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Abstract
We study cautious stochastic choice (CSC) agents facing optimal timing decisions in a
dynamic setting. In an expectedutility setting, the optimal strategy is always a threshold
strategy—to stop/sell the first time the price process exits an interval. In contrast, we
show that in the CSC setting, where the agent has a family of utility functions and
is concerned with the worst case certainty equivalent, the optimal strategy may be
of non-threshold form and may involve randomization. We provide some carefully
constructed examples, including one where we can solve explicitly for the optimal
stopping rule and show it is a non-trivial mixture of threshold strategies. Our model is
consistent with recent experimental evidence in dynamic setups whereby individuals
do not play cut-off or threshold strategies.
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1 Introduction

It is well recognized that individual decision making is not fully captured by expected
utility theory and many non-expected utility theories have been developed with the
aim of providing a better fit to observed behavior. Many of these alternative theories
have been well studied in a static setting, but recently there has been much interest in
studying non-expected utility preferences in dynamic settings which describe timing
problems arising in real world decisions. Examples of such timing decisions include
when to stop gambling in a casino, when to sell a stock, when to exercise an option
and when to stop searching and accept a job offer. Theoretical work in this vein
include Ebert and Strack (2015) and in experimental settings, Oprea et al. (2009).
Our paper considers agents who face optimal timing decisions in a dynamic setting
and who exhibit cautious stochastic choice (CSC). The CSC agent is unsure which
utility function to use from a family of possibilities and applies caution to choose the
worst-case certainty equivalent. In our optimal stopping setup, a CSC agent may have
an optimal strategy which is not of threshold form andmay involve randomization.We
demonstrate this through a series of example models. The dynamic CSC model gives
predictions which are consistent with recent experimental evidence in dynamic setups
whereby individuals do not play cut-off or threshold strategies (Strack and Viefers
2021; Fischbacher et al. 2017).

In this paper, we build upon the theory of cautious stochastic choice (Cerreia-
Vioglio et al. 2015, 2019, alsoMaccheroni 2002) to develop a continuous time optimal
stopping model with CSC preferences. Cerreia-Vioglio et al. (2015, 2019) (see also
Maccheroni 2002) develop a theory of CSC in a static decision making setting. The
agent aims to select a best lottery from a given set. Under CSC the agent has a family
of possible utility functions in mind. For a given lottery, and for each utility, the agent
computes the certainty equivalent. The agent then values the lottery via the worst-case
certainty equivalent. Finally the agent chooses the best lottery which maximizes this
value. Since CSC does not satisfy the quasi-convexity property, agents may benefit
from mixing (see Cerreia-Vioglio et al. 2019).

In this paper we focus on an asset sale problem and consider a continuous time
model in which the price process is given by a one-dimensional time-homogeneous
diffusion. If the agent were an expected utility maximizer, it is well known that the
optimal stopping rule is given by the first exit time of the price process from an interval,
ie. a pure threshold strategy (Karni and Safra 1990 in discrete-time). We formulate
an optimal stopping problem with CSC as follows. The agent has a family of utility
functions and for a given stopping rule (in an appropriate class of admissible strategies),
for each utility, computes the certainty equivalent. The worst-case is then taken over
utilities. The goal is to find the stopping rule whichmaximizes the worst-case certainty
equivalent value.

Under optimal stopping models with a law invariance property, but not quasi-
convexity, it is known that it is sufficient to search over stopping rules of a particular
form—those of randomized threshold form (Henderson et al. 2018b). CSC falls under
these assumptions. However, this result does not say that once quasi-convexity does
not hold, pure thresholds cannot still be optimal. It might still be the case that a pure
threshold is preferred to randomization (regardless of how randomization is imple-
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mented), and we need to study particular models, such as CSC, to explore this further.
A contribution of this paper is to construct relevant examples for our CSC setting
where randomization is in fact used. We provide both some realistic models and a
stylized model.

We first consider two models where the asset price follows exponential Brownian
motion and demonstrate that the optimal strategy is not a pure threshold. In the first
model, the family of utilities are S-shaped and reference level dependent. There are
many such utilities as the agent is unsure of the strength of their loss aversion, risk
aversion and risk seeking and the value of their reference level. Our model extends
trading models of Kyle et al. (2006), Barberis and Xiong (2012), Henderson (2012),
and Ingersoll and Jin (2013) to use the cautious approach, with a worst case over many
utilities, and shows that pure price thresholds are no longer optimal sale triggers. An
implication of this model is that using a cautious approach with S-shaped reference
dependent utilities may lead to non-trivial strategies, akin to the already known results
for prospect theory (Henderson et al. 2018a). However, as shown by Ebert and Strack
(2015), naive prospect theory agents continue to gamble indefinitely whilst Duraj
(2019) (also Huang et al. 2020) demonstrates CSC agents do not suffer from this
somewhat extreme behaviour.

Our second model uses a family of concave utility functions and highlights that the
CSC approach can lead to non-trivial strategies, even for a set of concave functions.
This pair of models show CSC agents do randomize in realistic continuous-time opti-
mal stopping settings. By also considering a stylized but tractable example, we can
actually calculate the optimal stopping rule and show that it is a non-trivial mixture of
threshold strategies. Furthermore, some of our ideas used in the proofs of calculating
the optimal stopping rule may be useful in other settings.

In contrast to the behavior of an EU agent, our CSC agent does not only use pure
threshold strategies and instead prefersmixed or randomized strategies. TheCSCagent
is deliberately randomizing. We will now describe the body of experimental evidence
which is consistent with our theoretical model. An important finding in experimental
studies of individual decision making is the phenomenon of stochastic or random
choice. When subjects are asked to choose from the same set of options many times,
they are inconsistent in their choices. Patterns of stochastic choice were first recorded
by Tversky (1969) andmany studies have replicated, explored and extended his results
(see Agranov and Ortoleva 2017 for recent findings and a comprehensive overview,
and, amongst others, Dwenger et al. 2018; Hey andOrme 1994; Feldman and Rehbeck
2020; Permana 2020). In particular, recent studies of Agranov and Ortoleva (2017,
2020) and Dwenger et al. (2018) interpret their experimental results as suggesting the
main force is a deliberate desire of participants to randomize. Much of this evidence is
gathered in static settings. Recently, researchers have studied dynamic settings which
can better reflect the real decision making situations individuals face in economics
and finance (eg. Oprea et al. 2009). Strack and Viefers (2021) conduct an experiment
in a sophisticated asset selling task.

They present evidence that players do not play cut-off or threshold strategies over
gains—they do not behave time-consistently within rounds 75% of the time, and visit
the same price level three times on average before stopping at it. In their study of the
impact of automatic selling devices on experimental trading behavior, Fischbacher
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et al. (2017) find that participants tend to set any upper limit further away from the
current price than any lower limits and use the upper limit less frequently.

Our CSC model can also be viewed as contributing a new dynamic optimal stop-
ping model to the wider literature on stochastic choice modelling. CSC falls into the
class of stochastic models postulating that stochasticity is a deliberate choice of the
agent.1 Deliberate randomization (Machina 1985) emerges in non-EU settings such
as prospect theory (see Wakker 1994 in a static setting, and Henderson et al. (2017)
and He et al. (2017) in dynamic setups). There are fewer models capturing the phe-
nomenon of stochastic choice in the dynamic setting of a stopping problem. Strack and
Viefers (2021) combine random utility with regret preferences in a stopping context.
Henderson et al. (2017) and He et al. (2017) show randomized strategies are optimal
in a stopping model with prospect theory preferences. The largest class of stopping
models are the bounded rationality Drift Diffusion models (DDM) of which the work
of Fudenberg et al. (2018) is a recent example.

The paper is organised as follows. Section 2 presents the optimal stoppingmodels—
both the classical EUmodel and our CSC optimal stopping model. Section 3 describes
and solves two models with S-shaped reference dependent or concave families of
utilities. A stylized example is given in Sect. 4. We defer supplementary material and
proofs to the Appendices. Appendix A outlines the CSC model in its original static
setup (Cerreia-Vioglio et al. 2015, 2019) and demonstrates mixing may be beneficial.
Further results and proofs on optimal stopping under EU are in Appendix B. Proofs
for the stylized and generalized example are in Appendices C and D. Appendix E
provides some insights on discounting in the CSC optimal stopping model.

2 The optimal stoppingmodels

Optimal stopping theory has been influential in several areas of economics. In finance,
the sale and purchase of stocks and the pricing of American options are classical
stopping problems (McKean 1965; Merton 1973). Following McDonald and Siegel
(1986) the optimal timing of irreversible investments and market entry decisions are
modelled as stopping problems (Dixit and Pindyck 1994). In labour economics, Stigler
(1962) and McCall (1970) established job search as a stopping task.

We first establish notation and review the theory for the optimal liquidation of an
asset in the classical setting of a maximizer of expected utility. For J an interval subset
of R, let F J↑ be the set of increasing functions F J↑ = { f : J �→ R; f increasing}. For
f ∈ F J↑ we can define the left-continuous inverse f −1. For K a subset ofRd letP(K )

be the set of Borel probability measures on K . Let L(Y ) denote the law of a random
variable Y . If Z = (Zt )t≥0 is a stochastic process and S is a class of stopping times
then let QZ (S) = {L(Zτ ); τ ∈ S}. Let δz be the point mass at z.

We work on a filtered probability space (�,F ,F = {Ft }t≥0,P). Let Y = (Yt )t≥0
be a (F,P)-stochastic process on this probability space. Let I Y be the state space of

1 There are two other main classes of models of stochastic choice. In random utility models, subjects
maximize a well defined utility function but this changes stochastically over time (eg. Gul and Pesendorfer
2006). In models of bounded rationality, agents have well defined and stable preferences but may not make
the best choice because of bounded rationality (see Johnson and Ratcliff 2013 for a review).
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Y and let Ī Y be the closure of I Y . We suppose that Y is a regular, time-homogeneous
diffusion with initial value Y0 = y which lies in the interior of I Y . Further we suppose
that limt↑∞ Yt exists. A sufficient condition for this is Assumption 1 below.

Throughout, Y may represent the price process of a stock in the market, the accu-
mulation of returns from an investment project, or the accumulation of an agent’s
wealth when gambling or trading, to give a few possibilities. We give further details
on some of these interpretations at the close of Sect. 3.1.

