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Abstract

This thesis consists in three essays on predictive distributions, in particular their com-

bination, calibration and constraint.

Chapter (2), entitled “Combination of Probabilistic Forecasts: a comparison be-

tween inference approaches”, aims to compare two inference approaches for combinations

found in the literature. One is arguably more common in macroeconomics and finance

literature, the other is more used in statistics. Both inference approaches have pros and

cons, but no analysis has been found in literature about which approach is the most

accurate. The paper’s results find clear evidence favouring one approach or the other

based on the problem and data at hand.

Chapter (3) is entitled “Are Central Banks’ Fan charts Reliable? On Calibration

of Density Path Forecasts”. Central Banks regularly publish fan charts of macroe-

conomic variables, communicating forecasts for several horizons. Although fan charts

contains three types of information: point forecasts (the path), the probability around

each point forecast (bands around it), and variable’s dynamics across horizons (i.e. the

path), existing absolute evaluation approaches neglect the latter. Practitioners evaluate

the calibration of fan charts testing the forecast accuracy horizon by horizon, not consid-

ering any joint calibration of the path. This paper describes fan charts as density path

forecasts, discusses the impact of horizon-dependence in the evaluation and proposes cal-

ibration tests to assess whether Central Banks publish reliable forecasts. We proposed

several calibration tests, analysing their size and power, demonstrating that, according

to our test, the Bank published on average non-calibrated path density forecasts.

Chapter (4), entitled “Generalised Constraints for Predictive Distributions: a

xii



Bayesian Approach” investigates the concept of constraining density forecasts. Often

policymakers wish to impose a feature to predictive distributions (such as moments

constraint, tails behaviour, shifts in support). Although moment constraining is well

discussed in the literature (i.e. by exponential tilting), little study has been done on

constraining specific parts of the density’s support. This forecast constraining shifts

individual predictive densities using Bayesian Importance Sampling. This approach is

applied to forecast US GDP under the Covid-19 pandemic: density forecasts from statical

models are constrained to the survey of professional forecasters (SPF) in the left tail.

xiii



Chapter 1

Introduction

In this thesis, I investigate combining, calibrating, and constraining predictive distri-

butions for macroeconomic time-series, relevant topics for both academic and policy-

making purposes. The use of probabilistic forecasts over the past three decades has

surged over point forecasts Tay and Wallis [2000], Gneiting and Katzfuss [2014], Clark

[2011]. The motivation comes from the probabilistic nature of the future state of the

world as discussed by (Dawid [1984]), and with it, the need for inclusion of some degree

of uncertainty. Model uncertainty is crucial in forecasting since if the analyst uses an

inappropriate model, then forecasts will be less accurate. A popular approach to address

the model uncertainty is the combination. For example, suppose a set of forecasts (from

di↵erent models) is available. Then it has been established empirically that a weighted

linear combination of these forecasts will often be more accurate on average than any

of the individual forecasts (Clemen and Winkler [1986], Wallis [2005], Chatfield [1996]

Hendry and Clements [2004]).

Chapter (2) aims to contribute to probabilistic forecast combination proposing a com-

parison between two inference approaches. The first, called “two-step” is arguably the

most popular in applied econometrics and finance, and it takes individual probability

forecasts as given and then combines them. The second, called “one-step” is studied

extensively by the statistical literature, and it estimates forecasts’ parameters and com-

bination weights simultaneously. First, I propose an empirical exercise to analyse the

forecast accuracy of the two approaches. The application consists of forecasting US real

output growth and inflation, combining a set of 31 individual models. The empirical

exercise leaves us with no clear indication over which combination approach is the most

accurate. Then, I tried to shed light on the di↵erent performances in controlled environ-

ments. Several types of DGPs and misspecifications for forecasting models have been

1



studied. The main takeaway is that the trade-o↵ between parameter estimation noise

and forecast accuracy typical of the one-step approach is crucial.

Concurrently with the increasing of interest in probabilistic forecasts, it becomes

more and more important to assess their forecast accuracy such as in Diebold et al. [1997],

Clements [2004], Corradi and Swanson [2006b], Boero et al. [2011], Wolters [2015] and

correct specification of uncertainty around forecasting models. Chapter (3) focuses on

forecasting evaluation and, in particular, propose an absolute evaluation criterion for

path density forecasts. One example of the employment of path density forecast is the

Central Bank’s fan charts. This graph joins the realisations with the most likely “path”

for GDP growth, inflation and unemployment for 1 to H periods in the future. In this

way, fan charts are informative about the point forecast at a specific horizon h = 1, . . . , H

and about the path the economy will follow up to period H. In addition, fan charts

present confidence bands around the prediction that gives the reader an understanding

of its likelihood. As predictions become increasingly uncertain the further into the future

one goes, the forecast ranges out, creating distinctive “fan” shapes, hence the name.

First, the chapter defines the path density forecast and discusses a series of testing

strategies. The existing absolute evaluation approaches assess the forecast accuracy

separately across horizons. However, in doing so, they implicitly assume independence

across horizons of path forecast. We discuss the importance of horizon dependence in

path density forecast and identify two main strategies for calibration tests. Whether to

adopt one or another depends on the information the research has about the horizon

dependence. If the researcher has information about it, they can use tests on marginal

and conditional distributions of PITs; If the researcher does not have any information,

they can use test statistics on marginal distributions and some “sup tests”. We contrast

and compare the statistics in simulation exercises to investigate their size and power

characteristics and apply them to evaluate the calibration of Bank of England fan charts.

In recent years, policymakers have shifted their focus from forecasts uncertainty,

in general, to be particularly interested in quantifying macroeconomic downside tail risk,

often referred to as GDP-at-risk. More recently, it has become crucial to correctly pre-

dict adverse events since the impact of the COVID-19 pandemic on growth challenged

forecasting with usual predictors (especially the second quarter of 2020). Motivated by

this issue, inChapter (4), I focus on constraining predictive distributions for US growth

to Survey of Professional Forecasters (SPF) probability of negative growth. Besides the

COVID-19 case, policymakers and practitioners often wish to impose a desirable feature

on predictive distributions (such as moments constraint, tails behaviour, shifts in sup-

port,...). Although constraining moments’ distributions is well discussed in the literature

2



(i.e. by exponential tilting), it is often unclear which moment to use as a constraint.

This paper aims to generalise the constraints to any desirable feature of the distribution.

The constraints are imposed by approximation of the target (constrained) distribution

using a mixture of Student-t distributions. The resulting density distributions can give

a probability di↵erent from zero to the actual realisation.

In addition to my thesis, I have worked on an external project with two researchers

at Norges Bank: Knut Are Aastveit and Saskia ter Ellen. This paper develops a forecast

combination scheme that assigns weights to the individual predictive density forecasts

based on quantile scores. Compared to standard combination schemes, our approach has

the advantage of assigning a di↵erent set of combination weights to the various quantiles

of the predictive distribution. The results show that density forecasts from our approach

outperform forecasts from commonly used combination approaches.

3



Chapter 2

Combination of Probabilistic

Forecasts: a comparison between

inference approaches

2.1 Introduction

Forecast a future state of the world is by nature probabilistic and it includes some

degree of uncertainty ([Dawid, 1984]). Although prominent forecasting models reduced

it, uncertainty cannot be totally eliminated. For this reason, over the past three decades

the use of probabilistic forecasts over point forecasts has surged (Tay and Wallis [2000],

Gneiting and Katzfuss [2014], Clark [2011]). Concurrently with the increasing of interest

in probabilistic forecasts, it becomes more and more important to assess their forecast

accuracy such as in Diebold et al. [1997], Clements [2004], Corradi and Swanson [2006b],

Boero et al. [2011], Wolters [2015] and to correct specification of uncertainty around

forecasting models.

Model uncertainty is crucial in forecasting since if the analyst uses an inappro-

priate model, then forecasts will be less accurate. A popular approach to address the

model uncertainty is the combination. For example, suppose you have produced fore-

casts by several methods. Then it has been established empirically that a weighted linear

combination of these forecasts will often be more accurate on average than any of the

individual forecasts (Clemen and Winkler [1986], Wallis [2005], Chatfield [1996] Hendry

and Clements [2004]).

Arguably, “two-step” combination procedure is the most popular in applied

macroeconomics and finance (Genest et al. [1984], Diebold and Lopez [1996], Clemen
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[1989], Hall and Mitchell [2007], Mitchell and Wallis [2011], Kascha and Ravazzolo [2010],

Kapetanios et al. [2015], and Geweke and Amisano [2011] among others). In this pa-

per it is called “two-step” procedure the combination approach that takes individual

probability forecasts as given and then combines them.

However, in literature (especially in statistics), another combination approach

is also studied, here called the “one-step” procedure. This paper calls the “one-step”

procedure the combination approach that estimates individual forecasts’ parameters and

combination weight simultaneously. The most popular one-step approach uses the finite

mixture distribution (Everitt [2014]) as combined predictive density of individual models

(Elliott and Timmermann [2005], Waggoner and Zha [2012], Ravazzolo and Vahey [2014],

Gupta and Dhingra [2012], Raftery et al. [2005]). Given the inference complexity, the

one-step approach has been less used by practitioners and in applied works. However,

the algorithm employed here by Diebolt and Robert [1994] and Frühwirth-Schnatter

[2006], overcomes the main drawbacks of finite mixture distributions as a combination

approach. The main takeaway is that the trade-o↵ between parameter estimation noise

and forecast accuracy typical of the one-step approach is crucial. However, the trade-o↵

is overcome by the one-step ability to account for the dependence between the mixture’s

components.

This paper proposes a comparison between these two approaches to the combi-

nation of density forecasts. The comparison is sustained by the empirical evidence that

neither of the two approaches is more accurate than the other in a systematic way; in

the absence of theoretical background, this paper aims to understand the discriminants

that a↵ect the di↵erent performances in simulation exercises.

The rest of the paper is organised as follows: Section (2.2) shows empirical ev-

idence of the impact the combination choice has on forecast accuracy; Section (2.3)

studies the di↵erent performances through simulation exercises; Section (2.5) contains

concluding remarks.

2.2 Empirical Evidence

This section provides empirical evidence of the impact the combination choice has on

forecast accuracy. The exercise set up, dataset and forecasting models follow Rossi and

Sekhposyan [2014]; however, for the purpose of this paper, a broader set of combinations

is employed.

Following Rossi and Sekhposyan [2014], the probability forecasts for US real

output growth and inflation are achieved by some of the most commonly used macroe-
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conomic predictors. The dataset consists of K = 31 variables selected from Stock and

Watson [2003] dataset, among which asset prices, real economic activity, wage, price and

money variables. Data are collected at a quarterly frequency, updated up to 2018Q1

and adequately transformed. Table (2.3) presents a detailed description of the vari-

ables and their transformations. One-step ahead forecasts for quarters 1985:Q1-2018:Q2

are estimated using a fixed rolling window estimation scheme with a window size of 40

observations.

The individual forecasting models (to be combined) are Autoregressive Distributed

Lag (ADL) models, where the K predictors are used one-at-a-time. The forecasting

model is:

yt+1,k = �0 + �1(L)Xt,k + �2(L)yt + "t+1 (2.1)

for t = 1, . . . , T . The variable of interest is either yt = 400 ln (GDPt/GDPt�1) or

yt = 400 ln (Pt/Pt�1) � 400 ln (Pt�1/Pt�2) where GDP and P are the real output

growth and GDP deflator, respectively. Xt,k denotes the k-th variable for k = 1, . . . ,K

as in Rossi and Sekhposyan [2014]. The dataset used to predict output growth includes

historical data for inflation, but not for output growth (and vice versa). Further, the er-

ror term "t+1 is assumed to be Gaussian. �1(L) =
Pp

i=0 �1,iL
i and �2(L) =

Pq
j=0 �2,jL

j ,

where L is the lag operator. The number of lags p and q are recursively estimated by

BIC: first selecting the lag for the AR component, then the optimal lag for the additional

predictor. The K forecasting models in equation (2.1) are linearly combined according

to one and two-step approaches.

2.2.1 Two-step combination procedures

Two-step combination procedures are so called since they consist in two phases: first, the

K individual forecasting models are estimated in Equation (2.1); subsequently, the K

probabilistic forecasts obtained in step one are combined using the combination weights

adequately estimated. The linear combination scheme assumes the from:

yt+1,c =
KX

k=1

⌘k(yt+1,k) (2.2)

where yt+1,c denotes the combined probability forecast, yt+1,k are the density forecasts

obtained in Equation (2.1) and ⌘k are the combination weights. In this paper the first

step consists in an OLS estimation, while three di↵erent approaches to estimation of the

6



weights are compared:

• Equal weights: this widely used combination method consists in attaching the

same combination weight to every forecast, regardless their accuracy.

⌘k = 1/K (2.3)

This simple two-step approach has been proved empirically to outperform more

sophisticated combination methods. This phenomenon is known as the “forecast

combination puzzle” and documented by Genre et al. [2013] for expert forecasts

dataset.

• Bayesian Model Averaging (BMA) pooling model: the combination weights are

proportional to models’ posterior probability:

⌘k := Pt(yt+1,k|yt) =
p(yt|yt+1,k)p(yt+1,k)PK
k=1 p(yt|yt+1,k)p(yt+1,k)

s.t. ⌘k > 0,
KX

k=1

⌘k = 1

(2.4)

where yt+1,k is the probability forecast obtained in equation (2.1) and yt is the

data at time t. Bayesian inference follows Rossi and Sekhposyan [2014] and Wright

[2009].

• Optimal weight (CGM): proposed by Hall and Mitchell [2007], held from the idea

of determining combination weights based on some objective criterion or cost func-

tion, such as the logarithmic score. Combination weights are obtained by maxi-

mizing a logarithmic score function:

⌘k =
1

T � 1

T�1X

t=1

ln(yt+1,k) s.t. ⌘k > 0,
KX

k=1

⌘k = 1 (2.5)

which is known as the log predictive score. Given the size of K, the inference

algorithm for ⌘k in Conflitti et al. [2015] is used.

The last two methods are conceptually di↵erent: the BMA is born as a model selection

method, with the purpose to elicit, among a bundle of alternatives, the model that better

fits the data. For this reason, the BMA assumes the “true” model is in the set of models

considered, the assumption that the optimal pooling does not make. The BMA is then

an “improper” combination approach since this assumption contradicts the principle of

forecast combination: none of the alternatives at hand is the correct model.
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2.2.2 One-step combination procedure

One-step procedure is so called since it estimates forecast models and combination

weights simultaneously. This procedure addresses the combination issue in Equation

(2.2) as a finite mixture of univariate Gaussian components. Its predictive density takes

the form:

p(yt+1|yt,✓k) =
KX

k=1

p(yt+1,k|yt,✓k)⌘k. (2.6)

Each finite mixture is defined by three parameters: the number of components K,

the components’ parameters vector ✓k, and the mixing proportions ⌘k(yt,✓k). In this

case: the number of components K is known and it corresponds to the number of in-

dividual forecasts to combine. The components’ parameters ✓k is the vector if size

D = 3K defined by the type of forecast models. More explicitly, consider a mixture

model of K normal component densities: p(yt+1,k|yt,✓k) = fN (yt+1,k|µk,t+1,�2k,t+1) with

µk,t+1 = E(yt+1|yt,✓k) and �2k,t+1 = V ar(yt+1|yt,✓k) being the conditional mean and

variance. In this paper each component’s mean follows a ADL process of order pk:

µk,t+1 = �0
kzk where �k = [�0,�1,�2], zk = [1 Xt:t�pk+1 yt:t�pk+1] and yt:t�pk+1 =

{yt, yt�1, . . . , yt�pk+1}. Finally, the mixing proportions ⌘k(yt,✓k) correspond to combi-

nation weights and they follows a multinomial distribution:

⌘k ⇠ M

 
1,

"
p1fN (yt;µ1,t,�21)PK
k=1 pkfN (yt;µk,t,�2k)

, . . . ,
pKfN (yt;µK,t,�2K)

PK
k=1 pkfN (yt;µk,t,�2k)

#!
(2.7)

where p = (p1, ..., pK), 0  pk  1 and
PK

k=1 pk = 1.

Inference

Given the high parametrisation, the estimation approach employed here is the Bayesian

inference technique of MCMC estimation using two-block Gibbs sampling. To allow

for a fair comparison between combinations, the weakness of the finite mixture model

in combining a significant number of components is addressed by imposing dependent

priors for parameters following Frühwirth-Schnatter [2006].

Assuming a Dirichlet D(e0, . . . , e0) distribution for ⌘k, the posterior distribution

of ⌘k given the indicators S = (S1, S2, . . . , St, . . . , ST ) (which are independent conditional
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on yt, ✓k and �k) is:

p(⌘k|S) ⇠ D(e1(S), . . . , eK(S)) (2.8)

where ek(S) = e0 + Nk(S) and Nk(S) is the number of times in which the equality

St = k is verified. The posterior conditional densities of ✓k and �2k given the weights

and all observations assigned to group k are normally distributed:

p(✓k|�2
k,yt,S) ⇠ N (ak, Ak) (2.9)

where,

Ak = (A�1
0 +

1

�2k
z0
kzk)

�1 ak = Ak(A
�1
0 a0 +

1

�2k
z0
kyk)

and

p(�2k|✓k,yt,S
m�1) ⇠ G�1(cN , CN ) (2.10)

where:

cN = c0 +
Nk

2
, CN = C0 +

1

2
"0k"k

and where "k = yt � Zk✓k. A prior dependence among the component parameters is

introduced. Following Richardson and Green [1997], the parameter C0 is treated as an

unknown hyper-parameter with a prior of its own.

p(C0|Sm�1, ✓k,�
2
k,yt) /

KY

k=1

p(�2k|C0)p(C0) /
KY

k=1

✓
Cc0
0 exp {�C0

�2k
}
◆
Cg0�1
0 exp{�G0C0}

(2.11)

which is the Kernel of a G(gN , GN )-density with gN = G0 + KC0 and GN = G0 +
PK

k=1
1

�2
",k

. The joint prior takes the form of a hierarchical independent prior:

p(✓k,�
2
k, C0) =

KY

k=1

p(✓k)
KY

k=1

p(�2k|C0)p(C0) (2.12)

where ✓k is distributed as above, and the variance has prior equal to �2k ⇠ (c0, C0), and

C0 ⇠ (g0, G0). Following Richardson and Green [1997], initial values are selected equal

to c0 = 2, g0 = 0.2 and G0 = 10/R2 where R is the length of the observation interval.

A common choice of prior takes the form:

p(✓k) = D(e0, e0|S)
2Y

k=1

N (�k|a0, A0)IG(�2k|cN , CN ). (2.13)
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where D is the symmetric Dirichlet distribution and IG(·|b, c) is the inverse Gamma

distribution with shape parameter b and scale parameter c. Full conditional Gibbs

sampling is carried out in two steps (details in Algorithm(1)). The algorithm corresponds

to algorithm 8.1 in Frühwirth-Schnatter [2006] for the case of univariate normal mixture

regression model (references to algorithm 6.1).

2.2.3 Results

Combination approaches are evaluated with respect to the benchmark AR(1) accord-

ing to several criteria: the logarithmic score, the continuously ranked probability score

(CRPS) in the version resented in Gneiting and Raftery [2007] and in its symmetric tail-

weighted version proposed in Gneiting and Ranjan [2011], and the Probability Integral

Transform (PIT). The logarithmic scoring rule gives a higher score to a forecast that

provides a high probability to the realisation. The forecaster aims to maximise the log

score and, for elicitation purposes, to select the forecasting model that obtains a higher

log score. The CRPS and TW-CRPS are positively valued such that a forecast with

a lower score indicates that it performs better than the alternative. According to the

PITs, the density forecast is called “calibrated” if its PIT values are iid uniform. One

way to check the uniformity is to plot the empirical CDF of the PIT values against the

45 degrees line (CDF of uniform distribution). Please refer to Rosenblatt [1952] and

Diebold et al. [1997] for discussion.

Combined density forecasts for output growth and inflation are evaluated in Table

(2.1) and Figure (1). According to the scores, BMA and CGM two-step procedures are

more accurate than the one-step procedure in combining probability forecasts for output

growth. Average log scores and CRPS are in favour of the two-step BMA combination

model. From PITs cumulative distribution functions in Figure (1), it is clear that none

of the models is well-calibrated; however, the one-step procedure is much closer to the

45 degrees line than the other alternatives displaying the fact that even though the one-

step approach is the less accurate according to relative scores, it is the more consistent

to the data. For inflation, the result is less clear: log scores favour one-step procedure

while CRPS favours the benchmark AR(1) model. From the inspection of the PITs, it

is evident that the one-step procedure is well-calibrated, at least in the central part of

the distribution.

In summary, the empirical exercise performed in this section leaves us with no

clear indication over which combination approach is the most accurate. Whether the

conflict between evaluation criteria has been treated in the literature, it is still unclear

10



why di↵erent combination approaches perform better (worse) for output growth and fail

(succeed) for inflation. The results also depend on other factors such as the number of

forecasts K to combine and the time window. The following section will try to shed

light on what a↵ects the di↵erent performances in controlled environments.
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2.3 Simulation Exercises

This section moves from the aim of understanding the mechanisms behind the results

seen in the previous section. Neither of the combination approaches used in this paper

seems to be superior to the others in a consistent matter. From the empirical evidence,

it is not clear what causes the higher accuracy of one approach over the others. In

the absence of a theoretical discussion in the literature, this paper explains it through

simulation exercises.

In particular, a series of simulation exercises investigates how di↵erent sources

of misspecifications a↵ect the accuracy of combination procedures. Each experiment is

characterised by a Data Generating Process (DGP), the definitions of forecasting models

and their pooling schemes. Combination approaches are the same as before: the mixtures

of normals distributions as one step approach and equal weighted, CGM and BMA as

two-step procedures.

Let us consider yt as a vector of values generated by a function g:

yt = g(V1, V2, V3) + ut+1 (2.14)

where u ⇠ N (0,�2) and V1, V2, V3 are exogenous variables. In order to forecast one-step

ahead values for yt, the researcher has two forecasting models f1 and f2:

yt+1,f1 = f1(✓1,0 + ✓1,1V1 + ✓1,2V2 + ✓1,3V3) + ut+1

yt+1,f2 = f2(✓2,0 + ✓2,1V1 + ✓2,2V2 + ✓2,3V3) + ut+1

(2.15)

which are combined according the one and two step procedures seen in the previous

section, i.e.:

yt+1,c = ⌘1yt+1,f1 + ⌘2yt+1,f2 . (2.16)

Each simulation setup di↵ers by di↵erent choices for parameters both for indi-

vidual forecasting models and for explanatory variables {V1, V2, V3} (both for DGPs and

forecasts).

Three families of DGPs are investigated: unimodal, bimodal and nonlinear, aim-

ing to exploit which approach to combination helps to detect the unimodality, multi-

modality, and nonlinearity of data. For each family of DGP, several misspecifications are

introduced to the forecasting models f1 and f2 to identify which combination approach

is more likely to overcome the individual model’s misspecification through combination.

Results are displayed in Table (2.4) and Figures (2.1-2.9) in the form of the
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accuracy loss a researcher will incur choosing a combination of forecasts instead of the

DGP. The accuracy loss is then a rate of scores such as:

Accuracy Loss =
(SCOREcombination � SCOREDGP )

SCOREDGP
(2.17)

For elicitation purposes, the researcher should select the combination approach with

smaller accuracy loss. In order to investigate if and how the two approaches work in

di↵erent environments, three samples of di↵erent sizes (T = 50, T = 200, T = 1000) are

drawn from the following DGPs.

2.3.1 Unimodal Data Generating Processes

The issue of unimodality and multimodality of the data is well studied in Everitt [1985]:

albeit a combination of several unimodal distributions is a good proposal to fit a multi-

modal DGP, it may well fit a unimodal DGP under certain conditions that regard their

moments. Therefore, this section aims to study how well di↵erent combination proce-

dures fit unimodal DGPs. The first DGP is obtain imposing V1 = yt�1, and V2 = V3 = 0

to equation (2.14) such that:

DGP A: yt = �0 + �1yt�1 + ut u ⇠ N (0,�2)

It consists then in a AR(1) process and parameter values are assumed to be

�0 = 0.5,�1 = 0.8,�2 = 0.6. Two types of misspecification in the forecasting models are

considered:

A1 : f1 is the correct model, f2 is noise.

f1 : yt+1 ⇠ N (✓0,1 + ✓1,1yt,�
2
1)

f2 : yt+1 ⇠ N (✓0,2 + ✓1,2xt,�
2
2)

(2.18)

The first forecast model f1 follows a AR(1) process as the DGP, so it is correctly

specified. The second forecast model f2 is a function of an exogenous variable

xt ⇠ N (�1, 0.5) that is assumed to be independent from yt.

This exercise is employed to study the e↵ectiveness of the combination approach. It

is desirable that a combination approach rules out the noisy model (f2) collapsing

the weight ⌘2 or parameters ✓0,2, ✓1,2 and �2 to zero. Both combination approaches

should detect the correct model; however, the di↵erence in inference approach may

favour the two-step approach at least in small samples.
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From Panel (A1) of Table (2.4) we can see that one-step approach delivers the

most accurate combined density forecast when the sample size is su�ciently large.

For small sample size (i.e. T = 50), the two-step CGM approach bets one-step

according to log-score and the tail-weighted version of CRPS. An explanation for

this evidence can be found in the fact that estimating parameters and weights at

the same time (using one-step apporach) may increase the parameter estimation

error and raise the forecast error variance.

