3 Overview of the main structural result

To prove Theorem 1.3, we first consider Lemma 3.1, which is the central result of the paper
and is the ordered hypergraph analogue of Theorem 1.3. The main theorem (Theorem 1.3)
follows from Lemma 3.1 along with Observation 2.1.

▶ Lemma 3.1 (Main Lemma). There exists an algorithm Rough Estimation that has
CIDo

2 query access to a d-uniform ordered hypergraph Ho(U, Fo) corresponding to hypergraph
H(U, F) and returns m̂o as an estimate for mo = |Fo(Ho)| such that

1
Cd logd−1 n

≤ m̂

m
≤ Cd logd−1 n

with probability at least 1 − 1/nΩ(d) using at most Cd logd+1 n CIDo
2 queries, where Cd is

a constant that depends only on d.

At a high level, the idea for an improved coarse estimation involves a recursive bucketing
technique and careful analysis of the intersection pattern of hypergraphs.

To build up towards the final proof, we need to prove Lemma 3.1. Towards this end, we
first define some quantities and prove Claim 3.2. For that, let us think of partitioning the
vertex set in U1 = U(H) into buckets such that the vertices in each bucket appear as the first
vertex in approximately the same number of hyperedges. So, there will be at most d log n + 1
buckets. It can be shown that that there is a bucket Z1 ⊆ U1 such that the number of
hyperedges, having the vertices in the bucket as the first vertex, is at least mo

d log n+1 . For each
vertex z1 ∈ Z1, let the number of hyperedges in Ho, having z1 as the first vertex, lie between
2q1 and 2q1+1 − 1 for some suitable q1. Then we can argue that

A. Bhattacharya, A. Bishnu, A. Ghosh, and G. Mishra 10:7

|Z1| ≥ mo

2q1+1(d log n + 1) .

Similarly, we extend the bucketing idea to tuples as follows. Consider a vertex a1 in a
particular bucket of U1 and consider all the ordered hyperedges in Fo(a1) containing a1 as
the first vertex. We can bucket the vertices in U2 = U(H) such that the vertices in each
bucket of U2 are present in approximately the same number of hyperedges in Fo(a1) as the
second vertex. We generalize the above bucketing strategy with the vertices in Ui’s, which is
formally described below. Notice that this way of bucketing will allow us to use conditionals
on sampling vertices from the desired buckets of Ui’s.

For q1 ∈ [(d log n)∗], let U1(q1) ⊆ U1 be the set of vertices in a1 ∈ U1 such that for each
a1 ∈ U1(q1), the number of hyperedges in Fo(Ho), containing a1 as the first vertex, lies
between 2q1 and 2q1+1 − 1. For 2 ≤ i ≤ d − 1, and qj ∈ [(d log n)∗] for each j ∈ [i − 1],
consider a1 ∈ U1(q1), a2 ∈ U2((q1, a1), q2), . . . , ai−1 ∈ Ui−1((q1, a1), . . . , (qi−2, ai−2), qi−1).
Let Ui((q1, a1), . . . , (qi−1, ai−1), qi) be the set of vertices in Ui such that for each ui ∈
Ui((q1, u1), . . . , (qi−1, ai−1), qi), the number of ordered hyperedges in Fo(Ho), containing uj

as the j-th vertex for all j ∈ [i], lies between 2qi and 2qi+1 −1. We need the following result to
proceed further. For ease of presentation, we use (Qi, Ai) to denote (q1, a1), . . . , (qi−1, ai−1)
for 2 ≤ i ≤ d − 1. Informally, Claim 3.2 says that for each i ∈ [d − 1], there exists a bucket
in Ui having a large number of vertices contributing approximately the same number of
hyperedges..

▷ Claim 3.2 (⋆).
(i) There exists q1 ∈ [(d log n)∗] such that

|U1(q1)| >
mo(Ho)

2q1+1(d log n + 1) .

