
����������
�������

Citation: Elasra, A. Multiple

Imputation of Missing Data in

Educational Production Functions.

Computation 2022, 10, 49.

https://doi.org/10.3390/

computation10040049

Academic Editor: Demos T. Tsahalis

Received: 1 March 2022

Accepted: 22 March 2022

Published: 24 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

Multiple Imputation of Missing Data in Educational
Production Functions
Amira Elasra

The Department of Economics, The University of Warwick, Coventry CV4 7AL, UK; a.elasra@warwick.ac.uk

Abstract: Educational production functions rely mostly on longitudinal data that almost always
exhibit missing data. This paper contributes to a number of avenues in the literature on the economics
of education and applied statistics by reviewing the theoretical foundation of missing data analysis
with a special focus on the application of multiple imputation to educational longitudinal studies.
Multiple imputation is one of the most prominent methods to surmount this problem. Not only does
it account for all available information in the predictors, but it also takes into account the uncertainty
generated by the missing data themselves. This paper applies a multiple imputation technique using
a fully conditional specification method based on an iterative Markov chain Monte Carlo (MCMC)
simulation using a Gibbs sampler algorithm. Previous attempts to use MCMC simulation were
applied on relatively small datasets with small numbers of variables. Therefore, another contribution
of this paper is its application and comparison of the imputation technique on a large longitudinal
English educational study for three iteration specifications. The results of the simulation proved the
convergence of the algorithm.

Keywords: missing data analysis; multiple imputation; Markov chain Monte Carlo (MCMC) simulation;
fully conditional specification; Gibbs sampler algorithm; educational production functions

1. Introduction

When identifying missing data, in his book, Rubin [1] concluded that it is the un-
certainty about the missingness that matters rather than the reasons behind it when it
comes to imputing missing data. The problem of missing data is not only the missing data
themselves, but also the possible inefficiencies resulting from the methods researchers use
to handle these missing data. The standard procedure of the list-wise deletion of missing
data results not only in biased estimates, but also in a reduction in statistical power. These
inefficiencies led to the introduction of superior techniques, such as the single and multiple
imputation of missing values [2–7].

The starting point when working with missing data is to understand two key features
of missingness: pattern and mechanism. Let N be the number of units in the dataset Y
and Yp be the variables of interest. The dataset Y is said to have a univariate pattern of
missingness when only one variable in Y is missing and the rest of variables are observed.
When more than one variable is missing, then the pattern depends on the order in which
the data are missing. The dataset Y is said to have a monotone pattern of missingness in
one condition, which is that if Yi is missing for a unit, then all Yi+1, . . . , Yp must also be
reported as missing. An arbitrary pattern exists when any variable could be missing for any
unit over the entire dataset [1,3,8].

The mechanism of missing data determines how random these data are. Randomness
means how the missing values in a certain variable are related to the observed values of that
particular variable or to those of related variables. Statistically, a set of indicator variables R
is defined to identify which values are observed and which are missing. This R is referred
to as the missingness mechanism. R is a set of random variables with a joint probability
distribution that represents the distribution of missingness [9].
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Fundamentally, there are three main types of missingness mechanism. Let the complete
dataset be Ycom = (Yobs, Ymis), where the observed values are Yobs and the missing values
are Ymis. The missing data are said to be missing completely at random (MCAR) when the
distribution of missing data depends neither on the observed nor on the missing values [9].
That is,

P(R|Ycom) = P(R) (1)

Although MCAR does not lead to biased estimates [10], it leads to the loss of statistical
power [11]. Along with the rarely observed situation of MCAR missingness, the usefulness
of this mechanism is questionable as it is based on the assumption that Ycom is a random
sample from a population distribution P(Ycom; θ), where θ is the vector of unknown param-
eters. Statistically, such a probability distribution is regarded as (a) the repeated sampling
distribution for Ycom and (b) a likelihood function for θ. However, the conditions required
for the true sampling distribution and likelihood are not identical. In order for P(Yobs; θ)
to be the true sampling distribution, the missingness has to be MCAR, while in order to
have the true likelihood for θ based on Yobs, only a less restrictive assumption is needed;
the missing-at-random (MAR) assumption [8]. With MAR, the distribution of missingness
only depends on the observed values. That is,

P(R|Ycom) = P(R|Yobs) (2)

Similarly, the MAR mechanism produces unbiased estimates and is usually assumed
in different imputation techniques when the analyst has no control over the missingness
and cannot identify its distribution. In most cases, MAR might be a strong assumption and
may weaken the methods used to handle missing data [1,12,13]. However, this was shown
to have a very mild effect on the estimated parameters and their standard errors [14].

