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Abstract

The Linear Opinion Pool (LOP) produces potentially non-Gaussian combination forecast
densities. In this paper, we propose a computationally-convenient transformation for the
LOP to mirror the non-Gaussianity exhibited by the target variable. Our methodology
involves a Smirnov transform to reshape the LOP combination forecasts using the empirical
cumulative distribution function. We illustrate our Empirically-transformed Opinion Pool
(EtLOP) approach with an application examining quarterly real-time forecasts for U.S. inflation
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1 Introduction

The literature on opinion pooling has examined extensively the accuracy of Linear Opinion Pool

(LOP) forecast densities for macroeconomic variables; see the discussion in Rossi (2019). The LOP

ensures that the shape of the combination has the scope to be more flexible than the individual

forecast densities being combined. Via a variant of the “wisdom of the crowds”, non-Gaussian

distributional features of the sample can be approximated, even if the individual experts utilise

linear and (approximately) Gaussian reduced-form models, such as Vector Autoregressions (VARs).

In this paper, we propose a new methodology to improve the matching of the LOP to the

marginal distribution of the target variable. Our approach involves applying a (modified) Smirnov

transform to reshape the LOP combination forecasts using the empirical cumulative distribution

function.

We illustrate our methodology with an example for U.S. inflation. Since we aim to study the

scope for performance gains from opinion pools in the presence of misspecification, we consider a

VAR model space, with misspecified elliptical errors. Each expert uses a unique VAR to produce

“real-time” multi step ahead approximately Gaussian forecast densities for U.S. inflation. Jore et

al. (2010), Garratt et al. (2011) and Rossi and Sekhposyan (2014) consider closely related density

forecasting exercises with many misspecified VAR models.

We compare the combination forecast densities from both the Empirically-transformed Opinion

Pool (EtLOP) and the equal weight benchmark LOP using a quarterly evaluation sample from 1990:1

to 2020:2. Relative to the conventional LOP, the EtLOP improves forecast performance by around

10% to 33% in terms of the Continuous Ranked Probability Score (CRPS). For longer horizons, the

performance gains are somewhat larger than for the one step ahead forecasts. Furthermore, the

EtLOP forecast densities exhibit greater asymmetry and heteroskedasticity than the benchmark

LOP and provide more plausible probabilistic assessments of U.S. inflation events. Hence, our
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applied work demonstrates that the EtLOP methodology improves the opinion pool’s forecasting

performance by mirroring the non-Gaussian characteristics of inflation.

Economically important professional forecasters and policymakers use non-Gaussian forecast

densities to communicate risks. For example, individual experts in the Survey of Professional

Forecasters report non-Gaussian predictive densities and the Bank of England has published “fan

charts” since 1997 for various macroeconomic variables. Cogley, Morozov and Sargent (2005)

show that individual VAR specifications produce approximately symmetric forecast densities with

stochastic volatility.1 Arguably then, the mid-2000s default reduced-form macroeconomic forecasting

methodology is hard to reconcile with the Bank of England’s published forecasts from the perspective

of an individual model.2 An important implication of our study is that a forecaster estimating

many misspecified VARs, or running a research team considering many VARs, could match the

non-Gaussianity of the target variable by using EtLOP, rather than LOP, in the aggregation step. In

effect, the “decision maker” using EtLOP introduces a form of non-Gaussian distributional judgement,

which is inconsistent with the Gaussian distribution assumption adopted by each individual expert.

A number of academic studies have explored the scope for individual nonlinear and non-Gaussian

time series models to improve forecast performance. Recent contributions include the copula

modelling approach of Smith and Vahey (2016), the single-equation quantile regression based

methodology developed by Adrian et al. (2019) and the multimodal joint distribution model of

Adrian et al. (2021). In contrast, Carriero, Clark and Marcellino (2020) argue that stochastic

volatility models accommodate sufficient asymmetries for effective density forecasting in practice. In

this study, we remain agnostic on the debate about the best single model to forecast inflation (and

other key variables), and instead focus on the scope to improve the accuracy of forecast densities

produced from opinion pools, where the experts utilise misspecified linear and (approximately)

1Although there is greater scope for non-Gaussian forecast densities at longer horizons with iterative forecasts.
2Galvao et al. (2021) and Allayioti (2020) find that survey information improves the density forecasting accuracy

for a single macroeconomic model and small ensembles of models.
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Gaussian models.

Turning to the extant opinion pooling literature, a number of studies have noted calibration

issues can arise with LOP forecast densities. Even if the individual experts have correctly calibrated

exactly Gaussian forecast densities, the LOP combination will not generally be correctly calibrated

even with “optimal weights”; see, Ranjan and Gneiting (2010) and Gneiting and Ranjan (2013).

In practice, the LOP tends to add diffusion to the combination density.3 Focusing on the second

moment of the conditional densities from LOP, Ranjan and Gneiting (2010) and Gneiting and

Ranjan (2013) propose Beta transforms to reduce the spread. Extensions are explored by Bassetti

et al. (2018) and Ganics (2017).

In terms of methodology, our EtLOP approach builds on empirical copula papers by, among others,

Deheuvals (1979), Deheuvals (1981), Velásquez-Giraldo et al. (2018) and Coe and Vahey (2020) by

fitting marginal distributions with non-parametric methods. Recent macroeconomic applications

with semi-parametric copulas utilising non-parametrically fitted Empirical Cumulative Distribution

Functions (ECDFs) include Smith and Vahey (2016), Karagedikli et al. (2019), Amengual et al.

(2020) and Loaiza-Maya and Smith (2020). In contrast, Odendahl (2018) uses a parametric copula

to model the multivariate dependence in the aggregate SPF.