(ii) Let 2 ≤ i ≤ d − 1 and qj ∈ [(d log n)∗] ∀j ∈ [i − 1]. Let a1 ∈ U1(q1), aj ∈
Uj((Qj−1, Aj−1), qj) ∀j ̸= 1 and j < i. There exists qi ∈ [(d log n)∗] such that

|Ui((Qi, Ai), qi)| >
2qi−1

2qi+1(d log n + 1) .

4 Proof of Lemma 3.1

We now prove Lemma 3.1 formally. The algorithm corresponding to Lemma 3.1 is Algorithm 2
(named Rough Estimation). Algorithm 1 (named Verify-Estimate) is a subroutine of
Algorithm 2. Algorithm 1 determines whether a given estimate R̂ of the number of ordered
hyperedges is correct up to Od(log2d−3 n) factor. Lemma 4.1 and 4.2 are intermediate results
needed to prove Lemma 3.1; they bound the probability from above and below, respectively
of Verify-Estimate accepting the estimate R̂.

▶ Lemma 4.1. If R̂ ≥ 20d2d−34d mo(Ho) log2d−3 n, then

P(Verify-Estimate (Ho, R̂) accepts the estimate R̂) ≤ 1
20 · 2d

.

STACS 2022

10:8 Faster Counting and Sampling Algorithms Using Colorful Decision Oracle

Algorithm 1 Verify-Estimate (Ho, R̂).

Input: CID query access to a d-uniform hypergraph Ho(U, F) and a guess R̂ for the
number of hyperedges in Ho.

Output: Accept R̂ or Reject R̂.
Let

U1 = . . . = Ud = U(H) for (j1 = d log n to 0) do
find B1 ⊆ U1 by sampling every element of U1 with probability p1 = min

{
2j1

R̂
, 1
}

independently of other elements.
for (j2 = d log n to 0) do

find B2 ⊆ U2 by sampling every element of U2 with probability
p2 = min

{
2j2−j1 · d log n, 1

}
independently of other elements.

...
...
for (jd−1 = d log n to 0) do

find Bd−1 ⊆ Ud−1 by sampling every element of Ud−1 with probability
pd−1 = min{2jd−1−jd−2 · d log n, 1} independently of other elements.

Let j = (j1, . . . , jd−1) ∈ [(d log n)∗]d−1

Let p(i, j) = pi, where 1 ≤ i ≤ d − 1
Let B(i, j) = Bi, where 1 ≤ i ≤ d − 1
find B(d, j) = Bd ⊆ Ud by sampling every element of Ud with probability
pd = min

{
2−jd−1 , 1

}
independently of other elements.

if (mo(B1,j, . . . , Bd,j) ̸= 0) then
Accept /*[Note that CIDo

2 query is called in the above line.]*/
end

end
end

end
Reject

Proof. Consider the set of ordered hyperedges Fo(Ho) in Ho. Algorithm Verify-Estimate
taking parameters Ho, and R̂ and described in Algorithm 1, loops over all possible j =
(j1, . . . , jd−1) ∈ [(d log n)∗]d−1 5. For each j = (j1, . . . , jd−1) ∈ [(d log n)∗]d−1, Verify-
Estimate (Ho, R̂) samples vertices in each Ui with suitable probability values p(i, j), de-
pending on j, R̂, d and log n, to generate the sets Bi,j for 1 ≤ i ≤ d. See Algorithm 1
for the exact values of p(i, j)’s. Verify-Estimate (Ho, R̂) reports Accept if there exists
one j ∈ [(d log n)∗]d−1 such that mo (B1,j, . . . , Bd,j) ̸= 0. Otherwise, Reject is reported by
Verify-Estimate (Ho, R̂).

For an ordered hyperedge Fo ∈ Fo(Ho) = Fo(U1, . . . , Ud) and j ∈ [(d log n)∗]d−1. Note
that

U1 = . . . = Ud = U(H).

Let Xj
Fo

denote the indicator random variable such that Xj
Fo

= 1 if and only if Fo ∈
Fo(B1,j, . . . , Bd,j). Let

Xj =
∑

Fo∈Fo(Ho)

Xj
Fo

.