A2 : f1 is the correct model, f2 nests f1.

f1 : yt+1 ⇠ N (✓0 + ✓1yt,�
2
"1)

f2 : yt+1 ⇠ N (✓0 + ✓1yt + ✓2xt,�
2
"1)

(2.19)

As in the previous set up, f1 follows a AR(1) process as the DGP, so it is correctly

specified. However now f2 is a function of the independent exogenous variable

xt ⇠ N (�1, 0.5) and yt. f2 then nests model for f1, and it is correctly specified

when ✓2 = 0. This exercise is employed to study the e↵ectiveness of combining

forecasts from nested models. Clark and McCracken [2009] provides a theoretical

analysis of combining forecasts from nested models, finding that, under model

uncertainty, it will improve the forecast accuracy. The nature of this exercise

wants to investigate whether both approaches improve the forecast accuracy to

combination in the same manner.

From Panel (A2) of Table (2.4) we can see that introducing a nested model in the

combination a↵ects the performance favours the one-step approach more than the

two-step alternatives. Both CGM and BMA approach lose accuracy with respect

to the previous experiment (A1), such that the one-step approach is now the most

accurate combination approach even in a small sample (T = 50). An explanation

for this evidence can found in the inference of the one-step procedure: estimating all

the parameters jointly enable the combination to detect the irrelevance of the noise

term xt, irrelevance that is “hidden” in the first step of the two-step procedures.

2.3.2 Bimodal DGP

Following Everitt [1985], the multimodal structure of the combination of distribution

well suits multimodal data. The following experiments aim to check this theoretical

proof and detect how model misspecification a↵ects di↵erent approaches to combination

in this environment.
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The second DGP is obtain imposing to equation (2.14): V1 : fN (✓0,1 + ✓1,1yt,�21),

V2 : fN (✓0,2 + ✓1,2yt�1,�22), V3 = 0 and g being a concave function: ⌘1 + ⌘2 = 1 such

that:

DGP B1: yt+1 = ⌘1fN (�0,1 + �1,1yt,�21) + ⌘2fN (�0,2 + �1,2yt�1,�22)

The variable of interest is distributed as a mixture of two ARmodels with di↵erent

orders: one AR(1) and one AR(2) where, ⌘1 + ⌘2 = 1, ⌘k > 0. This model setup

has a long tradition in mixture autoregressive models for nonlinear time series. In

particular, the parameters chosen to simulate data are taken from the results in Wong

and Li [2000]. The parameters of the first component are assumed being equal to:

µ1 = �1;�0,1 = �0.5;�1,1 = 0.5,�21 = 0.6, while for the second component of the

mixture: µ2 = 1;�0,2 = 0.7;�1,2 = 0.2,�22 = 0.3. Mixing probabilities are set at ⌘1 =

0.25, ⌘2 = 0.75. The probabilistic forecasts to be combined are:

f1 : yt+1 ⇠ fN (✓0,1 + ✓1,1yt,�
2
1)

f2 : yt+1 ⇠ fN (✓0,2 + ✓1,2yt�1,�
2
2)

(2.20)

In this set up both individual models are misspecified, but their linear combination mim-

ics the DGP. This exercise aims to study the trade-o↵ between parameter estimation

noise and forecast accuracy in a bivariate environment. Both combination approaches

are supposed to combine the two components correctly; however, the highly parametrised

inference in the one-step approach may cost forecast accuracy. It would be interesting

to exploit how big T has to be to let the one-step approach correctly estimate the DGP.

From Panel (B1) of Table (2.4), we can see that, according to log-score and for all three

sample sizes studied here, two-step approaches CGM and BMA outperform the one-step

procedure. However, it is interesting to notice that the two versions of CRPS indicate

that the one-step procedure is more accurate than the two-step alternatives at T = 50

and T = 200. Considering that CRPS is a measure for forecast accuracy more robust to

outliers than log-score, we can prefer a one-step approach instead of two-step approach.

However, the result for T = 1000 is puzzling: despite the increasing sample size, the

trade-o↵ between parameter estimation noise and forecast accuracy is still substantial

and a↵ects one-step approach forecast accuracy so much to let us move in favour BMA

two-step approach.

The third DGP is obtain imposing to equation (2.14): �3 = 0, V1 : fN (✓0,1 +
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✓1,1yt,�21), V2 : fN (✓0,2 + ✓1,2xt,�22) and g being a concave function such as ⌘1 + ⌘2 = 1

such that:

DGP B2: yt+1 = ⌘1fN (�0,1 + �1,1yt,�21) + ⌘2fN (�0,2 + �1,2xt,�22)

The variable of interest yt+1 is distributed as a mixture of an AR(1) model and

a linear regression model with one explanatory variable xt. This time xt is not a noise

term but is a variable correlated with yt with correlation ⇢ = 0.2. It has then some

explanatory power for yt. Parameters are set in the same way as the previous exercise.

As before, the probabilistic forecasts to be combined are:

f1 : yt+1 ⇠ fN (✓0,1 + ✓1,1yt,�
2
1)

f2 : yt+1 ⇠ fN (✓0,2 + ✓1,2xt,�
2
2)

(2.21)

In this set up both individual models are misspecified, but their linear combination

mimics the DGP. This exercise aims to study whether the e↵ect of the trade-o↵ between

parameter estimation noise and forecast accuracy is still present when an explanatory

variable is considered.

From Panel (B2) of Table (2.4), we can see that at, according to log-score, CRPS

and TW-CRPS and for all the sample sizes considered one-step approach delivers the

most accurate combined probability forecast. The estimation drawback of the one-

step approach is then overcome by the ability to account for dependence between the

mixture’s components.

2.3.3 Nonlinear DGP

The simulation exercises in this section aim to investigate whether combination pro-

cedures can fit nonlinear data. The nonlinearity analysed is structural breaks. The

motivation behind this is twofold. First, Stock and Watson [1996], and subsequent pa-

pers find that a wide variety of economic time series is subject to structural breaks;

this comparison between combination approaches cannot be complete without testing

their predictive ability under breaks. Second, the evidence of instability of parameters

of autoregressive models fitted to economic time series subject to structural breaks. For

this reason, this section applies the comparison between the combination procedures to

the framework subject to di↵erent breaks. The exercise aims to test the hypothesis that

a combination of forecasts can overcome the lack of predictability of component models

under breaks.
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Regardless of the majority of literature on breaks, this paper does not aim to de-

tect breaks in the time series. Indeed this information is treated as unknown. Instead, the

exercise wants to assess how well combination approaches that do not consider breaks

perform. The third type of DGP is obtained imposing to equation (2.14) V1 = yt�1,

V2 = xt�1 and V3 = h(t) is a function of time that defines the type of structural break

in the sample. The variable of interest yt is then simulated from a AR(1) model and it

exhibits a break at point t = Tb.

DGP C: yt = BXt + "t ✏t
iid⇠ (0,�2

")

Xt =

2

64
1

yt�1

xt�1

3

75 (2.22)

where xt�1 is an exogenous variable assumed to be independent from yt. V3 imposes the

break to parameters B and �2
" such that:

B =

8
<

:
[�0 �1 �2] , if t < Tb

[�0 + d0 �1 + d1 �2 + d2] , if Tb  t  T.

�2
" =

8
<

:
�2" , if t < Tb

�2" + s , if Tb  t  T.

(2.23)

The variable of interest yt is then a function of its past values and some explanatory

variable xt. xt is assumed to be normally distributed with mean 1 and variance 0.5, and

to be independent of yt: a noisy variable.

Let us impose that �2 = 0, such that the first part of the sample is a simple AR(1)

model, and then a break is imposed on the process. The break regards: the intercept

(experiments 1-2), the AR dynamics (experiments 3-4), the impact of the explanatory

variable xt on yt (experiments 5-7), the error variance �2" (experiments 8-9). All the types

of breaks are presented in Table (2.2). Thus DGPs in experiments number 1 � 5, 8, 9

correspond to di↵erent specifications of AR(1) models.

The timing of the break has been taken into account. It has been discussed in

the literature how the position of the break matters in estimating and then forecasting

time series (Pesaran et al. [2006]). For this reason, a di↵erent percentage of the sam-

ple is generated by the post-break setup, i.e. ⌧ = {0.25, 0.50, 0.75, 0.95}. Moreover, to

incorporate the framework of the previous simulation exercise, three sample sizes are

examined: T = {50, 200, 1000}.
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exp. # d0 d1 d2 �2✏ Comments
1 -0.4 0 0 0.6 small break in the intercept
2 -0.6 0 0 0.6 large break in the intercept
3 0 -0.2 0 0.6 small break in AR(1) dynamics
4 0 -0.4 0 0.6 large break in AR(1) dynamics
5 0 0 0.5 0.6 Small break in exo. var. coe�cient
6 0 0 1 0.6 Large break in exo. var. coe�cient
7 0 -0.2 0.5 0.6 Breaks in AR(1) and exo. var. coe�cients
8 0 0 0 2 Increase in post-break variance
9 0 0 0 0.3 Decrease in post-break variance

Table 2.2: Simulation set-up under a single break scenario. Parameters’ values are
assumed to be �0 = 0.5, �1 = 0.8, �2 = 0. The experiments are run under break-point
at time Tb = ⌧T , where ⌧ = {0.25, 0.50, 0.75, 0.95} and T = {50, 200, 1000} are the
simple sizes.

Concerning the individual models, two cases are considered: a complete and an

incomplete model set. They are the same as in the unimodal exercise i.e. simulation set

up (A1 and A2).

C1 : Incomplete model set combines two misspecified models:

f1 : yt+1 ⇠ N (✓0,1 + ✓1,1yt,�
2
1)

f2 : yt+1 ⇠ N (✓0,2 + ✓1,2xt,�
2
2)

(2.24)

In this setup, f1 is correctly specified for the sample period before the break, but

both are misspecified for the remaining part of the sample.

C2 : Complete model set combines a misspecified model f1 and a second model f2

that mimic the GDP (in the no breaks scenario):

f1 : yt+1 ⇠ N (✓0,1 + ✓1,1yt,�
2
1)

f2 : yt+1 ⇠ N (✓0,2 + ✓1,2yt + ✓2,2xt,�
2
2)

(2.25)

Since two-step tends to attach extreme values of weights to the components,

it is more accurate in experiments (1 � 4, 8, 9) (where f1 mimics the structure of the

DGP). On the contrary, it is supposed to be less accurate in the experiments (5 � 7)

where neither component mimics the DGP. The size of the break matters as well; large
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breaks increase the parameter estimation error, especially in small samples. The one-

step procedure can overcome this issue thanks to its flexibility. The sample size matters;

with the increase of T , the two-step becomes more accurate in the case of incomplete

model set, less accurate in the complete-model-set case. The timing of the break matters

as well; it seems reasonable that performances worsen when the break is located at the

end of the sample because parameters and weights estimates are biased. However, in

the presence of a large sample size T , the post-break subsample can be large enough to

correct this bias.

Figures (2.1) and (2.2) regard DGPs which are AR(1) processes with a break in

the intercept. As expected, in the case of incomplete model set, the two-step is better

than the one-step; increasing the sample size two-step becomes more accurate, but the

performance decrease when the break is large (experiment #2), especially in smaller

samples. However, the one-step approach does not become more accurate with a large

break.

In the case of complete model set, the one-step is more accurate than the two-step,

and the two-step becomes worse with the increase of the sample size. The same results

can be drawn for experiments (3) in Figure (2.3) and (4) in Figure (2.4) and experiments

(8) in Figure (2.8) and (9) in Figure (2.9) . Figure (2.5) and (2.6) regards DGPs which

are ARDL(1,1) processes with a break in the parameter of exogenous variable. When the

break is small, two (one)-step procedures must be preferred in the incomplete (complete)-

model-set case. When the break is large (exp. 6, figure 2.6), the one-step is more accurate

in the complete-model-set case and in the incomplete-model-set case for small samples

(i.e. T = 50 and T = 200) (apart from the case in which the break is close to the

end of the sample). Finally, let us consider experiment (7) in Figure (2.7), where the

break regards both the AR dynamics and the exogenous variable parameter. The one-

step procedure is more accurate than the two-step in all cases besides the large sample,

incomplete-model-set case.

The results presented do not show a clear indication of the impact of break timing

in our comparison.

2.4 Results from the simulation exercises

Arguably, the two-step procedure is the most popular in applied macroeconomics; how-

ever, the one-step procedure accounts for dependency among forecasts. Moreover, since

using the one-step combination approach is computationally more elaborated, endowing

the decision-maker with a tool to discriminate when it is worth is crucial.
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In this section a series of simulation exercises investigates the di↵erent perfor-

mances of one-step and two-step procedures in controlled environments. Three families

of data generating processes are considered: unimodal, multimodal and non-linearity

given by breaks. To forecast these DGP, the researcher is endowed with two predictive

distributions, whose features vary across simulation setups. The literature inspires the

designs of simulations in the combination of density forecasts in macroeconomics, such

as the di↵erence between the combination of complete and incomplete model sets, de-

pendence among forecast models and presence of breaks in the time series object of the

forecast. From the simulation exercises presented in the section, one can infer that: the

one-step approach delivers more accurate combined forecasts when one forecast model

nests the other; when the time series is subject to breaks and the sample size is suf-

ficiently large (i.e. greater or equal than 50 observations). Conversely, the two-step

procedure must be preferred when the sample size is small, and the components are

nonnested.

The results obtained in this paper are subject to the design of the simulation

exercise, (in particular the characteristics of the data generating processes) and the

decision on using a one-step or two-step procedure is based on these circumstances.

Further works would expand the simulation set to di↵erent pooling schemes (such as

logarithmic and beta-transformed pools) and to a higher number of forecasting models

(hence linking the highly parametrised application exercise).

2.5 Conclusions

This paper proposes a comparison between two inference approaches to the combination

of density forecasts. The empirical exercise performed in this Section (2.2) leaves us with

no clear indication over which combination approach is the most accurate. Whether

the conflict between evaluation criteria has been treated in the literature, it is still

unclear why di↵erent combination approaches perform better (worse) for output growth

and fail (succeed) for inflation. The results also depend on other factors such as the

number of forecasts K to combine and the time window. Section (2.3) tried to shed light

on understanding what a↵ects the di↵erent performances in controlled environments.

Several types of DGPs and misspecifications for forecasting models have been studied.

The trade-o↵ between parameter estimation noise and forecast accuracy typical of the

one-step approach is crucial to identify which combination approach to use given the

forecasting problem at hand: the one-step approach delivers more accurate combined

forecasts when one forecast model nests the other; when the time series is subject to
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breaks and the sample size is su�ciently large (i.e. greater or equal than 50 observations).

Conversely, the two-step procedure must be preferred when the sample size is small, and

the components are nonnested.

2.6 Appendices

2.6.1 Conflitti et al. [2015] Algorithm for Two-step Optimal Weight

Maximisation

As described in section (2.2), the optimality problem reduces to the maximisation of the

concave cost function:

�(!⇤
j ) =

1

T

TX

t=1

ln g(Yt) (2.26)

where ˆ!OPT maximises �(!⇤
j ) subject to the constraints !j � 0 and

Pm
j=1 !j = 1. Let

us define the T ⇥ J matrix Ĝ composed by nonnegative elements Ĝtj = ĝt(Yt). Then

equation 2.26 can be rewritten as:

�(!⇤
j ) =

1

T

TX

t=1

ln (Ĝ!j). (2.27)

Let as introduce the following Lagrange multiplier � to take into account the constraints

of the weights:

�(!⇤
j ) =

1

T

TX

t=1

ln (Ĝ!j)� �
mX

j=1

!j . (2.28)

Following Conflitti et al. [2015], we introduce a “surrogate” cost function depending on

a vector of arbitrary weights aj , such that:

 �(!j , aj) =
1

T

TX

t=1

mX

j=1

ĜjtajPm
j=1 Ĝjtaj

ln

✓
!j

aj

mX

j=1

Ĝjtaj

◆
� �

mX

j=1

!j . (2.29)

Let us define the following algorithm for k numbers of iterations:

!k+1
j,� =argmax

!
 �(!j ,!

k
j,�) (2.30)
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Rewriting last equation in terms of !k
j , the iterative algorithm becomes:

!k+1
j = !k

j
1

T

TX

t=1

ĜjtPm
j=1 Ĝjt!k

j

. (2.31)

The nonnegative constrain is satisfied by imposing positive weights that sum to one as

initial values (i.e. !0
j = 1/m). The iterates are expected to converge to the maximiser

ˆ!OPT due to the monotonicity of the cost function in (2.29) and the constraints. The

algorithm also has a stop criterion based on a negligible di↵erence between two successive

iterates.

2.6.2 The One-step approach Bayesian Inference
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Algorithm 1 Uncostraint MCMC for a Normal Mixture Regression Model.

Start from some initial values of S0 and repeat the following steps M times after a
burn-in period long M0.

for m = 1, . . . ,M0, . . . ,M +M0 do

A. parameter simulation conditional on the allocation Sm�1 (as in algorithm (1)):

(a) Sample ⌘k from the conditional Dirichlet posterior p(⌘k|S) as in algo-
rithm (1);

(b) Sample each regression coe�cient � = (�1,0,�1,1,�2,0,�2,1,�2,2) jointly
from the posterior distribution p(�|�2k, yot ,Sm�1) ⇠ N (ak, Ak) as in al-
gorithm (1);

(c) Sample the random hyperparameter C0 from p(C0|Sm�1,xi�k,�2k, y
o
t ⇠

G(gN , GN );

(d) Sample each variance �2k from the posterior distribution
�k|�, yot ,Sm�1 ⇠ G�1(ck, Ck)
Where ck = c0 +

Nk

2 and Ck = C0 +
1
2✏

0
k✏

B. Classification of each observation yt conditional on ✓k: sample each element
of Si of Sm from the conditional posterior p(St|�,�2✏,k, yot ) given by:

Pr(Si = k|�,�2k, yot ) / ⌘kfN (yot ;xi�k,�
2
k)

end for

The posterior density estimated from the MCMC draws is:

p(yt+1|yot ,✓k) =
1

M +M0

MX

m=1

✓ KX

k=1

⌘mk p(yt+1|✓mk,t+1)

◆
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Table 2.3: Description of Data Series

Label Trans Period Name Description Source

Asset Prices
rovnght@us level 59:M1-18:M6FEDFUNDS Int. Rate: Fed Funds (E↵ective) F
rtbill@us level 59:M1-18:M6 TB3MS Int. Rate: 3-Mn Tr. Bill, Sec Mkt Rate F
rbnds@us level 59:M1-18:M6 GS1 Int. Rate: US Tr. Const. Mat., 1-Yr F
rbndm@us level 59:M1-18:M6 GS5 Int. Rate: US Tr. Const. Mat., 5-Yr F
rbndl@us level 59:M1-18:M6 GS10 Int. Rate: US Tr. Const. Mat., 10-Yr F
stockp@us �ln 59:M1-18:M6 SP500 US Share Prices: S&P 500 F
exrate@us �ln 73:M1-18:M6 111 NEER I
rrovnght@us level 59:M1-18:M6FEDFUNDS Int. Rate: Fed Funds (E↵ective) F
rrtbill@us level 59:M1-18:M6 TB3MS Int. Rate: 3-Mn Tr. Bill, Sec Mkt Rate F
rrbnds@us level 59:M1-18:M6 GS1 Int. Rate: US Tr. Const. Mat., 1-Yr F
rrbndm@us level 59:M1-18:M6 GS5 Int. Rate: US Tr. Const. Mat., 5-Yr F
rrbndl@us level 59:M1-18:M6 GS10 Int. Rate: US Tr. Const. Mat., 10-Yr F
rstockp@us �ln 59:M1-18:M6 SP500 US Share Prices: S&P 500 F
rexrate@us �ln 73:M1-18:M6 111 NEER I

Real Activity
rgdp@us �ln 59:Q1-18:Q1 GDPC12 Real GDP, sa F
ip@us �ln 59:M1-18:M6 INDPRO Industrial Production Index, sa F
capu@us level 59:M1-18:M6 CUMFNS Capacity Utilization Rate: Man., sa F
emp@ �ln 59:M1-18:M6 CE16OV Civilian Employment: thsnds,sa F
unemp@us level 59:M1-18:M6 UNRATE Civilian Unemployment,sa F

Wages and Prices
pgdp@us �ln 59:Q1-18:Q1 GDPDEF GDP Deflator, sa F
cpi@us �ln 59:M1-18:M6 CPIAUCSL CPI: Urban, All items, sa F
ppi@us �ln 59:M1-18:M6 PPIACO Producer Price Index, nsa F
earn@us �ln 59:M1-18:M6 AHEMAN Hourly Earnings: Man., nsa F

Money
mon0@us �ln 59:M1-18:M6 AMBSL Monetary Base, sa I
mon1@us �ln 59:M1-18:M6 M1SL Money: M1, sa I
mon2@us �ln 59:M1-18:M6 M2SL Money: M2, sa I
mon3@us �ln 59:M1-06:M2 M3SL Money: M3, sa I
rmon0@us �ln 59:M1-18:M6 AMBSL Monetary Base, sa I
rmon1@us �ln 59:M1-18:M6 M1SL Money: M1, sa I
rmon2@us �ln 59:M1-18:M6 M2SL Money: M2, sa I
rmon3@us �ln 59:M1-06:M2 M3SL Money: M3, sa I

Notes: Sources abbreviated as “F” denotes Federal Reserve Economic Data (FRED) and “I” IMF
International Financial Statistics. The “r” in front of the variable name denotes the transformation
in real terms.
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Figure 2.1: Accuracy Loss of one-step and two-step in presence of a small break in the
intercept (exp.#1). Nested case in top three graphs, nonnested case in the bottom three.
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CRPS rates calculated against the DGP i.e. (CRPScombination �
CRPSDGP )/CRPSDGP . Y axis report the loss in accuracy in percentage points.
An higher CRPS rate indicates a higher loss in accuracy with respect to the DGP. Each
point identifies the CRPS score obtained from di↵erent simulation setups, i.e. break
timing (in X axis) and sample size (T = 50, 200, 1000).
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Figure 2.2: Accuracy Loss of one-step and two-step in presence of a large break in the
intercept (exp.#2). Nested case in top three graphs, nonnested case in the bottom three.
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CRPS rates calculated against the DGP i.e. (CRPScombination �
CRPSDGP )/CRPSDGP . Y axis report the loss in accuracy in percentage points.
An higher CRPS rate indicates a higher loss in accuracy with respect to the DGP. Each
point identifies the CRPS score obtained from di↵erent simulation setups, i.e. break
timing (in X axis) and sample size (T = 50, 200, 1000).
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Figure 2.3: Accuracy Loss of one-step and two-step in presence of a small break in AR(1)
dynamics (exp.#3). Nested case in top three graphs, nonnested case in the bottom three.
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CRPS rates calculated against the DGP i.e. (CRPScombination �
CRPSDGP )/CRPSDGP . Y axis report the loss in accuracy in percentage points.
An higher CRPS rate indicates a higher loss in accuracy with respect to the DGP. Each
point identifies the CRPS score obtained from di↵erent simulation setups, i.e. break
timing (in X axis) and sample size (T = 50, 200, 1000).
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Figure 2.4: Accuracy Loss of one-step and two-step in presence of a large break in AR(1)
dynamics (exp.#4). Nested case in top three graphs, nonnested case in the bottom three.
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CRPS rates calculated against the DGP i.e. (CRPScombination �
CRPSDGP )/CRPSDGP . Y axis report the loss in accuracy in percentage points.
An higher CRPS rate indicates a higher loss in accuracy with respect to the DGP. Each
point identifies the CRPS score obtained from di↵erent simulation setups, i.e. break
timing (in X axis) and sample size (T = 50, 200, 1000).
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Figure 2.5: Accuracy Loss of one-step and two-step in presence of a small break in
exogenous variable coe�cient (exp.#5). Nested case in top three graphs, nonnested
case in the bottom three.
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CRPS rates calculated against the DGP i.e. (CRPScombination �
CRPSDGP )/CRPSDGP . Y axis report the loss in accuracy in percentage points.
An higher CRPS rate indicates a higher loss in accuracy with respect to the DGP. Each
point identifies the CRPS score obtained from di↵erent simulation setups, i.e. break
timing (in X axis) and sample size (T = 50, 200, 1000).
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Figure 2.6: Accuracy Loss of one-step and two-step in presence of a large break in
exogenous variable coe�cient (exp.#6). Nested case in top three graphs, nonnested
case in the bottom three.
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CRPS rates calculated against the DGP i.e. (CRPScombination �
CRPSDGP )/CRPSDGP . Y axis report the loss in accuracy in percentage points.
An higher CRPS rate indicates a higher loss in accuracy with respect to the DGP. Each
point identifies the CRPS score obtained from di↵erent simulation setups, i.e. break
timing (in X axis) and sample size (T = 50, 200, 1000).
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Figure 2.7: Accuracy Loss of one-step and two-step in presence of a break in both AR(1)
dynamics and exogenous variable coe�cient (exp.#7). Nested case in top three graphs,
nonnested case in the bottom three.
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CRPS rates calculated against the DGP i.e. (CRPScombination �
CRPSDGP )/CRPSDGP . Y axis report the loss in accuracy in percentage points.
An higher CRPS rate indicates a higher loss in accuracy with respect to the DGP. Each
point identifies the CRPS score obtained from di↵erent simulation setups, i.e. break
timing (in X axis) and sample size (T = 50, 200, 1000).
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Figure 2.8: Accuracy Loss of one-step and two-step in presence of an increase in post-
break variance (exp.#8). Nested case in top three graphs, nonnested case in the bottom
three.
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CRPS rates calculated against the DGP i.e. (CRPScombination �
CRPSDGP )/CRPSDGP . Y axis report the loss in accuracy in percentage points.
An higher CRPS rate indicates a higher loss in accuracy with respect to the DGP. Each
point identifies the CRPS score obtained from di↵erent simulation setups, i.e. break
timing (in X axis) and sample size (T = 50, 200, 1000).
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Figure 2.9: Accuracy Loss of one-step and two-step in presence of a decrease in post-
break variance (exp.#9). Nested case in top three graphs, nonnested case in the bottom
three.
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CRPS rates calculated against the DGP i.e. (CRPScombination �
CRPSDGP )/CRPSDGP . Y axis report the loss in accuracy in percentage points.
An higher CRPS rate indicates a higher loss in accuracy with respect to the DGP. Each
point identifies the CRPS score obtained from di↵erent simulation setups, i.e. break
timing (in X axis) and sample size (T = 50, 200, 1000).
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Table 2.4: Simulated accuracy Loss of combined forecasts against the DGP: forecasts are com-
bined according to one and two-step procedures.