2.1 Optimal stopping under expected utility

LetU be an increasing utility function,U ∈ F ĪY↑ . For a maximizer of expected utility
the objective is to find the certainty equivalent

CEU (S) = sup
τ∈S

U−1(Ey[U (Yτ )]) = U−1
(
sup
τ∈S

E
y[U (Yτ )]

)
(1)

over a suitable class S of stopping times. We introduce three classes of stopping times

• T , the class of all stopping times;
• TT , the class of (pure) threshold stopping times;
• TR , the class of randomized threshold stopping times.

Note that TT ⊂ TR ⊂ T . The set of pure threshold stopping times includes stopping
immediately and can be written as

TT = ∪(β,γ )∈D
{
τYβ,γ

}
, (2)

where τYβ,γ = infu≥0{u : Yu /∈ (β, γ )} and the union is taken over (β, γ ) in an

appropriate set D ⊆ ([−∞, y] ∩ Ī Y ) × ([y,∞] ∩ Ī Y ) which we describe below.
In order to be able to define the set of randomized threshold stopping times TR we

suppose that F0 is rich enough as to support any probability measure η onD, and that
the dynamics of Y are independent of a random variable�with law η. Then we define
a randomized stopping time τη by

τη = inf
u≥0

{u : Yu /∈ (�β,�γ ) where � = (�β,�γ ) is F0 measurable and has law η}

and set
TR = {τη; η ∈ P(D)}. (3)

Often, the best way to solve (1) is via a change of scale. Let s be a strictly increasing
function such that X = s(Y ) is a local martingale.2 Then U (Yτ ) = g(Xτ ) where

2 Such a function s exists under very mild conditions on Y , and is called a scale function. For example, if
Y solves the SDE dYt = σ(Yt )dBt + μ(Yt )dt then s = s(z) is a solution to 1

2σ(z)2s′′ + μ(z)s′ = 0. Note
that if s is a scale function then so is any affine transformation of s and so we may chose any convenient
normalization for s.
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g = U ◦ s−1 and (1) can be rewritten as

CEU (S) = sup
τ∈S

U−1(Ex [g(Xτ )]) = s−1
(
sup
τ∈S

g−1(Ex [g(Xτ )])
)

(4)

where x = s(y). Since the scale function s is fixed, in finding the optimal stopping
rule it is sufficient to consider supτ∈S g−1(Ex [g(Xτ )]).

We do not make a concavity assumption onU . Monotonicity is preserved under the
transformation U �→ g, but in general concavity is not. Indeed, if g is concave then
typically stopping immediately (τ = 0) is optimal.

The state space of X is I X = s(I Y ). Then Ī X = s( Ī Y ). If I X is not bounded below
then for any level γ in the interior of I X with γ ≥ x the first hitting time HX

γ =
infu≥0{u : Xu = γ } is finite almost surely and CEU (T ) = supγ∈I X U−1g(γ ) =
sup{γ : γ ∈ I Y } = max{γ : γ ∈ Ī Y }. We want to exclude this degenerate case.
Hence we make the following assumption:

Assumption 1 I X = s(I Y ) is bounded below. Then, without loss of generality we
may assume that the lower limit of I X is zero. Any accessible boundary point for X
is absorbing.

The upper limit of I X may be finite or infinite. Note that since X is a non-negative
local martingale limt↑∞ Xt exists and hence limt↑∞ Yt exists. We do not exclude τ

such that P(τ = ∞) > 0 and on the set τ = ∞ we define Xτ = limt↑∞ Xt . This is
why we want to consider Ī X as well as I X . Then T is the set of all stopping times,
and not just finite stopping times.

Example 1 Suppose Y is geometric Brownian motion: dYt = σYtdBt + μYtdt . Let
ψ = 1 − 2μ

σ 2 . Y has state space I Y = (0,∞). Provided ψ �= 0 we have s(z) =
sgn(ψ)zψ . (Ifψ = 0 then s(z) = ln z is the scale function.) Ifψ ≤ 0 then s(0) = −∞.
This is equivalent to 2μ ≥ σ 2, in which case Y hits arbitrarily high price levels
with probability one and the optimal stopping problem is degenerate. If ψ > 0 then
I X = (0,∞). For ψ > 0, limt→∞ Xt = 0 ∈ Ī X \ I X .

Note that τYβ,γ = infu≥0{u : Yu /∈ (β, γ )} = infu≥0{u : Xu /∈ (s(β), s(γ ))} =:
τ X
s(β),s(γ ). Hence TT has the alternative representation

TT = ∪(a,b)∈DX

{
τ X
a,b

}
,

for an appropriate setDX . The right space to choose isDX = [0, x)× ([x,∞]∩ Ī X ).
Then D in (2) and (3) is given by

D = [s−1(0), y) × [y, s−1(∞)]

TR can also be rewritten as TR = {τ X
η : η ∈ P(DX )} where

τ X
η = inf

u≥0
{u : Xu /∈ (�β,�γ )where � = (�β,�γ ) has law η.}

123



Cautious stochastic choice, optimal stopping…

Note that the certainty equivalent depends only on the law of Xτ . The following
result is classical. (In discrete time, see Karni and Safra (1990) and Strack and Viefers
(2021), and in mathematical finance, see Dayanik and Karatzas (2003). For a textbook
treatment, see Chapter 4, Peskir and Shiryaev (2006).)

Proposition 1

1. CEU (TT ) = CEU (TR) = CEU (T ).
2. CEU (T ) = U−1(gcv(s(y))) where gcv is the smallest concave majorant of g =

U ◦ s−1.

Corollary 1 In trying to find the optimal stopping rule in the classical (single utility)
case it is sufficient to restrict attention to pure threshold strategies of the form τ = τYa,b.

One approach to proving Proposition 1 is to show first that the problem can be
recast as one involving the process in natural scale X , and then that the problem of
maximizing over stopping times can be recast as a maximization over distributions.
In particular, we see from (1) or (4) that the certainty equivalent depends on τ only
through the law of the stopped process. Hence, instead of searching over stopping
rules we can search over laws of the stopped process instead. In terms of maximizing
expected utility of the stopped process, it can be shown that the optimal law places
mass on at most two points. Such a distribution can be achieved using a pure threshold
rule. This explains why CEU (TT ) = CEU (T ) and the more general result of the first
part of the Proposition follows since clearly CEU (TT ) ≤ CEU (TR) ≤ CEU (T ).

2.2 Optimal stopping under cautious stochastic choice

Our goal in this section is to develop an optimal stopping model with CSC. Let Y be a
time-homogeneous diffusionwith state space I Y . LetWY ⊆ F ĪY↑ be a set of increasing

utility functions. The goal is to find supτ∈S infu∈WY u−1(E[u(Yτ )]), where τ is chosen
from a suitable set of stopping times S. We define�Y = P( Ī Y ). Recall that QY (S) =
{ν : ν = L(Yτ ); τ ∈ S}. Clearly we have QY (TT ) ⊂ QY (TR) ⊆ QY (T ) ⊆ �Y .

As in the classical, single-utility setting, it is often convenient to work with the
process X in natural scale rather than Y . We set W X = {g = u ◦ s−1; u ∈ WY }.
Define �X = P( Ī X ). Again we have QX (TT ) ⊂ QX (TR) ⊆ QX (T ) ⊆ �X .

For a fixed stopping time τ and a fixed utility u ∈ W we definethe certainty
equivalent

Cu
τ = u−1(E[u(Yτ )]) = u−1(E[g(Xτ )]) = s−1(g−1(E[g(Xτ )])). (5)

Once we have minimized over utilities the value function for a single stopping time
is Vτ = inf

u∈WY
Cu

τ . Under CSC the optimal stopping problem is to find V (S) =
supτ∈S Vτ where S is a set of stopping times. Since Vτ depends on the stopping time
only through the law of the stopped process we have
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V (S) = sup
ν∈QY (S)

inf
u∈WY

u−1
(∫

u(z)ν(dz)

)

= s−1

(
sup

ν∈QX (S)

inf
g∈W X

g−1
(∫

g(z)ν(dz)

))
(6)

and τ ∗ ∈ argmaxτ∈S Vτ . In particular, we want to consider S = T , S = TR and
S = TT .

Note that the agent solves the problem based upon what is optimal given current
information, and under the assumption that they commit to this optimal strategy. This
is a natural starting point and was also the approach taken by Henderson et al. (2018a),
where a stopping problem for a prospect theory agent who can pre-commit was solved.

We want to solve (6). Henderson et al. (2018b) study a class of stopping problems
where the value associated to a stopping rule depends upon the law of the stopped
process. Their result states that under a law invariance property, we have V (TR) =
V (T ). The law invariance property holds for our CSC setting. Hence we know that
it is sufficient to look for optimal strategies of randomized threshold form (we do not
need to look beyond the class S = TR). However, we only know that V (TT ) ≤ V (TR)

and so we can only say that a pure threshold strategy may not be optimal.
Our contribution here is to show that we can indeed find models where pure thresh-

olds are not optimal, and we demonstrate for those examples that the agent can do
better by randomization. Unlike in the classical case (see Proposition 1(1)), we may
indeed have V (TT ) < V (TR) in our CSC setup.

3 Two realistic models

In this section we develop two realistic models which are based on either S-shaped
reference dependent utilities or on concave utilities.

3.1 Amodel with S-shaped reference dependent utilities

The first model is based on the S-shaped reference-dependent preferences found in
prospect theory (Tversky and Kahneman 1992). Utility is defined over gains and
losses relative to a reference point, rather than over final wealth, an idea proposed by
Markowitz (1952). The utility function exhibits concavity in the domain of gains and
convexity in the domain of losses, and the function is steeper for losses than for gains,
a feature known as loss aversion. In our CSC model, there are many such utilities as
the agent is unsure of the strength of their loss aversion, risk aversion and risk seeking
and the value of their reference level.