5 Recall that [n]∗ denotes the set {0, . . . , n}.

A. Bhattacharya, A. Bishnu, A. Ghosh, and G. Mishra 10:9

Note that mo(B1,j, . . . , Bd,j) = Xj. We have,

P
(

Xj
Fo

= 1
)

=
d∏

i=1
(p(i, j))

≤ 2j1

R̂
· 2j2

2j1
d log n × · · · × 2jd−1

2jd−2
d log n × 1

2jd−1

= dd−2 logd−2 n

R̂
Then,

E [Xj] ≤ mo(Ho)
R̂

dd−2 logd−2 n,

and since Xj ≥ 0, we have

P (Xj ̸= 0) = P(Xj ≥ 1) ≤ E [Xj] ≤ mo(Ho)
R̂

dd−2 logd−2 n.

Now, using the fact that R̂ ≥ 20d2d−3 · 4d · mo(Ho) log2d−3 n, we have

P (Xj ̸= 0) ≤ 1
20dd−1 · 4d · logd−1 n

.

Recall that Verify-Estimate accepts if and only if there exists j such that Xj ̸= 0 6.
Using the union bound, we get

P
(

Verify-Estimate (Ho, R̂) accepts the estimate R̂
)

≤
∑

j∈[(d log n)∗]d−1

P(Xj ̸= 0)

≤ (d log n + 1)d−1

20 · 4d · (d log n)d−1

≤ 1
20 · 2d

. ◀

▶ Lemma 4.2. If R̂ ≤ mo(Ho)
4d log n , P(Verify-Estimate (Ho, R̂) accepts the estimate R̂) ≥ 1

2d .

Proof. We will be done by showing the following. Verify-Estimate accepts with probability
at least 1/5 when the loop variables j1, . . . , jd−1 respectively attain values q1, . . . , qd−1 such
that

|U1(q1)| >
mo(Ho)

2q1+1(d log n + 1)

and

|Ui((Qi, Ai), qi)| >
2qi−1

2qi+1(d log n + 1)

for all i ∈ [d − 1] \ {1}. The existence of such jis is evident from Claim 3.2. Let q =
(q1, . . . , qd−1). Recall that Bi,q ⊆ Ui is the sample obtained when the loop variables
j1, . . . , jd−1 attain values q1, . . . , qd−1, respectively. Let Ei, i ∈ [d − 1], be the events defined
as follows.

6 Note that j is a vector but Xj is a scalar.

STACS 2022

10:10 Faster Counting and Sampling Algorithms Using Colorful Decision Oracle

E1 : U1(q1) ∩ B1,q ̸= ∅.
Ei : Uj((Qj−1, Aj−1), qj) ∩ Bj,q ̸= ∅, where 2 ≤ i ≤ d − 1.

As noted earlier, Claim 3.2 says that for each i ∈ [d − 1], there exists a bucket in Ui having
a large number of vertices contributing approximately the same number of hyperedges.
The above events correspond to the nonempty intersection of vertices in heavy buckets
corresponding to Ui and the sampled vertices Bi,j, where i ∈ [d − 1]. Observe that

P(E1) ≤
(

1 − 2q1

R̂

)|U1(q1)|

≤ exp
(

−2q1

R̂
|U1(q1)|

)
≤ exp

(
−2q1

R̂
· mo(Ho)

2q1+1(d log n + 1)

)
≤ exp (−1).

The last inequality uses the fact that R̂ ≤ mo(Ho)
4d log n , from the condition of the lemma. Assume

that E1 occurs and a1 ∈ U1(q1) ∩ B1,q. We will bound the probability that U2(Q1, A1), q2) ∩
B2,q = ∅, that is E2. Note that, by Claim 3.2 (ii),

|U2(Q1, A1), q2)| ≥ 2q1

2q2+1(d log n + 1) .

