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Abstract

In this thesis we consider theoretical and practical aspects of conduct-

ing inference on data coming from the Wright–Fisher diffusion, which

arises as the scaling limit of several discrete models used to describe

the way in which allele frequencies change over time. This diffusion

evolves on a bounded interval, and thus many standard results in dif-

fusion theory assuming evolution on the entire real line do not apply.

Conditions ensuring the ϑ-uniform ergodicity of positively recurrent

diffusions on bounded intervals with entrance or regular boundaries are

established, and used to prove uniform in the selection and mutation

parameters ergodicity for the Wright–Fisher case. The family of mea-

sures induced by the diffusion is further shown to be uniformly locally

asymptotically normal, and these results are used to show the uniform

(over compact sets in the parameter space) consistency, asymptotic

normality, convergence of moments and asymptotic efficiency of the

Maximum Likelihood and Bayesian estimators for the selection param-

eter in a continuous observation regime.

By appealing to a suitable state space augmentation and making

use of the exact algorithm for the Wright–Fisher diffusion, we propose

an exact Markov Chain Monte Carlo scheme which is able to directly

target the joint posterior of the allele age and selection parameter. The

method is subsequently tested on simulated data for a variety of prior

distributions on both parameters.

Finally, a brief sketch of how ϑ-uniform ergodicity might be ex-

tended for the multidimensional Wright–Fisher diffusion is provided.

The main techniques granting control over the rate of convergence

in the ergodic theorem are developed, with a particular emphasis on

why establishing such control is particularly challenging in the Wright–

Fisher case.

x



Abbreviations

• aDNA - ancient DNA

• DNA - Deoxyribonucleic acid

• LAN - local asymptotic normality

• LHS - left hand side

• MCMC - Markov Chain Monte Carlo

• ML - Maximum Likelihood

• MLE - Maximum Likelihood estimator

• ODE - ordinary differential equation

• PIM - parent independent mutation

• RHS - right hand side

• SDE - stochastic differential equation

xi



Chapter 1

Introduction

Over the past couple of decades, mathematical population genetics has

been one of the main driving forces behind research in numerous areas

of both mathematics and statistics. It primarily concerns itself with

the study of how populations evolve over time, offering viable models

to study how various biological phenomena such as selection and

mutation interact and shape the genetic profile of the population they

act upon. Many models have been proposed over the years to describe

inheritance mechanisms between parents and offspring, but perhaps

the most popular remains the Wright–Fisher model ([Wri31, Fis99]).

In its simplest form, a haploid population of fixed size evolves in

discrete generations, where the offspring inherit the type of the parent

they choose uniformly at random from amongst the individuals present

in the previous generation. Generalisations allowing for mutation,

selection, migration, variable population size, overlapping generations,

and various other genetically relevant phenomena are relatively easy

to incorporate, making the process more realistic and thus appealing

to practitioners.

Whilst formulating the Wright–Fisher model with mutation and

selection is relatively straightforward, the granularity of the underly-

ing process means that calculating any quantities of interest quickly

becomes tedious and intractable. Thus it comes as no surprise that

performing inference in this context is not feasible, and an alternative

model approximating the original one needs to be sought. One way
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to do this is to resort to a diffusion approximation where one rescales

both space and time to recover a diffusive limit, commonly referred

to as the Wright–Fisher diffusion ([Fel51, Kim64], and Chapter 10

in [EK86]), and which will be the main focus of this thesis. The

Wright–Fisher diffusion is quite a robust process, in the sense that

a broad class of Cannings models ([Can74]) converge to it when

suitably scaled, thus making it an appealing process to study as it

can be used to approximate any such underlying model. Besides

taking values in the unit interval, it also has the favourable property

that the only contribution to the diffusion coefficient comes from

random mating whilst other mechanisms such as selection and mu-

tation appear solely in the drift coefficient. This particular feature

facilitates inference as it precludes any issues relating to identifying

any parameters in the diffusion coefficient via the quadratic variation

of the process. Thus one can concentrate solely on estimating the

drift coefficient, treating the diffusion coefficient as a known expression.

In this thesis we aim to both establish theoretical guarantees

for standard inferential techniques when applied to the Wright–

Fisher diffusion, as well as provide a practicable inferential

scheme with which to conduct exact inference. We start by

considering the one-dimensional process, which is already quite

well-understood ([Dur08, Chapters 7 and 8], [EK86, Chapter 10],

[EM10, GJS18, Gri80, Gri79, Tav84, BEG00]) and widely used in the

literature ([BYN, KPR21, SBS14, SES16, HDBY20b, MM13, Mat20]).

However due to specific features of the process, standard results for

scalar diffusions are not directly applicable. One specific instance

of this is tackled in Chapter 3, where we show that the Maximum

Likelihood (ML) and Bayesian estimators for the selection parameter

have a set of desirable statistical properties in a continuous observation

regime. These properties have been shown to hold for a broad class of

diffusions defined on all of R in [Kut04], however the general theory

there fails to hold for the Wright–Fisher diffusion. The main reason

is the fact that the latter process has a diffusion coefficient which

dies out at the boundaries (and is in fact equal to 0 at both 0 and
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1), whilst in [Kut04] the diffusions considered are assumed to have

a strictly positive diffusion coefficient everywhere. This assumption

particularly highlights the discrepancy between diffusions defined on

bounded intervals and those on all of R, as the latter need to have some

accompanying boundary behaviour ensuring that the process does

not “escape” the bounded state space as it approaches the boundary.

In the Wright–Fisher case, this is provided by the drift coefficient

which becomes positive (or negative) as the process approaches 0

(or 1), provided the mutation parameters are strictly positive, whilst

the diffusion coefficient vanishes sufficiently quickly to allow the

process to be reflected back into the interior of the unit interval. This

interplay between the drift and diffusion coefficient at the boundary

has deeper implications on inferring the mutation parameters as will

be highlighted in Chapter 3. Apart from the general case considered

in [Kut04], we mention the work done by Watterson in [Wat79], where

the maximum likelihood estimator (MLE) for selection in the absence

of mutation (which in particular implies that the diffusion is absorbed

at the boundary) is studied. By conditioning on absorption, the author

derives the moment generating function, hypothesis tests and proves

asymptotic normality, however these results do not extend to the case

when the mutation rates are strictly positive as the boundaries now

become reflecting.

To arrive to statements concerning the ML and Bayesian esti-

mator however, we first show that the underlying process possesses

certain properties which will be useful going forwards. To this end, in

Chapter 2 we start by considering the more general setting of scalar

diffusions defined on a bounded interval [l, r], with −∞ < l < r < ∞
regular or entrance boundaries, and define the notion of ϑ-uniform

ergodicity. This property extends the usual pointwise (in the param-

eter) ergodicity displayed by positively recurrent scalar diffusions to

compact sets in the parameter space by finding a least rate at which

the time averages of bounded measurable functions of the process

converge to the state space average. Through the use of quantities

that are very close to the ones used in classifying the boundary
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behaviour of scalar diffusions, we provide verifiable criteria which

allow us to deduce ϑ-uniform ergodicity for the above considered class

of diffusions by making use of the regeneration arguments developed

in [LLL11]. We are further able to extend this notion of ergodicity

to a specific class of unbounded functions for the case of diffusions

having solely entrance boundaries. These two general results admit

the Wright–Fisher diffusion as a special case, as shown in Corollaries

2.5 and 2.6, and directly imply uniform local asymptotic normality for

the family of measures induced by the solutions to the corresponding

Wright–Fisher stochastic differential equations (SDEs), provided one

considers a suitable class of initial laws.

These results will prove to be crucial in establishing certain sta-

tistical properties for the ML and Bayesian estimators for selection

based on a continuously observed Wright–Fisher diffusion. As we

are now in the regime where our data is a particular realisation

from amongst the collection of all continuous functions mapping

[0, T ] 7→ [0, 1], the likelihood ratio function is given by the Radon–

Nikodym derivative between the measures induced on this space of

functions by the corresponding solutions to the SDE for different

parameter configurations. This ratio can be analytically derived

(provided the mutation parameters are sufficiently large) by the

Girsanov transform, and shall be the main focus of Chapter 3. As

stated above, a broad class of diffusions has already been tackled in

[Kut04], establishing uniform (over compact sets in the parameter

space) consistency, asymptotic normality and convergence of moments,

together with asymptotic efficiency for a given set of loss functions.

The arguments developed there hinge upon the Ibragimov-Has’minskii

conditions ([IH81, Theorems I.5.1, I.5.2, I.10.1, I.10.2]), which consist

of:

1. two bounds on the Hellinger distance of the likelihood ratio,

2. marginal convergence of the finite dimensional distributions of the

likelihood ratio to those of a suitable limiting distribution

3. the uniqueness of the maximum of this limiting distribution to-
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gether with that of the minimum of a particular function of this

limiting quantity.

We show that these conditions directly imply the above stated

properties for the ML and Bayesian estimators in Theorem 3.2, and

prove that they hold true for the Wright–Fisher case in Propositions

3.5, 3.6, 3.7 and Corollary 3.4. The corollary follows directly from the

previously proved uniform local asymptotic normality by considering

the marginal convergence of the finite dimensional distributions of

the associated likelihood ratio function, whilst Proposition 3.7 holds

in general and is directly applicable for the Wright–Fisher diffusion.

Propositions 3.5 and 3.6 require some more work. Extending this

framework to include the mutation parameters is only possible when

these are greater than or equal to 1 (to ensure that the Radon-Nikodỳm

derivatives and resulting likelihood ratios are defined), and is rather

delicate as illustrated in Section 3.4.

We point out here that the above described setup where we ob-

serve the whole path without error is clearly unrealistic, and thus

cannot lead to a practicable inferential scheme. Even if one had

access to the entire path, storing this infinite dimensional quantity

on a machine is not possible. To this end we emphasise that the

contributions developed in Chapter 3 are purely theoretical in nature

and serve to establish a baseline from which one could hope to

recover similar conclusions in the discrete observation setting, when

an additional source of error is introduced as one does not know what

happens to the path in between observations. As we show in Section

3.3, there is some empirical evidence which suggests that similar

results might still hold in the case when observation times approach a

densely sampled regime, however extending them formally for such a

scenario is outside the scope of this thesis.

Having established that the selection parameter can be inferred

from the data in this idealised setting, in Chapter 4 we proceed to

develop an inferential technique for conducting inference based on

noisy discrete observations coming from the scalar Wright–Fisher
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diffusion. Recent developments in technologies relating to DNA

sequencing and ancient DNA (aDNA) retrieval has led to a rapid

increase in the amount of allele frequency times series datasets

([HSK+05, LPR+09, MM13, SCWGSL17, Mat20] to name a few, but

we point out a growing repository of aDNA datasets at the Reich

Lab website1 in Harvard consisting of data used in published studies)

which track the changes in allelic frequencies in a population across

time. Traditional methods used by geneticists to quantify the degree

of natural selection have relied solely on present day data, leading

to estimates with a limited amount of statistical power since they

depend only on a static snapshot of the population. In view of the

fact that selection is a mechanism which is continuously operating

on the population at hand, incorporating the temporal dimension

into the picture by stringing together several observations through

time (under the unifying assumption that all sampled individuals

derive from the same population), should lead to more informative

estimates. However, this approach does not come without its pitfalls.

Whilst in the continuous observation case, the likelihood ratio is given

analytically via the Girsanov theorem (with the nuisance there being

the infinite dimensional random integrands involved), in the discrete

observation case it is given by a product of Wright–Fisher transition

densities. As with most diffusions, these quantities are analytically

unavailable and cannot be computed exactly in finite time; in the

neutral Wright–Fisher case the transition density admits an infinite

series representation, whilst in the non-neutral case intractable terms

make the analysis much harder. Most of the techniques developed

thus far in the genetics time series literature have relied on some

form of discretisation to deal with this intractability; be it solving

the associated backward Kolmogorov equation via finite difference

schemes ([BYN, HDBY20b]), working with truncated eigenfunction

expansions of the transition densities ([SBS14]), or approximating

Lebesgue integrals via Riemann sums ([SES16]). Such approximations

allow for access to estimates of the selection coefficient as well as

other genetically relevant quantities (such as allele age and effective

1https://reich.hms.harvard.edu/datasets
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population size), however the discretisations and approximations

employed introduce a bias into the inference which is impossible to

quantify.

Notwithstanding these problems, it was proved in [JS17] that an

exact algorithm targetting the neutral and non-neutral Wright–Fisher

diffusion and bridge can be implemented in finite time, thereby paving

the way to embedding this algorithm within a Markov Chain Monte

Carlo (MCMC) framework to target the exact posterior of the allele

age and selection parameter. By exact here we mean that the method

suffers only from Monte Carlo (MC) and precision error as none of the

intractable quantities are computed via discretised approximations. By

relying upon a suitable state space augmentation, we gain access to a

more tractable form of the likelihood function, which therefore enables

us to construct a Gibbs sampler that alternates between updating the

parameters of interest and the auxiliary random variables. The end

result is a pseudo-marginal algorithm targetting the joint posterior of

the allele age t0, the selection coefficient σ, as well as the auxiliary

variables which we can marginalise over to recover the posterior

distributions of interest. The method has been tested extensively on

simulated data (generated by means of the exact algorithm), and the

output obtained suggests that the method produces reasonable results

even when priors are somewhat mis-specified. The method developed

in Chapter 4 is currently being extended in several directions, namely

avoiding any pseudo-marginal updates, incorporating the mutation

parameters into the inference, accounting for demographic history and

allowing for selected alleles to arise from standing variation rather

than necessarily stem from de novo mutations.

Working in the one-dimensional case as above allows for a num-

ber of techniques and properties of one-dimensional processes to

be invoked, leading to simpler calculations and arguments. These

simplifications disappear when one moves to higher dimensions, as

several concepts such as point recurrence and the notions of speed

and scale do not extend. Thus establishing analogous results as in

7



the one dimensional case becomes much more intricate. In particular,

in Chapter 5 we illustrate how the results from Chapter 2 can be

extended for the K-dimensional Wright–Fisher diffusion with selection

and mutation when K ≥ 2, starting with ϑ-uniform ergodicity. Whilst

extending the notion of ϑ-uniform ergodicity is quite straightforward,

establishing it is rather more involved. The regenerative scheme

coupled with the ordinary differential equation (ODE) approach

used in Theorem 2.2 is no longer suitable, as the hitting times of

sets (as opposed to points) do not offer the correct mathematical

framework within which to entertain regenerative arguments in higher

dimensions. Instead we show (following the approach in [LL13]) how

a richer stochastic process constructed out of the original one allows

for a suitable set of regeneration times to be defined, which in turn

allows for regeneration arguments similar to those used in Chapter

2 to be employed. We point out here that the techniques used in

[LL13] enable control over the rate of convergence in the ergodic

theorem first by means of the moments of these regeneration times

(via the arguments used in Theorem 5.2 therein) and subsequently via

a suitable Lyapunov function (by making use of Theorem 4.1 therein).

Whilst the results leading to the bounds involving the moments of the

regeneration times apply verbatim to the Wright–Fisher case, showing

how these can be controlled via Lyapunov functions remains an open

problem, as the results used for this last step need not apply to the

Wright–Fisher case. Nonetheless, we show how by considering the

hitting times of a particular set (together with a specific choice of

parameter configurations), standard multidimensional diffusion theory

coupled with a suitable choice of Lyapunov function allow for control

over the moments of said hitting time in terms of the Lyapunov

functions. We emphasise here that this chapter does not contain

original results, but rather provides a general overview of the problems

involved in establishing ϑ-uniform ergodicity for the K-dimensional

Wright–Fisher diffusion. Once this last hurdle is cleared, then one

can start thinking about proving uniform local asymptotic normality

for the corresponding family of measures, and eventually also looking

into extending the results in Chapter 3 to the multidimensional setting.
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The rest of this thesis is organised as follows: In Chapter 2 we

tackle the problem of deriving conditions which guarantee ϑ-uniform

ergodicity for bounded scalar diffusions with entrance or regular

boundaries, and proceed to extend this notion for a specific class of

unbounded functions in the case when both boundaries are entrance.

We then use these results to deduce the uniform in the selection and

mutation parameters ergodicity of the Wright–Fisher diffusion together

with the uniform local asymptotic normality of the laws associated to

the solutions of this SDE. Chapter 3 then looks at proving uniform

(over compact sets in the parameter space) consistency, asymptotic

normality and convergence of moments, together with asymptotic

efficiency for the ML and Bayesian estimators for selection when

the entire diffusion trajectory is observed without error in Theorem

3.2. The results rely on the Ibragimov–Has’minskii conditions which

are translated to our setting in Theorem 3.3, and proved for the

Wright–Fisher case in Section 3.2. Problems associated with extend-

ing the inferential framework to include the mutation parameters

are elaborated on at the end of the chapter. In Chapter 4 we then

turn towards devising a practicable way of performing inference on

time-series data driven by an underlying Wright–Fisher diffusion. Here

we develop an exact inferential scheme which allows us to directly

target the posterior over the allele age and selection parameter via a

suitable state space augmentation and access to the exact algorithm

for the Wright–Fisher diffusion. We give a thorough explanation of the

method, and proceed to illustrate its performance on simulated data

before closing off with some final remarks on extensions to the current

setup. We then move on to tackle the case of the K-dimensional

Wright–Fisher in Chapter 5, where we illustrate the steps necessary to

prove ϑ-uniform ergodicity in this setting, and give a brief sketch of

how one might achieve this. In addition, we explain in greater detail

the main problems relating to controlling the moments of regeneration

times, and describe some preliminary attempts at solving this. We

conclude with a brief discussion in Chapter 6, where we survey the

results presented here and provide an outlook on related future work.
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Chapter 2

ϑ-uniform ergodicity and

local asymptotic normality

In this chapter we focus on the scalar Wright–Fisher diffusion which

describes the allele frequency dynamics in a two-allele, haploid

population undergoing both selection and mutation. We start by

considering a general scalar diffusion taking values in an arbitrary

bounded interval [l, r], with −∞ < l < r < ∞ being either regular

or entrance, and derive verifiable criteria to establish ϑ-uniform

ergodicity (as defined in Definition 2.1). Subsequently, we introduce

the Wright–Fisher diffusion, and by making use of the previously

derived criteria, show that the diffusion is ergodic uniformly over both

the selection and mutation parameters, and that the associated family

of measures induced by the solutions to the corresponding stochastic

differential equations (SDEs) is uniformly locally asymptotically

normal (provided the mutation parameters are greater than or equal

to 1). The importance of these two properties (particularly uniform

local asymptotic normality) becomes more apparent in the next

chapter when we use them to analyse the statistical properties of the

Maximum Likelihood and Bayesian estimators for selection.

Using arguments developed in [LLL11], we bound the rate of

convergence in the ergodic theorem for bounded positive recurrent

scalar diffusions having either boundary being entrance or regular,

10



via moments of the hitting times of an arbitrary point in the interior

of the state space. By making use of recursively defined ordinary

differential equations (ODEs), these quantities can be bounded from

above in terms of the underlying parameter ϑ. Thus, the pointwise (in

the parameter) ergodicity is extended to arbitrary compact sets in the

parameter space by finding the least rate at which this convergence

occurs. We point out here that the general results we derive in Section

2.1 provide easily verifiable criteria with which to deduce whether

an arbitrary diffusion on a bounded interval with entrance or regular

boundaries displays ϑ-uniform ergodicity. In particular, as seen in the

proof of Theorem 2.2, the criteria are closely linked to standard quan-

tities used to classify the boundary behaviour of scalar diffusions. We

further extend the notion of ϑ-uniform ergodicity for a specific class of

unbounded functions when the diffusion has solely entrance boundaries.

Local asymptotic normality ([LC60]) is a particularly useful property

for a family of statistical models to possess, as it allows for the

log-likelihood ratio to be asymptotically viewed as a Gaussian random

variable. This concept turns out to be crucial in proving several

asymptotic properties of estimators such as consistency and asymp-

totic normality in the context of parametric models, and shall be one

of the central properties upon which our results in Chapter 3 rely.

Establishing uniform local asymptotic normality for a general class of

diffusions taking values on the entire real line is rather straightforward

given sufficient assumptions on the drift and diffusion coefficient (see

Lemma 2.9 in [Kut04]), by applying a uniform (in the parameter)

central limit theorem (Proposition 1.20 in [Kut04]) and a law of large

numbers (by making use of Proposition 1.18 in [Kut04]). The latter

proposition, however, holds only for SDEs for which the diffusion

coefficient’s inverse can be bounded from above by a polynomial, and

thus immediately excludes the Wright–Fisher diffusion. Nonetheless,

by resorting to ϑ-uniform ergodicity, we are able to establish uniform

local asymptotic normality for the class of Wright–Fisher diffusions

parametrised by the selection and mutation parameters (provided the

latter are greater than or equal to 1) in Theorem 2.8.

11



The rest of this chapter is organised as follows: in Section 2.1

we derive the conditions which ensure that a scalar diffusion on a

bounded interval with entrance or regular boundaries is ϑ-uniformly

ergodic (a term we define precisely in Definition 2.1), and extend this

property to a specific class of unbounded functions for diffusions with

solely entrance boundaries. Section 2.2 then introduces the scalar

Wright–Fisher diffusion, together with some well-known properties,

before proving that the diffusion is uniformly in the selection and

mutation parameters ergodic in Subsection 2.2.1, and that the family

of measures (indexed by ϑ ∈ Θ ⊂ R × [1,∞)2 for Θ open and

bounded) induced by the solutions to the corresponding SDEs are

uniformly locally asymptotically normal in Subsection 2.2.2.

2.1 ϑ-uniform ergodicity for scalar diffusions on

bounded intervals

We start by considering an arbitrary fixed interval [l, r], with −∞ <

l < r <∞, on which we define the SDE

dYt = µ(ϑ, Yt)dt+ α(Yt)dWt, Y0 ∼ ν, ϑ ∈ Θ ⊆ Rd, d ≥ 1 (2.1)

where ν is an arbitrary initial distribution on [l, r], (Wt)t≥0 a standard

Wiener process defined on a given filtered probability space, µ and

α are such that the SDE admits a unique strong solution which we

denote by Y := (Yt)t≥0, −∞ < l < r < ∞ are both either entrance

or regular boundaries for Y , and the observation interval is fixed to

[0, T ]. We denote by P(ϑ)
ν the law induced on the space of continuous

functions mapping [0, T ] into [l, r] (endowed with the Borel σ-algebra,

and henceforth denoted by CT ([l, r])) by the solution to (2.1) when

the true diffusion parameter is set to ϑ, and Y0 ∼ ν (with dependence

on T being implicit). Furthermore we denote taking expectation with

respect to P(ϑ)
ν by E(ϑ)

ν .

Assume further that Y is positive recurrent, then using stan-

12



dard one-dimensional diffusion theory (see Theorem 1.16 in [Kut04]),

we get that the unique invariant density is given by

fYϑ (x) =
1

GY
ϑ

2

α2(x)
e

2
∫ x µ(ϑ,z)

α2(z)
dz
, x ∈ [l, r],

GY
ϑ :=

∫ r

l

2

α2(x)
e

2
∫ x µ(ϑ,z)

α2(z)
dz
dx. (2.2)

In what follows, we denote taking expectation with respect to fYϑ by

E(ϑ), where the omission of the subscript will indicate that we start

from stationarity, and henceforth always assume that ξ ∼ fYϑ .

In order to derive the results in Chapter 3, we will need a slightly

stronger notion of ergodicity which we now define. The idea here is

that we can extend pointwise ergodicity in the parameter ϑ to any

compact set K ⊂ Θ by finding the slowest rate of convergence which

works within that compact set. More rigorously, we introduce the

following definition.

Definition 2.1. A process Y is said to be ergodic uniformly in the

parameter ϑ (or ϑ-uniformly ergodic) if ∀ε > 0 we have that

lim
T→∞

sup
ϑ∈K

P(ϑ)
ν

[ ∣∣∣∣ 1

T

∫ T

0

h(Yt)dt− E(ϑ)
[
h (ξ)

]∣∣∣∣ > ε

]
= 0 (2.3)

holds for any K compact subset of the parameter space, and for any

function h : [l, r]→ R bounded and measurable, where ξ ∼ fYϑ .

In the context of scalar diffusions defined on a bounded interval [l, r]

with −∞ < l < r < ∞, where both boundaries are either regular or

entrance we have the following theorem:

Theorem 2.2. Let Y be defined as above as the solution to (2.1),

with boundary points l and r either entrance or regular, and that the

13



expressions

κlϑ(a, b) :=

∫ b

a

e
−
∫ ξ 2µ(ϑ,y)

α2(y)
dy
∫ ξ

l

2

α2(η)
e
∫ η 2µ(ϑ,y)

α2(y)
dy
dηdξ,

κrϑ(a, b) :=

∫ b

a

e
−
∫ ξ 2µ(ϑ,y)

α2(y)
dy
∫ r

ξ

2

α2(η)
e
∫ η 2µ(ϑ,y)

α2(y)
dy
dηdξ, (2.4)

are bounded away from 0 on any compact set K ⊂ Θ, and any l < a <

b < r. Then Y is uniformly ergodic in the parameter ϑ for any initial

distribution ν.

Proof. We show ϑ-uniform ergodicity for scalar diffusions on the

bounded interval [l, r] having entrance or regular boundary points by

making use of Theorem 3.2 in [LLL11], which allows us to bound the

LHS of (2.3) in terms of the moments of the hitting times of the process.

That result requires the diffusion coefficient to be positive everywhere,

and the drift and diffusion coefficients to be locally Lipschitz and to

satisfy a linear growth condition. These conditions however, are only

used to guarantee the existence of a unique strong non-exploding solu-

tion to the SDE in Theorem 3.2, which we are guaranteeing explicitly

in the statement of the theorem. None of these requirements on the

drift and diffusion coefficients are used in the proof of Theorem 3.2 in

[LLL11] when p ∈ {2, 3, . . . }, which allows us to employ this theorem

for such p. All that remains to prove then is that these moments can

be bounded in ϑ over compact sets in the parameter space, for then

(2.3) holds. To this end, we introduce some notation from [LLL11],

namely let a, b ∈ (l, r) be arbitrary fixed points such that a < b. Define

S0 = 0, R0 = 0, and

Sn+1 := inf {t ≥ Rn : Yt = b}
Rn+1 := inf {t ≥ Sn+1 : Yt = a}

for n ∈ N, where we specify that here and throughout the rest of this

thesis N includes 0. By the strong Markov property, (Rk−Rk−1)k∈N\{0}

is an i.i.d. sequence with law under P(ϑ)
ν equal to the law of R1 under

P(ϑ)
a , where P(ϑ)

a denotes the law of the process started from a. Related

14



to the process (Rn)n∈N we have the process (Nt)t≥0 which we define as

Nt := sup {n : Rn ≤ t}

and for which we observe that {Nt ≥ n} = {Rn ≤ t}. We also denote

by

Ta := inf{t ≥ 0 : Yt = a}

the hitting time of a, and note that Tb = S1. Furthermore, let `ϑ :=

E(ϑ)[N1] = E(ϑ)
a [R1]

−1
(see Lemma 2.7 in [LLL11]), and η̄1 := −(R2 −

R1−`−1
ϑ ). Then Theorem 3.2 in [LLL11] gives us that for p ∈ {2, 3, . . . }

P(ϑ)
ν

[∣∣∣∣ 1

T

∫ T

0

h(Yt)dt− E(ϑ) [h(ξ)]

∣∣∣∣ > ε

]
≤ K(ϑ, Y, p)ε−p‖h‖p∞T−

p
2 ,

where

K(ϑ, Y, p) := 6
p
2E(ϑ)

ν

[
R

p
2
1

]
+ 12pCp`

p
2
ϑE

(ϑ)
ν [|R2 −R1|p]

+ 2(6p)`ϑE(ϑ)
a [Rp

1] + 2
p
2E(ϑ)

ν

[∣∣R1 − `ϑ−1
∣∣ p2 ]

+ 2
3p
2 Cp`

p
2
ϑE

(ϑ)
ν [|η̄1|p] ,

and Cp is a constant depending only on p. We point out here that The-

orem 3.2 in [LLL11] holds ∀p ∈ (1,∞) under additional assumptions,

but for our case we need only p ∈ {2, 3, . . . }. Thus we are left with

showing these moments can be bounded from above in ϑ over compact

sets, for then (2.3) follows. Now the only terms above that depend on

ϑ are

E(ϑ)
ν

[
R

p
2
1

]
, `

p
2
ϑE

(ϑ)
ν [|R2 −R1|p] , `ϑE(ϑ)

a [Rp
1] ,

E(ϑ)
ν

[∣∣R1 − `−1
ϑ

∣∣ p2 ] , `
p
2
ϑE

(ϑ)
ν [|η̄1|p]
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and in light of the following inequalities

E(ϑ)
ν [|η̄1|p] ≤ 2p−1

(
E(ϑ)
ν [|R2 −R1|p] + E(ϑ)

ν

[
`−pϑ
])

= 2p−1
(
E(ϑ)
a [Rp

1] + E(ϑ)
a [R1]p

)
,

E(ϑ)
ν

[∣∣R1 − `−1
ϑ

∣∣ p2 ] ≤ 2
p
2
−1
(
E(ϑ)
ν

[
R

p
2
1

]
+ E(ϑ)

ν

[
`
− p

2
ϑ

])
= 2

p
2
−1
(
E(ϑ)
ν

[
R

p
2
1

]
+ E(ϑ)

a [R1]
p
2

)
,

E(ϑ)
ν [|R2 −R1|p] = E(ϑ)

a [Rp
1] ≤ 2p−1

(
E(ϑ)
a [T pb ] + E(ϑ)

b [T pa ]
)
,

E(ϑ)
ν

[
R

p
2
1

]
≤ 2

p
2
−1
(
E(ϑ)
ν

[
T
p
2
b

]
+ E(ϑ)

b

[
T
p
2
a

])
,

E(ϑ)
a [R1] = E(ϑ)

a [Tb] + E(ϑ)
b [Ta] ,

it suffices to consider only the terms `ϑ and E(ϑ)
ν [T pb ]. Thus we are left

with showing that these two terms can be bounded from above in ϑ

over any compact set K ⊂ Θ. We further point out that we can reduce

our considerations in the expressions above to integer moments, for if

this is not the case then

E(ϑ)
ν [T pb ] ≤ E(ϑ)

ν

[
T
dpe
b

]
+ E(ϑ)

ν

[
T
bpc
b

]
where d·e and b·c denote the ceiling and floor functions respectively.

