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Quantitative stability and numerical analysis of Markovian

quadratic BSDEs with reflection∗

Dingqian Sun† Gechun Liang‡ Shanjian Tang§

Abstract

We study the quantitative stability of solutions to Markovian quadratic reflected backward
stochastic differential equations (BSDEs) with bounded terminal data. By virtue of bounded
mean oscillation martingale and change of measure techniques, we obtain stability estimates
for the variation of the solutions with different underlying forward processes. In addition, we
propose a truncated discrete-time numerical scheme for quadratic reflected BSDEs and obtain
the explicit rate of convergence by applying the quantitative stability result.

Keywords: Quadratic BSDE with reflection, stability of solutions, discretely reflected BSDE,
rate of convergence
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1 Introduction

In this study, we are interested in the stability of solutions to the following quadratic reflected
backward stochastic differential equations (BSDEs) under Markovian framework

Yt = g(XT ) +
∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs + KT −Kt,

Yt > g(Xt),
∫ T

0

(Yt − g(Xt))dKt = 0,

(1.1)

where T > 0 is a fixed finite time horizon, and the underlying forward process solves

Xt = x +
∫ t

0

b(s,Xs)ds +
∫ t

0

σ(s)dWs, t ∈ [0, T ]. (1.2)
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Herein, {Wt}t>0 is an m-dimensional standard Brownian motion defined on a complete probability
space (Ω,F ,P) and {Ft}t>0 is the augmented natural filtration of W , which satisfies the usual
conditions. Let P denote the progressively measurable σ-field on [0, T ]× Ω.

We assume that all coefficients b, σ, g and f are deterministic and continuous functions and
b : [0, T ]× Rn → Rn, σ : [0, T ] → Rn×m satisfy, for all t ∈ [0, T ] and x, x′ ∈ Rn, that,

|b(t, 0)|+ |σ(t)| 6 L,

|b(t, x)− b(t, x′)| 6 L|x− x′|, (HX)

for a positive constant L. We also assume that g : Rn → R satisfies Lipschitz condition |g(x) −
g(x′)| 6 L|x−x′| for all x, x′ ∈ Rn and is bounded by Mg, whereas f : [0, T ]×Rn×R×Rn×m → R
is Lipschitz with respect to y and locally Lipschitz with respect to both x and z, and has at most
quadratic growth with respect to z, i.e., for any t ∈ [0, T ] and (x, y, z), (x′, y′, z′) ∈ Rn×R×Rn×m,

|f(t, x, y, z)| 6 Mf (1 + |y|) +
α

2
|z|2,

|f(t, x, y, z)− f(t, x′, y, z)| 6 L(1 + |z|)|x− x′|,
|f(t, x, y, z)− f(t, x, y′, z)| 6 L|y − y′|,
|f(t, x, y, z)− f(t, x, y, z′)| 6 L(1 + |z|+ |z′|)|z − z′|,

(HF)

where Mg, Mf and α are all positive constants.
Thanks to the seminal work [14], [4] and [5], the existence and uniqueness of the solution to the

corresponding quadratic BSDEs (without reflection) have been well-developed. The reflected case
was studied in [15] with bounded terminal value and obstacle and [1], [11] for unbounded cases.
In addition to the existence and uniqueness of the solution, stability is also an essential property
that focuses on the variation of the solutions under small perturbations of the coefficients. Stability
is widely used to obtain continuity properties of the solutions. In this study, we apply it to the
numerical analysis of quadratic reflected BSDEs.

Under the Lipschitz setting, a basic stability result was developed in [10, Proposition 3.6],
which gives the variation of the solutions in terms of the suitable norms of their terminal values,
generators, and obstacles. Based on this result, [16] studied the L2-modulus regularity of the
martingale integrand Z via a Feynman-Kac type formula and gave both a numerical scheme in the
spirit of Bermuda options and its rate of convergence. [2] further applied the stability result to
approximate (Y, Z) by its counterpart (Y e, Ze) constructed with the Euler scheme Xπ of (1.2) and
realized the convergence with the aid of a representation of the solution component Z in terms of
the next reflection time, removing the uniform ellipticity condition on X in [16].

However, the counterpart of [10, Proposition 3.6] under the quadratic setting is still lacking.
The existing stability results focus on the continuity of the solutions. For example, in [14] (without
reflection) and [15] (with reflection), the authors showed the uniform convergence of the solutions
(Y n, Zn) with parameters (gn, fn) to the solution (Y, Z) with parameters (g, f) when the obstacles
gn and generators fn uniformly converged to g and f , respectively, by means of the comparison
theorem, monotone property, and Lebesgue’s theorem. However, the above continuity result does
not say anything about the quantitative dependence of the variation of the solutions on those
parameters, which will play a pivotal role in the numerical analysis of quadratic BSDEs with
reflection.

Therefore, the main purpose of this study is to give, for the first time, a quantitative stability
result on the solutions of the Markovian quadratic BSDEs with reflection (1.1) and apply this new
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stability result to establish the convergence of a truncated discrete-time numerical scheme for (1.1).
Proceeding under the Markovian framework, we mainly focus on the perturbations of the parameters
in the forward process (1.2) and study the variation of the solutions (Y, Z) to the quadratic reflected
BSDE (1.1) driven by different forward processes.

Owing to the quadratic growth condition, we will work with bounded terminal data to further
exploit the properties of bounded mean oscillation (BMO) martingales, which is used ubiquitously
in the numerical analysis of quadratic BSDEs without reflection, see [6], [9] and [17] for example.
Specifically, we first obtain some fundamental properties of the solution to the quadratic BSDE with
reflection (1.1), i.e., the BMO property of the martingale integrand Z ∗W and the Lp-integrability
of

∫ T

0
|Zt|2dt and KT . Next, working under a new equivalent probability measure induced by Z ∗W ,

we use the reverse Hölder inequality to estimate the variation of the solution component Y for any
order in terms of the difference of underlying forward processes, followed by the estimates on the
solution components (Z, K) equipped with appropriate norms. Finally, transferring back via John–
Nirenberg inequality, we obtain the explicit dependence of the variation of the solutions under the
original probability measure (see Theorem 3.2 for further details).