In recent years, there have been a number of optimal stopping models for asset
sales and trading which utilise the S-shaped utility, beginning with Kyle et al. (2006)
and continued by Barberis and Xiong (2012), Henderson (2012), and Ingersoll and Jin
(2013). These papers employ a single S-shaped utility to represent investor preferences
and ask questions such as: when does an investor sell an asset? How do risk aversion,
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risk seeking and loss aversion impact on their sale decision? These models also seek
to provide an explanation for the disposition effect observed in empirical trading data
(Odean 1998) whereby investors have a higher propensity to take gains over losses.
Each of themodels inKyle et al. (2006), Barberis andXiong (2012),Henderson (2012),
and Ingersoll and Jin (2013) leads to the derivation of explicit price thresholds at which
an investor would sell the asset. That is, for preferences which can be represented by
a single S-shaped utility, the optimal strategy is of pure threshold form.

Our model extends those of Kyle et al. (2006), Barberis and Xiong (2012), Hen-
derson (2012), and Ingersoll and Jin (2013) to use the cautious approach, with a worst
case over many utilities, and shows that pure thresholds are no longer optimal.

Suppose Y follows geometric Brownian motion and solves dYt = σYtdBt +μYtdt
subject to Y0 = y. We assume 0 < μ < 1

2σ
2. Let WY = {ui : 1 ≤ i ≤ N } be a

family of S-shaped reference dependent utility functions with

ui (z) =
{

(z − Ri )
δi z ≥ Ri

−κi (Ri − z)δi z < Ri
(7)

where {(δi , Ri , κi )}1≤i≤N is a family of parameters. Here, for each i , 1 − δi ∈ (0, 1)
represents the coefficient of risk aversion/risk seeking, Ri > 0 is the reference level
and κi ≥ 1 is the loss aversion parameter, introducing an asymmetry. Such piecewise
power functions are the specification proposed by Tversky and Kahneman (1992).

Our problem is to find the CSC value corresponding to the asset sale problem:

sup
τ

min
i

u−1
i (E[ui (Yτ )]). (8)

If N = 1, we have a single S-shaped utility and this recovers (special cases of)
the stock trading models of Barberis and Xiong (2012), Henderson (2012), Ingersoll
and Jin (2013). For N = 1, under the utility specification in (7), and with Y follow-
ing geometric Brownian motion, the optimal pure threshold strategy may be derived
explicitly.

Define ψ = 1 − 2μ
σ 2 ∈ (0, 1) and set s(z) = zψ . Set X = s(Y ) and x = s(y).

Then X solves dXt = ψσ XtdBt subject to X0 = x := yψ > 0. We have X is a
non-negative martingale. Set gi = ui ◦ s−1 so that

gi (w) =
{

(w1/ψ − Ri )
δi w ≥ Rψ

i

−κi (Ri − w1/ψ)δi w < Rψ
i

(9)

and setW X = {gi : 1 ≤ i ≤ N }. By an immediate extension of the arguments leading
to (4) we have

sup
τ

min
i

u−1
i (E[ui (Yτ )]) = s−1

(
sup
τ

min
i

g−1
i (E[gi (Xτ )])

)

and hence in the search for the optimal stopping rule it is sufficient to consider the
problem in natural scale for X and W X .
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(a) ui ∈ WY (b) gi ∈ WX

Fig. 1 The families of S-shaped reference dependent utility functions WY = {ui : 1 ≤ i ≤ N } with ui
defined in (7) and in natural scale WX = {gi : 1 ≤ i ≤ N } with gi given in (9). Parameters used are
ψ = 1/2 for the price process, N = 3 and {(δi , Ri , κi )} = {(0.15, 1, 2), (0.1, 2, 2), (0.08, 3, 2)} for the
utility functions where for each i , 1 − δi ∈ (0, 1) represents the coefficient of risk aversion/risk seeking,
Ri > 0 is the reference level and κi ≥ 1 is the loss aversion parameter

Families of functions WY and W X are given in Fig. 1 for the parameters:

ψ = 0.5, N = 3 and {(δi , Ri , κi )} = {(0.15, 1, 2), (0.1, 2, 2), (0.08, 3, 2)}. (10)

Here we are representing a situation where an agent is unsure of their level of risk
aversion/risk seeking parameters and an appropriate reference level. They fix their
level of loss aversion at a value of 2, which is around the level estimated in Tversky
and Kahneman (1992).

Note that certainty equivalents are invariant under affine transformations of the
objective function: if ha,b(w) = ah(w) + b with a > 0 then h−1

a,b(E[ha,b(Z)]) =
h−1(E[h(Z)]). Hence, without loss of generality we may replace W X = {gi : 1 ≤
i ≤ N } with W̃ X = {g̃i : 1 ≤ i ≤ N } where for fixed x̂ > 0

g̃i (w) = gi (w) − gi (0)

gi (x̂) − gi (0)
(11)

These linear transformations have been designed so that g̃i (0) = 0 and g̃i (x̂) = 1
for all i . Then, the functions g̃i are of comparable sizes over the region [0, x̂] and we
expect that over the relevant range g−1

i does not depend greatly on i . The transformed
family of functions W̃ X are plotted in Fig. 2.

Consider first the certainty equivalent from using a pure threshold strategy τ X
0,γ =

inf{t : Xt /∈ (0, γ )} for γ > x = 0.2. The certainty equivalents associated with
the utilities (ui )i=1,2,3 as a function of the upper threshold are plotted in Fig. 3. We
see from the figure that the best pure threshold strategy uses an upper threshold of
approximately 2.75 and yields a CSC certainty equivalent of 0.7263. Note also that we
recover the best pure threshold for each separate utility (ui )i=1,2,3—derived in closed
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Fig. 2 The family of transformed utility functions W̃X = {g̃i : 1 ≤ i ≤ N } where g̃i is given by
(11) with x̂ = 0.8. Parameters used are ψ = 1/2 for the price process, N = 3 and {(δi , Ri , κi )} =
{(0.15, 1, 2), (0.1, 2, 2), (0.08, 3, 2)} for the utility functions where for each i , 1 − δi ∈ (0, 1) represents
the coefficient of risk aversion/risk seeking, Ri > 0 is the reference level and κi ≥ 1 is the loss aversion
parameter

Fig. 3 The certainty equivalent value under a pure threshold strategy τ X
0,γ = inf{t : Xt /∈ (0, γ )} as a

function of upper threshold γ for γ > X0 = x = 0.2. The family of S-shaped utility functions ui as
defined in (7) are used. The best pure threshold strategy uses an upper threshold of about 2.75 and gives a
CSC certainty equivalent of 0.7263, as marked on the figure. Parameters used are ψ = 1/2 for the price
process, N = 3 and {(δi , Ri , κi )} = {(0.15, 1, 2), (0.1, 2, 2), (0.08, 3, 2)} for the utility functions where
for each i , 1 − δi ∈ (0, 1) represents the coefficient of risk aversion/risk seeking, Ri > 0 is the reference
level and κi ≥ 1 is the loss aversion parameter. Note also that the best pure threshold for each separate
utility (ui )i=1,2,3 can be seen to be very close to the reference levels Ri ; i = 1, 2, 3. These can be derived
in closed form by the method in Henderson (2012)
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Fig. 4 CSC value using the optimal mixture for a given pair of upper threshold levels where X0 = x = 0.2.
The family of S-shaped utility functions ui as defined in (7) are used. The best pair of upper thresholds is
1.1, 3.1 giving a CSC certainty equivalent of 0.8368. Parameters used are ψ = 1/2 for the price process,
N = 3 and {(δi , Ri , κi )} = {(0.15, 1, 2), (0.1, 2, 2), (0.08, 3, 2)} for the utility functions where for each
i , 1 − δi ∈ (0, 1) represents the coefficient of risk aversion/risk seeking, Ri > 0 is the reference level and
κi ≥ 1 is the loss aversion parameter

form by the method in Henderson (2012). These values can be seen on the figure to
be very close to the reference levels Ri ; i = 1, 2, 3.

Nowsupposewe are allowed to search for the bestmixed threshold strategy based on
two upper thresholds (with the lower threshold set to zero). Note, we are not claiming
to find the optimal strategy here, but are simply demonstrating that we can do better
than pure thresholds. Figure 4 shows the highest CSC value (as the mixture parameter
varies) for a given pair of upper thresholds. Figure 5 shows how much probability
mass is assigned to the smaller of the two upper thresholds. The best strategy is to
assign probability mass 0.75, 0.25 to thresholds 1.1, 3.1 respectively, giving a CSC
value of 0.8368. From Fig. 5 we see that for other pairs of thresholds, it is optimal
to place all the weight on a single threshold, but for the optimal pair of thresholds
the optimal strategy is a proper mixture. It follows that the best randomized strategy
is strictly better than any pure threshold strategy (since we can demonstrate even a
mixture of a pair of upper thresholds does better).

Let us now consider a mixture which involves at most three upper thresholds. We
find that in this restricted class, the optimal randomized strategy assigns probability
mass 0.76, 0.11, 0.13 to thresholds 1.1, 2.1, 3.1 respectively and gives a CSC value
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Fig. 5 Optimal mixture distribution: the weight placed on the smaller of the upper thresholds for a given
pair of upper thresholds. When both upper thresholds are large, it is optimal to not use a mixture, and only
stop at the smaller of the upper thresholds; when both upper thresholds are small, it is again optimal not
to use a mixture, and only stop at the larger of the upper thresholds. When the smaller upper threshold is
in the range 1–3, it is optimal to use a mixed strategy, with most of the mixture distribution on the smaller
of the two upper thresholds. Again, X0 = x = 0.2. The optimal mixture is to place probability mass
0.75 on threshold 1.1 and weight 0.25 on threshold 3.1. The family of S-shaped utility functions ui as
defined in (7) are used. Parameters used are ψ = 1/2 for the price process, N = 3 and {(δi , Ri , κi )} =
{(0.15, 1, 2), (0.1, 2, 2), (0.08, 3, 2)} for the utility functions where for each i , 1 − δi ∈ (0, 1) represents
the coefficient of risk aversion/risk seeking, Ri > 0 is the reference level and κi ≥ 1 is the loss aversion
parameter

of 0.8425. Again, we see an improvement as we allow for mixtures over a larger
number of thresholds. However, the benefit from adding more upper thresholds is
diminishing, and the improvement in the CSC value from allowing mixed strategies
which randomize over 4 upper thresholds is negligible. The results of randomization
among upper thresholds for the family of S-shaped utility functions (in Fig. 1) are
summarized in Table 1.