Even though we adapt copula methods in our study, the EtLOP approach does not involve

fitting the dependence in the combination. This is a natural approach given that the LOP ignores

the dependence between experts, with computational advantages for applications involving a large

number of experts.

The remainder of this paper is structured as follows. In Section 2, we set out our methodology for

empirically-transformed opinion pools. In Section 3, we apply our methodology to both a simulated

example and the U.S. inflation forecasting application. In the final section, we draw some conclusions.

3There exists a special case where the LOP is appropriately weighted to select a single “correct” expert. Arguably
these conditions never arise in applied macroeconomic applications with experts using misspecified models subject to
“uncertain instabilities”.
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2 A Framework for Opinion Pooling

In this section, we present the details of our proposal to empirically transform the predictive densities

from the LOP. We describe briefly conventional opinion pooling and contrast with our own approach,

before discussing some practical considerations.

2.1 Conventional Opinion Pooling

In the opinion pooling framework, aggregation by a “decision maker” ignores how the individual

experts make predictions. The decision maker only combines out-of-sample forecasts for the target

variable. For example, for a one step ahead forecast, LOP aggregation gives:

pLOP (πτ ) =
J∑
j=1

wj,τ g(πτ | Ij,τ ), τ = τ , . . . , τ , (1)

where g(πτ | Ij,τ ) are one step ahead forecast densities from expert j, j = 1, . . . , J , for the target

variable πτ (inflation in our application), conditional on the information set Ij,τ . The publication

delay in the production of real-time macroeconomic data ensures that this information set contains

lagged variables, here assumed to be dated τ − 1 and earlier. The non-negative weights, wj,τ , in

this finite mixture sum to unity and potentially change through time in the evaluation sample

τ = τ , . . . , τ ; see the discussion in, for example, Garratt et al. (2014). Multi-step forecasting (by

either direct or iterative methods) and various weighting schemes (including time-varying weights)

have been extensively explored in the literature.

2.1.1 Illustrative example

An example provided by Kascha and Ravazzolo (2010) helps illustrate visually the capacity for the

LOP to introduce non-Gaussianity into the combination density forecast even with Gaussian experts.
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The example considers a single observation of the target variable with two experts, where LOP

utilises equal weight aggregation, to mimic the approach of FRB Philadelphia for the Survey of

Professional Forecasters (SPF). Figures 1a and 1b plot the experts’ forecasts, where the prediction

of Expert 1 (blue, dashed and dotted line) has mean -2.0 and standard deviation 1 and that of

Expert 2 (red, dashed line) has mean 2.0 and standard deviation 2.0. Figure 1a also plots the LOP

density (black, solid line) which is bimodal, with a slightly higher peak associated with the forecast

mean of Expert 1.

This simple example illustrates several relevant features of conventional opinion pooling with

Gaussian experts. First, although the experts’ forecast densities are individually Gaussian, the

combined LOP density is non-Gaussian. Second, the LOP tends to preserve disagreement across

experts about the location of the central probability mass. Hence, the LOP does not inherit the

Gaussian distributional characteristics displayed in each expert’s forecast. Moreover, this equal

weight LOP, used in practice for the SPF, introduces no information from the history of the target

macroeconomic variable (other than as captured in the experts’ forecasts).

2.1.2 Discussion

Even though the SPF aggregation by FRB Philadelphia uses equal weights, many studies have

examined whether “recursive” and “optimal” weighting improves the LOP’s predictive accuracy for

macroeconomic data. For example, Geweke and Amisano (2011) argue for optimal combinations

based on maximising the Kullback-Leiber Information Criterion (KLIC), and Jore et al. (2010)

report stronger forecasting performance from LOP with recursively updated weights based on the

logarithmic score of each expert. In both cases, the history of the target variable influences the

weights.

Nevertheless, the FRB Philadelphia’s equal weight approach has considerable empirical support.

In the short samples typical of most macroeconomic density forecasting applications, many studies
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have noted that equal weights perform as well as more complex weighting schemes. This empirical

regularity is sometimes referred to as the “equal weight puzzle” in both density and point forecasting

settings. See, for example, the discussions in Timmermann (2006) and Diebold and Shin (2018).

Even the recursive weights based on relative forecast performance used by (among others) Jore

et al. (2010) tend to give little variation across experts in very short samples. As a result, the

LOP forecasts with a large number of experts and relatively little disagreement across experts often

exhibit approximately Gaussian features.4

On the other hand, in long samples of, say, high-frequency financial time series data, recursive

weights can result in expert selection, where one expert dominates. In these circumstances, the

functional form of the conventional LOP densities tend to mirror those of the dominant expert.

As noted by Geweke and Amisano (2011), optimisation based on the KLIC offers scope to weight

experts more evenly, typically generating more complex forecast densities from the LOP as a result.

Aastveit et al. (2019) and Rossi (2019) provide discussions of various weighting schemes aimed at

improving forecast performance.

Ranjan and Gneiting (2010) and Gneiting and Ranjan (2013) demonstrate that despite “optimal”

weights across experts—as constructed by Amisano and Geweke (2011)—and individually well-

calibrated experts, the LOP will not typically generate uniformly distributed Probability Integral

Transforms (PITS). The LOP aggregation approach tends to amplify the spread of the forecast

densities in practice.5 Gneiting and Ranjan’s proposal for the Beta Linear Opinion Pool (BLOP)

suggests a transformation of the LOP’s conditional forecast densities using the Beta distribution. In

their examples, BLOP is more effective than the optimal weight LOP, described by Geweke and

Amisano (2011), which tends to be overly diffuse.