Further, we apply the stability result to the numerical analysis of quadratic reflected BSDEs.
Contrary to quadratic BSDEs without reflection and Lipschitz BSDEs with reflection, where the
solution component Z is typically bounded in the Markovian setup, the solution component Z for
the quadratic reflected BSDE (1.1)–(1.2) is not necessarily bounded. This is the major difficulty to
propose a numerical scheme and study its convergence. To overcome this difficulty, we resort to
the discretely reflected BSDE (4.3) introduced in Section 4. Thanks to the previous work [18], we
can readily extend the results therein to obtain a uniform estimate of ZR, the second component
of the solution to the discretely reflected BSDE (4.3), and the convergence rate from the discretely
to continuously reflected BSDEs. In turn, we truncate the generator via the bound of ZR and
propose a truncated discrete-time numerical scheme. This enables us to directly apply the existing
numerical result under the Lipschitz setting (see [2]) to obtain the approximation error for the
discretely reflected BSDE with quadratic growth. However, when extending the estimates to the
continuously reflected case, a problematic term κ|π| appears, and it will degenerate to a constant as
the overall convergence rate is obtained (see Lemma 4.1). To overcome this difficulty, we introduce
ZR,e as defined in (4.4), which is based on the Euler scheme for Xπ, the same forward process as
in our discrete-time numerical scheme. However, one needs to estimate an additional error between
the solutions (Y, Z) and (Y e, Ze) of the continuously reflected BSDEs driven by X and Xπ, respec-
tively. It turns out this error can be controlled by applying the quantitative stability estimate (see
Theorem 4.3 for further details).

The remainder of this article is organized as follows. In Section 2, we obtain some useful
properties of the solution to the quadratic reflected BSDE with bounded terminal value. The
quantitative stability result under the Markovian framework is derived in Section 3, exploiting
techniques from BMO martingales. In the following section, we propose a truncated discrete-
time numerical scheme for the quadratic reflected BSDE and apply the stability result to obtain a
convergence rate for such a discrete-time approximation. Finally, Section 5 concludes this study.
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2 Preliminaries

In this section, we introduce the notations of different spaces and recall some known results on
quadratic reflected BSDEs with bounded terminal data.

Without loss of generality, we assume that the forward process X has dimension n = 1.
Notably, this is merely for the sake of notational simplicity. Let S∞[0, T ] denote the set of
R-valued progressively measurable bounded processes and K2[0, T ] denote all R-valued contin-
uous adapted processes (Kt)06t6T , which are increasing with K0=0 and E|KT |2 < ∞. For
1 6 p < ∞, Sp[0, T ] denotes all R-valued adapted processes (Yt)06t6T such that ‖Y ‖p

Sp :=
E(sup06t6T |Yt|p) < ∞, and Hp([0, T ];Rm) denotes all Rm-valued adapted processes (Zt)06t6T

satisfying ‖Z‖p
Hp := E[

∫ T

0
|Zt|2Rmdt]p/2 < ∞. Moreover, Lp(Ft) denotes all R-valued Ft-measurable

variables satisfying ‖Y ‖p
Lp := E|Yt|p < ∞ for any t ∈ [0, T ], and we usually omit (Ft) hereafter in

case there is no ambiguity.
Under the above assumptions (HX) and (HF), we know the decoupled system (1.1) and (1.2) with

bounded terminal function and bounded obstacle has a unique solution (X, Y, Z, K) ∈ S2[0, T ] ×
S∞[0, T ]×H2([0, T ];Rm)×K2[0, T ], and we denote ‖Y ‖∞ , M . For more details of this result, we
refer the reader to [15]. In the following, unless otherwise specified, we shall use C to denote the
universal constant that may depend on all given coefficients L, T,Mg,Mf , and α, and Cp further
depends on an extra parameter p > 1.

Next, we recall the definition and some basic properties of BMO martingales, which provide the
techniques for this study. For the detailed theory, we refer the reader to [12]. We say a continuous
local martingale (Mt)t∈[0,T ] is a BMO martingale if it is square-integrable with M0 = 0 such that

‖M‖2BMO := sup
τ∈T [0,T ]

‖E[〈M〉T − 〈M〉τ |Fτ ]‖∞ < ∞,

where T [0, T ] is the set of all stopping times valued in [0, T ].

Lemma 2.1 Let M be a BMO martingale. Then, we have:
1) The stochastic exponential

E(M)t := exp
(
Mt − 1

2
〈M〉t

)
, t ∈ [0, T ],

is a uniformly integrable martingale.
2) The energy inequality gives that

E[〈M〉nT ] 6 n!‖M‖2n
BMO

for all n ∈ N+, which implies that BMO ⊂ Hp([0, T ]) for every p > 1.
3) According to reverse Hölder inequality, there exists some p > 1 such that

E[E(M)p
T ] 6 Cp,

where Cp is a constant only depending on p and the BMO norm of M . Moreover, the maximum p
satisfying such property can be explicitly determined by the BMO norm of M through a decreasing
function (see more details in [12,Theorem3.1]).
4) By the John–Nirenberg inequality, we have

E
[
E(M)

− 1
p−1

T

]
6 Cp

for all p > 1 satisfying ‖M‖BMO <
√

2(
√

p− 1), see [12,Theorem2.4].
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With the above tools at hand, we claim the following properties about the solutions to the
quadratic reflected BSDE (1.1).

Proposition 2.2 Suppose Assumptions (HX) and (HF) hold and let (X, Y, Z, K) be the solution
of system (1.1) and (1.2). Then, the stochastic integral Z ∗ W :=

( ∫ t

0
ZsdWs

)
t∈[0,T ]

is a BMO

martingale with the BMO norm satisfying

‖Z ∗W‖2BMO ≤ exp(4αM)
α2

[1 + 2αMf (1 + M)T ]. (2.1)

Proof. Denote ‖Y ‖∞ , M . Making exponential change of variable ηt := e−αYt , we realize the
following reflected BSDE with an upper obstacle

ηt = θT +
∫ T

t

F (s, ηs,Λs)ds−
∫ T

t

ΛsdWs − (JT − Jt), t ∈ [0, T ] (2.2)

with θt = e−αg(Xt),Λt = −αe−αYtZt, dJt = αe−αYtdKt and stochastic coefficient

F (t, ω, y, z) = −αy
[
f
(
t,Xt(ω),

ln y

−α
,

z

−αy

)
+

α

2

∣∣∣ z

−αy

∣∣∣
2]
1{y>e−αM},

which satisfy ηt 6 θt and ∫ T

0

(θt − ηt)dJt = 0.

Moreover, by the boundedness of Y and Assumption (HF), we have

−αMf (1 + M)y − eαM |z|2 6 F (t, ω, y, z) 6 αMf (1 + M)y,

and thus (η, Λ, J) ∈ S∞[0, T ]×H2([0, T ];Rm)×K2[0, T ] with e−αM 6 ηt 6 eαM for all t ∈ [0, T ].

Applying Itô’s formula to |ηt|2 gives that

|ηt|2 = |ηT |2 +
∫ T

t

2ηsF (s, ηs,Λs)ds−
∫ T

t

2ηsΛsdWs −
∫ T

t

2ηsdJs −
∫ T

t

|Λs|2ds. (2.3)

Because dJt > 0, ηt > 0 and Λ ∈ H2([0, T ];Rm), we have

|ηt|2 + EFt

[ ∫ T

t

|Λs|2ds
]

6 EFt
|ηT |2 + EFt

[ ∫ T

t

2ηsF (s, ηs,Λs)ds
]

6 EFt
|ηT |2 + 2αMf (1 + M)EFt

[ ∫ T

t

|ηs|2ds
]

6 [1 + 2αMf (1 + M)T ] exp(2αM).