We make use of the backward equation for the quantity

Uq,b(x) := E(ϑ)
x [T qb ] for q ∈ {1, 2, . . . }, to derive the ODE (as

can be found in [KT81] p. 203 and 210, and [WY08])

α2(x)

2
U ′′q,b(x) + µ(ϑ, x)U ′q,b(x) + qUq−1,b(x) = 0 (2.5)

with boundary conditions Uq,b(b) = 0 and

lim
y→l

S ′(y)−1 ∂

∂y
Uq,b(y) = 0

when x < b, or

lim
y→r

S ′(y)−1 ∂

∂y
Uq,b(y) = 0
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when x > b, where

S(x) :=

∫ x

e
−
∫ y 2µ(z)

α2(z)
dz
dy.

Solving (2.5) for x < b leads to

E(ϑ)
x [T qb ] =

∫ b

x

e
−
∫ ξ 2µ(ϑ,y)

α2(y)
dy
∫ ξ

l

2

α2(η)
e
∫ η 2µ(ϑ,y)

α2(y)
dy
qUq−1,b(η)dηdξ, (2.6)

whilst for x > b we have that

E(ϑ)
x [T qb ] =

∫ x

b

e
−
∫ ξ 2µ(ϑ,y)

α2(y)
dy
∫ r

ξ

2

α2(η)
e
∫ η 2µ(ϑ,y)

α2(y)
dy
qUq−1,b(η)dηdξ. (2.7)

We claim that for any x < b and any q ∈ {1, 2, . . . },

E(ϑ)
x [T qb ] ≤ q!

(∫ b

l

e
−
∫ ξ 2µ(ϑ,y)

α2(y)
dy
∫ ξ

l

2

α2(η)
e
∫ η 2µ(ϑ,y)

α2(y)
dy
dηdξ

)q
= q!κlϑ(l, b)q <∞. (2.8)

To see this, observe that

E(ϑ)
x [Tb] =

∫ b

x

e
−
∫ ξ 2µ(ϑ,y)

α2(y)
dy
∫ ξ

l

2

α2(η)
e
∫ η 2µ(ϑ,y)

α2(y)
dy
dηdξ

≤
∫ b

l

e
−
∫ ξ 2µ(ϑ,y)

α2(y)
dy
∫ ξ

l

2

α2(η)
e
∫ η 2µ(ϑ,y)

α2(y)
dy
dηdξ

= κlϑ(l, b), (2.9)

and we observe that κlϑ(l, b) is finite for all ϑ ∈ Θ in virtue of l being

either an entrance or regular boundary (see Table 6.2 in [KT81, Chapter

15, Section 6] p. 234, and note that κlϑ(l, b) here corresponds to N(l) as

defined in (6.19) there). Observe that the RHS of (2.9) is independent

of x, so we can use the recursion in (2.7) to conclude by induction that

(2.8) holds for q ∈ {1, 2, . . . } as required. Similar arguments to those

presented above coupled with the requirement that the boundary point

at r is either entrance or regular, allows us to conclude that for x > b
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and q ∈ {1, 2, . . . },

E(ϑ)
x [T qb ] ≤ q!

(∫ r

b

e
−
∫ ξ 2µ(ϑ,y)

α2(y)
dy
∫ r

ξ

2

α2(η)
e
∫ η 2µ(ϑ,y)

α2(y)
dy
dηdξ

)q
= q!κrϑ(b, r)q <∞. (2.10)

Both RHS of (2.8) and (2.10) are independent of x, so trivially

E(ϑ)
ν [T qb ] ≤ q!

(
κlϑ(l, b)q + κrϑ(b, r)q

)
. (2.11)

All the terms on the RHS of (2.8), (2.10) and (2.11) are finite for any

ϑ ∈ Θ, so we have our required bound when taking the supremum over

a compact set K ⊂ Θ for E(ϑ)
ν [T qb ]. It remains to show that we can

bound `ϑ from above. Observe that by definition

`ϑ = E(ϑ)
a [R1]−1 =

(
E(ϑ)
a [Tb] + E(ϑ)

b [Ta]
)−1

,

and recall that we will take the supremum in ϑ over a given compact

set K. Using (2.6) and (2.7) with q = 1, coupled with (2.4), we deduce

that E(ϑ)
a [Tb] and E(ϑ)

b [Ta] are bounded away from 0 for any compact

K ⊂ Θ, and thus we have the required upper bound on `ϑ.

Note that the definition of ϑ-uniform ergodicity given above involves

only bounded functions h, however the result above can be extended to

a specific class of unbounded functions if one restricts their attention

to diffusions on [l, r] where −∞ < l < r < ∞ are both entrance

boundaries.

Theorem 2.3. Let Y be as in Theorem 2.2, and suppose that all the

conditions stated there hold, but that both l and r are now entrance

boundaries. Assume further that the function h is integrable with re-

spect to the invariant density fYϑ but possibly unbounded, that for any

l < a < b < r, supy∈[a,b] h(y) <∞, and that for any x < b the following
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hold

sup
ϑ∈K

∫ b

x

e
−
∫ ξ 2µ(ϑ,y)

α2(y)
dy
∫ ξ

l

2h(η)

α2(η)
e
∫ η 2µ(ϑ,y)

α2(y)
dy
dηdξ <∞, (2.12)

sup
ϑ∈K

∫ b

x

e
−
∫ ξ 2µ(ϑ,y)

α2(y)
dy
∫ ξ

l

2h(η)

α2(η)
e
∫ η 2µ(ϑ,y)

α2(y)
dy

× E(ϑ)
η

[∫ Tb

0

h(Yt)dt

]
dηdξ <∞, (2.13)

sup
ϑ∈K

∫ r

l

E(ϑ)
x

[∫ Tb

0

h(Yt)dt

]
ν(ϑ, dx) <∞, (2.14)

for any compact set K ⊂ Θ, and Tb := inf{t ≥ 0 : Yt = b}. Then (2.3)

holds for the function h.

Remark 2.4. Note that the above conditions imply that h is only

unbounded at the end points (because the supremum between a and

b of h is finite for any l < a < b < r), which in particular ensures

that all integrals of the form
∫ T

0
h(Yt)dt above are well-defined as both

boundary points are unattainable (in view of them being entrance).

Proof. Recall the notation introduced in Theorem 2.2, namely the re-

generation times {Sn, Rn}n∈N and the number of upcrossings up to time

t, {Nt}t≥0. We want to prove that

lim
T→∞

sup
ϑ∈K

P(ϑ)
ν

[∣∣∣∣ 1

T

∫ T

0

h(Yt)dt− E(ϑ) [h(ξ)]

∣∣∣∣ > ε

]
= 0 (2.15)

holds for any compact set K ⊂ Θ, with h as defined in the statement of

the theorem. The strategy here will be to decompose the sample path

of the diffusion into i.i.d. blocks of excursions as done in Theorem 3.5

in [LLL11]. However, we will deal with the resulting expectations in a

different way, namely by applying the ODE approach used in Theorem

2.2 to bound these quantities from above in ϑ over a compact set

K. To this end, fix ε ∈ (0,E(ϑ)[h(ξ)]) and choose δ ∈ (0, 1) such

that ε = δE(ϑ)[h(ξ)], and set ΩT := {|NTT
−1 − `ϑ| ≤ `ϑδ/4} for

`ϑ = E(ϑ)
a [R1]−1. Then as in the proof of Theorem 3.5 in [LLL11], we
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get the following decomposition

P(ϑ)
ν

[∣∣∣∣ 1

T

∫ T

0

h(Yt)dt− E(ϑ) [h(ξ)]

∣∣∣∣ > ε

]
≤ P(ϑ)

ν

[∣∣∣∣∫ R1

0

h(Yt)dt

∣∣∣∣ > Tε

4

]
+ P(ϑ)

ν

[∣∣∣∣∫ RNT +1

R1

h(Yt)dt−NTE(ϑ) [h(ξ)]E(ϑ)
a [R1]

∣∣∣∣ > Tε

4
; ΩT

]
+ P(ϑ)

ν

[∣∣NTE(ϑ) [h(ξ)]E(ϑ)
a [R1]− TE(ϑ) [h(ξ)]

∣∣ > Tε

4
; ΩT

]
+ P(ϑ)

ν

[∣∣∣∣∫ RNT +1

T

h(Yt)dt

∣∣∣∣ > Tε

4
; ΩT

]
+ P(ϑ)

ν [Ωc
T ]

=: A+B + E + C +D

Dealing with E and D can be achieved as in equations (3.10) and (3.14)

in [LLL11], to deduce that E = 0 and

D ≤ 1

Tε2
E(ϑ) [h(ξ)]2

(
2E(ϑ)

ν

[∣∣R1 − `−1
ϑ

∣∣]+ 23C2
1E(ϑ)

ν

[
|η̄1|2

]
`ϑ
)
,

for C1 the constant from the Burkholder-Davis-Gundy inequality. All

the above expressions are either constant or have been shown to be

bounded in ϑ over compact sets in the parameter space in Theorem

2.2, so it remains to deal with terms A, B and C above.

Applying Markov’s inequality to A gives

A ≤ 4

Tε
E(ϑ)
ν

[∫ R1

0

h(Yt)dt

]
and we can decompose the above integral

E(ϑ)
ν

[∫ R1

0

h(Yt)dt

]
= E(ϑ)

ν

[∫ S1

0

h(Yt)dt

]
+ E(ϑ)

ν

[∫ R1

S1

h(Yt)dt

]
≤ E(ϑ)

ν

[∫ Tb

0

h(Yt)dt

]
+ sup

y∈[a,b]

h(y)E(ϑ)
ν [R1] . (2.16)

So it remains to prove that the first term on the RHS can be bounded
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from above in ϑ. It turns out that B and C can be bounded by similar

quantities, so we do this first and subsequently show that the resulting

quantities can be bounded in ϑ too.

Indeed, set ξk :=
∫ Rk+1

Rk
h(Yt)dt, M0 = 0, and

Mn :=
n∑
k=1

(
ξk − E(ϑ)

ν [ξk]
)
.

Then

B = P(ϑ)
ν

[
|MNT | >

Tε

4
; ΩT

]
≤ P(ϑ)

ν

[
sup

n≤bT`ϑ(1+δ/4)c
|Mn| >

Tε

4

]

≤
(

4

Tε

)2

V(ϑ)
ν

[
MbT`ϑ(1+δ/4)c

]
by the Kolmogorov inequality where V(ϑ)

ν denotes the variance with

respect to the measure P(ϑ)
ν . Now observe that

V(ϑ)
ν

[
MbT`ϑ(1+δ/4)c

]
=

bT`ϑ(1+δ/4)c∑
k=1

Vϑν
[(
ξk − E(ϑ)

ν [ξk]
)2
]

= bT`ϑ(1 + δ/4)cE(ϑ)
ν

[(
ξ1 − E(ϑ)

ν [ξ1]
)2
]

≤ bT`ϑ(1 + δ/4)c2
(
E(ϑ)
a

[
ξ2

0

]
+ E(ϑ)

a [ξ0]2
)
.

because the {ξk}∞k=1 are i.i.d., and moreover we have that under P(ϑ)
ν

they are equal in distribution to ξ0 under P(ϑ)
a . So

B ≤ 42b`ϑ(1 + δ/4)c
Tε2

2
(
E(ϑ)
a

[
ξ2

0

]
+ E(ϑ)

a [ξ0]2
)
. (2.17)

The second term of (2.17) can be bounded in the same way as in (2.16),
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whilst for the first term we can use a similar decomposition to get

E(ϑ)
a

[
ξ2

0

]
≤ 2

(
E(ϑ)
a

[(∫ Tb

0

h(Yt)dt

)2
]

+ sup
y∈[a,b]

h(y)2E(ϑ)
a

[
R2

1

])
. (2.18)

Finally, for C we use the same arguments as in [LLL11] (just before

equation (3.13)) to get that

C ≤
bT`ϑ(1+δ/4)c∑

k=1

P(ϑ)
ν

[∫ Rk+1

Rk

h(Yt)dt >
Tε

4

]

≤ 42bT`ϑ(1 + δ/4)c
T 2ε2

E(ϑ)
ν

[(∫ R2

R1

h(Yt)dt

)2
]

≤ 42`ϑ(1 + δ/4)

Tε2
E(ϑ)
a

[(∫ R1

0

h(Yt)dt

)2
]
,

and we can apply the same reasoning as in (2.18). It remains to show

that the terms

E(ϑ)
a

[∫ Tb

0

h(Yt)dt

]
, E(ϑ)

ν

[∫ Tb

0

h(Yt)dt

]
, E(ϑ)

a

[(∫ Tb

0

h(Yt)dt

)2
]

can be bounded from above in ϑ. The same arguments used to derive

the ODEs in Theorem 2.2 can be used here to derive an ODE for

Un(x) := E(ϑ)
x [(

∫ Tb
0
h(Yt)dt)

n] for the cases when x < b and x > b with

the same boundary conditions as in Theorem 2.2. Thus for n ∈ N\{0},
the following recursion holds for Un(x) when x < b

Un(x) = n

∫ b

x

e
−
∫ ξ 2µ(ϑ,y)

α2(y)
dy
∫ ξ

l

2h(η)

α2(η)
e
∫ η 2µ(ϑ,y)

α2(y)
dy
Un−1(η)dηdξ, (2.19)

and for x > b we have

Un(x) = n

∫ x

b

e
−
∫ ξ 2µ(ϑ,y)

α2(y)
dy
∫ r

ξ

2h(η)

α2(η)
e
∫ η 2µ(ϑ,y)

α2(y)
dy
Un−1(η)dηdξ. (2.20)
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Now for n = 1, we get that for x < b,

E(ϑ)
x

[∫ Tb

0

h(Yt)dt

]
=

∫ b

x

e
−
∫ ξ 2µ(ϑ,y)

α2(y)
dy
∫ ξ

l

2h(η)

α2(η)
e
∫ η 2µ(ϑ,y)

α2(y)
dy
dηdξ

which is bounded over any compact set K ⊂ Θ by (2.12). In view

of condition (2.14), we get that E(ϑ)
ν [
∫ Tb

0
h(Yt)dt] is also bounded from

above in ϑ over compact sets K ⊂ Θ, and finally, using the recursions

in (2.19), we get that for x < b,

E(ϑ)
x

[(∫ Tb

0

h(Yt)dt

)2
]

= 2

∫ b

x

e
−
∫ ξ 2µ(ϑ,y)

α2(y)
dy
∫ ξ

l

2h(η)

α2(η)
e
∫ η 2µ(ϑ,y)

α2(y)
dyE(ϑ)

η

[∫ Tb

0

h(Yt)dt

]
dηdξ

which is bounded from above in ϑ over a given compact set K ⊂ Θ

by (2.13), giving the required bounds for the quantities A, B, and C.

Combining these with the bounds for D and E we conclude that (2.15)

holds.

2.2 The scalar Wright–Fisher diffusion

We now give a brief overview of the Wright–Fisher diffusion before

showing that the diffusion is ergodic uniformly in the selection and

mutation parameters, and subsequently use this to prove the uniform

local asymptotic normality (LAN) of the family of measures associated

to the solution of the SDE.

Consider an infinite haploid population undergoing selection and

mutation, where we are interested in two alleles A1 and A2. Suppose

that ϑ = (σ, θ1, θ2) ∈ Θ = R× (0,∞)2 are the selection and mutation

parameters respectively, where σ describes the extent to which allele

A2 is favoured over A1, alleles of type A1 mutate to A2 at rate θ1/2,

and those of type A2 mutate to A1 at rate θ2/2. Let Xt denote the

frequency of A2 in the population at time t. Then the dynamics

of Xt can be described by a diffusion process on [0, 1], which, after
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expressing the parameters on an appropriate timescale, satisfies the

SDE

dXt = µWF(ϑ, Xt)dt+ αWF(Xt)dWt

:=
1

2
(σXt(1−Xt)− θ2Xt + θ1(1−Xt)) dt

+
√
Xt(1−Xt)dWt, (2.21)

with X0 ∼ ν for some initial distribution ν, and [0, T ] the obser-

vation interval. We point out that (2.21) with σ = 0 is commonly

referred to as the neutral Wright–Fisher diffusion, whilst σ 6= 0 is

known as the non-neutral case. A strong solution to (2.21) exists

by the Yamada–Watanabe condition (see Theorem 3.2, Chapter IV

in [IW89]), but weak uniqueness suffices for the results in Chapter

3. In abuse of notation, we redefine P(ϑ)
ν to be the law induced on

CT ([0, 1]) by the solution to (2.21) when the true diffusion parameters

are ϑ = (σ, θ1, θ2), and X0 ∼ ν, and similarly for the expectation with

respect to P(ϑ)
ν , E(ϑ)

ν , and with respect to the stationary distribution,

E(ϑ) (the existence of which we discuss below).

We assume that θ1, θ2 > 0, for if at least one is 0 then the dif-

fusion is absorbed in finite time and we are back in the regime studied

by Watterson [Wat79]. The boundary behaviour depends on whether

the mutation parameters are either less than, or greater or equal to

1, but in either case the diffusion is ergodic as long as θ1, θ2 > 0 (see

Lemma 2.1, Chapter 10 in [EK86]).

Substituting µWF and αWF into (2.2) and simplifying terms leads to the

following density for the stationary distribution of the Wright–Fisher

diffusion (2.21)

fϑ(x) =
1

Gϑ
eσxxθ1−1(1− x)θ2−1, x ∈ (0, 1), (2.22)
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where Gϑ is the normalising constant

Gϑ =

∫ 1

0

eσxxθ1−1(1− x)θ2−1dx ≤ max{eσ, 1}B(θ1, θ2) <∞, (2.23)

with

B(θ1, θ2) :=

∫ 1

0

xθ1−1(1− x)θ2−1dx (2.24)

the beta function. As above we will always assume that ξ ∼ fϑ.

2.2.1 Uniform in the selection and mutation parameters er-

godicity

To the best of our knowledge, it has not been shown that the Wright–

Fisher diffusion is ergodic uniformly in its parameters, which motivates

the following corollary to Theorem 2.2.

Corollary 2.5. The Wright–Fisher diffusion with mutation and se-

lection is uniformly in the selection and mutation parameters ϑ =

(σ, θ1, θ2) ergodic for any initial distribution ν.

Proof. We show that the conditions of Theorem 2.2 hold for the

Wright–Fisher diffusion. Positive recurrence follows immediately from

(2.23), whilst the existence of a unique strong solution is guaranteed

by the Yamada–Watanabe condition. That the boundary points 0 and

1 are either entrance or regular is a consequence of the fact that the

mutation parameters are assumed to be strictly positive (see (6.18) and

(6.19) in [KT81, Chapter 15, Section 6]). It remains to show that both

expressions in (2.4) are bounded away from 0 for any K ⊂ R× (0,∞)2
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compact. To this end let θ̄1 := supϑ∈K θ1, θ̄2 := supϑ∈K θ2. Then∫ b

a

e
−
∫ ξ 2µWF(ϑ,y)

α2
WF

(y)
dy
∫ ξ

0

1

σ2
WF(η)

e

∫ η 2µWF(ϑ,y)

α2
WF

(y)
dy
dηdξ

=

∫ b

a

2e−σξξ−θ1(1− ξ)−θ2
∫ ξ

0

eσηηθ1−1(1− η)θ2−1dηdξ

≥ 2 min{e−σ, 1}
∫ b

a

ξ−θ1(1− ξ)−θ2dξ
∫ a

0

ηθ1−1(1− η)θ2−1dη

≥ 2 min{e−σ, 1}(b− a)
aθ1

θ1

(1− a)θ̄2−1, (2.25)∫ b

a

e
−
∫ ξ 2µWF(ϑ,y)

α2
WF

(y)
dy
∫ 1

ξ

1

σ2
WF(η)

e

∫ η 2µWF(ϑ,y)

α2
WF

(y)
dy
dηdξ

=

∫ b

a

2e−σξξ−θ1(1− ξ)−θ2
∫ 1

ξ

eσηηθ1−1(1− η)θ2−1dηdξ

≥ 2 min{eσ, 1}
∫ b

a

ξ−θ1(1− ξ)−θ2dξ
∫ 1

b

ηθ1−1(1− η)θ2−1dη

≥ 2 min{eσ, 1}(b− a)
(1− b)θ2

θ2

bθ̄1−1, (2.26)

which follows by observing that

ξ−θ1(1− ξ)−θ2 > 1 ∀ξ ∈ (a, b),∀θ1, θ2 > 0,

(1− η)θ2−1 ≥ (1− a)θ̄2−1 ∀η ∈ (0, a),

ηθ1−1 ≥ bθ̄1−1 ∀η ∈ (b, 1).

As the RHS of both (2.25) and (2.26) are bounded away from 0 on K,

the result follows by applying Theorem 2.2.

For the remainder of this chapter we restrict our attention to the pa-

rameter space Θ ⊂ R × [1,∞)2, where Θ is open and bounded, for if

either of the mutation parameters were less than 1 then the measures

P(ϑ)
ν within this region would be mutually singular with respect to one

another and thus their Radon–Nikodym derivative undefined. Restrict-

ing our attention to mutation parameters within the range [1,∞)2 thus

ensures that the family of measures {P(ϑ)
ν ,ϑ ∈ Θ} are equivalent, and
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we have that

dP(ϑ′)
ν

dP(ϑ)
ν

(XT ) =
ν(ϑ′, X0)

ν(ϑ, X0)

× exp

{∫ T

0

(
µWF(ϑ′, Xt)− µWF(ϑ, Xt)

αWF(Xt)

)
dWt

− 1

2

∫ T

0

(
µWF(ϑ′, Xt)− µWF(ϑ, Xt)

αWF(Xt)

)2

dt

}
(2.27)

with P(ϑ)
ν -probability 1 when the true value is ϑ, where we assume

that the initial distributions {ν(ϑ, ·)}ϑ∈Θ are mutually equivalent and

admit a density with respect to some common dominating measure

λ(·), which (in abuse of notation) we denote by ν(ϑ, ·). Proofs of the

above claims regarding the equivalence of the Wright–Fisher diffusion

and the form of the Radon–Nikodym derivative can be found in

[DMS93], Lemma 7.2.2 and Section 10.1.1. We emphasise here that we

have allowed the starting distribution ν to depend on the parameters,

as is evident from the first ratio in (2.27). However if there is no

such dependence then this ratio is equal to 1 and our results still apply.

Furthermore, restricting to mutation parameters greater than or

equal to 1 ensures that the diffusion boundaries now become entrance

(see equations (6.18) and (6.19) in [KT81, Chapter 15, Section 6]), and

as done in Theorem 2.3, (2.3) can be extended for a particular class of

unbounded functions. We focus on two such functions for this class of

diffusions, as they turn out to be an essential ingredient necessary to

prove the LAN property.

Corollary 2.6. For the Wright–Fisher diffusion with mutation and

selection parameters ϑ ∈ Θ ⊂ R × [1,∞)2 (for Θ an open bounded

set) with initial distribution ν satisfying (2.31) (which is defined in the

statement of Theorem 2.8), ϑ-uniform ergodicity (2.3) holds also for

the functions h(x) = (1 − x)x−1 and h(x) = (1 − x)−1x. The result

holds in particular for the case ν = fϑ.

Proof. The result follows immediately if we show that all the conditions
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of Theorem 2.3 are satisfied for the above functions. In particular, we

show that they hold for h(x) = (1− x)x−1, as similar arguments apply

for the case h(x) = (1 − x)−1x. The conditions of Theorem 2.2 have

already been shown to hold in Corollary 2.5, whilst integrability with

respect to the invariant density is guaranteed as we are considering

mutation rates (θ1, θ2) ∈ (1,∞)2. That supy∈[a,b] h(y) <∞ for any pair

0 < a < b < 1 is immediate, so it remains to show (2.12), (2.13), and

(2.14). Observe that

E(ϑ)
x

[∫ Tb

0

1−Xt

Xt

dt

]
= 2

∫ b

x

e−σξξ−θ1(1− ξ)−θ2

×
∫ ξ

0

eσηηθ1−2(1− η)θ2dηdξ

≤ 2 max{e−σ, 1}
∫ b

x

ξ−θ1(1− ξ)−θ2
∫ ξ

0

ηθ1−2dηdξ

= 2 max{e−σ, 1} 1

θ1 − 1

∫ b

x

ξ−1(1− ξ)−θ2dξ,

so (2.12) holds as the RHS is continuous in ϑ and thus can be bounded

from above in ϑ over any compact set K ⊂ Θ. For x > b

E(ϑ)
x

[∫ Tb

0

1−Xt

Xt

dt

]
= 2

∫ x

b

e−σξξ−θ1(1− ξ)−θ2

×
∫ 1

ξ

eσηηθ1−2(1− η)θ2dηdξ

≤ 2 max{eσ, 1}
∫ x

b

ξ−max{θ1,2}(1− ξ)−θ2

×
∫ 1

ξ

(1− η)θ2dηdξ

= 2 max{eσ, 1} 1

θ2 + 1

∫ x

b

ξ−max{θ1,2}(1− ξ)dξ

≤ 2 max{eσ, 1} 1

θ2 + 1

∫ x

b

ξ−max{θ1,2}dξ,

and thus (2.14) holds in view of condition (2.31). In the case when
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ν = fϑ, we get that

E(ϑ)
ν

[∫ Tb

0

1−Xt

Xt

dt

]
≤ 2 max{e−σ, 1} 1

θ1 − 1

×
∫ b

0

∫ b

x

ξ−1(1− ξ)−θ2dξfϑ(x)dx

+ 2 max{eσ, 1} 1

θ2 + 1

×
∫ 1

b

∫ x

b

ξ−max{θ1,2}dξfϑ(x)dx

≤ 2 max{eσ, 1} 1

θ1(θ1 − 1)

1

Gϑ

∫ b

0

(1− ξ)−θ2dξ

+ 2 max{eσ, 1} 1

(θ2 + 1)

∫ 1

b

ξ−max{θ1,2}dξ,

which follows from∫ b

0

∫ b

x

ξ−1(1− ξ)−θ2xθ1−1(1− x)θ2−1dξdx

=

∫ b

0

∫ ξ

0

ξ−1(1− ξ)−θ2xθ1−1(1− x)θ2−1dxdξ

≤ 1

θ1

∫ b

0

ξθ1−1(1− ξ)−θ2dξ

≤ 1

θ1

∫ b

0

(1− ξ)−θ2dξ

because θ1, θ2 > 1, and∫ 1

b

∫ x

b

ξ−max{θ1,2}fϑ(x)dξdx =

∫ 1

b

∫ 1

ξ

ξ−max{θ1,2}fϑ(x)dxdξ

≤
∫ 1

b

ξ−max{θ1,2}dξ.
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Finally, using the recursions in (2.19) and (2.20), we get that for x < b,

E(ϑ)
x

[(∫ Tb

0

1−Xt

Xt

dt

)2
]
≤ 2(2 max{e−σ, 1})2

(θ1 − 1)2

∫ b

0

γθ1−2(1− γ)−θ2dγ

×
∫ b

x

ξ−θ1(1− ξ)−θ2dξ

≤ 2(2 max{e−σ, 1})2

(θ1 − 1)2 (1− b)−θ2
∫ b

0

γθ1−2dγ

×
∫ b

x

ξ−θ1(1− ξ)−θ2dξ

which follows from∫ ξ

0

ηθ1−2(1− η)θ2
∫ b

η

γ−1(1− γ)−θ2dγdη

≤
∫ b

0

ηθ1−2(1− η)θ2
∫ b

η

γ−1(1− γ)−θ2dγdη

≤
∫ b

0

γθ1−2(1− γ)−θ2dγ,

and again the corresponding RHS can be bounded from above over any

compact set K ⊂ Θ using continuity in ϑ, such that (2.13) holds and

so the result follows by Theorem 2.3.

2.2.2 Local asymptotic normality

We end this chapter by introducing the concept of local asymptotic

normality and show that the corresponding family of measures associ-

ated to the Wright–Fisher diffusion is uniformly locally asymptotically

normal, which will be essential in the next section.

Definition 2.7 (Special case of Definition 2.1 in [Kut04]). The family

of measures {P(ϑ)
ν ,ϑ ∈ Θ} induced by the solution XT to the SDE (2.1)

is said to be locally asymptotically normal (LAN) at a point ϑ0 ∈ Θ at

rate T−1/2 if for any u ∈ Rd, the likelihood ratio function admits the
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representation

ZT,ϑ0(u) :=
dP

(ϑ0+ u√
T

)

ν

dP(ϑ0)
ν

(XT )

= exp

{〈
u,∆T (ϑ0, X

T )
〉
− 1

2
〈I(ϑ0)u,u〉+ rT (ϑ0,u, X

T )

}
,

where 〈·, ·〉 denotes the Euclidean inner product on Rd, and ∆T (ϑ0, X
T )

is a random variable such that

∆T (ϑ0, X
T )

d→ N(0, I(ϑ0)),

with I(ϑ0) the Fisher information matrix evaluated at ϑ0, i.e.