4Knüppel and Krüger (2021) propose improving the LOP by removing the disagreement between experts.
5Given that parsimonious macroeconomic models tend to produce under-dispersed forecast densities, and therefore

over-confident experts, this feature perhaps contributes to the forecasting performance of the SPF with an equal
weight LOP. Diebold, Shin, and Zhang (2021) demonstrate that extra diffusion improves forecast performance for
Euro-zone inflation forecasts.
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We stress that our EtLOP methodology is aimed at improving the higher-order moments of

the conditional forecast densities. Nevertheless, by matching the non-Gaussianity in the marginal

distribution for the target variable, EtLOP also influences the spread of the forecast densities, as we

discuss in Section 2.2. Similarly, BLOP offers scope to accommodate simple forms of non-Gaussianity

because the Beta distribution has two parameters to shape the forecast densities.

2.2 Empirically-transformed Pooling

Recall that our EtLOP methodology involves reshaping the combination forecast densities from the

LOP using a fitted marginal distribution for the target variable. And, that our aim is to improve

the relative accuracy of the combination forecast. The ECDF provides a convenient choice for the

marginal distribution, being a step function that represents the entire history of the observations for

the target. By construction, the ECDF is marginally calibrated. But, this does not imply necessarily

that the PITS of the conditional forecast densities from EtLOP will be uniformly distributed. Among

others, Rosenblatt (1952), Diebold et al. (1998), Galbraith and van Norden (2012) and Rossi and

Sekhposyan (2019) discuss (what is usually known as “probabilistic”) calibration and the relationship

to the properties of the PITS.6

Given our choice for the marginal distribution of the target variable, F (πt), we reshape the LOP

combination density forecast by adapting methods developed for pseudo-random number generation.

The Smirnov transform allows a researcher to generate a conditional density forecast with the same

distribution as a (stationary) target variable via the inverse ECDF, F−1(πt). The approach is often

used to generate pseudo-random numbers from a known but non-parametric distribution. In the

empirical copula literature, the transform provides a computationally convenient route for prediction

from a non-parametric copula density with non-parametric marginal distributions.7 Because the

6For one step ahead forecasts, a well-calibrated density forecast has i.i.d forecast errors as well as uniformly-
distributed PITS.

7Random number generation for a known parametric distribution utilises a parametric CDF instead of the ECDF.
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inverse of the ECDF is used, the methodology is sometimes referred to as “inverse transform

sampling”.

The idea behind EtLOP is to use the Smirnov transform, and the target variable’s ECDF, to

generate a conditional forecast density with the same distribution as the target variable. However,

the Smirnov transform step requires that the LOP forecast densities first be transformed to the (0,1)

interval; and, the various aggregation issues discussed above imply that the distribution of the LOP

is unknown but typically non-Gaussian. We proxy this unknown distribution by using the entire

history of LOP forecasts.

For expositional ease, we describe our algorithm for a one step ahead forecast case, considering

a single candidate LOP combination forecast density, pLOP (πt), for one observation of the target

variable, πt, given the history for the target variable, π1 . . . πt−1, and the history of the LOP forecast

densities, pLOP (π1), . . . , p
LOP (πt−1).

8

We break our EtLOP algorithm into four steps.

1. Construct the proxy empirical CDF, φ(·), for the LOP forecast density from the history of

LOP forecast densities. Computationally, this involves pooling (equal weight) draws (iterates)

from the extant historical ensemble of LOP forecasts.

2. Convert the candidate LOP forecast density, pLOP (πt), to the unit interval using φ(·). To

achieve this in a computationally convenient manner, we rank draws from pLOP (πt) such that

rt = Rt/(N + 1), where Rt denotes the rank of each draw within the historical distribution, φ,

and N is the total number of draws from that distribution.9

3. Fit the ECDF for the target variable, F (π1, . . . , πt−1). In practice, there are a number of ways

8Our forecasting U.S. inflation application that follows extends consideration to multiple forecast origins and
horizons.

9The denominator avoids boundary issues in the subsequent Smirnov transform.
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to do this, as we discuss below, but non-parametric methods are a pragmatic choice given the

unknown distribution of the target variable.

4. Convert the candidate LOP forecast defined on the unit interval, rt, to the observed scale using

the inverse ECDF, F−1(·), for the target variable. This Smirnov transform involves mapping

the ranked draws onto the observed scale of the forecast target variable.

2.2.1 Illustrative example

We illustrate the impact of our EtLOP algorithm by reconsidering the Kascha-Ravazzolo example

using two Gaussian experts. Recall, Figure 1a plots the experts’ forecasts as densities, where the

prediction of Expert 1 (blue, dashed and dotted line) has mean -2.0 and standard deviation 1 and

that of Expert 2 (red, dashed line) has mean 2.0 and standard deviation 2.0. Figure 1a also plots the

equal weight LOP density (black, solid line); whereas Figure 1b plots the EtLOP density (black, solid

line), resulting from the empirical transformation of the equal weight LOP density. As indicated in

the algorithm description, EtLOP requires the extant histories of the target variable and the LOP

forecasts. For illustrative purposes, we used the end-sample objects from our inflation forecasting

example to produce the EtLOP density plotted in Figure 1b.10

The EtLOP density forecast displayed in Figure 1b preserves the unimodality of the individual

(Gaussian) densities, with the combination peak relatively close to the forecast mean of Expert 1,

with visible asymmetry and a long right tail. This contrasts with the conventional equal weight

LOP forecast density, plotted in Figure 1a, which is bimodal.