Panel A: Unimodal DGPs
DGP A1 DGP A2

T
=

50

One-stepTwo-step CGMTwo-step BMAOne-stepTwo-step CGMTwo-step BMA
Log Score 0.0013 0.0005 0.1508 0.0009 0.0342 0.1522
CRPS 0.0472 0.0500 0.5575 0.0154 0.2864 0.5690
TW-CRPS 0.0624 0.0426 0.5592 0.0064 0.2804 0.5676

T
=

20
0 One-stepTwo-step CGMTwo-step BMAOne-stepTwo-step CGMTwo-step BMA

Log Score 0.0103 0.0125 0.0928 0.0010 0.0294 0.1490
CRPS 0.0480 0.2468 0.3740 0.0004 0.2310 0.5295
TW-CRPS 0.0458 0.2430 0.3680 0.0039 0.2412 0.5305

T
=

10
00

One-stepTwo-step CGMTwo-step BMAOne-stepTwo-step CGMTwo-step BMA
Log Score 0.0093 0.0306 0.1442 0.0060 0.0317 0.1414
CRPS 0.0328 0.2476 0.4156 0.0220 0.2608 0.4473
TW-CRPS 0.0298 0.2491 0.4137 0.0149 0.2579 0.4461

Panel B: Bimodal DGPs
DGP B1 DGP B2

T
=

50

One-stepTwo-step CGMTwo-step BMAOne-stepTwo-step CGMTwo-step BMA
Log Score 0.0728 0.0293 0.0227 0.0018 0.0220 0.2040
CRPS 0.3470 1.0758 0.8026 0.0068 0.1707 0.9443
TW-CRPS 0.5274 1.1159 0.8364 0.0043 0.1688 0.9416

T
=

20
0 One-stepTwo-step CGMTwo-step BMAOne-stepTwo-step CGMTwo-step BMA

Log Score 0.0206 0.0240 0.0152 0.0023 0.0237 0.2081
CRPS 0.3626 1.1586 0.6924 0.0033 0.1806 0.6382
TW-CRPS 0.2560 1.1338 0.6750 0.0044 0.1808 0.6394

T
=

10
00

One-stepTwo-step CGMTwo-step BMAOne-stepTwo-step CGMTwo-step BMA
Log Score 0.0339 0.0256 0.0038 0.0065 0.0211 0.2017
CRPS 0.6060 0.9400 0.0770 0.0194 0.1700 0.6650
TW-CRPS 0.2849 0.9189 0.0406 0.0157 0.1621 0.6660

Notes: Log Scores and CRPS rates are calculated against the DGP i.e. (SCOREcombination �
SCOREDGP )/SCOREDGP . An higher score rate indicates a higher loss in accuracy with respect to
the DGP. T indicates the size of the simulated sample.
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Chapter 3

Are Central Banks’ Fan charts

Reliable? On Calibration of

Density Path Forecasts

3.1 Introduction

Forecasting a future state of the world is by nature probabilistic: forecasts include some

degree of uncertainty that cannot be eliminated ([Dawid, 1982]). A way to overcome this

issue is to communicate the degree of uncertainty together with the point forecast: in

the last three decades, the employment of probabilistic forecast over point forecast has

surged (Tay and Wallis [2000] and Gneiting and Katzfuss [2014] among the others). The

characteristic feature of probabilist forecasts is to consider, through density or cumulative

distribution, a range of candidate values for point forecasts and the probability associated

with them. Central Banks communicate the density forecasts by publishing the so-called

“fan chart”. This graph joins the realisations with the most likely “path” for GDP

growth, inflation and unemployment for 1 to H periods in the future. In this way,

fan charts are informative about the point forecast at a specific horizon h = 1, . . . , H

and about the path the economy will follow up to period H. In addition, fan charts

present confidence bands around the prediction that gives the reader an understanding

of its likelihood. As predictions become increasingly uncertain the further into the

future one goes, the forecast ranges out, creating distinctive “fan” shapes, hence the

name. Bank of England was the first central bank to publish fan charts in its “Inflation

Report” since 1997, coining the name, but fan charts are also popular in other central

banks’ reports. According to Hammond et al. [2012], in 2012, 18 central banks regularly
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publish fan charts: Armenia, Brazil, Colombia, Hungary, Perù, Poland, South Africa,

Thailand, Turkey and UK publish fan charts for inflation and GDP; in addition to

these, Israel, Czech Republic and Norway also publish fan charts for the key policy rate;

Canada, Czech Republic and Ghana distinguish from the headline and core inflation;

the Philippines publishes fan chart only for inflation; finally Sweden publishes fan chart

for the repo rate besides CPI and GDP.

In addition to point and probabilistic forecasts, the fan charts also display the

dynamics across horizons. For example, if the economy is forecasted to go through

a recession, from the fan chart, one can infer how severe the recession will be (point

forecast), how likely this forecast is (bands around the point) and how long the economy

will take to exit the recession. This “third dimension” information of fan charts is called

here “dynamics across horizons” or “horizon-dependency”. Researchers often neglect

horizon-dependency when they evaluate fan charts’ forecast ability. A first attempt has

been made by Martinez [2017], proposing a relative evaluation criterion for point path

forecasts, i.e. an elicitation criterion to select, among a set of alternative path forecasts,

the most accurate one. However, this paper does not consider path density forecasts.

This paper aims to propose an absolute evaluation criterion for path density

forecasts. First, we are interested in absolute instead of relative criteria because we

would like to have a tool to judge the forecast ability of the central bank’s fan charts.

Second, we decide to consider all the information in fan charts and not just the point

forecast, as it is common to the literature on density forecasts.

Existing absolute evaluation approaches test the forecast accuracy separately

across horizons. In doing so, the researcher implicitly assumes independence across

horizons of path forecast. Denote for example a path forecast of variable of interest yt

for horizons h = 1, . . . , H with ft(yt+1, yt+2, . . . , yt+H). This is a joint distribution of the

horizon-specific predictive distributions. Using Sklar’s theorem, we can represent any

joint distribution as:

ft(yt+1, yt+2, . . . , yt+H) = ft(yt+1) · ft(yt+2) . . . ft(yt+H) · C(·) (3.1)

where C(·) is the copula function that identifies the dependence structure among fore-

casts. Evaluating forecast accuracy, as done in literature, equals assuming C(·) = 1.

In our application to fan charts, the family of C(·) is unknown since Bank of England

publishes partial information on joint density. This paper provides a measure of loss of

accuracy in absolute evaluation given by the missing information, allowing for depen-

dence across horizons (called here horizon dependence) and let C(·) be di↵erent from
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1. This paper will answer the following questions: are Bank of England fan charts cal-

ibrated? How can we test the path density calibration? Do we have information about

the horizon-dependency? Which test statistic should we use?

The results show that the fan chart for GDP growth and unemployment are

not calibrated while inflation is. The choice of the test depends on the availability of

information about the time dependence. If they are available, we propose to evaluate

PITs of marginal and conditional distributions; if no, we propose a set of alternative

“sup tests” and a technique to approximate the horizon dependence. Finally, we explore

the properties of a set of the most used test statistics by Monte Carlo exercises.

The rest of the paper is organised as follows: Section (3.2) presents the notion of

path density forecast; and defines its calibration; Section (3.3) discusses the issue of time-

dependence and proposes several approaches as evaluation criteria; Section (3.4) shows,

through Monte Carlo simulations, the size and power properties of the calibration test

statistics; Section (3.5) applies the tests to Bank of England fan charts; finally, Section

(3.6) contains concluding remarks.

3.2 Fan chart as Path Density Forecast and its Calibration

A path density forecast is a sequence of forecasts 1 to H periods in the future. It is

informative about the prediction at a specific horizon and the path the variable will

follow up to H. However, examining the most likely path is only half of the story of

understanding the distribution of possible outcomes about that path. Path forecast is

much more than a simple collection of predictions: it is informative of the dynamics

of the variable of interest. A rich literature addresses the construction of pathwise

confidence bands from the H marginal predictive densities. Hall and Titterington [1988]

proposes confidence bands in a nonparametric density estimation; Jordà and Marcellino

[2010] introduces a method for the construction of bands based on the joint asymptotic

distribution of forecast error. However, as asymptotic methods rely on a large number

of observations, they may provide poor results for small samples. In finite samples, the

paths are often obtained by bootstrapping such as in Wolf and Wunderli [2015] or other

simulation-based methods (for example in Vidoni [2017], Garratt et al. [2003], Schüssler

and Trede [2016].

One example of the employment of path density forecasts is fan charts. Central

banks, as other organisations, communicate their monetary policies through graphs that

show the future state of the economy for 1 to H periods in the future. Fan charts are

then informative about the prediction at a specific horizon and about the economy’s
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path to period H. In addition to the most likely path for an economy, fan charts present

confidence bands that give the reader an understanding of its likelihood. However, this

information is di�cult to extract by the subjective inspection of the fan charts. Thus, it

is di�cult to perceive the change in the dynamics from one publication to its revision.

For this reason, it is crucial to evaluate the accuracy of paths density forecasts with

respect to the actual realisations.

The type of evaluation that targets the “consistency” of forecasts to the data is

better known as probabilistic calibration. Following Dawid [1982] prequential principle,

the predictive distributions need to be assessed only based on the forecast-observation

pairs. Diebold et al. [1997] proposed the use of the probability integral transform (PIT)

value firstly introduced by Rosenblatt [1952] for this purpose. If the density forecast

for a specific horizon h, ft(yt+h) is probabilistically calibrated then its PITs zt+h have a

uniform distribution.

zt+h =

Z yt+h

�1
ft(yt+h)dy ⇠ i.i.d. U(0, 1) (3.2)

for t = 1, . . . , T and yt+h being the realization. Checking the calibration can be done by

visual inspection methods involving histograms and correlograms of probability integral

transforms or using testing procedures developed by many studies. In this paper we will

use Kolmogorov, Cramer-von Mises, Berkowitz [2001] and Knüppel [2015] statistics.

3.2.1 Calibration of path density

We are interested in assessing whether Ft(yt+h) is correctly specified, i.e.:

H0 : Ft(yt+1, . . . , yt+H) = Gt(yt+1, . . . , yt+H) (3.3)

where Gt is the true data generating process for path the variable of interest yt and

Ft(yt+1, . . . , yt+H) denotes the associated probabilistic path forecasts made at time t.

We call a forecast that satisfy Equation (3.3), a calibrated forecast. In this paper,

for calibration we refer to probabilistic calibration defined by Gneiting et al. [2007] as

the “statistical consistency between the distributional forecasts and the observation”.

The sequence Ft(yt+1, . . . , yt+H) is probabilistically calibrated relative to the sequence

Gt(yt+1, . . . , yt+H) if:

TX

t=1

Gt � F�1
t (p) ! p for all p 2 (0, 1). (3.4)
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In a uni-dimensional (univariate and/or single horizon) framework the proba-

bilistic calibration is equivalent to the iid uniformity of probability integral transforms

(PIT) values. Defined by Rosenblatt [1952], the PIT is the value pt that predictive CDF

Ft(yt+h) attains at the observation yt+h. The connection between PITs values and cali-

bration can be achieved by substituting the empirical distribution function {yt+h  y}
for the data generating distribution Gt(y), y 2 R and noting that yt+h  F�1

t (p) if and

only if pt  p. Equation (3.4) becomes:

1

T

TX

t=1

1{pt < p} ! p almost surely for all p. (3.5)

The empirical sequence of PIT values pt in terms of probabilistic calibration is charac-

terised by asymptotic uniformity. Following Dawid [1982] and Diebold et al. [1997], the

probability integral transform values has become a cornerstone of forecast evaluation.

Uniformity can be assessed in several ways; one is to plot the empirical CDF of the

PIT values and comparing to the identity function. Although visual inspection can be

informative, for example, detecting the reasons for forecast deficiency, sometimes the

employment of formal tests is preferable since they are not a↵ected by subjective inter-

pretability. The assessment of probabilistic calibration throughout formal testing tracked

back to Pearson [1933]. Statistical tests for uniformity are compared in Marhuenda et al.

[2005].

Unfortunately, the definition of calibration for path forecasts is more complicated

since the path has a multi-dimensional joint distribution.

Let Ft(yt+1), Ft(yt+2), . . . , F (yt+H) be a sequence of probabilistic forecasts for the vari-

able of interest yt at horizons h = 1, 2, . . . , H. Let  = (yt+1, yt+2, . . . , yt+H) be a

continuous random variable whose outcomes consist of ordered H-tuples of realisations,

with the h-coordinate lying in the set Rh. The sample space ⌦ of  is the Cartesian

product of the Rh’s:

⌦ = R1 ⇥R2 ⇥ . . .⇥RH . (3.6)

The path density forecast is defined as the joint distribution of � that can be expressed

by the joint cumulative distribution function:

Ft(yt+1, . . . , yt+H) = P (Ft(yt+1) < yt+1, Ft(yt+2) < yt+2 . . . Ft(yt+H) < yt+H). (3.7)
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or the joint pdf f of  is defined by:

ft(yt+1, . . . , yt+H) =

Z yt+1

�1
. . .

Z yt+H

�1
ft(yt+1) . . . ft(yt+H) dyH . . . dy1 (3.8)

ft(yt+1, . . . , yt+H) =
@HFt(yt+1, . . . , yt+H)

@yt+1, @yt+2, . . . , @yt+H
(3.9)

The probabilistic forecasts Ft(yt+h) can be obtained by a parametric model, in this paper

we treat the set of parameters as known.

The literature about the evaluation of path forecasts is still embryonic. Some

procedures propose to evaluate the single horizons independently and the conclusion

about the calibration of the stream of forecasts. In doing so, the horizon-dependency is

neglected: each prediction depends on the likelihood and moments of the previous one.

To evaluate the calibration of the paths instead of the individual forecasts for the di↵erent

horizons, one has to consider the horizon dependence. Martinez [2017] has made some

steps in this direction, which accounts for the covariance between horizons using the

general forecast-error second-moment matrix proposed by Clements and Hendry [1993]

as a metric of path forecast accuracy. However, it treats the path forecast as a mere

stream of points and not its density. This paper accounts for the horizon-dependence

adapting the evaluation criteria of the multivariate literature. Since the works of Diebold

et al. [1999], multivariate density evaluation has become popular in the fields of time

series forecasting and risk evaluation. From it, Clements and Smith [2002], Ko and

Park [2013] and other works take a stand. Multivariate evaluation criteria are natural

candidates for our multi horizon evaluation task: each horizon is treated as a variable,

depending on the previous horizon and the information set.

Multihorizons evaluation tests are optimal approaches to assess path density cali-

bration. However, they assume some knowledge about the dynamics underlying the hori-

zons. For Bank of England fan charts, the dynamics between horizons is not disclosed:

the only information published regards density forecasts for each horizon. Our paper

proposes two approaches based on availability of information about horizon-dependence.

3.3 Econometric Framework

This section defines and contrasts two calibration tests: one based on marginal and

conditional distributions and one based on marginal distributions only. The choice of

the test depends on the availability of information about the horizon dependence. The
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lack of knowledge about horizon dependence in path density forecast can have various

nature. It can come from a problem of disclosing (such as the Bank of England fan chart)

or because the path is built from horizon-specific models. Building paths from indirect

forecasts gives us total information about the joint distribution, while paths from direct

forecasts are a clear example of the latter case.

Regardless of the reason, if the information is available, we can decompose the

joint distribution in marginals and conditionals; in this case, we propose to test calibra-

tion on the pits of marginal and conditional distribution as in Section (3.3.1); otherwise,

we propose a set of alternative test on marginal distributions only in Section (3.3.2).

3.3.1 Tests on PITs of Marginal and Conditional distributions

This section proposes and contrasts di↵erent approaches to path evaluation found in

literature of multivariate evaluation.

Decomposition of Joint Distribution

In the absence of a multi-dimensional notion of calibration, we can adapt the strategy

of decomposing the multi-dimensional density forecast into uni-dimensional densities

and apply the definition just mentioned before. However, one open question is how to

decompose the path CDF (3.7) or PDF (3.9) adequately. A first, natural strategy could

be to use the chain rule of conditional distributions, which allows to write any joint

distribution as the product of conditional and marginals, i.e.:

Ft(yt+1, . . . , yt+H) = Ft(yt+H |yt+H�1, . . . , yt+1) . . . Ft(yt+2|yt+1)Ft(yt+1) (3.10)

This decomposition has been used in the literature of evaluation of multivariate forecasts

from the work of Diebold et al. [1999]. However, in our framework, the equation (3.10)

can be simplified according to the law of iterated projections in:

Ft(yt+1, . . . , yt+H) = Ft(yt+H |yt+H�1) . . . Ft(yt+2|yt+1)Ft(yt+1) (3.11)

For an example, please refer to the Appendix (3.7.1) for the decomposition of path using

a AR(p) forecasting model. Thanks to this decomposition of path density forecast into

uni-dimensional distributions, the calibration can be assessed easily with standard tests.

The task consists of taking the probability integral transform of each element of equation

(3.11), i.e.:

{Ft(yt+H |yt+H�1), . . . , Ft(yt+2|yt+1), Ft(yt+1)} (3.12)
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then testing their uniformity. However, assessing the calibration of each distribution

in (3.12) is not equivalent to evaluate the calibration of the overall path, which we are

interested in. In other words, the PITs must be “aggregated” back in order to perform

joint calibration tests. In the following section, a set of vectors of PITs will be presented

and discussed.

A. The Diebold et al. [1999] approach

Following Diebold et al. [1999], the literature has proposed several approaches we

can apply to test whether a set of “multi-horizon” densities coincides with the true

path density. Diebold et al. [1999] proposes a factorisation of the joint distribution

as the product of its conditional and marginal distributions as in (3.11). Consider

a three-horizon path, the joint distribution is factorised in:

ft(yt+1, yt+2, yt+3) = ft(yt+3|yt+2)ft(yt+2|yt+1)ft(yt+1) (3.13)

for t = 1 . . . T . This procedure produces a set of H pits (Z) series (labelled

Zh=3|t+2, Zh=2|t+1, Zh=1|t). Where zh|t is by definition:

zh|t =

Z yt+h

�1
ft+h(yt+h)dyt+h ⇠ U(0, 1) (3.14)

for t = 1, . . . , T and Z = [zt=1, zt=2, . . . , zt=T ]. Where ft+h(yt+h) is defined as the

density forecast. The vector to test for uniformity is then:

ZDHT =

2

64
Zh=3|h=2,t

Zh=2|h=1,t

Zh=1|t

3

75 (3.15)

which has dimension TH ⇥ 1. The approach of stacking conditional and marginal

components has been criticized by Clements and Smith [2000] and subsequent

literature of multivariate. Its main drawback is that stacking PITs values is subject

to ordering of PITs and it neglects any dependence among the t value of Zh=3|h=2,t

with the t value of Zh=2|h=1,t and Zh=1|t, which are all dependent to starting value

t. The e↵ect of this dependence on uniformity tests is discussed in Appendix

(3.7.3).

B. The Clements and Smith [2000] Approach

Clements and Smith [2000] proposed a new factorization of joint density forecasts
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that consists in the product of the PITs vectors in Diebold et al. [1999]. This joint

evaluation has been proposed to allow the correlation among variables to be non-

linear. For each t, the N = T dimensional vector of PITs to test for uniformity

is:

ZCSp =
h
Zh=3|h=2,t ⇥ Zh=2|h=1,t ⇥ Zh=1|t

i
(3.16)

Assessing the calibration of the path forecasts consists in testing the uniformity of

the ZCSp vector of PITs. The product is shown to be i.i.d. U(0, 1) sequences under

the null hypothesis. The testing set up proposed by Clements and Smith [2002],

crucial in the multi-variable setting, is not as important in the multi-horizon case.

The reason has to be found in the lack of contemporaneous correlation of variables

when forecasting multi-step-ahead. To see this, consider the multi-horizon setting

with iterative forecasts using an AR(1) model:

yt = �yt�1 + ut (3.17)

where ut ⇠ N(0,�2).

Then the h = 1 and h = 2 period ahead marginal density indirect forecasts are:

f(yt+1|t) = N(�yt,�
2) (3.18)

f(yt+2|t) = N(�2yt, (1 + �2)�2) (3.19)

and the conditional forecast is:

f(yt+2|t+1) = N(�yt+1,�
2) (3.20)

So the inverse normal CDF, �, transformed PITS (i.e. the standardized forecast

errors) are:

z⇤t+1|t =
ut+1

�
(3.21)

z⇤t+2|t =
�ut+1 + ut+2p

(1 + �2)�
(3.22)

z⇤t+2|t+1 =
ut+2

�
(3.23)

There is no issue (unlike below) of contemporaneous correlation a↵ecting the power

of the tests. Although, there may be a question of whether tests of calibration are

more powerful than the Diebold et al. [1999] case.
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In the multivariate case, Diebold et al. [1999] is misspecified. To see this, consider

the VAR(0) DGP:

 
y1

y2

!
⇠ N

 "
m1

m2

#
,

"
�21 ⇢�1�2

⇢�1�2 �22

#!
(3.24)

Then the marginal density forecasts are

ft(y1) = N(m1,�
2
1) (3.25)

ft(y2) = N(m2,�
2
2) (3.26)

and the conditional forecast is

ft(y2|1) = N(⇢
�2
�1

m1, (1� ⇢2)�22) (3.27)

So the inverse normal CDF, �, transformed PITS are

z⇤1 =
(y1 �m1)

�1
(3.28)

z⇤2 =
(y2 �m2)

�2
(3.29)

z⇤2|1 =

⇣
y2 � ⇢�2

�1
m1

⌘

p
(1� ⇢2)�2

(3.30)

So there is now the problem, when m1 = m2 = 0, that if we (incorrectly) assume

independence ⇢ = 0, both z⇤1 and z⇤2|1 are still distributed standard normal - so

calibration failure (in terms of ⇢) is undetected. But z⇤1 and z⇤2|1 are not independent

(when it is incorrectly assumed that ⇢ = 0), hence the tests of Clements and Smith,

and Ko and Park.

Multi-horizon: direct forecasting

Now consider forming the forecasts via direct forecasting

yt = �1yt�1 + u1t (3.31)

yt = �2yt�2 + u2t (3.32)
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where:  
u1t

u2t

!
⇠ N

 "
0

0

#
,

"
�21 ⇢�1�2

⇢�1�2 �22

#!
(3.33)

Recall, direct forecasts have been shown to be more robust to misspecifications

(Bhansali, Marcellino et al, Pesaran et al.).

Then the standardized PITS are

z⇤t+1|t =
u1t+1

�1
(3.34)

z⇤t+2|t =
u2t+2

�2
(3.35)

z⇤2|1 =

⇣
yt+2 � ⇢�2

�1
�1yt

⌘

p
(1� ⇢2)�2

(3.36)

In this framework, we can see that parameter ⇢ is unknown. While in a indirect

path forecast, ⇢ is a transformation of model parameters (depending on the model),

in this case we do not know ⇢. In parallel, for the case of Bank of England

Fancharts, all we observe is u1t+1 and u2t+1.

Please refer to Appendix (3.7.2) for the transformation for H > 2 case following

Dovern and Manner [2016] online appendix.

C. The Ko and Park [2013]Approach

In the multivariate setup, Ko and Park [2013] identifies an asymmetric behaviour

in the power of Clements and Smith [2000]. To overcome this lack of power, Ko and

Park [2013] proposed a location-adjusted transformation. Such as {Zi|j,t ⇥Zj,t} of

Clements and Smith [2002] becomes {(Zi|j,t � E(Zi|j,t))⇥ (Zj,t � E(Zi,t)}. Hence,

the vector of PITs to test for uniformity becomes:

ZKP =

"
(Zh=1|t � E(Zh=1|t))⇥ (Zh=2|h=1,t � E(Zh=2|h=1,t)⇥ . . .

⇥(Zh=3|h=2,t)� E(Zh=3|h=2,t))

#
(3.37)

for any t = 1, . . . , T . Testing this sequence of PITs to be uniformly distributed

in (0, 1) results to have better empirical power than the previous tests and to

be free from asymmetries in the multivariate case, and we consider it here as a

variation of Clements and Smith [2000] approach. Please refer to Appendix (3.7.2)

for the transformation for H > 2 case following Dovern and Manner [2016] online

appendix.
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A discussion on the horizon-dependence issue and how it a↵ects these four ap-

proaches di↵erently can be found in Appendix (3.7.3).

The next section will discuss in details the types of uniformity test performed in

this paper.

Uniformity Tests for PITs

Once the statistics has been defined assessing the well-calibration of the path fore-

casts consists in testing the uniformity of the PITs. A series of uniformity test is

available in literature.