Note the model of this section could be adapted for option payoffs with applications
to (financial) American options (McKean 1965, Merton (1973)) and to real options
(Dixit and Pindyck 1994; McDonald and Siegel 1986). In a financial options setting, a
fixed parameter K represents the strike price of the option. In a real options setting, Y
represents the accumulationof returns froman investment project and afixedparameter
K is the fixed cost of investment. The CSC value in (8) would become:
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Table 1 Summary of results of randomization among upper thresholds for the family of S-shaped utility
functions in Fig. 1

Number of thresholds Best thresholds Best mass distribution Best CSC

1 2.75 1 0.7263

2 (1.1, 3.1) (0.75, 0.25) 0.8368

3 (1.1, 2.1, 3.1) (0.76, 0.11, 0.13) 0.8425

4 Negligible improvement over 3 thresholds case

sup
τ

min
i

u−1
i (E[ui ((Yτ − K )+)]). (12)

In each of these applications, our results imply that option holders taking a cautious
approach (as defined by CSC) may use randomized strategies when exercising their
options, rather than a simple "exercise when the stock price breaches a particular
threshold" approach. Similarly, in corporate finance applications to real options, we
may see more complex investment timing behaviour than that predicted by standard
risk neutral models.

3.2 Amodel based on concave utilities

In the previous model we used a family of S-shaped reference dependent utility func-
tions. In this section we build a model using concave utility functions. We build our
example from the sum of a power utility function and an exponential utility.3

As in Sect. 3.1, suppose Y is geometric Brownianmotionwith scale function s(z) =
zψ for ψ ∈ (0, 1). For γ, κ, φ non-negative constants, define f = fγ,κ,φ : R+ �→ R

+
by

f (z) = zψ + 1

γ
− 1

γ
e−γ [(z+κ)φ−κφ ] (13)

Then f (0) = 0 and provided φ < 1, f is concave. Set g(w) = f ◦ s−1 so that
gγ,κ,φ(w) = fγ,κ,φ(w1/ψ). Then

g(w) = w + 1

γ
− 1

γ
e−γ [(w1/ψ+κ)φ−κφ ]. (14)

Provided ψ < φ we have that g is convex for small values ofw and concave for larger
values. We will thus assume ψ < φ < 1.

Let WY = {ui : 1 ≤ i ≤ N } where ui (z) = fγi ,κi ,φi (z). Then W X = {gi : 1 ≤
i ≤ N } where gi (w) = gγi ,κi ,φi (w). Families of functions WY and W X are given in
Fig. 6 for the parameters:

3 Our experience is that it is quite challenging to build examples based on families of concave utilities for
which randomization is beneficial, especially if we restrict attention to standard one-parameter families (eg.
CRRA or CARA). However, this example shows that whilst difficult, it is possible to build examples of
families of concave utilities for which randomization over thresholds is beneficial.
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(a) ui
Y (b) gi X

Fig. 6 The families of concave utility functions WY = {ui : 1 ≤ i ≤ N } with ui (z) = fγi ,κi ,φi (z)

and f defined in (13). In natural scale, WX = {gi : 1 ≤ i ≤ N } with gi (w) = gγi ,κi ,φi (w) where
g is given in (14). Parameters used are ψ = 1/4 for the price process, N = 3 and {(γi , κi , φi )} =
{(0.9, 1, 0.9), (0.5, 10, 0.4), (0.2, 20, 0.3)}

Fig. 7 The certainty equivalent value under a pure threshold strategy τ X
0,γ = inf{t : Xt /∈ (0, γ )}

as a function of upper threshold γ for γ > X0 = x = 0.5. The family of concave utility func-
tions ui (z) = fγi ,κi ,φi (z) with f defined in (13) are used. The best pure threshold strategy uses an
upper threshold of approximately 22.68 and gives a CSC certainty equivalent of 0.6215, as marked
on the figure. Parameters used are ψ = 1/4 for the price process, N = 3 and {(γi , κi , φi )} =
{(0.9, 1, 0.9), (0.5, 10, 0.4), (0.2, 20, 0.3)}

ψ = 1/4, N = 3 and {(γi , κi , φi )} = {(0.9, 1, 0.9), (0.5, 10, 0.4), (0.2, 20, 0.3)}.
(15)

Consider first pure threshold strategies, τ X
0,γ for different upper thresholds γ . The

certainty equivalents associated with the utilities {ui }i=1,2,3 as a function of the upper
threshold are plotted in Fig. 7 with an initial value of X0 = x = 0.5.

We see from the figure that the best pure threshold strategy uses an upper threshold
of approximately 22.68 and yields a CSC certainty equivalent of 0.6215.
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Table 2 Summary of results of randomization among upper thresholds for the family of concave utility
functions in Fig. 6

Number of thresholds Best thresholds Best mass distribution Best CSC

1 22.68 1 0.6215

2 (3.84, 187.42) (0.56, 0.44) 0.6373

3 Negligible improvement over 2 thresholds case

If we now search for the best randomization over two upper thresholds we find that
the best strategy is to assign probability mass 0.56, 0.44 to thresholds 3.84, 187.42
respectively and that this gives a CSC value of 0.6373. Again the best randomized
strategy is strictly better than any pure threshold strategy. However, allowing random-
ization over three upper thresholds brings only negligible further benefits. The results
of randomization among upper thresholds for the family of concave utilities (in Fig. 6)
are summarized in Table 2.

4 A stylized but explicitly solved example

Our goal in this section is to give an example for which we can prove that the optimal
stopping rule is not a pure threshold strategy. Instead there is an optimal stopping
rule which is a non-trivial mixture of threshold stopping rules. The example is highly
stylized, and deliberately simple, and this allows us to give a full and complete solution,
ie.we are able to solve for the optimalmixed threshold rule.Crucially, the characteristic
features are shared with some realistic, non-stylized examples, in particular the S-
shaped utility model of Sect. 3.1.

We work with a process Y which is already in natural scale, and a family of payoff
functions {um}m∈M. The process Y is assumed to be bounded below (without loss
of generality by zero) and unbounded above, to be a local martingale and to have
initial value y > 0. Then Y is a supermartingale. The canonical example is if Y is
a Brownian motion started at y and with absorption at zero, Yt = Wt∧HW

0
where

HW
0 = infu≥0{u : Wu = 0}, the first hitting time of zero byW . Alternatively, we may

consider Y to be geometric Brownian motion with zero drift. The goal in this section
is to give an example for which

V (TT ) < V (TR) = V (T ).

Hence, there is no pure threshold strategy which is optimal within class of all stopping
rules.

Fix constants α > k > 0, together with m∗ >
αy
k . Set m∗ = αm∗

k and letM be the
interval M = [m∗,m∗]. For m ∈ M define um : I ≡ [0,∞) �→ [0,∞) by

um(w) =
{
kw, 0 ≤ w < m;
αm, w ≥ m; (16)
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m∗

um∗

kw

m∗

αw
um∗

m′

m

um

u′
m

y

Fig. 8 The family of utility functions W = {um ;m ∈ M}, where um is defined for m ∈ M by um (w) =
kw, 0 ≤ w < m and um (w) = αm, w ≥ m for constants α > k > 0. Let M = [m∗,m∗] with m∗ >

αy
k

and m∗ = αm∗
k

and setW = {um;m ∈ M}. Figure 8 illustrates the family of utilities described here.
Note that the results generalize to utility functions which replace um(w) = αm

with um(w) = J (m) for w ≥ m in (16), where J is a strictly increasing function with
J (m) > km. We will consider this more general case in Sect. 4.4.

4.1 Pure threshold strategies

Our first result is that in the stylized example there is no pure threshold strategy
which outperforms the trivial strategy of stopping immediately. Note that since Y is a
supermartingale and since um(z) ≤ αz, we have for all τ ∈ T

E[um(Yτ )] ≤ αE[Yτ ] ≤ αy < km∗.
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Since u−1
m (w) = w

k for w < km∗ we have for any τ ∈ T

u−1
m (E[um(Yτ )]) = 1

k
E[um(Yτ )]. (17)

Recall τβ,γ = inf{s : Ys /∈ (β, γ )}. For m ∈ M and 0 ≤ β ≤ y ≤ γ let
Gm

β,γ be the expected utility associated with the stopping time τβ,γ and the utility
function um and let Cm

β,γ be the certainty equivalent: we have Gm
β,γ = E[um(Yτβ,γ )]

and Cm
β,γ = (um)−1(E[um(Yτβ,γ )]) = 1

kG
m
β,γ . Then

Gm
β,γ =

{
ky γ ∈ [y,m)(
αm y−β

γ−β
+ kβ γ−y

γ−β

)
γ ≥ m

Cm
β,γ =

{
y γ ∈ [y,m)

1
k

(
αm y−β

γ−β
+ kβ γ−y

γ−β

)
γ ≥ m.

(18)

Note that for each m ∈ M, Gm
β,γ and Cm

β,γ are non-increasing in γ for γ ≥ m∗. Also,
for each m ∈ M, and γ ≤ m∗, Gm

β,γ and Cm
β,γ are non-increasing in β for 0 ≤ β ≤ y.

The following theorem follows from the fact that in our stylized example V (TT ) =
y. This result is proved in Appendix C. From the perspective of the worst agent, any
pure threshold strategy can only generate at best a certainty equivalent which is the
same as the certainty equivalent from selling the asset immediately.

Theorem 1 In our stylized example no pure threshold strategies outperforms stopping
immediately.

4.2 Improvement with randomization between two upper thresholds

The goal of this section is to show that there are mixtures of threshold strategies
which outperform the best pure threshold strategies. In addition we will develop some
intuition which we can use to motivate the derivation of the optimal randomized
strategy.

The remarks after (18) suggest that it is not sensible to use upper thresholds above
m∗, and that it is sufficient to only consider lower thresholds which are set to zero.
(This result is proved in Lemma 4 in Appendix C.) In this section we consider using
stopping rules which are a mixture of τ0,γ and τ0,ε for m∗ ≤ γ < ε ≤ m∗. If τ is this
mixed stopping rule and ε < m∗ then um∗(Yτ ) = kYτ and the certainty equivalent is
equal to y. So, if we hope to outperform pure threshold rules we must take ε = m∗.