2.2.2 Discussion

Considering the Kascha-Ravazzolo example illustrates the contrast between the EtLOP and LOP

approaches to opinion pooling. Although the experts’ forecast densities are individually Gaussian,

10We describe the non-parametric methods used to fit the ECDF, F (·), below.
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the equal weight LOP forecast density is non-Gaussian, and the EtLOP suggests that the data do not

support bimodality, but do support a degree of asymmetry. Put differently, the LOP preserves the

disagreement between experts about the central probability mass, whereas the EtLOP consolidates,

with greater probability mass between the two experts’ densities. The example also demonstrates

the scope for EtLOP to produce less diffuse forecast densities than LOP. This reflects the marginal

calibration of the ECDF for the target variable. Although this does not guarantee probabilistic

calibration (in terms of the distribution of the PITS), it often helps in practice.

Throughout our applied work, and in the Kascha-Ravazzolo example above, we use a non-

parametric method to fit the ECDF. The non-parametric approach is a pragmatic modelling choice

given the unknown distribution of the target variable in practice. We fit the ECDF for the target

variable with the SSV locally adaptive kernel density estimator proposed by Shimazaki and Shinomoto

(2010).11 Figure 2a plots the density for inflation in our full U.S. sample, together with a Gaussian

density based on the sample mean and standard deviation. The version corresponding to the

ECDF case displays considerable asymmetry and a relatively long right tail. As a rough guide to

non-Gaussianity, the Shapiro-Wilk test rejects the null of normality with a p-value of zero based on

the full sample. We emphasise that in our subsequent application, we follow the standard approach in

the “real time” macroeconomic literature, fitting all models and the non-parametric margin to data

vintages in the public domain at the forecast origin. As a result, the actual fitted ECDF evolves with

the expanding window in the analysis. For illustrative purposes, Figure 2b displays non-gaussian

densities corresponding to ECDFs fitted to a variety of sub-samples. Since the non-parametrically

fitted ECDF is (typically) far from Gaussian for any given window of observations, the EtLOP

algorithm adds a limited form of heteroskedasticity to the aggregate forecast density.

Of course, there is scope to restrict the marginal distribution to be Gaussian distributed. We

11Non-parametric kernel fitting used the MATLAB function ksdensity in an earlier draft, which gave similar forecast
performance.
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explored this variant in our application and discovered that while the resulting forecast densities

were preferred to the benchmark LOP, the non-parametric approach was strongly preferred on our

inflation sample.12

We emphasise that, as with the (equal weight, recursive weight and optimal weight) LOP (and

BLOP), EtLOP does not estimate the dependence structure between experts. Under the information

assumptions of conventional linear opinion pooling, the decision maker assumes that the experts’

information sets are conditionally independent; see, for example, the discussion in DeGroot and

Mortera (1991).

3 Simulation and Application

We now illustrate our approach by exploring a simulation, before turning to our application

considering forecasts for U.S. inflation.

3.1 Simulation Experiment

In this simulation, we adapt the experiment of Gneiting and Ranjan (2013, section 4.1) to consider a

non-Gaussian distributed target variable, matching the historical features of U.S. inflation considered

in our application. We begin by summarising briefly the baseline Gneiting-Ranjan experiment and

then discuss our variation.

3.1.1 Baseline experiment

The Gaussian Data Generating Process (DGP) considered by Gneiting and Ranjan (2013) is:

Y = X0 + a1X1 + a2X2 + a3X3 + ε (2)

12The EtLOP should perhaps be known as the Gaussian-transformed LOP (GtLOP) in this case.
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where Xi, i = 1, . . . , 3 denote the random and independent variables, ai denote the respective

parameters and the disturbance term ε is i.i.d. standard normal, ε ∼ N (0, 1). The independent

variables are also i.i.d. standard normal.

The three individual experts observe some but not all variables. For example, Expert f1 observes

X0 and X1, but does not observe X2 and X3 so that the forecast densities are:

f1 = N (X0 + a1X1, 1 + a22 + a23). (3)

Similarly, for the remaining experts:

f2 = N (X0 + a2X2, 1 + a21 + a23), (4)

f3 = N (X0 + a3X3, 1 + a21 + a22), (5)

where variable X0 is observed by all experts.

Based on these experts’ forecasts, it is straightforward to compute the forecast densities from

the LOP (for a variety of weighting schemes) and then to apply EtLOP and BLOP. Following

Gneiting and Ranjan (2013), we considered the parameter values a1 = a2 = 1 and a3 = 1.1, for both

a “training” and a “test” sample.

We generated similar results to those reported by Gneiting and Ranjan (2013) for the experts

and the LOP combination using their sample length of 500 observations for both training and test

samples. Recall that the purpose of the Gneiting-Ranjan experiment, using a single test sample

length of 500 for evaluation, is to examine whether BLOP outperforms optimal weight and equal

weight LOP. In terms of relative density forecasting performance as measured by the CRPS, both

BLOP and EtLOP gave improvements over equal weight LOP. We also found that while optimising

the LOP weights improved the relative CRPS slightly, the approach did not match BLOP and EtLOP.
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We emphasise that for applied work with macroeconomic data, the 500 observations considered by

Gneiting-Ranjan consitutes a comparatively long sample.13 Supporting the analysis by Gneiting

and Ranjan (2013) of the LOP, we too found that the LOPs, regardless of whether the weights

were equal or optimal, produced overly diffuse forecast densities. In contrast, EtLOP and BLOP

delivered less diffuse forecast densities.

3.1.2 Experiment with an asymmetrically distributed target variable

With our replication of the Gneiting-Ranjan experiment as background, we now describe our

extension to the non-Gaussian distributed variable case.

We begun by transforming the target variable from the Gneiting-Ranjan example as follows.