Thus,

EFt

[ ∫ T

t

|Zs|2ds
]

= EFt

[ ∫ T

t

∣∣∣ Λs

−αηs

∣∣∣
2

ds
]

6 exp(2αM)
α2

EFt

[ ∫ T

t

|Λs|2ds
]

6 exp(4αM)
α2

[1 + 2αMf (1 + M)T ], ∀t ∈ [0, T ],

(2.4)
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and one can easily conclude by the definition of BMO martingales. ¤

The above proposition implies that the BMO norm of Z ∗W depends only on α, Mf ,Mg, M ,
and T . Further, we have the following Lp-integrability of

∫ T

0
|Zt|2dt and KT .

Proposition 2.3 Suppose Assumptions (HX) and (HF) hold, and let (X, Y, Z, K) be the solution
of system (1.1) and (1.2). Then, for any p > 1,

E
[( ∫ T

0

|Zt|2dt
)p

+ (KT )p
]

6 Cp.

Proof. It is clear from Proposition 2.2 and assertion 2) of Lemma 2.1 to obtain the result of Z part.
For the K part, rewrite the reflected equation as follows:

KT = K0 + Y0 − g(XT )−
∫ T

0

f(s,Xs, Ys, Zs)ds +
∫ T

0

ZsdWs

6 M + Mg +
∫ T

0

|f(s,Xs, Ys, Zs)|ds +
∣∣∣
∫ T

0

ZsdWs

∣∣∣

6 M + Mg + MfT (1 + ‖Y ‖∞) +
α

2

∫ T

0

|Zs|2ds +
∣∣∣
∫ T

0

ZsdWs

∣∣∣,

(2.5)

where the last line follows from the assumptions of f and g. Thus, by Burkholder–Davis–Gundy
inequality and the conclusion of the Z part, we obtain

E|KT |p 6 Cp

(
1 + E

( ∫ T

0

|Zs|2ds
)p

+ E
∣∣∣
∫ T

0

ZsdWs

∣∣∣
p)

6 Cp

(
1 + E

( ∫ T

0

|Zs|2ds
)p

+ E
( ∫ T

0

|Zs|2ds
)p/2)

6 Cp.

(2.6)

¤

3 Main stability result

Now, we are ready to deal with the variation of the solutions to quadratic reflected BSDEs
driven by different forward processes. Suppose that Xj solves

Xj
t = x +

∫ t

0

bj(s,Xj
s )ds +

∫ t

0

σj(s)dWs, t ∈ [0, T ]

for j = 1, 2, where (bj , σj) satisfies Assumption (HX), then we know both X1 and X2 are in S2[0, T ].
Given the parameters f and g, we denote the solutions to the quadratic reflected BSDE (1.1)
driven by X1 and X2 as (Y 1, Z1,K1) and (Y 2, Z2,K2), respectively, which belong to S∞[0, T ] ×
H2([0, T ];Rm) × K2[0, T ] and satisfy ‖Y 1‖∞ ∨ ‖Y 2‖∞ 6 M . We further denote δX = X1 − X2,
δY = Y 1 − Y 2, δZ = Z1 − Z2 and δK = K1 −K2, and have the following expression

δYt = δYT +
∫ T

t

f(s,X1
s , Y 1

s , Z1
s )− f(s,X2

s , Y 2
s , Z2

s )ds−
∫ T

t

δZsdWs +
∫ T

t

dδKs

= δYT +
∫ T

t

(γsδXs + βsδYs + µsδZs)ds−
∫ T

t

δZsdWs +
∫ T

t

dδKs,

(3.1)
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where

γs :=
f(s,X1

s , Y 1
s , Z1

s )− f(s,X2
s , Y 1

s , Z1
s )

X1
s −X2

s

1{δXs 6=0},

βs :=
f(s,X2

s , Y 1
s , Z1

s )− f(s,X2
s , Y 2

s , Z1
s )

Y 1
s − Y 2

s

1{δYs 6=0},

and

µs :=
f(s,X2

s , Y 2
s , Z1

s )− f(s,X2
s , Y 2

s , Z2
s )

|Z1
s − Z2

s |2
(Z1

s − Z2
s )T1{|δZs|6=0}.

By the locally Lipschitz assumption of f , we have

|γs| 6 L(1 + |Z1
s |), |βs| 6 L, |µs| 6 L(1 + |Z1

s |+ |Z2
s |), ∀s ∈ [0, T ],

which further imply that
∫ T

0
(|γs|2 + |µs|2)ds is Lp-integrable for any p > 1 by Proposition 2.3 and

that µ ∗W is a BMO martingale by Proposition 2.2.
Regarding the difficulty caused by the quadratic growth in the Z part, the BMO property of

µ ∗W enables us to proceed under a novel equivalent probability measure Q defined as

dQ
dP

:= E(µ ∗W )T ,

under which WQ
t = Wt −

∫ t

0
µsds, t ∈ [0, T ], is a standard Brownian motion.

Moreover, because

‖µ ∗W‖BMO 6 L(1 + ‖Z1 ∗W‖BMO + ‖Z2 ∗W‖BMO),

we know from assertion 3) of Lemma 2.1 that there exists some p∗ > 1, which can be determined
by the BMO norm of µ∗W , such that E(µ∗W )T is Lp∗ -integrable, i.e., E[E(µ∗W )p∗

T ] 6 Cp∗ . Thus,
Cp∗ depends only on the BMO norm of µ ∗ W , which essentially relies on the given coefficients
L,α, Mf ,Mg, and T , and we may just write it as the universal constant C hereafter. Next, we will
give the Lp-estimate of the difference of solutions under such a probability measure in the following
proposition.

Proposition 3.1 For any p > 1 and ‖δX‖S4pq∗ ≤ 1,

EQ
[

sup
t∈[0,T ]

|δYt|2p +
( ∫ T

0

|δZt|2dt
)p

+ |δKT |2p
]

6 Cp‖δX‖p

S4pq∗ , (3.2)

where q∗ is the conjugate exponent of p∗, i.e., 1
q∗ + 1

p∗ = 1, and the parameter p∗ is determined by
the BMO norm of µ ∗W (see assertion 3) of Lemma 2.1).

Proof. To prove this result, we first obtain the estimate of the expectation under the probability
measure with an undecided parameter A but without taking the supremum. Then, choosing appro-
priate A gives the exact estimate under the supremum norm of the solution component Y in the
second step and the components of the solution (Z,K) in the last step.