So,

P
(
E2 | E1

)
≤
(

1 − 2q2

2q1
log n

)|U2(Q1,A1),q2)|

≤ exp (−1)

Assume that E1, . . . , Ei−1 hold, where 3 ≤ i ∈ [d − 1]. Let a1 ∈ U1(q1) and ai−1 ∈
Ai−1((Qi−2, Ui−2), qi−1). We will bound the probability that Ui((Qi−1, Ai−1), qi) ∩ Bi,q = ∅,
that is Ei. Note that

|Ui((Qi−1, Ai−1), qi)| ≥ 2qi−1

2qi+1(d log n + 1) .

So, for 3 ≤ i ∈ [d − 1],

P
(
Ei | E1, . . . , Ei−1

)
≤
(

1 − 2qi

2qi−1
log n

)|Ui(Qi−1,Ai−1),qi)|

≤ exp (−1)

Assume that E1, . . . , Ed−1 hold. Let a1 ∈ U1(q1) and ai−1 ∈ Ai−1((Qi−2, Ai−2), qi−1) for all
i ∈ [d] \ {1}. Let S ⊆ Ud be the set of d-th vertex of the ordered hyperedges in Fo(Ho)
having uj as the j-th vertex for all j ∈ [d − 1]. Note that |S| ≥ 2qd−1 . Let Ed be the event
that represents the fact S ∩ Bd,q ̸= ∅. So,

P(Ed | E1, . . . , Ed−1) ≤
(

1 − 1
2qd−1

)qd−1

≤ exp (−1)

Observe that Verify-Estimate accepts if m(B1,q, . . . , Bd,q) ̸= 0. Also,

mo(B1,q, . . . , Bd,q) ̸= 0 if
d⋂

i=1
Ei occurs.

A. Bhattacharya, A. Bishnu, A. Ghosh, and G. Mishra 10:11

Hence,

P(Verify-Estimate (Ho, R̂) accepts) ≥ P

(
d⋂

i=1
Ei

)

= P(E1)
d∏

i=2
P

(
Ei

∣∣∣ i−1⋂
j=1

Ej

)

>

(
1 − 1

e

)d

>
1
2d

. ◀

Now, we will prove Lemma 3.1 that will be based on Algorithm 2.

Algorithm 2 Rough Estimation(Ho(U, Fo)).

Input: CIDo
2 query access to a d-uniform hypergraph Ho(U, Fo).

Output: An estimate m̂o for mo = mo(Ho).
for (R̂ = nd, nd/2, . . . , 1) do

Repeat Verify-Estimate (Ho, R̂) for Γ = d · 4d · 2000 log n times. If more than
Γ

10·2d Verify-Estimate accepts, then output m̂o = R̂
dd−2·2d·(log n)d−2 .

end

Proof of Lemma 3.1. Note that an execution of Rough Estimation for a particular R̂
repeats Verify-Estimate for Γ = d · 4d · 2000 log n times and gives output R̂ if more than

Γ
10·2d Verify-Estimate accepts. For a particular R̂, let Xi be the indicator random variable
such that Xi = 1 if and only if the i-th execution of Verify-Estimate accepts. Also take
X =

∑Γ
i=1 Xi. Rough Estimation gives output R̂ if X > Γ

10·2d .
Consider the execution of Rough Estimation for a particular R̂. If R̂ ≥ 20d2d−34d ·

mo(Ho)· log2d−3 n, then we first show that Rough Estimation does not accept with high
probability. Recall Lemma 4.1. If R̂ ≥ 20d2d−34d · mo(Ho) log2d−3 n, P(Xi = 1) ≤ 1

20·2d

and hence E[X] ≤ Γ
20·2d . By using Chernoff-Hoeffding’s inequality (See Lemma A.2 (i) in

Section A),

P
(

X >
Γ

10 · 2d

)
= P

(
X >

Γ
20 · 2d

+ Γ
20 · 2d

)
≤ 1

n10d

Using the union bound for all R̂, the probability that Rough Estimation outputs
some m̂o = R̂

dd−2·2d such that R̂ ≥ 20d2d−34d · mo(Ho) log2d−3 n, is at most d log n
n10 . Now

consider the instance when the for loop in the algorithm Rough Estimation executes for
a R̂ such that R̂ ≤ mo(Ho)