First, we fitted non-parametrically the ECDF, F (πt), to our full sample of inflation data exactly as

described in Section 2.2.2; see the density plotted in Figure 2a. Recall that the non-parametrically

fitted empirical distribution is considerably more peaked than the Gaussian, and asymmetric with a

long right tail; see Figures 2a and 2b. Second, we ranked the simulated target variable observations,

Y , from the baseline (Gaussian) experiment and divided by the number of observations plus one

(to avoid boundaries). And third, we used the inverse of the empirical CDF, F−1(·) so that the

transformed target variable, denoted Ỹ , matched the distribution of the inflation sample—via the

Smirnov transform.

We then repeated the Gneiting-Ranjan experiment, with the same experts’ parameters, but using

the asymmetrically distributed target variable, Ỹ , rather than Y , again considering a “training”

sample, with the marginal distribution fitted to the same training sample to limit overfitting. Unlike

Gnieting and Ranjan (2013), we repeated the test exercise 2000 times for each sample length, and

consider sample lengths 100, 150, 200, 250 and 500.

13On the simulation training data, optimisation gave LOP weight values close to those reported by Gneiting and
Ranjan (2013).
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Figure 3 plots the (kernel-smoothed) densities of the EtLOP’s sample averaged CRPS, based

on the 2000 test samples, for simulation sample lengths 100, 150, 200, 250 and 500.14 The x-axis

displays the CRPS ratio, measuring relative forecast performance for EtLOP, where values of less

than one indicate an improvement on the equal weight benchmark LOP.

There are two striking features from our simulations with a non-Gaussian target variable. First,

regardless of which sample length we consider, the EtLOP is never inferior to the benchmark LOP in

terms of the CRPS. Second, the relative CRPS plots indicate that forecast performance is robust to

sample size, with little variation in the central location of the CRPS densities across sample lengths.

However, for smaller samples, the performance gain varies more across simulated samples, but where

the central probability mass indicates a considerable expected gain of around 10% to 15%.15

As noted in Section 2.1.2, Gneiting and Ranjan (2013) propose the BLOP to correct the second

moment of the optimal weight LOP forecast densities but this methodology also has some potential

to accommodate departures from Gaussianity. Accordingly, we replicated our simulation with BLOP

and compared the CRPS results with EtLOP and the equal weight benchmark LOP. The BLOP

failed to match the forecast performance of EtLOP and, for small samples, had approximately similar

performance to the equal weight benchmark LOP. We provide CRPS analysis for the BLOP in the

online appendix.

We emphasise that the experts in our experiment make two types of specification error. First,

each expert believes that the target variable has a Gaussian distribution. Second, each expert

observes some common information and some expert-specific private information, but does not know

14We compute the CRPS using equation (13) in Gneiting and Ranjan (2011). Suppose the density forecast is f and
πτ is realised inflation we use to evaluate the forecast. Then we define the CRPS as:

CRPS(f, πτ ) = E [|Z − πτ |]− 0.5E [|Z − Z∗|]

where Z and Z∗ are independent random variables with common sampling density f i.e. the iterates from the inflation
forecast densities and a random permutation of these iterates respectively.

15We repeated the analysis using the sample averaged logarithmic score and found similar performance gains for
EtLOP across our range of sample sizes.
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the true dependence structure for the target variable. In contrast, the decision maker using opinion

pooling believes (correctly) that the target variable is non-Gaussian but does not know the functional

form. And, following the conventional approach in linear opinion pooling, the decision maker ignores

the dependence in the experts’ forecasts. This structure for the specification errors is mirrored in the

application that follows. The original Gneiting-Ranjan experiment, as noted previously, considered

a Gaussian-distributed target variable.

3.2 Application: Forecasting U.S. Inflation

Given the relatively disappointing forecasting performance of the optimal weight LOP and BLOP in

our simulations with an asymmetric distributed target variable, we report results comparing the

EtLOP with an equal weight benchmark LOP (adopted by FRB Philadelphia for the SPF). The

target dates for the quarterly U.S. inflation application run from 1990:1 to 2020:2. As further aids

to gauge the relative forecasting performance of EtLOP, we report results for BLOP in the online

appendix accompanying this paper, together with those from a univariate Unobserved Components

Stochastic Volatility (UCSV) model for inflation, estimated by Bayesian methods.

3.2.1 Experts’ models

Each expert utilises a (unique) bivariate VAR model space for inflation, πt, and the output gap (the

deviation of real output from potential), ψt. The standard theory that aggregate demand, captured

by the output gap, influences the movements in inflation (with unknown time lags), provides some

foundation for the empirical specification.

Since we aim to study the scope for performance gains from opinion pools in the presence of

misspecification, each expert’s VAR is misspecified with elliptical errors.
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The jth VAR model takes the form:

 πt

ψjt

 =

 ajππ ajπψ

ajψπ ajψψ


 πt−1

ψjt−1

 +

 εjπt

εjψt

 , t = 1, . . . , T, (6)

where [εjπt, ε
j
ψt]
′ ∼ i.i.d. N(0,Σj). That is, we consider a baseline VAR specification in which the

output gap measure has been varied to give J linear and Gaussian VAR models, indexed j = 1, . . . , J .

For expositional ease, we ignore the intercept and restrict the lag order of the J VARs to one.

Following Garratt et al. (2011), our VAR model space uses seven output gap measures derived from

the set of univariate off-model filters considered by Orphanides and van Norden (2002, 2005).

We define the output gap as the difference between observed output and unobserved potential

(or the trend component of) output. We denote the (logarithm of) real output in t as qt, and let

µjt be its trend using definition j, where j = 1, . . . , J . The output gap, ψjt , is therefore defined as

the difference between actual output and its jth trend measure at time t. We assume the following

linear trend-cycle decomposition:

qt = µjt + ψjt . (7)

The seven methods of univariate trend extraction in our VAR model space are: quadratic,

Hodrick-Prescott (HP), forecast-augmented HP, Christiano and Fitzgerald, Baxter-King, Beveridge-

Nelson and Unobserved Components. We describe these seven well-known univariate filters in

Appendix 1.