Step one. Estimates of EQ[|δYt|2p] and p(2p− 1)EQ[
∫ T

0
|δYt|2p−2|δZt|2dt].
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Applying Itô’s formula to |δYt|2p gives that

|δYt|2p =|δYT |2p + 2p

∫ T

t

(δYs)2p−1γsδXsds + 2p

∫ T

t

(δYs)2p−1βsδYsds− 2p

∫ T

t

(δYs)2p−1δZsdWQ
s

+ 2p

∫ T

t

(δYs)2p−1dδKs − p(2p− 1)
∫ T

t

(δYs)2p−2|δZs|2ds.

(3.3)

Taking expectation under probability measure Q and recalling the boundedness of δY , we have

EQ[|δYt|2p] + p(2p− 1)EQ
[ ∫ T

t

|δYs|2p−2|δZs|2ds
]

6EQ[|δYT |2p] + 2pEQ
[ ∫ T

t

|δYs|2p−1|γs||δXs|ds
]

+ 2pEQ
[ ∫ T

t

|δYs|2p|βs|ds
]

+ 2pEQ
[ ∫ T

t

(δYs)2p−1dδKs

]
.

(3.4)

Recall the Lp∗ -integrability of E(µ∗W )T . We have that, for any FT -measurable and non-negative
variable X ∈ Lq∗ ,

EQ[X ] = E[E(µ ∗W )T X ] 6 (E[E(µ ∗W )p∗

T ])1/p∗(E[X q∗ ])1/q∗ 6 C(E[X q∗ ])1/q∗ , (3.5)

where q∗ is the conjugate exponent of p∗. Moreover, we know that both X1 and X2 are in the space
Sp[0, T ] under Assumption (HX) for any p > 2. Now, we are ready to deal with the inequality (3.4),
where the first term can be estimated by the above inequality (3.5) and the Lipschitz assumption
of g as

EQ[|δYT |2p] 6 L2pEQ[|δXT |2p] 6 Cp(E[|δXT |2pq∗ ])1/q∗ 6 Cp‖δX‖2p

S2pq∗ . (3.6)

We also list the following two estimates for later use. By (3.5), Cauchy–Schwarz inequality, and
the Lp-integrability of K1

T ,K2
T and

∫ T

0
|γt|2dt with arbitrary p, we derive that, for any p > 1

EQ
[

sup
t∈[0,T ]

|δXt|2p
( ∫ T

0

|γt|2dt
)p]

6 C
(
E

[
sup

t∈[0,T ]

|δXt|2pq∗
( ∫ T

0

|γt|2dt
)pq∗])1/q∗

6C
(
E

[
sup

t∈[0,T ]

|δXt|4pq∗
])1/2q∗(

E
[( ∫ T

0

|γt|2dt
)2pq∗])1/2q∗

6 Cp‖δX‖2p

S4pq∗ ,

(3.7)

and

EQ
[

sup
t∈[0,T ]

|δXt|p(K1
T + K2

T )p
]

6 C
(
E

[
sup

t∈[0,T ]

|δXt|pq∗(K1
T + K2

T )pq∗
])1/q∗

6C
(
E

[
sup

t∈[0,T ]

|δXt|2pq∗
])1/2q∗(

E[(K1
T + K2

T )2pq∗ ]
)1/2q∗

6 Cp‖δX‖p

S2pq∗ .

(3.8)

For the second term of (3.4), we can use Hölder’s inequality, Young’s inequality, and (3.7) to
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get

2pEQ
[ ∫ T

t

|δYs|2p−1|γs||δXs|ds
]

6 EQ
[ ∫ T

t

|δYs|2pds
]

+ p2EQ
[ ∫ T

t

|δYs|2p−2|γs|2|δXs|2ds
]

6EQ
[ ∫ T

t

|δYs|2pds
]

+ p2EQ
[

sup
t∈[0,T ]

|δYt|2p−2 sup
t∈[0,T ]

|δXt|2
∫ T

0

|γs|2ds
]

6EQ
[ ∫ T

t

|δYs|2pds
]

+
1

qA
EQ

[
sup

t∈[0,T ]

|δYt|(2p−2)q
]

+ p2p−1Ap−1EQ
[

sup
t∈[0,T ]

|δXt|2p
( ∫ T

0

|γs|2ds
)p]

6EQ
[ ∫ T

t

|δYs|2pds
]

+
1

qA
EQ

[
sup

t∈[0,T ]

|δYt|2p
]

+ Ap−1Cp‖δX‖2p

S4pq∗ ,

(3.9)

where q is the conjugate exponent of p and A > 1 is a constant yet to be determined.
For the third term of (3.4), we have

2pEQ
[ ∫ T

t

|δYs|2p|βs|ds
]

6 2pLEQ
[ ∫ T

t

|δYs|2pds
]
. (3.10)

Regarding the last term of (3.4) with reflection, because g(Xj
s ) 6 Y j

s for all s ∈ [0, T ] and Kj

only increases when Y j = g(Xj), j = 1, 2, we can first derive that

(Y 1
s − Y 2

s )dK1
s = [Y 1

s − g(X1
s ) + g(X1

s )− g(X2
s ) + g(X2

s )− Y 2
s ]dK1

s 6 [g(X1
s )− g(X2

s )]dK1
s ,

and similarly,
(Y 2

s − Y 1
s )dK2

s 6 [g(X2
s )− g(X1

s )]dK2
s ,

which imply that

δYsdδKs = (Y 1
s − Y 2

s )dK1
s + (Y 2

s − Y 1
s )dK2

s

6 |g(X1
s )− g(X2

s )|d(K1
s + K2

s ) 6 L|δXs|d(K1
s + K2

s ).
(3.11)

Then, we can use the same arguments as above to obtain

2pEQ
[ ∫ T

t

(δYs)2p−1dδKs

]
6 2pLEQ

[ ∫ T

t

|δYs|2p−2|δXs|d(K1
s + K2

s )
]

62pLEQ
[

sup
t∈[0,T ]

|δYt|2p−2 sup
t∈[0,T ]

|δXt|(K1
T + K2

T )
]

6 1
qA
EQ

[
sup

t∈[0,T ]

|δYt|(2p−2)q
]

+
(2pL)p

p
Ap−1EQ

[
sup

t∈[0,T ]

|δXt|p(K1
T + K2

T )p
]

6 1
qA
EQ

[
sup

t∈[0,T ]

|δYt|2p
]

+ Ap−1Cp‖δX‖p

S2pq∗ .