4d log n . In this situation, P(Xi = 1) ≥ 1
2d . So, E[X] ≥ Γ

2d . By using
Chernoff-Hoeffding’s inequality (See Lemma A.2 (ii) in Section A),

P
(

X ≤ Γ
10 · 2d

)
≤ P

(
X <

Γ
2d

− 4
5 · Γ

2d

)
≤ 1

n100d

By using the union bound for all R̂, the probability that Rough Estimation outputs
some m̂o = R̂

dd−2·2d such that R̂ ≤ mo(Ho)
4d log n , is at most d log n

n100d . Observe that, the probability that

Rough Estimation outputs some m̂o = R̂
dd−2·2d such that R̂ ≥ 20d2d−34dmo(Ho) log2d−3 n

or R̂ ≤ mo(Ho)
4d log n , is at most

STACS 2022

10:12 Faster Counting and Sampling Algorithms Using Colorful Decision Oracle

d log n

n10d
+ d log n

n100d
≤ 1

n8d
.

Putting everything together, Rough Estimation gives some m̂o = R̂
dd−2·2d·(log n)d−2 as the

output with probability at least 1 − 1
n8d satisfying

mo(Ho)
8dd−12d logd−1 n

≤ m̂o ≤ 20dd−12d · mo(Ho) logd−1 n

From the pseudocode of Verify-Estimate (Algorithm 1), we call for CID2 queries
only at line number 12. In the worst case, Verify-Estimate executes line number 12 for
each j ∈ [(d log n)∗]. That is, the query complexity of Verify-Estimate is O(logd−1 n).
From the description of Rough Estimation, Rough Estimation calls Verify-Estimate
Od(log n) times for each choice of R̂. Hence, Rough Estimation makes Od(logd+1 n) CIDo

2
queries. ◀

5 Proof of Theorem 1.4

Before getting into the reasons why Theorem 1.4 follows from Theorem 1.3, let us first review
the algorithms for d-Hyperedge-Estimation and d-Hyperedge-Sample by Dell et al. [9].

Overview of Dell et al. [9]

Dell et al.’s algorithm for d-Hyperedge-Sample make repeated calls to d-Hyperedge-
Estimation. Their algorithm for d-Hyperedge-Estimation calls mainly three subroutines
over Od(log n) iterations: Coarse, Halving, and Trim. Halving and Trim calls Coarse
repeatedly. So, Coarse is the main building block for their algorithms for d-Hyperedge-
Estimation and d-Hyperedge-Sample.

Coarse algorithm

It estimates the number of hyperedges in the hypergraph up to polylog factors by using
polylog queries. The result is formally stated as follows, see [9, Sec. 4].

▶ Lemma 5.1 (Coarse Algorithm by Dell et al. [9]). There exists an algorithm Coarse,
that has CID query access to a hypergraph H(U, F), makes Od

(
log2d+3 n

)
CID queries, and

finds m̂ satisfying

Ωd

(
1

logd n

)
≤ m̂

m
≤ Od

(
logd n

)
with probability at least 1 − 1/nΩ(d).

▶ Remark. The objective of Coarse algorithm by Dell et al. is essentially same as that our
Rough Estimation algorithm. Both of them can estimate the number of hyperedges in any
induced subhypergrah. However, note that Rough Estimation (as stated in Theorem 1.3)
has better approximation guarantee and better query complexity than that of Coarse
algorithm of Dell et al. (as stated in Lemma 5.1).

The framework of Dell et al. implies that the query complexity of d-Hyperedge-
Estimation and d-Hyperedge-Sample can be expressed by the approximation guarantee
and the query complexity of the Coarse algorithm. This is formally stated as follows:

A. Bhattacharya, A. Bishnu, A. Ghosh, and G. Mishra 10:13

▶ Lemma 5.2 (d-Hyperedge-Estimation and d-Hyperedge-Sample in terms of quality
of Coarse algorithm [9]). Let there exists an algorithm Coarse, that has CID query access
to a hypergraph H(U, F), makes q CID queries, and finds m̂ satisfying 1

b ≤ m̂
m ≤ b with

probability at least 1 − 1/nΩ(d). Then
(i) d-Hyperedge-Estimation can be solved by using

Od

(
log2 n

(
log nb + b2 log2 n

ε2

)
q

)
CID queries.