In our application, we vary a single auxiliary assumption to generate the expert (model) space.

Specifically, we vary the lag length in the VAR.16 If we have J output gap measures, and for any

given ψjt we have L variants defined by different values of the maximum lag length, then in total we

have J × L models, each with a corresponding forecast of inflation (and the output gap) from the

16For ease of exposition, we fixed this at one in equation (6).
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VAR model space. We restrict L to a maximum of four and therefore we consider 7× 4 models—28

forecasts from the experts to be combined.

Although the motivation for deploying these models stems from their common usage by central

banks around the world, Orphanides and van Norden (2005) note indifferent real-time out of sample

forecasting performance for individual VAR models. In contrast, Garratt et al. (2014) note that

LOPs of VARs provide competitive real-time density forecasting performance, albeit not as accurate

as the univariate UCSV model for U.S. inflation.

3.2.2 Data considerations

Orphanides and van Norden (2002, 2005) stress that output gap measures are subject to considerable

data revisions. Failing to account for this by using heavily-revised data masks real-time predictive

content. Since we are interested in real-time prediction, parameter estimation is recursive for all

specifications. Each recursion uses a different vintage of data, where a vintage of data is the vector

of time series observations available from a data agency at the forecast origin.

The quarterly real-time real gross domestic product (GDP) U.S. dataset has 124 vintages, with

the first vintage dated 1990:1 and the last 2020:4. The raw data for GDP (in practice, Gross National

Product, GNP, for some vintages) are taken from the Federal Reserve Bank of Philadelphia’s

Real-Time Data Set for Macroeconomists. The data comprise successive vintages from the National

Income and Product Accounts, with each vintage reflecting the information available around the

middle of the respective quarter. Croushore and Stark (2001) provide a description of the real-time

GDP database. The GDP deflator price series used to measure inflation is constructed analogously.

We define inflation (output growth) as the first difference in the logarithm of the GDP deflator

(GDP) multiplied by 400.

Figure 4a displays inflation and (for context) Figure 4b displays real output growth from 1970:1
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to 2020:2 based on the final vintage of data.17 Figure 4c illustrates three well-known output gap

measures, again based on the final vintage.

In Figure 4a, during the Great Moderation, inflation typically exhibits lower volatility and lower

conditional mean than for the 1970s and early 1980s. However, during the run up to the Great

Recession, between 2003 and 2006, there are several realisations of high inflation. The upward spikes

apparent during this period are often regarded as (the response to) relative price movements, and,

in particular, commodity prices. See, for example, the analysis of Garratt and Petrella (2021). A

striking feature of the Great Recession and its aftermath is the increased threat of low inflation,

and an apparent increase in volatility. The recent pandemic resulted in a downward spike for both

inflation in early 2020.

3.2.3 Forecast combination and empirical transformation

The decision maker recursively combines the forecast densities from the experts. Each expert uses an

expanding window for parameter estimation. For the first recursion, the estimation sample is 1970:1

to 1989:4 (window size 80 observations) and the last 1970:1 to 2020:1 (window size 201 observations).

As our U.S. GDP deflator data are released with a one quarter lag, the first vintage, dated 1990:1,

contains time series observations from 1970:1 to 1989:4, and the last vintage, dated 2020:4, has

data from 1970:1 to 2020:3. Following Clark and McCracken (2010) and others, we use the second

estimate as the target “final” data. For example, when evaluating the h = 1 forecast (nowcast) for

2020:2, we use the 2020:4 vintage observation of inflation for 2020:2.

Each VAR (expert) produces conditional forecast densities for inflation (and the (jth) output

gap) through our evaluation period: τ = τ , . . . , τ where τ =1990:1 and τ =2020:2 (122 quarterly

observations). The point forecasts are the means of the conditional forecast densities.

To deploy EtLOP, the decision maker must fit a marginal distribution for inflation, πt. Since the

17The empirical analysis which follows uses a time sequence of vintages.

18



decision maker uses recursive fitting based on expanding windows of data, the fitted distributions for

inflation vary by forecast origin in practice but all appear non-Gaussian; see the earlier discussion of

Figure 2a and Figure 2b.18

We emphasise that in this application, we follow the standard approach in the “real time”

macroeconomic literature, fitting all models and the non-parametric margin to data vintages in the

public domain at the forecast origin. We do not fit any parameters, or the ECDF of the target

variable, on ex post data.

In the following section, we compare and contrast the forecast performance of EtLOP with the

equal weight benchmark LOP. The performance metrics used to gauge relative forecast accuracy

include RMSFE and the sample-averaged CRPS, together with tail-weighted CRPS metrics.

3.2.4 Results

In this section, we report results for horizons one step ahead to four steps ahead. All results reported

here use the equal weight LOP as a benchmark.19

The second column of Table 1 reports the RMSFE, where the point forecasts are the means

of the conditional distribution, and the third column reports the time-averaged CRPS over the

evaluation sample. Columns 4 to 6 give the tail-weighted, right tail-weighted, and left tail-weighted

CRPS, respectively. The values displayed in columns 2 to 6 are computed as ratios to the equal

weight benchmark LOP. Ratios less than one, for both RMSFE and CRPS, indicate an improvement

in forecast performance, relative to the equal weight benchmark LOP.20

The RMSFEs reported in the second column indicate a gain for the EtLOP of approximately 13%

over the benchmark for horizon h = 1, displayed in row 2. As the forecast horizon lengthens, rows 3

18As a rough guide, the null hypothesis of normality is rejected at the 1% significance level for all vintages using
the Shapiro-Wilk test.