Compared with the old complete-case method, the available case method and the reweight-
ing method, a more efficient way of handling missing data is using imputation. The idea
of imputation is based on the use of all available information for each unit to predict the
missing values. The advantages of imputation are enormous. Primarily, it allows the
efficient use of the entire dataset without losing statistical power, as can occur with reduced
sample sizes. Even more crucial, having important information in the observed data and
using them for imputation increases the precision of the analysis. Equally important is the
fact that imputation enables the analyst to use all available statistical standard analyses
and to compare the results of different analyses on the same imputed dataset [1,8,10,11].

More advanced single imputation techniques are based on using Maximum-Likelihood
(ML) estimation procedures. The fundamental idea behind ML estimation is that the
marginal distribution of the observed data provides the correct likelihood of the unknown
parameter θ under MAR given that the model for the complete dataset is realistic. The
ML estimate tends to be approximately unbiased in large samples, with approximately
normal distribution and becomes more efficient as the sample size increases, which makes
it a desired estimation procedure in missing data analysis just as in the case of complete
datasets. Moreover, theoretically, they are more attractive than the old methods of case
deletion or simple imputation [8].

The most popular method of ML is the Expectation-Maximization (EM) algorithm. The
E-step of the algorithm starts in the first iteration by filling in the missing data of a particular
variable with the best guess of what it might be under the current estimates of the unknown
parameters using a regression-based single imputation, with all the other variables used
as predictors. The M-step in the same iteration is to re-estimate the parameters from the
observed and filled-in data. The new parameters are then used to update the filled-in data
in the E-step of the second iteration [2,13].

However, although the ML estimation provides approximately unbiased estimates in
large datasets, it requires the used dataset to be large enough to compensate for the miss-
ingness problem if the missing data portion is relatively large, which imposes a limitation
on the ML procedure [3]. Of similar importance is that singleimputation inferences over-
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state precision, since they eliminate the between-imputation variance [10]. Additionally,
the ML function is based on an assumed parametric model for the complete data, whose
assumptions may not necessarily hold in some applications, as in the case of structural equa-
tions modelling, which may cause standard errors and test statistics to be misleading [15].
Moreover, although the EM algorithm provides excellent estimates of the parameters as
ML, it does not provide standard errors as part of its iterative process, which makes it
less efficient for hypothesis testing [16]. Accordingly, multiple imputation is considered a
superior technique.

The multiple imputation (MI) method developed by Rubin [1] is based on a Monte
Carlo simulation technique to impute the missing values for m > 1 number of times.
MI performs the same averaging process of the likelihood functions over a predictive
distribution using a Monte Carlo simulation, rather than using the kinds of numerical
methods used in likelihood estimations, such as expectation maximization algorithm.
Moreover, MI displays its superiority over the EM algorithm by solving the problem of
understating the uncertainty of missing data [3].

Unlike other Monte Carlo techniques, MI requires a small number of imputations,
usually ranging between three and five. The number of imputations is determined by the
efficiency of an estimate generated from m imputed datasets relative to that generated
from an infinite number of imputations. Although Rubin [1] showed that three to five
imputations are sufficient to produce efficient estimates, others [4] have shown that if
statistical power is of more concern to the analysis than efficiency, then the number of
imputations must be much higher than previously thought.

This paper aims to use MI to impute missing data in an educational longitudinal
study. This paper applies a multiple imputation technique using a Fully Conditional
Specification method based on an iterative Markov Chain Monte Carlo (MCMC) simulation
using a Gibbs sampler algorithm. The paper contributes to a number of avenues in the
literature on the economics of education and applied statistics by reviewing the theoretical
foundation of missing data analysis with a special focus on the application of multiple
imputation to longitudinal educational studies. Earlier attempts to use MCMC simulation
were applied on relatively small datasets with small numbers of variables. Therefore,
another contribution of the paper is the application and comparison of the imputation
technique on a large longitudinal English educational study for three iteration specifications.
The results of the simulation proved the convergence of the algorithm. The final output
of the application generates a longitudinal complete dataset that will enable researchers
in the field to estimate educational production functions more appropriately, avoiding
estimation bias.