(3.12)

Plugging (3.6), (3.9), (3.10), and (3.12) back into (3.4) and by Cauthy–Schwarz inequality, we
get

EQ[|δYt|2p] + p(2p− 1)EQ
[ ∫ T

t

|δYs|2p−2|δZs|2ds
]

6(2pL + 1)
∫ T

t

EQ|δYs|2pds +
2

qA
EQ

[
sup

t∈[0,T ]

|δYt|2p
]

+ Ap−1Cp‖δX‖p

S4pq∗ , ∀t ∈ [0, T ].
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Because δY is bounded and hence EQ
[
supt∈[0,T ] |δYt|2p

]
is finite, we obtain from Gronwall’s in-

equality that

EQ[|δYt|2p] 6 e(2pL+1)T
( 2

qA
EQ

[
sup

t∈[0,T ]

|δYt|2p
]

+ Ap−1Cp‖δX‖p

S4pq∗

)
, ∀t ∈ [0, T ], (3.13)

and moreover,

p(2p− 1)EQ
[ ∫ T

0

|δYs|2p−2|δZs|2ds
]

6[(2pL + 1)Te(2pL+1)T + 1]
( 2

qA
EQ

[
sup

t∈[0,T ]

|δYt|2p
]

+ Ap−1Cp‖δX‖p

S4pq∗

)

6CT

qA
EQ

[
sup

t∈[0,T ]

|δYt|2p
]

+ Ap−1Cp‖δX‖p

S4pq∗

(3.14)

with CT := 2[(2pL + 1)Te(2pL+1)T + 1].

Step two. Estimate of EQ[supt∈[0,T ] |δYt|2p].

Next, we shall go back to (3.3) in the first step of the proof and follow similar procedure to
estimate EQ[supt∈[0,T ] |δYt|2p]. First, we have

EQ[ sup
t∈[0,T ]

|δYt|2p] + p(2p− 1)EQ
[ ∫ T

0

|δYs|2p−2|δZs|2ds
]

6EQ[|δYT |2p] + 2pEQ
[ ∫ T

0

|δYs|2p−1|γs||δXs|ds
]

+ 2pEQ
[ ∫ T

0

|δYs|2p|βs|ds
]

+ 2pEQ
[

sup
t∈[0,T ]

∣∣∣
∫ T

t

(δYs)2p−1δZsdWQ
s

∣∣∣
]

+ 2pEQ
[

sup
t∈[0,T ]

∫ T

t

(δYs)2p−1dδKs

]
.

(3.15)

By (3.9), (3.10), and (3.13), we have

2pEQ
[ ∫ T

0

|δYs|2p−1|γs||δXs|ds
]

+ 2pEQ
[ ∫ T

0

|δYs|2p|βs|ds
]

6(2pL + 1)EQ
[ ∫ T

0

|δYs|2pds
]

+
1

qA
EQ

[
sup

t∈[0,T ]

|δYt|2p
]

+ Ap−1Cp‖δX‖2p

S4pq∗

6CT

qA
EQ

[
sup

t∈[0,T ]

|δYt|2p
]

+ Ap−1Cp‖δX‖p

S4pq∗ ,

(3.16)

similarly by (3.11) and (3.12),

2pEQ
[

sup
t∈[0,T ]

∫ T

t

(δYs)2p−1dδKs

]
6 2pEQ

[
sup

t∈[0,T ]

∫ T

t

L|δYs|2p−2|δXs|d(K1
s + K2

s )
]

=2pLEQ
[ ∫ T

0

|δYs|2p−2|δXs|d(K1
s + K2

s )
]

6 1
qA
EQ

[
sup

t∈[0,T ]

|δYt|2p
]

+ Ap−1Cp‖δX‖p

S2pq∗ .

(3.17)
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As for the stochastic integral term in (3.15), we derive that

2pEQ
[

sup
t∈[0,T ]

∣∣∣
∫ T

t

(δYs)2p−1δZsdWQ
s

∣∣∣
]

6 2pC̃EQ
[( ∫ T

0

|δYs|2(2p−1)|δZs|2ds
)1/2]

6pEQ
[
2
(

sup
t∈[0,T ]

|δYt|2p

∫ T

0

C̃2|δYs|2p−2|δZs|2ds
)1/2]

6p
( 1

2p− 1
EQ

[
sup

t∈[0,T ]

|δYt|2p
]

+ (2p− 1)C̃2EQ
[ ∫ T

0

|δYs|2p−2|δZs|2ds
])

,

(3.18)

where C̃ is the constant coming from the following Burkholder-Davis-Gundy inequality

EQ
[

sup
t∈[0,T ]

∣∣∣
∫ T

t

ψsdWQ
s

∣∣∣
]

6 C̃EQ
[( ∫ T

0

|ψs|2ds
)1/2]

,

which holds for all Ft-adapted stochastic processes satisfying Q
{ ∫ T

0
|ψs|2ds < ∞}

= 1. Combining
(3.15)-(3.18) and together with the results in the first step, we can finally get

p− 1
2p− 1

EQ[ sup
t∈[0,T ]

|δYt|2p] 6CT + 1
qA

EQ
[

sup
t∈[0,T ]

|δYt|2p
]

+ Ap−1Cp‖δX‖p

S4pq∗

+ p(2p− 1)C̃2EQ
[ ∫ T

0

|δYs|2p−2|δZs|2ds
])

6[CT C̃2 + CT + 1]
1

qA
EQ

[
sup

t∈[0,T ]

|δYt|2p
]

+ Ap−1Cp‖δX‖p

S4pq∗ .

Choosing A := 2[CT C̃2 + CT + 1], we can achieve the desired result for the Y part.

Step three. Estimate of EQ[(
∫ T

0
|δZs|2ds)p] and EQ[|δKT |2p].

Applying Itô’s formula to |δYt|2 gives that

|δYt|2 =|δYT |2 +
∫ T

t

2δYs(γsδXs + βsδYs + µsδZs)ds−
∫ T

t

2δYsδZsdWs

+
∫ T

t

2δYsdδKs −
∫ T

t

|δZs|2ds

=|δYT |2 +
∫ T

t

2δYsγsδXsds +
∫ T

t

2|δYs|2βsds−
∫ T

t

2δYsδZsdWQ
s

+
∫ T

t

2δYsdδKs −
∫ T

t

|δZs|2ds.

Thus,

EQ
[( ∫ T

0

|δZs|2ds
)p]

6Cp

{
EQ|δYT |2p + EQ

∣∣∣
∫ T

0

2δYsγsδXsds
∣∣∣
p

+ EQ
∣∣∣
∫ T

0

2|δYs|2βsds
∣∣∣
p

+ EQ
∣∣∣
∫ T

0

2δYsδZsdWQ
s

∣∣∣
p

+ EQ
∣∣∣
∫ T

0

2δYsdδKs

∣∣∣
p}

.
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Then, by (3.7), (3.8) and similar arguments as in the first step, we obtain that

EQ
∣∣∣
∫ T

0

2δYsγsδXsds
∣∣∣
p

6 CpEQ
[

sup
t∈[0,T ]

|δYt|p
( ∫ T

0

|γs||δXs|ds
)p]

6CpEQ
[

sup
t∈[0,T ]

|δYt|2p] + CpEQ
[

sup
t∈[0,T ]

|δXt|2p
( ∫ T

0

|γs|2ds
)p]

6 Cp‖δX‖p

S4pq∗ ,

EQ
∣∣∣
∫ T

0

2|δYs|2βsds
∣∣∣
p

6 CpEQ
[

sup
t∈[0,T ]

|δYt|2p] 6 Cp‖δX‖p

S4pq∗ ,

and

EQ
∣∣∣
∫ T

0

2δYsdδKs

∣∣∣
p

6 EQ
[( ∫ T

0

2L|δXs|d(K1
s + K2

s )
)p]

6CpEQ
[

sup
t∈[0,T ]

|δXt|p(K1
T + K2

T )p
]

6 Cp‖δX‖p

S2pq∗ .