19Recursive weighted combinations based on the sample-averaged logarithmic score and sample-averaged CRPS
gave similar results.

20We compute the weighted or quantile CRPS using equation (17) in Gneiting and Ranjan (2011). Suppose the
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through 5, the performance gain from EtLOP increases monotonically to 34%. Similarly, the CRPS

values reported in column 3 indicate a comparable performance gain from EtLOP, monotonically

increasing from 14% at h = 1, row 2, to 33% at h = 4, row 5.

Turning to the tail-weighted CRPS , columns 4 through 6, EtLOP performance is fairly consistent

when considering both tails or just the right tail, columns 4 and 5, whereas the left tail-weighted

CRPS results in a slightly smaller performance gain, column 6.

Figures 5a and 5b display the relative forecasting performance differentials computed recursively,

for the one step ahead case, h = 1, in terms of RMSFE and CRPS, respectively. Regardless of the

forecast performance metric, the EtLOP (red, solid line) dominates the equal weight benchmark

LOP (blue, dashed line) from 1992 onwards. The online appendix provides analysis for horizons 2

through 4; the plots display similar patterns.

To summarise the results so far, EtLOP outperformed the equal weight benchmark LOP in terms

of relative forecasting performance. To give further context, using the same metrics, EtLOP also

outperformed the Bayesian estimated UCSV model and the BLOP at all horizons as reported in the

online appendix.

As a guide to absolute forecasting performance, Figure 6a plots the (end-sample) histograms

for the h = 1 PITS from EtLOP; whereas, Figure 6b displays the corresponding histograms for

the equal weight benchmark LOP. Although close to uniform for EtLOP, the histograms for the

benchmark have too many realisations in the left tail of the forecast density and too few in the

density forecast is f and πτ is the realised inflation we use to evaluate the forecast. The quantile CRPS is defined as:

qwCRPS(f, πτ ) =
1

K − 1

K−1∑
k=1

v(αk)QSαk
(F−1(αk), πτ ), where

αk =
k

K
, K = 10, 000.

v(αk) is a non-negative quantile weight function on the unit interval (α ∈ (0, 1)), that takes the values (2α− 1)2

when considering both tails, α2 for the right tail and (1− α)2 for the left tail. The quantile score, QSαk
, uses the

empirical distribution function F built from πτ .
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right tail. The Kolmogorov-Smirnov based calibration test of Rossi and Sekhposyan (2019), for

horizon h = 1 suggest that the null of “correct specification” cannot be rejected for EtLOP at the

10% significance level, with a test statistic of 0.546. However, the null is rejected easily at the 10%

significance level for the benchmark, with a test statistic of 2.085.21 Nevertheless, we stress that

this is a short evaluation sample of 122 observations and that the combinations are misspecified by

construction—the dependence between experts has been ignored in the combinations, consistent

with the convention in the linear opinion pooling literature.

To provide further insight into EtLOP’s relative forecast performance, focusing on the h = 1 case,

Figures 7a and 7b display the 5th and 95th percentiles of the forecast densities, together with the

conditional mean forecasts and inflation realisations, for the EtLOP and the benchmark, respectively.

EtLOP’s bands are narrower than the equal weight LOP’s for nearly all of the evaluation sample

with greater variation through time for EtLOP.

Figures 8a through 8d complement Figures 7a and 7b, displaying for h = 1 the differences

between the 5th and 95th percentiles of the forecast density, a measure of skew, the p-value for skew,

and the probability of inflation being less than 2.6%, respectively. Figure 8a supports the assessment

of Figures 7a and 7b in that the EtLOP densities (red, solid line) are less diffuse than the equal

weight LOP densities (blue, dashed line). The EtLOP’s densities display greater time variation,

especially prior to 2000. Figure 8b, which plots skew, reveals EtLOP to have positive skew for much

of the evaluation, whereas the equal weight benchmark LOP has near zero skew throughout the

evaluation sample. The p-values displayed in Figure 8c confirm the significance of EtLOP’s skew

from 1990 to 2005, but with a drop in the p-value thereafter. Figure 8d reveals that the EtLOP

assigns a higher probability than the LOP to the event of inflation being less than the unconditional

mean, 2.6%, throughout the evaluation sample. The EtLOP implies higher risk of below mean

21The critical values, for h = 1, of the Kolmogrov-Smirnov RS test statistic are 1.61, 1.34 and 1.21 for the 1%, 5%
and 10% significance levels respectively. Results using the Cramer-von-Mises version of the Rossi and Sekhposyan
(2019) test are similar. Results for h = 4 are similar.
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inflation events. The online appendix provides corresponding plots to Figures 8a through 8d but for

horizons h = 2 through h = 4. The results are similar to the h = 1 case, except that there is more

significant skew towards the end of the sample at longer horizons with EtLOP.

In summary, the plots in Figures 7 and 8 reveal that the EtLOP forecast densities have skew,

whereas the equal weight benchmark LOP forecast densities are approximately symmetric. Fur-

thermore, EtLOP forecast densities are less diffuse, with more variation in the diffusion through

time.

Finally, Figures 9a through 9d display the forecast densities for EtLOP (red, solid line) and the

equal weight benchmark LOP (blue dashed line) for the target observations of 2009:1 through to

2009:4, when inflation was unusually low. The EtLOP densities have less probability mass on high

inflation and are somewhat less diffuse than their conventional counterparts. The EtLOP displays

some asymmetry for these notable observations, but the skew is not particularly strong.