• Uniformity Test of Probability integral Transform. The tests that

belong to this category tests the null hypothesis:

H0 : z ⇠ U(0, 1). (3.38)

Two uniformity of the PITs tests are the Kolmogorov-Smirnov () and Cramer-

von Mises (C) tests. That have test statistics:

 = sup
r2[0,1]

| (r)| (3.39)

C =

Z 1

0
 (r)2dr (3.40)

where  (r) is the empirical process:

 (r) =
1p
T

TX

t=1

I{z  r}� r (3.41)

and r 2 [0, 1] is the vector of PITs under null hypothesis of calibration (i.e.

uniformly distributed). The test reject H0 at the ↵ ⇤ 100% significance level

if  > ↵ and C > C↵. Usually critical values are derived by analytical

calculation (see Durbin [1973] and Smirnov [1948]). However, this statistic

ignores the serially correlated PITs discussed as the first type of dependence

in Appendix (3.7.3). As noted by Rossi and Sekhposyan [2019], the critical

values depend on the nuisance parameters that appear in the covariance ma-

trix of the PITs. Rossi and Sekhposyan [2019] continues recommending to

use critical values from a block version of the weighting bootstrap by Inoue
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[2001] described in Rossi and Sekhposyan [2019]. We apply the evaluation

using both sets of critical values.

• Normality tests of Inverse Normal transformation (INT). The tests

that belong to this category tests the null hypothesis:

H0 : �
�1(z) ⇠ N (0, 1). (3.42)

The test is a likelihood ratio (LR) test proposed by Berkowitz [2001] can be

applied to INT to test simultaneously for zero mean, unit variance and zero

autocorrelation. Since, we are in presence of serial correlation, we will use a

version of the test where only the first two hypotheses are tested. The LR

joint test that pits values have mean and variance equal to (0, 1) is:

LRB = �2(L(0, 1)� L(µ̂, �̂2)) (3.43)

Under the null hypothesis, the test statistic is distributed �2(2), chi-squares

with 2 degrees of freedom. The exact log-likelihood function associated is:

L(µ,�2) = �T

2
log(2⇡)� T

2
log(�2)�

TX

t=1

(zt � µ)2

2�2
(3.44)

According to Berkowitz [2001], the advantage of tests based on the inverse

normal transformation of the PITs is that they are more powerful than tests

of uniformity applied directly to the PITs, at least in small samples; the

limitation is that they detect violations of normality only through the first

two, and not higher, moments, whereas PIT-based tests can detect any de-

parture from uniformity. This variant of the test has been used in several

application among which Mitchell and Hall [2005], Clements [2004] and Jore

et al. [2010b]. A variation of Berkowitz [2001] that are valid also for serial

correlation is proposed by Bai and Ng [2005].

• Raw-Moments Tests A raw-moments test for the calibration of multi-step

ahead density forecasts are proposed by Knüppel [2015]. The raw-moments

tests are based on the standardised PITs (S-PITs):

S-PITs =
p
12

✓
zt �

1

2

◆
(3.45)
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where Zt is the vector of PITs. Under the null of probabilistic calibration:

H0 = S-PITs ⇠ (�
p
3,
p
3) (3.46)

Let the nth raw moment of S-PITs be:

mn = E[S-PITr] (3.47)

with n 2 N+. Let us denote that the vector of N empirical raw-moments of

interest as [m̂1, m̂2, . . . , m̂N ] and the vector of moments under null hypoth-

esis as [m1,m2, . . . ,mN ]. Than the vector D̂1,2,...,N denoting the di↵erence

between both vectors, is given by:

D̂1,2,...,N =

2

66664

m̂1 �m1

m̂2 �m2
...

m̂N �mN

3

77775
(3.48)

which converges to a multivariate normal distribution:

p
TD̂1,2,...,N ⇠ N (0,⌦1,2,...,N ) (3.49)

where T is the sample size and ⌦1,2,...,N the long-run covariance matrix of the

vector D̂1,2,...,N . A test statistic for the vector of S-PITs can then be written

as:

↵̂1,2,...,N = TD̂0
1,2,...,N⌦̂

�1
1,2,...,RD̂1,2,...,N (3.50)

which under the null ↵̂1,2,...,N ! �2(N).

Knüppel [2015] test has the advantages of having a higher power when the mis-

specification a↵ects moments included in the test, however, it’s not clear how big

the misspecification has to be in other to be preferred to  or C tests. Some pre-

vious works justify the use of  and C since they tests the entire distribution and

not just some moments. In the multi-step-ahead case, Knüppel [2015] has a HAC

estimator which is consistently estimated, while in  or C the covariance matrix is

large and a block bootstrap procedure to estimate critical values is suggested. In

this paper we specified Knüppel [2015] test on n = 4 moments.
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3.3.2 Tests on PITs of Marginal Distributions

Often, the decomposition strategy proposed in the previous section is not available.

One reason is that the information regarding the conditional distribution is not

disclosed (as in the case of Bank of England’s fan charts). Another reason is that

di↵erent models are used to predict specific horizon, and the conditioning losses its

meaning. This section proposes an alternative strategy to evaluate path density

calibration when only horizon-specific density distributions are available.

Stacked Pits of Marginal Distributions

Intuitively, the first example of calibration PITs on marginal distribution consists

in evaluating stacked PITs of forecasts horizon-by-horizon. In this case, the joint

distribution is:

Ft(yt+1, yt+2, yt+3) = Ft(yt+1)Ft(yt+2)Ft(yt+3) (3.51)

and the feasible vector to test for uniformity is then:

ZM =
h
Zh=1|t;Zh=2|t;Zh=3|t

i
(3.52)

The beauty of this approach is that not knowing the nature of C(·) in Equation

(3.1), we ignore it. However, we must remember that Equation (3.51) has an

approximation error.

It is critical then questioning how much of the power and size we lose if one does

not acknowledge some degree of dependency, as our practice to evaluate paths

does. This section proposes several simulation exercises to investigate how much

the missing time-dependence matters for the size and power of calibration tests.

“Sup-tests”

The calibration test proposed here is a direct translation from the relative evaluation

criterion of superior predictive ability (SPA), which entitles a long tradition in the lit-

erature. Among the most recent works, Quaedvlieg [2021] generalises the Diebold and

Mariano [2002] test to a multi-horizon framework. The accuracy of two or more multi-

horizon forecasts is compared at each horizon, leading to incoherent results when one

forecast do not perform better than the others in all the horizons. For this reason,
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they propose several tests to help the researcher to elicit the best model for the multi-

horizon forecast. Quaedvlieg [2021] introduces two definitions for superior predictive

ability: uniform and average. The concepts of uniform and average SPA link to first-

and second-order forecast dominance, respectively, and stochastic dominance (e.g., Lin-

ton et al. [2005]; Linton et al. [2010]). More generally, the tests are closely related

to multivariate inequality tests (e.g., Bartholomew [1961]; Wolak [1987]). Patton and

Timmermann [2010] proposed a solution similar in the context of monotonicity in asset

pricing relationships.

This paper contributes to this literature by applying the superior predictive abil-

ity to absolute evaluation. Following Rossi and Sekhposyan [2019], we assume that the

researcher has divided the available sample of size T + h into an in-sample portion of

size R and an out-of-sample portion of size P . The null hypothesis of path calibration

is:

H0 : Ft(yt+1, . . . , yt+H  u|It) = F0(u|It)

H1 : the negation of H0

(3.53)

where Ft(yt+h|It) =
R yt+h

�1 ft(u|It), It is the information set available at time t, yt+h is

the realisation at t+ h of the random variable u.

For each horizon, we can state the empirical PITs as:

Pr(Ft(y|It)  r)

= Pr

✓Z yt+h

�1
ft(y|It)dy  r

◆

 P,h(yt+h) ⌘ P�1/2
TX

t=R

(1{Ft+h(yt+h)  r}� r)

(3.54)

and r 2 [0, 1].

Two statistics are employed to test the null: a “sup” statistic on the maximum

 P,h(yt+h) over h and a “sup” statistic on the average of  P,h(yt+h) over h. Let us

define the statistic:

• Max Sup statistic: A path density forecast is strictly calibrated if each horizon

is calibrated. The test statistics are the following:

P,s = max
h2{1,...,H}

( sup
r2[0,1]

| P,h(yt+h)|) CP,s = max
h2{1,...,H}

(

Z 1

0
 P,h(yt+h)

2dyt+h)

(3.55)
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The test reject H0 at the ↵ ⇤ 100% significance level if P,h > ↵ and CP,h > C↵.

According to this test, the null hypothesis of path calibration is rejected when at

least the pits of one horizon are not uniform.

• Weighted Sup statistic. This second definition is more lenient than the previous;

the path density forecast is allowed to be not calibrated in some horizons, although

it is calibrated “on average”. According to this test, the null hypothesis of path

calibration is rejected when the averaged pits over horizons are not uniform. W

denotes the vector of weights that multiplies PITs for each horizon. The weights

are assigned based on a specific preference of the researcher. For example, one can

assume the same calibration level at each horizon (i.e. W = H) or allow some

degree of misspecification on a longer horizon without making the test reject the

path calibration (i.e. descending weights). The test statistics available for this test

are:

P,a = max
h2{1,...,H}

( sup
r2[0,1]

|Wh2{1,...,H} ⇥ P,h(yt+h)|)

CP,a = max
h2{1,...,H}

(

Z 1

0
Wh2{1,...,H} ⇥ P,h(yt+h)

2dyt+h)

(3.56)

The test reject H0 at the ↵ ⇤ 100% significance level if P,h > ↵ and CP,h > C↵.

Bootstrap Critical Values

Critical values for Equations (3.55, 3.56) can be based on the following bootstrap proce-

dure. Let l be the block length and ⌘t be a continuous random variable that is used for

random weighting in the block weighted bootstrap. {⌘jt }T�l+1
t+R are independent random

variables, independent of zt, with zero mean, variance 1/l and E(⌘4i ) = O(1/l2), where

l ! 1 as T ! 1 and l = o(P 1/2). The bootstrap can be implemented in practice using

the following step-by-step procedure:

A. Construct the test statistics P and CP for each horizon following (3.55, 3.56).

B. For each horizon let J be the maximum number of bootstrap replications. For

j = 1, 2, . . . , J , generate {⇤P,j,h}Jj=1 and {C⇤
P,j,h}Jj=1 where ⇤ and C⇤ are based on

draws{⌘jt }T�l+1
t+R ;

C. For each horizon estimate the level-↵ critical values ĉJ,↵,h and ĉJC,↵,h by choosing

↵-100 percentiles from {⇤P,j,h}Jj=1} and {C⇤
P,j,h}Jj=1}, respectively.
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D. Compute the path critical values according to:

• ĉJ,↵ = maxh2{1,...,H} ĉ
J
,↵,h and ĉJC,↵,h = maxh2{1,...,H} ĉ

J
C,↵,h (for 3.55);

• ĉJ,↵ = 1
W ĉJ,↵,h and ĉJC,↵,h = 1

W ĉJC,↵,h for( 3.56 weighting each horizon accord-

ing to a vector of weight W arbitrary chosen.)

E. Reject H0 at the ↵ · 100% significance level if {P > ĉJ},↵ and CP > ĉJC,↵

In the following section we will present some Monte Carlo Simulations where the

di↵erent strategies of evaluation will be compared.

3.4 Monte Carlo Simulations

This section shows some Monte Carlo simulations to study the size and power of test

statistics to evaluate the path density forecast presented previously. Throughout this

simulation, we will investigate the size and power of test statistics of both approaches to

evaluation: the first using marginal and conditional distributions in Sections (3.4.1) and

(3.4.2) and the second using marginal distributions only in Sections (3.4.3) and (3.4.4).

3.4.1 Size Experiments for tests on PITs of Marginal and Conditional

distributions

In this series of simulations we want to investigate the impact of sample size, degree of

temporal dependence on the multiplicity of calibration tests statistics.

We generate the path density forecasts for H = 4 horizons from an AR(4) model:

DGP : yt = �1yt�1 + �2yt�2 + �3yt�3 + �4yt�4 + "t (3.57)

for T = [25, 50, 100, 500, 1000] where "t are i.i.d. normal (0,�2). Several sets of autore-

gressive coe�cients are used to consider di↵erent ways of persistence � = {0.3, 0.2, 0.1, 0.1},
(Tables 3.4, 3.5, 3.6) � = {0.1, 0.1, 0.1, 0.1} (Tables 3.7, 3.8, 3.9). We also reduce the

model to a AR(1) imposing the autoregressive coe�cient to be � = {0, 0, 0, 0}, equal
to uniform distribution, and � = {0.1, 0, 0, 0},� = {0.5, 0, 0, 0} and � = {0.9, 0, 0, 0} to

test the e↵ect of increasing in autocorrelation on size of the tests (Tables 3.1, 3.2, 3.3).

In this experiment there is no parameter uncertainty. Density forecasts for horizons

h = 1, . . . , 4 are jointly distributed according to:
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2

66664

yt+1

yt+2
...

yt+4

3

77775
⇠ N

2

66664

�yt

�2yt
...

�4yt

3

77775
,

2

666664

�2 �1�2 . . . �31�
2

�1�2 (1 + �21)�
2 . . .

...
...

...
. . .

...

�31�
2 . . . . . . �2

P3
j=0 �

2
j

3

777775
(3.58)

where � = [�1�2�3�4] and yt = [yt, yt�1, yt�2, . . . , y1].

We calculate Kolmogorov-Smirnov, Cramer-von Mises, Berkowitz [2001] and Knüppel

[2015] statistics for the vectors of PITs zDHT , zCS , zKP in equations (3.15, 3.16, and 3.37)

) and zM which contains marginal distributions only. We repeat the simulation 1000

times and report the sizes of tests in Tables (3.1-3.9).

Tables (3.1, 3.4 and 3.7) show empirical rejection frequencies for each marginal distribu-

tion {zh=1|t, zh=2|t, zh=3|t, zh=4|t}, while Tables (3.2, 3.5 and 3.8) show empirical rejec-

tion frequencies for each conditional distribution {zh=2|t+1, zh=3|t+2, zh=4|t+3}. Results

for path PITs zM , zDHT , zCS , zKP are reported in tables (3.3, 3.6 and 3.9).

From the results, we can draw a series of comments on the size properties of the

test statistics:

A. We see that, as expected, the size of the tests improves with the increase in sample

size.

B. Comparing the size properties of the statistics at the variation of �, we can answer

whether the level of horizon dependence a↵ects the evaluation since, in indirect

forecasts, the time dependence is given by autoregressive parameters. We note

that � matters for small samples, while in larger samples, the simulation provides

equivalent size for the statistics.

C. We can discuss the performance of the di↵erent statistics: bootstrap version of

Kolmogoroz-Smirnov and Cramer-von Mises are correctly sized, Berkowitz does

not work well, or it is undersized, Knuppel test needs a large sample size (i.e. at

least T = 100) to be correctly sized.

D. The performance of vectors of pits changes across tests and T considered, but zM

and zDHT performs overall better than the alternatives.
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3.4.2 Power Experiments for tests on PITs of Marginal and Condi-

tional distributions

We consider three types of misspecifications to evaluate the power properties of the tests

of calibration of path density forecasts.

A. First, the DGP follows an iid normal distribution, and the path density forecast

is built under the hypothesis that DGP follows an AR(4) model. Forecast model

parameters are estimated through OLS. Results of tests for each horizon forecast

(both marginal and conditional distributions) and entire path are displayed in

Table (3.10). All the tests display a good power even at a lower sample size (i.e.

T = 25).

B. Second, the DGP follows an AR(4) process, while the path density forecast follows

an AR(1) model. The DGP has richer dynamics than the model used to forecast

the H = 4 steps. The AR(4) model used to simulate the DGP has parameters

� = [0.3, 0.2, 0.1, 0.1] while forecast model parameters are estimated through OLS.

Please refer to Table (3.11) for result of tests. From this, we can conclude that

the power of the tests increases with sample size and that the Knuppel test is the

most powerful of the tests considered in this paper.

C. Third, following Knüppel [2015], the DGP follows a MA(1) process while the fore-

cast model is an AR(1) process. The persistence of AR(1) model is fixed at � = 0,

� = 0.5 or � = 0.9. Please refer to the result about calibration of the single-horizon

forecasts (marginals) in Table (3.12), conditionals in Table (3.13) and the entire

path in Table (3.14). Note that for � = 0, the forecasts are correctly specified, and

it should be considered as the size of the tests. In this case, all tests (excluding

Berkowitz) have good power at a large sample size (i.e. T = 500 or higher). In

addition, the higher the � coe�cient, the higher the probability of rejecting the

null hypothesis of calibration. We find these patterns also in the calibration of the

vector of pits, although zM and zDHL also have a rejection probability closer to

nominal level at � = 0 than alternative methods.

In conclusion we can state that the test statistics of zM and zDHT are, across

simulations, the ones with better size and power.

3.4.3 Size Experiments of tests on PITs of Marginal distributions

In this series of simulation we want to investigate the impact of sample size, on the

multiplicity of calibration tests statistics. To investigate the size properties of our “sup
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tests” we consider forecasts are based on model parameters estimated in rolling windows

for t = R, ..., T . We consider several values for in-sample estimation window of R =

[25, 50, 100, 200, 500, 1000] and out-of-sample evaluation period P = [25, 50, 100, 200, 500, 1000]

to evaluate the performance of the proposed procedure. While our assumptions require

R to be finite, we consider both small and large values of R to investigate the robustness

of our methodology when R is large. Following Rossi and Sekhposyan [2019], the DGP

is a integrated moving average (IMA) model:

DGP IMA: �tt = µt + ✏t � ⇢✏t�1, ✏t ⇠ i.i.d.N(0, 1.261), ⇢ = 0.275 and µt is defined as:

µt = R�1
t�1X

j=tR

�yj . (3.59)

The parameters for the monte carlo design are from Stock and Watson [2007]

1960:I-1983:IV sample period (i.e. great inflation period). Forecast model: �yt =

� + et, et ⇠ i.i.d.N(0, 1 + ⇢2) with multi-step ahead forecasting model equal to:

�yt = µt + ✏t �
hX

j=1

⇢j✏t�1 (3.60)

where h = 1, . . . , H are the forecasting horizons. We will analyse the size of the

tests for H = 4 and H = 12. Tables (3.15 and 3.16) refer to the evaluation of

path density forecasts with H = 4 horizons. The empirical p-values of the test

using bootstrap  and C have reasonable size. Table ( 3.16) displays the empirical

rejection probabilities for the sup tests. The tests for path calibration using max

sup statistic in Equation (3.55) are correctly sized. We adopt two versions of

weighted sup statistic: one that simply applies a equal weighting scheme on the

statistics for each horizon (i.e. [0.25, 0.25, 0.25, 0.25]) and a descending weighting

scheme, that applies a higher weight on shorter horizon than longer horizons (i.e.

[0.40, 0.30, 0.20, 0.10] ). The tests for both definition are slightly undersized. Tables

(3.20 and 3.21) refer to the evaluation of path density forecasts with H = 12

horizons. The “sup tests” with H = 12 horizons displayed a better size, both for

strict calibration and averaged calibration, stating that they are more accurate

with increasing the number of horizons.
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3.4.4 Power Experiments of tests on PITs of Marginal distribu-

tions

Three misspecifications are considered in power exercises: a misspecification in

mean and error variance:

A. Power exercise 1: µt + 2. This first power exercise is simple. It assumes that

the forecasters has a biased mean of the path density forecast. We can see

from Table (3.17) that the calibration tests have a good power, already at

in-sample period of R = 100. Here as well, the tests for weighted sup statistic

have lower power than the max sup but only for short in-sample periods.

B. Power Exercise 2 assumes the variance to be lower than the DGP, ✏t ⇠
i.i.d.N(0, 1). Interestingly from Tables (3.18), we can see that the tests need

a larger sample size to reject significantly the calibration.

C. Power Exercise 3: assumes the variance to be higher than the DGP, ✏t ⇠
i.i.d.N(0, 1.261 ⇤ 2)). Compared to the previous case, here the tests have

higher power (results are displayed in Table 3.19).

In conclusion, this section wanted to highlight the properties of the tests by sim-

ulated data. To summarise, the sample size matters for the performance of the tests;

the degree of horizon dependence does not a↵ect the properties of the tests; among the

vectors of pits, the better sized and more powerful vectors are zM and zDHT ; among

the sup tests, the max sup statistic displays the best properties. The choice of statis-

tics depends on several aspects: Kolmogorov-Smirnov and Cramer-von Mise have better

size and power when employing the bootstrapped version; choosing these two tests will

depend on the computational issues that the estimation entitles. Berkowitz test is un-

dersized, and the Knuppel test works only with a large enough (i.e. T=100) sample size,

but it is the most powerful.

3.5 Empirical Applications

In this section the path density evaluation examined in theory and through simulation

will be apply to Bank of England fan charts. As already mentioned, Bank of England

publishes, at a quarterly frequency, one-year inflation forecasts for h = 1, . . . , H = 13

steps ahead. The dataset for fan charts spans from 2004Q1 up to 2020Q1. The charts are

based on a number of conditioning assumption that reflects the deliberations of the Mon-
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etary Policy Committee (MPC) that are collected the document called “Conditioning

assumption, MPC key judgements and indicative projection” document.

Analytically, fan charts have a two-piece normal distribution, for details see Wallis

[2004]. The Bank of England publishes a set of parameters that describes the distribu-

tion: mode (mo), mean (m), median (me), uncertainty (un) and skewness (sk). The

uncertainty is a parameter of the two-piece normal distribution. The skew statistic is

defined as mean minus mode. Two-piece normal probability density distribution takes

the form:

ft(yt) =

8
<

:

2p
2⇡(�1+�2)

exp
⇣
� (yt�mo)2

2�2
1

⌘
, if yt  mo

2p
2⇡(�1+�2)

exp
⇣
� (yt�mo)2

2�2
2

⌘
, if yt > mo

(3.61)

with mo being the mode parameter and �1 and �2 are obtained by:

�1 =
p
un2/(1 + �) �2 =

p
un2/(1� �) (3.62)

� is defined by:

8
<

:
� =

p
�2 if s � 0

� = �p
�2 if s < 0

(3.63)

where s = m�mo
un and �2 = 1� 4(

p
(1+⇡s2)�1

⇡(m�mo

un
)2

)2. Then, according to Clements [2004], we

can compute the pit values as follows:

P (Y  y) =

8
<

:

2p
2⇡(�1+�2)

exp
⇣
� (yt�m)2

2�2
1

⌘
, if yt  m

�1��2
�1+�2

+ 2p
2⇡(�1+�2)

exp
⇣
� (yt�m)2

2�2
2

⌘
, if yt > m

(3.64)

PIT values for t + h for h = 1, . . . , H = 13 steps called ZBOE,t ahead are tested for

uniformity. The vector of PIT values is obtained evaluating the calibration at each

forecast origin t = 1, . . . , T = 52. The forecast horizons span from 2004Q1 to 2020Q1.

The dataset is reduced since we need realization for inflation in order to compute the

PITs; the dataset from T = 65 is then reduce to T = 52.

With the information published by Bank of England, we can assess the joint

calibration only using the statistics based on PITs of marginal distributions discussed in

Section (3.3.2). The other joint tests are not feasible since the information about horizon

dependence is not disclosed, and the estimation of conditional distributions is impossible.
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However we can approximate the covariance between horizons �h using a GMM approach.

This approach consists in estimating the correlation among horizons as the increment

in the variance of density forecast at horizon h > 1 compared to previous horizon. For

each forecast origin and horizon, the variance of a two-piece normal distribution can be

derived from parameters �1 and �2 in equation (3.62):

�BOE,t,h = (1� 2

⇡
)(�2,t,h � �1,t,h)

2 + �1,t,h�2,t,h (3.65)

and for each horizon, the variance can be estimated according to its sample mean:

�2BOE,h=1 =
1

T

TX

t=1

�̂BOE,t (3.66)

Hence, the covariances among horizons can be approximates as:

cov(yt+1, yt+1) = �2BOE,h=1

cov(yt+2, yt+1) =
p
�2�

2
BOE,h=1

cov(yt+3, yt+2) =
p
�3�

2
BOE,h=1

...

cov(yt+H , yt+H�1) =
p
�H�

2
BOE,h=1

(3.67)

Again, this is an approximation of the correlation among horizons because we do not

know which process defines the temporal dependence of fan charts when these are built

by the Bank. However, with this approach we allow the dependence to change at each

horizon. The estimation of �h is carried out as follows:

�2 =
1

T

TX

t=1


�̂t,h=2 � �̂t,h=1

�̂t,h=1

�

�3 =
1

T

TX

t=1


�̂t,h=3 � �̂t,h=2

�̂t,h=1

�

...

�H =
1

T

TX

t=1


�̂t,h=H � �̂t,h=H�1

�̂t,h=1

�

(3.68)

Using these correlation between horizons, we can then approximate the conditional dis-
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tributions for horizons h = 2, . . . , H given the previous one, by:

f(yh=2|h=1) = N (yt+1,
p
�2�t,h=1)

f(yh=3|h=2) = N (yt+2,
p
�3�t,h=1)

...

f(yh=H|h=H�1) = N (yt+H�1,
p
�H�t,h=1)

(3.69)

This paper evaluates three fan charts published by the Bank of England: inflation

rate, GDP growth rate and unemployment rate. For each variable, we organised the

results for calibration tests as follow: tests for calibration of marginal distributions

(respectively Table 3.22, 3.26 and 3.30), their PITs histograms in Figures (3.1, 3.2, 3.3),

the correlation coe�cients we estimated between horizons in tables (3.23, 3.27 and 3.31),

tests for calibration of conditional distributions (respectively Table 3.24, 3.28 and 3.32),

and finally path density tests (both vectorised and sup max) in Table (3.25, 3.29 and

3.33 ).