As for the martingale term, by B-D-G and Young’s inequality, we derive that

CpEQ
∣∣∣
∫ T

0

2δYsδZsdWQ
s

∣∣∣
p

6 CpEQ
[( ∫ T

0

|δYs|2|δZs|2ds
) p

2
]

6 CpEQ
[

sup
t∈[0,T ]

|δYt|p
( ∫ T

0

|δZs|2ds
) p

2
]

6 CpEQ
[

sup
t∈[0,T ]

|δYt|2p
]

+
1
2
EQ

[( ∫ T

0

|δZs|2ds
)p]

,

and then together with the result for the Y part, we get the conclusion for Z.
Regarding the increasing process K, we have the expression

δKT = δY0 − [g(X1
T )− g(X2

T )]−
∫ T

0

[f(s,X1
s , Y 1

s , Z1
s )− f(s,X2

s , Y 2
s , Z2

s )]ds +
∫ T

0

δZsdWs

= δY0 − [g(X1
T )− g(X2

T )]−
∫ T

0

γsδXsds−
∫ T

0

βsδYsds +
∫ T

0

δZsdWQ
s .

Thus, by (3.6), (3.7) and the conclusion for the Y and Z parts, we further obtain

EQ|δKT |2p 6Cp

[
EQ|δY0|2p + EQ|g(X1

T )− g(X2
T )|2p + EQ

∣∣
∫ T

0

γsδXsds
∣∣2p

+ EQ
∣∣
∫ T

0

βsδYsds
∣∣2p + EQ

∣∣
∫ T

0

δZsdWQ
s

∣∣2p
]

6Cp

[
‖δX‖p

S4pq∗ + ‖δX‖2p

S2pq∗ + ‖δX‖2p

S4pq∗ + EQ
[( ∫ T

0

|δZs|2ds
)p]] 6 Cp‖δX‖p

S4pq∗ ,

which concludes the proof. ¤

Finally, we estimate the variation of the two solutions to quadratic reflected BSDEs constructed
with different forward processes, X1 and X2, under the original probability measure.
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Theorem 3.2 Suppose Assumptions (HX) and (HF) hold. Then, for ‖δX‖S4p̄q∗ ≤ 1, we have the
following conclusion:

E
[

sup
t∈[0,T ]

|δYt|2 +
∫ T

0

|δZt|2dt + |δKT |2
]

6 C‖δX‖S4p̄q∗ ,

where q∗ is given in Proposition 3.1, and p̄ is the minimum parameter corresponding to the BMO
martingale µ ∗W satisfying assertion 4) of Lemma 2.1.

Proof. First, let p̄ > 1 be the minimum parameter such that ‖µ ∗W‖BMO <
√

2(
√

p̄ − 1) and q̄
be its conjugate exponent. Notably, the constant Cp̄ appearing in the estimate of the assertion
4) of Lemma 2.1 can be substituted by a universal constant C, as p̄ can be fully determined by
‖µ ∗W‖BMO. Then, for any FT -measurable and non-negative random variable X ∈ Lp̄, we obtain
that

E[X] =E[E(µ ∗W )1/p̄
T X · E(µ ∗W )−1/p̄

T ] 6
(
E

[E(µ ∗W )T X p̄
])1/p̄(

E
[E(µ ∗W )−q̄/p̄

T

])1/q̄

=
(
EQ[X p̄]

)1/p̄(
E

[E(µ ∗W )
− 1

p̄−1
T

])1/q̄

6 C
(
EQ[X p̄]

)1/p̄

.

(3.19)

Thus, we can conclude the proof by applying Proposition 3.1 directly to derive

E
[

sup
t∈[0,T ]

|δYt|2 +
∫ T

0

|δZt|2dt + |δKT |2
]

6C
(
EQ

[
sup

t∈[0,T ]

|δYt|2p̄ +
( ∫ T

0

|δZt|2dt
)p̄

+ |δKT |2p̄
])1/p̄

6 C‖δX‖S4p̄q∗ .

(3.20)

¤

4 Application to numerical scheme for quadratic reflected
BSDEs

In this section, we apply the quantitative stability result to the convergence analysis for a
discrete-time numerical scheme for the quadratic reflected BSDE (1.1)-(1.2) under the Markovian
framework and Assumptions (HX) and (HF). For further time discretization, we need to assume in
this section that b, σ and f satisfy Hölder’s continuity with respect to the time variable. That is,
for any 0 6 s 6 t 6 T and any (x, y, z) ∈ R× R× Rm,

|b(t, x)− b(s, x)|+ |σ(t)− σ(s)|+ |f(t, x, y, z)− f(s, x, y, z)| 6 L(t− s)
1
2 . (HT)

Different from quadratic BSDEs without reflection and Lipschitz BSDEs with reflection, where
the solution component Z is typically bounded in the Markovian setup, the solution component Z
for quadratic reflected BSDE (1.1)-(1.2) is not necessarily bounded. This is the major difficulty to
propose a numerical scheme and study its convergence. To overcome this difficulty, we resort to
the discretely reflected version of BSDE introduced in (4.3), where the reflection is only permitted
to operate at specific discrete-time points. In [18], we have proven that the corresponding solution
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(Y R, ZR) is a good approximation of its continuous counterpart (Y, Z) in (1.1) (Notably, the
generator f does not involve y in [18], but one can easily extend the result therein to include y
in the generator). Moreover, because the solution component ZR is uniformly bounded, we can
truncate the corresponding generator via the bound of ZR and obtain a truncated discrete-time
numerical scheme on each reflected interval. The quantitative stability result will play a pivotal
role in the convergence analysis of this numerical scheme. First, we give some basic definitions,
which will be used later.

4.1 Definition and notations

Given a partition π := {0 = t0 < t1 < · · · < tN = T} of [0, T ], we shall first introduce the
standard Euler scheme Xπ for X, which has been widely studied in the literature and has the form

{
Xπ

0 = x,
Xπ

ti+1
= Xπ

ti
+ b(ti, Xπ

ti
)(ti+1 − ti) + σ(ti)(Wti+1 −Wti

), i 6 N − 1,

whose continuous-time version is defined correspondingly as

Xπ
t = Xπ

ti
+ b(ti, Xπ

ti
)(t− ti) + σ(ti)(Wt −Wti

), t ∈ [ti, ti+1), i 6 N − 1.