Let T 0
2 be the set of stopping rules obtained from mixing two pure threshold strate-

gies, both with lower threshold 0, and one with upper threshold at m∗, and the other
with upper threshold in [m∗,m∗). Then T 0

2 = {τ θ
γ : θ ∈ [0, 1], γ ∈ [m∗,m∗)} where

τ θ
γ = τ0,γ with probability θ and τ θ

γ = τ0,m∗ otherwise. The randomization over τ0,γ

and τ0,m∗ takes place at t = 0. Set Cm,θ
γ = u−1

m

(
E[um(Yτ θ

γ
)]
)
. Then, by the linearity
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of u−1
m over the relevant domain (recall (17))

Cm,θ
γ = u−1

m

(
θE[um(Yτ0,γ )] + (1 − θ)E[um(Yτ0,m∗ )]

)
= θ

k
E[um(Yτ0,γ )] + 1 − θ

k
E[um(Yτ0,m∗ )]

= θCm
0,γ + (1 − θ)Cm

0,m∗ .

It follows that

Cm,θ
γ =

{
y
[
θ + (1 − θ) αm

km∗
]

m∗ ≤ γ < m ≤ m∗
yαm
k

[
θ
γ

+ (1−θ)
m∗
]

m∗ ≤ m ≤ γ ≤ m∗.

Fix γ ∈ [m∗,m∗) and θ . As a function of m, H θ
γ (m) = Cm,θ

γ is increasing in m

on both [m∗, γ ] and (γ,m∗] with a jump down at γ . It follows that (with Cγ+,θ
γ =

limm↓γ Cm,θ
γ )

inf
m

Cm,θ
γ = min{Cm∗,θ

γ , Cγ+,θ
γ }

= ymin

{
θm∗

γ
+ (1 − θ); θ + (1 − θ)

αγ

km∗

}
. (19)

Continuing to fix γ but allowing the mixture parameter θ to vary, the first term in
the minimum in (19) is increasing in θ whereas the second is decreasing in θ . Also,
at θ = 0, Cm∗,0

γ = y <
αγ
km∗ y = Cγ+,0

γ and at θ = 1, Cm∗,1
γ = m∗

γ
y > y = Cγ+,1

γ . It

follows that infm Cm,θ
γ is maximized over θ at the value of θ for which Cm∗,θ

γ = Cγ+,θ
γ ,

namely θ = θ∗(γ ) where

θ∗(γ ) = γ − m∗
m∗m∗

γ
+ γ − 2m∗

∈ (0, 1).

Then

max
θ∈[0,1] infm Cm,θ

γ = y
m∗ − m∗

m∗m∗
γ

+ γ − 2m∗
.

Finally, we find the maximizer over γ is γ = γ ∗ where γ ∗ = √
m∗m∗, and then

θ∗(γ ∗) = 1
2 and

max
γ∈M

max
θ∈[0,1] infm Cm,θ

γ = Cm∗,θ∗(γ ∗)
γ ∗ = y

⎡
⎣1 +

√
m∗
m∗

2

⎤
⎦ > y.

Hence, V (T 0
2 ) > V (TT ) and a fortiori V (T ) > V (TT ).
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Theorem 2 In our stylized example the best strategy outperforms the best pure thresh-
old strategy.

In addition to the above result, we can learn something from our analysis about the
optimal mixture of thresholds. First we expect that there must be a positive probability
that we take an upper threshold of m∗, else the certainty equivalent associated with
um∗ is y. Second, by considering the problem for finite mixtures of upper thresholds,
we expect that the certainty equivalent associated with um should be constant over m.

4.3 The optimal solution

Let T 0
R be the subset of TR such that the lower threshold in the randomization mixture

is always at zero, and the upper threshold is inM. Then

T 0
R = {τη : η ∈ P({0} × M)}. (20)

Proposition 2 V (T 0
R ) = V (TR) = V (T ).

Thus, in the stylized example and when considering optimal mixtures of threshold
strategies it is sufficient to restrict attention to mixtures in which the lower threshold is
always zero and the upper threshold is contained inM. We can calculate the optimal
mixed threshold rule. The proof of the proposition and theorem are given in Appendix
C.

Theorem 3 Suppose η̃ ∈ P(M) is a mixture of a point mass at m∗ of size θ∗ and an
absolutely continuous measure ρ on (m∗,m∗) with density C∗γ − α

α−k where

θ∗ = 1

(α
k )

α
α−k − α−k

k

, C∗ =
α

α−k (m
∗)

k
α−k

(α
k )

α
α−k − α−k

k

.

Then an optimal strategy is to take a randomized strategy with mixture distribution η̂

where η̂({0}, dγ ) = η̃(dγ ). The corresponding value function is

V (τ ) = y
(α
k )

k
α−k

(α
k )

k
α−k − α−k

α

.

It isworth highlighting here that the optimal stopping rule is not unique and although
in Theorem 3 we find the optimal mixed threshold rule, there are other stopping times
which are also optimal. In other words, suppose τ ∈ TR is a randomized threshold
rule (which is not a pure threshold rule): then there exist other stopping times τ ′ ∈ T
for which L(Xτ ) = L(Xτ ′) or equivalently L(Yτ ) = L(Yτ ′).

4.4 A generalized example

Fix L > 0 and suppose R ∈ (L,∞). Let J : [L, R] �→ R be a continuously
differentiable function with J (z) > z and such that supz∈[L,R]

J (z)
z < κ < ∞. Let
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K : [L, R] �→ R be the largest increasing function such that K ≤ J . Suppose
J (L) = K (L) ≥ R and that the set {x : K (x) = J (x)} is the union of a finite set of
intervals. We write {x : K (x) = J (x)} = ∪N

i=1[�i , ri ]. Then �1 = L and rN = R.
Let A = [L, R] and for α ∈ A define uα : [0,∞) �→ R by

uα(z) =
{
z 0 ≤ z < α;
J (α) z ≥ α.

(21)

Let W = {uα : α ∈ [L, R]}.
Let Y be Brownian motion started at y ∈ (0, L

κ
), and absorbed at 0. Consider the

problem of finding

sup
τ

inf
u∈W

u−1(E[u(Yτ )]).

Note that for any α ∈ [L, R] and any stopping time τ , E[uα(Yτ )] ≤ κE[Yτ ] ≤ κ y <

L . But u−1(x) = x over this range. Hence the u−1 may be omitted in the definition
of the Cautious Stochastic Utility in this example.

Theorem 4 Let θ be given by

θ =
[
1 + 1

R

∫ R

L
dα

αK ′(α)

K (α) − α
exp

(∫ R

α

dβ
K ′(β)

K (β) − β

)]−1

and let ρ : [L, R] �→ R+ be given by

ρ(α) = θ

R

{
αK ′(α)

K (α) − α
exp

(∫ R

α

dβ
K ′(β)

K (β) − β

)}
. (22)

Let η̃ ∈ P([L, R]) be the probability measure with density ρ on [L, R] and a point
mass of size θ at R.

Then an optimal strategy is to take a randomized threshold strategy with mixture
distribution η̂ where η̂({0}, dγ ) = η̃(dγ ) and η̂ does not charge (0, x) × [x,∞].

We prove the theorem in Appendix D. Note that if J is not strictly increasing then
we have that K is constant over intervals and μ̃ does not charge such intervals. The
reason for this is that the corresponding uα strictly dominate other uβ and are never the
worst case utilities. For this reason they are not relevant in the CSC formulation. In the
proof in the appendix, the utility functions are divided into two classes. For elements
of the first class, the certainty equivalent is never smallest, and these utilities do not
affect the CSC value. However, all elements of the second class are important, and
we find the optimal strategy by making sure that the certainty equivalent is constant
across utilities in this class, at least for the optimal mixed threshold stopping rule.
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4.5 Further methodological remarks

At an abstract level our problem is to find

sup
x∈A

inf
y∈B D(x, y)

where the spaces A and B may be different in character. In our setting A is a set
of stopping times, B is a set of utilities, and D involves an expectation, but more
generally games of this form arise in many applications where there are two entities
with competing objectives. These include Dynkin games (Dynkin 1969, where both
A and B are sets of stopping times), and robust option pricing [Hobson 2011; Touzi
2014 and related ideas of Hansen and Sargent (2008)]. Dynkin games have appeared
in various settings in economics, including wars of attrition (Hendricks et al. 1988),
pre-emption games (Fudenberg and Tirole 1991), duels [see survey by Radzik and
Raghavan (1994)], and pricing of options and callable convertible bonds (Grenadier
1996; Kifer 2000; Sirbu and Shreve 2006; Bielecki et al. 2008).

Define v = supx∈A inf y∈B D(x, y). In some circumstances one way in which
v may be determined is to find a saddlepoint, i.e. to find x∗ ∈ A and y∗ ∈ B
such that D(x, y∗) ≤ D(x∗, y∗) ≤ D(x∗, y) for all x ∈ A, y ∈ B. Then , if
v = inf y∈B supx∈A D(x, y), trivially we have v ≤ v and conversely

v ≤ sup
x∈A

D(x, y∗) ≤ D(x∗, y∗) ≤ inf
y∈B D(x∗, y) ≤ sup

x∈A
inf
y∈B D(x, y) = v.

Hence (x∗, y∗) is optimal and v = D(x∗, y∗).
However, in our case there is no saddlepoint and supx∈A inf y∈B D(x, y) <

inf y∈B supx∈A D(x, y) and need a different approach. The approach which we outline
here may have wider applicability.

Suppose we can find x∗ ∈ A and B̃ ⊆ B such that

(i) D(x∗, ỹ) ≤ D(x∗, y) for all ỹ ∈ B̃, y ∈ B
(ii) ∀x, x ′ ∈ A, supy∈B̃{D(x ′, y) − D(x, y)} > 0

The first requirement says that for the candidate optimiser x∗, D(x∗, y) is smaller
on B̃ than off B̃. The second requirement says that no choice x leads to a uniformly
higher value of D on B̃ than any other choice. Note that, the first requirement is easier
to satisfy if B̃ is small, whereas the second is easier to satisfy if B̃ is large.

Then, taking both y, ỹ ∈ B̃ in (i) we conclude that D(x∗, y) = D(x∗, ỹ) and hence
D(x∗, ·) is constant on B̃. Then for any non-empty subset B̂ of B̃,

inf
y∈B̂

D(x∗, y) = inf
y∈B̃

D(x∗, y) = inf
y∈B D(x∗, y).