For Kolmogorov-Smirnov, Cramer-von-Mises tests, Berkowitz and Knuppel, the

results display the value of statistic in the first column and the critical values at 5%.

According to all tests, inflation rate fan charts are calibrated at each horizon, except for

Berkowitz (evidence also found in the previous section). The calibration of path density

forecasts is verified according to the unfeasible approach zDHT and all the feasible ones

(zM , and all the version of sup tests).

The results are di↵erent for the GDP growth fan charts. All test rejects the

null hypothesis of calibration at least for horizons h = {1, . . . , 7}, while conditional

distributions are overall calibrated. Consequently, the joint test for calibration is rejected

by all “sup” tests, zCS and zKP . The only tests that cannot reject the null hypothesis

are zM and zDHT using Kolmogorov and Cramer-von-Mises statistics.

Overall, the Bank of England path density forecast for the unemployment rate is

not calibrated. The null hypothesis of calibration is rejected for both single-horizon and

the path density forecast.

Given the size of the time series, this application exercise is comparable with

the sizes exercises for T=50 or (P=25, R=25). We do not consider the Knuppel test

results since it needs a larger sample size (at least double), as shown in the Monte Carlo

exercises.
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3.6 Conclusions

This paper proposes an absolute evaluation criterion for path density forecasts. After the

path density forecast has been defined, a series of testing strategies have been discussed.

We identified two main tests that depend on information about horizon dependence. If

the researcher has information about the dependence and can build conditional forecast

distributions, then they can use vectors of PITs, among which the better sized and more

powerful vectors are zM and zDHT ; If the research does not have any information, they

can use a vector of marginal distributions and some “sup tests”. Among the “sup tests”,

the max sup statistic displays the best properties.

The choice of test statistics depends on several aspects: Kolmogorov-Smirnov and

Cramer-von Mise have better size and power when employing the bootstrapped version;

choosing these two tests will depend on the computational issues that the estimation

entitles. Berkowitz test is undersized, and the Knuppel test works only with a large

enough (i.e. T=100) sample size, but it is the most powerful.

To answer whether the Bank of England fan chart is calibrated, we applied the

tests to Bank of England fan charts published from 2004Q1 up to 2020Q1. From our

analysis, we can say that the calibration of path density forecast for inflation rate is

not rejected by the majority of our tests, either horizon-by-horizon or jointly; for GDP

growth rate and unemployment is rejected.
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3.7 Appendices

3.7.1 Decomposition Example: AR(p)-generated Path Density Fore-

cast

Let us simplify the set up considering a path density forecast of three horizons (i.e.

H = 3) obtain form an AR(p) process:

yt = �1yt�1 + �2yt�2 + · · ·+ �pyt�p + "t (3.70)

where "t follows a White Noise distribution (0, 1). Equivalently, it can be written in

companion form:

2

66666664

yt

yt�1

yt�2
...

yt�p+1

3

77777775

=

2

66666664

�1 �2 . . . �p�1 �p

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

3

77777775

2

66666664

yt�1

yt�2

yt�3
...

yt�p

3

77777775

+

2

66666664

"t

0

0
...

0

3

77777775

(3.71)

or:

yt = Byt�1 + ⌘t (3.72)

Starting at t and iterating forward h periods, it gives:

yt+h|t = Bhyt + ⌘t+h +B⌘t+h�1 + · · ·+Bh�1⌘t+1 (3.73)

The first equation of the system (3.73) characterises the value of yt+j for j = 1, . . . , H.

Let us denote bj11 as the element (1, 1) of the coe�cient matrix Bj . For j-step ahead,

the first equation then becomes:

yt+j|t =bj11yt + bj12yt�1 + · · ·+ bj1pyt�p+1+

"t+j +  1"t+j�1 +  2"t+j�2 + · · ·+  j�1"t+1

(3.74)

where  1 = b111 = �1,  2 = b211 = �21 + �2, and  j�1 = bj11 = �1 j�1 + �2 j�2 + · · · +
�p j�p.

Up to this point, we specified the forecasts obtained by a AR(p) model. Using
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the decomposition in equation (3.10), the path density forecasts for H = 3, becomes:

ft(yt+1, yt+2, yt+2) = ft(yt+H |yt+H�1, yt+H�2)ft(yt+H�1|yt+H�2)ft(yt+H�2) (3.75)

However, under the law of iterated projections, ft(yt+H |yt+H�1) contains the same in-

formation as ft(yt+H |yt+H�1, yt+H�2).

ft(yt+h|t+h�1) ⇠ N
✓
Bhyt +

h�1X

j=1

Bh�jyt+j ,⌃⌘ +
h�1X

j=1

Bj⌘2
t+jB

j0
◆

(3.76)

ft(yt+h|t+h�2) ⇠ N
✓
F hyt +

h�2X

j=1

Bh�jyt+j ,⌃⌘ +
h�2X

j=1

Bj⌘2
t+jB

j0
◆

(3.77)

From this example it is easy to see that all the information in ft(yt+h|t+h�2) are contained

in ft(yt+h|t+h�1) and then the joint distribution of path forecast is totally described by

equation (3.11).

3.7.2 Derivation of transformations of the distributions of zCS and zKP

for h > 2

Clements and Smith [2002]

In the paper, the number of variables considered is 2. The authors then call z⇤ the prod-

uct of two PITs vectors. Assuming the independence of the two vectors, the distribution

function of their product is:

Fz⇤ = z⇤ � z⇤lnZ⇤ 0 < z⇤ < 1 (3.78)

For more details of the derivation, please refer to Clements and Smith [2002]. However,

we need to generalise the transformation to d number of elements in the vector to be

multiplied. Consider the following change of variable for our case of d = 4:

z⇤1 = z1z2z3z4

z⇤2 = z2z3z4

z⇤3 = z3z4

z⇤4 = z4

(3.79)
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The determinant of the Jacobian for the inverse transformation is: |J |= 1
z⇤2z

⇤
3z

⇤
4
, and

therefore the joint distribution of z⇤1z
⇤
2z

⇤
3z

⇤
4 is:

fz⇤1z⇤2z⇤3z⇤4 = |J |f(z⇤1z⇤2z⇤3z⇤4) =
1

z⇤2z
⇤
3z

⇤
4

f

✓
z⇤1

z⇤2z
⇤
3z

⇤
4

◆

fz⇤1z⇤2z⇤3z⇤4 =
(�1)d�1

d� 1!
logd�1(

z⇤1
z⇤2z

⇤
3z

⇤
4

)
1

z⇤2z
⇤
3z

⇤
4

(3.80)

Since we are interested in the distribution of z⇤1 , let us integrate out of equation z⇤2 , z
⇤
3 ,

z⇤4 . The marginal probability distribution of z⇤1 is:

fd(z
⇤
1) =

(�1)d

d!
logd(z⇤1) (3.81)

For our case of d = 4, the transformation of cdf of z⇤1 is equal to:

Fd=4(z
⇤
1) =

z⇤1
24

✓
log4(z⇤1)� 4log3(z⇤1) + 12log2(z⇤1)� 24log(z⇤1) + 24

◆
(3.82)

Applying this transformation, the vector z⇤1 has a uniform U(0, 1) distribution.

Ko and Park [2013]

Moving from a critique to Clements and Smith [2002], Ko and Park [2013] uses the case

of 2 variables as well. Let us call z⇤ the location-adjusted transformation of two PITs

vectors. Its distribution function is:

F (z⇤) =

(
�2z⇤ln2 + 2z⇤ � 2z⇤ln(2z⇤) + 1/2 z⇤ > 0,

�2z⇤ln2 + 2z⇤ � 2z⇤ln(�2z⇤) + 1/2 z⇤  0
(3.83)

For more details of the derivation, please refer to Ko and Park [2013]. However, we need

to generalise the transformation to d number of vectors. Consider the following change

of variable for our case of d = 4:

z⇤1 = (z1 � E(z1))⇥ (z2 � E(z2))⇥ (z3 � E(z3))⇥ (z4 � E(z4))

z⇤2 = (z2 � E(z2))⇥ (z3 � E(z3))⇥ (z4 � E(z4))

z⇤3 = (z3 � E(z3))⇥ (z4 � E(z4))

z⇤4 = z4 � E(z4)

(3.84)
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The determinant of the Jacobian for the inverse transformation is: |J |= 1
z⇤2z

⇤
3z

⇤
4
, and

therefore the joint distribution of z⇤1z
⇤
2z

⇤
3z

⇤
4 is:

fz⇤1z⇤2z⇤3z⇤4 = |J |f(z⇤1z⇤2z⇤3z⇤4) =
����

1

z⇤2z
⇤
3z

⇤
4

����f
✓

z⇤1
z⇤2z

⇤
3z

⇤
4

◆

fz⇤1z⇤2z⇤3z⇤4 =
(2)d�1

d� 1!
logd�1

✓
z⇤2z

⇤
3z

⇤
4

2d|z⇤1 |

◆
1

z⇤2z
⇤
3z

⇤
4

(3.85)

Since we are interested in the distribution of z⇤1 , let us integrate out of equation z⇤2 , z
⇤
3 ,

z⇤4 . The marginal probability distribution of z⇤1 is:

fd(z
⇤
1) =

2d�1

(d� 1)!
logd�1

����
1

(2dz⇤1)

���� (3.86)

For our case of d = 4, the transformation of cdf of z⇤1 is equal to:

Fd=4(z
⇤
1) =

|z⇤1 |
3

✓
log3

����
1

16z⇤1

����+ 3log2
����

1

16z⇤1

����+ 6log

����
1

16z⇤1

����+ 6

◆
(3.87)

Applying this transformation, the vector z⇤1 is now distributed according to a uniform

U(0, 1) distribution.

3.7.3 The e↵ect of temporal dependence on calibration’s tests

The previous section concludes with a set of alternative vectors of uni-dimensional PITs

to test for calibration. Before moving to analyse uniformity tests, one crucial aspect has

to be discussed. Following Rosenblatt [1952], the PITs Zt are uniform (under proba-

bilistic calibration) subject to independence of PIT values zt. If PITs are independent,

they can be used directly for testing the calibration of density forecasts, employing for

example the Kolmogorov-Smirnov test. Consider that:

Ft(yt+h) = {Ft=1(yt+h), Ft=2(yt+h), . . . , Ft=T (yt+h)} (3.88)

and its probability integral transform is:

Zt+h|t = {zt+h|t=1, zt+h|t=1, . . . , zt+h|t=1} (3.89)

and so any conditional or marginal distribution in equations (3.11-3.51).

Hamill [2001] states how the use of formal tests is often hindered by complex de-

pendence structures, particularly in the case of PIT values are spatially or temporarily
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aggregated. The time-dependence that characterises path forecasts interferes with the

evaluation procedure making the PITs dependent since for h > 1, h-step ahead fore-

casts have serially correlated errors making their PITs values serially correlated. Since

individual PIT values are serially correlated, the vector of PITs are serially correlated.

This e↵ect is well-discussed in the literature of multi-horizon forecasts Knüppel

[2015] and regards the serial dependence among {zt+h|t=1, zt+h|t=1, . . . , zt+h|t=1}. zt+h|t

will be serially dependent if Ft(yt+h) are serially dependent when h > 1. To show this,

consider, for example, H = 2 forecasts obtained from an AR(1) forecasting model:

yt = �yt�1 + "t (3.90)

where t = 1, . . . , T and "t are iid normal (0,�") distributed. To prove that yt+2|t is

serially dependent let us prove that:

cov(yt+2|t=1, yt+2|t=2) 6= 0 (3.91)

where:

yt+2|t=1 = �2yt=1 + �"t+1|t=1 + "t+2|t=1

= �2yt=1 + �"t=2 + "t=3

yt+2|t=2 = �2yt=2 + �"t+1|t=2 + "t+2|t=2

= �2yt=2 + �"t=3 + "t=4

(3.92)

It is easy to see that this two density forecasts are not independent to each other, and

this is true for any other t = 1, . . . , T . The covariance cov("t+2|t=1,�"t+1|t=2) 6= 0 and

cov(yt+2|t=1, yt+2|t=2) = ��2" . This is due to the fact that "t+2|t=1 and "t+1|t=2 are two

notations for error terms that regards the same t = 3 horizon, they di↵er only by the

point in time they are calculated i.e. t = 2 or t = 1. The serial dependence in the error

term regards only marginals yt+h|t and not conditional distributions (yt+h|t+h�1,t). To

prove that yt+2|t+1,t is NOT serially dependent let us prove that:

cov(yt+2|t+1,t=1, yt+2|t+1|t=2) = 0 (3.93)

where:

yt+2|t+1,t=1 = �ŷt+1|t=1 + "t+2|t=1

yt+2|t+1,t=2 = �ŷt+1|t=2 + "t+2|t=2

(3.94)
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where �ŷt+1|t=1 is the forecast made at t = 1 for horizon h = 1.

Cov(yt+2|t+1,t=1, yt+2|t+1,t=2) = 0 (3.95)

Given that the serial dependence in zt a↵ects density forecasts for h > 2, Zt+2|t and

Zt+3|t (but not Zt+1|t), the components of vector ZM are serially dependent and then

ZM itself. Defining the path forecast as a sequence of conditional forecasts help us

avoiding the serial correlation in the error terms that a↵ects the h-step ahead marginal

distribution. Indeed it does not a↵ect any of the ”optimal but unfeasible” vector of

PITs since they are function of one-step ahead forecasts Zh=3|h=2,t;Zh=2|h=1,t;Zh=1|t.

This is the first reason for which ZDHT , ZCS , ZKP are superior to ZM . However, serial

correlation of errors is not an invalidating issue, since several solutions to test unifor-

mity of serially correlated PITs are available in literature. A first approach consists

in changing the associated critical values: Corradi and Swanson [2006a] and Rossi and

Sekhposyan [2019] propose Kolmogorov-Smirnov and Cramér-von-Mises types of tests

that account for serially correlation using empirical critical values. A second approach

refers to the inverse normal transformation (INT) of PITs proposed by Smith [1985] and

Berkowitz [2001]. Under probabilistic transformation, the INT of PIT values are nor-

mally distributed. These tests (including skewness and kurtosis normality tests Mitchell

and Wallis [2011]) are valid also in presence of serially correlation. A third approach

proposed by Knüppel [2015], is based of raw moments. More details about the tests,

their strengths and limits will be given in section (C).
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Table 3.4: Size Test: Empirical Rejection Frequencies for uniformity tests of marginal
distributions. � = {0.3, 0.2, 0.1, 0.1}, �2 = 1

Kolmogorov-Smirnov ()
Traditional c.v.=1.36 Bootstrapped c.v.

z1 z2 z3 z4 z1 z2 z3 z4
T=25 0.038 0.08 0.131 0.171 0.026 0.026 0.026 0.029
T=50 0.041 0.094 0.135 0.182 0.020 0.020 0.020 0.016
T=100 0.049 0.085 0.15 0.197 0.028 0.028 0.028 0.028
T=500 0.041 0.100 0.125 0.181 0.027 0.027 0.027 0.027
T=1000 0.029 0.117 0.138 0.159 0.029 0.029 0.029 0.029

Cramer-von Mises (C)
Traditional c.v.=0.46 Bootstrapped c.v.

z1 z2 z3 z4 z1 z2 z3 z4
T=25 0.047 0.09 0.162 0.212 0.260 0.260 0.260 0.260
T=50 0.058 0.104 0.165 0.229 0.140 0.140 0.140 0.140
T=100 0.056 0.104 0.177 0.239 0.170 0.170 0.170 0.170
T=500 0.045 0.118 0.162 0.209 0.130 0.130 0.130 0.130
T=1000 0.036 0.124 0.168 0.199 0.090 0.090 0.090 0.090

Berkowitz Test Knuppel Test
z1 z2 z3 z4 z1 z2 z3 z4

T=25 0.02 0.134 0.267 0.338 0.000 0.000 0.000 0.001
T=50 0.019 0.326 0.487 0.591 0.015 0.019 0.015 0.016
T=100 0.009 0.64 0.793 0.874 0.036 0.056 0.05 0.065
T=500 0.209 0.013 1 1 0.046 0.176 0.105 0.076
T=1000 0.199 0.013 1 1 0.037 0.291 0.152 0.084

Note: The table reports empirical rejection frequencies for the test statistic KS at the
5% nominal size for various sample sizes T . Bootstrapped critical values obtained by
block bootstrap following Rossi and Sekhposyan [2019]. The number of Monte Carlo
replications is 1000.
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Table 3.5: Size Test: Empirical Rejection Frequencies for uniformity tests of conditional
distributions. � = {0.3, 0.2, 0.1, 0.1}, �2 = 1

Kolmogorov-Smirnov ()
Traditional c.v.=1.36 Bootstrapped c.v.

z1 z2|1 z3|2 z4|3 z1 z2|1 z3|2 z4|3
T=25 0.038 0.036 0.032 0.038 0.030 0.030 0.030 0.030
T=50 0.041 0.048 0.048 0.046 0.030 0.030 0.030 0.030
T=100 0.049 0.049 0.051 0.053 0.040 0.040 0.040 0.040
T=500 0.041 0.041 0.044 0.042 0.070 0.070 0.070 0.070
T=1000 0.029 0.029 0.031 0.032 0.050 0.050 0.050 0.050

Cramer-von Mises (C)
Traditional c.v.=0.46 Bootstrapped c.v.

z1 z2|1 z3|2 z4|3 z1 z2|1 z3|2 z4|3
T=25 0.047 0.043 0.043 0.051 0.08 0.080 0.080 0.080
T=50 0.058 0.057 0.057 0.058 0.08 0.080 0.080 0.080
T=100 0.056 0.054 0.056 0.061 0.07 0.070 0.070 0.070
T=500 0.045 0.044 0.045 0.046 0.11 0.110 0.110 0.110
T=1000 0.036 0.035 0.037 0.037 0.04 0.040 0.040 0.040

Berkowitz Test Knuppel Test
z1 z2|1 z3|2 z4|3 z1 z2|1 z3|2 z4|3

T=25 0.020 0.021 0.023 0.025 0.000 0.000 0.001 0.001
T=50 0.019 0.019 0.018 0.017 0.015 0.010 0.009 0.013
T=100 0.009 0.010 0.013 0.011 0.035 0.036 0.034 0.030
T=500 0.013 0.013 0.012 0.011 0.046 0.046 0.045 0.046
T=1000 0.013 0.014 0.012 0.013 0.037 0.038 0.040 0.037

Note: The table reports empirical rejection frequencies for the test statistic KS at the
5% nominal size for various sample sizes T . Critical values obtained by block bootstrap
following Rossi and Sekhposyan [2019]. The number of Monte Carlo replications is 1,000.

72



Table 3.6: Size Test: Empirical Rejection Frequencies for uniformity tests of vectors.
� = {0.3, 0.2, 0.1, 0.1}, �2 = 1

Kolmogorov-Smirnov ()
Traditional c.v.=1.36 Bootstrapped c.v.

zM zDHT zCS zKP zM zDHT zCS zKP

T=25 0.04 0.027 0.330 0.112 0.140 0.050 0.360 0.070
T=50 0.054 0.038 0.342 0.141 0.090 0.040 0.390 0.080
T=100 0.049 0.049 0.374 0.153 0.140 0.030 0.430 0.100
T=500 0.05 0.041 0.341 0.138 0.180 0.070 0.410 0.080
T=1000 0.043 0.031 0.309 0.111 0.100 0.040 0.360 0.110

Cramer-von Mises (C)
Traditional c.v.=0.46 Bootstrapped c.v.

zM zDHT zCS zKP zM zDHT zCS zKP

T=25 0.102 0.043 0.357 0.098 0.160 0.010 0.350 0.170
T=50 0.117 0.056 0.374 0.14 0.060 0.080 0.230 0.120
T=100 0.125 0.054 0.373 0.129 0.080 0.070 0.210 170
T=500 0.118 0.043 0.358 0.121 0.100 0.110 0.150 0.080
T=1000 0.106 0.036 0.345 0.117 0.040 0.040 0.070 0.060

Berkowitz Test Knuppel Test
zM zDHT zCS zKP zM zDHT zCS zKP

T=25 0.175 0.084 0.221 0.051 0.051 0.000 0.000 0.002
T=50 0.237 0.111 0.319 0.064 0.006 0.007 0.063 0.059
T=100 0.334 0.085 0.393 0.058 0.022 0.032 0.087 0.079
T=500 0.444 0.087 0.445 0.047 0.050 0.046 0.095 0.079
T=1000 0.506 0.075 0.483 0.048 0.066 0.036 0.091 0.069

Note: The table reports empirical rejection frequencies for the test statistic KS at the
5% nominal size for various sample sizes T . Critical values obtained by block bootstrap
following Rossi and Sekhposyan [2019]. The number of Monte Carlo replications is 1,000.
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Table 3.7: Size Test: Empirical Rejection Frequencies for uniformity tests of marginal
distributions. � = {0.1, 0.1, 0.1, 0.1}, �2 = 1

Kolmogorov-Smirnov ()
Traditional c.v.=1.36 Bootstrapped c.v.

z1 z2 z3 z4 z1 z2 z3 z4
T=25 0.038 0.049 0.065 0.083 0.29 0.29 0.29 0.29
T=50 0.041 0.062 0.083 0.105 0.16 0.16 0.16 0.14
T=100 0.049 0.069 0.081 0.117 0.14 0.14 0.14 0.14
T=500 0.041 0.051 0.069 0.092 0.1 0.1 0.1 0.1
T=1000 0.029 0.043 0.058 0.084 0.09 0.09 0.09 0.09

Cramer-von Mises (C)
Traditional c.v.=0.46 Bootstrapped c.v.

z1 z2 z3 z4 z1 z2 z3 z4
T=25 0.047 0.064 0.086 0.111 0.260 0.260 0.260 0.260
T=50 0.058 0.08 0.104 0.129 0.140 0.140 0.140 0.140
T=100 0.056 0.073 0.101 0.137 0.170 0.170 0.170 0.170
T=500 0.045 0.066 0.085 0.117 0.130 0.130 0.130 0.130
T=1000 0.036 0.056 0.076 0.106 0.090 0.090 0.09 0.09

Berkowitz Test Knuppel Test
z1 z2 z3 z4 z1 z2 z3 z4

T=25 0.02 0.028 0.046 0.062 0.000 0.000 0.000 0.001
T=50 0.019 0.050 0.061 0.080 0.015 0.012 0.010 0.015
T=100 0.009 0.071 0.117 0.144 0.036 0.034 0.038 0.041
T=500 0.013 0.384 0.463 0.543 0.046 0.047 0.049 0.060
T=1000 0.013 0.773 0.832 0.899 0.037 0.041 0.045 0.056

Note: The table reports empirical rejection frequencies for the test statistic KS at the
5% nominal size for various sample sizes T . Bootstrapped critical values obtained by
block bootstrap following Rossi and Sekhposyan [2019]. The number of Monte Carlo
replications is 1000.
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Table 3.8: Size Test: Empirical Rejection Frequencies for uniformity tests of conditional
distributions. � = {0.1, 0.1, 0.1, 0.1}, �2 = 1

Kolmogorov-Smirnov ()
Traditional c.v.=1.36 Bootstrapped c.v.

z1 z2|1 z3|2 z4|3 z1 z2|1 z3|2 z4|3
T=25 0.038 0.036 0.032 0.038 0.140 0.140 0.140 0.140
T=50 0.041 0.048 0.048 0.046 0.100 0.100 0.100 0.100
T=100 0.049 0.049 0.051 0.053 0.100 0.100 0.100 0.100
T=500 0.041 0.041 0.044 0.042 0.070 0.070 0.070 0.070
T=1000 0.029 0.029 0.031 0.032 0.050 0.050 0.050 0.050

Cramer-von Mises (C)
Traditional c.v.=0.46 Bootstrapped c.v.

z1 z2|1 z3|2 z4|3 z1 z2|1 z3|2 z4|3
T=25 0.047 0.043 0.043 0.051 0.080 0.080 0.080 0.080
T=50 0.058 0.057 0.057 0.058 0.080 0.080 0.080 0.080
T=100 0.056 0.054 0.056 0.061 0.070 0.070 0.070 0.070
T=500 0.045 0.044 0.045 0.046 0.110 0.110 0.110 0.110
T=1000 0.036 0.035 0.037 0.037 0.040 0.040 0.040 0.040

Berkowitz Test Knuppel Test
z1 z2|1 z3|2 z4|3 z1 z2|1 z3|2 z4|3

T=25 0.02 0.021 0.023 0.025 0.000 0.000 0.001 0.001
T=50 0.019 0.019 0.018 0.017 0.010 0.009 0.009 0.013
T=100 0.009 0.01 0.013 0.011 0.036 0.034 0.034 0.030
T=500 0.013 0.013 0.012 0.011 0.046 0.046 0.045 0.046
T=1000 0.013 0.014 0.012 0.013 0.037 0.038 0.040 0.037

Note: The table reports empirical rejection frequencies for the test statistic KS at the
5% nominal size for various sample sizes T . Critical values obtained by block bootstrap
following Rossi and Sekhposyan [2019]. The number of Monte Carlo replications is 1,000.
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Table 3.9: Size Test: Empirical Rejection Frequencies for uniformity tests of vectors.
� = {0.1, 0.1, 0.1, 0.1}, �2 = 1

Kolmogorov-Smirnov ()
Traditional c.v.=1.36 Bootstrapped c.v.

zM zDHT zCS zKP zM zDHT zCS zKP

T=25 0.030 0.027 0.330 0.112 0.110 0.050 0.360 0.070
T=50 0.036 0.038 0.342 0.141 0.050 0.040 0.390 0.080
T=100 0.044 0.049 0.374 0.153 0.050 0.030 0.343 0.100
T=500 0.033 0.041 0.341 0.138 0.110 0.070 0.341 0.080
T=1000 0.023 0.031 0.309 0.111 0.060 0.040 0.360 0.110

Cramer-von Mises (C)
Traditional c.v.=0.46 Bootstrapped c.v.

zM zDHT zCS zKP zM zDHT zCS zKP

T=25 0.067 0.043 0.357 0.098 0.160 0.100 0.350 0.17
T=50 0.083 0.056 0.374 0.140 0.080 0.050 0.230 0.150
T=10 0.081 0.054 0.373 0.129 0.090 0.060 0.220 0.130
T=500 0.068 0.043 0.358 0.121 0.080 0.110 0.180 0.090
T=1000 0.062 0.036 0.345 0.117 0.050 0.040 0.060 0.060

Berkowitz Test Knuppel Test
zM zDHT zCS zKP zM zDHT zCS zKP

T=25 0.100 0.084 0.221 0.051 0.005 0.000 0.000 0.002
T=50 0.116 0.111 0.319 0.064 0.006 0.007 0.063 0.059
T=100 0.132 0.085 0.393 0.058 0.027 0.032 0.087 0.079
T=500 0.121 0.202 0.087 0.445 0.047 0.046 0.095 0.079
T=1000 0.327 0.075 0.483 0.048 0.043 0.036 0.091 0.069

Note: The table reports empirical rejection frequencies for the test statistic KS at the
5% nominal size for various sample sizes T . Critical values obtained by block bootstrap
following Rossi and Sekhposyan [2019]. The number of Monte Carlo replications is 1,000.
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Table 3.10: Power Simulation 1: Rejection Probabilities when DGP is iid and path has
a AR(4) process.