Denote |π| := maxi6N−1(ti+1 − ti) and without loss of generality, assume that N |π| 6 L. Then,
under Assumption (HX), we know that Xπ ∈ S2p[0, T ] and

E
[

sup
06t6T

|Xt −Xπ
t |2p

]
+ max

06i6N−1
E

[
sup

t∈[ti,ti+1]

|Xt −Xπ
ti
|2p

]
6 C|π|p, p > 1, (4.1)

(see, e.g., [13]). Further, with piecewise constant coefficients, we may regard (4.1) as a special case
of (1.2) with coefficients satisfying Assumption (HX).

Next, we define (Y e, Ze,Ke) as the solution to the following continuously reflected BSDE driven
by Xπ, instead of X in (1.1),

Y e
t = g(Xπ

T ) +
∫ T

t

f(s,Xπ
s , Y e

s , Ze
s )ds−

∫ T

t

Ze
sdWs + Ke

T −Ke
t ,

Y e
t > g(Xπ

t ),
∫ T

0

(Y e
t − g(Xπ

t ))dKe
t = 0.

(4.2)

Because Xπ ∈ S2[0, T ] and the system (1.1)-(1.2) is decoupled, we know that (Y e, Ze,Ke) ∈
S∞[0, T ] × H2([0, T ];Rm) × K2[0, T ] and can further obtain a priori estimates from Propositions
2.2 and 2.3, i.e.,

‖Y e‖∞ 6 M, ‖Ze ∗W‖2BMO 6 exp(4αM)
α2

[1 + 2αMf (1 + M)T ]

and the Lp-integrability of Ke
T and

∫ T

0
|Ze

t |2dt for any p > 1.

Now, we introduce the abovementioned discretely reflected BSDE, which is defined recursively
and only operates at specific times R = {rj , 0 6 j 6 κ | 0 = r0 < r1 · · · < rκ−1 < rκ = T}.
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Let |R| := maxj6κ−1(rj+1 − rj), and for further discussion, we assume that R ⊂ π, which means
the discrete reflection times are all included in the partition time points. The solution (Y R, ZR)
satisfies

Y R
T = Ỹ R

T = g(XT ),

and for j 6 κ− 1, t ∈ [rj , rj+1),
{

Ỹ R
t = Y R

rj+1
+

∫ rj+1

t
f(s,Xs, Ỹ

R
s , ZRs )ds− ∫ rj+1

t
ZRs dWs,

Y R
t = Ỹ R

t + [g(Xt)− Ỹ R
t ]+1{t∈R}.

(4.3)

For later use, we also define the solution (Y R,e, ZR,e) to discretely reflected BSDE, which is the
same as defined in (4.3), but with X substituted by Xπ, i.e.,

Y R,e
T = Ỹ R,e

T = g(Xπ
T ),

and for j 6 κ− 1, t ∈ [rj , rj+1),
{

Ỹ R,e
t = Y R,e

rj+1
+

∫ rj+1

t
f(s,Xπ

s , Ỹ R,e
s , ZR,e

s )ds− ∫ rj+1

t
ZR,e

s dWs,

Y R,e
t = Ỹ R,e

t + [g(Xπ
t )− Ỹ R,e

t ]+1{t∈R}.
(4.4)

To simplify the expression, we denote the discretely reflected BSDE systems (4.3) and (4.4) as
DR(f, g, X) and DR(f, g, Xπ), respectively.

Next, we apply the truncation technique to handle the locally Lipschitz and quadratic growth
condition. Define fn(t, x, y, z) := f(t, x, y, hn(z)) for all (t, x, y, z) ∈ [0, T ]×R×R×Rm, where hn is
a smooth modification of the projection on the centered ball of radius n such that |hn(z)| 6 n + 1,
|∇hn| 6 1 and satisfying that hn(z) = z when |z| 6 n, for all n ∈ R+. Thus, we can define
analogously the truncated discretely reflected BSDEs DR(fn, g, X) and DR(fn, g, Xπ) to meet the
Lipschitz condition, and denote their solutions by (Y R,n, ZR,n) and (Y R,e,n, ZR,e,n), respectively.

Further, from [18, Lemma 4.5], we know that the second component ZR of the solution to
discretely reflected BSDE is uniformly bounded with regard to the discrete reflection R, and the
bound Mz only depends on the given coefficients in assumptions (HF) and (HX). One can easily
check that this result also holds for ZR,e. Thus, taking n = Mz, we know that (Y R,Mz , ZR,Mz )
(resp. (Y R,e,Mz , ZR,e,Mz )) coincides with (Y R, ZR) (resp. (Y R,e, ZR,e)); therefore, we only need
to focus on the discrete-time scheme for such a truncated discretely reflected BSDE with parameter
Mz and generator fMz , which satisfies, for all (x, y, z), (x′, y′, z′) ∈ R× R× Rm, that

|fMz
(t, x, y, z)− fMz

(t, x′, y′, z′)| 6 L(Mz + 2)|x− x′|+ L|y − y′|+ L(2Mz + 3)|z − z′|.

4.2 Truncated discrete-time numerical scheme

Inspired by classical numerical schemes under Lipschitz condition (see [3] [7] and [19] for BS-
DEs and [2] [16] for reflected BSDEs) and the truncated discretely reflected BSDE in the above
subsection, we now introduce the following truly discretized scheme with the help of the truncation
function hMz

. We define a pair of piecewise constant process (Ȳ π, Z̄π) recursively via

Ȳ π
tN

= Ỹ π
tN

= g(Xπ
T )
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and 



Z̄π
ti

= (ti+1 − ti)−1Eti

[
Ȳ π

ti+1
(Wti+1 −Wti)

]
,

Ỹ π
ti

= Eti

[
Ȳ π

ti+1

]
+ (ti+1 − ti)f

(
ti, X

π
ti

, Ỹ π
ti

, hMz
(Z̄π

ti
)
)
, i 6 N − 1,

Ȳ π
ti

= Ỹ π
ti

+
[
g(Xπ

ti
)− Ỹ π

ti

]+1{ti∈R},
(4.5)

and setting
(Ȳ π

t , Z̄π
t ) = (Ȳ π

ti
, Z̄π

ti
) for t ∈ [ti, ti+1), i 6 N − 1.

For later use, we shall introduce the continuous-time scheme associated with the square inte-
grable processes (Ȳ π, Z̄π). By the martingale representation theorem, we know that there exists
Zπ ∈ H2([ti, ti+1);Rm) such that

Ȳ π
ti+1

= Eti

[
Ȳ π

ti+1

]
+

∫ ti+1

ti

Zπ
u dWu, i 6 N − 1.