4 Conclusions

In this paper, we have proposed a methodology to improve the accuracy of the LOP. Our approach

involves transforming the conventional combination forecast densities using an ECDF to match the

distribution of the sample data. In our U.S. inflation application, we combined forecast densities

from a system of VAR models. We demonstrated that the Empirically-transformed LOP considerably

improved forecasting performance relative to the more conventional equal weight opinion pool.
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Table 1: Forecast Evaluation for EtLOP

Horizon RMSFE CRPS TW RTW LTW

h = 1 0.867∗∗ 0.860∗∗ 0.850∗∗ 0.839∗∗ 0.877∗

h = 2 0.802∗∗ 0.789∗∗ 0.774∗∗ 0.754∗∗ 0.828∗

h = 3 0.734∗∗ 0.727∗∗ 0.726∗∗ 0.657∗∗ 0.814∗

h = 4 0.660∗∗ 0.670∗∗ 0.696∗∗ 0.594∗∗ 0.751∗

Notes: Columns 2 to 6 report ratios of EtLOP relative to the equal weight benchmark LOP, for

RMSFE, the CRPS and the tail-weighted (TW), right-tail weighted (RTW) and left-tail weighted (LTW)

CRPS statistics, respectively. Ratios less than one indicate an improvement in forecast performance relative

to the benchmark. Improvements, using the two-sided test of Giacomini and White (2006), at the 1% and

5% significance levels are denoted ∗∗ and ∗, respectively.
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Appendix 1: Output trend definitions

We summarise the seven univariate detrending specifications below.

1. For the quadratic trend based measure of the output gap we use the residuals from a regression

(estimated recursively) of output on a constant and a squared time trend.

2. Following Hodrick and Prescott (1997, HP), we set the smoothing parameter to 1600 for our

quarterly U.S. data.22

3. Since the HP filter is a two-sided filter it relates the time-t value of the trend to future and

past observations. Moving towards the end of a finite sample of data, the HP filter becomes

progressively one-sided and its properties deteriorate with the Mean Squared Error (MSE) of

the unobserved components increasing and the estimates ceasing to be optimal in a MSE sense.

We therefore follow Mise et al. (2005) and mitigate this loss near and at the end of the sample

by extending the series with forecasts. At each recursion the HP filter is applied to a forecast-

augmented output series (again with smoothing parameter 1600), with forecasts generated

from an univariate AR(8) model in output growth (again estimated recursively using the

appropriate vintage of data). The implementation of forecast augmentation when constructing

real-time output gap measures for the U.S. is discussed at length in Garratt et al. (2008).

We deliberately select a high lag order to ensure no important lags are omitted—favouring

unbiasedness over efficiency.

4. Christiano and Fitzgerald (2003) propose an optimal finite-sample approximation to the

band-pass filter, without explicit modelling of the data. Their approach implicitly assumes

that the series is captured reasonably well by a random walk model and that, if there is drift

present, this can be proxied by the average growth rate over the sample.

22We could, of course, allow for uncertainty in the smoothing parameter. We reduce the computational burden in
this application by fixing this parameter at 1600.
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5. We also consider the band-pass filter suggested by Baxter and King (1999). We define the

cyclical component to be fluctuations lasting no fewer than six, and no more than thirty-two

quarters—the business cycle frequencies indicated by Baxter and King (1999)—and set the

truncation parameter (the maximum lag length) at three years. As with the HP filter we

augment our sample with AR(8) forecasts to fill in the ‘lost’ output gap observations at the

end of the sample due to truncation.

6. The Beveridge and Nelson (1981) decomposition relies on a priori assumptions about the cor-

relation between permanent and transitory innovations. The approach imposes the restriction

that shocks to the transitory component and shocks to the stochastic permanent component

have a unit correlation. We assume the ARIMA process for output growth is an AR(8), the

same as that used in our forecast augmentation.

7. Finally, our Unobserved Components model assumes qt is decomposed into trend, cyclical and

irregular components

qt = µ7
t + ψ7

t + ξt, ξt ∼ i.i.d. N(0, σ2
ξ ), t = 1, . . . , T (A1.1)

where the stochastic trend is specified as

µ7
t = µ7

t−1 + βt−1 + ηt, ηt ∼ i.i.d. N(0, σ2
η)

βt = βt−1 + ζt, ζt ∼ i.i.d. N(0, σ2
ζ ).

Letting σ2
ζ > 0 but setting σ2

η = 0, gives an integrated random walk. The cyclical component
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is assumed to follow a stochastic trigonometric process:

 ψ7
t

ψ7∗
t

 = ρ

 cosλ sinλ

− sinλ cosλ


 ψ7

t−1

ψ7∗
t−1

 +

 κt

κ∗t

 (A1.2)

where λ is the frequency in radians, ρ is a damping factor and κt and κ∗t are two independent

white noise Gaussian disturbances with common variance σ2
κ. We estimate this model by

maximum likelihood, exploiting the Kalman filter, and estimates of the trend and cyclical

components are obtained using the Kalman smoother.
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 Figure 1a: LOP and Experts' Density Forecasts
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 Figure 1b: EtLOP and Experts' Density Forecasts
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Figure 2a: Marginal Densities for U.S. Inflation, Full-sample ECDF and Gaussian 

ECDF, 1970:1 to 2020:2

Gaussian, 1970:1 to 2020:2
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Figure 2b: Marginal Densities for U.S. Inflation, Sub-sample ECDFs
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Figure 3: EtLOPs Relative CRPS Performance Simulation, by Sample Size
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Figure 6a: PITs Histogram, h=1, 1990:1 to 2020:2, EtLOP
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Figure 6b: PITs Histogram, h=1, 1990:1 to 2020:2, LOP
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Figure 7a: EtLOP Forecasts, h=1, 1990:1 to 2020:2
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Figure 9a: Forecast Densities for 2009:1, h=1
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