Panel A: Rejection probabilities Marginal distributions

Size z1 z2 z3 z4 z1 z2 z3 z4
Kolmogorov-Smirnov () Cramer-von Mises (C)

T=25 0.971 0.976 0.989 0.995 1 1 1 1
T=50 1 1 1 1 1 1 1 1
T=100 1 1 1 1 1 1 1 1
T=500 1 1 1 1 1 1 1 1
T=1000 1 1 1 1 1 1 1 1

Berkowitz Test Knuppel Test
T=25 0 0 0 0.001 0.002 0.003 0.005 0.007
T=50 0 0 0 0.001 1 1 1 1
T=100 0 0 0 0.001 1 1 1 1
T=500 0 0 0 0.001 1 1 1 1
T=1000 0 0 0 0.001 1 1 1 1

Panel B: Rejection probabilities Conditional distributions

z1 z2|1 z3|2 z4|3 z1 z2|1 z3|2 z4|3
Kolmogorov-Smirnov () Cramer-von Mises (C)

T=25 0.971 0.977 0.975 0.978 1 1 1 1
T=50 1 1 1 1 1 1 1 1
T=100 1 1 1 1 1 1 1 1
T=500 1 1 1 1 1 1 1 1
T=1000 1 1 1 1 1 1 1 1

Berkowitz Test Knuppel Test
T=25 0 0 0 0.001 0.002 0.001 0.002 0
T=50 0 0 0 0.001 1 1 1 1
T=100 0 0 0 0.001 1 1 1 1
T=500 0 0 0 0.001 1 1 1 1
T=1000 0 0 0 0.001 1 1 1 1

Panel C: Rejection probabilities joint distribution

zM zDHL zCS zKP zS zDHL zCS zKP

Kolmogorov-Smirnov () Cramer-von Mises (C)
T=25 0.942 0.969 1 1 1 1 1 1
T=50 1 1 1 1 1 1 1 1
T=100 1 1 1 1 1 1 1 1
T=500 1 1 1 1 1 1 1 1
T=1000 1 1 1 1 1 1 1 1

Berkowitz Test Knuppel Test
T=25 1 1 0.994 1 1 1 0.963 0.003
T=50 1 1 0.999 1 1 1 1 1
T=100 1 1 1 1 1 1 1 1
T=500 1 1 1 1 1 1 1 1
T=1000 1 1 1 1 1 1 1 1

Note: The table reports empirical p-values for the several tests for various. The number
of Monte Carlo replications is 1000.
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Table 3.11: Power Simulation 2: Rejection Probabilities when DGP is AR(4) and path
has a AR(1) process.

Panel A: Rejection probabilities Marginal distributions

Size z1 z2 z3 z4 z1 z2 z3 z4
Kolmogorov-Smirnov () Cramer-von Mises (C)

T=25 0.275 0.364 0.402 0.392 0.352 0.429 0.465 0.457
T=50 0.348 0.42 0.444 0.458 0.401 0.475 0.493 0.508
T=100 0.384 0.441 0.466 0.473 0.426 0.492 0.515 0.527
T=500 0.567 0.577 0.618 0.627 0.586 0.593 0.637 0.648
T=1000 0.757 0.733 0.778 0.79 0.842 0.788 0.847 0.859

Berkowitz Test Knuppel Test
T=25 0.056 0.12 0.17 0.189 0.001 0.002 0.002 0.005
T=50 0.074 0.218 0.254 0.265 0.099 0.109 0.125 0.129
T=100 0.100 0.356 0.386 0.401 0.246 0.229 0.246 0.260
T=500 0.336 0.829 0.842 0.851 0.728 0.596 0.663 0.672
T=1000 0.509 0.983 0.984 0.985 0.972 0.884 0.942 0.951

Panel B: Rejection probabilities Conditional distributions

z1 z2|1 z3|2 z4|3 z1 z2|1 z3|2 z4|3
Kolmogorov-Smirnov () Cramer-von Mises (C)

T=25 0.275 0.289 0.3 0.283 0.352 0.362 0.357 0.362
T=50 0.348 0.347 0.349 0.35 0.401 0.406 0.405 0.412
T=100 0.384 0.38 0.38 0.387 0.426 0.42 0.427 0.436
T=500 0.567 0.566 0.564 0.568 0.586 0.591 0.594 0.595
T=1000 0.757 0.756 0.758 0.756 0.842 0.84 0.836 0.840

Berkowitz Test Knuppel Test
T=25 0.056 0.052 0.052 0.052 0.001 0.001 0.001 0.001
T=50 0.074 0.078 0.084 0.084 0.099 0.099 0.099 0.098
T=100 0.100 0.093 0.095 0.095 0.246 0.248 0.248 0.254
T=500 0.336 0.331 0.325 0.331 0.728 0.726 0.721 0.729
T=1000 0.509 0.514 0.509 0.506 0.972 0.973 0.97 0.969

Panel C: Rejection probabilities joint distribution

zM zDHL zCS zKP zS zDHL zCS zKP

Kolmogorov-Smirnov () Cramer-von Mises (C)
T=25 0.301 0.27 0.683 0.175 0.418 0.351 0.703 0.165
T=50 0.361 0.344 0.701 0.3 0.472 0.404 0.719 0.287
T=100 0.394 0.375 0.739 0.367 0.483 0.42 0.746 0.35
T=500 0.536 0.563 0.933 0.747 0.615 0.586 0.944 0.77
T=1000 0.725 0.762 0.997 0.942 0.829 0.84 0.999 0.954

Berkowitz Test Knuppel Test
T=25 0.100 0.096 0.36 0.091 0.835 0.842 0.025 0.000
T=50 0.188 0.168 0.442 0.185 0.85 0.859 0.172 0.051
T=100 0.266 0.257 0.454 0.333 0.887 0.893 0.319 0.122
T=500 0.618 0.72 0.481 0.882 0.981 0.987 0.859 0.632
T=1000 0.785 0.867 0.544 0.992 1 1 0.989 0.929

Note: The table reports empirical p-values for the several tests for various. The number
of Monte Carlo replications is 1000.
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Table 3.15: “Sup test” Size Properties for the first H = 4 forecast horizons in DGP
IMA.

P CP

P/R 25 50 100 200 500 1000 25 50 100 200 500 1000

h
=

1

5 0.114 0.110 0.078 0.065 0.064 0.066 0.085 0.086 0.063 0.067 0.060 0.052
50 0.116 0.104 0.091 0.077 0.061 0.055 0.097 0.080 0.076 0.066 0.049 0.045
100 0.121 0.094 0.088 0.085 0.055 0.053 0.084 0.091 0.074 0.073 0.058 0.043
200 0.107 0.098 0.082 0.079 0.064 0.048 0.086 0.079 0.075 0.069 0.06 0.056
500 0.097 0.094 0.077 0.080 0.049 0.049 0.088 0.074 0.054 0.060 0.05 0.056
1000 0.124 0.099 0.085 0.045 0.050 0.045 0.097 0.085 0.078 0.047 0.055 0.044

h
=

2

25 0.067 0.074 0.069 0.057 0.053 0.048 0.047 0.050 0.046 0.046 0.046 0.045
50 0.084 0.081 0.066 0.074 0.049 0.053 0.055 0.054 0.045 0.054 0.047 0.048
100 0.077 0.085 0.069 0.066 0.060 0.041 0.055 0.066 0.055 0.043 0.045 0.033
200 0.068 0.064 0.055 0.068 0.040 0.048 0.048 0.040 0.043 0.045 0.035 0.051
500 0.066 0.060 0.057 0.056 0.055 0.050 0.048 0.045 0.037 0.049 0.044 0.044
1000 0.090 0.071 0.058 0.044 0.044 0.049 0.049 0.051 0.049 0.030 0.049 0.034

h
=

3

25 0.058 0.056 0.063 0.047 0.045 0.047 0.035 0.039 0.038 0.035 0.037 0.033
50 0.074 0.066 0.058 0.052 0.046 0.048 0.037 0.039 0.042 0.041 0.038 0.034
100 0.058 0.066 0.061 0.057 0.054 0.040 0.037 0.048 0.045 0.035 0.047 0.033
200 0.040 0.042 0.040 0.058 0.041 0.048 0.039 0.032 0.032 0.036 0.031 0.047
500 0.049 0.045 0.056 0.051 0.047 0.047 0.032 0.038 0.039 0.033 0.034 0.051
1000 0.066 0.063 0.051 0.039 0.052 0.033 0.037 0.040 0.039 0.027 0.039 0.027

h
=

4

25 0.054 0.040 0.056 0.050 0.034 0.044 0.030 0.028 0.036 0.038 0.028 0.038
50 0.046 0.066 0.038 0.046 0.048 0.044 0.020 0.040 0.038 0.046 0.038 0.026
100 0.070 0.068 0.068 0.038 0.056 0.040 0.030 0.056 0.048 0.024 0.038 0.028
200 0.040 0.046 0.038 0.074 0.034 0.050 0.040 0.038 0.038 0.036 0.036 0.044
500 0.058 0.044 0.048 0.044 0.042 0.050 0.032 0.026 0.026 0.030 0.044 0.046
1000 0.058 0.060 0.042 0.032 0.042 0.042 0.022 0.034 0.020 0.022 0.040 0.032
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Table 3.16: Sizes of Path Calibration Tests in equations (3.55, and 3.56) in case of DGP
IMA for H = 4.

P CP

P/R 25 50 100 200 500 1000 25 50 100 200 500 1000

M
ax

S
u
p

25 0.127 0.123 0.090 0.078 0.071 0.070 0.084 0.089 0.064 0.067 0.061 0.053
50 0.138 0.115 0.104 0.086 0.070 0.062 0.099 0.084 0.077 0.067 0.049 0.046
100 0.135 0.110 0.103 0.093 0.063 0.057 0.082 0.094 0.076 0.073 0.058 0.043
200 0.123 0.113 0.091 0.089 0.066 0.050 0.084 0.079 0.076 0.071 0.060 0.056
500 0.114 0.107 0.084 0.085 0.059 0.060 0.087 0.073 0.055 0.060 0.051 0.057
1000 0.138 0.116 0.096 0.053 0.055 0.049 0.090 0.088 0.081 0.047 0.055 0.044

W
eq

u
a
l

25 0.044 0.054 0.057 0.044 0.041 0.039 0.033 0.044 0.041 0.045 0.043 0.040
50 0.068 0.053 0.054 0.046 0.041 0.038 0.047 0.045 0.045 0.051 0.040 0.039
100 0.058 0.064 0.059 0.053 0.046 0.028 0.049 0.056 0.053 0.042 0.039 0.031
200 0.052 0.044 0.040 0.056 0.032 0.045 0.038 0.036 0.042 0.046 0.040 0.048
500 0.044 0.045 0.043 0.047 0.041 0.043 0.040 0.042 0.038 0.046 0.039 0.045
1000 0.063 0.056 0.050 0.033 0.034 0.031 0.044 0.045 0.048 0.023 0.042 0.028

W
d
es
ce
n
d
in

g

25 0.061 0.060 0.061 0.046 0.045 0.040 0.044 0.063 0.048 0.050 0.050 0.043
50 0.074 0.058 0.062 0.052 0.045 0.039 0.056 0.058 0.054 0.056 0.045 0.042
100 0.071 0.071 0.063 0.056 0.045 0.033 0.059 0.067 0.063 0.051 0.040 0.036
200 0.061 0.057 0.050 0.057 0.042 0.045 0.051 0.050 0.051 0.052 0.040 0.048
500 0.049 0.055 0.044 0.054 0.047 0.040 0.049 0.049 0.038 0.052 0.043 0.047
1000 0.076 0.065 0.052 0.041 0.038 0.033 0.057 0.056 0.056 0.029 0.044 0.031
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Table 3.17: Power exercise 1 for Path Calibration Tests in equations (3.55, and 3.56):
µt + 2 and H = 4

P CP

P/R 25 50 100 200 500 1000 25 50 100 200 500 1000

M
ax

S
u
p

25 0.660 0.862 0.990 1 1 1 0.646 0.868 0.992 1 1 1
50 0.710 0.882 0.990 1 1 1 0.678 0.890 0.992 1 1 1
100 0.724 0.878 0.984 1 1 1 0.676 0.886 0.992 1 1 1
200 0.704 0.898 0.994 1 1 1 0.672 0.908 0.996 1 1 1
500 0.708 0.892 0.990 1 1 1 0.678 0.898 0.990 1 1 1
1000 0.668 0.880 0.992 1 1 1 0.634 0.882 0.998 1 1 1

W
eq

u
a
l

25 0.580 0.858 0.994 1 1 1 0.596 0.880 0.998 1 1 1
50 0.604 0.858 0.988 1 1 1 0.600 0.886 0.996 1 1 1
100 0.612 0.858 0.980 1 1 1 0.618 0.896 0.998 1 1 1
200 0.622 0.884 0.994 1 1 1 0.622 0.908 0.996 1 1 1
500 0.632 0.870 0.988 1 1 1 0.632 0.894 0.994 1 1 1
1000 0.600 0.846 0.994 1 1 1 0.586 0.882 1 1 1 1

W
d
es
ce
n
d
in

g

25 0.566 0.830 0.980 1 1 1 0.570 0.854 0.992 1 1 1
50 0.594 0.840 0.980 1 1 1 0.602 0.872 0.994 1 1 1
100 0.590 0.848 0.976 1 1 1 0.608 0.882 0.992 1 1 1
200 0.612 0.862 0.992 1 1 1 0.608 0.882 0.994 1 1 1
500 0.618 0.858 0.986 1 1 1 0.610 0.886 0.988 1 1 1
1000 0.592 0.838 0.992 1 1 1 0.578 0.862 0.992 1 1 1
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Table 3.18: Power exercise 2 of Path Calibration Tests in equations (3.55, and 3.56):
✏t ⇠ i.i.d.N(0, 1) and H = 4

P CP

P/R 25 50 100 200 500 1000 25 50 100 200 500 1000

M
ax

S
u
p

25 0.270 0.298 0.396 0.632 0.954 1 0.140 0.176 0.266 0.526 0.950 1
50 0.272 0.352 0.446 0.628 0.954 1 0.114 0.174 0.268 0.510 0.950 1
100 0.268 0.324 0.448 0.592 0.950 1 0.132 0.178 0.284 0.516 0.936 1
200 0.254 0.254 0.376 0.574 0.954 1 0.110 0.140 0.200 0.460 0.942 1
500 0.236 0.276 0.412 0.624 0.964 1 0.112 0.152 0.250 0.508 0.966 1
1000 0.262 0.310 0.376 0.612 0.966 1 0.140 0.162 0.248 0.478 0.956 1

W
eq

u
a
l

25 0.152 0.212 0.344 0.62 0.968 1 0.076 0.128 0.274 0.602 0.974 1
50 0.160 0.266 0.380 0.602 0.968 1 0.068 0.142 0.288 0.588 0.980 1
100 0.144 0.236 0.364 0.568 0.962 1 0.082 0.144 0.302 0.584 0.972 1
200 0.122 0.174 0.304 0.536 0.958 1 0.048 0.096 0.232 0.528 0.974 1
500 0.138 0.196 0.342 0.608 0.972 1 0.044 0.124 0.270 0.556 0.982 1
1000 0.146 0.208 0.306 0.576 0.964 1 0.070 0.116 0.242 0.554 0.978 1

W
d
es
ce
n
d
in

g

25 0.166 0.226 0.358 0.614 0.960 1 0.098 0.140 0.270 0.576 0.966 1
50 0.166 0.258 0.382 0.610 0.964 1 0.076 0.150 0.274 0.568 0.976 1
100 0.164 0.256 0.370 0.568 0.960 1 0.086 0.148 0.286 0.542 0.962 1
200 0.140 0.180 0.314 0.536 0.952 1 0.064 0.116 0.218 0.494 0.958 1
500 0.140 0.200 0.344 0.600 0.966 1 0.062 0.120 0.256 0.538 0.980 1
1000 0.178 0.218 0.306 0.562 0.960 1 0.098 0.128 0.234 0.524 0.976 1
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Table 3.19: Power exercise 3 of Path Calibration Tests in equations (3.55, and 3.56):
✏t ⇠ i.i.d.N(0, 1.261 ⇤ 2) and H = 4

P CP

P/R 25 50 100 200 500 1000 25 50 100 200 500 1000

M
ax

S
u
p

25 0.684 0.956 1 1 1 1 0.906 0.998 1 1 1 1
50 0.644 0.968 1 1 1 1 0.916 0.996 1 1 1 1
100 0.678 0.978 1 1 1 1 0.906 1 1 1 1 1
200 0.728 0.970 1 1 1 1 0.934 0.998 1 1 1 1
500 0.672 0.978 1 1 1 1 0.904 1 1 1 1 1
1000 0.634 0.958 1 1 1 1 0.876 1 1 1 1 1

W
eq

u
a
l

25 0.634 0.972 1 1 1 1 0.886 1 1 1 1 1
50 0.560 0.972 1 1 1 1 0.914 1 1 1 1 1
100 0.616 0.984 1 1 1 1 0.892 1 1 1 1 1
200 0.674 0.982 1 1 1 1 0.918 1 1 1 1 1
500 0.618 0.978 1 1 1 1 0.894 1 1 1 1 1
1000 0.582 0.972 1 1 1 1 0.876 1 1 1 1 1

W
d
es
ce
n
d
in

g

25 0.628 0.966 1 1 1 1 0.886 1 1 1 1 1
50 0.574 0.968 1 1 1 1 0.914 1 1 1 1 1
100 0.618 0.984 1 1 1 1 0.894 1 1 1 1 1
200 0.688 0.974 1 1 1 1 0.920 1 1 1 1 1
500 0.626 0.972 1 1 1 1 0.894 1 1 1 1 1
1000 0.570 0.970 1 1 1 1 0.872 1 1 1 1 1
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Table 3.20: Sizes of Path Calibration Tests in equations (3.55, and 3.56) in case of DGP
IMA for H=12.

P CP

P/R 25 50 100 200 500 1000 25 50 100 200 500 1000

h
=

4

25 0.054 0.040 0.056 0.050 0.034 0.044 0.030 0.028 0.036 0.038 0.028 0.038
50 0.046 0.066 0.038 0.046 0.048 0.044 0.020 0.040 0.038 0.046 0.038 0.026
100 0.070 0.068 0.068 0.038 0.056 0.040 0.030 0.056 0.048 0.024 0.038 0.028
200 0.040 0.046 0.038 0.074 0.034 0.050 0.040 0.038 0.038 0.036 0.036 0.044
500 0.058 0.044 0.048 0.044 0.042 0.050 0.032 0.026 0.026 0.030 0.044 0.046
1000 0.058 0.060 0.042 0.032 0.042 0.042 0.022 0.034 0.020 0.022 0.040 0.032

h
=

8

25 0.042 0.054 0.062 0.048 0.034 0.040 0.026 0.034 0.032 0.026 0.030 0.030
50 0.046 0.052 0.040 0.048 0.054 0.052 0.026 0.034 0.028 0.038 0.042 0.038
100 0.086 0.066 0.07 0.044 0.058 0.042 0.044 0.054 0.052 0.020 0.044 0.034
200 0.056 0.040 0.050 0.070 0.032 0.052 0.036 0.02 0.038 0.036 0.026 0.048
500 0.048 0.056 0.044 0.052 0.044 0.048 0.028 0.034 0.026 0.038 0.040 0.042
1000 0.054 0.066 0.038 0.034 0.042 0.046 0.024 0.028 0.026 0.022 0.034 0.030

h
=

12

25 0.034 0.052 0.070 0.052 0.044 0.040 0.028 0.036 0.040 0.038 0.030 0.030
50 0.044 0.052 0.040 0.048 0.048 0.046 0.028 0.026 0.032 0.028 0.030 0.034
100 0.064 0.070 0.064 0.038 0.056 0.048 0.036 0.050 0.038 0.020 0.038 0.030
200 0.060 0.054 0.040 0.058 0.032 0.046 0.028 0.032 0.032 0.030 0.026 0.054
500 0.046 0.058 0.040 0.054 0.034 0.044 0.028 0.032 0.030 0.034 0.040 0.040
1000 0.040 0.054 0.032 0.038 0.044 0.036 0.026 0.026 0.018 0.020 0.038 0.032
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Table 3.21: Sizes of Path Calibration Tests in equations (3.55, and 3.56) in case of DGP
IMA and H=12.

P/R 25 50 100 200 500 1000 25 50 100 200 500 1000

S
tr
ic
t

25 0.156 0.140 0.118 0.094 0.076 0.070 0.100 0.110 0.076 0.068 0.066 0.052
50 0.150 0.148 0.106 0.090 0.070 0.062 0.090 0.090 0.080 0.082 0.050 0.050
100 0.140 0.128 0.146 0.094 0.070 0.064 0.086 0.118 0.104 0.070 0.054 0.040
200 0.132 0.128 0.072 0.092 0.056 0.054 0.098 0.084 0.066 0.062 0.068 0.068
500 0.122 0.134 0.096 0.088 0.058 0.050 0.078 0.074 0.066 0.070 0.052 0.046
1000 0.166 0.120 0.090 0.048 0.064 0.060 0.090 0.074 0.074 0.042 0.064 0.054

W
eq

u
a
l

25 0.024 0.046 0.062 0.042 0.042 0.038 0.018 0.028 0.030 0.032 0.032 0.036
50 0.024 0.038 0.032 0.044 0.042 0.046 0.020 0.022 0.038 0.046 0.034 0.038
100 0.044 0.040 0.062 0.038 0.056 0.034 0.024 0.044 0.040 0.024 0.032 0.030
200 0.032 0.032 0.036 0.062 0.028 0.046 0.030 0.020 0.038 0.034 0.022 0.052
500 0.024 0.032 0.036 0.036 0.036 0.036 0.018 0.026 0.020 0.032 0.042 0.042
1000 0.036 0.038 0.026 0.026 0.034 0.040 0.016 0.020 0.024 0.020 0.038 0.030

W
d
es
ce
n
d
in

g

25 0.032 0.046 0.058 0.044 0.042 0.038 0.022 0.038 0.036 0.036 0.040 0.036
50 0.030 0.036 0.034 0.048 0.042 0.046 0.026 0.022 0.040 0.056 0.040 0.038
100 0.046 0.060 0.062 0.034 0.054 0.030 0.040 0.048 0.048 0.028 0.040 0.032
200 0.028 0.032 0.032 0.064 0.028 0.046 0.036 0.036 0.038 0.038 0.028 0.050
500 0.034 0.030 0.040 0.034 0.036 0.038 0.020 0.026 0.024 0.038 0.046 0.038
1000 0.042 0.044 0.030 0.028 0.034 0.040 0.020 0.034 0.032 0.020 0.040 0.034
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Table 3.22: Uniformity tests of Bank of England Fan Charts Inflation at each horizon h.

KvStat KvCV CvMStat CvMCV BerkowitzStat BerkowitzCV KnuppelStat KnuppelCV
h=1 0.98295 1.4768 0.17808 0.70887 15.3584 5.9915 3.8164 9.4877
h=2 0.68392 1.4909 0.068743 0.80843 17.532 5.9915 2.3827 9.4877
h=3 0.99504 1.5307 0.19167 0.95518 14.8258 5.9915 2.2369 9.4877
h=4 1.1563 1.6121 0.43974 0.99042 19.1634 5.9915 4.0122 9.4877
h=5 1.4858 1.6907 0.64212 1.0182 23.2371 5.9915 5.1442 9.4877
h=6 1.4057 1.6213 0.74386 1.0774 26.2473 5.9915 4.1375 9.4877
h=7 1.484 1.6389 0.80311 1.0117 25.439 5.9915 3.2113 9.4877
h=8 1.6068 1.6365 0.706 0.9161 28.005 5.9915 3.5694 9.4877
h=9 1.4195 1.6771 0.61893 0.95207 33.5271 5.9915 3.7477 9.4877
h=10 1.2612 1.6183 0.56509 0.83102 26.8302 5.9915 4.1393 9.4877
h=11 1.2637 1.706 0.41506 0.85167 27.1024 5.9915 3.347 9.4877
h=12 1.0206 1.7031 0.35538 0.86637 24.876 5.9915 4.0671 9.4877
h=13 1.1406 1.7236 0.35273 0.87032 23.5249 5.9915 3.9432 9.4877

The table shows test statistics (“Stat”) and critical values (“CV”) obtained evaluat-
ing each forecast horizon spanning from 2004Q1 to 2020Q1. Sample size: 52 observa-
tions. KvCV and CvMCV refer to bootstrap critical values for Kolmogorov-Smirnov
and Cramer-von Mises respectively. Traditional critical values are equal to 1.36 for
Kolmogorov-Smirnov and 0.46 for Cramer-von Mises. The null hypothesis of calibration
is rejected if the test static is greater than the respective critical value.