Then, we can define Ỹ π and Y π for [ti, ti+1), i 6 N − 1 by
{

Ỹ π
t = Ȳ π

ti+1
+ (ti+1 − t)fMz

(
ti, X

π
ti

, Ỹ π
ti

, Z̄π
ti

)− ∫ ti+1

t
Zπ

u dWu,

Y π
t = Ỹ π

t +
[
g(Xπ

t )− Ỹ π
t

]+1{t∈R}.
(4.6)

One can check the connection between (4.5) and (4.6): Y π = Ȳ π on π and Y π = Ỹ π on [0, T ] \ R,
and by Itô’s isometry,

Z̄π
t = Z̄π

ti
= (ti+1 − ti)−1Eti

[ ∫ ti+1

ti

Zπ
u du

]
, t ∈ [ti, ti+1), i 6 N − 1.

Moreover, we define the piecewise constant process for ZR likewise by

Z̄Rt := (ti+1 − ti)−1Eti

[ ∫ ti+1

ti

ZRu du
]
, t ∈ [ti, ti+1), i 6 N − 1.

which is known as the best H2-approximation of ZR.

4.3 Approximation results for discretely reflected BSDEs

It has been shown in [18] that discretely reflected BSDE is a good approximation of continuously
reflected BSDEs. Thus, we shall first consider the convergence from the numerical scheme (4.5) to
the discretely reflected BSDE in this subsection. With the boundedness of ZR and its truncation,
we can proceed under the Lipschitz condition.

There exist results about the convergence for discretely reflected BSDEs driven by X and Xπ

under the Lipschitz condition, see [2, Theorem 3.1 and Corollary 3.1], wherein the authors first
showed that the approximation error for the discretely reflected BSDE constructed with X (resp.
Xπ) is ultimately controlled by ‖ZR − Z̄R‖H2 (resp. ‖ZR,e − Z̄R,e‖H2), and then by means of the
representation for ZR(resp. ZR,e) in terms of the next reflection time to obtain the regularity result.
We may now directly apply the result to our truncated discrete-time scheme under assumptions
(HX), (HF), and (HT) and the following additional assumptions.

16



Assumption g and σ further satisfy:
(H1) g ∈ C1

b with L-Lipschitz derivative.
(H2) g ∈ C2

b with L-Lipschitz first and second derivatives, σ satisfies L-Lipschitz condition with
respect to time variable.

Lemma 4.1 Suppose (HX), (HF), and (HT) hold. Then,

max
j6κ−1

‖ sup
t∈[rj ,rj+1]

|Y R
t − Y π

t |‖L2 + max
i6N−1

‖ sup
t∈(ti,ti+1]

|Y R
t − Ȳ π

ti+1
|‖L2 6 C

(
α1(κ)|π| 12 + ε1(π)

)
,

‖ZR − Zπ‖H2 + ‖ZR − Z̄π‖H2 6 C
(
α2(κ)|π| 12 + ε1(π)

)
,

‖ZR,e − Zπ‖H2 + ‖ZR,e − Z̄π‖H2 6 C
(
α1(κ)|π| 12 + ε2(π)

)
,

with (α1(κ), α2(κ), ε1(π), ε2(π)) = (κ
1
4 , κ

1
2 , |π| 14 , |π| 14 ) under (H1), and (α1(κ), α2(κ), ε1(π), ε2(π)) =

(1, κ
1
2 , |π| 12 , |π| 14 ) under (H2).

Proof. Keeping (Y R, ZR) = (Y R,Mz , ZR,Mz ) and ZR,e = ZR,e,Mz in mind and applying the main
theorem in [2] under Lipschitz case to our truncated scheme (4.5) and (truncated) discretely reflected
BSDE (4.3)/(4.4), we can obtain the conclusion directly. ¤

4.4 Approximation results for continuously reflected BSDEs

We recall our previous result about the convergence rate from discretely to continuously reflected
BSDE in [18]. As mentioned before, one can readily verify that all results therein still hold when
we replace X by Xπ and under the general driver f involving y.

Lemma 4.2 Let (HX) and (HF) hold. Then,

max
j6κ−1

‖ sup
t∈[rj ,rj+1]

|Yt − Y R
t |‖L2 + ‖Z − ZR‖H2 6 C|R| 14 ,

max
j6κ−1

‖ sup
t∈[rj ,rj+1]

|Y e
t − Y R,e

t |‖L2 + ‖Ze − ZR,e‖H2 6 C|R| 14 .

In addition, if Assumption (H1) holds, the index of convergence rate will become 1
2 .

Notably, the conclusion under Assumption (H1) can be obtained from [18, Theorem 4.6] using an
approximation argument as usual. Finally, we present our main theorem of this section regarding
the convergence result of the numerical scheme to continuously reflected BSDE with quadratic
growth and deterministic σ. To ensure consistency between the two convergence criteria appearing
in the above lemmas 4.1 and 4.2, we assume the reflection points and the partition points coincide,
i.e., R = π (thus κ = N) in the following theorem.

Theorem 4.3 Suppose (HX), (HF), (HT) and (H1) hold. Then, the following estimates hold with
q = 1

4 :

max
i6N−1

‖ sup
t∈[ti,ti+1]

|Yt − Y π
t |+ sup

t∈(ti,ti+1]

|Yt − Ȳ π
ti+1

|‖L2 6 C|π|q,

‖Z − Zπ‖H2 + ‖Z − Z̄π‖H2 6 C|π| 14 .

Moreover, under Assumption (H2), we have finer result for the Y part with q = 1
2 .
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Proof.
Y part: Lemma 4.1 and 4.2 lead straightforward to the result for Y with R = π.

Z part: As shown in Lemma 4.1, one cannot get the final convergence with only ZR due to the
problematic term κ

1
2 |π| 12 on the righthand side of the estimate. Notably, the problem cannot be

resolved by simply increasing the regularity assumption on g and σ. Thus, we need to proceed with
the help of ZR,e.

Considering (X1, Y 1, Z1) = (X, Y, Z), (X2, Y 2, Z2) = (Xπ, Y e, Ze) and applying the stability
result in Theorem 3.2, we obtain from the estimate (4.1) that

‖Z − Ze‖2H2 6 C‖X −Xπ‖S4p̄q∗ 6 C|π| 12 ,

where p̄ and q∗ are given in Theorem 3.2. Then, the conclusion for the solution component Z
follows from the results related to ZR,e in Lemma 4.1 and 4.2. This completes the proof. ¤

5 Conclusions

In this paper, we proposed a truncated discrete-time numerical scheme for quadratic reflected
BSDEs. To prove the convergence, we developed a quantitative stability result for the quadratic
reflected BSDE, and then adapted the numerical analysis for quadratic BSDEs without reflection
and Lipschitz BSDEs with reflection. One of the critical conditions is the deterministic assumption
on the volatility term σ, which was imposed to guarantee the uniform boundedness for the solution
component ZR in the corresponding discretely reflected BSDE. A natural extension is to consider
the multiplicative σ by allowing it to depend on the underlying states. This is far more challenging,
and the major difficulty is to obtain a uniform estimate for ZR with respect to the discrete reflection
R. Such an extension is left for future research.
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