I(ϑ0) := E(ϑ0)

[
µ̇(ϑ0, ξ)µ̇(ϑ0, ξ)

T

α2(ξ)

]
,

where µ̇(ϑ, ξ)T is the transpose of the vector of derivatives of µ(ϑ, x)

with respect to ϑ. Moreover, the function rT (ϑ0,u, X
T ) satisfies

lim
T→∞

rT (ϑ0,u, X
T ) = 0 in P(ϑ0)

ν -probability

The family of measures is said to be LAN on Θ if it is LAN at every

point ϑ0 ∈ Θ, and further it is said to be uniformly LAN on Θ if either

convergence above holds uniformly in ϑ ∈ K for K ⊂ Θ compact, by

which we mean that for any compact K ⊂ Θ, and any measurable,

continuous and bounded function g,

lim
T→∞

sup
ϑ∈K

∣∣E(ϑ)
ν

[
g
(
∆T (ϑ, XT )

)]
− E [g(ζ)]

∣∣ = 0 (2.28)

for ζ ∼ N(0, I(ϑ)), and ∀ε > 0

lim
T→∞

sup
ϑ∈K

P(ϑ)
ν

[∣∣rT (ϑ,u, XT )
∣∣ > ε

]
= 0. (2.29)

Theorem 2.8. The family of measures {P(ϑ)
ν ,ϑ ∈ Θ} induced by the
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weak solution to (2.21) with initial distribution satisfying

lim
|ε|→0

ν(ϑ+ ε, x)

ν(ϑ, x)
= 1, ∀x ∈ [0, 1], (2.30)

sup
ϑ∈K

{∫ b

0

max{e−σ, 1}
θ1 − 1

∫ b

x

ξ−1(1− ξ)−θ2dξν(ϑ, dx)

+

∫ 1

b

max{eσ, 1}
θ2 + 1

∫ x

b

ξ−max{θ1,2}dξν(ϑ, dx)

}
≤ CK (2.31)

on any compact set K ⊂ Θ with CK > 0 constant, is uniformly LAN on

Θ, with the likelihood ratio function ZT,ϑ(u) admitting the representa-

tion

ZT,ϑ(u) = exp

{〈
u,∆T (ϑ, XT )

〉
− 1

2
〈I(ϑ)u,u〉+ rT (ϑ,u, XT )

}
for u ∈ UT,ϑ = {u : ϑ+ u√

T
∈ Θ}, where

∆T (ϑ, XT ) =
1√
T

∫ T

0

µ̇WF(ϑ, Xt)

αWF(Xt)
dWt.

In particular the result holds for ν = fϑ.
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Proof. From (2.27), we have that the log-likelihood ratio is given by

logZT,ϑ(u) = log
ν(ϑ+ u√

T
, X0)

ν(ϑ, X0)

+

∫ T

0

1

2

(
u1√
T

√
Xt(1−Xt) +

u2√
T

√
1−Xt

Xt

− u3√
T

√
Xt

1−Xt

)
dWt

− 1

2

∫ T

0

1

4

(
u1√
T

√
Xt(1−Xt) +

u2√
T

√
1−Xt

Xt

− u3√
T

√
Xt

1−Xt

)2

dt

= log
ν(ϑ+ u√

T
, X0)

ν(ϑ, X0)
+
〈
u,∆T (ϑ, XT )

〉
− 1

2
〈I(ϑ)u,u〉

+
1

2
〈I(ϑ)u,u〉 − 1

2T

∫ T

0

〈u, µ̇WF(ϑ, Xt)〉2

α2
WF(Xt)

dt, (2.32)

where

I(ϑ) = E(ϑ)

1

4

ξ(1− ξ) 1− ξ −ξ
1− ξ 1−ξ

ξ
−1

−ξ −1 ξ
1−ξ


 .

Setting

rT (ϑ,u, XT ) := log
ν(ϑ+ u√

T
, X0)

ν(ϑ, X0)
+

1

2
〈I(ϑ)u,u〉

− 1

2T

∫ T

0

〈u, µ̇WF(ϑ, Xt)〉2

α2
WF(Xt)

dt,

we show that (2.29) holds. The first term goes to 0 as T → ∞ by

(2.30), and in particular ν = fϑ as given in (2.22) is continuous in ϑ.
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Thus we deduce that (2.29) follows if we can prove that for any ε > 0

lim
T→∞

sup
ϑ∈K

P(ϑ)
ν

[∣∣∣∣∣ 1

T

∫ T

0

〈u, µ̇WF(ϑ, Xt)〉2

α2
WF(Xt)

dt− 〈I(ϑ)u,u〉

∣∣∣∣∣ > ε

]
= 0.

(2.33)

Observe that the expression inside the probability in (2.33) is made

up of six distinct differences between the averages of the six distinct

entries of the Fisher information matrix with respect to time and the

stationary density. Thus if we are able to show that each individual

difference displays the same convergence as in (2.3), (2.33) follows.

Now, as

〈u, µ̇WF(ϑ, x)〉2

α2
WF(x)

=
1

4

(
u1

√
x(1− x) + u2

√
1− x
x
− u3

√
x

1− x

)2

=
1

4

(
u2

1x(1− x) + 2u1u2(1− x)− 2u1u3x− 2u2u3

+ u2
2

1− x
x

+ u2
3

x

1− x

)

using (2.21), we can apply Corollary 2.5 to the first four terms directly.

The remaining two differences involve the unbounded functions (1 −
x)x−1 and x(1 − x)−1, for which (2.33) has been shown to hold in

Corollary 2.6 with ν satisfying (2.31). Thus (2.29) holds (we also show

in Corollary 2.6 that (2.31) holds in the case ν = fϑ), and (2.28) follows

from Proposition 1.20 in [Kut04] which we can invoke in view of the

above proved (2.33) and the fact that

sup
ϑ∈K

√
〈I(ϑ)u,u〉 <∞.

We point out here that if the mutation parameters are known, condi-

tion (2.31) becomes redundant and Theorem 2.8 holds for any initial

distribution satisfying limε→0 ν(σ + ε, x)/ν(σ, x) = 1 for any x ∈ [0, 1].
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Chapter 3

Properties of the ML &

Bayesian Estimators

Inference for scalar diffusions, particularly proving consis-

tency of estimators under specific observational regimes,

has generated considerable interest over the past few years

[GS12, Kut04, NR20, NS17, PvZ09, vdMvZ13, vZ01, Wat79].

However, most of the work so far has considered classes of diffusions

which directly exclude the Wright–Fisher diffusion, for instance by

imposing periodic boundary conditions on the drift coefficients or by

requiring the diffusion coefficient to be strictly positive everywhere.

The asymptotic study of a variety of estimators for continuously

observed ergodic scalar diffusions has been entertained in great depth

in [Kut04]; see in particular Theorems 2.8 and 2.13 in [Kut04], which

are respectively adaptations of Theorems I.5.1, I.10.1 and I.5.2, I.10.2

in [IH81]. However Theorems 2.8 and 2.13 in [Kut04] cannot be

applied directly to the Wright–Fisher diffusion as certain conditions

do not hold, namely the reciprocal of the diffusion coefficient does not

have a polynomial majorant. This discrepancy makes replicating the

results for the Wright–Fisher diffusion with selection and mutation

highly non-trivial.

In this chapter we show how the same set of desirable proper-

ties hold for the Maximum Likelihood (ML) and Bayesian estimators
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for selection in the continuous observation regime, by exploiting the

explicit nature of (2.21), as well as Corollary 2.5 and Theorem 2.8 from

the previous chapter. In particular, we show in Theorem 3.2, that these

estimators are uniform in the selection parameter over compact sets

consistent, asymptotically normal, display moment convergence, and

(for a specific class of loss functions) are asymptotically efficient. We

achieve this by showing that the conditions of Theorems I.5.1, I.10.1

and I.5.2, I.10.2 in [IH81] (which we have combined and translated

to the scalar Wright–Fisher setting in Theorem 3.3) still hold for the

Wright–Fisher diffusion. We point out further that the uniformity in

our results is particularly useful as it controls the lowest rate (over the

true parameters) at which the parameters of interest are being learned

by the inferential scheme.

The Wright–Fisher diffusion with selection but without mutation

was tackled specifically by Watterson in [Wat79]. Having no mutation

ensures that the diffusion is absorbed at either boundary point 0 or 1

in finite time almost surely, and by conditioning on absorption, Wat-

terson computes the moment generating function, proves asymptotic

normality, and derives hypothesis tests for the Maximum Likelihood

Estimator (MLE). Watterson’s work however does not address the

Bayesian estimator, nor does it readily extend to the case when

mutation is present because then the diffusion is no longer absorbed

at the boundaries. In this sense, the results obtained in Theorem

3.2 are complementary to those obtained by Watterson under the

assumption that the mutation parameters are known. Although

this is a restriction, because we are observing the path continuously

over the interval [0, T ] and subsequently sending T → ∞, these

parameters can be inferred by considering the boundary behaviour of

the diffusion. In particular, when either mutation parameter is less

than 1, the diffusion hits the corresponding boundary in finite time

almost surely. Further, as the diffusion approaches the boundary,

the diffusion coefficient (i.e. noise) vanishes, and in fact it vanishes

sufficiently quickly on the approach to the boundary that the mutation

parameters can be inferred without error as soon as the boundary
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is first hit. For mutation parameters greater than or equal to 1, the

corresponding boundary point is no longer attainable but the diffusion

can get arbitrarily close to it as T → ∞, and a similar argument

enables the mutation parameters again to be inferred (see [PY81, Re-

mark 2.2] for a related argument applied to the squared Bessel process).

For the rest of this chapter we shall always assume that obser-

vations are available as the entire trajectory (Xt)
T
t=0 ∈ CT ([0, 1]) up

to some terminal time T , i.e. a continuous mapping from [0, T ] into

[0, 1], which means that the paths are observed without error. We

point out here that this setup allows us to establish and explicitly

analyse the statistical error produced by an estimator based on

the whole sample path when sending T → ∞, which then clearly

illustrates the statistical limitations of alternative estimators based on

less informative (e.g. discrete) observations. In a discrete observation

setting, in addition to the above mentioned statistical error, one also

has to deal with observational error. One certainly cannot hope for

an estimator that performs better in a discrete setting than in a

continuous one, so our analysis may be viewed as the ‘best possible’

performance for inference from a discretely observed model.

Apart from the theoretical guarantees that our results provide,

we also perform some simulations to illustrate the conclusions of

Theorem 3.2. In particular, by making use of the exact algorithm for

the Wright–Fisher diffusion ([JS17], see Section 4.2 in the next chapter

for a brief overview), we generate datapoints over a time grid, and

apply Riemann sum approximations to get an estimate of the MLE

(which cannot be evaluated exactly due to the intractable integrals

involved). The plots obtained provide empirical evidence that the

MLE is consistent, and displays both convergence in distribution and

convergence of moments, thereby not only reinforcing the theoretical

results derived in Section 3.2, but also suggesting that similar conclu-

sions might hold for the discrete observation case (outside the scope

of our results), as long as the sampling regime converges to densely

sampled data.
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The rest of this chapter is organised as follows: Section 3.1 in-

troduces the relevant notation, defining both the ML and Bayesian

estimators, together with the likelihood ratio function which will be

the main object of interest. We also further explain why assuming

that the mutation parameters are a priori known is not as restrictive

an assumption as it might seem in view of the observational regime

entertained. In Section 3.2 we state the main result, Theorem 3.2,

guaranteeing a set of desirable properties for both the ML and

Bayesian estimators, and illustrate how it can be proved by appealing

to Theorems I.5.1, I.5.2, I.10.1 and I.10.2 in [IH81] in view of Proposi-

tions 3.5, 3.6, 3.7 and Corollary 3.4. Simulations providing empirical

evidence of the results proved can be found in Section 3.3, whilst

Section 3.4 briefly illustrates the difficulties involved in extending

the above framework to allow for the joint inference of selection and

mutation parameters.

3.1 Definitions and notation

We henceforth assume that the mutation parameters θ1, θ2 > 0 are

known, and thus focus on conducting inference solely on the selection

parameter σ ∈ S ⊂ R with S open and bounded.

Remark 3.1. The continuous observation regime entertained here

would enable one to infer the mutation parameters: on ϑ ∈ R× (0, 1)2

this is immediate as the family of measures {P(ϑ)
ν : ϑ ∈ R × (0, 1)2}

are mutually singular. In particular, when either mutation parameter

is less than 1, the diffusion hits the corresponding boundary in finite

time almost surely, and as it does so, the diffusion coefficient (i.e. noise)

vanishes sufficiently quickly allowing the mutation parameters to be in-

ferred without error. Indeed, by looking at the integrands on the RHS

of (2.32), we observe that as the path approaches either boundary,

the likelihood ratio explodes. On ϑ ∈ R × [1,∞)2 the family of mea-

sures {P(ϑ)
ν : ϑ ∈ R× [1,∞)2} are now mutually absolutely continuous,

with both boundary points unattainable. However, the process can get

arbitrarily close to either boundary as T → ∞, and again the noise
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vanishes sufficiently quickly that the corresponding mutation parame-

ters can be inferred to any required precision. In the case when one

mutation parameter is less than 1 and the other is greater than or equal

to 1, similar arguments apply.

Actually incorporating the mutation parameter into the inferential

setup below leads to some technical difficulties which we discuss

briefly at the end of this chapter in Section 3.4, so we will henceforth

assume them to be known. Nonetheless all the notation and definitions

introduced in the previous chapter carry through by replacing ϑ by σ.

We start by defining the MLE σ̂T of σ in (2.21) as

σ̂T = arg sup
σ∈S

dP(σ)
ν

dP(σ0)
ν

(XT ) (3.1)

where σ0 ∈ S is arbitrary and its only role is to specify a reference

measure whose exact value does not matter. Observe that now (2.27)

simplifies to

dP(σ′)
ν

dP(σ)
ν

(XT ) =
ν(σ′, X0)

ν(σ,X0)

× exp

{∫ T

0

(σ′ − σ)
√
Xt(1−Xt)dWt

− 1

2

∫ T

0

(σ′ − σ)
2
Xt(1−Xt)dt

}
, (3.2)

with P(σ)
ν -probability 1 when σ is the true value, with initial distribu-

tions {ν(σ, ·)}σ∈S admitting a density (which, again in abuse of no-

tation, we denote ν(σ, ·)) with respect to some common dominating

measure λ(·). In order to be able to define the Bayesian estimator,

we introduce the class Wp of loss functions ` : S → R+ for which the

following stipulations are satisfied:

A1. `(·) is even, non-negative, and continuous at 0 with `(0) = 0 but

not identically zero.

A2. The sets {u ∈ S : `(u) < c} are convex ∀c > 0 (and thus `(·) is

39



non-decreasing).

A3. `(·) has a polynomial majorant, i.e. there exist strictly positive

constants A and b such that for any u ∈ S,

|`(u)| ≤ A(1 + |u|b)

A4. For any H > 0 sufficiently large and for sufficiently small γ, it

holds that

inf
|u|>H

`(u)− sup
|u|≤Hγ

`(u) ≥ 0.

As remarked above, we assume that S is an open and bounded subset

of R, and we denote by p(·) the prior density on S, which we assume

belongs to

Pc :=

{
p(·) ∈ C(S̄,R+) : p(u) ≤ A(1 + |u|b)∀u ∈ S̄,

∫
S̄
p(u)du = 1

}
,

where A and b are some strictly positive constants, and S̄ denotes the

closure of S. With p(·) ∈ Pc and `(·) ∈ Wp, we define the Bayesian

estimator σ̃T of σ in (2.21) as

σ̃T = arg min
σ̄T

∫
S
E(σ)
ν

[
`
(√

T (σ̄T − σ)
)]
p(σ)ds,

where the minimization is over estimators σ̄T = σ̄T (XT ). We introduce

the last class of functions we will need, namely denote by G the class

of functions satisfying the following two conditions:

1. For a fixed T > 0, gT (·) is a monotonically increasing function on

[0,∞), with gT (y)→∞ as y →∞.

2. For any N > 0,

lim
T→∞
y→∞

yNe−gT (y) = 0.
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Observe that the likelihood ratio function is now given by

ZT,σ(u) : =
dP

(σ+ u√
T

)

ν

dP(σ)
ν

(XT )

=
ν(σ + u√

T
, X0)

ν(σ,X0)

× exp

{(
u

2
√
T

)∫ T

0

√
Xt(1−Xt)dWt

− 1

2

(
u

2
√
T

)2 ∫ T

0

Xt(1−Xt)dt

}
(3.3)

for

u ∈ UT,σ :=

{
u ∈ R : σ +

u√
T
∈ S

}
. (3.4)

3.2 Properties of the ML and Bayesian estimators

for selection in the scalar Wright–Fisher diffu-

sion

We now present the main result of this chapter which states that the

ML and Bayesian estimators for σ have a set of desirable properties.

We prove this by showing that the conditions of Theorems I.5.1, I.5.2,

I.10.1, and I.10.2 in [IH81] are satisfied for the Wright–Fisher diffu-

sion. A similar formulation of the result below for the general case

of a continuously observed diffusion on R can be found in Theorems

2.8 and 2.13 in [Kut04], where the author proves that the conditions

necessary to invoke Theorems I.5.1, I.5.2, I.10.1, and I.10.2 in [IH81]

hold for a certain class of diffusions. However, this class includes only

scalar diffusions for which the inverse of the diffusion coefficient has a

polynomial majorant. This fails to hold in our case, forcing us to seek

alternative ways to prove that the conditions of the above mentioned

theorems hold.

Theorem 3.2. Let σ̄T be either the ML or Bayesian estimator for the

selection parameter σ ∈ S (for open bounded S ⊂ R) in the neutral
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or non-neutral Wright–Fisher diffusion (2.21) with initial distribution

satisfying

lim
ε→0

ν(σ + ε, x)

ν(σ, x)
= 1, ∀x ∈ [0, 1],

and such that for any M ≥ 2 and u ∈ UT,σ,

P(σ)
ν

[∣∣∣∣∣log

(
ν(σ + u√

T
, X0)

ν(σ,X0)

)∣∣∣∣∣ > E(σ) [ξ(1− ξ)] |u|2
]
≤ C1

|u|M

and for any R > 0 and u, v ∈ UT,σ with |u| < R, |v| < R

∫ 1

0

∣∣∣∣∣ν
(
σ +

u√
T
, x

) 1
2

− ν
(
σ +

v√
T
, x

) 1
2

∣∣∣∣∣
2

λ(dx) ≤ C2 |u− v|2

for some constants C1, C2 > 0, and λ(·) common dominating measure

introduced below (3.2) (in particular these conditions hold for the case

ν = fσ, the stationary density). Then σ̄T is uniformly over compact

sets K ⊂ S consistent, i.e. for any ε > 0

lim
T→∞

sup
σ∈K

P(σ)
ν

[
|σ̄T − σ| > ε

]
= 0;

it converges in distribution to a normal random variable

√
T (σ̄T − σ)

d→ N(0, I(σ)−1),

uniformly in σ ∈ K, where

I(σ) =
1

4
E(σ) [ξ(1− ξ)] ;

and it displays moment convergence for any p > 0

lim
T→∞

E(σ)
ν

[ ∣∣∣√T (σ̄T − σ)
∣∣∣p ] = E

[ ∣∣∣I(σ)−
1
2 ζ
∣∣∣p ],

uniformly in σ ∈ K, where ζ ∼ N(0, 1), for any compact set K ⊂ S.

Furthermore, if the loss function `(·) ∈ Wp, then σ̄T is also asymptoti-
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cally efficient, i.e.

lim
δ→0

lim
T→∞

sup
σ:|σ−σ0|<δ

E(σ)
ν

[
`
(√

T (σ̄T − σ)
)]

= E
[
`
(
I(σ0)−

1
2 ζ
)]
,

holds for all σ0 ∈ S, where ζ ∼ N(0, 1).

As mentioned above, the proof relies on Theorems I.5.1, I.5.2, I.10.1,

and I.10.2 in [IH81], which for reference we combine together in our

notation into Theorem 3.3 below. Establishing that the conditions of

Theorem 3.3 hold for the Wright–Fisher diffusion is non-trivial as the

standard arguments found in [Kut04] no longer hold, and will thus be

the main focus of this chapter. The conclusions of Theorems I.5.1 and

I.5.2 guarantee the uniform over compact sets consistency for the MLE

and Bayesian estimator respectively, and also give that for any ε > 0

and for sufficiently large T

sup
σ∈K

P(σ)
ν

[∣∣∣√T (σ̄T − σ)
∣∣∣ > ε

]
≤ αe−βgT (ε)

with α, β strictly positive constants, and gT ∈ G . On the other hand,

Theorems I.10.1 and I.10.2 provide the necessary conditions to deduce

the uniform in σ ∈ K asymptotic normality and convergence of mo-

ments for compact K ⊂ S, as well as asymptotic efficiency.

Theorem 3.3 (Ibragimov–Has’minskii). Let σ̄T denote either the ML

or Bayesian estimator for the parameter σ ∈ S, for open bounded S ⊂
R, in (2.21), with prior density p(·) ∈ Pc, and loss function `(·) ∈
Wp. Suppose further that the following conditions are satisfied by the

likelihood ratio function ZT,σ(u) as defined in (3.3):

1. ∀K ⊂ S compact, we can find constants a and B, and functions

gT (·) ∈ G (all of which depend on K) such that the following two

conditions hold:

• ∀R > 0, ∀u, v ∈ UT,σ as defined in (3.4) satisfying |u| < R,
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|v| < R, and for some m ≥ q > 1

sup
σ∈K

E(σ)
ν

[∣∣∣ZT,σ(u)
1
m − ZT,σ(v)

1
m

∣∣∣m]
≤ B(1 +Ra)|u− v|q. (3.5)

• ∀u ∈ UT,σ

sup
σ∈K

E(σ)
ν

[
ZT,σ(u)

1
2

]
≤ e−gT (|u|).

2. The random functions ZT,σ(u) have marginal distributions which

converge uniformly in σ ∈ K as T → ∞ to those of the random

function Zσ(u) ∈ C0(R), where C0(R) denotes the space of con-

tinuous functions on R vanishing at infinity, equipped with the

supremum norm and the Borel σ-algebra.

3. The limit function Zσ(u) and the random function

ψ(v) =

∫
R
`(v − u)

Zσ(u)∫
R Zσ(y)dy

du

attain their maximum and minimum values respectively at a

unique point ū(σ) = u with probability 1.

Then we have that σ̄T is: uniformly in σ ∈ K consistent, i.e. for any

ε > 0

lim
T→∞

sup
σ∈K

P(σ)
ν

[
|σ̄T − σ| > ε

]
= 0,

the distributions of the random variables ūT =
√
T (σ̄T − σ) converge

uniformly in σ ∈ K to the distribution of ū, and for any loss function

` ∈ Wp uniformly in σ ∈ K

lim
T→∞

E(σ)
ν

[
`
(√

T (σ̄T − σ)
)]

= E(σ)
ν [`(ū)] . (3.6)

For the Bayesian estimator, the requirements for inequality (3.5) can

be weakened as it suffices to show that (3.5) holds for m = 2 and any

q > 0.
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Proof of Theorem 3.2. Our aim will be to prove that Conditions 1,

2, and 3 in Theorem 3.3 hold for the Wright–Fisher diffusion, for

then the ML and Bayesian estimators are uniformly on compact sets

consistent. Below, Condition 1 is shown to hold in Propositions 3.5

and 3.6; Condition 2 is shown in Corollary 3.4; and Condition 3 is

shown in Proposition 3.7.

It remains to show how uniform in σ ∈ K asymptotic normality

and convergence of moments, as well as asymptotic efficiency (under

the right choice of loss function) follow. Given Conditions 1, 2, and 3

of Theorem 3.2, uniform in σ ∈ K asymptotic normality follows im-

mediately from Proposition 3.7; ū = I(σ)−1∆(σ), ∆(σ) ∼ N(0, I(σ)),

and ūT converges uniformly in distribution to ū. Moreover, as stated

in Remark I.5.1 in [IH81], the Ibragimov–Has’minskii conditions also

give us a bound on the tails of the likelihood ratio, which can be

translated into bounds on the tails of |ûT |p for any p > 0 (see the

display just below (2.27) in [Kut04]). Similar bounds on the tails of

|ũT |p hold for the Bayesian estimator by Theorem I.5.7 in [IH81], and

thus we have that the random variables |ūT |p are uniformly integrable

for any p > 0, uniformly in σ ∈ K for any compact K ⊂ S. Uniform

convergence of the moments of the estimators follows from this and

the uniform convergence in distribution (by applying a truncation

argument).

For loss functions satisfying `(·) ∈ Wp, observe that the uniform

convergence in (3.6) allows us to deduce that

lim
T→∞

sup
σ:|σ−σ0|<δ

E(σ)
ν

[
`
(√

T (σ̄T − σ)
)]

= sup
σ:|σ−σ0|<δ

E
[
`
(
I(σ)−

1
2 ζ
)]

for ζ ∼ N(0, 1). As I(σ) is continuous in σ, we have that

lim
δ→0

sup
σ:|σ−σ0|<δ

E
[
`
(
I(σ)−

1
2 ζ
)]

= E
[
`
(
I(σ0)−

1
2 ζ
)]
,

giving asymptotic efficiency.

We proceed to show that Conditions 1, 2, and 3 in Theorem 3.3 hold
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for the Wright–Fisher diffusion. Theorem 2.8 gives us that the Wright–

Fisher diffusion is uniformly LAN, which immediately gives the re-

quired marginal convergence of the ZT,σ(u) in Condition 2.

Corollary 3.4 (Corollary to Theorem 2.8). For any initial distribution

satisfying

lim
ε→0

ν(σ + ε, x)

ν(σ, x)
= 1 ∀x ∈ [0, 1],

the random functions ZT,σ(u) given by

ZT,σ(u) = exp

{
u

2
√
T

∫ T

0

√
Xt(1−Xt)dWt −

u2

8
E(σ) [ξ(1− ξ)]

+ rT (σ, u,XT )

}

=: exp

{
u∆T (σ)− u2

2
I(σ) + rT (σ, u,XT )

}
,

where

rT (σ, u,XT ) := log

(
ν(σ + u√

T
, X0)

ν(σ,X0)

)
+
u2

8
E(σ) [ξ(1− ξ)]

− 1

2

(
u

2
√
T

)2 ∫ T

0

Xt(1−Xt)dt,

have marginal distributions which converge uniformly in σ ∈ K as T →
∞ to those of the random function Zσ(u) ∈ C0(R) given by

Zσ(u) := exp

{
u∆(σ)− u2

2
I(σ)

}
,

where

∆(σ) := lim
T→∞

1

2
√
T

∫ T

0

√
Xt(1−Xt)dWt ∼ N (0, I(σ)) .

Proof. The result follows immediately from the uniform LAN of the

family of measures as shown in Theorem 2.8; see for illustration the

display just before Lemma 2.10 in [Kut04]. It is clear that Zσ(u) van-
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ishes at infinity and thus is an element of C0(R).

The next two results allow us to control the Hellinger distance of the

likelihood ratio function as required by Condition 1 in Theorem 3.3.

Proposition 3.5. Let the initial distribution be such that for any R > 0

and for u, v ∈ UT,σ as defined in (3.4) with |u| < R, |v| < R

∫ 1

0

∣∣∣∣∣ν
(
σ +

u√
T
, x

) 1
2

− ν
(
σ +

v√
T
, x

) 1
2

∣∣∣∣∣
2

λ(dx) ≤ c |u− v|2 (3.7)

for some constant c > 0 with dominating measure λ(·) as specified below

(3.2). Then for any K ⊂ S compact, we can find a constant C such that

for any R > 0, and for any u, v ∈ UT,σ as defined in (3.4) satisfying

|u| < R, |v| < R, the following holds

sup
σ∈K

E(σ)
ν

[∣∣∣ZT,σ(u)
1
2 − ZT,σ(v)

1
2

∣∣∣2] ≤ C(1 +R2)|u− v|2.

In particular the result holds for ν = fσ.

Proof. In what follows we denote by Ci, for i ∈ N, constants which do

not depend on u, v, σ, or T . Observe that for any σ′, σ∗ ∈ S it holds

that

E(σ′)
ν

[∫ T

0

∣∣∣∣µWF(σ′, Xt)− µWF(σ∗, Xt)

αWF(Xt)

∣∣∣∣4 dt
]

= E(σ′)
ν

[∫ T

0

∣∣∣∣(σ′ − σ∗)2

√
Xt(1−Xt)

∣∣∣∣4 dt
]

≤
(
σ′ − σ∗

4

)4

T <∞,

and so we can use Lemma 1.13 and Remark 1.14 from [Kut04] (as done
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in Lemma 2.10 there) to split the expectation in (3.5) into three

E(σ)
ν

[∣∣∣Z 1
2
T,σ(u)− Z

1
2
T,σ(v)

∣∣∣2]
≤ C1

∫ 1

0

∣∣∣ν(σu, x)
1
2 − ν(σv, x)

1
2

∣∣∣2 λ(dx)

+ C2

∫ T

0

E(σv)
ν

[(
µWF(σu, Xt)− µWF(σv, Xt)

αWF(Xt)

)2
]
dt

+ C3T

∫ T

0

E(σv)
ν

[(
µWF(σu, Xt)− µWF(σv, Xt)

αWF(Xt)

)4
]
dt, (3.8)

where we denote σu = σ + u/
√
T and σv = σ + v/

√
T . The first term

on the RHS of (3.8) can be dealt with using (3.7), whilst for the second

term observe that∫ T

0

E(σv)
ν

[(
µWF(σu, Xt)− µWF(σv, Xt)

αWF(Xt)

)2
]
dt

=
|u− v|2

4T

∫ T

0

E(σv)
ν [Xt(1−Xt)] dt

≤ 1

16
|u− v|2.

Therefore

C2

∫ T

0

E(σv)
ν

[(
µWF(σu, Xt)− µWF(σv, Xt)

αWF(Xt)

)2
]
dt

≤ C4|u− v|2. (3.9)

A similar calculation can be performed for the third term in (3.8) to

get

C3T

∫ T

0

E(σv)
ν

[(
µWF(σu, Xt)− µWF(σv, Xt)

αWF(Xt)

)4
]
dt

≤ C5|u− v|4,

and thus the result holds in view of the fact that |u|, |v| < R.