(ii) d-Hyperedge-Sample can be solved by using

Od

(
log6 n

(
log nb + b2 log2 n

ε2

)
q

)
CID queries.

Why Theorem 1.4 follows from Theorem 1.3?

Observe that we get Proposition 1.2 (the result of Dell et al.) from Lemma 5.1 by substituting
b = Od

(
logd n

)
and q = Od

(
log2d+3 n

)
in Lemma 5.2. In Theorem 1.4 we improve on the

Proposition 1.2 by using our main result (Theorem 1.3), and substituting b = Od

(
logd−1 n

)
and q = Od

(
logd+2 n

)
in Lemma 5.2.

The main reason we get an improved query complexity for hyperedge estimation in
Theorem 1.4 as compared to Dell et al. (Proposition 5.2) is our Rough Estimation
algorithm is an improvement over the Coarse algorithm of Dell et al. [9] in terms of
approximation guarantee as well as query complexity.

How our Rough Estimation improves over Coarse of Dell et al. [9]?

At a very high level, the frameworks of our Rough Estimation algorithm and that of Dell
et al.’s Coarse algorithm might look similar, but the main ideas involved are different.
Our Rough Estimation (as stated in Lemma 3.1) directly deals with the hypergraph
(though the ordered one) and makes use of CIDo

2 queries. Note that each CIDo
2 query

can be simulated by using Od(log n) CID queries. However, Coarse algorithm of Dell et
al. considers Od(log n) independent random d-partite hypergraphs by partitioning the vertex
set into d parts uniformly at random, works on the d-partite hypergraphs, and reports the
median, of the Od(log n) outputs corresponding to random d-partite subhypergrahs, as the
final output. So, there is Od(log n) blowup in both our Rough Estimation algorithm and
Dell et al.’s Coarse algorithm, though the reasons behind the blowups are different.

Our Rough Estimation calls repeatedly (Od(log n) times) Verify Estimate for each
guess, where the total number of guesses is Od(log n). In the Coarse algorithm, Dell
et al. uses repeated calls

(
Od

(
logd+1 n

))
times to an analogous routine of our Verify

Estimate, which they name Verify Guess, Od(log n) times. Their Verify Guess has
the following criteria for any guess M :

If M ≥ dd log2d n
23d−1 m, Verify Guess accepts M with probability at most p;

If M ≤ m, Verify Guess accepts M with probability at least 2p;
It makes Od

(
logd n

)
CID queries.

STACS 2022

10:14 Faster Counting and Sampling Algorithms Using Colorful Decision Oracle

Recall that the number of CID2 queries made by each call to Verify Estimate is
Od(logd−1 n), that is, Od

(
logd n

)
CID queries. So, in terms of the number of CID queries,

both our Rough Estimation and Coarse of Dell et al. have the same complexity.
The probability p in Verify Guess of Dell et al. [9] satisfies p ≈d

1
logd n

, where ≈d is
used suppress the terms involving d. So, for each guess M , their Coarse algorithm has to
call Od

(
1
p log n

)
= Od

(
logd+1 n

)
times to distinguish decide whether it is the case M ≤ m

or M ≥ dd log2d n
23d−1 m, with a probability at least 1 − 1/nΩ(d). So, the total number of queries

made by the Coarse algorithm of Dell et al. [9] is

Od(log n) · Od(log n) · Od

(
logd+1 n

)
· Od

(
logd n

)
= Od

(
log2d+3 n

)
.

The first Od(log n) term is due to the blow up incurred to convert original hypergraph to
d-partite hypergraph, the second Od(log n) term is due to the number of guesses for m, the
third Od

(
logd+1 n

)
term is the number of times Coarse calls Verify Guess, and the last

term Od

(
logd n

)
is the number of CID queries made by each call to Verify Guess.