Meanwhile, with x ′ replaced by x∗ in (ii), for each x ∈ A there exists a non-empty
subset B̂x,x∗ of B̃ such that D(x, y) < D(x∗, y) on B̂x,x∗ . Then, for each x ∈ A,

inf
y∈B D(x, y) ≤ inf

y∈B̂x,x∗
D(x, y) ≤ inf

y∈B̂x .x∗
D(x∗, y) = inf

y∈B D(x∗, y).
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Hence supx∈A inf y∈B D(x, y) = inf y∈B D(x∗, y) = D(x∗, y∗) where y∗ is any ele-
ment of B̃ and we have identified both the problem value and an optimiser.

5 Concluding remarks

This paper considers agents who exhibit cautious stochastic choice (CSC) and who
face optimal timing or stopping decisions in a dynamic setting.We build on the seminal
work on CSC in a static setting by Cerreia-Vioglio et al. (2015, 2019) and provide a
continuous-time optimal stopping model under CSC. In our dynamic setup, the value
associated with a stopping rule is not quasi-convex and hence we cannot necessarily
expect there to be a pure threshold rule which is optimal. Despite this observation,
it is quite a challenge to find examples where it can be clearly demonstrated that the
optimal stopping rule is a non-trivial mixture of threshold strategies. This paper has
taken up this challenge and provides first, realistic models under reference-dependent
or concave families of utility functions under which pure threshold strategies are
not optimal, and second, a stylized, tractable example whereby the optimal stopping
rule and value can be constructed explicitly. Our predictions are in line with recent
experimental evidence in dynamic settings whereby individuals do not play cut-off or
threshold strategies (Strack and Viefers 2021; Fischbacher et al. 2017).
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permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix

Appendix A outlines the CSC model in its original static setup (Cerreia-Vioglio et al.
2015, 2019) and demonstrates mixing may be beneficial. Further results and proofs
on optimal stopping under EU are in Appendix B. Proofs for the stylized and gener-
alized example are in Appendices C and D. Appendix E provides some insights on
discounting in the CSC optimal stopping model.

A CSCmodel in a static setting (Cerreia-Vioglio et al. 2019)

Consider an interval I ⊆ R of possible monetary prizes. Let � = {ν : ν ∈ P(I )} be
the set of lotteries over I and let Q be a subset of �. The agent has a set of utility
functions W ⊆ F I↑ . Given a lottery q ∈ Q and a utility u ∈ W , we denote by E

q(u)

the expected utility of u with respect to q, that isEq(u) = ∫I u(x)q(dx). The certainty
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equivalent of q with respect to u is defined as

Cu
q = u−1(Eq(u)). (A-1)

Under the CSC paradigm of Cerreia-Vioglio et al. (2015, 2019) [see also earlier
work of Maccheroni (2002)] the agent chooses a best lottery from Q by displaying
cautious behavior: the evaluation for any given lottery q ∈ Q is determined by V q =
minu∈W Cu

q ; the optimal strategy is to choose the lottery q̄ ∈ Q which maximizes V q .
This involves both minimization and maximization steps. Note that typically I , Q and
W are taken to be compact so that the optimizers exist.

Now we want to allow the agent to mix over lotteries. Let co(Q) denote the convex
hull of Q. Then ρ = ρλ ∈ co(A), represents a compound lottery obtained through
a randomization λ over the lotteries in Q. If λ is a discrete distribution over q ∈ Q
we have ρλ = ∑

λi qi ; more generally, ρλ = ∫
Q λ(dq)q is a measure on I given

by ρλ(dx) = ∫
Q λ(dq)q(dx). For a lottery ρλ ∈ co(Q) we can define the expected

utility of u with respect to ρλ by E
ρλ

(u) = ∫
I u(x)ρλ(dx) = ∫

Q λ(dq)Eq(u), and

then the certainty equivalent of ρλ with respect to u is Cu
ρλ = u−1(Eρλ

(u)). Let

V ρλ = minu∈W Cu
ρλ . Then an optimal randomized lottery is given by

ρ∗ = ρ∗(Q) ∈ arg max
ρλ∈co(A)

V ρλ

.

In this static setting,Cerreia-Vioglio et al. (2019) show thatmixing over two lotteries
may improve the worst case certainty equivalent.

Suppose Q = {p, q} and W = {u, v}. If we have

Cu
p > K > Cv

p

Cu
q < K < Cv

q

then, a linear combination of p and q is better than any one of them in terms of smallest
certainty equivalent. To see this, note that for λ ∈ (0, 1) and ρ = ρλ = λp+ (1−λ)q

E
ρ(u) = λEp(u) + (1 − λ)Eq(u)

= λu(Cu
p) + (1 − λ)u(Cu

q ) > λu(K ) + (1 − λ)u(Cu
q ) > u(Cu

q )

and it follows that u−1(E[u(λp+ (1− λ)q)]) > u−1(u(Cu
q )) = Cu

q since u is strictly
increasing. A similar argument gives that v−1(E[v(λp + (1 − λ)q)]) > Cv

p. Then

min
w∈W

w−1(Eρλ

(w)] > max{Cv
p,C

u
q } = max

r∈Q min
w∈W

Cw
r .

It follows that in a static setting it can be optimal to take a mixed strategy.
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B Further results on optimal stopping in the classical case

Under Assumption 1 the process X is a non-negative local martingale, and hence a
supermartingale. Further, for any stopping time Ex [Xτ ] ≤ x . If I X is bounded above
then X is a martingale and E

x [Xτ ] = x , but for many examples I X = (0,∞) or
[0,∞) and then there exist τ for which E

x [Xτ ] < x . Recall QX (S) is the set of
possible laws of the stopped X -process, over stopping times in S.

Lemma 1

1. If I X is bounded then QX (T ) = {L(Xτ ) : τ ∈ T } = {ν ∈ P( Ī X ) : ∫ Ī X zν(dz)
= x}. If I X is not bounded above then QX (T ) = {L(Xτ ) : τ ∈ T } = {ν ∈
P( Ī X ) : ∫ Ī X zν(dz) ≤ x}.

2. If I X is bounded then QX (TT )={L(Xτ ) : τ ∈TT }=δx ∪
(
{∪β<x<γ ; β,γ∈ Ī X χ x

a,b}
)

where χ x
a,b is the mixture of point masses χ x

a,b = x−a
b−a δb + b−x

b−a δa. If I X is

not bounded above then QX (TT ) = {L(Xτ ) : τ ∈ TT } = (∪0≤β≤xδβ

) ∪(
{∪0≤β<x<γ<∞χ x

a,b}
)
.

3. In both cases QX (TR) = QX (T ).

Proof 1. Suppose I X is unbounded. The fact that QX (T ) ⊆ {ν ∈ P( Ī X ) :∫
Ī X zν(dz) ≤ x} follows from the remarks before the statement of the Lemma. The

fact that we have equality follows from the fact that by Skorokhod’s Embedding The-
orem any ν ∈ P([0,∞)) with

∫
zν(dz) ≤ x can be obtained as the law of Xτ for a

stopping time τ . See Pedersen and Pekir (2001) or Cox and Hobson (2004)
The case of bounded X has a similar proof.
2. This is immediate from the definition of pure threshold rules.
3. This follows from Lemma 1 of Henderson et al. (2018b). ��

Lemma 1 characterizes the sets QX (S) for various sets S. However, the sets T ,
TT and TR do not depend on whether we consider stopping times for the process
X or Y . Hence {ν : ν ∈ QY (S)} = {η�s : η ∈ QX (S)} where, by definition
η�s(A) = η(s(A)).

Proof of Proposition 1 This proposition is standard but we provide a short proof which
will have parallels to ourmethod in theCSCcase. The resultswill follow ifwe can show
that supτ∈TT

E
x [g(Xτ )] = supτ∈T E

x [g(Xτ )] = gcv(x). Note that g = U ◦ s−1 is
increasing. For d ≥ 0 suppose g(z) ≤ c + dz. Then, by the supermartingale property
of X , Ex [g(Xτ )] ≤ c + dEx [Xτ ] ≤ c + dx . Taking an infimum over c, d ≥ 0
for which c + dz ≥ g(z) we find supτ∈T E

x [g(Xτ )] = gcv(x). Conversely, either
g(x) = gcv(x) and then supτ∈TT

E
x [g(Xτ )] ≥ E

x [g(X0)] = gcv(x) or there exists a
largest interval Ix with endpoints {ax , bx } such that x ∈ Ix and g(z) < gcv(z) on Ix .
If g(ax ) = gcv(ax ) and g(bx ) = gcv(bx ) then supτ∈TT

E
x [g(Xτ )] ≥ E

x [g(Xτ X
a,b

)] =
gcv(x). Otherwise, there exist an → ax and bn → bx such that g(an) → gcv(ax ) and
g(bn) → gcv(bx ). Then supτ∈TT

E
x [g(Xτ )] ≥ lim supEx [g(Xτ X

an ,bn
)] = gcv(x). ��
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C Proofs and auxilliary results for the stylized example

Proof of Theorem 1 The result follows immediately from the following lemma. ��
Lemma 2 For all 0 ≤ β ≤ y ≤ γ , infm∈M Cm

β,γ ≤ y.
Moreover, supβ,γ infm∈M Cm

β,γ = y.

Proof If γ ∈ [y,m∗) then Cm
β,γ = y for all m ∈ M.

If γ ≥ m∗ then using the fact that Cm
β,γ is increasing in m for m ≤ γ and αm∗ =

km∗,

inf
m∈M

Cm
β,γ = Cm∗

β,γ = 1

k

(
αm∗

y − β

γ − β
+ kβ

γ − y

γ − β

)

= m∗ y − β

γ − β
+ β

γ − y

γ − β
= y − (y − β)(γ − m∗)

(γ − β)
≤ y.

Finally, if γ ∈ [m∗,m∗) then infm∈M Cm
β,γ ≤ Cm∗

β,γ = y.
The first statement of the lemma follows from consideration of the three possible

cases. The second statement follows from the first, given that for all m, Cm
β,y = y. ��

Next we record some useful properties about Gm
β,γ Cm

β,γ which follow immediately
from the definitions in (18).