It remains to show that (3.7) holds for ν = fσ. To this end, observe
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that∫ 1

0

∣∣∣fσu(x)
1
2 − fσv(x)

1
2

∣∣∣2 dx
=

∫ 1

0

xθ1−1 (1− x)θ2−1 eσx
∣∣∣ 1√

Gσu

e
ux

2
√
T − 1√

Gσv

e
vx

2
√
T

∣∣∣2dx. (3.10)

Now we have that

C6 min{eσ, 1} ≤ Gσu :=

∫ 1

0

xθ1−1(1− x)θ2−1e

(
σ+ u√

T

)
x
dx

≤ C7 max{eσ, 1},

where C6 = B(θ1, θ2)e−diam(S), C7 = B(θ1, θ2)ediam(S) are non-zero,

positive, and independent of σ and T , since we constrain u, v ∈
UT,σ and we take diam(S) to mean supw,w′∈S |w − w′|. This al-

lows us to deduce that G 7→ 1/
√
G is Lipschitz on the interval

[C6 infσ∈Kmin{eσ, 1}, C7 supσ∈Kmax{eσ, 1}] with some constant C8 >

0, i.e.∣∣∣∣∣ 1√
Gσu

− 1√
Gσv

∣∣∣∣∣ ≤ C8

∣∣∣Gσu −Gσv

∣∣∣
= C8

∫ 1

0

xθ1−1 (1− x)θ2−1 eσx
∣∣∣e ux

2
√
T − e

vx

2
√
T

∣∣∣ dx
≤ C8C9

∫ 1

0

xθ1−1 (1− x)θ2−1 eσx
∣∣∣∣ ux2
√
T
− vx

2
√
T

∣∣∣∣ dx
=
C8C9

2
√
T
|u− v|

∫ 1

0

xθ1 (1− x)θ2−1 eσxdx

≤ C10√
T

max{eσ, 1} |u− v| ,

where in the second inequality we have made use of the fact that ez

is Lipschitz in z on [−diam(S), diam(S)] with some constant C9 > 0.
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Thus we deduce that∣∣∣ 1√
Gσu

e
ux

2
√
T − 1√

Gσv

e
vx

2
√
T

∣∣∣2
=

∣∣∣∣∣ 1√
Gσu

(
e

ux

2
√
T − e

vx

2
√
T

) ∣∣∣∣∣
2

+

∣∣∣∣∣e vx

2
√
T

(
1√
Gσu

− 1√
Gσv

)∣∣∣∣∣
2

+ 2
e

vx

2
√
T√

Gσu

∣∣∣e ux

2
√
T − e

vx

2
√
T

∣∣∣∣∣∣ 1√
Gσu

− 1√
Gσv

∣∣∣
≤ C2

9x
2

4T

1

C6 min{eσ, 1}
∣∣u− v∣∣2

+ ediam(S)xC
2
10

T
max{e2σ, 1}

∣∣u− v∣∣2
+
ediam(S)xC9C10x

T
√
C6

max{eσ, 1}
min{eσ/2, 1}

∣∣u− v∣∣2. (3.11)

Putting (3.11) into (3.10) gives us the result∫ 1

0

xθ1−1 (1− x)θ2−1 eσx
∣∣∣ 1√

Gσu

e
ux√
T − 1√

Gσv

e
vx√
T

∣∣∣2dx
≤ Cσ

T
|u− v|2,

as

Cσ := C11e
|σ| + C12 max{e3σ, 1}+ C13

max{e2σ, 1}
min{eσ/2, 1}

,

is continuous in σ over any compact set K ⊂ S.

Proposition 3.6. Let the initial distribution be such that for any M ≥
2 and for u ∈ UT,σ,

P(σ)
ν

[∣∣∣∣∣log

(
ν(σ + u√

T
, X0)

ν(σ,X0)

)∣∣∣∣∣ > E(σ) [ξ(1− ξ)] |u|2
]
≤ C

|u|M
(3.12)

for some constant C > 0. Then for K ⊂ S compact, there exists a

function gT (·) ∈ G such that for any u ∈ UT,σ as defined in (3.4) we
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have that

sup
σ∈K

E(σ)
ν

[
ZT,σ(u)

1
2

]
≤ e−gT (|u|). (3.13)

The result holds in particular when ν = fσ.

Proof. Assume for now that for any M ≥ 2 we have that

P(σ)
ν

[
ZT,σ(u) > exp

{
− 1

16
E(σ) [ξ(1− ξ)] |u|2

}]
≤ Cσ,M
|u|M

(3.14)

for some constant Cσ,M > 0 depending on σ and M . We show that if

(3.14) holds, then (3.13) follows. Indeed

E(σ)
ν

[
ZT,σ(u)

1
2

]
= E(σ)

ν

[
ZT,σ(u)

1
2 1{ZT,σ(u)≤exp{− 1

16
E(σ)[ξ(1−ξ)]|u|2}}

]
+ E(σ)

ν

[
ZT,σ(u)

1
2 1{ZT,σ(u)>exp{− 1

16
E(σ)[ξ(1−ξ)]|u|2}}

]
≤ exp

{
− 1

32
E(σ) [ξ(1− ξ)] |u|2

}
+ E(σ)

ν [ZT,σ(u)]
1
2

× P(σ)
ν

[
ZT,σ(u) > exp

{
− 1

16
E(σ) [ξ(1− ξ)] |u|2

}] 1
2

≤ exp

{
− 1

32
E(σ) [ξ(1− ξ)] |u|2

}
+
Cσ,M

|u|M2

where in the first inequality we have made use of Cauchy-Schwarz, and

for the second inequality we have used (3.14). Therefore,

sup
σ∈K

E(σ)
ν

[
ZT,σ(u)

1
2

]
≤ sup

σ∈K

{
exp

{
− 1

32
E(σ) [ξ(1− ξ)] |u|2

}
+
Cσ,M

|u|M2

}

= exp

{
− 1

32
inf
σ∈K

E(σ) [ξ(1− ξ)] |u|2
}

+
supσ∈K Cσ,M

|u|M2
=: exp {−gT (|u|)} .
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It remains to ensure that gT (·) ∈ G , that infσ∈K E(σ)[ξ(1 − ξ)] ≥
κ > 0 for some constant κ, and that for any M ≥ 2 it holds that

supσ∈K Cσ,M <∞. Observe that

min

{
inf
σ∈K

eσ, 1

}
B(θ1, θ2) ≤ Gσ ≤ max

{
sup
σ∈K

eσ, 1

}
B(θ1, θ2).

Thus

inf
σ∈K

E(σ) [ξ(1− ξ)] = inf
σ∈K

{∫ 1

0

1

Gσ

eσξξθ1(1− ξ)θ2dξ
}

≥
infσ∈K

{∫ 1

0
eσξξθ1(1− ξ)θ2dξ

}
max {supσ∈K e

σ, 1}B(θ1, θ2)

≥ min {infσ∈K e
σ, 1}B(θ1 + 1, θ2 + 1)

max {supσ∈K e
σ, 1}B(θ1, θ2)

=: κ

and κ > 0 because K is bounded, and thus both supσ∈K e
σ and infσ∈K e

σ

are finite and non-zero. We show that supσ∈K Cσ,M is finite ∀M ≥ 2

in what follows. We now check that gT (|u|) as defined above is in the

class of functions G . To this end, observe that

gT (|u|) = − log

(
exp

{
− 1

32
inf
σ∈K

E(σ) [ξ(1− ξ)] |u|2
}

+
supσ∈K Cσ,M

|u|M2

)
.

Indeed, for a fixed T > 0, gT (|u|) → ∞ as |u| → ∞, because we have

that infσ∈K E(σ)[ξ(1 − ξ)] > 0, and furthermore given any fixed N , we

can choose M large enough (note the way we phrased (3.14) allows us

to choose our M arbitrarily large, say M > 2N) such that

lim
T→∞
y→∞

yNe−gT (y)

= lim
T→∞
y→∞

yN

(
exp

{
− 1

32
inf
σ∈K

E(σ) [ξ(1− ξ)] |y|2
}

+
supσ∈K Cσ,M

|y|M2

)
= 0,

where the order in which limits are taken is immaterial since our choice

of gT (|u|) is independent of T . Thus we have proved that if (3.14) holds,
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then

sup
σ∈K

E(σ)
ν

[
ZT,σ(u)

1
2

]
≤ e−gT (|u|), gT (·) ∈ G .

To show that (3.14) holds, we make use of Markov’s inequality as well

as Theorem 3.2 in [LLL11]. Indeed, observe that

P(σ)
ν

[
ZT,σ(u) ≥ exp

{
− 1

16
E(σ) [ξ(1− ξ)] |u|2

}]
= P(σ)

ν

[
ν(σ + u√

T
, X0)

ν (σ,X0)

× exp

{
u

2
√
T

∫ T

0

√
Xt(1−Xt)dWt

− |u|
2

8

(
1

T

∫ T

0

Xt(1−Xt)dt− E(σ) [ξ(1− ξ)]
)}

> exp

{
1

16
E(σ)[ξ(1− ξ)]|u|2

}]

≤ P(σ)
ν

[∣∣∣∣∣log

(
ν(σ + u√

T
, X0)

ν (σ,X0)

)∣∣∣∣∣ > 1

48
E(σ)[ξ(1− ξ)]|u|2

]

+ P(σ)
ν

[∣∣∣∣ u

2
√
T

∫ T

0

√
Xt(1−Xt)dWt

∣∣∣∣ > 1

48
E(σ)[ξ(1− ξ)]|u|2

]
+ P(σ)

ν

[
|u|2

8

∣∣∣∣ 1

T

∫ T

0

Xt(1−Xt)dt− E(σ) [ξ(1− ξ)]
∣∣∣∣

>
1

48
E(σ)[ξ(1− ξ)]|u|2

]
=: A1 + A2 + A3.

The bound for A1 follows immediately from (3.12). For the particular
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case when ν = fσ, we use Markov’s inequality:

A1 = P(σ)
ν

[∣∣∣∣∣log

(
Gσ

Gσ+ u√
T

)
+

u√
T
X0

∣∣∣∣∣ > 1

48
E(σ)[ξ(1− ξ)]|u|2

]

≤
(

48

E(σ)[ξ(1− ξ)]|u|2

)M
E(σ)
ν

∣∣∣∣∣log

(
Gσ

Gσ+ u√
T

)
+

u√
T
X0

∣∣∣∣∣
M
 .

But

log

(
Gσ

Gσ+ u√
T

)
= log

( ∫ 1

0
xθ1−1(1− x)θ2−1eσxdx∫ 1

0
xθ1−1(1− x)θ2−1e

(σ+ u√
T

)x
dx

)
≤ |u|√

T
,

so we have

A1 ≤
(

48

E(σ)[ξ(1− ξ)]|u|2

)M
E(σ)
ν

[∣∣∣∣ u√T
∣∣∣∣M |1 +X0|M

]

=

(
48

E(σ)[ξ(1− ξ)]
√
T |u|

)M
E(σ)

[
|1 + ξ|M

]
≤
(

48dσ
E(σ)[ξ(1− ξ)]|u|2

)M
E(σ)

[
|1 + ξ|M

]
=:

C
(1)
σ,M

|u|2M
,

where in the second inequality we made use of the fact that u ∈ UT,σ,

and thus |u| ≤ dσ
√
T where we define dσ := supw∈∂S |σ − w| (which is

strictly positive and bounded as S is open and bounded). To see that

supσ∈K C
(1)
σ,M is bounded, observe that

sup
σ∈K

C
(1)
σ,M = sup

σ∈K

{(
48dσ

E(σ)[ξ(1− ξ)]

)M
E(σ)

[
|1 + ξ|M

]}

≤
(

96
B(θ1, θ2)

B(θ1 + 1, θ2 + 1)
sup
σ∈K

dσ
max{eσ, 1}
min{eσ, 1}

)M
,

which is clearly finite because K is bounded.

For A2 we use a similar argument, but now use the fact that we
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have a stochastic integral:

A2 ≤
(

48

E(σ)[ξ(1− ξ)]|u|2

)M
E(σ)
ν

[∣∣∣∣ u

2
√
T

∫ T

0

√
Xt(1−Xt)dWt

∣∣∣∣M
]

≤
(

24

E(σ)[ξ(1− ξ)]|u|

)M (
M

2
(M − 1)

)M
2

× T−1E(σ)
ν

[∫ T

0

|Xt(1−Xt)|
M
2 dt

]
≤
(

12

E(σ)[ξ(1− ξ)]|u|

)M (
M

2
(M − 1)

)M
2

=:
C

(2)
σ,M

|u|M
,

where the first line uses Markov’s inequality and the second inequality

uses Lemma 1.1 (equation (1.3)) in [Kut04]. That supσ∈K C
(2)
σ,M is

finite follows from arguments similar to those used for the respective

term in A1.

For A3 we make use of Theorem 3.2 in [LLL11], which gives us

that for M ≥ 2

P(σ)
ν

[ ∣∣∣∣ 1

T

∫ T

0

Xt(1−Xt)dt− E(σ) [ξ(1− ξ)]
∣∣∣∣ ≥ 1

6
E(σ) [ξ(1− ξ)]

]

≤ K(σ,X,M)
‖x(1− x)‖M∞(

E(σ)[ξ(1−ξ)]
6

√
T
)M . (3.15)

For the RHS of (3.15), we have that

K(σ,X,M)
‖x(1− x)‖M∞(

E(σ)[ξ(1−ξ)]
6

√
T
)M ≤ K(σ,X,M)

(
6‖x(1− x)‖∞dσ
E(σ) [ξ(1− ξ)]|u|

)M

=:
C

(3)
σ,M

|u|M
,

whereK(σ,X,M) is a function that depends onM and on the moments

of the hitting times of X. Finally we deduce that supσ∈K C
(3)
σ,M is finite
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by observing that

sup
σ∈K

C
(3)
σ,M = sup

σ∈K
K(σ,X,M)

(
6‖x(1− x)‖∞dσ
E(σ) [ξ(1− ξ)]

)M
≤ sup

σ∈K

{
K(σ,X,M)

×
(

3

2

B(θ1, θ2)

B(θ1 + 1, θ2 + 1)
sup
σ∈K

dσ
max{eσ, 1}
min{eσ, 1}

)M }
,

which is finite since ‖x(1−x)‖∞ = 1/4, K is compact, and K(σ,X,M)

is bounded in σ over K (see Theorem 2.2 and Corollary 2.5 for the

corresponding details).

Finally, we present the result which guarantees that Condition 3 in

Theorem 3.3 holds, and thus that the Ibragimov–Has’minskii condi-

tions hold for the Wright–Fisher diffusion.

Proposition 3.7. The random functions Zσ(u) and

ψ(v) :=

∫
R
` (v − u)

Zσ(u)∫
R Zσ(y)dy

du

attain their maximum and minimum respectively at the unique point

ū = ū(σ) = I(σ)−1∆(σ) with probability 1.

Proof. The first assertion follows immediately from Corollary 3.4. For

the second, a straightforward change of variable coupled with Lemma

II.10.2 in [IH81] (which relies on Anderson’s Lemma (Lemma II.10.1

in [IH81]) and guarantees the uniqueness of ψ(v)) gives the result. A

more detailed proof can be found in Theorem III.2.1 in [IH81].

3.3 Numerical Simulations

We illustrate the results proved in Section 3 by showing consistency,

convergence in distribution and convergence of moments for the MLE

when applied to data simulated from the Wright–Fisher diffusion. By

making use of the exact algorithm (see [JS17] for full details, or Section

4.2 for a brief review), we obtain exact draws from the Wright–Fisher
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diffusion. The generated paths are then used to calculate the MLE,

and subsequently kernel smoothed density estimates for the rescaled

MLE for various terminal times T are plotted against the density of

the limiting distribution. Using the definition in (3.1), the MLE for

the selection parameter is given by

σ̂T =
XT −X0 −

∫ T
0

(−θ2Xt + θ1(1−Xt)) dt∫ T
0
Xt(1−Xt)dt

,

which is impossible to calculate exactly in view of the random infinite

dimensional paths involved in the integral. Instead we approximate

the MLE by using Riemann sums instead of Lebesgue integrals, which

gives rise to the approximation of σ̂T given by

σ̌T =
XT −X0 −

∑N
i=1 (−θ2Xti + θ1(1−Xti)) ∆i∑N
i=1Xti(1−Xti)∆i

(3.16)

where ∆i := ti − ti−1 for a time discretisation grid {ti}Ni=0 where

t0 = 0 and tN = T , and N ∈ N \ {0}. In particular, {Xti}Ni=0 denotes

the values of the Wright–Fisher path at the times {ti}Ni=0, which

corresponds to the output generated by the exact algorithm.

To simulate the Wright–Fisher paths, we set the selection parameter

σ = 4, the mutation parameters θ1, θ2 = 2, ∆i = 0.001, X0 = 0.25

and varied the terminal time T ∈ {1, 2, 10, 50}. For each of the 10,000

simulated paths, we computed (3.16), and subsequently for each T

we obtained kernel smoothed estimates of the density of
√
T (σ̌T − σ)

which are plotted against the limiting N(0, 1
4
E(σ)[ξ(1 − ξ)]−1) density

in Figure 3.3.1.
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Figure 3.3.1: Plots of the kernel smoothed density estimates for
√
T (σ̌T −σ)

for T = 1, 2, 10, 50, and of the limiting N(0, I(σ)−1) density.

3.4 Extending the results to ϑ = (σ, θ1, θ2)

As pointed out in Remark 3.1 at the start of this chapter, assuming

that the mutation parameters are a priori known is not too restrictive

an assumption given the continuous observation regime. Nonetheless,

in this section we briefly explore the technical difficulties related to

extending the setup in this chapter to allow for the joint inference of

the selection and the mutation parameters.

First and foremost we point out that we can only entertain this

extension provided the mutation parameters are both larger than

or equal to 1, for as seen in the discussion directly preceding and

following (2.27) (and further pointed out in Remark 3.1), the Radon–

Nikodym derivative can only be defined once we restrict our attention

to the parameter space R × [1,∞)2. Given this restriction, we

observe that the likelihood ratio ZT,ϑ would now be given by the

first expression on the RHS of (2.32), which implies (as illustrated

58



in the proof of Theorem 2.8) that we need to be able to deal with

the unbounded expressions appearing in the integrands there. It is

these extra terms which create problems in establishing Condition

1 in the Ibragimov-Has’minskii conditions via Propositions 3.5 and 3.6.

Observe that Proposition 3.6 relies on (3.14) holding for any

M ≥ 2, which when considering solely selection, follows directly from

the bounds derived in Theorem 2.2. However, the approach used in

Theorem 2.3 relied on bounds involving M = 2 only. Extending the

underlying calculations to allow for M > 2 requires access to the M th

moments of the random variable
∫ Tb

0
h(Yt)dt. Whilst deriving and

solving a recursive ODE for these quantities is possible, bounding

them from above in terms of ϑ over compact sets for arbitrary M

is non-trivial, as recursive bounds on the respective solutions are

no longer guaranteed in general. Moreover, observe that the proof

of Proposition 3.5 would also require more delicate (and separate)

arguments for the ML and Bayesian estimators, particularly in view

of the fact that (3.5) would be required to hold for m ≥ q > 3 for the

MLE (as the parameter ϑ would now be three-dimensional).
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Chapter 4

MCMC Inference for the

Wright–Fisher Diffusion

Inferring genetically relevant features such as selection, allele age,

mutation and effective population size from population-wide data

has been a perennial problem for geneticists. Most of the traditional

methods used are based solely on present day genetic information

which greatly impairs inference as it constitutes a static snapshot

of the population being considered. Recent advances in gene se-

quencing as well as improvements in the technologies related to

ancient DNA (aDNA) retrieval from old remains such as fossils,

have allowed for the creation of genetic datasets spanning several

centuries ([HSK+05, LPR+09, SCWGSL17, Mat20, F+19]). Such time

series data potentially holds a wealth of information with regards

to how several genetic factors and phenomena have influenced and

helped shape the population upon which they act, but eliciting such

information from the observations requires the development of more

intricate statistical procedures.

The previous chapter focused on theoretical guarantees associated with

the ML and Bayesian estimators in an idealised scenario when one

has access to the entire allele frequency trajectory. The results there

allowed us to conclude that in such a setting one can conduct inference

with the confidence that the estimators being used retain a set of desir-
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able properties. In turn, this also sets a baseline from which one could

hope to achieve similar guarantees in a discrete observation setting, as

observed empirically from the simulations conducted in Subsection 3.3.

In this chapter we develop a practicable inferential framework

with the aim of conducting exact inference (as given by Definition

4.1) on the Wright–Fisher diffusion from discrete noisy observations,

inspired by similar work done in the context of Brownian motion

([BPRF06, SPR+13]) and in view of the availability of an exact

algorithm for the Wright–Fisher class of diffusions ([JS17]). The main

challenge faced here is that the likelihood is now no longer explicitly

given by the Girsanov theorem in an analytic form, but instead

involves a finite product of intractable transition densities.

A standard approach when faced with intractable likelihoods but with

access to exact simulation, is to resort to augmentation. By expanding

the state space with “extra” variates, the intractability present in

the original likelihood is subsumed into the simulation, resulting

in a tractable expression for the augmented likelihood. Employing

such an augmentation in turn leads to an augmented posterior (over

the parameters of interest, as well as the newly introduced auxiliary

variables), from which the original posterior can be easily recovered

by marginalising over the auxiliary variables through the use of Monte

Carlo techniques. In our case, we augment our state space with the

values of the latent diffusion path at the observation times and skeleton

points (which will be defined in Section 4.3), which in turn allow us

to construct a Metropolis-within-Gibbs sampler targetting the joint

posterior distribution of the selection parameter, the allele age, and the

aforementioned auxiliary variables. We marginalise over the auxiliary

variates by employing a combination of exact draws from the posterior

and pseudo-marginal Metropolis–Hastings updates as illustrated in

Subsections 4.3.1, 4.3.2 and 4.3.3. We specify that in the case when

the allele age t0 is known, the auxiliary variables can be simulated

directly from the posterior, however the inclusion of allele age into

the inferential framework makes the updating procedure slightly more
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intricate and requires a pseudo-marginal Metropolis–Hastings step.

The remainder of this chapter is organised as follows: Section

4.1 gives a brief overview of the current state of the art in terms of

inference for selection from time-series data in population genetics,

whilst Section 4.2 is a summary of the exact algorithm developed for

the Wright–Fisher diffusion (see [JS17] for more details) in both the

neutral and non-neutral case. Section 4.3 then focuses on developing

the mathematical framework within which we can embed the exact al-

gorithm into a Markov chain Monte Carlo (MCMC) sampler, allowing

us to target the posterior of interest. The method was subsequently

applied to simulated data, and the resulting output together with

details pertaining to the implementation and computational consid-

erations are presented in Section 4.4. The chapter then concludes

with Section 4.5 which highlights some extensions that are being

looked into, namely developing a suitable proposal kernel to avoid the

aforementioned pseudo-marginal update, extending the inference to

account for demographic history and include the mutation parameters,

and allowing for alleles to emerge from standing variation rather than

requiring them to be the result of a de novo mutation.

4.1 Time series inference in population genetics

The lack of a tractable expression for the transition density of a

non-neutral Wright–Fisher diffusion has lead to a number of methods

in the literature which in some way or another rely on some form of

discretisation. This allows for the intractable terms to be suitably

approximated, and thus inference can be conducted on the parameters

of interest. Although the discretisations and approximations employed

vary from one method to another, a common problem faced by all

is the fact that it is very hard (and indeed impossible) to quantify

the error and bias they introduce into the estimates. In this section

we provide a brief (and selective) overview of work that has been

done on inferring selection from time-series data, however a more ex-

haustive and informative review on the subject can be found in [D+20].
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Amongst the first concerted efforts at addressing the problem of

inferring selection (as well as effective population size) from noisy data

driven by a Wright–Fisher diffusion, we mention the method developed

in [BYN] which extends the framework first introduced in [WS99].

In the absence of recurrent mutation, the authors gain access to an

approximation of the transition density by discretising space and time,

and solving the Kolmogorov backward equation numerically via finite

differences. Subsequently they employ numerical integration coupled

with dynamic programming to approximate the likelihood function,

and then conduct inference based on the resulting discretised likelihood

surface obtained by repeating the above procedure for each point

in the discretised parameter space. In an effort to make this setup

less computationally onerous, the authors in [MMES12] approximate

the Wright–Fisher diffusion by a discrete time, discrete state space

Markov chain which is only allowed moves to adjacent states. This

additional approximation avoids any need for numerical integration,

as now the transition density is given by matrix exponentiation of

the corresponding infinitesimal matrix generator. We point out that

the authors here allow for the allele age to be inferred jointly with

the selection coefficient and effective population size, however the

resulting likelihood function does not allow for an analytic derivation

of the MLE. Thus the authors resort to making use of the discretised

likelihood surface (as in [BYN]) to obtain estimates of the parameters

of interest.

The approach proposed in [MMES12] however still requires a

significantly large number of latent states for the underlying process,

once the population scaled selection parameter grows. To deal with

this computationally infeasible scenario, the authors in [FALJW16],

consider an alternative approximation for the Wright–Fisher diffusion

by appealing to a discrete state, continuous time process constructed

by defining the process’s rate matrix in terms of the mean holding

times for each state under the original diffusion’s dynamics. Although

numerical integration becomes necessary to compute the associated
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transition densities, the authors are able to derive a forward recursion

to compute the associated likelihood and further implement a MCMC

scheme targetting the selection parameter, dominance parameter

and effective population size. A similar approach was adopted in

[MM13] where the underlying Wright–Fisher model dynamics are

approximated over a discretised unit interval by integrating the

density of a Gaussian (whose mean and variance match those of the

true Wright–Fisher process) over subsequent increment mid-points.

The authors then analytically derive the MLE for selection for a

single population and for a structured population, and make use of

the hidden Markov model framework coupled with an expectation

maximisation algorithm to compute the MLE. The setup was further

generalised to allow for time-varying selection in [Mat20]. Along a

similar train of thought, [PSB19] consider (truncated) Gaussian and

beta distributions (as well as versions of these with points masses at

0 and 1) as approximating mechanisms for the Wright–Fisher model,

again setting the parameters of these parametric distributions by

matching their moments to those of the true process. These are then

directly used to construct a transition kernel which is subsequently

employed within a hidden Markov model framework to obtain an

approximation to the likelihood over the discretised parameter space.

Instead of approximating the diffusion process by a simpler one,

the approach adopted in [SBS14] is to exploit a spectral decomposition

of the non-neutral transition density by looking at the generator of

the process directly. In particular, by adopting a suitable basis for the

space of square integrable functions (with respect to the stationary

density of the diffusion) and considering the eigenfunction expansion

of the generator, the authors were able to express the transition

density of the non-neutral diffusion in terms of an infinite sum

involving computable terms (first developed in [SS12]). Furthermore,

they also obtained a dynamic programming algorithm for computing

the emission and transmission probabilities of the underlying hidden

Markov model setup, allowing for inference to be conducted via a

grid search over the likelihood surface generated. Nonetheless as the
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transition density is expressed as an infinite series, all computations

required a truncation threshold to allow for the quantities involved

to be computable in finite time. We mention that this setup was

generalised further to allow for varying population sizes in [ŽSSS15].

The last article we mention that explicitly relies on numerically

solving the quantities at hand is [HDBY20b], where by making use of

filtering recursions, and numerically solving the Kolmogorov backward

equation, the authors were able to approximate the likelihood function.

Inference for the selection coefficient, dominance parameter and allele

age is once again performed via a grid search over the discretised

likelihood surface.

A central theme prevalent in all of the above discretisation-based

methods is the fact that all the procedures and calculations need to

be re-run from scratch for each point in the discretised parameter

space. In contrast, in [KPR21] an exact filtering algorithm for the

neutral Wright–Fisher diffusion is developed by making use of its dual

process, and subsequently inference is conducted via a MCMC scheme.

Here the authors are actually interested in estimating the mutation

parameters from noisy observations of the diffusion, and rely on the

fact that the dual of the neutral Wright–Fisher diffusion is a pure

death process, ensuring that all the relevant calculations translate

into finite sums. The dual process for the non-neutral Wright–Fisher

diffusion however turns out to be a birth and death process, so the

associated calculations no longer involve finite sums and thus this

approach cannot be extended for this case. Another article focusing

on the neutral Wright–Fisher diffusion and inference for the mutation

parameters is [GaR17] where the authors make use of Barker’s algo-

rithm, Poisson coins and Bernoulli factories to perform exact inference.

The former is an alternative to the Metropolis-Hastings algorithm,

making use Barker’s acceptance probability where instead of taking

the quotient of the product of the prior and proposal kernel densities,

one considers the ratio between this product evaluated at the proposed

value and the sum of the product evaluated at both the proposed and

current value of the chain. Although the resulting algorithm produces
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a Markov chain with the desired stationary distribution, Barker’s

acceptance probability leads to a higher asymptotic Monte Carlo

variance in comparison to the standard Metropolis-Hastings choice

(which minimises this quantity over the space of square integrable

functions with respect to the stationary distribution), see Theorem

4 in [aR11] for a formal statement. For more details on the Barker

algorithm see [Bar65] or [GaR17, Section 2]. The idea of using Barker’s

algorithm in [GaR17] is somewhat close to the setup we entertain, with

the exception being that the authors make use of a layered Brownian

bridge (a Brownian bridge which is simulated jointly with either its

maximum or minimum value over the simulation time interval), thus

allowing for a Barker’s acceptance probability, which can be targetted

via a combination of Poisson coins and Bernoulli factories. One

downside of this particular approach is that the authors condition on

the event that the diffusion avoids the boundary entirely, and secondly,

from a computational point of view, the method is quite inefficient

as it relies on simulating layered Brownian bridges. This simulation

procedure is already known to be quite inefficient in the general case

([PR08]), and will be even more so in the case of a Wright–Fisher

diffusion as we require the proposed paths to remain within the

interval [0, 1]. In [HDBY20a], a sequential Monte Carlo method

making use of a particle marginal Metropolis–Hastings algorithm is

used to estimate the conditional density of the observations given a

particular parameter configuration. One crucial assumption in this

setup is that the underlying diffusion is conditioned on avoiding the

boundary, thereby allowing the particle filter bootstrap employed to

make use of an Euler–Maruyama scheme to simulate the latent path

instead of the more computationally intense process of numerically

solving the Kolmogorov backward equation.