As it can be observed from Lemmas 4.1 and 4.2, p in our case (Verify Estimate) is
Ωd(1). So, it is enough for Rough Estimation to call Verify Estimate only Od(log n)
times. Therefore, the number of CID queries made by our Rough Estimation is

Od(log n) · Od(log n) · Od(logd−1 n) · Od(log n) = Od(logd+2 n).

In the above expression, the first Od(log n) term is due to the number of guesses for m, the
second Od (log n) term is the number of times Rough Estimation calls Verify Estimate,
the third O

(
logd−1 n

)
term is the number of CID2 queries made by each call to Verify

Estimate, and the last Od(log n) term is the number of CID queries needed to simulate a
CID2 query with probability at least 1 − 1/nΩ(d).

We do the improvement in approximation guarantee as well as query complexity in Rough
Estimation algorithm (as stated in Theorem 1.3), as compared to Coarse algorithm of
Dell et al. [9] (as stated in Lemma 5.1), by a careful analysis of the intersection pattern
of the hypergraphs and setting the sampling probability parameters in Verify Estimate
(Algorithm 1) algorithm in a nontrivial way, which is evident from the description of
Algorithm 1 and its analysis.

References
1 Paul Beame, Sariel Har-Peled, Sivaramakrishnan Natarajan Ramamoorthy, Cyrus Rashtchian,

and Makrand Sinha. Edge Estimation with Independent Set Oracles. In Proceedings of the 9th
Innovations in Theoretical Computer Science Conference, ITCS, volume 94, pages 38:1–38:21,
2018.

2 Paul Beame, Sariel Har-Peled, Sivaramakrishnan Natarajan Ramamoorthy, Cyrus Rashtchian,
and Makrand Sinha. Edge Estimation with Independent Set Oracles. ACM Trans. Algorithms,
16(4):52:1–52:27, 2020.

3 Anup Bhattacharya, Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra. Triangle Estimation
Using Tripartite Independent Set Queries. In Proceedings of the 30th International Symposium
on Algorithms and Computation, ISAAC, volume 149, pages 19:1–19:17, 2019.

4 Anup Bhattacharya, Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra. On Triangle Estimation
Using Tripartite Independent Set Queries. Theory Comput. Syst., 65(8):1165–1192, 2021.

5 Anup Bhattacharya, Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra. Faster Algorithms for
Estimating and Sampling using Colorful Decision Oracle, 2022. arXiv:2201.04975.

http://arxiv.org/abs/2201.04975

A. Bhattacharya, A. Bishnu, A. Ghosh, and G. Mishra 10:15

6 Arijit Bishnu, Arijit Ghosh, Sudeshna Kolay, Gopinath Mishra, and Saket Saurabh. Paramet-
erized Query Complexity of Hitting Set Using Stability of Sunflowers. In Proceedings of the
29th International Symposium on Algorithms and Computation, ISAAC, volume 123, pages
25:1–25:12, 2018.

7 Holger Dell and John Lapinskas. Fine-Grained Reductions from Approximate Counting
to Decision. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, STOC, pages 281–288, 2018.

8 Holger Dell and John Lapinskas. Fine-Grained Reductions from Approximate Counting to
Decision. ACM Trans. Comput. Theory, 13(2):8:1–8:24, 2021.

9 Holger Dell, John Lapinskas, and Kitty Meeks. Approximately counting and sampling small
witnesses using a colourful decision oracle. In Proceedings of the 2020 ACM-SIAM Symposium
on Discrete Algorithms, SODA, pages 2201–2211, 2020.

10 Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis
of Randomized Algorithms. Cambridge University Press, 2009.

11 Talya Eden, Amit Levi, Dana Ron, and C. Seshadhri. Approximately counting triangles in
sublinear time. SIAM J. Comput., 46(5):1603–1646, 2017. doi:10.1137/15M1054389.