2. Data and Methods

Educational production functions rely on the use of survey longitudinal data that
suffer from attrition problems and missing data. The paper uses the Longitudinal Study
of Young People in England (LSYPE) to test for the efficiency of multiple imputation. The
LSYPE is a longitudinal study that follows the lives of 16,122 students in England born
in 1989–1990 with annual waves from 2004 to 2010, with two additional waves in 2015
and 2021. The study provides rich information on young people’s individual and family
background, education variables, school attitudes and teacher-related variables [17]. The
MI is implemented for 55 variables: 12 quantitative and 43 categorical variables. The data
used from the LSYPE were gathered over seven waves of the study between 2004 and 2010.
The variables used for multiple imputation were collected from the seven waves of the
study in order to capture both the changes in the same variable and the new information
from additional new variables in the subsequent waves. The missing values reported were
either ‘system missing’ values, which were not coded to a young person for a particular
variable, or ‘user missing’ values, which were identified by the survey team. Examples
of ‘user missing’ values include responses such as ‘I do not know’, ‘refused’, ‘insufficient
information’, ‘unable to classify or code’, ‘unable to complete certain section in the survey’,
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‘not applicable’, ‘person not present’, ‘person not interviewed’, ‘no information’, and similar
inapplicable responses. The definitions of the quantitative variables are included in Table S1
in the Supplementary Materials.

Multiple imputation is implemented through Bayesian arguments. The first step is
to specify a parametric model for the complete data. The second is to specify a prior
distribution for the unknown parameters. The third is to simulate m independent draws
from the conditional distribution of Ymis given Yobs. It is worth mentioning here that most
of the current applications and techniques of MI assume MAR, since it is a mathematically
convenient assumption that makes it possible to bypass an explicit probability model
for nonresponse [10,13]. Generally, MI steps are implemented as follows: let us assume
Y = (Yobs, Ymis) follows a parametric model P(Y, θ), where θ are unknown parameters
having a non-informative prior distribution and Ymis is MAR, since

P(Ymis|Yobs) =
∫

P(Ymis|Yobs, θ)P(θ|Yobs)dθ (3)

Imputing Ymis is implemented by first simulating a random draw of θ from its observed
data posterior distribution

θ∗ ∼ P(θ, Yobs) (4)

and, second, by simulating a random draw of Ymis from its conditional predictive distribution

Ymis ∼ P(Ymis|Yobs, θ) (5)

The two simulations are then repeated m times.
The MI simulation runs as follows. Let Yi = (Y1, . . . , Yk) be a set of k incomplete

variables, Ri = (R1, . . . , Rk) is a response indicator of Yi, with Ri =1 if Yi is observed and
Ri = 0 if Yi is missing and X = (X1, . . . , Xl) is a set of l complete variables.

This paper employs a fully conditional specification (FCS) approach, which entails
an imputation model that is specified for each variable with missing data. That is, an
imputation conditional model p(Yi,mis|X, Y−i, R, θi) has to be specified for each Yi [18]. The
FCS is an iterative process, in which the imputation of Yi,mis is performed by iterating over
all the conditionally specified imputation models through all Yi in each iteration. According
to [19], if the joint distribution defined by the conditional distributions exists, then this
iteration process is a Gibbs sampler. The FCS produces unbiased estimates and is flexible
enough to account for the different features of the data, allowing all the possible analyses to
be used after imputation. Moreover, it makes it possible to force constraints on the variables
to avoid inconsistencies in the imputed data [18–22].

Despite the advantages of the FCS, it does suffer from a compatibility issue, known as
the ‘incompatibility of conditionals’. The incompatibility of the FCS is caused by the con-
vergence of its algorithm, since the limiting distribution to which the algorithm converges
may or may not depend on the order of the univariate imputation steps. Accordingly, it is
ambiguous in some cases to assess the convergence of the FCS algorithm. Nevertheless, it
was shown that the negative implications of such incompatibility on the estimates were
only negligible [23–25].

The analysis starts by testing the missingness mechanism using Little’s MCAR test [26],
which is based on an EM algorithm that indicates when the standard errors based on the
expectation information matrix are adequate. The test is only appropriate for continuous
variables (12 out of 55). Using 25 iterations, the test statistic was 7227.908 (df = 1613) with a
significance level of (0.0001), leading to the rejection of the null hypothesis of MCAR, so we
can assume MAR. Moreover, the algorithm converged at 25 iterations.

Linear regression was used to impute continuous variables assuming Gaussian errors
and logistic regression was used for categorical variables. Despite the possible limitations
of this method, it is important to mention here that the exact form of the model and the
parameter estimates are of little interest. The only function of the imputation model is to
provide ranges of plausible values [27].
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There are multiple statistical packages that test for the missingness patterns and the
implementation of multiple imputation, such as R, MATLAB, Stata and SPSS. This paper
uses IBM SPSS Statistics. The missing data pattern and the multiple-imputation MCMC
simulation were implemented using IBM SPSS package (MULTIPLE MPUTATION) com-
mand. The analysis can be replicated in other software. For example, R features function
md.pattern, which belongs to package mice. MATLAB features function mdpattern, which
is available in the FSDA toolbox.