Table 3.23: Empirical Correlations between horizons for Bank of England Fan Charts
for inflation at horizon h = 1 : H and the previous horizon forecast.

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10 h=11 h=12 h=13
0.2480 1.0389 1.1346 0.9229 0.4502 0.3623 0.4534 0.5409 0.5217 0.1788 0.1290 0.1759 0.0312
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Figure 3.1: Histogram of pits values for marginal distributions. Inflation forecasts by
Bank of England Fan charts at horizons h = 1, . . . , 13.
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Table 3.24: Uniformity tests of Conditional distribution of Bank of England Fan Charts
for Inflation at horizon h give the previous horizon forecast.

KvStat KvCV CvMStat CvMCV BerkowitzStat BerkowitzCV KnuppelStat KnuppelCV
z2|1 1.0700 1.4835 0.18462 0.61695 14.6137 5.9915 3.1695 9.4877
z3|2 0.7554 1.5461 0.10078 0.86384 19.377 5.9915 0.34295 9.4877
z4|3 1.1132 1.6462 0.2646 1.1102 24.5342 5.9915 2.9974 9.4877
z5|4 1.1369 1.6296 0.38032 1.218 35.3487 5.9915 3.7828 9.4877
z6|5 1.1699 1.8001 0.4316 1.4178 46.6568 5.9915 3.1515 9.4877
z7|6 1.2786 1.7338 0.38936 1.3355 48.9546 5.9915 2.3015 9.4877
z8|7 1.3567 1.6773 0.50139 1.2276 47.2792 5.9915 3.2228 9.4877
z9|8 1.7052 1.6196 0.74475 1.2591 51.1992 5.9915 4.2439 9.4877
z10|9 1.7498 1.7412 0.8532 1.5075 59.9285 5.9915 4.2314 9.4877
z11|10 1.7125 1.7511 0.9964 1.5966 65.2507 5.9915 6.002 9.4877
z12|11 1.7732 1.7537 1.0372 1.4383 69.1626 5.9915 5.3245 9.4877
z13|12 1.5893 1.6345 0.99193 1.3308 66.3947 5.9915 5.2549 9.4877

The table shows test statistics (“Stat”) and critical values (“CV”) obtained evaluat-
ing each forecast horizon spanning from 2004Q1 to 2020Q1. Sample size: 52 observa-
tions. KvCV and CvMCV refer to bootstrap critical values for Kolmogorov-Smirnov
and Cramer-von Mises respectively. Traditional critical values are equal to 1.36 for
Kolmogorov-Smirnov and 0.46 for Cramer-von Mises. The null hypothesis of calibration
is rejected if the test static is greater than the respective critical value.
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Table 3.25: Uniformity tests of Vectors of PITs of Bank of England Fan Charts for
Inflation rate at horizon h = 1, . . . , 13.

Unfeasible Feasible
zDHT zCS zKP zM SupMax SupAverage SupDes

KvStat 1.039 3.143 3.34 0.835 1.607 1.224 1.179
KvCV Bootstp 1.755 1.763 1.569 1.693 1.724 1.625 1.589
KvCV Trad 1.360 1.360 1.360 1.360 1.360 1.360 1.360
CvMStat 0.375 3.204 5.286 0.312 0.803 0.468 0.427
CvMCV Bootstp 1.206 1.872 0.644 0.961 1.077 0.912 0.911
CvMCVtrad 0.460 0.460 0.460 0.460 0.460 0.460 0.460
BerkowitzStat 524.63 141.652 65.988 277.158
BerkowitzCV 5.9915 5.9915 5.9915 5.9915
KnuppelStat 21.494 5.843 7.179 29.604
KnuppelCV 9.4877 9.4877 9.4877 9.4877

The table shows test statistics (“Stat”) and critical values (“CV”) obtained evaluating
each forecast horizon spanning from 2004Q1 to 2020Q1. KvCV and CvMCV refer to
bootstrap critical values for Kolmogorov-Smirnov and Cramer-von Mises respectively.
Sample size: 52 observations. The null hypothesis of path calibration is rejected if the
test static is greater than the respective critical value.
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Table 3.26: Uniformity tests of Bank of England Fan Charts GDP growth at each horizon
h.

KvStat KvCV CvMStat CvMCV BerkowitzStat BerkowitzCV KnuppelStat KnuppelCV
h=1 2.4078 1.6459 2.4864 0.67167 41.5815 5.9915 4.6573 9.4877
h=2 2.4349 1.4892 2.6863 0.5444 36.0102 5.9915 4.7524 9.4877
h=3 2.5431 1.5714 2.9219 0.57347 33.1247 5.9915 4.7991 9.4877
h=4 2.2354 1.4979 2.5546 0.53151 31.9758 5.9915 6.9382 9.4877
h=5 2.0994 1.538 2.2386 0.78829 28.7306 5.9915 6.8713 9.4877
h=6 1.9286 1.6918 1.5777 0.83001 20.4326 5.9915 5.8849 9.4877
h=7 1.5652 1.5638 0.86212 0.70421 18.9003 5.9915 6.5274 9.4877
h=8 1.6388 1.6718 0.6234 0.74802 18.0925 5.9915 6.5573 9.4877
h=9 1.4875 1.4849 0.57123 0.64563 16.6564 5.9915 6.3992 9.4877
h=10 1.2534 1.5009 0.3864 0.6818 13.1712 5.9915 6.0832 9.4877
h=11 0.8553 1.6213 0.21681 0.82781 12.9874 5.9915 5.1528 9.4877
h=12 0.71077 1.6107 0.11554 0.81182 12.1361 5.9915 3.8847 9.4877
h=13 0.70655 1.6652 0.094451 0.80077 10.5692 5.9915 2.1282 9.4877

The table shows test statistics (“Stat”) and critical values (“CV”) obtained evaluat-
ing each forecast horizon spanning from 2004Q1 to 2020Q1. Sample size: 52 observa-
tions. KvCV and CvMCV refer to bootstrap critical values for Kolmogorov-Smirnov
and Cramer-von Mises respectively. The null hypothesis of calibration is rejected if the
test static is greater than the respective critical value.

Table 3.27: Empirical Correlations between horizons for Bank of England Fan Charts
for GDP at horizon h = 1 : H and the previous horizon forecast.

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10 h=11 h=12 h=13
1.2432 0.2266 0.3421 0.3964 0.2234 0.1131 0.1357 0.1372 0.0759 0.1155 0.0851 0.1008 0.0506
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Figure 3.2: Histogram of pits values for marginal distributions. GDP growth rate fore-
casts by Bank of England Fan charts at horizons h = 1, . . . , 13.
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Table 3.28: Uniformity tests of Conditional distribution of Bank of England Fan Charts
for GDP growth at horizon h give the previous horizon forecast.

KvStat KvCV CvMStat CvMCV BerkowitzStat BerkowitzCV KnuppelStat KnuppelCV
z2|1 1.0548 1.3717 0.17784 0.57447 7.7259 5.9915 4.342 9.4877
z3|2 0.88572 1.4972 0.15759 0.78186 10.2459 5.9915 2.3382 9.4877
z4|3 1.1688 1.583 0.26364 0.92049 11.6051 5.9915 2.2783 9.4877
z5|4 1.1114 1.5937 0.27211 0.94337 15.4367 5.9915 2.0366 9.4877
z6|5 1.01 1.7249 0.17894 1.201 20.8864 5.9915 1.7744 9.4877
z7|6 0.73275 1.6783 0.083718 1.0208 20.6604 5.9915 0.661 9.4877
z8|7 0.82149 1.665 0.11948 1.1001 18.5047 5.9915 1.6557 9.4877
z9|8 1.2365 1.5008 0.30182 1.1167 21.5017 5.9915 3.9456 9.4877
z10|9 1.1883 1.6719 0.29625 1.1579 24.5123 5.9915 3.6421 9.4877
z11|10 1.2018 1.678 0.3875 1.4043 31.4416 5.9915 6.1914 9.4877
z12|11 1.3125 1.6696 0.41042 1.2368 38.2726 5.9915 5.0099 9.4877
z13|12 1.1004 1.6718 0.31434 1.2485 40.7789 5.9915 4.1864 9.4877

The table shows test statistics (“Stat”) and critical values (“CV”) obtained evaluating
each forecast horizon spanning from 2004Q1 to 2020Q1. KvCV and CvMCV refer to
bootstrap critical values for Kolmogorov-Smirnov and Cramer-von Mises respectively.
Sample size: 52 observations. The null hypothesis of calibration is rejected if the test
static is greater than the respective critical value.
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Table 3.29: Uniformity tests of Vectors of PITs of Bank of England Fan Charts for GDP
growth at horizon h = 1, . . . , 13.

Unfeasible Feasible
zDHT zCS zKP zM SupMax SupAverage SupDes

KvStat 0.805 2.939 1.875 1.295 2.543 1.682 2.012
KvCV 1.684 1.686 1.413 1.769 1.692 1.581 1.572
KvCV Trad 1.360 1.360 1.360 1.360 1.360 1.360 1.360
CvMStat 0.208 2.728 1.357 0.812 2.922 1.333 1.87
CvMCV 1.138 1.506 0.724 0.851 0.83 0.705 0.669
CvMCVtrad 0.460 0.460 0.460 0.460 0.460 0.460 0.460
BerkowitzStat 264.361 85.813 20.928 279.86
BerkowitzCV 5.9915 5.9915 5.9915 5.9915
KnuppelStat 19.783 5.154 4.657 38.841
KnuppelCV 9.4877 9.4877 9.4877 9.4877

The table shows test statistics (“Stat”) and critical values (“CV”) obtained evaluating
each forecast horizon spanning from 2004Q1 to 2020Q1. KvCV and CvMCV refer to
bootstrap critical values for Kolmogorov-Smirnov and Cramer-von Mises respectively.
Sample size: 52 observations. The null hypothesis of path calibration is rejected if the
test static is greater than the respective critical value.
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Table 3.30: Uniformity tests of Bank of England Fan Charts Unemployment at each
horizon h.

KvStat KvCV CvMStat CvMCV BerkowitzStat BerkowitzCV KnuppelStat KnuppelCV
h=1 1.771 1.260 0.803 0.261 2.646 5.9915 5.800 9.4877
h=2 1.528 1.234 0.884 0.281 3.090 5.9915 3.807 9.4877
h=3 1.766 1.166 1.138 0.226 3.064 5.9915 2.936 9.4877
h=4 2.188 1.164 1.549 0.226 4.501 5.9915 2.893 9.4877
h=5 2.164 1.215 1.586 0.249 5.076 5.9915 2.777 9.4877
h=6 2.153 1.168 1.657 0.212 5.174 5.9915 3.507 9.4877
h=7 2.235 1.222 1.783 0.216 5.190 5.9915 4.024 9.4877
h=8 2.379 1.232 1.916 0.214 6.047 5.9915 4.048 9.4877
h=9 2.472 1.246 2.000 0.221 6.173 5.9915 4.633 9.4877
h=10 2.406 1.229 1.921 0.197 5.845 5.9915 5.186 9.4877
h=11 2.357 1.321 1.989 0.213 5.702 5.9915 5.050 9.4877
h=12 2.426 1.130 2.051 0.143 5.901 5.9915 5.521 9.4877
h=13 2.422 1.211 2.146 0.168 6.404 5.9915 5.445 9.4877

The table shows test statistics (“Stat”) and critical values (“CV”) obtained evaluat-
ing each forecast horizon spanning from 2004Q1 to 2020Q1. Sample size: 52 observa-
tions. KvCV and CvMCV refer to bootstrap critical values for Kolmogorov-Smirnov
and Cramer-von Mises respectively. The null hypothesis of calibration is rejected if the
test static is greater than the respective critical value.

Table 3.31: Empirical Correlations between horizons for Bank of England Fan Charts
for Unemployment at horizon h = 1 : H and the previous horizon forecast.

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10 h=11 h=12 h=13
3.5081 0.2453 0.5355 0.4824 0.8780 0.3893 0.3572 0.4639 0.5607 0.3405 1.0255 0.3965 0.2922
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Figure 3.3: Histogram of pits values for marginal distributions. Unemployment rate
forecasts by Bank of England Fan charts at horizons h = 1, . . . , 13.

0 0.2 0.4 0.6
0

1

2

3

4

5
Histogram Fanchart at h=1

0 0.2 0.4 0.6 0.8
0

1

2

3

4

5
Histogram Fanchart at h=2

0 0.2 0.4 0.6
0

1

2

3

4

5
Histogram Fanchart at h=3

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3
Histogram Fanchart at h=4

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5
Histogram Fanchart at h=5

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4
Histogram Fanchart at h=6

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3
Histogram Fanchart at h=7

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4
Histogram Fanchart at h=8

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3
Histogram Fanchart at h=9

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4
Histogram Fanchart at h=10

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3
Histogram Fanchart at h=11

0 0.1 0.2 0.3 0.4
0

1

2

3

4
Histogram Fanchart at h=12

0 0.1 0.2 0.3 0.4
0

1

2

3

4
Histogram Fanchart at h=13

98



Table 3.32: Uniformity tests of Conditional distribution of Bank of England Fan Charts
for Unemployment at horizon h give the previous horizon forecast.

KvStat KvCV CvMStat CvMCV BerkowitzStat BerkowitzCV KnuppelStat KnuppelCV
z2|1 1.8397 1.184 0.78556 0.18045 8.6239 5.9915 4.6138 9.4877
z3|2 2.0604 1.26 0.99098 0.18608 6.1253 5.9915 3.92 9.4877
z4|3 2.3509 1.4294 1.3604 0.16855 6.8338 5.9915 3.2413 9.4877
z5|4 2.2618 1.1685 1.4446 0.16629 5.2003 5.9915 2.5752 9.4877
z6|5 2.3741 1.252 1.6641 0.16525 5.1068 5.9915 3.9888 9.4877
z7|6 2.4012 1.2523 1.8638 0.15383 5.7323 5.9915 4.2178 9.4877
z8|7 2.5136 1.268 2.1916 0.13086 6.733 5.9915 5.1697 9.4877
z9|8 2.5303 1.2483 2.3216 0.1378 7.0781 5.9915 5.3121 9.4877
z10|9 2.5794 1.2503 2.4554 0.15202 8.3655 5.9915 5.2343 9.4877
z11|10 2.5536 1.2492 2.319 0.15358 7.2016 5.9915 5.1276 9.4877
z12|11 2.6917 1.2897 2.76 0.1257 10.0579 5.9915 4.7592 9.4877
z13|12 2.8699 1.2851 2.9601 0.12282 11.7947 5.9915 4.8369 9.4877

The table shows test statistics (“Stat”) and critical values (“CV”) obtained evaluating
each forecast horizon spanning from 2004Q1 to 2020Q1. KvCV and CvMCV refer to
bootstrap critical values for Kolmogorov-Smirnov and Cramer-von Mises respectively.
Sample size: 52 observations. The null hypothesis of calibration is rejected if the test
static is greater than the respective critical value.
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Table 3.33: Uniformity tests of Vectors of PITs of Bank of England Fan Charts for GDP
growth at horizon h = 1, . . . , 13.

Unfeasible Feasible
zDHT zCS zKP zM SupMax SupAverage SupDes

KvStat 2.043 2.461 2.912 1.966 2.472 2.175 2.04
KvCV 1.412 1.269 1.176 1.413 1.321 1.215 1.214
KvCV Trad 1.360 1.360 1.360 1.360 1.360 1.360 1.360
CvMStat 1.561 2.629 3.135 1.559 2.145 1.648 1.434
CvMCV 0.273 0.189 0.409 0.262 0.282 0.218 0.233
CvMCVtrad 0.460 0.460 0.460 0.460 0.460 0.460 0.460
BerkowitzStat 94.282 15.41 47.665 91.515
BerkowitzCV 5.9915 5.9915 5.9915 5.9915
KnuppelStat 11.971 4.904 3.879 16.038
KnuppelCV 9.4877 9.4877 9.4877 9.4877

The table shows test statistics (“Stat”) and critical values (“CV”) obtained evaluating
each forecast horizon spanning from 2004Q1 to 2020Q1. KvCV and CvMCV refer to
bootstrap critical values for Kolmogorov-Smirnov and Cramer-von Mises respectively.
Sample size: 52 observations. The null hypothesis of path calibration is rejected if the
test static is greater than the respective critical value.

100



Chapter 4

Generalised Constraint for

Predictive Distributions: a

Bayesian Approach

4.1 Introduction

Policymakers and practitioners often wish to impose a desirable feature on predictive

distributions (such as moments constraint, tails behaviour, shifts in support, etc...).

Although constraining moments’ distributions are well discussed in the literature (i.e. by

exponential tilting Robertson et al. [2005], Krüger et al. [2017], Giacomini and Ragusa

[2014]), it is often unclear which moment one should constrain. This paper aims to

generalise the constraints to any desirable feature of the distribution. The constraints

are imposed by approximating the target (constrained) distribution using a mixture of

Student-t distributions. The mixture’s parameters are estimated using the technique

of Importance Sampling following Ardia et al. [2009]. The advantage of using this

technique instead of exponential tilting is that the constraint can include any feature of

the distribution, not just its moments.

This approach is applied to forecast US GDP during the Covid-19 pandemic:

a combination of statical models is constrained to the higher probability of a negative

growth event, recorded by the survey of professional forecasters (SPF). The predictive

distribution is estimated via a Bayesian Inference of Quantile Regression model, following

Kozumi and Kobayashi [2011] and it has been used to allow for non-linearity in the

GDP of GDP growth. A set of six predictive distributions are obtained respectively

using the National Financial Condition Index (NFCI) (following [Adrian et al., 2019]),
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the University of Michigan Consumer Sentiment Index (ICS), the credit spread that

measures the di↵erence between BAA corporate bond yield and the ten-year treasury

yield (following [Liu and Moench, 2016]), residential investments [Aastveit et al., 2019],

and the unemployment rate [Marcellino, 2006]; in addition to lagged values of real GDP

growth.

The resulting predictive distributions are then constrained to external informa-

tion of the probability of negative growth. Such source is a judgmental forecast from a

Central Bank or a survey of professional forecasters, motivated by evidence that such

forecasts often provide useful information beyond that contained in econometric models

(e.g. Ang et al. [2007], Faust and Wright [2013]). The data comes from the SPF variable

“recess”, which gives the mean responses for the probability of a decline in the level of

chain-weighted real GDP in the current and following quarters. These are declines in the

level of chain-weighted real GDP from one quarter to the next, beginning with a decline

in the current quarter (the quarter in which the survey was conducted) compared with

the quarter prior.

The SPF probability of negative growth is, on average, lower than the probability

from forecasts; however, in rare events, the SPF probability of negative growth is higher

and more accurate. One example is the negative growth in 2020:Q2. The impact of

the COVID-19 pandemic on growth at 2020:Q2 was di�cult to forecast with the usual

predictors, while SPF displays a spike in the probability of this adverse event. This paper

imposes the distribution to have a probability of being negative equal to the one express

by SPF, and this constraint improves the forecast-ability of the quantile forecasts.

This paper uses Importance Sampling (IS) methodology to include external infor-

mation about the probability of a specific support region. Importance sampling was first

proposed by Hammersley et al. [1965] and lately introduced in econometrics by Kloek

and Van Dijk [1978]. Importance sampling is an inference technique for estimating a

target distribution using an instrumental or “candidate” distribution. IS uses weights

to correct the fact that we sample from a candidate distribution q(x) instead of the

target distribution p(x). Similar to the entropic tilting optimisation, this paper mod-

ifies the distribution by reweighing draws; however, instead of drawing them from the

predictive distribution (the target distribution in IS framework), they are drawn from

a candidate distribution that approximate the target satisfying the desired constraints.

The methodology adopted here is a modified version of Ardia et al. [2009], where the

candidate distribution is a mixture of Student-t. Once applied the constraint through

importance sampling, the density forecasts are able to give a probability di↵erent from

zero to the actual realisation.
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The rest of the paper is organised as follows: Section (4.2) presents the dataset

used; Section (4.3) introduces the quantile regression model used to obtain the predictive

distributions; Section (4.4) discusses the importance sampling estimation technique and

the inclusion of external information as constraint; finally, Section (4.5) concludes.

4.2 Data

This paper considers K = 5 di↵erent predictors. These are leading indicators that cover

a broad range of the macroeconomy, and that earlier studies have found to be useful for

predicting GDP growth and recessions. A vast amount of research has shown that various

economic and financial variables contain predictive information about future economic

recessions and downturns. A recent study by Adrian et al. [2019] argues that financial

conditions are particularly informative above future downside macroeconomic risk. In

addition to these studies, several other variables have also been regarded as leading

recession indicators for GDP growth and recessions, including stock prices (Estrella and

Mishkin [1998] and Stock and Watson [2003]), the index of leading economic indicators

(Berge and Jordà [2011] and Stock and Watson [1989]), oil prices (Hamilton [1983, 1996]

and Ravazzolo and Rothman [2013, 2016]), survey data (Hansson et al. [2005], Claveria

et al. [2007]); and residential investments (Aastveit et al. [2019]).

The following five variables are predictors in quantile regression: the National

Financial Condition Index (NFCI), the University of Michigan Consumer Sentiment

Index (ICS), the credit spread that measures the di↵erence between BAA corporate

bond yield and the 10-year treasury yield, residential investments, the unemployment

rate.

The list of the K = 5 predictors with their data source and the data transforma-

tion is presented in Table (4.1). All our data series covers the period 1973Q1-2021Q1.

Thus, the full out-of-sample forecasting evaluation period runs from 1993Q1-2021Q1.

Predictive densities are updated recursively for forecast horizons H = 1 (one quarter

ahead) based on models that are estimated using an expanding window.

As mentioned before, additional external information is added to this predictive

distribution: a measure of the probability of negative growth. The data comes from the

SPF variable “recess”, which gives the mean responses for the probability of a decline in

the level of chain-weighted real GDP in the current and following quarters. These are

declines in the level of chain-weighted real GDP from one quarter to the next, beginning

with a decline in the current quarter (the quarter in which the survey was conducted)

compared with the quarter prior. The Federal Reserve Bank of Philadelphia publishes
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this variable four quarters ahead of forecasts plus the current quarter. This paper will

forecast only a one-quarter-ahead forecast.

4.3 Quantile regression models to forecast US GDP growth

This section presents the quantile regression model used to estimate quantile predictors

for GDP growth. Section (4.3.1) introduces the quantile regression framework; Section

(4.3.2) derives the predictive distributions from the parameters’ estimates and displays

the prior and posterior distributions used in Bayesian inference. Finally, Section (4.3.3)

discusses the features of quantile regression distributions, compares their probability of

negative growth to SPF and presents the failure of these models to forecast the plunge

of GDP growth following the COVID-19 pandemic out-spring.

4.3.1 Quantile regression models

Quantile regression is a statistical procedure that explores the non-linear relationship

between quantiles of the response distribution and available covariates. Quantile re-

gression has a long tradition in the econometric and statistic literature since Koenker

and Bassett Jr [1978] seminar paper. The idea behind quantile regression rises from

the doubt that mean or conditional expectation (typical of linear regression) would ad-

equately characterize statistical relationships among variables. The quantile regression

is then a way to handle non-linearity in the data. In principle, one would like to know

the entire conditional distribution function that relates the dependent variable with the

predictors. However, in practice, quantile regression is based on minimizing sums of

asymmetrically weighted absolute residuals.

Quantile regression generalizes traditional least-squares regression by fitting a dis-

tinct regression line for each quantile of the variable of interest distribution. However,

least squares regression only produces coe�cients that allow us to fit the mean of the

dependent variable conditional on some explanatory variables. In that respect, quantile

regression may be more appropriate for making inferences about predictive distributions

and assessing the forecast uncertainty.

Consider the quantile regression model given by

yt = xt�⌧ + "t (4.1)

for t = 1, . . . , T . Here ⌧ = [1, . . . , 10] identifies the quantile, "t is the error term whose
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distribution (with density, f(⌧(·)) is restricted to have the ⌧ th quantile equal to zero,

that is,
R 0
�1 f(⌧(t))dt = ⌧ . Traditionally, quantile regression estimation for �⌧ proceeds

by minimizing:
TX

t=1

⇢⌧ (yt � x0
t�⌧ ), (4.2)

where ⇢⌧ (·) is the check (or loss) function defined by

⇢⌧ (u) = (⌧ � I(u < 0)}u (4.3)

and I(·) denotes the usual indicator function. Since a set of quantiles often provides more

complete description of the response distribution than the mean, quantile regression

o↵ers a practically important alternative to classical mean regression.

Since, however, the check function is not di↵erentiable at zero, we cannot derive

explicit solutions to the minimization problem. To solve this issue, we follow Kozumi and

Kobayashi [2011] approach to Bayesian quantile regression models using the asymmetric

Laplace distribution for the error term.