Lemma 3

1. For each m ∈ M, Gm
β,γ and Cm

β,γ are non-increasing in γ for γ ≥ m∗. Hence, for
γ ≥ m∗, infm Cm

β,γ ≤ infm Cm
β,m∗ .

2. For each m ∈ M, and γ ≤ m∗, Gm
β,γ and Cm

β,m are non-increasing in β for
0 ≤ β ≤ y. Hence for γ ≤ m∗, infm Cm

β,γ ≤ infm Cm
0,γ .

Consider the spaces of probability measures P(M), P({0} × M) and P([0, y) ×
[y,∞]). There is an obvious 1-1 correspondence between measures ζ̃ ∈ P(M) and
ζ̂ ∈ P({0}×M)given by ζ̂ ({0}×A) = ζ̃ (A).Write η̃ = p(η̂) for this correspondence.
Similarly, we can define a map P : P([0, y) × [y,∞]) �→ P({0} ×M) by P(η) = η̂

where

η̂({0}, dγ ) =

⎧⎪⎨
⎪⎩

∫
β

∫
γ≤m∗ η(dβ, dγ ) γ = m∗∫

β
η(dβ, dγ ) γ ∈ (m∗,m∗)∫

β

∫
γ≥m∗ η(dβ, dγ ) γ = m∗

Recall Gm
β,γ = E[um(Yτβ,γ )] and Cmβ,γ = u−1

m (Gm
β,γ ). Let η be a probability measure

on [0, y)×[y,∞]. We can define a randomized stopping time τ = τη by generating a
random variable� = (�β,�γ )with law η on [0, y)×[y,∞] and setting τ = τ�β,�γ .
Then we define Gm

η to be the expected utility from using the randomized stopping rule
τη:

Gm
η =

∫
[0,y)×[y,∞]

η(dβ, dγ )Gm
β,γ = E

η[um(Yτβ,γ )]
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Finally we set Cmη to be the certainty equivalent: Cmη = u−1
m (Gm

η ).

Lemma 4 Gm
η ≤ Gm

P(η).

Proof From Lemma 3, for m ∈ M and γ ≥ m∗, Gm
β,γ ≤ Gm

β,m∗ ≤ Gm
0,m∗ . Similarly,

for m ∈ M and γ < m∗, Gm
β,γ = y = Gm

β,m∗ = Gm
0,m∗ Then defining M(γ ) =

(γ ∨m∗)∧m∗ wehaveGm
β,γ ≤ Gm

0,M(γ ). It follows that for all (β, γ ) ∈ ([0, y)×[y,∞])
we have Gm

β,γ ≤ Gm
0,M(γ ). Then for any η ∈ P([0, y) × [y,∞]), writing η̂ = P(η),

Gm
η =

∫
η(dβ, dγ )Gm

β,γ ≤
∫

η̂(dβ, dγ )Gm
β,γ = Gm

η̂
.

��
For ζ̃ ∈ P(M) define Cm

ζ̃
= Cm

ζ̂
where ζ̂ = p−1(ζ̃ ).

Corollary 2

sup
η∈P([0,y)×[y,∞])

inf
m∈M

Cmη = sup
ζ∈P({0}×M)

inf
m∈M

Cmζ = sup
ζ̃∈P(M)

inf
m∈M

Cm
ζ̃

Proof We have

sup
η∈P([0,y)×[y,∞])

inf
m∈M

u−1
m

(∫
η(dβ, dγ )Gm

β,γ

)

≤ sup
η̂∈P({0}×M)

inf
m∈M

u−1
m

(∫
η̂(dβ, dγ )Gm

β,γ

)

= sup
η̃∈P(M)

inf
m∈M

u−1
m

(∫
η̃(dγ )Gm

0,γ

)
(A-2)

Since P({0} × M) ⊆ P([0, y) × [y,∞]) the inequality (A-2) is an equality, and the
result follows. ��
Proof of Proposition 2 Let ζ be a probability measure on {0} ×M ⊆ [0, y) × [y,∞).
We can identify ζ with a probability measure ζ̃ onM and then Gm

ζ̃
= ∫M ζ̃ (dγ )Gm

0,γ

and Cm
ζ̃

= u−1
m (Gm

ζ̃
).

Corollary 2 shows that V (T 0
R ) = V (TR) and it is sufficient to only consider thresh-

old strategies in the mixture with lower bound at 0 and upper bound in M. The fact
that V (TR) = V (T ) follows from Henderson et al. (2018b) and Q(TR) = Q(T ). ��

Our calculation of the optimal strategy in the CSC setting is based on the following
general proposition. LetZ be a set and letN be ameasurable space. Let D : Z×N �→
R be a map and set D∗(z) = infn∈N D(z, n) and D∗ = D∗(Z) = supz∈Z D∗(z).

Proposition 3 Suppose there exist Z0 ⊆ Z , N0 ⊆ N , z∗ ∈ Z0, ν ∈ P(N0), a family
(hn)n∈N0 of strictly increasing functions hn : R �→ R and constants D̂, Ĥ such that
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D(z∗, n) ≥ D̂ on N with D(z∗, n) = D̂ on N0∫
N0

ν(dn)hn(D(z, n)) ≤ Ĥ on Z with
∫
N0

ν(dn)hn(D(z, n)) = Ĥ on Z0

Then, for any z ∈ Z

D∗(z) ≤ D∗(z∗) = D∗

In our interpretationwe takeZ to be either the space of stopping rules or the space of
attainable laws or the set of randomizations of the levels of lower and upper thresholds.
(Since our problem is law invariant, the final result will be equivalent.) Z0 is a space
of relevant stopping rules or attainable laws or randomizations, for example the set
of randomized threshold rules for which the upper barrier lies in some interval. N is
a parameterization of the space of utility functions and N0 is a set of relevant utility
functions. We may haveN0 �= N if there are utility functions for which the certainty
equivalent is never the lowest over the family of utility functions. See Sect. 4.4 for
an example. Then D(z, n) is the certainty equivalent using utility function un and
stopping rule z; D∗(z) is the CSC value of the stopping rule z.

The first idea behind the proof is that we expect the certainty equivalent value of
the optimal stopping rule to be constant across the set of (relevant) utility functions.
If not, we might expect to be able to improve the certainty equivalent value under the
worst utility, at the expense of the certainty equivalent values of those utilities which
have a higher certainty equivalent value. This would raise the CSC value. Hence we
expect D(z∗, n) is constant on N0 for the optimal choice z∗.

The second idea is that we want there to be only one (randomized threshold) stop-
ping rule for which the certainty equivalent is constant (across all relevant utilities).
This possibility is precluded by a requirement that no stopping rule can achieve a cer-
tainty equivalent value which exceeds that of another relevant stopping rule, uniformly
across all relevant utilities.

Proof Take z ∈ Z and w in Z0. Suppose D(z, n) > D(w, n) for all n ∈ N0. Then
hn(D(z, n)) > hn(D(w, n)) for all n ∈ N0 and Ĥ ≥ ∫

N0
ν(dn)hn(D(z, n)) >∫

N0
ν(dn)hn(D(w, n)) = Ĥ contradicting the hypothesis of the theorem.

Hence, for any z ∈ Z, w ∈ Z0 there exists a non-empty set Nz,w ⊆ N0 such that
D(z, n) ≤ D(w, n) on Nz,w. Taking w = z∗

D∗(z) = inf
n∈N

D(z, n) ≤ inf
n∈Nz,z∗

D(z, n) ≤ inf
n∈Nz,z∗

D(z∗, n) = inf
n∈N

D(z, n)

= D∗(z∗) = D̂.

��
Proof of Theorem 3 The idea is to apply Proposition 3. To this end take Z0 = Z =
P(M), N0 = N = M and set

f (γ,m) = E[gm(Yτ0,γ )] = Gm
0,γ =

{
ky γ ∈ [m∗,m)
αmy
γ

γ ∈ [m,m∗].
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Note that for χ ∈ P(M), Cmχ = g−1
m

(∫
M Gm

0,γ χ(dγ )
)
. Take hm = gm and

D(χ,m) = Cmχ . Then

∫
ν(dm)hm(Cmζ ) =

∫
ν(dm)Gm

ζ =
∫
M

ν(dm)

∫
M

f (γ,m)ζ(dγ )

=
∫
M

ζ(dγ )

∫
M

f (γ,m)ν(dm).

Then by Proposition 3, if we can find ζ̃ ∈ P(M) such that Cm
ζ̃

does not depend on

m and ν such that
∫
M f (γ,m)ν(dm) does not depend on γ then ζ̃ characterizes the

optimal mixture of thresholds.
The required conditions follow from the next two lemmas. ��

Lemma 5 For η̃ as in the statement of Theorem 3, Cm
η̃

= 1
k

∫
M f (γ,m)η̃(dγ ) is

independent of m.

Proof It follows from the definition of C∗ and θ∗ that

1 =
∫
M

C∗γ − α
α−k dγ + θ∗

so that η̃ is a probability measure onM. Then

1

ky

∫
M

Gm
γ η̃(dγ ) =

∫
[m∗,m)

C∗γ − α
α−k dγ +

∫
[m,m∗)

αm

k
C∗γ −1− α

α−k dγ + θ∗αm
km∗

= − α − k

k
C∗γ − k

α−k

∣∣∣∣
m

m∗
− α − k

α

αm

k
C∗γ − α

α−k

∣∣∣∣
m∗

m
+ θ∗αm

km∗

= α − k

k
C∗m− k

α−k∗ − α − k

k
C∗m(m∗)−

α
α−k + θ∗αm

km∗

This does not depend on m since θ∗ = α−k
α

C∗(m∗)1−
α

α−k . ��

Lemma 6 Let λ = α
k > 1. Let ν be a mixture of an atom of size φ = (λ

λ
λ−1 −λ+1)−1

at m∗ and an absolutely continuous measure ζ on M with density Dm
2−λ
λ−1 where

D = λ
λ−1φm

− 1
λ−1∗ . Then

∫
M f (γ,m)ν(dm) does not depend on γ .