3. Results

Analysing the missingness pattern showed that 100% of both the variables and the
units were incomplete and only 30.12% of the values were missing. In general, the overall
missingness pattern was identified using a chart. This chart comprises of a number of
individual patterns on the vertical axis corresponding to the variables measured on the
horizontal axis. Each individual pattern represents a group of units with the same pattern
of incomplete and complete data across the variables. The chart orders the variables from
left to right in increasing order of missing values. For example, pattern 6 in Figure 1
represents units that have missing values in the variables KS4_CVAP3APS, KS4_IDACI
and KS4_CVAP2APS. The determination of the overall pattern of missingness depends,
accordingly, on the grouping of missing and non-missing cells in the chart. If the data
show a monotone missingness pattern, then all the missing cells and non-missing cells
are contiguous. An arbitrary pattern shows clusters of missing and non-missing cells, as
shown in Figure 1, across all charts [28] (Missing value patterns for the remaining variables
are presented in Figure S1 in the Supplementary Materials). This makes it possible to argue
that the missingness pattern of the entire dataset is also an arbitrary one. Accordingly,
this result supports the choice of the Gibbs sampling technique, which is mainly used for
arbitrary patterns of missing data.

Computation 2022, 10, x FOR PEER REVIEW 6 of 13 
 

 

 

Figure 1. Missing value patterns. 

The MI simulation process was executed 𝑚 = 5 times in parallel in order to produce 

five complete datasets using three iteration specifications, 25, 50 and 100, in order to test 

the convergence of the algorithm. Table 1 summarizes the descriptive statistics of a sub-

sample of the 12 continuous variables imputed. The descriptive statistics for the remaining 

variables are presented in Table A1 in Appendix A. 

Table 1. Descriptive statistics for the observed data, the five imputed datasets and the five com-

plete datasets 

 Observed Data Imputed Datasets * Complete Datasets * 

Variable/iterations 25 50 100 25 50 100 

KS4_IDACI 

N 15,050.000 1072.000 1072.000 1072.000 16,122.000 16,122.000 16,122.000 

Mean 0.247 0.255 0.253 0.252 0.248 0.248 0.248 

St. Dev. 0.192 0.160 0.160 0.162 0.190 0.190 0.190 

KS4_PASS_AG 

N 15,758.000 364.000 364.000 364.000 16,122.000 16,122.000 16,122.000 

Mean 9.116 7.838 7.638 7.609 9.087 9.083 9.082 

St. Dev. 2.945 3.032 3.113 3.120 2.953 2.957 2.957 

KS4_PTSTNEWG 

N 15,758.000 364.000 364.000 364.000 16,122.000 16,122.000 16,122.000 

Mean 358.959 277.748 271.099 272.080 357.126 356.976 356.998 

St. Dev. 159.147 144.802 145.472 145.227 159.292 159.384 159.367 

KS4_CVAP3APS 

N 15,198.000 924.000 924.000 924.000 16,122.000 16,122.000 16,122.000 

Mean 33.503 34.144 34.186 34.154 33.540 33.542 33.540 

St. Dev. 6.755 8.010 8.057 8.047 6.835 6.838 6.837 

Note: * The values represent the average, which is calculated for the five imputed/completed da-

tasets. Variables definitions are included in Table S1 in the supplementary materials. 

  

Figure 1. Missing value patterns.



Computation 2022, 10, 49 6 of 13

The MI simulation process was executed m = 5 times in parallel in order to produce
five complete datasets using three iteration specifications, 25, 50 and 100, in order to test
the convergence of the algorithm. Table 1 summarizes the descriptive statistics of a sub-
sample of the 12 continuous variables imputed. The descriptive statistics for the remaining
variables are presented in Table A1 in Appendix A.

Table 1. Descriptive statistics for the observed data, the five imputed datasets and the five
complete datasets.

Observed
Data Imputed Datasets * Complete Datasets *

Variable/iterations 25 50 100 25 50 100

KS4_IDACI
N 15,050.000 1072.000 1072.000 1072.000 16,122.000 16,122.000 16,122.000
Mean 0.247 0.255 0.253 0.252 0.248 0.248 0.248
St. Dev. 0.192 0.160 0.160 0.162 0.190 0.190 0.190
KS4_PASS_AG
N 15,758.000 364.000 364.000 364.000 16,122.000 16,122.000 16,122.000
Mean 9.116 7.838 7.638 7.609 9.087 9.083 9.082
St. Dev. 2.945 3.032 3.113 3.120 2.953 2.957 2.957
KS4_PTSTNEWG
N 15,758.000 364.000 364.000 364.000 16,122.000 16,122.000 16,122.000
Mean 358.959 277.748 271.099 272.080 357.126 356.976 356.998
St. Dev. 159.147 144.802 145.472 145.227 159.292 159.384 159.367
KS4_CVAP3APS
N 15,198.000 924.000 924.000 924.000 16,122.000 16,122.000 16,122.000
Mean 33.503 34.144 34.186 34.154 33.540 33.542 33.540
St. Dev. 6.755 8.010 8.057 8.047 6.835 6.838 6.837

Note: * The values represent the average, which is calculated for the five imputed/completed datasets. Variables
definitions are included in Table S1 in the Supplementary Materials.