4.3.2 Predictive quantile function for GDP

For each variable {k = 1, . . . ,K}, a predictive distribution for GDP growth is obtained

using a ARDL model:

yt+h,⌧,k = x0
t,k�⌧ + �✓zt+h + �⌧

p
zt+hut+h (4.4)

where x0
t,k is the vector of lagged values of yt (with maximum lag r) and of one of the

K predictors (with maximum lag p). In the empirical application, the number of lags

p and r are selected using BIC selection criterion with a maximum of four lags. The

error term takes the form "t+1 = �✓zt+h + �⌧
p
zt+hut+h as in Kozumi and Kobayashi

[2011], where zt+h ⇠ Exponential(1), ut+h has a standard normal distribution and

� ⇠ IG(n0/2, s0/2). Finally, we will focus on forecast horizons h = {1} in our empirical

application.

Bayesian Inference

We consider the linear model given by:

yt = x0
t�⌧ + "t (4.5)
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where ⌧ denotes the quantile and assume that "t has the asymmetric Laplace distribution

with density:

f⌧ ("t) = ⌧(1� ⌧)exp{�⇢⌧ ("t)} (4.6)

where ⇢⌧ ("t) = "t{⌧ � I("t < 0)}. The mean and variance of the asymmetric Laplace

distribution are given by:

E("t) =
1� 2⌧

⌧(1� ⌧)
V ar("t) =

1� 2⌧ + 2⌧2

⌧2(1� ⌧)2
(4.7)

To develop a Gibbs sampling algorithm for the quantile regression model, we use a

mixture representation based on exponential and normal distribution by Kotz et al.

[2012]. Following Kozumi and Kobayashi [2011] the error term "t as:

"t = �✓zt + ��
p
ztut (4.8)

where � is the scale parameter, zt ⇠ Exponential(1) and ut ⇠ N(0, 1) are mutually

independent, and:

✓ =
1� 2⌧

⌧(1� ⌧)
�2 =

2

⌧(1� ⌧)
(4.9)

From this we can rewrite yt as:

yt = x0
t�⌧ + �✓zt + ��

p
ztut (4.10)

To facilitate the inference, we adopt the reparametrization by Kozumi and Kobayashi

[2011]:

yt = x0
t�⌧ + ✓�t + �

p
��ut (4.11)

where �t = �zt. We assume that �⌧ ⇠ N (�⌧0,B⌧0 and � ⇠ IG(n072, s0/2), where

IG(a, b) denotes an inverse Gamma distribution with parameters a and b. The condi-

tional distribution of yt given zt is normal with mean x0
t�⌧ + ✓�t and variance �2�t. The

joint density of y = (y1, . . . , yT )0 is given by:

f(y|�⌧ , z,�) /
✓ TY

t=1

��1/2
t

◆
exp

⇢
�

TX

t=1

(yt � x0
t�⌧ � ✓�t)2

2�2�t

�
, (4.12)

We need to sample �⌧ , v = (�1, . . . , �t)0 and � from their conditionals distributions: The

full conditional density of �⌧ is given by:

�⌧ |y,x,v,� ⇠ N (�̄⌧ , V̄�), (4.13)
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where:

V̄ �1
� =

✓ TX

t=1

x0txt
�2��t

+B�1
⌧0

◆
�̄⌧ = V̄�

 TX

t=1

xt(yt � ✓�t)

�2��t
+B�1

⌧0 �⌧0

�
(4.14)

and assuming a normal prior

�⌧ ⇠ N (�⌧0 ,B⌧0) (4.15)

where �⌧0 and B⌧0 are the prior mean and variance covariance matrix of �⌧ . Priors for

the quantile betas have been chosen to have mean zero and variance 1000.

The full conditional distribution of �t is proportional to:

�t|yt,xt�⌧� ⇠ GIG(1/2, ⇠t, �t) (4.16)

where:

⇠t = (yt � x0
t�)

2/�2� �2t = 2/� + ✓2/�2� (4.17)

and where GIG denotes the Generalized Inverse Gaussian distribution which pdf for the

general case GIG(v, a, b) is:

f(x|v, a, b) = (b/a)v

2Kv(ab)
xv�1exp

⇢
�1/2(a2x�1+b2x)

�
, x > 0, �1 < v < 1, a, b  0

(4.18)

and Kv is a modified Bessel function of the third kind. By noting that �t ⇠ E(�), the
full conditional density of � is proportional to:

�|yt,xt�⌧v ⇠ IG(n/2, s/2) (4.19)

where n = n0 + 3n and s = s0 + 2
PT

t=1 �t + (yt + x0
t�⌧ + ✓�t)‘2/⌧2�t

The posterior distribution is calculated using 8000 replications after a burn-in pe-

riod of 4000 replications. For each replication, a quantile predictive function is calculated

for the following:

p(yt+h|yt,#) =

Z
p(yt+h|#,yt)p(#|yt)d# (4.20)

where p(#|yt) corresponds to the posterior distributions of the parameters’ set # =

{�⌧ , ✓, �, �t}, and p(yt+h|#) corresponds to:

p(y⌧,t+h|#) =
Z

N (yt+1|x0T�⌧ + ✓zT�T , �
2zT�T )d�⌧d�t (4.21)
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4.3.3 Empirical Results - Quantile regression

Six predictive distributions are obtained from the previous section by fitting a kernel

function on the quantile points. Figure (4.1) shows the probability of negative growth

using each of those densities compared to the same information disclosed by the Survey of

Professional Forecasters. All six models forecast, on average gives a higher probability

of an adverse event than the experts. For some events, the experts predict a higher

likelihood of negative GDP growth. We can observe three spikes: during the financial

crisis (last quarter of 2008), the 2001 recession and the COVID-19 pandemic (second

quarter of 2020). It seems that, for these particular events, accounting for the SPF

probability of negative growth would be beneficial for the forecast accuracy. Figure

(4.2) displays density forecasts for the first quarter of COVID-19 pandemic: 2020:Q2.

All the predictive distributions available fail to cover the support of the actual realisation

for GDP growth.

Including the SPF probability of negative growth in the forecasting model appears

not only to better forecast extreme events (such as recessions) but also in the rest of the

dataset to reduce the variance of density forecasts. The following section will present

the methodology used to incorporate SPF probability of negative growth, constraining

the predictive distributions.

4.4 Inclusion of external information in predictive density

using Importance Sampling

This section presents the Importance Sampling methodology used to include external

information about the probability of a specific support part. After a short excursus on

importance sampling in Section (4.4.1), the section presents the candidate distribution

proposed, called adaptive mixture of Student-t distributions in Section (4.4.2), a slightly

changed version from the one proposed by Ardia et al. [2009]. In this version of the algo-

rithm, Step 0 and 1 allows external information to impact the IS weight distribution.

Steps (2a, 2b, 2c) rest invariant to Ardia et al. [2009].

4.4.1 Background on importance sampling and motivation

Importance sampling was first proposed by Hammersley et al. [1965] and lately intro-

duced in econometrics by Kloek and Van Dijk [1978]. Importance sampling is an infer-

ence technique for estimating a target distribution using an instrumental or “candidate”
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distribution. Then, IS uses weights to correct the fact that we sample from the instru-

mental distribution q(y) instead of the target distribution p(y). It is often employed to

approximate (target) distributions that are not easy to sample from. It is based on the

following relationship:

P(y 2 Y) =

Z

Y
p(y)dy =

Z

Y
q(y)

p(y)

q(y)
dy =

Z

Y
q(y)w(y)dy (4.22)

for all q(·), such that q(y) > 0 for (almost) all y with �(y) > 0,w(y)=p(y)
q(y) . We can

generalise this identity by considering the expectation Ep(g(Y)) of a measurable function

g:

Ep(g(Y)) =

Z
p(y)g(y)dy =

Z
q(y)

p(y)

q(y)
g(y)dy =

Z
Eq(w(y) · g(y)) (4.23)

where Ep denotes the expectation with respect to the target density p(y) and Eq denotes

the expectation with respect to the importance approximation q(y). The importance

sampling estimator of Ep(g(Y)) is obtained as the sample counter-part of the right-hand

side of Equation (4.23):

ĝ =

PN
i=1 g(yi)w(yi)PN

i=1w(yi)
(4.24)

where {yi|1, . . . , N} is a sample of draws from the importance density q(y).

4.4.2 Adaptive mixture of Student-t distributions

In this paper, the target distribution p(yt+h) in Equation (4.20) has a Gaussian kernel

smoother of quantile predictions:

�(yt+h|#̂) / exp {� 1/2
(yt � x0t�̂q � ✓ẑt)2

(⌧
p
ẑt)2

} (4.25)

where #̂ = {�̂⌧ , ✓, �, ẑt} subject to the probability of negative support being equal to the

probability of negative growth published by SPF, i.e.:

Z 0

�1
�(yt+h|#̂)dyt+h = Prob(yt+h  0) (4.26)

The problem can be solved in several ways, such as entropic tilting optimization or

chance-constrained programming. The first is an optimization problem subject to a

constraint that regards one of the distribution’s moments; the second is a modelling tool

that allows incorporating uncertainty into optimization problems using Sample Average
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Approximation (SAA). This paper proposes a flexible tool that can impose any constraint

on distribution and not use ad-hoc procedures based on the constraining preference

at hand. Similar to the entropic tilting optimization, this paper considers modifying

the distribution by reweighing draws; however, instead of drawing from p(yt+h|#̂) (the

target distribution in this framework) they are drawn from a candidate distribution that

approximate the target satisfying the desired constraints.

The candidate distribution is an adaptive mixture of Student-t developed in

Hoogerheide et al. [2007]. The density of a mixture of student-t distributions can be

written as:

q(yt+h) =
KX

k=1

⌘kt(yt+h|µk,⌃k, ⌫) (4.27)

where ⌘k for (k = 1, . . . ,K) are the mixing probabilities of the Student-t components,

0  ⌘k  1,
PK

k=1 = 1, and t(yt+h|µk,⌃k, ⌫) is a Student-t density with mode µk, scale

⌃k, and ⌫ degrees of freedom:

t(yt+h|µk,⌃k, ⌫) =
�(⌫+1

2 )

�(⌫2 )(⇡⌫)
1/2

⇥ (⌃k)
�1/2(1 +

(yt+h � µk)2⌃
�1
k

⌫
)�(⌫+1)/2 (4.28)

The adaptive mixture approach determines K, ⌘k, µk and ⌃k (k = 1, . . .K) based on a

kernel function �(yt+h) of the target density p(yt+h). It consists of the following steps:

Step 0 - Initiation Following Ardia et al. [2009], compute the mode µ1 and the scale

⌃1 of the first Student-t distribution in the mixture as µ1 = arg maxyt+h2Y log�(yt+h),

the mode of the log kernel function, and ⌃1 as minus the Hessian of log �(yt+h) evaluated

at its mode µ1. Then draw a set of Ns points Yi (i = 1, . . . , Ns) from the first candidate

density q(yt+h) = t(µ1,⌃1, ⌫), with small ⌫ to allow for fat tails. The degrees of freedom

⌫ are chosen to be equal to one (⌫ = 1) since it enables the method to deal with fat-tailed

target distribution and it makes it easier for the iterative procedure to detect modes that

are far apart.

This paper modifies the algorithm by including a constraint in this step: all the

draws from the candidate distributions have to satisfy the constraint that the probability

of the ith draw being negative or equal to zero is equal to:

P(Yi  0) =

Z 0

�1
�(yt+h|#)dyt+h (4.29)

the algorithm adopted here is designed in such a way that it draws from the candidate

110



as many times as it is necessary to satisfy the condition that the number of negative

draws has to be equal to Ns/P(Yi  0) (and so the number of positive draws have to

be equal to Ns � (Ns/P(Yi  0))). Any draws that do not respect these conditions are

discarded.

After that, add components to the mixture, iteratively, by performing the follow-

ing steps:

Step 1 - Evaluate the distribution weights Following Ardia et al. [2009], in this

step the points Yi (i = 1, . . . , Ns) are reweighed based on the Importance Sampling

weights:

w(Yi) =
�(Yi)

q((Yi))
for i = 1, . . . , Ns (4.30)

Where �(Yi) denotes the Kernel of target distribution p(yt+h) evaluated at draws Yi

and q((Yi)) denotes the candidate distribution evaluated at each draw Yi. w(Yi) is

then a measure of the distance between target and candidate kernels computed at the

same points. When the two kernel are identical, the weight is equal to one and the

candidate distribution has approximated the target distribution. However, in the case

of this paper, the IS is not used to approximate the target distribution but to constrain

it using a candidate. For this reason, here the structure of IS weights is a bit di↵erent:

w(Yi) =

8
<

:
�(Yi)/q((Yi)), if Yi > 0

1, if Yi  0
(4.31)

In the positive part of the support, IS weights are computed in the traditional way: as

the ratio between kernels evaluated at (positive) points. For the negative part of the

support, the weights are imposed to be equal to one to ensure that the negative draws

respect conditions imposed in Step 0. To describe the procedure in a broader way, it

ensures that the negative part of the support is estimated according to SPF probability

of negative draws (step 0), while the positive part of the support is estimated according

to the target distribution that in this case is equal to the predictive distribution obtained

via quantile regression.

Step 2a - Iterate on the number of components Add another Student-t distri-

bution with density t(µk,⌃k, ⌫) to the mixture with

µk = arg maxyt+h2Y log w(I(Y > 0)) (4.32)
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where I denotes the indicative function; and ⌃1 as minus the Hessian of logw(I(Y > 0)).

The idea behind this step is to choose the initial value for the maximization procedure

for computing µk as the point Yi with the highest weight {w(Yi), i = 1, . . . , Ns}. Com-

pared to Ardia et al. [2009], the algorithm employed here chooses the initial value of

maximisation in the subsample of positive draws under the assumption that the prob-

ability of negative growth is never higher than 50%. A weighting system that accounts

for it would be designed in the subsequent development of this paper.

The rest of the algorithm follows Ardia et al. [2009].

Step 2b - Optimize the mixing probabilities Choose the probabilities ⌘k for k =

(1, . . . ,K) in the mixture q(Y) defined in Equation (4.27) by minimizing the coe�cient

of variation of the importance sampling weights. First draw again Ns points Yk,i from

each component t(Yk,i|µk,⌃k, ⌫) the minimize:

E[w(Y)2]/E[w(Y)]2 (4.33)

with respect to ⌘k (k = 1, . . . ,K), where:

E[w(Y)2] =
1

Ns

NsX

i=1

KX

k=1

⌘kw(Yk,i)
2 (4.34)

and

w(Yk,i) =
�(Yk,i)PK

k=1 ⌘kt(Yk,i|µk,⌃k, ⌫)
(4.35)

Step 2c - Draw from the mixture Draw a sample of Ns points Yi, (i = 1, . . . , Ns)

from the new mixture of Student-t distributions,

q(Yi) =
KX

k=1

⌘kt(Yi|µk,⌃k, ⌫) (4.36)

4.4.3 Empirical Results - Importance Sampling

Figure (4.3) displays the density forecasts for 2020:Q2 using the adaptive mixture of

Student-t distributions in the previous Equation. Using external information to re-

weight the draws from the distributions obtained in Section (4.3.1) leads to a shift of

the distribution in the negative region, and the mixture of Student-t distribution allows

for multimodality. Although the probability at the realisation (in red) is still relatively

low, all predictive densities now cover its support.
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4.5 Conclusions and Further Developments

This paper proposes a flexible tool to impose a desirable feature to predictive distri-

butions. The constraints are imposed by approximation of the target (constrained)

distribution using a mixture of Student-t distributions. The mixture’s parameters are

estimated using the technique of Importance Sampling. The advantage of using this

technique instead of exponential tilting is that the constraint can include any feature of

the distribution, not just its moments. This paper applies the technique to constrain

forecasts for US GDP growth. The predictive distribution is estimated using a set of

predictors and contained a probability of negative growth equal to the one published

by the Survey of Professional Forecasters. Predictive distributions are estimated using

quantile regression models with Bayesian inference. The SPF probability of negative

growth is, on average, lower than the probability from forecasts; however, in rare events,

the SPF probability of negative growth is higher and more accurate. One example is the

GDP negative growth in 2020:Q2. The impact of the COVID-19 pandemic on growth at

2020:Q2 was still di�cult to forecast with the predictors used in the past to forecast GDP

growth, while SPF displays a spike in the probability of negative events. This paper then

imposes the distribution to have a probability of being negative equal to the one express

by SPF, and this constraint improves the forecastability of the quantile forecasts. The

density distributions give a probability di↵erent from zero to the realisation.

Despite the encouraging results obtained, further work is necessary to improve the

approach proposed. First, the estimation of predictive distribution parameters in the IS;

this would allow for variability parameters to accommodate the external information of

SPF probability of negative growth; second, an improvement of the IS weighting system

that currently is based on a series of assumptions that are not always verified; third,

apply the technique to a combination of the predictive distributions.
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Figure 4.1: Probability of negative growth over 1996:Q2 to 2021Q1: comparison between
quantile forecasts and SPF.
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Figure 4.2: Density forecast obtained using Quantile Regression for the 6 alternative
models for 2020:Q2 and the actual realisation.
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Figure 4.3: Density forecast obtained using Adaptive mixture of Student-t distribution
for the 6 alternative models for 2020:Q2 and the actual realisation.
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Chapter 5

Conclusions

In this thesis, I focus on combining, calibrating and constraining predictive distributions

for macroeconomic time-series. This thesis is divided into three chapters. The first

chapter investigates the e↵ect of inference approaches on forecast accuracy of the density

combination. The second proposes an absolute evaluation criterion for path density

forecasts. The third focuses on the inclusion of external information on model-based

predictive distributions by constraining it.

Chapter (2) proposes a comparison between two approaches to the combination

of density forecasts. The first, called “two-step” is arguably the most popular in ap-

plied econometrics and finance, and it takes individual probability forecasts as given

and then combines them. The second, called “one-step” is studied extensively by the

statistical literature, and it estimates forecasts’ parameters and combination weights si-

multaneously. First, I propose an empirical exercise to investigate the forecast accuracy

of the two approaches. The application consists of forecasting US real output growth

and inflation, combining 31 individual models. The empirical exercise leaves us with no

clear indication over which combination approach is the most accurate. Then, I tried

to shed light on understanding what a↵ects the di↵erent performances in controlled en-

vironments. Several types of DGPs tried to shed light on understanding what a↵ects

the di↵erent performances in controlled environments. The main takeaway is that the

trade-o↵ between parameter estimation noise and forecast accuracy typical of the one-

step approach is crucial. However, this trade-o↵ is overcome by the one-step approach

by its ability to account for the dependence between the mixture’s components.

Chapter (3) proposes an absolute evaluation criterion for path density forecasts.

One example of the employment of path density forecast is the Central Bank’s fan charts.

First, the chapter defines the path density forecast and discusses a series of testing
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strategies. We identified two main tests that depend on information about horizon

dependence. If the researcher has information about the dependence and can build

conditional forecast distributions, then he can use vectors of pits, among which the better

sized and more powerful vectors are zM and zDHT ; If the research does not have any

information, he can use a vector of marginal distributions and some “sup tests”. Among

the “sup tests”, the strict calibration test displays the best properties. The choice of test

statistics depends on several aspects: Kolmogorov-Smirnov and Cramer-von Mise have

better size and power when employing the bootstrapped version; choosing these two tests

will depend on the computational issues that the estimation entitles. Berkowitz test is

undersized, and the Knuppel test works only with a large enough (i.e. T=100) sample

size, but it is the most powerful. To answer whether the Bank of England fan chart is

calibrated, we applied the tests to Bank of England fan charts published from 2004Q1 up

to 2020Q1. From our analysis, we can say that the calibration of path density forecast

for inflation rate is not rejected by the majority of our tests, either horizon-by-horizon

or jointly; for GDP growth rate and unemployment is rejected.

Chapter (4) proposes a flexible tool to impose a desirable feature to predictive

distributions. This chapter is motivated by the need for policymakers and practitioners

to impose a desirable feature on predictive distributions. Examples of the feature can

be moments constraint, tails behaviour, shifts in support, etc. Although constraining

moments’ distributions are well discussed in the literature (i.e. by exponential tilting

Robertson et al. [2005], Krüger et al. [2017], Giacomini and Ragusa [2014]), it is often

unclear which moment one should constrain. This chapter aims to generalise the con-

straints to any desirable distribution feature by approximating the target (constrained)

distribution using a mixture of Student-t distributions. The mixture’s parameters are es-

timated using the technique of Importance Sampling following Ardia et al. [2009]. The

advantage of using this technique instead of exponential tilting is that the constraint

can include any feature of the distribution, not just its moments, without increasing the

variance. This chapter focuses on constraining the probability of a part of the distri-

bution support to be equal to some external information. The technique is applied to

constrained forecasts for US GDP growth. First, a set of density forecasts are obtained

by quantile regression, then each of these is constrained to SPF probability of negative

growth. Particularly interesting is the application to the COVID-19 pandemic. The

impact of the COVID-19 pandemic on growth at 2020:Q2 was di�cult to forecast with

the usual predictors, while SPF displays a spike in the probability of this adverse event.

This paper imposes the distribution to have a probability of being negative equal to

the one express by SPF, and this constraint improves the forecast-ability of the quantile
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predictors.

In addition to this work, I have an ongoing project with two researchers at Norges

Bank: Knut Are Aastveit and Saskia ter Ellen. The paper focuses on the same topic

of this thesis: the combination of density forecasts and their evaluation. We develop a

forecasts combination scheme that assigns weights to the individual predictive density

forecasts based on quantile scores. The paper is motivated by the limits of common

combination approaches that ignore that some models may be good at forecasting the

mean of the distribution but poor in the tails. In contrast, other models may provide

accurate forecasts in the tail put less accurate forecasts for the mean of the distribution.

The need for a coherent methodology that gives policymakers the flexibility to construct

density forecasts that incorporates the heterogeneity in accuracy across regions of the

forecast distribution from multiple sources cannot be understated. This paper addresses

the issues above by proposing a new alternative forecast combination approach; which

aims to obtain overall more accurate density forecasts by assigning a set of combination

weights to the various quantities of the individual density forecasts. To achieve this

goal, we first produce individual forecasts using Bayesian quantile regression models as

in Kozumi and Kobayashi [2011]. They are then combined using a novel quantile com-

bination approach. Each quantile of the combined density forecast is constructed as a

weighted combination of the individual forecasts for the corresponding quantile. To ac-

count for the heterogeneity in forecast accuracy from the models across the various parts

of the distribution, we allocate the quantile-specific weights from each model using the

quantile score by Gneiting and Ranjan [2011]. As highlighted by Gneiting and Ranjan

[2011], the quantile score is a strictly proper scoring rule, which is a weighted version

(decomposition) of the continuously ranked probability score (CRPS). In an empirical

application, we demonstrate the usefulness of our novel quantile combination approach

to forecasting the real GDP growth rate for the Unites States for 1993Q1-2020Q2 using

a real-time dataset. We combine predictive distributions from K = 5 quantile regres-

sion models. Each quantile regression model consists of lagged GDP growth and one

additional predictor (with lags). Motivated by the recent paper by Adrian et al. [2019]

and the vast literature on predicting economic recessions, we include the following pre-

dictors, the National Financial Condition Index (NFCI), the University of Michigan

Consumer Sentiment Index (ICS), a credit spread that measures the di↵erence between

BAA corporate bond yield and the 10 year treasury yield, residential investments and

the unemployment rate. Our novel quantile combination approach extends the findings

of earlier forecast combination and GDP-at-risk literature in several ways. First, we

show that density forecasts from our quantile combination approach outperforms fore-
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casts from commonly used combination approaches such as Bayesian Model Averaging

(BMA), the optimal combination of density forecasts (OptComb) suggested by Hall and

Mitchell [2007] and Geweke and Amisano [2011], recursive logarithmic score weights as

in Jore et al. [2010a] and equal weights. This holds irrespective of using the CRPS or

any threshold or quantile weighted version of the CRPS that emphasise performance in

either the centre, left or right tail of the distribution as a measure of forecast accuracy.

The latter therefore indicates that the relative gains in terms of forecasting performance

from our model are not specific to observations in a certain region of the distribution or

to specific subperiods in our forecasting sample. Instead, we find a steady improvement

over time and in all quantiles of the GDP distribution. Second, we show that fore-

casts from a quantile regression outperform forecasts from the linear regression for each

model. This complements findings in Korobilis [2017] and Mazzi and Mitchell [2019]

that quantile regression methods can be useful for macroeconomic forecasting. Third,

while Adrian et al. [2019] argue that financial conditions are particularly informative

about future downside macroeconomic risk, we show that quantile regressions that in-

clude variables such as residential investments and credit spread provide somewhat more

accurate forecasts for the lower left quantile of the GDP distribution than quantile re-

gressions that include the NFCI. This suggests that also other variables other than the

NFCI are informative about future downside macroeconomic risk. Finally, our paper is

also related to Opschoor et al. [2017] that assess the merits of density forecast combina-

tion schemes that assign weights to individual density forecasts based on the censored

likelihood scoring rule of Diks et al. [2011] and the CRPS of Gneiting and Ranjan [2011].

While in their paper, they use this approach in the context of measuring downside risk

(Value-at-Risk) in equity markets using recently developed individual volatility models,

our paper di↵ers in three important aspects. First, our combination approach di↵ers

as we assign weights to individual density forecasts based on quantile scores. Second,

our goal is di↵erent as we aim to obtain density forecasts that are overall more accurate

for all parts of the distribution and not only for the lower tail. Finally, we focus on

forecasting GDP growth, arguably the most important macroeconomic variable, instead

of measuring downside risk in equity markets.
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