We conclude this brief overview of time-series inference for pop-

ulation genetics by reviewing the setup and method used in [SES16],

as it is perhaps one of the closest to the method we describe in Section

4.3. Here the authors implement a Metropolis-within-Gibbs sampler

to sequentially update the selection coefficients (assuming a diploid
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population), allele age, and underlying latent path. By augmenting the

state space with the latter and choosing a suitable reference measure,

the intractable likelihood now becomes amenable to a MCMC scheme.

In contrast to the layered Brownian motion used in [GaR17], the

authors here make use of the Bessel(0) process as a reference measure,

which is particularly suitable for the Wright–Fisher diffusion as it

displays a similar behaviour at the 0 boundary. However, the Bessel(0)

process is unbounded from above unlike the Wright–Fisher diffusion,

and thus this discrepancy ultimately manifests itself in the integrands

in the exponent of the corresponding Radon–Nikodym derivative

between the two processes being unbounded from below. As will be

made clearer in Section 4.2, this means that an exact sampler cannot

be entertained as the resulting acceptance probability cannot be

associated with a corresponding Poisson point process. This, coupled

with the fact that any Lebesgue integrals are necessarily evaluated

via Riemann sums, means that the resulting inferential technique is

no longer exact. In Section 4.3 we adopt a similar approach, where

we make use of a Metropolis-within-Gibbs Sampler to sequentially

update the selection coefficient, allele age and latent path, however

we advocate for the neutral Wright–Fisher diffusion as being the right

reference process to consider in order to obtain an exact inferential

scheme. Whilst the resulting likelihood function still involves Lebesgue

integrals which cannot be evaluated exactly, they can be associated

with a corresponding Poisson point process and thus need not be

computed.

4.2 Exact Algorithm for the Wright–Fisher diffu-

sion

The Exact Algorithm, first introduced in [BR05] (commonly termed

EA1), and generalised further in [BPR06] and [BPR08] (which are

referred to as EA2 and EA3 respectively), allows for the exact

simulation from the law of a diffusion by generating candidate paths

from the law of a Brownian motion (or Brownian bridge if considering

bridge diffusions), followed by a simple accept-reject step. The key
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insight into this method is that although the associated acceptance

probability is in general intractable due to the presence of Lebesgue

integrals involving an infinite dimensional random path, it can be

unbiasedly estimated via a Poisson point process provided the resulting

terms in the exponent can be bounded from below. Simulation of

the Poisson point process is straightforward and allows for a simple

rejection routine to return values from the target distribution. The

class of diffusions for which this method is applicable is quite large

(the most general being the class described in [BPR08]), however

an essential feature present in all three variations is that the target

diffusion needs to be absolutely continuous with respect to Brownian

motion. This is particularly problematic for diffusions which do not

share the same underlying state space as Brownian motion (i.e. all of

R), for then the laws are not mutually absolutely continuous (unless

one conditions on the diffusion avoiding the boundaries), and the

Radon–Nikodym derivative is undefined. Although this has been

somewhat mitigated by the layered Brownian motion developed in

EA3, the approach is very inefficient (it is roughly 10 times slower

than EA1 as reported in [PR08]), as any path that crosses a boundary

is necessarily discarded. Moreover it is not always the case that the

exponents in the Radon–Nikodym derivative can be bounded from

below, and thus the link with the Poisson point process breaks.

Rather than pressing on with Brownian motion as a reference

measure, perhaps a better candidate would be the measure associated

to a process that displays similar behaviour to the target diffusion

at the boundaries, retains mutual absolute continuity over the entire

state space, and can be simulated exactly reasonably efficiently. Since

we are interested in the scalar Wright–Fisher diffusion which has two

boundaries at 0 and 1, one natural candidate (as pursued in [SES16])

is the Bessel(0) process which does indeed display similar behaviour as

the Wright–Fisher diffusion at 0. However the resulting exponent in

the Radon–Nikodym derivative is unbounded from below precluding

the use of Poisson point processes to deal with the intractable integrals,

and furthermore problems with absolute continuity creep in once the
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path exceeds 1 (with the acceptance probability deteriorating once

the path gets arbitrarily close to 1). Naturally one might condition on

the paths avoiding the upper boundary, however a routine simulating

Bessel bridges conditional on their maximum is (as yet) not available,

and moreover the problem with bounding the terms in the exponent

of the Radon–Nikodym derivative persists.

In [JS17], the authors proved that simulating exact draws from

the law of a neutral Wright–Fisher diffusion can be achieved in finite

time using the alternating series trick, and subsequently proposed

this law as a suitable candidate measure with respect to which one

can perform rejection sampling to target a non-neutral Wright–Fisher

path. We give a brief description of how exact simulation of the

neutral paths can be achieved, before moving on to explain how to

relate the acceptance probability to a corresponding Poisson point

process in order to target non-neutral paths.

4.2.1 Neutral Wright–Fisher simulation

Although the neutral Wright–Fisher diffusion has a transition density

which cannot be evaluated exactly, it can be written in infinite series

form as follows (see [Gri79, Tav84, EG93, GS09])

pθ0(t, x, y) =
∞∑
m=0

qθm(t)
m∑
l=0

Bm,x(l)Dθ1+l,θ2+m−l(y), (4.1)

where

qθm(t) =
∞∑
k=m

(−1)k−m
|θ|+ 2k − 1

m!(k −m)!

Γ(m+ |θ|+ k − 1)

Γ(m+ |θ|)
e
−k(k+|θ|−1)t

2 , (4.2)

|θ| = θ1 + θ2 for θ ∈ R2
+, x, y ∈ [0, 1], Bm,x is the probability mass

function for a binomial random variable with parameters m,x, and

Dθ1+l,θ2+m−l is the probability density function for a beta random vari-

able with parameters θ1 + l, θ2 + m − l. We mention here that (4.2)

defines a probability mass function on N, and is a manifestation of

the duality between the Wright–Fisher diffusion and the Kingman co-
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alescent as it describes the number of lineages still alive at time t in a

Kingman coalescent started from infinity at time 0. The decomposition

into a mixture of beta and binomial random variables in (4.1) allows for

a rather simple routine to return draws from the neutral Wright–Fisher

diffusion via augmentation:

1. Draw M from (4.2)

2. Conditional on M = m, draw L ∼ Bin(m,x)

3. Conditional on M = m,L = l, draw Y ∼ Beta(θ1 + l, θ2 +m− l)

Steps 2 and 3 are straightforward, however step 1 requires some more

work because the probability mass function given in (4.2) is an infinite

series and thus cannot be evaluated pointwise. However, as shown in

[JS17], one can make use of the alternating series trick (see Chapter 4 in

[Dev86] for more details) to return exact draws from this distribution.

We point out here that the above decomposition suffers from a numeri-

cal instability whenever t ≤ 0.06, and thus some form of approximation

is required to deal with such instances. In particular, [JS17] advocate

using a discretised normal distribution to sample from (4.2) in view of

Theorem 4 in [Gri84] (note that the statement there is missing a factor

β−2) which gives that as t→ 0, the number of lineages that survive up

to time t is given by a normal distribution with parameters

µ =
2η

t
, σ =

2η
t

(
η+β
β

)2 (
1 + η

η+β
− 2η

)
if β 6= 0

2
3t

if β = 0
(4.3)

where β = t
2
(|θ| − 1) and

η =

 β
eβ−1

if β 6= 0

1 β = 0.

Using the decomposition in (4.1) as well as the fact that the density of

a point y ∈ [0, 1] sampled at time s from a Wright–Fisher bridge going
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from x at time 0 to z at time t (with s < t) is given by

pθ,x,t,z0 (y; s) =
pθ0(s, x, y)pθ0(t− s, y, z)

pθ0(t, x, z)
, (4.4)

we get that

pθ,x,t,z0 (y; s) =
∞∑
m=0

∞∑
k=0

m∑
l=0

k∑
j=0

p
(θ,x,t,z,s)
m,k,l,j Dθ1+l+j,θ2+m−l+k−j(y)

where

p
(θ,x,t,z,s)
m,k,l,j =

qθm(s)qθk (t− s)
pθ0(t, x, z)

Bm,x(l)Dθ1+j,θ2+k−j(z)

×
(
k

j

)
B(θ1 + l + j, θ2 +m− l + k − j)

B(θ1 + j, θ2 + k − j)

for m, k, l, j ∈ N with l ∈ {0, . . . ,m}, j ∈ {0, . . . , k}, and B(·, ·) as

defined in (2.24). The alternating series method can be applied here

once again as the mixture weights {p(θ,x,t,z,s)
m,k,l,j : m, k, l, j ∈ N} define

a probability mass function on N4, with the only extra complication

being the presence of the neutral transition density in the denominator.

However, by exploiting the following alternative decomposition of the

transition density

pθ0(t, x, z) =
∞∑
m=0

qθm(t)E [Dθ1+Lm,θ2+m−Lm(z)] (4.5)

where Lm ∼ Bin(m,x), [JS17, Proposition 3] shows that (4.5) can be

targetted via the alternating series method, and thus exact draws can

be obtained from the law of a bridge diffusion going from x to y in time

t, at time s via the following procedure:

1. Simulate (M,K,L, J) ∼ {p(θ,x,t,z,s)
m,k,l,j : (m, k, l, j) ∈ N4}

2. Conditional on (M,K,L, J) = (m, k, l, j), simulate Y ∼ Beta(θ1+

l + j, θ2 +m− l + k − j).
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4.2.2 Non-neutral Wright–Fisher simulation

The above alternating series trick cannot be directly extended to the

non-neutral case as the quantities involved are no longer tractable. In-

stead, [JS17] propose the neutral Wright–Fisher diffusion and bridge

as candidates in a rejection sampler to return draws from the corre-

sponding non-neutral process. Let WF(x)
0,θ denote the law of a neutral

Wright–Fisher diffusion started at x with mutation parameters set to

θ, and let WF(x)
σ,θ be the non-neutral counterpart with selection coeffi-

cient equal to σ. Mutual absolute continuity between these two laws

(provided they share the same start point X0 = x and mutation pa-

rameters θ = (θ1, θ2) ∈ R2
+) is guaranteed (see the paragraph just

below (2.27) for references regarding this claim) and in particular the

Radon–Nikodym derivative at time t > 0 is given by

dWF(x)
σ,θ

dWF(x)
0,θ

(X t) = exp

{
σ

2
(Xt −X0)−

∫ t

0

ϕσ(Xs)ds

}
(4.6)

where X t := (Xs)
t
0,

ϕσ(x) =
σ

4

(
−σ

2
x2 +

(σ
2
− |θ|

)
x+ θ1

)
, x ∈ [0, 1],

and the term σ
2
(Xt−X0) corresponds to the quantity Ã(Xt) in equation

(24) in [JS17]. In view of the fact that ϕσ(x) is quadratic in x, we can

always find ϕ−σ , ϕ
+
σ such that ϕ−σ ≤ ϕσ(x) ≤ ϕ+

σ for x ∈ [0, 1], and thus

we can re-write (4.6) as

dWF(x)
σ,θ

dWF(x)
0,θ

(X t) ∝ exp

{
σ

2
(Xt − 1)−

∫ t

0

(
ϕσ(Xs)− ϕ−σ

)
ds

}
. (4.7)

The fact that ϕσ(·) can be lower bounded implies that the right-most

term above can be viewed as the probability of a unit rate Poisson

point process having no points in the epigraph of t 7→ ϕσ(Xt) − ϕ−σ .

Simulating an event with this probability is straightforward; we

simulate the associated Poisson point process and check that the

resulting points satisfy the given condition.
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To see this, suppose that we simulate the endpoint at time t

from (4.1) using the procedure described in Subsection 4.2.1, and as-

sume that the algorithm returned a value y which was accepted by the

e
σ
2

(y−1) coin-flip (the first term on the RHS of (4.7)). Then conditional

on y, we generate a Poisson point process (Ψ,Γ) of rate λσ := ϕ+
σ −ϕ−σ

on (0, t) × [0, 1], so κ ∼ Pois(λσt), Ψ = {ψi}κi=1 ∼iid Unif((0, t)) and

Γ = {γi}κi=1 ∼iid Unif([0, 1]). We then associate a corresponding path

ω ∼ WF(t,x,y)
0,θ , by simulating the value of the path at the time stamps

given by Ψ, i.e. we draw ωψi for i = 1, . . . , κ from the finite dimensional

distributions of WF(t,x,y)
0,θ at the collections of times Ψ. If κ = 0, we

accept the draw y as coming from the target distribution, otherwise

we check whether the generated points are suitable by setting

I =
κ∏
i=1

1{
ϕσ(ωψi

)−ϕ−σ
ϕ+σ −ϕ

−
σ

<γi

}.

If I = 1, we accept y as a draw from the corresponding non-neutral pro-

cess, whilst if not we discard it and re-draw y from the neutral diffusion,

as well as a corresponding Poisson point process (Ψ,Γ) until I = 1. The

main draw back of this method is that it relies on a rejection sampler,

and thus acceptance rates depend greatly on the mismatch between

the proposed and target distributions. In the case of a non-neutral

Wright–Fisher diffusion, it comes as no surprise that the acceptance

rate plummets as the selection coefficient grows. Non-neutral paths

with high selection coefficients (both negative and positive) will spend

less time in the interior of [0, 1] and more time at the boundaries, when

compared to their neutral counterparts. We summarise the procedure

described above with the following algorithm
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Algorithm 1: Generating a path from WF(x)
σ,θ over the time interval

[0, t] (Algorithm 7 in [JS17])

repeat

repeat

Draw Xt ∼WF(x,t)
0,θ and U ∼ Unif([0, 1]);

until U ≤ exp{σ
2

(Xt − 1)};
Conditional on Xt = y, simulate a Poisson point process

(Ψ,Γ) of rate λσ on (0, t)× [0, 1], with κ ∼ Pois(λσt);

for i = 1, . . . , κ do

Simulate ωψi ∼WF(t,x,y,ψi)
0,θ

end

if
ϕσ(ωψi )−ϕ

−
σ

ϕ+
σ−ϕ−σ

≤ γi for all i = 1, . . . , κ then

Set ψ0 = 0, ψκ+1 = t, ωψ0 = x, ωψκ+1 = Xt;

return (ψi, ωψi)
κ+1
i=0

end

until false;

The above rejection sampler can be suitably tweaked to allow for gener-

ating samples from a non-neutral diffusion bridge. Let WF(t,x,y)
0,θ denote

the law of a neutral Wright–Fisher bridge going from x at time 0 to

y at time t with mutation parameter set to θ, and let WF(t,x,y)
σ,θ be

the non-neutral counterpart when the selection parameter is set to σ.

Then by conditioning on the endpoint Xt = y, re-arranging and ap-

plying Girsanov’s theorem we get that the Radon–Nikodym derivative

between these two laws is given by

dWF(t,x,y)
σ,θ

dWF(t,x,y)
0,θ

(X t) =
pθ0(t, x, y)

pθσ(t, x, y)

dWF(x)
σ,θ

dWF(x)
0,θ

(X t)

∝ exp

{
−
∫ t

0

(
ϕσ(Xs)− ϕ−σ

)
ds

}
(4.8)

and thus the same procedure as above can be executed to return a path

according to the law of a non-neutral Wright–Fisher diffusion bridge,

which we summarise into the following algorithm

74



Algorithm 2: Generating a path from WF(t,x,y)
σ,θ over the time

interval [0, t] (Algorithm 8 in [JS17])

repeat
Simulate a Poisson point process (Ψ,Γ) of rate λσ

on (0, t)× [0, 1], with κ ∼ Pois(λσt);

for i = 1, . . . , κ do

Simulate ωψi ∼WF(t,x,y,ψi)
0,θ

end

if
ϕσ(ωψi )−ϕ

−
σ

ϕ+
σ−ϕ−σ

≤ γi for all i = 1, . . . , κ then

Set ψ0 = 0, ψκ+1 = t, ωψ0 = x, ωψκ+1 = y;

return (ψi, ωψi)
κ+1
i=0

end

until false;

We now introduce the setup within which we want to embed the above

exact sampling algorithms in order to devise a suitable MCMC scheme

with which to conduct joint inference on the selection coefficient and

the allele age based on allele frequency time-series data.

4.3 Exact MCMC Inference for Selection & Allele

age

We start this section by defining precisely what we mean when we say

“exact inference” by means of the following definition:

Definition 4.1. An inferential scheme shall be referred to as being

exact if the only errors present in the method are Monte Carlo or

machine precision errors.

Using this definition, it becomes apparent that none of the methods

reviewed in Section 4.1 are exact as the discretisations and subsequent

approximations used there result in the inferential procedure targetting

some approximation to the true model, and thus the inference suffers

from model error too. In this section we show how by considering

a suitable state space augmentation and by resorting to the exact

algorithms described in the previous section we can develop an exact
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MCMC scheme targetting the joint posterior of the allele age t0 and

the selection coefficient σ.

We are interested in conducting inference on the selection pa-

rameter and allele age given that the underlying allele frequency

dynamics are driven by a non-neutral Wright–Fisher diffusion, so

the main problem is once again the intractability of the transition

density which leads to an intractable likelihood. Assume that our

observations are given by binomial draws Y = {Yti}ni=1 at observation

times t = {ti}ni=1 with known sample sizes n := {nti}ni=1, and success

probability driven by the underlying Wright–Fisher diffusion (Xt)
tn
t0

satisfying the same SDE as in (2.21), where t0 is the birth of the allele

such that Xs ≡ 0 ∀s ≤ t0, and

dXt =
1

2

(
σXt(1−Xt)− θ2Xt + θ1(1−Xt)

)
dt+

√
Xt(1−Xt)dWt,

holds ∀t > t0. Such a setup is rather natural when considering aDNA

datasets (see for instance [BYN, SBS14, ŽSSS15, GaR17, KPR21,

SES16] amongst others); the underlying allele frequency dynamics are

driven by a process which is well-approximated by the Wright–Fisher

diffusion, and the binomial sampling encodes the noisy observations of

the latent path coming from the samples collected from the archaeo-

logical remains. In such a setting, a straightforward expression for the

likelihood of the data Y given the selection coefficient σ and the allele

age t0 is

`(Y|σ, t0) =

∫
[0,1]n

n∏
i=1

Bnti ,xi (Yti) p
θ
σ(ti − ti−1, xi−1, xi)dx

where we are marginalising over the latent diffusion values at the

observation times. As previously mentioned, the transition density

pθσ(ti − ti−1, xi−1, xi) is intractable, and thus so is the posterior of in-

terest. In view of the fact that we can simulate draws from the non-

neutral Wright–Fisher diffusion and diffusion bridge, one could aug-

ment the state space with the values of the diffusion at the sampling
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times X = {Xti}ni=1 leading to the following augmented likelihood

`(Y|σ, t0,X) =
n∏
i=1

Bnti ,Xti (Yti) p
θ
σ(ti − ti−1, Xti−1

, Xti),

and then apply a Metropolis-within-Gibbs scheme which sequentially

updates the underlying path and the parameters of interest. The main

difficulty in such a setup is the evaluation of the acceptance probabili-

ties for the updates involving the selection coefficient and the allele age,

as the Metropolis–Hastings acceptance probability would involve an in-

tractable ratio. To see this, recall that the Radon–Nikodym derivative

between the law of a neutral and non-neutral Wright–Fisher bridge

sharing the same mutation parameters and endpoints is given by (4.8).

Re-arranging and integrating both sides with respect to the bridge

measure WF(t,x,y)
0,θ , we get that

pθσ(t, x, y) = pθ0(t, x, y)e
σ
2

(y−x)−tϕ−σ EWF(t,x,y)
0,θ

[
e−

∫ t
0(ϕσ(Xs)−ϕ−σ )ds

]
=: pθ0(t, x, y)e

σ
2

(y−x)−tϕ−σ a(t, x, y, σ). (4.9)

Note that whilst the first two quantities on the RHS can be dealt

with, the term a(t, x, y, σ) is intractable in view of the Lebesgue

integral involved and the fact that it is an average over the space

of continuous functions with respect to the measure WF(t,x,y)
0,θ . Thus

if we were to augment our state space solely with the values of the

latent diffusion at the observation times, the acceptance probabilities

for the selection coefficient and allele age updates would involve ratios

of these intractable terms. The above decomposition (4.9) also sheds

light on why extending the alternating series method from Subsection

4.2.1 does not extend to the non-neutral case, as the a(t, x, y, σ) terms

cannot be targetted via (eventually) monotone upper and lower bounds.

We point out here that one could make use of a pseudo-marginal

algorithm at this point, where instead of the quantities a(t, x, y, σ),

unbiased estimates could be used (which are readily available by

making use of the Poisson estimator, which will be discussed in more
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detail in Subsection 4.3.3). However, pseudo-marginal algorithms

tend to lead to sticky behaviour in the chain updates (see [AR09]),

and more importantly augmenting our state space further leads to a

tractable expression for the likelihood. The augmentation we consider

is inspired by the one used in [BPRF06] and [SPR+13] where the

authors respectively embed EA1 and EA3 into a MCMC scheme.

The crux of this augmentation is the fact that the intractable terms

described above turn out to be the normalising constants of the

extra random variates introduced, allowing for a tractable expression

of the likelihood to be derived. These extra variates are related to

the procedure described in Subsection 4.2.2, in particular they are

the time stamps Ψ and associated values of the path ω at these

times (together with an extra variate which will be described more

precisely later), collectively termed the “skeleton points”, which

one generates when deciding whether or not a generated proposal

comes from the target non-neutral distribution. We give a detailed

derivation of the likelihood contribution stemming from these terms,

but emphasise here that the main difference between our setup and

that in [BPRF06] and [SPR+13] is that location invariance does not

hold for the Wright–Fisher diffusion. Indeed this property is exploited

quite heavily in [BPRF06] and [SPR+13] to decouple the dependence

of the dominating measure from the values of the diffusion at the

sampling times. This is particularly important in their setting in

view of the Lamperti transform they use which leads to the endpoints

of this transformed diffusion being informative about the parameter

being inferred. In view of the fact that we are making use of a pseudo-

marginal Metropolis-within-Gibbs scheme, the choice of a dominating

measure is a significantly more involved task for the Wright–Fisher

case as we do not have access to location invariance, but at least we

need not worry about the diffusion values at the observation times

being informative for the parameters of interest. Furthermore, the

above also implies that our setting requires a carefully chosen updating

procedure which allows for the auxiliary quantities to be updated

without running into problems relating to mutual absolute continuity.

78



We now derive the likelihood contribution these skeleton points

generate and show how this leads to a tractable likelihood which

can be targetted via a MCMC procedure. To this end, suppose, for

illustrative purposes, that we only have one observation interval given

by [0, t], and that at the current iteration the latent diffusion takes the

values X0 = x and Xt = y. Let (Ψ,Γ,Ξ) define a unit rate Poisson

point process on (0, t) × [0, 1] × (0,∞), such that for any bounded

A ⊂ (0,∞), the restriction of this process to (0, t) × [0, 1] × A (which

we denote (Ψ,Γ,Ξ)|A) gives that Ψ|A := {ψj : ξj ∈ A} ∼iid Unif((0, t)),

Γ|A = {γj : ξj ∈ A} ∼ Unif([0, 1]), Ξ|A = {ξj : ξj ∈ A} ∼iid Unif(A).

Further let ω ∼ WF(t,x,y)
0,θ denote a neutral path from a Wright–Fisher

bridge going from x to y in time t. The role of the extra variate Ξ here

is to allow for a non-centred re-parametrisation of the problem, where

the Poisson point process is decoupled from the parameter of interest

(in this case σ). If we omit Ξ, the Poisson point process we generate

would depend on σ through its rate λσ(= ϕ+
σ − ϕ−σ ), thus leading to

a less efficient sampler. The main idea is that by including Ξ we can

precompute any additional points needed for the proposed value of

the selection coefficient by simulating a Poisson point process whose

rate is given by the maximum between the rate under the current

value of σ and the proposed one. So, if σ(k) is the current value of

the selection coefficient and σ′ is the proposed value of a selection

coefficient update, then we set λmax := max{λσ(k) , λσ′}. The thinning

property of the Poisson point process then implies that we can invoke

the “correct” points only when required whilst retaining the structure

of the Poisson point process. For more details refer to Section 4 in

[SPR+13].

Given a realisation of (Ψ,Γ,Ξ) and ω, one checks that the gen-

erated points lie below the epigraph of the function s 7→ ϕσ(Xs)−ϕ−σ
ϕ+
σ−ϕ−σ

as

in Subsection 4.2.2, and if this is the case, one defines ωΨ := {ωψj}
(i.e. ωΨ corresponds to the values of the path ω at the timestamps

given by Ψ), and stores the generated points by setting Φ = (Ψ,Ξ, ωΨ)

which will be henceforth termed the skeleton points. An accepted
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configuration (Ψ,Γ,Ξ, ωΨ) has density given by∏
{j:ξj≤λσ}

1{ϕσ(ωψj
)−ϕ−σ

ϕ+σ −ϕ
−
σ

<γj

}
a(t, x, y, σ)

with respect to PP(t,1) ⊗WF(t,x,y)
0,θ , where PP(t,1) denotes the law of a

unit rate Poisson point process on (0, t)× [0, 1]× (0,∞). Marginalising

over the uniform marks {γj}, gives that the skeleton points Φ have

density

∏
{j:ξj≤λσ}

ϕ+
σ − ϕσ(ωψj)

ϕ+
σ − ϕ−σ

a(t, x, y, σ)
(4.10)

with respect to PP(t) ⊗WF(t,x,y)
0,θ , where PP(t) denotes the law of a unit

rate Poisson point process on (0, t) × (0,∞). It is clear now that the

denominator in (4.10) will cancel out with the same term appearing in

the numerator of (4.9).

The last thing to note is that we need to ensure that the domi-

nating measure used above is independent of the quantities we will

be updating in our Metropolis-within-Gibbs sampler. There are two

potential problems with the dominating measure PP(t) ⊗WF(t,x,y)
0,θ we

derived for (4.10): the diffusion bridge endpoints and the time interval

t. The latter will only be problematic when t0 is involved as all other

timestamps ti for i ∈ {1, . . . , n} will be fixed, and can easily be tackled

by considering a “bigger” Poisson point process and invoking Poisson

thinning. For the time interval whose left endpoints is given by t0,

we consider a unit rate Poisson point process on (0,∞)2. We denote

the law of this process by PP, and use it as a dominating measure for

the skeleton points over this interval such that the resulting density

of the accepted skeleton points is analogous to the quantities derived

in (4.10) with the only difference being an additional condition in

the product’s running index given by {ψj < t1 − t0}, which allows for

the “correct” points to be invoked and retains the correct Poisson
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structure in view of the thinning property of the Poisson point process.

To deal with the dependence of the reference diffusion bridge

measure on the endpoints, we consider changing the dominating

measure from that of a diffusion bridge to that of a diffusion. Indeed

observe that by conditioning on the endpoint Xt, we have that

dWF(t,x,Xt)
0,θ

dWF(x)
0,θ

(
(Xs)

t
0

)
=

1

pθ0(t, x,Xt)
(4.11)

and thus by multiplying (4.10) by the resulting Radon–Nikodym deriva-

tive we get that the dominating Wright–Fisher measure for (4.10) is

now WF(x)
0,θ. This still depends on the left hand bridge endpoint x, how-

ever as these measures will be sequentially chained to one another, we

will ultimately end up with the dominating measure WF(0)
0,θ as shown

shortly. Note further that the joint density of Xt and the skeleton

points Φ is now given by

e
σ
2

(Xt−x)−ϕ−σ t
∏

{j:ξj≤λσ}

ϕ+
σ − ϕσ(ωψj)

ϕ+
σ − ϕ−σ

with respect to PP ⊗ WF(x)
0,θ ⊗ Leb([0, 1]), where the intractable

a(t, x, y, σ) and non-neutral transition density pθ0(t, x, y) cancel out

when combining (4.9), (4.10) and (4.11).

Now denote by Φi = (Ψi,Ξi, ω
Ψi
i ) the skeleton points over the

time interval [ti−1, ti] for i = 1, . . . , n. Putting all of the above

together, and assuming for the moment that Yt1 > 0, we can formulate

the joint density of the data Y = {Yti}ni=1, the selection coefficient

σ, the allele age t0, the value of the diffusion at the sampling times
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X = {Xti}ni=1, and the collection of skeleton points {Φi}ni=1 as

p1(σ)p2(t0)
n∏
i=1

Bnti ,Xti (Yti) e
σ
2
Xtn−ϕ

−
σ (tn−t0)

×
n∏
i=1

∏
{j:ξi,j≤λσ ,
ψ1,j<t1−t0}

ϕ+
σ − ϕσ(ωi,ψi,j)

ϕ+
σ − ϕ−σ

with respect to the dominating measure

PP⊗ PP(tn−t1) ⊗WF(0)
0,θ ⊗ Leb

(
En
t1

)
⊗ Σ(⊗ni=1nti),

where we set En
t1

:= [0, 1]n × R × (−∞, t1), p1, p2 represent the prior

densities on σ and t0 respectively with respect to Lebesgue measure,

WF(0)
0,θ denotes the law of a neutral Wright–Fisher diffusion started

from 0, PP(tn−t1) is the law of a unit rate Poisson point process on

(t1, tn)× (0,∞), PP is the law of a unit rate Poisson point process on

(0,∞)2, and Σ(⊗ni=1nti) is the counting measure over ⊗ni=1{0, . . . , nti}.
Note that we applied the following change of measure to ensure that

the dominating measure for the skeleton points does not depend on the

values X

d

(
n
⊗
i=1

WF(ti−ti−1,Xti−1 ,Xti )

0,θ

)
dWF(0)

0,θ

(
(Xt)

tn
t0

)
=

n∏
i=1

1

pθ0(ti − ti−1, Xti−1
, Xti)

.

which follows by iterating (4.11) over the values of the diffusion

at subsequent observation times and deriving the corresponding

Radon–Nikodym derivative.