4. Discussion

To assess the convergence of the algorithm, plots of the means and standard devi-
ations of the five imputed datasets plotted by iteration and imputation were used [13].
If the Gibbs sampler algorithm converges quickly, the series should indicate no pattern
with no long upward or downward trends. The plots of the estimated parameters of the
variables shown in Figure 2 show that the algorithm did converge with 25 iterations and
that the convergence was smoother as the number of iterations increased to 50 and 100.
As can be observed, the two variables measuring the KS4 results, KS4_PASS_AG and
KS4_PTSTNEWG, did not converge with 25 iterations, but instead converged with 50 itera-
tions and even showed smoother convergence with 100 iterations (The convergence plots
for the remaining variables are presented in Figure S2 in the Supplementary Materials).

Given the complexity of the imputation models, it is important to employ diagnostics
tests by comparing the observed and imputed data to help assess how reasonable are the
imputation models employed. Graphic and numeric diagnostics could be used [29].

Methods of graphic diagnosis, such as density plots, could be helpful first diagnostics
for discrepancies between observed to imputed values. Using Kernel density plots [29] the
results in Figure 3 show that the observed and imputed values are not exactly similar where
the imputed values could be higher than the observed values, such as in (KS4_IDACI) or
lower (KS4_PASS_AG). The Kernel density plots for the rest of the variables are presented
in Figure S3 in the Supplementary Materials. Similar findings were found in previous
studies that used MI to impute missing values in children’s mental health datasets [30].
This could be attributed to the percentage of missing values (7% in the former and 2%
in the latter) or the difference in the cases with missing values for the relevant variables
or possible outliers in certain variables, especially the variables measuring income and
financial benefits levels. As such, it is useful to observe numeric diagnostics as well.
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Numeric diagnostics could be implemented by examining the differences between
observed, imputed and complete datasets. For example, three points can be concluded
about the differences between the observed data, the five imputed datasets and the five
complete datasets in Tables 1 and A1. First, there are few differences between the statistics
of the observed data and the five complete datasets. Second, there are also very minimal
differences between the statistics of the five complete datasets over the three iterations
specifications. Third, this also holds for the five imputed datasets.

Computation 2022, 10, x FOR PEER REVIEW 7 of 13 
 

 

4. Discussion 

To assess the convergence of the algorithm, plots of the means and standard deviations 

of the five imputed datasets plotted by iteration and imputation were used [13]. If the Gibbs 

sampler algorithm converges quickly, the series should indicate no pattern with no long up-

ward or downward trends. The plots of the estimated parameters of the variables shown in 

Figure 2 show that the algorithm did converge with 25 iterations and that the convergence 

was smoother as the number of iterations increased to 50 and 100. As can be observed, the 

two variables measuring the KS4 results, KS4_PASS_AG and KS4_PTSTNEWG, did not 

converge with 25 iterations, but instead converged with 50 iterations and even showed 

smoother convergence with 100 iterations (The convergence plots for the remaining varia-

bles are presented in Figure S2 in the supplementary materials). 

KS4_PASS_AG 

Number of iterations: 25 

 
 

Number of iterations: 50  

  

  
Figure 2. Cont.



Computation 2022, 10, 49 8 of 13
Computation 2022, 10, x FOR PEER REVIEW 8 of 13 
 

 

Number of iterations: 100  

 

 

KS4_PTSTNEWG 

Number of iterations: 25 

 

 

Number of iterations: 50 

  

  
Figure 2. Cont.



Computation 2022, 10, 49 9 of 13Computation 2022, 10, x FOR PEER REVIEW 9 of 13 
 

 

Number of iterations: 100 

 
 

Figure 2. Convergence of the MI algorithm. 

Given the complexity of the imputation models, it is important to employ diagnostics 

tests by comparing the observed and imputed data to help assess how reasonable are the 

imputation models employed. Graphic and numeric diagnostics could be used [29]. 