Proof Set β = 2−λ
λ−1 . Then β + 1 = 1

λ−1 and β + 2 = λ
λ−1 With the absolutely

continuous component of ν having density Dmβ we have

1

y

∫
f (γ,m)ν(dm) =

∫
[m∗,γ ]

αm

kγ
ν(dm) +

∫
(γ,m∗]

ν(dm)

= αm∗
kγ

φ + α

kγ

∫
(m∗,γ ]

Dmβ+1dm +
∫

(γ,m∗]
Dmβdm
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= αm∗
kγ

φ + α

kγ

Dmβ+2

β + 2

∣∣∣∣
γ

m∗
+ Dmβ+1

β + 1

∣∣∣∣
m∗

γ

= m∗

γ

[
φ − Dmβ+1∗

(β + 2)

]
+ γ β+1D

[
α

k(β + 2)
− 1

β + 1

]
zz

+D(m∗)β+1

(β + 1)

The two square brackets in this last expression are zero by the choice of D and β.
Hence

∫
f (γ,m)ν(dm) does not depend on γ . ��

D Proofs for the generalized stylized example of Sect. 4.4

Proof of Theorem 4 We apply Proposition 3. Let Z be the set of probability measures
on [0, y) × [y,∞] and let Z0 ⊆ Z be the set of probability measures with support
{0} × [L, R]. Let N = [L, R] and let N0 = {α : K (α) = J (α)} ⊆ N .

ThenZ is the set of candidate randomizations, andZ0 is a set of relevant randomiza-
tions which are not dominated by some other randomization.N is a parameterization
of the utility functions, andN0 is a set of utility functions such that no member dom-
inates any other element of N .

Recall the definitions of θ , ρ, η̃ and η̂ from the theorem. By the choice of θ , η̃ is a
probability measure on [L, R]. Define � : [L, R] �→ R by

�(α) = θ

R
exp

(∫ R

α

dβ
K ′(β)

K (β) − β

)
.

Then � is differentiable and from the definition of ρ in (22)

�′(α) = − �(α)K ′(α)

(K (α) − α)
= −ρ(α)

α
. (A-3)

Then, since �(R) = θ
R ,

�(α) = θ

R
+
∫

(α,R)

ρ(β)

β
dβ =

∫
(α,R]

η̃(dβ)

β
.

For ζ ∈ P([0, y) × [y,∞]) and α ∈ N define

D(ζ, α) = 1

y
u−1

α (E[uα(Yτζ )]) = 1

y
E[uα(Yτζ )]

=
∫ ∫

ζ(dβ, dγ )
uα(β)(γ − y) + uα(γ )(y − β)

y(γ − β)
.
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For ζ̂ ∈ P({0} × [L, R]), this reduces to

D(ζ̂ , α) =
∫

ζ̃ (dγ )
uα(γ )

γ

where ζ̃ = p(ζ̂ ).
Then, for η̂ ∈ Z as in the statement of the Theorem,

1

y
E[uα(Yτη̂

)] = η̃([L, α)) + J (α)

∫
(α,R]

η̃(dβ)

β

≥ η̃([L, α)) + K (α)�(α)

= θ + K (L)�(L) +
∫

[L,α)

[
ρ(β) + �(β)K ′(β) + K (β)�′(β)

]
dβ

= θ + J (L)�(L)

where we use the first inequality in (A-3) to show that the integrand in the penultimate
line is zero.

Then, if D̂ = θ + J (L)�(L) we have for all α ∈ N ,

E[uα(Yτη̂
)] ≥ D̂

with equality if α ∈ N0.
It remains to show that there exists a measure ν with support in [L, R] and Ĥ such

that
∫
N0

ν(dα)D(ζ, α) = Ĥ for ζ ∈ Z0, and
∫
N0

ν(dα)D(ζ, α) ≤ Ĥ for general
ζ ∈ Z . (We take hα(d) = d for all α ∈ N .)

Recall that {z : K (z) = J (z)} = ∪N
i=1[�i , ri ]. Let ν be the measure on {z : K (z) =

J (z)} such that ν has atoms of size φi at �i for i = 1, 2, . . . , N , together with a density
ζ on ∪N

i=1(�i , ri ) given by

ζ(w) = ζi exp

(∫ w

�i

(2 − J ′(z))
(J (z) − z)

dz

)
.

Hereφ1 = 1 and ζ1 = φ1 J (L)
L(J (L)−L)

, and then, proceeding inductively, for 1 ≤ i ≤ N−1,

φi+1 = (�i+1 − ri )

ri (K (�i+1) − �i+1)

∫
α≤ri

K (α)ν(dα) (A-4)

ζi+1 = 1

�i+1(K (�i+1) − �i+1)

∫
α≤�i+1

K (α)ν(dα) (A-5)

For any ζ̃ with support in [L, R] we can define ζ̂ = p−1(ζ̃ ). Then

∫
N0

ν(dα)D(ζ̂ , α) =
∫
N0

ν(dα)

∫
[L,R]

uα(w)

w
ζ̃ (dw)
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=
∫

[L,R]
ζ̃ (dw)

[∫
α≤w

ν(dα)
K (α)

w
+
∫

α>w

ν(dα)

]
.

First we show that�(w) := ∫
α≤w

ν(dα)
K (α)

w
+∫

α>w
ν(dα) is constant forw ∈ N0.

For w ∈ (�i , ri )

�′(w) = ζ(w)

[
K (w)

w
− 1

]
− 1

w2

∫
α≤w

ν(dα)K (α).

We get that � is constant on (�i , ri ) provided ϒ(w) = 0 where ϒ(w) =∫
α≤w

K (α)ν(dα) − ζ(w)w(K (w) − w). But ϒ ′(w) = ζ(w)[w(2 − K ′(w))] −
ζ ′(w)w(K (w) − w) = 0 by the definition of ζ . Moreover, by the definition of ζi
in (A-5) ϒ(�i ) = 0. Hence ϒ ≡ 0 on [�i , ri ] and �(w) is constant on this interval.

To prove that � is constant on N0 it remains only to show that �(ri ) = �(�i+1).
We have

�(�i+1) − �(ri ) = 1

�i+1

[∫
α≤ri

ν(dα)K (α) + K (�i+1)φi+1

]

− 1

ri

[∫
α≤ri

ν(dα)K (α)

]
− φi+1

= φi+1

[
K (�i+1)

�i+1
− 1

]
−
(
1

ri
− 1

�i+1

)∫
α≤ri

ν(dα)K (α) = 0

by the definition of φi+1 in (A-4).
Finally, we consider general η ∈ P([0, y) × [y,∞]). Recall the definition of ζ̂ =

P(η). From Lemma 4, Gm
η ≤ Gm

P(η) for allm ∈ [L, M]. Then D(η,m) ≤ D(P(η),m)

for all x and
∫
N0

ν(dm)D(η,m) ≤
∫
N0

ν(dm)D(P(η),m) = Ĥ .

��

E Optimal stopping and discounting

In Sect. 2.2, our discussion of the optimal stopping problem, i.e. of finding the certainty
equivalent (see (5))

Cu
τ = u−1 (E[u(Yτ )]) (A-6)

and CSC value V (S) = supτ∈S infu∈WY Cu
τ , for Y a time-homogeneous diffusion

process and u an increasing function, makes the implicit assumption that the agent
does not incorporate discounting into their preferences. Since our main goal is to
demonstrate that deliberate randomisation is an essential and endogenous feature of
optimal stopping under CSC, a major justification for abstracting away from problems
with discounting is pedagogic and expositional.
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In this section we briefly discuss how discounting might be incorporated. Note
that in some applications, e.g. casino gambling and decisions over when to cease
gambling and to leave the casino, the time-periods involved are negligible and it is
quite reasonable for discounting to be ignored.

E.1 Utility of the discounted payoff

One potential approach to the introduction of discounting is to modify (A-6) so that
the agent calculates the certainty equivalent of the expected utility of the discounted
stopped value, i.e.

Cu
τ = u−1 (

E[u(e−βτYτ )]
)
,

where β ≥ 0 is a discount parameter. In general, even if Y is a homogeneous diffu-
sion, (e−βt Yt )t≥0 is not, and the methods of this paper do not apply. (In our setting
of time-homogeneous Markov processes finding the optimal stopping rule is already
challenging, outwith this setting the problem becomes essentially impossible to solve
except in degenerate cases.) However, in the canonical example of exponential Brow-
nian motion the discounted process is again an exponential Brownian motion, and
therefore a time-homogeneous process. Hence, with this set-up, the problem with dis-
counting reduces immediately to the problem without discounting we have analysed
in this paper.

E.2 Discounting of the utility of the payoff

An alternative approach is to modify (A-6) so that the agent calculates the certainty
equivalent of the expected discounted utility of the stopped value, i.e.

Cu
τ = u−1 (

E[e−βτu(Yτ )]
)
.

This approach, whilst attractive in general, brings conceptual issues when the utility
function can take negative values. The key point is that in this formulation

Cu
τ = Cu+

τ

where u+ is given by u+(x) = max{0, u(x)}.
To see this, note that if τ is any stopping time, then if σ = σ(τ) is the stopping

time given by σ = τ on {ω : u(Yτ(ω)(ω)) ≥ 0} and σ(τ) = ∞ otherwise then σ is a
stopping time and

e−βτu(Yτ ) ≤ e−βσ(τ)u(Yσ(τ)) = e−βσ(τ)u+(Yσ(τ)) = e−βτu+(Yτ ). (A-7)

Hence, provided the problem is perpetual (and if not then if the stopping horizon is
large, never stopping can be approximated by stopping at a very large timewith similar
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results), and since E[e−βτu+(Yτ )] ≥ 0 and u−1+ = u−1 on R+,

sup
τ

u−1 (
E
[
e−βτu(Yτ )

]) ≤ sup
τ

u−1+
(
E
[
e−βτu+(Yτ )

])

and conversely,

sup
τ

u−1+
(
E
[
e−βτu+(Yτ )

])

= sup
τ

u−1
(
E

[
e−βσ(τ)u(Yσ(τ))

])
≤ sup

τ
u−1 (

E
[
e−βτu(Yτ )

])

with the first equality following from (A-7) and the second from the fact that the set
of stopping rules of the form {σ = σ(τ) for a stopping rule τ } is a subset of the set
of all stopping rules.

In particular, if the goal is to study optimal stopping problemswith S-shaped utilities
(or indeed any utility which takes negative values), then applying discounting to the
utility allows the agent to effectively walk away from any ‘losses’ by letting the
discounting eliminate any negative impacts. Careful consideration needs to be given
to the interpretation of the solution to such problems.
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