Although it is possible to update all the auxiliary variables in

one go, the resulting acceptance probability would be quite low,

and would require a pseudo-marginal Metropolis–Hastings step

in view of the more problematic updates involving the allele age.

Instead, we propose splitting this update into several subroutines
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which consider individual path segments in such a way that the

dominating measure remains independent of the simulated quan-

tities and the updating procedure retains a reasonable acceptance

rate. To this end, we calculate the likelihood contribution for each

path segment separately below, starting with an interior path segment.

Take i ∈ {2, . . . , n − 1}, fix Xti−1
= xi−1 and Xti+1

= xi+1, and

denote by Φi,Φi+1 the collection of skeleton points over the time

intervals [ti−1, ti], [ti, ti+1] respectively, such that the joint density of

the data Yti , the selection coefficient σ, the value of the diffusion Xti

and corresponding skeleton points Φi,Φi+1 is given by

p1(σ)Bnti ,Xti (Yti) e
σ
2

(xi+1−xi−1)−ϕ−σ (ti+1−ti−1)

×
i+1∏
k=i

∏
{j:ξk,j≤λσ}

ϕ+
σ − ϕσ(ωk,ψk,j)

ϕ+
σ − ϕ−σ

(4.12)

with respect to the dominating measure

PP(ti+1−ti−1) ⊗WF(xi−1)
0,θ ⊗ Leb ([0, 1]× R)⊗ Σ(nti),

where WF(xi−1)
0,θ denotes the law of a neutral Wright–Fisher diffusion

started from xi−1, PP(ti+1−ti−1) is the law of a unit rate Poisson point

process on (ti−1, ti+1) × (0,∞), and Σ(nti) is the counting measure

on the integers {0, . . . , nti}. Note that the fact that we considered

two neighbouring time intervals and conditioned on the left-most

and right-most endpoints allows us to use the law of a diffusion as a

reference measure. In this manner, the dominating measure for such

a local update does not depend on any of the parameters of interest

nor on the auxiliary variables within the time interval (ti−1, ti+1).

Moreover, all of the terms on the RHS of (4.12) are computable in

finite time, suggesting that we have derived the correct augmentation

within which to frame our MCMC scheme.

We note that the above only applies for what we call interior path

segments, that is intervals of the form [ti−1, ti+1] with i ∈ {2, . . . , n−1}.
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A similar approach gives us that fixing Xtn−1 = xn−1, the joint density

of the data Ytn , the selection coefficient σ, the diffusion endpoint Xtn

and corresponding skeleton points Φn is given by

p1(σ)Bntn ,Xtn (Ytn) e
σ
2

(Xtn−xn−1)−ϕ−σ (tn−tn−1)

×
∏

{j:ξn,j≤λσ}

ϕ+
σ − ϕσ(ωn,ψn,j)

ϕ+
σ − ϕ−σ

(4.13)

with respect to the dominating measure

PP(tn−tn−1) ⊗WF(xn−1)
0,θ ⊗ Leb ([0, 1]× R)⊗ Σ(ntn).

where WF(xn−1)
0,θ denotes the law of a neutral Wright–Fisher diffusion

started at xn−1, PP(tn−tn−1) is the law of a unit rate Poisson point

process on (tn−1, tn) × (0,∞), and Σ(ntn) is the counting measure on

{0, . . . , ntn}.

The last section of path we need to tackle is the initial one,

where (as mentioned earlier) we need to be slightly more careful in

the choice of the dominating measure for the Poisson point process.

Fixing the right endpoint Xt2 = x2, the joint density of the data Yt1 ,

the selection coefficient σ, the allele age t0, the diffusion value at the

first observation time Xt1 and corresponding skeleton points Φ1,Φ2 is

given by

p1(σ)p2(t0)Bnt1 ,Xt1 (Yt1) e
σ
2
x2−ϕ−σ (t2−t0)

×
2∏
i=1

∏
{j:ξi,j≤λσ ,
ψ1,j<t1−t0}

ϕ+
σ − ϕσ(ωi,ψi,j)

ϕ+
σ − ϕ−σ

(4.14)

with respect to the dominating measure

PP⊗ PP(t2−t1) ⊗WF(0)
0,θ ⊗ Leb

(
E1
t1

)
⊗ Σ(nt1),

where we set E1
t1

:= [0, 1]× R× (−∞, t1), WF(0)
0,θ denotes the law of a

neutral Wright–Fisher diffusion started at 0, whilst PP is the law of a
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unit rate Poisson point process on (0,∞)2 and Σ(nt1) is the counting

measure on {0, . . . , nt1}.

In light of the above we have found an augmentation which

grants us access to an expression for the likelihood which we can

evaluate pointwise, and that admits a dominating measure which

is independent of the parameters and the auxiliary variables being

used. We are now left with the task of devising an appropriate

proposal mechanism which does not lead to any extra intractable

terms cropping up in the acceptance probabilities or dominating

measures. As mentioned earlier, in [BPRF06] and [SPR+13] the

authors exploit location invariance of Brownian bridges to ensure

that the dominating measure is that of a Brownian bridge starting

and ending at 0. This allows for the decoupling of the dependence

between the bridge measure and its endpoints (which is necessary

in their setting due to the Lamperti transform they employ), and

for a straightforward proposal mechanism. In our case, we propose

a piecewise path updating procedure which ensures that locally the

updates can be executed without any of the aforementioned problems

relating to mutual absolute continuity, retaining reasonable acceptance

rates, and ensuring that the global dominating measure does not

depend on any of the parameters or auxiliary variables.

The Metropolis-within-Gibbs Sampler we employ is essentially

split into two main update steps: updating the selection parameter

conditional on the allele age, latent values of the diffusion at the

observation times, and skeleton points; and updating the allele age,

latent values of the diffusion at the observation times and skeleton

points conditional on the selection parameter. The former is a simple

Metropolis–Hastings step (necessarily so because the resulting poste-

rior is not amenable to any standard simulation techniques), whilst

for the latter we split the global update into several local piecewise

updates to improve mixing. In principle one could update the entire

path in one go, however in view of the pseudo-marginal step required

for the initial path segment, there would be long runs where the chain
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would remain stuck at the same values. Instead, we split the path into

an initial segment, several interior segments and an end segment, and

subsequently:

1. Fix the diffusion value at t2, propose an allele age t0 together with

associated latent path value at the first observation time Xt1 and

skeleton points Φ1,Φ2, and run a pseudo-marginal step,

2. For i = 2, . . . , n− 2, fix the diffusion values at ti−1 and ti+1, and

update Xti and Φi,Φi+1 by directly sampling from the posterior,

3. Fix the diffusion value at tn−1, and update Xtn and Φn by directly

sampling from the posterior.

Figure 4.3.1 below illustrates one sequential run of the algorithm, where

one starts from the first segment A and performs step 1 in the above

list. The algorithm then moves on to the first (left-most) of the blocks

labelled B, and updates each segment using step 2 above. Once all of

the interior segments labelled B are updated (going from left to right),

the algorithm updates the end segment C as detailed in step 3. Note

that by using bridge proposals and imposing overlapping segments in

subsequent update steps, we allow for the whole path to be updated in

one iteration. We point out here that the last segment C is updated

via a diffusion update rather than a bridge update to allow for the

terminal diffusion value Xtn to be updated. Note further that whilst

the interior and end path segments can be updated without an accept-

reject step, the initial segment requires a pseudo-marginal Metropolis–

Hastings step due to the dependence on the allele age of the proposed

path. The precise details for each step above can be found in Subsection

4.3.1 for the interior path segment, 4.3.2 for the end path segment and

4.3.3 for the slightly more intricate initial path segment. The selection

parameter update is illustrated in Subsection 4.3.4.
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Figure 4.3.1: Diagram illustrating the update procedure. The latent path at
the current iteration is in orange, crosses denote the values of the latent path
at the observation times. The update procedure starts with the segment
A which is the initial path segment, then proceeds to update the interior
segments B sequentially from left to right and finishes with updating the
end segment C.

Note that in the above we have assumed that the first observation

Yt1 > 0, which restricts the range of values t0 can take to (−∞, t1).

However there is no a priori reason why this should be the case, and

in general, if we set c := min{i : Yti > 0}, then t0 should be able

to assume any value in the range (−∞, tc). This setting however re-

quires a more careful proposal mechanism for the initial path segment,

because if for instance tc = t2, we need to have two separate initial

path segment proposal methods - one for when t0 < t1 and one for

the case t0 ∈ (t1, t2). The sampler needs to be able to switch between

and compare these two path segments when computing the acceptance

probability, and thus we need to extend the initial path segment to

include the observation interval [t0, t3]. If we have t0 ∈ (t1, t2), then we

set Xt1 = 0,Φ1 = ∅ and use the same update procedure as above, using

a bridge proposal over the interval [t0, t3]. If however t0 < t1, then we

need to first simulate the value Xt1 using a diffusion proposal, and then

for the remaining time interval [t1, t3] we use a bridge update as above

conditional on the output generated via the diffusion proposal. This
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construction easily extends to accommodate an arbitrary tc, however

the larger the time interval over which the initial path segment is de-

fined (it will necessarily be equal to [t0, tc+1]), the sharper the fall in

the acceptance probabilities in virtue of the increase in time interval

length which leads to larger numbers of Poisson points being favoured.

In what follows we therefore allow for at most tc = t3 (which is in line

with what we observe in real datasets such as the one in [LPR+09]),

however below we illustrate our method for the case tc = t1 for ease of

exposition. The update procedures for when tc = t2 (or tc = t3) follow

the same pattern, with the only difference being the inclusion of one

(respectively two) “extra” diffusion proposals at the start, which we

have therefore moved to Appendix A together with the relevant calcu-

lations of acceptance probabilities. Algorithm 3 summarises the above

discussed update procedure, where each of the individual latent path

updates are explained in more detail in the following subsections.

4.3.1 Updating an inner path segment

To update the path segment over the observation interval [ti−1, ti+1],

we first fix Xti−1
= xi−1 and Xti+1

= xi+1, and conditional on these

values:

1. Draw U ∼ Unif([0, 1]), and

Xti ∼WF(ti+1−ti−1,xi−1,xi+1,ti−ti−1)
σ,θ

(i.e. draw Xti from the law of a non-neutral Wright–Fisher bridge

going from xi−1 to xi+1 in time ti+1 − ti−1, sampled at time ti −
ti−1), and check whether

U <
1

Mi

Xti
Yti (1−Xti)

nti−Yti (4.15)

where Mi := supz∈[0,1] z
Yti (1−z)nti−Yti . If (4.15) holds, we proceed

to 2, otherwise we keep drawing Xti and U as above until (4.15)

is true.

88



2. Conditional on Xti = x, draw

κi ∼ Pois(λmax (ti − ti−1)),

{ψi,j}κij=1 ∼iid Unif((ti−1, ti)),

{ξi,j}κij=1 ∼iid Unif((0, λmax)),

{γi,j}κij=1 ∼iid Unif([0, 1]),

ωi ∼WF(ti−ti−1,xi−1,x)
0,θ

and

κi+1 ∼ Pois(λmax (ti+1 − ti)),
{ψi+1,j}κi+1

j=1 ∼iid Unif((ti, ti+1)),

{ξi+1,j}κi+1

j=1 ∼iid Unif((0, λmax)),

{γi+1,j}κij=1 ∼iid Unif([0, 1]),

ωi+1 ∼WF(ti+1−ti,x,xi+1)
0,θ

3. If

i+1∏
k=i

∏
{j:ξk,j≤λσ}

1
(
ϕσ(ωk,ψk,j

)−ϕ−σ
)

ϕ+σ −ϕ
−
σ

<γk,j


= 1

set Ψk = {ψk,j}κkj=1, Ξk = {ξk,j}κkj=1, ωΨ
k = {ωk,ψk,j}

κk
j=1, Φk =

(Ψk,Ξk, ω
Ψ
k ) for k = i, i+ 1, else go to 2.

A proposal (Xti ,Φi,Φi+1) generated by the above mechanism has den-

sity given by

X
Yti
ti (1−Xti)

nti−Yti
e
σ
2

(xi+1−xi−1)−ϕ−σ (ti+1−ti−1)

pθσ(ti+1 − ti−1, xi−1, xi+1)

×
i+1∏
k=i

∏
{j:ξk,j≤λσ}

ϕ+
σ − ϕσ(ωk,ψk,j)

ϕ+
σ − ϕ−σ

(4.16)

with respect to PP(ti+1−ti−1)⊗WF(xi−1)
0,θ ⊗Leb([0, 1]), which is the same

dominating measure as that for (4.12). The only problematic term in

(4.16) would be the non-neutral transition density appearing in the
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denominator, however this quantity does not depend on any of the

simulated quantities. Comparing (4.12) with (4.16), we thus conclude

that we have access to exact updates for the interior path segments

without need to pass a Metropolis–Hastings step. Note that despite

the fact that we are taking a unit rate Poisson point process on an

unbounded space as reference measure (which therefore has infinitely

many points and cannot be simulated using finite computation), we

only ever require computing finitely many points in view of Poisson

thinning.

4.3.2 Updating an end path segment

The end path segment over the observation interval [tn−1, tn] can be

updated in a similar manner, however instead of bridge updates we

make use of diffusion proposals. In particular, fix Xtn−1 = xn−1 and

1. Draw U ∼ Unif([0, 1]),

Xtn ∼WF(xn−1,tn−tn−1)
σ,θ

(i.e. draw Xtn from the law of a non-neutral Wright–Fisher

diffusion started from xn−1, sampled at time tn − tn−1) and

check whether U < 1
Mn
X
Ytn
tn (1 − Xtn)ntn−Ytn , with Mn :=

supz∈[0,1]z
Ytn (1 − z)ntn−Ytn . If it is, then proceed to 2, otherwise

keep drawing Xtn and U until it is.

2. Conditional on Xtn = x, draw

κn ∼ Pois(λmax (tn − tn−1)),

{ψn,j}κnj=1 ∼iid Unif((tn−1, tn)),

{ξn,j}κnj=1 ∼iid Unif((0, λmax)),

{γn,j}κnj=1 ∼iid Unif([0, 1]),

ωn ∼WF(tn−tn−1,xn−1,x)
0,θ
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3. If ∏
{j:ξn,j≤λσ}

1{ϕσ(ωn,ψn,j
)−ϕ−σ

ϕ+σ −ϕ
−
σ

<γn,j

} = 1

set Ψn = {ψn,j}, Ξn = {ξn,j}, ωΨ
n = {ωn,ψn,j}, Φn = (Ψn,Ξn, ω

Ψ
n ),

else go to 2.

A proposal (Xtn ,Φn) generated by the above procedure has density

X
Ytn
tn (1−Xtn)ntn−Ytne

σ
2

(Xtn−xn−1)−ϕ−σ (tn−tn−1)

×
∏

{j:ξn,j≤λσ}

ϕ+
σ − ϕσ(ωn,ψn,j)

ϕ+
σ − ϕ−σ

(4.17)

with respect to the dominating measure PP(tn−tn−1) ⊗ WF(xn−1)
0,θ ⊗

Leb([0, 1]), where WF(xn−1)
0,θ is the law of a Wright–Fisher diffusion

started at xn−1. Note that this dominating measure is the same one as

for (4.12), and upon comparing (4.13) and (4.17) we deduce that we

can update the corresponding auxiliary variables from their posterior

distribution directly.

4.3.3 Updating the initial path segment

Updating the initial path segment is slightly more involved due to

the dependence on both the allele age and the timestamp associated

to the first non-zero observation in the generating mechanism. In

particular, we first draw a proposal for the allele age, conditional on

this draw generate proposals for the value of the diffusion at the first

sampling time, and subsequently draw skeleton points conditional on

both the allele age and the diffusion value. The length of path being

proposed depends on tc(= min{ti : Yti > 0}), as does the proposal

mechanism, however for simplicity we outline the procedure for the

case when tc = t1, and defer the cases tc = t2 and tc = t3 (with

the relevant calculations and computations of associated acceptance

probabilities) to Appendix A. Naturally tc can take on any value out

of the observation times, however as pointed out previously, the later

tc appears, the longer the proposed path needs to be and the less effi-
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cient the algorithm becomes due to significantly lower acceptance rates.

So assume that tc = t1, and thus the initial path segment is set

to be over the observation interval [t0, t2]. Fixing Xt2 = x2, we

1. Draw t0 ∼ q2(·) for some proposal distribution having density q2

with respect to Leb((−∞, t1))

2. Conditional on t0 = t, draw U ∼ Unif([0, 1]),

Xt1 ∼WF(t2−t,0,x2,t1−t)
σ,θ

(i.e. draw Xt1 from the law of a non-neutral Wright–Fisher bridge

going from 0 to x2 in time t2 − t, sampled at t1 − t), and check

whether U < 1
M1
X
Yt1
t1 (1−Xt1)

nt1−Yt1 with M1 := supz∈[0,1] z
Yt1 (1−

z)nt1−Yt1 . If it is, then proceed to 3, otherwise redraw Xt1 and U

as above until the condition holds.

3. Conditional on t0 = t, Xt1 = x, draw

κ1 ∼ Pois(λmax (t1 − t)),
{ψ1,j}κ1j=1 ∼iid Unif((t, t1)),

{ξ1,j}κ1j=1 ∼iid Unif((0, λmax)),

{γ1,j}κ1j=1 ∼iid Unif([0, 1]),

ω1 ∼WF(t1−t,0,x)
0,θ

and

κ2 ∼ Pois(λmax (t2 − t1)),

{ψ2,j}κ2j=1 ∼iid Unif((t1, t2)),

{ξ2,j}κ2j=1 ∼iid Unif((0, λmax)),

{γ2,j}κ2j=1 ∼iid Unif([0, 1]),

ω2 ∼WF(t2−t1,x,x2)
0,θ
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4. If

2∏
i=1

∏
{j:ξi,j≤λσ ,
ψ1,j<t1−t}

1{ϕσ(ωi,ψi,j
)−ϕ−σ

ϕ+σ −ϕ
−
σ

<γi,j

} = 1

proceed, else go back to 3.

5. Compute α as in (4.19), and run a Metropolis–Hastings accept-

reject step. If we accept, set Ψk = {ψk,j}, Ξk = {ξk,j}, ωΨ
k =

{ωk,ψk,j}, Φk = (Ψk,Ξk, ω
Ψ
k ) for k = 1, 2, else keep the old values.

A proposal generated according to steps 1-4 above has density

q2(t0)X
Yt1
t1 (1−Xt1)

nt1−Yt1
e
σ
2
x2−ϕ−σ (t2−t0)

pθσ(t2 − t0, 0, x2)

×
2∏
i=1

∏
{j:ξi,j≤λσ ,
ψ1,j<t1−t0}

ϕ+
σ − ϕσ(ωi,ψi,j)

ϕ+
σ − ϕ−σ

(4.18)

with respect to

PP⊗ PP(t2−t1) ⊗WF(0)
0,θ ⊗ Leb((−∞, t1)× [0, 1]),

where PP is the law of a unit rate Poisson point process on (0,∞)2,

and WF(0)
0,θ is the law of a Wright–Fisher diffusion started from 0, and

again the dominating measure used here matches that for (4.14).

Combining (4.14) with the above (4.18), we get that if the cur-

rent values of the chain are t
(k)
0 , X

(k)
t1 ,Φ

(k)
1 and Φ

(k)
2 , then a proposal

(t0, Xt1 ,Φ1,Φ2) leads to the acceptance probability to be computed in
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step 5 above to be given by

α
(

(t0, Xt1 ,Φ1,Φ2)|(t(k)
0 X

(k)
t1 ,Φ

(k)
1 ,Φ

(k)
2 )
)

= min

{
1,

p(t0, Xt1 ,Φ1,Φ2|Y, σ(k),X
(k)
−1,Φ

(k)
−1:2)

p(t
(k)
0 , X

(k)
t1 ,Φ

(k)
1 ,Φ

(k)
2 |Y, σ(k),X

(k)
−1,Φ

(k)
−1:2)

×
q((t

(k)
0 , X

(k)
t1 ,Φ

(k)
1 ,Φ

(k)
2 )|(t0, Xt1 ,Φ1,Φ2))

q((t0, Xt1 ,Φ1,Φ2)|(t(k)
0 , X

(k)
t1 ,Φ

(k)
1 ,Φ

(k)
2 ))

}

= min

{
1,

p2(t0)

p2(t
(k)
0 )

q2(t0|t(k)
0 )

q2(t
(k)
0 |t0)

e
−ϕ−σ

(
t
(k)
0 −t0

)
pθ0(t2 − t0, 0, x2)

pθ0(t2 − t(k)
0 , 0, x2)

× a(t2 − t0, 0, x2, σ
(k))

a(t2 − t(k)
0 , 0, x2, σ(k))

}
(4.19)

where Φ
(k)
−i:j means the vector Φ(k) excluding the ith up to the jth

entries, p(t0, Xt1 ,Φ1,Φ2|Y, σ(k),X
(k)
−1,Φ

(k)
−1:2) denotes the conditional

density of (t0, Xt1 ,Φ1,Φ2) given Y, σ(k),X
(k)
−1,Φ

(k)
−1:2, p2(t0) is the prior

on the allele age, q1(t0|t(k)
0 ) is the proposal kernel for the allele age,

and the remaining terms in the last expression on the RHS of (4.19)

arise due to the ratio of non-neutral transition densities which have

mismatching start times t0 and t
(k)
0 in the denominator of (4.18).

The problematic term here is the ratio of intractable quantities of

the form a(t, x, y, σ) which cannot be evaluated exactly, whilst the

ratio of neutral transition densities can be easily targetted via a

refinement scheme. In particular, one can show that for a sufficiently

large number of terms, there exist monotonic upper and lower bounds

on this quantity which converge to the true value (for exact details

see Proposition 4 in [JS17]), and thus one can keep on adding terms

to either bound until a decision can be made on whether to accept

or reject the proposed move. All other terms are all computable

(subject to choosing a suitable prior and proposal density for the

allele age), and thus the final task is to deal with the intractable ratio
a(t2−t0,0,x2,σ)

a(t2−t(k)0 ,0,x2,σ)
. To this end, we make use of a pseudo-marginal step

for this update, where we replace the intractable terms with unbiased

estimators provided by the Poisson estimator.
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We now provide some detail on how the Poisson estimator for

the quantity a(t, x, y, σ) will be implemented in the above MCMC

scheme. We start by introducing the quantities κ ∼ Pois(λt),

τ = {τj}κj=1 ∼iid Unif((0, t)) and ζ ∼ WF(t,x,y)
0,θ , which we combine

together to obtain an unbiased estimate for a(t, x, y, σ) given by

e(λ−c)t
κ∏
j=1

(
c−

(
ϕσ(ζτj)− ϕ−σ

)
λ

)
,

where λ ∈ R, c > 0 are two arbitrary constants. The estimator is

unbiased and has second moment given by

e(λ−2c)tEWF(t,x,y)
0,θ

[
exp

{∫ t

0

(c− ϕσ(Xs)− ϕ−σ )
2

λ
ds

}]
, (4.20)

which makes choosing a pair (λ, c) which minimises the variance non-

trivial due to the associated Lebesgue integrals being incomputable.

Instead, as discussed in Section 7 of [BPRF06], we upper bound the

integrand in (4.20) and minimise the resulting quantity to get λ =

ϕ+
σ − ϕ−σ , and c = λ. Setting ζτ := {ζτj}κj=1, this choice leads to the

unbiased estimator

ã(t, x, y, σ, τ, ζτ ) =
κ∏
j=1

(
ϕ+
σ − ϕσ(ζτj)

ϕ+
σ − ϕ−σ

)
. (4.21)

It now remains to detail how and when we employ the above unbiased

estimate. As illustrated in [AR09, Bea03] (see in particular Table 1

in [AR09]), if one re-estimates a(t, x, y, σ) using (4.21) each time the

quantity needs to be evaluated, the resulting MCMC scheme does not

target the correct posterior of interest. Instead, if the estimator is re-

calculated solely when a new proposal is introduced with the resulting

estimate being stored for an accepted proposal to be used in the subse-

quent iterations (so we augment the state space with the corresponding

τ and ζτ and recycle these in the next iteration), then the resulting

pseudo-marginal scheme does indeed target the correct distribution.

By making use of this pseudo-marginal formulation and expression for

ã(t, x, y, σ, τ, ζτ ), the pseudo-marginal Metropolis–Hastings acceptance
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probability becomes computable:

α = min

{
1,

p2(t0)

p2(t
(k)
0 )

q2(t
(k)
0 |t0)

q2(t0|t(k)
0 )

e
−ϕ−σ

(
t
(k)
0 −t0

)
pθ0(t2 − t0, 0, x2)

pθ0(t2 − t(k)
0 , 0, x2)

× ã(t2 − t0, 0, x2, σ, τ, ζτ )

ã(t2 − t(k)
0 , 0, x2, σ, τ (k), ζ

(k)

τ (k)
)

}
(4.22)

where τ, ζτ are the variables generated jointly with the proposals

t0, Xt1 , Φ1 and Φ2 to unbiasedly estimate a(t2 − t0, 0, x2, σ), whilst

τ (k), ζ
(k)

τ (k)
are the stored values which were used in the previous itera-

tion. So replacing the acceptance probability (4.19) by (4.22) leads to

an implementable pseudo-marginal Metropolis–Hastings update over

the initial path segment.

A full detailed account of the proposal procedures for the cases

when tc = t2, t3 together with associated computation of acceptance

probabilities can be found in Appendix A, but regardless of the value

of t0 and tc the above illustrated problem involving intractable terms

persists and we resort to a pseudo-marginal Metropolis–Hastings

update.

4.3.4 Selection coefficient update

Finally, we illustrate the selection coefficient update which is a straight-

forward Metropolis–Hastings step, with the joint density of the data,

selection coefficient, allele age, latent path at the observation times,

and skeleton points in this case being given by

p1(σ)p2(t0)
n∏
i=1

Bnti ,Xti (Yti)e
σ
2
Xtn−ϕ

−
σ (tn−t0)

×
n∏

i=c+1

∏
{j:ξi,j≤λσ ,
ψ1,j<t1−t0}

ϕ+
σ − ϕσ(ωi,ψi,j)

ϕ+
σ − ϕ−σ

.
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with respect to the dominating measure

PP⊗ PP(tn−tc) ⊗WF(0)
0,θ ⊗ Leb(En

t1
)⊗ Σ (⊗ni=1nti) ,

where we recall that En
t1

= [0, 1]n × R× (−∞, t1). On the other hand,

we propose new values of the selection coefficient according to some

proposal kernel having density q1 with respect to Lebesgue measure

on R, such that the acceptance probability for a proposed move to σ′

given that the current value of the selection coefficient is σ evaluates

to

α = min

{
1,
q1(σ|σ′)
q1(σ′|σ)

p1(σ′)

p1(σ)
e
σ′−σ

2
Xtn−(tn−t0)(ϕ−σ′−ϕ

−
σ )

×

∏n
i=c

∏
{j:ξi,j≤λσ ,
ψc,j<t1−t0}

ϕ+
σ′ − ϕσ′(ωi,ψi,j)
ϕ+
σ′ − ϕ

−
σ′

∏n
i=c

∏
{j:ξi,j≤λσ ,
ψc,j<t1−t0}

ϕ+
σ − ϕσ(ωi,ψi,j)

ϕ+
σ − ϕ−σ

}
(4.23)

where all the terms involved are computable, and p1(σ) is the prior we

impose on the selection coefficient.

97



Algorithm 3: Metropolis-within-Gibbs Sampler to conduct exact
inference on σ, t0 given noisy observations Y

Initialise σ(0), t
(0)
0 ,X(0),Φ(0), τ (0), ζ

(0)
τ

repeat
Draw σ′ ∼ q, compute λmax := max{λσ(k) , λσ′}
repeat

repeat
Propose (t0, Xt1 , {Φi}2i=1, τ, ζτ ) conditional on

σ(k), λmax, X
(k)
t2
, nt1 , Yt1 as in Section 4.3.3

Compute α as in (4.19), draw U1 ∼ Unif([0, 1])
if α < U1 then

(t
(k+1)
0 , X

(k+1)
t1

, {Φ(k+1)
i }2i=1)← (t0, Xt1 , {Φi}2i=1)

(τ (k+1), ζ
(k+1)
τ )← (τ, ζτ )

else

(t
(k+1)
0 , X

(k+1)
t1

, {Φ(k+1)
i }2i=1)←

(t
(k)
0 , X

(k)
t1
, {Φ(k)

i }2i=1)

(τ (k+1), ζ
(k+1)
τ )← (τ (k), ζ

(k)
τ )

end

for i = 2, . . . , n− 1 do
Update (Xti , {Φk}k=i

k=i−1) conditional on

X
(k+1)
ti−1

, X
(k)
ti+1

, λmax, σ
(k), nti , Yti as in Section 4.3.1

end
Update (Xtn ,Φn) conditional on

X
(k+1)
tn−1

, λmax, σ
(k), ntn , Ytn as in Section 4.3.2

Compute α(σ′|σ(k)) as in (4.23), draw U ∼ Unif([0, 1])

if α(σ′|σ(k)) < U then

σ(k+1) ← σ′

else

σ(k+1) ← σ(k)

end

until convergence
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4.4 Simulation results

The inferential framework presented above has been implemented in

C++ 1, and tested on simulated data for the case when tc = t1. By

making use of the exact algorithm, we were able to simulate a non-

neutral Wright–Fisher diffusion and superimpose binomial sampling to

create a synthetic dataset. We tested our method on a set of different

prior distributions for both the selection coefficient σ and the allele age

t0, whilst maintaining the same simulated data as input, in order to

better assess the influence of the prior on the inferential results. In

simulating the data, we set the following parameters:

Datapoints σ θ1 θ2 t0 t1 ti − ti−1 nti
6 10 0.1 0.1 0.2 0.5 0.1 20

Table 4.4.1: List of the parameter configurations for the simulated dataset.

where the small number of datapoints and sample sizes nti , as well

as the order of magnitude of the mutation rates was chosen to

be in line with similar datasets in the literature (see for instance

[LPR+09, BYN, W+16, F+19]). In choosing the observation time

spacing, a big discrepancy was noted in the effective population

size ranges used in different studies for the same dataset (see for

instance the horse coat colouration dataset from [LPR+09] where

suitable ranges for the effective population size vary from (103, 106)

in [LPR+09], to (2500, 103) in [SBS14], to (200, 5000) in [MMES12]).