Methods of graphic diagnosis, such as density plots, could be helpful first diagnostics 

for discrepancies between observed to imputed values. Using Kernel density plots [29] the 

results in Figure 3 show that the observed and imputed values are not exactly similar where 

the imputed values could be higher than the observed values, such as in (KS4_IDACI) or 

lower (KS4_PASS_AG). The Kernel density plots for the rest of the variables are presented 

in Figure S3 in the supplementary materials. Similar findings were found in previous stud-

ies that used MI to impute missing values in children’s mental health datasets [30]. This 

could be attributed to the percentage of missing values (7% in the former and 2% in the 

latter) or the difference in the cases with missing values for the relevant variables or possible 

outliers in certain variables, especially the variables measuring income and financial bene-

fits levels. As such, it is useful to observe numeric diagnostics as well. 

25 iterations 50 iterations 100 iterations 

KS4_IDACI 

   

  

Figure 2. Convergence of the MI algorithm.

Computation 2022, 10, x FOR PEER REVIEW 9 of 13 
 

 

Number of iterations: 100 

 
 

Figure 2. Convergence of the MI algorithm. 

Given the complexity of the imputation models, it is important to employ diagnostics 

tests by comparing the observed and imputed data to help assess how reasonable are the 

imputation models employed. Graphic and numeric diagnostics could be used [29]. 

Methods of graphic diagnosis, such as density plots, could be helpful first diagnostics 

for discrepancies between observed to imputed values. Using Kernel density plots [29] the 

results in Figure 3 show that the observed and imputed values are not exactly similar where 

the imputed values could be higher than the observed values, such as in (KS4_IDACI) or 

lower (KS4_PASS_AG). The Kernel density plots for the rest of the variables are presented 

in Figure S3 in the supplementary materials. Similar findings were found in previous stud-

ies that used MI to impute missing values in children’s mental health datasets [30]. This 

could be attributed to the percentage of missing values (7% in the former and 2% in the 

latter) or the difference in the cases with missing values for the relevant variables or possible 

outliers in certain variables, especially the variables measuring income and financial bene-

fits levels. As such, it is useful to observe numeric diagnostics as well. 

25 iterations 50 iterations 100 iterations 

KS4_IDACI 

   

  

Computation 2022, 10, x FOR PEER REVIEW 10 of 13 
 

 

KS4_PASS_AG 

   

Figure 3. Kernel density plots. Observed values are presented by the green curve and the imputed 

values are presented by blue curve. 

Numeric diagnostics could be implemented by examining the differences between 

observed, imputed and complete datasets. For example, three points can be concluded 

about the differences between the observed data, the five imputed datasets and the five 

complete datasets in Tables 1 and A1. First, there are few differences between the statistics 

of the observed data and the five complete datasets. Second, there are also very minimal 

differences between the statistics of the five complete datasets over the three iterations 

specifications. Third, this also holds for the five imputed datasets. 

Another approach is to use the Kolmogorov–Smirnov test to compare the observed 

and imputed values, where any significant differences between the p-values of the ob-

served and the imputed values raise a concern [29]. In this analysis, the pooled imputed 

p-values were used. The pooled p-values are calculated using the mean of the p-values for 

the five imputed values. Using the conventional cut-off point of 0.05 [29], the results show 

that only KS4_AGE_START and KS4_PTSTNEWG showed a discrepancy between the ob-

served and imputed values. The KS test results are presented for 10%, 5% and 1% signifi-

cance levels in Table S2 in the supplementary materials. The results were consistent for 

1% and 10% significance levels. The results were also consistent with the results of other 

studies that used the KS test as a diagnostic check of multiple imputed data from a simu-

lation study [31]. 

Another form of numeric diagnostics examines the differences between observed and 

imputed data. Specifically, (1) an absolute difference in the means between the observed 

and imputed values greater than two standard deviations, or (2) a ratio of variances of the 

imputed and observed data that is less than 0.5 and greater than 2 could raise a flag for 

variables of concern [30]. The results showed that the absolute differences in the means 

were acceptable for five of the twelve continuous variables, while none of the variables 

raise any concerns for the variance ratio criterion. In the supplementary materials, the 

absolute differences in the means are presented in Table S3 and the ratios of the variances 

are presented in Table S4. This is in line with the findings of the same diagnostics tests of 

previous studies [30], proving the validity of the diagnostics. 

Conventional tests of variances and means differences, such as the F-test and t-test, 

could be used as well [31]. However, testing of the means difference between the observed 

and pooled imputed values showed that there were discrepancies between the two reject-

ing the test at 10%, 5% and 1% significance levels. The p-values of the t-tests of the means 

differences between the observed and pooled imputed values are presented in Table S5 in 

the supplementary materials. Independent t-tests for the means difference between the 

observed values and each of the five imputed set of values also showed discrepancies for 

the three iteration configurations for the examined variables aside from five variables; 

KS4_AGE_START, KS4_IDACI, KS4_CVAP3APS, W7PayYrMain_Banded1 (25 iterations 

Figure 3. Kernel density plots. Observed values are presented by the green curve and the imputed
values are presented by blue curve.