12 Talya Eden, Dana Ron, and C. Seshadhri. On Approximating the Number of k-Cliques in
Sublinear Time. SIAM J. Comput., 49(4):747–771, 2020.

13 Uriel Feige. On Sums of Independent Random Variables with Unbounded Variance and
Estimating the Average Degree in a Graph. SIAM J. Comput., 35(4):964–984, 2006.

14 Oded Goldreich and Dana Ron. Approximating Average Parameters of Graphs. Random
Struct. Algorithms, 32(4):473–493, 2008.

A Some probability results

▶ Lemma A.1 (Chernoff-Hoeffding bound [10]). Let X1, . . . , Xn be independent random
variables such that Xi ∈ [0, 1]. For X =

n∑
i=1

Xi and µ = E[X], the followings hold for any

0 ≤ δ ≤ 1.

P(|X − µ| ≥ δµ) ≤ 2 exp
(
−µδ2/3

)
▶ Lemma A.2 (Chernoff-Hoeffding bound [10]). Let X1, . . . , Xn be independent random
variables such that Xi ∈ [0, 1]. For X =

n∑
i=1

Xi and µl ≤ E[X] ≤ µh, the followings hold for

any δ > 0.
(i) P (X > µh + δ) ≤ exp

(
−2δ2/n

)
.

(ii) P (X < µl − δ) ≤ exp
(
−2δ2/n

)
.

B Oracle definitions

▶ Definition B.1 (Independent set query (IS) [1]). Given a subset A of the vertex set V of a
graph G(V, E), IS query answers whether A is an independent set.

▶ Definition B.2 (Bipartite independent set oracle (BIS) [1]). Given two disjoint subsets A, B

of the vertex set V of a graph G(V, E), BIS query reports whether there exists an edge having
endpoints in both A and B.

▶ Definition B.3 (Tripartite independent set oracle (TIS) [3]). Given three disjoint subsets
A, B, C of the vertex set V of a graph G(V, E), the TIS oracle reports whether there exists a
triangle having endpoints in A, B and C.

STACS 2022

https://doi.org/10.1137/15M1054389

10:16 Faster Counting and Sampling Algorithms Using Colorful Decision Oracle

▶ Definition B.4 (Generalized d-partite independent set oracle (CID) [6]). Given d pairwise
disjoint subsets of vertices A1, . . . , Ad ⊆ U(H) of a hypergraph H as input, CID query
answers whether m(A1, . . . , Ad) ̸= 0, where m(A1, . . . , Ad) denotes the number of hyperedges
in H having exactly one vertex in each Ai, ∀i ∈ {1, 2, . . . , d}.

▶ Definition B.5 (CID1 oracle). Given s pairwise disjoint subsets of vertices A1, . . . , As ⊆
U(H) of a hypergraph H and a1, . . . , as ∈ [d] such that

∑s
i=1 ai = d, CID1 query on input

A
[a1]
1 , A

[a2]
2 , · · · , A

[as]
s answers whether m(A[a1]

1 , . . . , A
[as]
s) ̸= 0.

▶ Definition B.6 (CID2 oracle). Given any d subsets of vertices A1, . . . , Ad ⊆ U(H) of a
hypergraph H, CID2 query on input A1, . . . , Ad answers whether m(A1, . . . , Ad) ̸= 0.

▶ Definition B.7 (CIDo
2 oracle). Given any d subsets of vertices A1, . . . , Ad ⊆ U(Ho) of

an ordered hypergraph Ho, CIDo
2 query on input A1, . . . , Ad answers Yes if and only if

mo(A1, . . . , Ad) ̸= 0.

	1 Introduction
	1.1 Our query oracle, results and the context
	1.2 Fundamental role of coarse estimation
	1.3 Setup and notations
	1.4 Paper organization

	2 Preliminaries: Ordered hyperedges, CID oracle, and its variants
	3 Overview of the main structural result
	4 Proof of Lemma 3.1
	5 Proof of Theorem 1.4
	A Some probability results
	B Oracle definitions