In view of the fact that this directly affects the diffusion time scaling

(which is recovered by dividing time in years by a factor of 2Neg,

where Ne is the effective population size and g is the generation gap),

we chose a spacing of 0.1 such that the resulting observations are not

spaced too far apart, nor too closely together. As for the choice of

selection coefficient, we wanted to emulate the case when the selection

coefficient is significantly different from 0, but not too large such that

a diffusion approximation is no longer an appropriate model for the

underlying dynamics. We envisaged that there would not be sufficient

signal in the data to allow for the allele age to be accurately picked

1Available for download from https://github.com/JaroSant/MCMC4WF
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Figure 4.4.1: The blue circles denote the exact draws from the Wright–
Fisher diffusion, whilst the red crosses are the binomial draws obtained.
The straight lines in between observations are a linear interpolation.

up on, and thus chose a value which was relatively close to the first

sampling time.

Using the setup in Table 4.4, the path generated is given in

Figure 4.4.1 in blue, whilst the superimposed binomial sampling

is given by the red plot. Tables 4.4.2 and 4.4.3 lists the different

configurations of priors imposed on the selection coefficient and allele

age respectively. Gaussian distributions were chosen as priors for the

selection coefficient, whereas for the allele age we made use of suitably

transformed exponential and gamma distributions. In view of the fact

that the allele age cannot take on values later than the first non-zero

observation time tc, we set t0 = tc − ε − z, for ε a small tolerance

parameter (in the simulations this was set to 0.05 to ensure that the

method does not run into computational issues - see Subsection 4.4.3

for more details) and z the random variable which takes on either an

exponential or gamma distribution.
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Case σ Priors

A N(−10, 10)

B N(−5, 10)

C N(0, 10)

D N(5, 5)

Table 4.4.2: Priors for the selec-
tion coefficient for each different
case.

Case t0 Priors

E Exp(3)

F Exp(1.5)

G Γ(2, 0.2)

H Γ(1.5, 0.5)

Table 4.4.3: Priors for the allele
age for each different case.

With regards to proposals, we used a Gaussian proposal centred at

the previous value with a standard deviation of 10 (which was chosen

after some tuning) for the selection parameter, whilst for the allele

age we made use of a truncated Gaussian proposal (again centred at

the previous value) with standard deviation 0.25 (with the truncation

threshold being set to a small value just below the first non-zero

observation tc − ε, where the ε was chosen small enough such that no

computational issues would hamper the inferential scheme - refer to

Subsection 4.4.3).

Parameter Proposals

σ N(·, 10)

t0 tN(·, 0.25, tc − ε)

Table 4.4.4: Proposal distributions for the selection coefficient and allele
age, where tN denotes a truncated normal distribution.

Convergence was monitored by checking whether the maximal differ-

ence in the value of the mean (correspondingly standard deviation) of

the generated samples in the last k iterations fell below a user specified

threshold level εσ,m (respectively εσ,s) for both the selection parameter

and allele age. So at iteration N , say, we checked whether

max
i,j∈{N−k,...,N}

|σ̄i − σ̄j| < εσ,m, max
i,j∈{N−k,...,N}

|σ̂i − σ̂j| < εσ,s (4.24)

where σ̄i := i−1
∑i

j=1 σ
(j) and σ̂i :=

√
(i− 1)−1∑i

j=1(σ(j) − σ̄j)2, the

sample mean and standard deviation, with a similar criterion in place

for the allele age. In our runs, we required k = 10, 000 iterations,
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εσ,m = 0.01, εσ,s = 0.1, εt0,m = 0.001, and εt0,s = 0.01. We found these

bounds to be quite stringent and several of the runs plotted here had

still not converged according to the above criteria, however the output

seems to indicate that the draws are indeed coming from (a reason-

able approximation to) the stationary distribution of the Markov chain.

We now proceed to consider the performance of the method when

varying the prior for the selection parameter through cases A to D

in Subsection 4.4.1, and then do the same with the allele age by

considering cases E through to H in Subsection 4.4.2. Throughout

Subsection 4.4.1, we assume that the prior on the allele age is an

Exp(3), whilst in Subsection 4.4.2 we set the prior on the selection

parameter to be N(−5, 10).

4.4.1 Different priors for the selection coefficient

As evidenced in Figure 4.4.2, the selection parameter is mixing

relatively well with an acceptance rate in the range (0.3, 0.4) across

all test cases, with the autocorrelation plots in Figure 4.4.3 further

confirming a sharp decay in the autocorrelation between returned

samples within a relatively short time lag.

By comparing the kernel smoothed posterior (black line), the

prior (red dotted line), likelihood evaluations (orange circles) and

truth (magenta) in Figure 4.4.4, we conclude that the method seems

to be doing reasonably well in detecting signatures of selection even

in cases when the prior assigns most of its mass away from the truth.

The posterior is concentrating around the true value despite having a

relatively diffuse prior, and thus seems to suggest that the influence of

the data (via the likelihood) is filtering through. We point out that the

smoothed posterior and prior are plotted against the left axis, whilst

the likelihood points (i.e. the contributions to the likelihood which

depend on σ) are plotted against the right axis. Note that comparing

all three on the same axis is infeasible due to the normalising constant

for the likelihood evaluations being intractable and hard to estimate

via Riemann sum type approximations, as it is very noisy in view of
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Figure 4.4.2: Traceplots for σ for the 4 cases

its dependence on X,Φ and t0. Finally, the plots for the mean and

standard deviation of σ over the last 10,000 iterations are presented

below. Although they did not fall below the user specified threshold

(4.24), they seem to display sufficiently constant behaviour to indicate

that convergence may have been reasonably achieved.

4.4.2 Different priors for the allele age

We now inspect the output obtained for the allele age t0, by first looking

at the traceplots and autocorrelation functions. In this case the accep-

tance rates are relatively high at roughly 0.65 across all test cases, and

the ACF plots indicate that any autocorrelation is decaying reasonably

quickly for cases E and G. We point out that cases F and H have more

diffuse priors, leading to values of the allele age straying further into
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Figure 4.4.3: Autocorrelation plots for σ for the 4 cases

the negative values (as evidenced in Figures 4.4.7 B and D). This in

turn leads to a larger number of Poisson points being favoured in the

simulations, and thus the algorithm in these two cases resulted to run

significantly slower than in cases E and G, explaining the higher auto-

correlations observed in Figure 4.4.8. Turning to the comparison of

priors, likelihood evaluations and smoothed posteriors in Figure 4.4.9,

the situation is quite interesting - for relatively restrictive prior dis-

tributions that concentrate most of their mass around the true value,

the kernel smoothed posterior (black line) concentrates well around the

truth but is also quite close to the prior distribution (red dotted line).

On the other hand, the likelihood evaluations (orange circles) seem to

suggest that the likelihood does not die out the further back in time

the allele age is. This apparent flatness in the likelihood comes as no

surprise, as one would expect there to be relatively little information
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Figure 4.4.4: Plots of the prior (dotted red line), likelihood (orange circles),
kernel smoothed posterior (black line) and the truth (magenta). The prior
and smoothed posterior are plotted against the left axis whilst the likelihood
is plotted against the right axis.

in the data about the allele age to start with. However the persistence

displayed by the likelihood could potentially be explained by the fact

that the transition density for the diffusion gets arbitrarily close to

the invariant density (which is independent of t0 and thus contributes

towards the observed invariance in time). It also suggests that hav-

ing relatively diffuse priors on the allele age is not necessarily the best

option, as for a sufficiently large time increment, the diffusion might

well have been started from stationarity. In light of this, perhaps a

better strategy would be to restrict the state space for the allele age

to a finite continuous range immediately before the first non-zero ob-

servation time, say [tc − δ, tc − ε], for some threshold value δ, together

with some state ∆ which will capture all the time before tc − δ, i.e.

t0 ∈ ∆ ∪ [tc − δ, tc − ε]. Naturally the threshold δ would need to be
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Figure 4.4.5: Plot of the mean of σ for the last 10,000 iterations

chosen large enough to allow the diffusion to reach equilibrium within

this time interval, such that allele ages that reach further back in time

lead to a time homogeneous diffusion. By appealing to the duality be-

tween the neutral Wright–Fisher diffusion and the Kingman coalescent

([Gri79, Gri80, Tav84]), a first approximation for δ would be the value

2 as it turns out to be the expected time it takes for the Kingman co-

alescent to get to the most recent common ancestor, thereby ensuring

that the diffusion is at equilibrium. We point out however that these

considerations only apply for the neutral Wright–Fisher case, so the

appropriate dual process for the non-neutral Wright–Fisher diffusion

(that is, the ancestral selection graph [KN97, NK97]) would need to

be consulted for a more appropriate choice of δ. As done in the case

of selection, convergence was diagnosed by checking whether the quan-
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Figure 4.4.6: Plot of the standard deviation of σ for the last 10,000 iterations

tities (4.24) (suitably translated for the allele age) fell below the user

specified thresholds. Figures 4.4.10 and 4.4.11 again suggest that the

samples being returned can be treated as coming from the invariant

measure, despite the fact that the convergence criteria set out have as

yet not been met.

4.4.3 Computational considerations

The algorithm was implemented in C++ and run on an Intel Xeon

E5-2670 v2 CPU with a dual multithreaded deca-core and 64GB

of memory. Runtime lasted roughly 28 days which is quite a long

time, however the convergence criteria we set were quite strict, and

one could reasonably argue (based on Figures 4.4.5, 4.4.6, 4.4.10 and

4.4.11) that samples are coming from the posterior distribution despite
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Figure 4.4.7: Traceplots for t0 for the 4 cases

the chain not having formally converged. The main bottleneck in

the updating procedure is the simulation making use of non-neutral

bridge proposals together with the skeleton point proposals, in virtue

of the rejection sampler being used there. With larger selection

coefficients, the non-neutral bridge sampler becomes less efficient

because the neutral proposals become less suitable candidates in

comparison to the target paths. To this end, we decided to test

our method on simulated data where the selection coefficient was

not too large but also significantly different from 0, thereby ensuring

that there was sufficient signal in the data for the method to pick up on.

Although the proposed method is computationally demanding,
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Figure 4.4.8: Autocorrelation plots for t0 for the 4 cases

we emphasise that when dealing with aDNA time series data we are

not in the standard statistical setting where we need to devise efficient

statistical techniques which can both produce reliable results and deal

with thousands of datapoints. On the contrary one can only hope for

a handful of readings and a limited number of sampling times, as these

aDNA datasets rely on sufficiently well-preserved fossils and remains

found in archaeological excavation sites, which further need to be

amenable to the extraction of genetic material. In addition, although

advances in aDNA extraction techniques have lead to a significant

increase in the number of such datasets over the past decade or so,

this has not been accompanied by a considerable improvement in the

number of observations being recovered or an increase in the number

of sampling times. In this context, one should therefore concentrate on
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Figure 4.4.9: Plots of the prior (dotted red line), likelihood (orange circles),
kernel smoothed posterior (black line) and the truth (magenta). The prior
and smoothed posterior are plotted against the left axis whilst the likelihood
is plotted against the right axis.

developing statistical procedures which elicit as much information as

possible from the few available datapoints at the cost of entertaining

inferential schemes which are more computationally onerous.

As mentioned at the end of Subsection 4.2.1, the exact algorithm

runs into some computational issues whenever the time increment

becomes smaller than 0.06. To account for this and to ensure that no

numerical instabilities are present in the method, we employed the

approximations in (4.3), such that a discretised Gaussian is used in

the exact simulation approach as detailed in [JS17]. We point out

here that this approximation is not being applied to the underlying

diffusion itself, but rather to the ancestral block counting process
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Figure 4.4.10: Plot of the mean of t0 for the last 10,000 iterations

of the dual process to the neutral Wright–Fisher diffusion (i.e. the

Kingman coalescent). Although this approximation does well for time

increments between (0.01, 0.06), further computational issues arises if

the time increment goes significantly below 0.01 in the bridge sampler.

Observe that µ in (4.3) grows proportionally to t−1, thus for very

small time increments the approximating discretised Gaussian returns

a very large value which we need to sum over twice in the bridge

simulation. In turn, whenever the allele age being proposed was very

close to the time corresponding to the first non-zero observation tc, the

resulting algorithm would spend a large amount of time computing

the corresponding sums. To avoid this computational bottleneck, and

speed up the approximation procedure, we allow the allele age to vary

within the interval (−∞, tc − ε) for some small tolerance parameter
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Figure 4.4.11: Plot of the standard deviation of t0 for the last 10,000 itera-
tions

ε which ensures that the approximation in (4.3) does not lead to a

blow up in the algorithm’s run time. For the above simulations we

set ε = 0.05. For the case when such small time increments presented

themselves in the simulation of the skeleton points, we made use of a

diffusion approximation (conditioning only on one of the endpoints).

4.5 Extensions

The results reported here are restricted to simulated data, when the

underlying dynamics are given by the Wright–Fisher diffusion. We are

currently looking into applying the method to the horse coat coloura-

tion dataset in [LPR+09], such that we can compare our scheme’s
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performance vis-à-vis the other methods applied to this same dataset,

thereby providing a verifiable benchmark which can be used to com-

pare the efficacy of our approach. The dataset in [LPR+09] however

requires update procedures for the initial path segment that account

for the cases when tc = t2 and tc = t3 for the MC1R and ASIP alleles.

As detailed in Appendix A, the proposal mechanisms for such cases

lead to significantly more intricate updating procedures in compari-

son to the straightforward setup adopted in the above simulation study.

In our analysis, we restricted ourselves to inferring the popula-

tion rescaled selection parameter and allele age, i.e. σ and t0, whilst

assuming a constant demography for the population being considered.

It would be desirable to incorporate the latter into our scheme as

it would allow for the possibility to correctly decouple the influence

of changes in effective population size on the corresponding allele

trajectory from those induced by selection (see for instance [SES16]

where the authors compare the result for when demography is, and is

not accounted for). In essence this can be straightforwardly achieved

by introducing a scaling function ρ(t) which measures the size of

the current population relative to the size at some reference point in

time, say at the allele birth t0, such that ρ(t) = N(t)/N(t0). The

mathematical formulation and implementation used above can easily

be amended to incorporate relatively simple changes in demography

given by deterministic functions ρ.

The main drawback of the approach presented above is the fact

that the initial path segment update relies on a pseudo-marginal step.

This however is an unfortunate by-product of the updating procedure

we use, namely the fact that we are as yet not able to jointly simulate a

time increment t and an endpoint y from the bridge transition density

p
(θ,x,t,z)
σ (y; s) (see (4.4) for the analogous neutral bridge density) of

a Wright–Fisher diffusion. Although this might seem infeasible, we

are currently looking into developing a technique which would allow

us to simulate the allele age according to a distribution which is

proportional to the intractable a(t2 − t0, 0, x2, σ)−1 appearing on the
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RHS of (4.18), which would then enable us to construct an appropri-

ate proposal mechanism in order to forego the pseudo-marginal update.

Throughout this chapter we have assumed that the mutation

parameters were known a priori and thus fixed throughout. In reality

this is seldom the case as often the mutation parameters for certain

organisms are unknown and thus estimated using the parameters

observed and documented for other species (see for instance [MMES12]

where the authors use human mutation rates for horses). It thus would

be natural to extend our framework to allow for the mutation param-

eters θ to be jointly inferred with selection and allele age, however as

is evident throughout Section 4.2, all the densities derived there are

with respect to a product measure involving a neutral Wright–Fisher

diffusion with fixed mutation parameter θ. To allow for varying

mutation parameters, we would need to decouple this dependence

in the dominating measure by finding a common reference measure

independent of the mutation parameter θ, and with respect to which

all relevant laws admit a density. This is relatively straightforward

for the case when the mutation parameters are assumed to be greater

than or equal to 1 (see the discussion just before and after equation

(2.27)) as the corresponding laws of Wright–Fisher diffusions are

mutually absolutely continuous with respect to one another and admit

a Radon–Nikodym derivative which is readily available via Girsanov’s

theorem. However, when either mutation parameter is less than 1,

the above is no longer true, and thus the above inferential scheme

can only be extended for mutation parameters θ ∈ [1,∞)2. There

is no real biological reason why this should be a priori true for any

organism considered, and thus the method would be much more useful

and realistic if one could instead allow for any strictly positive value

of the mutation parameters. Note further that even when θ ∈ [1,∞)2,

the resulting Radon–Nikodym derivatives will feature unbounded

functions (from both above and below) in the exponent, such that the

link with the Poisson point process is lost.

Whereas extending the methodology to allow for inferring muta-
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tion would be beneficial from a biological and modelling perspective,

one particular caveat presents itself: non-identifiability. By increasing

the number of parameters to be inferred, one needs to keep in mind

that the resulting method might not be able to distinguish between

different parameter setups which produce very similar output. To

illustrate this point, consider the following three cases:

Plot σ θ1 θ2

Red 0 10 4

Blue 10 4 4

Yellow -4 12 4

Table 4.5.1: Three parameter setups for (σ, θ1, θ2) used to illustrate the
problem of non-identifiability once the analysis is extended to include the
mutation rates.

The resulting invariant density plots for the Wright–Fisher diffusion

are illustrated in Figure 4.5.1. Given just a dataset and without

access to informative priors, any algorithm would struggle in deciding
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which setup from the three above is most adequate, and the resulting

procedure would most likely keep switching between the three config-

urations (as well as other configurations giving rise to similar density

plots). Of course the above plots are only meant as an illustration

of a potential issue as they depict the diffusion’s invariant density

rather than the transition density, but the fact that we are dealing

with temporally spaced draws can at most only partially mitigate

this non-identifiability. One possible way around this problem would

be to obtain separate estimates or bounds on the distributions of

the mutation parameters independently of the data collected, and

subsequently reflect these estimates into the priors used for the MCMC

implementation, however obtaining such estimates for aDNA data is

not so straightforward and would require further investigation.

Lastly, as alluded to at the end of Subsection 4.4.2, if the allele

age reaches far back in time, then it might be conceivable that the

allele was present in the population for some time before it started

being selected for. Thus the allele would be present in a proportion of

the population which is distributed according to the invariant measure

of the neutral diffusion when the selective switch occurs, enabling it

to arise from standing genetic variation. This change (which might

be induced for example by changes in the environment) is commonly

referred to as a ‘soft sweep’ and is well studied in the biology literature,

see for instance [HP05, PH06b, PH06a]. The setup presented above

could be easily amended to allow for this phenomenon by changing

the initial path dynamics. Instead of necessarily relying on de novo

mutations to give rise to a selected allele, we would allow for the case

when alleles rise from standing variation by sampling the initial value

of the diffusion at the time at which the selective pressures shifted

in its favour from the invariant measure of the diffusion. One way

to allow both de novo mutations as well as soft sweeps is to adopt

∆ ∪ [tc − δ, tc − ε] as potential values for the quantity t0, such that

if t0 ∈ [tc − δ, tc − ε], then the allele arose as a de novo mutation

(and therefore Xt0 = 0 and we proceed as described in Section 4.3,

with t0 retaining its interpretation as the time at which the allele was
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born), whilst if t0 ∈ ∆, then the allele rose from standing variation

(and we model Xt0 as a draw from the invariant density fϑ given in

(2.22)). One would then be interested in estimating both the selection

coefficient and the time t0 at which the switch from neutral to selected

happened (note that we can no longer treat t0 as the birth time of

the allele), as this might help shed light on to why the change in

selectiveness occurred if other information related to the organism is

available. We point out however that the method would still require a

pseudo-marginal step for the initial path segment update.
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Chapter 5

Extending ϑ-uniform

ergodicity to the

Multidimensional

Wright–Fisher Diffusion

Thus far we have concerned ourselves solely with the one-dimensional

Wright–Fisher diffusion which allows for the frequency of a single

allele to be tracked over time. This scalar setting is particularly

neat as a number of properties of one-dimensional diffusions (such

as point recurrence and the notions of speed and scale) allow for the

calculations involved to be significantly simplified. In this chapter

we present a brief overview of how the results derived in Chapter

2 can be extended for the K-dimensional Wright–Fisher diffusion,

in particular we provide a rough sketch of the first steps towards

proving ϑ-uniform ergodicity (as given in Definition 2.1). This

property is a key ingredient in establishing uniform local asymp-

totic normality for the family of laws induced by the solutions to

the associated SDEs, which in turn unlocks the door to deriving re-

sults similar to those in Chapter 3 for the ML and Bayesian estimators.

The main challenge now is that it is no longer straightforward

to decompose integrals similar to those on the LHS of (2.3) by making
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use of the hitting times of sets (as opposed to points as done in

the scalar case). Whilst the hitting time of a set is well-defined

and can be controlled sufficiently well via Lyapunov functions (see

Subsection 5.3.2), it does not offer the correct framework within

which the diffusion path can be split into i.i.d. chunks as in the scalar

case. Instead, we show how Nummelin splitting can be applied in

the continuous time setting (via the construction first presented in

[LL08]), to assemble a richer stochastic process which allows for a set

of suitable stopping times to be defined. These times (referred to as

regeneration times) then provide the natural generalisation for the

hitting times used in Theorem 2.2, and thus allow us to perform the

necessary path decomposition in such a way that the LHS of (5.8)

(which is the multidimensional analogue of (2.3)) can be bounded

from above by the moments of these regeneration times. The above

detailed technique was successfully employed by [LL13] for a general

class of Harris recurrent processes with general state space in their

Theorem 5.2, where one can explicitly control the rate of convergence

in the ergodic theorem in terms of the initial starting point x via a

suitable Lyapunov function. The key to achieving this final bound

in terms of Lyapunov functions is Theorem 4.1 therein, where results

from [DFMS04, DFG09] for the modulated moments of the resolvent

chain under the drift condition implied by Assumption 2.2 in [LL13]

(which we reproduce below for reference and also guarantees Harris

recurrence) allow for the moments of the regeneration times to be

bounded from above.

Assumption 5.1 (Assumption 2.2 in [LL13]). There exists a closed

petite set B, a continuous function V : ∆K 7→ [1,∞), an increasing

differentiable concave positive function Φ : [1,∞) 7→ (0,∞), and con-

stant b <∞ such that ∀s ≥ 0

E(ϑ)
X,x [V (Xs)] + E(ϑ)

X,x

[∫ s

0

Φ ◦ V (Xu)du

]
≤ V (x) + bE(ϑ)

X,x

[∫ s

0

1B(Xu)du

]
. (5.1)

We further present bound (2.5) in [LL13] which can be shown to imply
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the above assumption:

G V (x) ≤ −Φ ◦ V (x) + b1B(x). (5.2)

Verifying Assumption 5.1 (or indeed (5.2)) for the K-dimensional

Wright–Fisher diffusion is non-trivial and remains an open problem.

We note that it might indeed be the case that these conditions are

not achievable for the Wright–Fisher case much in the same way that

standard drift conditions for scalar diffusions in the literature fail for

the analogous Wright–Fisher diffusion. For instance, Assumptions

5.1 and 5.2 in [LLL11] guarantee the existence of (and allow for

bounds on) the moments of hitting times of scalar diffusions, but

they immediately fail to hold for the scalar Wright–Fisher diffusion as

the diffusion coefficient is zero at the boundaries. Nonetheless, as we

have seen in Corollaries 2.5 and 2.6, these quantities can be bounded

through alternative techniques, which however do not extend for the

multidimensional case.

In light of the above, whilst we pursue the approach presented

in [LL13] to decompose the the LHS of (5.8), we stop one step short

and present all bounds in terms of the moments of the regeneration

times. At the end of this chapter, we point out how the moments

of hitting times of a specific set for the original diffusion can be

controlled via standard multidimensional diffusion process theory and

a suitable choice of Lyapunov function (for a certain set of parameter

configurations) by means of Theorem 3.9 in [Kha12]. Whilst this

does not necessarily offer a direct way with which to tackle the above

mentioned problem, it does offer some insight in the way of choosing

the correct Lyapunov functions and serves to highlight particular

features pertinent to the specific case of the Wright–Fisher diffusion,

thereby providing some insight into how a result similar to Theorem

4.1 in [LL13] might be derived for the Wright–Fisher case.

The rest of this chapter is organised as follows: In Section 5.1

we give an overview of the K-dimensional Wright–Fisher diffusion,
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illustrating several known properties of the process. We then introduce

the necessary notation and quantities to construct the richer stochastic

process via Nummelin splitting in Section 5.2, and use it to define the

regeneration times. We subsequently outline how these allow for the

diffusion to be split up into i.i.d. segments such that the LHS of (5.8)

can be bounded from above by the moments of these regeneration

times. We end the chapter by focusing on how to handle these

moments of the regeneration times, giving an overview of the approach

adopted in Theorem 4.1 in [LL13] and how it relies on Assumption 2.2

therein, before showing how standard multidimensional theory and

Lyapunov functions allow us to control the hitting times of sets for

the Wright–Fisher diffusion.

5.1 The K-dimensional Wright–Fisher diffusion

The K-dimensional Wright–Fisher diffusion is defined on the K − 1

dimensional simplex ∆K := {x ∈ [0, 1]K :
∑K

i=1 xi = 1}, with generator

G given by

G :=
1

2

K∑
i,j=1

xi (δij − xj)
∂2

∂xi∂xj

+
K∑
i=1

(
K∑
j=1

γjixj + xi

(
K∑
j=1

σijxj −
K∑

k,l=1

σklxkxl

))
∂

∂xi
(5.3)

where (γij)
K
i,j=1 is the infinitesimal matrix of mutation parameters,

and (σij)
K
i,j=1 is a real symmetric matrix describing the selection

parameters. Note in particular that the above framework allows for

both haploid (σij = σi + σj), as well as diploid selection patterns.

The domain of G is the space of all twice continuously differentiable

functions defined on the K − 1-dimensional simplex with boundary

behaviour depending on the values of the mutation matrix (γij)
K
i,j=1.

We point out further that one could express the multidimensional

diffusion XT as the solution to a corresponding multidimensional SDE,

however such a formulation is rather cumbersome and offers little

in the way of insight or techniques in comparison to the generator
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approach adopted here.

If one assumes parent independent mutation (PIM), that is when

the mutation parameter is independent of the parent’s type, leading

to γij = 2−1θj for θj > 0, then we have that the multidimensional

non-neutral Wright–Fisher diffusion admits a stationary distribution

(see [Wri49, BEG00]), whose density is given

fϑ(x) =
1

Gϑ
e
∑K
i,j=1 σijxixj

K∏
i=1

xθi−1
i , (5.4)

where Gϑ is a normalising constant such that

Gϑ =

∫
∆K

e
∑K
i,j=1 σijxixj

K∏
i=1

xθi−1
i dx.

We point out the slight abuse of notation above, as we have redefined

our parameter of interest ϑ, invariant density fϑ and normalising

constant Gϑ. In particular ϑ is now set to be both the selection

matrix and mutation vector, i.e. ϑ = (σ,θ) = ({(σij)Ki,j=1, (θj)
K
j=1})

(assuming PIM), in contrast to the selection coefficient and mutation

parameters (ϑ = (σ, θ1, θ2)) used in Chapter 2. Note that from now

on we shall always assume PIM, such that whenever we say mutation

it is understood that we are referring to PIM, unless otherwise specified.

Denote by pθ0(t,x,y) the transition density associated with the

neutral multidimensional Wright–Fisher diffusion having generator

(5.3) (i.e. with σij = 0 for all i, j ∈ {1, . . . , K}), and by pθσ(t,x,y)

the corresponding non-neutral transition density (note that the bold

subscripts are used to differentiate from the scalar transition densities

introduced in Chapter 2). Then we have the following transition
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density expansion for the neutral case (see [Shi76, Gri79, GL83, Tav84])

pθ0(t,x,y) =
∞∑
m=0

∞∑
k=m

(−1)k−m
|θ|+ 2k − 1

m!(k −m)!