Computation 2022, 10, 49 10 of 13

Another approach is to use the Kolmogorov–Smirnov test to compare the observed
and imputed values, where any significant differences between the p-values of the observed
and the imputed values raise a concern [29]. In this analysis, the pooled imputed p-values
were used. The pooled p-values are calculated using the mean of the p-values for the five
imputed values. Using the conventional cut-off point of 0.05 [29], the results show that
only KS4_AGE_START and KS4_PTSTNEWG showed a discrepancy between the observed
and imputed values. The KS test results are presented for 10%, 5% and 1% significance
levels in Table S2 in the Supplementary Materials. The results were consistent for 1% and
10% significance levels. The results were also consistent with the results of other studies
that used the KS test as a diagnostic check of multiple imputed data from a simulation
study [31].

Another form of numeric diagnostics examines the differences between observed and
imputed data. Specifically, (1) an absolute difference in the means between the observed
and imputed values greater than two standard deviations, or (2) a ratio of variances of the
imputed and observed data that is less than 0.5 and greater than 2 could raise a flag for
variables of concern [30]. The results showed that the absolute differences in the means
were acceptable for five of the twelve continuous variables, while none of the variables
raise any concerns for the variance ratio criterion. In the Supplementary Materials, the
absolute differences in the means are presented in Table S3 and the ratios of the variances
are presented in Table S4. This is in line with the findings of the same diagnostics tests of
previous studies [30], proving the validity of the diagnostics.

Conventional tests of variances and means differences, such as the F-test and t-test,
could be used as well [31]. However, testing of the means difference between the observed
and pooled imputed values showed that there were discrepancies between the two rejecting
the test at 10%, 5% and 1% significance levels. The p-values of the t-tests of the means
differences between the observed and pooled imputed values are presented in Table S5
in the Supplementary Materials. Independent t-tests for the means difference between
the observed values and each of the five imputed set of values also showed discrepancies
for the three iteration configurations for the examined variables aside from five variables;
KS4_AGE_START, KS4_IDACI, KS4_CVAP3APS, W7PayYrMain_Banded1 (25 iterations
only) and W2yschat1. In addition, the F-test results for the variances difference also
showed discrepancies for half of variables aside from KS4_AGE_START, KS4_PTSTNEWG,
W1GrssyrHH, W1yschat1, W2yschat1 and W2BenTotBand1 (25 iterations only) (The t-tests
and F-tests p-values are presented in Table S6 in the Supplementary Materials). However,
these discrepancies could be attributed to the difference in the sample size of the two sets of
values for every variable given the percentage of missing data. They could also be attributed
to the existence of outliers in certain variables, especially those measuring income, such as
W1GrssyrHH and W1GrssyrHH, or the level of benefits received W2BenTotBand1.

It is important to note that in general, flagged discrepancies between observed and
imputed data do not necessarily signal a problem. Consistent with existing studies [29]
the findings of this paper show that there are no foolproof tests of the assumptions of the
imputation procedure. However, under MAR, it is not expected that the imputed values
should resemble the observed ones. The MI can help recover these differences based on
information in the observed data [31]. The FCS-MCMC simulation technique was used and
analysed in a number of previous studies. However, with the existence of other MCMC
simulation methods, such as data augmentation and the Metropolis–Hastings algorithm, a
comparison of the results of these imputation methods on the dataset used in this paper
would be of significant research interest.

5. Conclusions

Given the uncertainty of missing data, multiple imputation is known to be superior to
other imputation techniques as it accounts for this uncertainty. This paper contributes to a
number of avenues in the literature on the economics of education and applied statistics
by reviewing the theoretical foundation of missing data analysis with a special focus on
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the application of multiple imputation to longitudinal educational longitudinal. Earlier
attempts to use MCMC simulation were applied on relatively small datasets with small
numbers of variables. Therefore, another contribution of the paper is its application and
comparison of the imputation technique on a large longitudinal English educational study
for three iteration specifications. This paper employed MI on a large educational longitudi-
nal study using using a fully conditional specification method based on an iterative Markov
Chain Monte Carlo (MCMC) simulation using a Gibbs sampler algorithm. The results
show that the missingness pattern of the entire dataset is an arbitrary one. Accordingly,
this result supports the choice of the Gibbs sampling technique. The plots of the estimated
parameters of the variables show that the algorithm did converge with 25 iterations and
that the convergence was smoother as the number of iterations increased to 50 and 100.

This paper used both graphical and numeric diagnostics checks of verify the accuracy
of the imputation. These results are consistent with previous studies that employed MI and
these diagnostics checks to verify the accuracy of the imputation [29–31]. Kernel density
plots showed that the observed and imputed values were not exactly similar where the
imputed values could be higher than the observed values, suggesting the need for numeric
tests. Consistent with other studies [31], the KS test results showed that the majority of the
variables did not show a discrepancy between the observed and imputed values. The results
also showed that the absolute differences in the means were acceptable for five of the twelve
continuous variables, while none of the variables raised any concerns over the variance
ratio criterion [30]. However, conventional tests of variances and means differences, such
as F-test and t-test, showed discrepancies between the observed and imputed data. It is
important to note that in general, flagged discrepancies between observed and imputed
data do not necessarily signal a problem. Existing studies show that there are no foolproof
tests of the assumptions of the imputation procedure [29].

It can be argued that although there is no consensus over the results of all the diagnos-
tics checks, most of the results suggest that the proposed multiple imputation method was
efficient at imputing missing data. Additionally, the results of the simulation proved the
convergence of the algorithm. The final output of the application generated a longitudinal
complete dataset that will enable researchers in the field to estimate educational production
functions more appropriately, avoiding estimation bias.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/computation10040049/s1. Figure S1: Missing value patterns,
Figure S2: Convergence of the MI algorithm, Figure S3: Kernel density plots, Table S1: Variable
definitions, Table S2: Kolmogorov–Smirnov (KS) test p-values, Table S3: The absolute differences in
the means, Table S4: Ratios of variances of observed and imputed data, Table S5: p-values of t-tests of
means differences between observed and pooled imputed values, Table S6: F-test and t-tests p-values.
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Appendix A

Table A1. Descriptive statistics for the observed data, the five imputed datasets and the five
complete datasets.

Observed Data Average of Imputed Datasets * Average of Complete Datasets *

Variable/iterations 25 50 100 25 50 100

KS4_AGE_START
N 15,758.000 364.000 364.000 364.000 16,122.000 16,122.000 16,122.000
Mean 15.000 15.000 15.000 15.010 15.000 15.000 15.000
St. Dev. 0.063 0.060 0.060 0.060 0.060 0.063 0.060
KS4_CVAP2APS
N 14,911.000 1211.000 1211.000 1211.000 16,122.000 16,122.000 16,122.000
Mean 26.852 25.003 24.987 24.952 26.713 26.711 26.709
St. Dev. 4.117 4.674 4.683 4.687 4.190 4.191 4.192
W7PayYrMain_Banded1
N 4193.000 11,929.000 11,929.000 11,929.000 16,122.000 16,122.000 16,122.000
Mean 9094.920 9476.096 9538.915 9842.580 9376.960 9423.441 9648.129
St. Dev. 5539.053 4395.195 4456.949 4611.873 4725.416 4766.340 4881.393
W1GrssyrHH
N 6927.000 9195.000 9195.000 9195.000 16,122.000 16,122.000 16,122.000
Mean 31,166.263 34,473.754 34,726.024 34,468.330 33,052.653 33,196.532 33,049.559
St. Dev. 31,250.830 25,842.917 26,038.670 25,898.230 28,341.062 28,450.424 28,368.798
W2GrssyrHH
N 7612.000 8510.000 8510.000 8510.000 16,122.000 16,122.000 16,122.000
Mean 34,311.852 30,114.079 30,274.178 29,907.481 32,096.057 32,180.565 31,987.004
St. Dev. 30,424.576 23,421.468 23,318.433 23,281.929 27,041.356 26,987.403 26,983.425
W2BenTotBand1
N 13,047.000 3075.000 3075.000 3075.000 16,122.000 16,122.000 16,122.000
Mean 4689.964 6322.914 6584.429 6547.351 5001.422 5051.301 5044.229
St. Dev. 5279.402 4054.574 4125.593 4126.171 5113.919 5136.395 5135.268
W1yschat1
N 15,196.000 926.000 926.000 926.000 16,122.000 16,122.000 16,122.000
Mean 34.046 32.414 32.671 32.919 33.952 33.967 33.981
St. Dev. 7.302 7.268 7.197 7.084 7.310 7.303 7.294
W2yschat1
N 13,165.000 2957.000 2957.000 2957.000 16,122.000 16,122.000 16,122.000
Mean 32.395 30.813 31.167 31.406 32.105 32.170 32.214
St. Dev. 7.603 7.842 7.756 7.749 7.675 7.659 7.642

Note: * The average was calculated for the five imputed/completed datasets.
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