Γ(|θ|+ k +m− 1)

Γ(|θ|+m)

× e−
k(k+|θ|−1)t

2

∑
l

|l|=m

Mm,x(l)Dθ+l(y), (5.5)

where | · | here denotes the L1-norm, and Mm,x(·) denotes the proba-

bility mass function of a multinomial distribution with parameters m

and x. We can derive a decomposition for the non-neutral transition

density much in the same way as done in (4.9) by conditioning and

using Girsanov’s theorem. Let WF(x)
0,θ and WF(t,x,y)

0,θ denote the law of

a K-dimensional neutral Wright–Fisher diffusion started at x and with

mutation parameter set to the vector θ, and the law of a K-dimensional

neutral Wright–Fisher diffusion bridge started at x and ending at y in

time t respectively. Further let WF(x)
σ,θ and WF(t,x,y)

σ,θ denote the laws of

the corresponding non-neutral processes. Then by conditioning on the

endpoint Xt = y and re-arranging we get that

dWF(t,x,y)
σ,θ

dWF(t,x,y)
0,θ

(Xt) =
pθ0(t,x,y)

pθσ(t,x,y)

dWF(x)
σ,θ

dWF(x)
0,θ

(Xt), (5.6)

and the multidimensional Girsanov theorem gives us that

dWF(x)
σ,θ

dWF(x)
0,θ

(Xt) = exp

{∫ t

0

(µσ − µ0)T Σ−1 (Xt) dXt

− 1

2

∫ t

0

(
µTσΣ−1µσ − µT0 Σ−1µ0

)
(Xt) dt

}

= exp

{∫ t

0

(µσ − µ0)T Σ−1/2 (Xt) dWt

− 1

2

∫ t

0

(µσ − µ0)T Σ−1 (µσ − µ0) (Xt) dt

}
,
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when µ0 is the true parameter with WF
(mathbfx)
0,θ -probability 1, where

we define

µσ :=


θ1
2

+ x1

(∑K
j=1 σ1jxj −

∑K
k,l=1 σklxkxl

)
θ2
2

+ x2

(∑K
j=1 σ2jxj −

∑K
k,l=1 σklxkxl

)
...

θK
2

+ xK

(∑K
j=1 σKjxj −

∑K
k,l=1 σklxkxl

)

 , µ0 :=
1

2


θ1

θ2

...

θK

 ,

Σ :=



x1(1− x1) −x1x2 . . . . . . −x1xK

−x2x1 x2(1− x2)
. . .

...
...

. . . . . . . . .
...

...
. . . xK−1(1− xK−1) −xK−1xK

−xKx1 . . . . . . −xK−1xK xK(1− xK)


.

and take µT to mean the transpose of µ. Taking expectations with re-

spect to WF(t,x,y)
0,θ on both sides of (5.6), and re-arranging the resulting

terms gives

pθσ(t,x,y) = pθ0(t,x,y)EWF(t,x,y)
0,θ

[
dWF(x)

σ,θ

dWF(x)
0,θ

(Xt)

]
. (5.7)

As the K − 1 dimensional simplex is a closed subset of the compact

set [0, 1]K , the multidimensional process also lives in a compact state

space, and thus it is natural to expect the concepts of ϑ-uniform ergod-

icity and local asymptotic normality introduced in Chapter 2 to hold.

The catch is of course that now the calculations will be more involved

and proofs cannot rely on either point recurrence nor on the notions of

speed and scale. In this chapter, we set out to outline how one might

go about proving uniform in the selection and mutation parameters

ergodicity of the Wright–Fisher diffusion in the multidimensional case,

which would subsequently be useful when proving uniform local asymp-

totic normality, as well as generalising the results obtained in Chapter

3 for this setting. To this end, recall that ϑ-uniform ergodicity in the

context of the K-dimensional Wright–Fisher diffusion means showing
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that ∀ε > 0,

lim
T→∞

sup
ϑ∈K

P(ϑ)
X,ν

[∣∣∣∣ 1

T

∫ T

0

h(Xt)dt− E(ϑ)
X [h(ξ)]

∣∣∣∣ > ε

]
= 0 (5.8)

holds for any bounded measurable function h : ∆K 7→ R, and any com-

pact K ⊂ Θ, where P(ϑ)
X,ν denotes the measure induced on the space of

continuous functions mapping the interval [0, T ] to ∆K , CT (∆K), by the

process X corresponding to the generator (5.3) when the selection and

mutation parameters are set to ϑ = (σ,θ) and the process is started

from the initial measure ν. E(ϑ)
X then denotes taking expectation with

respect to the invariant density given in (5.4).

5.2 Regeneration times & speed of convergence

We now introduce the notation present in Section 3 of [LL13], suit-

ably translated to the setting of the multidimensional Wright–Fisher

diffusion. To this end, we set X := (Xt)t≥0 to be the process associ-

ated to the generator (5.3), (Ft)t≥0 the filtration generated by X, and

pθσ(t,x,y) the associated transition density of going from point x to y

in time t when the selection matrix is set to σ and mutation parameters

are set to θ. Furthermore, let P(ϑ)
X,x denote the law of X when started

from x. Define the resolvent kernel as

U1(x, dy) :=

∫ ∞
0

e−tpθσ(t,x, dy)dt,

(note that in our case Assumption 2.1 in [LL13] follows immediately

using Lebesgue measure as the reference measure), and observe that

U1(x, dy) is the one step transition kernel associated with the resolvent

chain of the original process given by (XTn)n∈N, where (Tn − Tn−1)n∈N

is a collection of i.i.d. Exp(1) waiting times. Furthermore, X being

ergodic ([EK98, Theorem 5.5]) with invariant density fϑ implies (by

Proposition 6.7 in [HL03]) that we can find a compact set C ⊂ ∆K

such that fϑ(C) :=
∫
C
fϑ(x)dx > 0 and

U1(x, dy) ≥ α1C(x)λ(dy), (5.9)
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for some α ∈ (0, 1], and λ(·) = fϑ(· ∩ C). Note that by restricting

our attention to exponential time increments as above, we are able to

shift from continuous to discrete time, which coupled with the Doeblin

type condition (5.9), allows us to apply a Nummelin splitting to the

resolvent chain. For two points x,y ∈ ∆K , we set

u1(x,y) :=

∫ ∞
0

e−tpθσ(t,x,y)dt,

and define the splitting kernel Q((x, u), dy) mapping ∆K× [0, 1] to ∆K

as follows

Q((x, u), dy) =


λ(dy) if (x, u) ∈ C × [0, α]
U1(x,dy)−αλ(dy)

1−α if (x, u) ∈ C × (α, 1]

U1(x, dy) x /∈ C.

(5.10)

Observe that integrating out u in Q((x, u), dy) recovers the resolvent

kernel U1(x, dy). We now make use of the above to construct the en-

riched stochastic process Z := (Zt)t≥0 taking values in ∆K×[0, 1]×∆K .

Starting from Z0 = (X0, u0,x1), where X0 = x0 is the initial

value of X, u0 ∈ [0, 1] and x1 ∈ ∆K , set T0 = 0, n = 1 and proceed as

follows:

1. Simulate the new jump time

τn ∼ e−t
pθσ(t,xn−1,xn)

u1(xn−1,xn)
dt

and set Tn := Tn−1 + τn.

2. Set Z2
Tn−1+s = un−1, and Z3

Tn−1+s = xn, ∀s ∈ [0, τn).

3. Fill in the path (Z1
v)
Tn
v=Tn−1

via a non-neutral Wright–Fisher bridge

going from xn−1 to xn in time τn, i.e. ∀s < τn sample

Z1
Tn−1+s ∼

pθσ(s,xn−1,y)pθσ(t− s,y,xn)

pθσ(t,xn−1,xn)
dy.

4. At Tn, take Z1
Tn

= Z3
Tn−1

= xn, Z2
Tn
∼ Unif([0, 1]) independently
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of Zs with s < Tn, and choose Z3
Tn
∼ Q((xn, Z

2
Tn

), dy).

5. Set ZTn = (Z1
Tn
, Z2

Tn
,Z3

Tn
), increment n by 1 and go back to step

1.

Note that the above construction is such that the first co-ordinate of

the process (Zt)t≥0 obeys the dynamics of the original process via the

use of the bridge measures in step 3. The second co-ordinate is an

independent uniform random variate which tells us how to simulate

the next value of the resolvent chain via (5.10). We store the latter in

the third co-ordinate of (Zt)t≥0. In particular, whenever we enter C

and the coin flip returns heads, we regenerate the path by drawing the

next bridge end point from the minorising measure λ.

We point out that in contrast to the general construction in

[LL08], we have omitted the case pθσ(t,x,y) = 0, as the non-neutral

transition density is always strictly positive in view of the process hav-

ing invariant density (5.4), for which fϑ(y) > 0 for y ∈ ∆K \ ∂∆K (i.e.

y in the interior of ∆K). On the boundary ∂∆K , the invariant density

fϑ is equal to 0 (if the corresponding mutation parameter is greater

than or equal to 1, and in this case the boundary is inaccessible) or it

tends to ∞ on approach of the boundary (if the mutation parameter

is less than 1). The strict positivity of the transition density also

follows directly from (5.7) - the only way the RHS can be zero is if

pθ0(t,x,y) = 0, which fails to hold for any x ∈ ∆K and y ∈ ∆K \ ∂∆K

in view of the expansion (5.5).

If we denote by P(ϑ)
Z,x the law of Z when started from the initial

measure δx⊗Unif[0,1](du)⊗Q((x, u), dy), then the above construction

ensures that L ((Z1
t )t≥0|Z1

0 = x) = L ((Xt)t≥0|X0 = x) (see Proposi-

tion 2.8 (c) in [LL08]). We further denote by E(ϑ)
Z,x taking expectation

with respect to P(ϑ)
Z,x, and note that although Z retains the Markov

property with respect to the filtration it generates (see Theorem 2.7

in [LL08]), it is not in general strong Markov, but by construction it

is strong Markov for the times Tn. The additional variates (Z2
t ,Z

3
t )t≥0

allow for a sequence of regeneration times of Z to be introduced as
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follows. Set A := C × [0, α]×∆K , S0 = R0 = 0, and define

Sn+1 := inf {Tm > Rn : ZTm ∈ A}
Rn+1 := inf {Tm : Tm > Sn+1} (5.11)

for n ∈ N. The sequence (Rn)n∈N is the natural generalisation for the

corresponding quantities we used in Theorem 2.2:

1. Under P(ϑ)
Z,x the sequence of jump times (Tn)n∈N is independent of

(Z1
t )t≥0, with (Tn − Tn−1)n∈N\{0} ∼i.i.d. Exp(1) for n ∈ N.

2. At each Rn we have that ZRn ∼ λ(dx) ⊗ Unif[0,1](du) ⊗
Q((x, u), dy) ∀n ≥ 1, which ensures that Z is regenerated at these

times and implies that ZRn+· is independent of FSn− (which we

recall is the filtration generated by the original process X).

3. The sequence (ZRn)n≥1 are i.i.d.

All three statements follow immediately from steps 1 and 4 in the

construction of Z, coupled with the definition of Rn and Sn (formal

proofs can be found in Propositions 2.6 and 2.13 in [LL08]).

The process Z admits an invariant distribution which we denote

by P(ϑ)
Z , and whose projection onto the first co-ordinate is denoted

P(ϑ)

Z1 . The latter measure is such that for any measurable function h

integrable with respect to P(ϑ)

Z1 , we have that

E(ϑ)

Z1 [h(η)] = `ϑ E(ϑ)

Z1

[∫ R2

R1

h(Z1
s)ds

]
,

`ϑ = E(ϑ) [R2 −R1]−1 = E(ϑ)
Z,ν [R1]−1 , (5.12)

where E(ϑ)

Z1 denotes taking expectation with respect to the measure

P(ϑ)

Z1 , and η ∼ P(ϑ)

Z1 (see Proposition 3.4 in [LL13]). We point out

that the superscript in the expectation defining `ϑ is included to make

explicit the dependence of these terms on the underlying parameter ϑ.

Furthermore, P(ϑ)

Z1 coincides with the invariant measure of the original
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process X (by construction), thus allowing us to deduce that

E(ϑ)
X [h(ξ)] = E(ϑ)

Z1 [h(η)] = `ϑ E(ϑ)

Z1

[∫ R2

R1

h(Z1
s)ds

]
.

The above allows us to re-write

P(ϑ)
X,ν

[∣∣∣∣ 1

T

∫ T

0

h(Xs)ds− E(ϑ)
X [h(ξ)]

∣∣∣∣ > ε

]
= P(ϑ)

Z,ν

[∣∣∣∣ 1

T

∫ T

0

h(Z1
s)ds− `ϑ E(ϑ)

Z1

[∫ R2

R1

h(Z1
s)ds

]∣∣∣∣ > ε

]
, (5.13)

where P(ϑ)
Z,ν here denotes the law of Z when the first co-ordinate Z1 is

started from the distribution ν. The final quantity we shall require

prior to tackling the RHS of (5.13), is the counting process (Nt)t≥0

defined by

Nt := sup {n : Rn ≤ t} , N0 := 0.

We can now deal with the RHS of (5.13) in the same way that

the corresponding probability in Theorem 2.2 was bounded from

above using Theorem 3.2 in [LLL11]. We emphasise that rather than

apply Theorem 5.2 in [LL13] for p ∈ {2, 3, . . . } directly, we use the

arguments there to explicitly track the dependence of the resulting

moment bounds in terms of the parameter of interest ϑ, and thus

briefly summarise the arguments used there in what follows. Note

further that in Theorem 5.2 in [LL13], the authors are interested in

controlling the rate of convergence in terms of the initial starting

point x, and thus first bound the relevant probability in terms of the

moments of the regeneration times, and subsequently use Theorem 4.1

therein to bound these moments by a suitable Lyapunov function. In

our setting it might not necessarily be the case that Theorem 4.1 is

applicable (in view of Assumption 2.2 in [LL13], which still needs to

be shown to hold for the Wright–Fisher diffusion), and thus we stop

one step earlier and bound all the relevant integrals in terms of the

moments of these regeneration times.
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Following the arguments in Theorem 5.2 in [LL13], we decompose the

path into the following chunks

P(ϑ)
Z,ν

[∣∣∣∣∣ 1

T

∫ T

0

h(Z1
s)ds−E

(ϑ)

Z1 [h(η)]

∣∣∣∣∣ > ε

]

≤ P(ϑ)
Z,ν

[∣∣∣∣∫ R1

0

h̄(Z1
s)ds

∣∣∣∣ > Tε

3

]
+ P(ϑ)

Z,ν

[∣∣∣∣∫ RNT+1

R1

h̄(Z1
s)ds

∣∣∣∣ > Tε

3
; ΩT

]
+ P(ϑ)

Z,ν

[∣∣∣∣∫ RNT+1

T

h̄(Z1
s)ds

∣∣∣∣ > Tε

3
; ΩT

]
+ P(ϑ)

Z,ν [Ωc
T ]

=: A1 + A2 + A3 + A4,

where we define

ΩT :=

{∣∣∣∣NT

T
− `ϑ

∣∣∣∣ ≤ `ϑδ

}
, δ =

ε

‖h‖∞
, h̄ = h− E(ϑ)

Z1 [h(η)] .

As in the proof of Theorem 5.2 in [LL13], each term is tackled

separately.

For A1, a simple Markov inequality together with the fact that

‖h̄‖∞ ≤ 2‖h‖∞ leads to

A1 ≤
(

6‖h‖∞
tε

)p
E(ϑ)

Z,ν [Rp
1] .

For A2, the Fuk-Nagaev inequality given in Theorem A.1 in [LL13],

implies that

A2 ≤ C(p)

(
`p−1
ϑ ∨ `ϑ

)
tp−1δ2(p−1)

(
2pE(ϑ) [(R2 −R1)p]

+ 4p−1E(ϑ)
[
(R2 −R1)2]p−1

)
.
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For A3 the same argument as the one used to deal with term C in the

proof of Theorem 2.3, allows for the bound

A3 ≤
6p‖h‖p∞2`ϑ
tp−1εp

E(ϑ) [(R2 −R1)p] .

Finally for A4, following the arguments in Theorem 5.1 in [LL13] for

p ∈ {2, 3, . . . }, leads to

A4 ≤
22(p−1)

tp−1εp−1

(
E(ϑ)

Z,ν [Rp
1] + `−pϑ

)
+ C(p)

(
`p−1
ϑ ∨ `ϑ

)
ε2(p−1)tp−1

(
V(ϑ) [η̄1]p−1 + E(ϑ) [|η̄1|p]

)
,

where η̄1 := −(R2 −R1 − `−1
ϑ ), and V(ϑ) denotes the variance.

In view of the following relations,

`ϑ = E(ϑ) [R2 −R1]−1 ,

E(ϑ) [|η̄1|p] ≤ 2p−1
(
E(ϑ) [(R2 −R1)p] + E(ϑ) [R2 −R1]−p

)
,

V(ϑ) [η̄1] = E(ϑ)
[
η̄2

1

]
,

we get that the only terms we need to bound from above are

E(ϑ)
Z,ν [Rp

1] , E(ϑ) [(R2 −R1)p] ,

for p ∈ {2, 3, . . . }, whilst we need to bound E(ϑ)[R2−R1] from below to

deal with `ϑ. It now remains to show how to deal with these quantities

in a way that allows us to track their dependence on the parameter ϑ.

In the next section we illustrate how this is achieved in Theorem 4.1 in

[LL13] by resorting to their Assumption 2.2, explaining the difficulty

involved in verifying this assumption in our case, and briefly showing

how the moments of hitting times of sets can be controlled via stan-

dard multidimensional diffusion theory and Lyapunov functions for the

Wright–Fisher case. We point out that in [LL13] the authors are solely

interested in controlling the resulting quantities in terms of the initial

starting point x, and thus they treat `ϑ as a constant. In contrast, in

our setting we need to be able to bound this quantity from above in
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terms of ϑ, which will not readily follow from Theorem 4.1 nor any of

the techniques present in [LL13] as these consider upper bounds of the

moments as opposed to the lower bounds we require here, in virtue of

(5.12).

5.3 Controlling the moments of regeneration

times

We end this chapter by discussing the unsolved problem of control-

ling the moments of the regeneration times which we have used to

bound the LHS of (5.8). Once suitable control over these components

in the parameter ϑ is obtained, uniform in the selection and mutation

parameter ergodicity for the multidimensional Wright–Fisher diffusion

follows, and thus one might start looking into extending Theorem 2.8

from Chapter 2 for this case, to establish uniform local asymptotic

normality. We start by giving a brief overview of how Theorem 4.1 in

[LL13] grants control over the moments of the regeneration times via

Lyapunov functions, whilst along the way illustrating precisely where

this method hinges upon their Assumption 2.2. We then end this sec-

tion by showing how standard multidimensional diffusion theory cou-

pled with the right choice of Lyapunov function enables one to control

the moments of the hitting times of the K-dimensional Wright–Fisher

diffusion (for a specific set of parameter configurations).

5.3.1 Theorem 4.1

The crucial quantity necessary to establish control over the moments

of the regeneration times defined in Section 5.2 is the drift condition

(5.1) of Assumption 5.1.

The calculations in Section 5.2 lead to bounds that depend on

the quantities E(ϑ)[(R2 −R1)p] and E(ϑ)
Z,ν [R

p
1]. To control these, the au-

thors in [LL13] concentrate on expressions of the form E(ϑ)
Z,x[
∫ R1

0
r(s)ds]

in Theorem 4.1, where r(·) is some rate function which allows access

to the desired moment. The proof of Theorem 4.1 is split into 3 parts;
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the first establishes that

E(ϑ)
Z,x

[∫ S̃1

0

r(s)ds

]
≤ aV (x) + b, (5.14)

for a, b positive constants (in the remainder of this section we shall

reserve a, b to mean some positive constants whose exact values do not

need to be tracked), and the stopping time in the limit of integration

is the resolvent chain’s hitting time of the set C used to construct the

regeneration times, i.e.

S̃1 := inf{Tm : Z1
Tm ∈ C}, S̃n := inf{Tm > S̃n−1 : Z1

Tm ∈ C},

for n ≥ 2. The second part of the proof uses and extends (5.14) to the

case when the upper limit of integration is S1 as defined in (5.11), and

similarly the third part to the case when the upper limit is R1 as given

in (5.11). Proving (5.14) relies on results for the resolvent kernel found

in [DFMS04] and [DFG09], whilst the extensions leading to similar

bounds for S1 and R1 rely on (5.14) and exploiting the structure

introduced by the Nummelin splitting scheme used to construct the

process Z. Thus in what follows we focus on how to prove (5.14).

To this end, observe first that Assumption 5.1 above is a drift

condition for the continuous time process, however as shown in

Theorem 4.9 in [DFG09], this same assumption induces a similar

drift condition on the resolvent chain, with a different petite set and

functions Φ̄, V̄ (which turn out to be very similar to the ones for the

continuous times process), but with the same rate function r. As given

in the aforementioned theorem, we have that Φ̄(t(1 + Φ′(1))) ∼ Φ(t)

as t → ∞ (where ∼ in this context means that the two quantities are

asymptotically equivalent), and ‖V̄ − (1 + Φ′(1))V ‖∞ <∞, such that

V̄ (x) ≤ aV (x) + b.

The above, coupled with Proposition 2.2 in [DFMS04], implies that for
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measurable A ∈ ∆K with fϑ(A) > 0, and T̄A := inf{n ≥ 1 : XTn ∈ A}

E(ϑ)
Z,x

T̄A−1∑
k=0

r(k)

 ≤ aV̄ (x) + b ≤ aV (x) + b, (5.15)

which allows bounding the moments of the regeneration times from

above by a suitable Lyapunov function (and we emphasize here that

in (5.15) we have viewed XTn as the first co-ordinate of ZTn). Note

that finding the correct set B and functions Φ, V such that the drift

condition (5.1) holds for a given diffusion is rather hard to verify

in practice, however if the function V belongs to the domain of the

generator G of X, then Theorem 3.4 in [DFG09] gives that (5.2)

implies Assumption 5.1, which is an easier bound to get to.

In [LL13], the authors show how standard norm-like Lyapunov

functions (for instance V (x) = ‖x‖m for suitably chosen m) verify

(5.2) for general multidimensional diffusions outside a ball of specific

radius. Considering functions which display an analogous behaviour

at the boundary ∂∆K for the Wright–Fisher diffusion (such as

V (x) = − log x1, [Buz19, Section 4.4.3], or V (x) = x−1
1 (1 − x1))

does not lead to bounds similar to (5.2), and thus Theorem 4.1

cannot be directly applied. It is also not a priori clear whether such

a bound is indeed feasible for this case and thus remains an open

problem. In a first attempt to gain a better understanding of what

a bound of the type (5.2) implies for the Wright–Fisher diffusion,

in the next section we tackle the slightly easier problem of dealing

with moments of the hitting times of a specific set by making use

of standard multidimensional diffusion theory. Note however that

whilst this might provide some intuition on how these moments of the

regeneration times can be tackled via Lyapunov functions, it does not

offer much in terms of gaining control over the term `ϑ, for which we

shall require a separate approach altogether.

We summarise the above described proof of Theorem 5.2 in [LL13] via

the schematic diagram in Figure 5.3.1.
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5.3.2 Controlling the moments of hitting times

Suppose now that we are interested in controlling the moments of the

hitting times of the multidimensional Wright–Fisher diffusion X in

terms of the parameter ϑ. In the one-dimensional case, we exploited

the notions of speed and scale to derive relatively simple recursive

second order ODEs, whose solutions we could bound from above in

ϑ relatively easily, leading to the desired bounds as seen in Theorem

2.2. Directly extending this method to the multidimensional setting is

not feasible as these notions do not extend to higher dimensions, so

instead the approach here will be to appeal to Lyapunov functions.

Below we quote the second part of a more general result (Theo-

rem 3.9 in [Kha12]) for multidimensional diffusions where Lyapunov

functions are used to ensure that the underlying process is recurrent,

as well as provide simple upper bounds on functions of the hitting

times of specific sets. We have suitably translated the result for

the K-dimensional Wright–Fisher diffusion with generator G given

in (5.3), and omitted the first part of said theorem (as we already

have that the multidimensional Wright–Fisher diffusion with PIM is

recurrent).

Theorem 5.2 (Theorem 3.9 in [Kha12] for the Wright–Fisher diffu-

sion). Let X be the K-dimensional Wright–Fisher diffusion with gen-

erator G , and denote by G := ∂
∂t

+ G . If there exists a non-negative

function V (t,x) which is twice continuously differentiable with respect

to x and continuously differentiable with respect to t, such that

GV (t,x) ≤ −α(t) (5.16)

holds ∀t ≥ 0 and x ∈ D ⊂ ∆K, where α(t) ≥ 0 is a function such that

β(t) =

∫ t

0

α(s)ds→∞, as t→∞,

135



then E(ϑ)
X,x[β(TDc)] exists and satisfies the inequality

E(ϑ)
X,x [β(TDc)] ≤ β(0) + V (0,x),

where Dc = ∆K \D and TDc := inf{t ≥ 0 : Xt ∈ Dc}.

We point out here that the above theorem is phrased in [Kha12] in

terms of the random variable τU which is defined as the first time for

which the process exits the set U , as opposed to the way in which

we phrased the above theorem in terms of first hitting time of a set.

This theorem gives us a precise control on the desired functions of

the hitting times provided we can find a suitable candidate function

V (t,x), a suitable function α(t), and a suitable set D. The choice

of function α(·) is dictated by what function β(·) of the hitting time

we wish to control, so if we want to deal with moments, a natural

candidate would be α(s) = sp−1 where p is the desired moment

(however we opt for a slightly different function as detailed below).

The choice of V and D is somewhat more involved and depends on the

process X; below we give the details pertinent to a special case to show

the technicalities involved in choosing V and D, as well as the fact that

such a technique is practicable for the Wright–Fisher diffusion, however

we emphasise that this special case is rather restrictive and further

work is necessary for this approach to be applicable in the general case.

In what follows we consider a general mutation structure, i.e.

we do not assume PIM and instead deal with the infinitesimal

mutation matrix given by (γij)
K
i,j=1. Set V (t,x) = (t+1)p

p
(− log(x1))

and α(t) = (t+ 1)p−1 (the reason behind this choice over tp−1 becomes

clearer in the calculations below), then we have that

∂V

∂t
(t,x) = (t+ 1)p−1(− log x1),

∂V

∂x1

(t,x) =
(t+ 1)p

p

(
− 1

x1

)
,

∂V

∂xj
(t,x) = 0,

∂2V

∂x2
1

(t,x) =
(t+ 1)p

p

(
1

x2
1

)
,

∂2V

∂xj∂x1

(t,x) = 0,
∂2V

∂x2
j

(t,x) = 0,
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where j 6= 1. Substituting the above into the expression for the gener-

ator as given in (5.3), we get that

GV (t, x) =
∂V

∂t
(t,x) +

1

2

K∑
i,j=1

aij(t,x)
∂2V

∂xi∂xj
(t,x)

+
K∑
i=1

bi(t,x)
∂V

∂xi
(t,x)

= (t+ 1)p−1(− log x1) +
1

2

K∑
i,j=1

xi (δij − xj)
∂2V

∂xi∂xj
(t,x)

+
K∑
i=1

(
K∑
j=1

γjixj + xi

(
K∑
j=1

σijxj −
K∑

k,l=1

σklxkxl

))
∂V

∂xi
(t,x)

= (t+ 1)p−1(− log x1) +
(t+ 1)p

p

[
1

2
x1 (1− x1)

1

x2
1

+

(
K∑
j=1

γj1xj + x1

(
K∑
j=1

σ1jxj −
K∑

k,l=1

σklxkxl

))(
− 1

x1

)]

= (t+ 1)p−1

{
− log x1 +

t+ 1

p

[
1

2

(1− x1)

x1

−

(
K∑
j=1

γj1
xj
x1

+

(
K∑
j=1

σ1jxj −
K∑

k,l=1

σklxkxl

))]}
.

Comparing this last quantity with the RHS of (5.16), we deduce that

it suffices to show that

− log x1 +
t+ 1

p

[
1

2

(1− x1)

x1

−

(
K∑
j=1

γj1
xj
x1

+

(
K∑
j=1

σ1jxj −
K∑

k,l=1

σklxkxl

))]
≤ −1,

holds on some subset D ⊂ ∆K , ∀t ≥ 0. Note that had we set α(t) =

tp−1, then we would not be able to find a set D ⊂ ∆K for which the

above would hold for any t ≥ 0. Taking α(t) = (t+ 1)p−1 ensures that

such D can be found (indeed we could have chosen α(t) = (t+ε)p−1 for
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any ε > 0). If we let γ−1 := minj∈{1,...,K} γj1, σ+ := maxk,l∈{1,...,K} σkl,

and σ−1 := minj∈{1,...,K} σ1j, then

− log x1 +
1

2

(1− x1)

x1

t+ 1

p

+

(
−

K∑
j=1

γj1
xj
x1

−

(
K∑
j=1

σ1jxj −
K∑

k,l=1

σklxkxl

))
t+ 1

p

≤ − log x1 +
1

2

(1− x1)

x1

t+ 1

p

+

(
γ−1

(
−1− 1− x1

x1

)
+ σ+ − σ−1

)
t+ 1

p

= − log x1 +
t+ 1

p

(
1

2
− γ−1

)
(1− x1)

x1

+
(
σ̃ − γ−1

) t+ 1

p
,

where we set σ̃ = σ+ − σ−1 , and have used the identities
∑K

j=1 xj =

1 =
∑K

k,l=1 xkxl as we are working on the K − 1 dimensional simplex.

Using the above, we are left with finding a set D ⊂ ∆K such that

− log x1 +
t+ 1

p

(
1

2
− γ−1

)
(1− x1)

x1

+
(
σ̃ − γ−1

) t+ 1

p
≤ −1

holds ∀x ∈ D and ∀t ≥ 0. If 2γ−1 > 1, then the term (1− x1)x−1
1 goes

to −∞ as x1 goes to 0, and indeed it does so fast enough to offset

the fact that the log term goes off to ∞. Note in particular that we

cannot accommodate the case when 2γ−1 ≤ 1 with the current choice

of Lyapunov function, for then the LHS above will always remain

positive. Whilst this means that the result we derive here is only

applicable to a subset of the cases of interest (namely those with a

high enough mutation parameter), finding a Lyapunov function for

which a bound of the type (5.16) holds for all possible values of the

mutation parameters is a non-trivial task in view of the change in the

diffusion’s boundary behaviour at the first co-ordinate when γ−1 < 1/2

and when γ−1 ≥ 1/2.

With the above restriction on γ−1 , we now characterise the set

D explicitly by making some further assumptions on σ̃. To this end,
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define

f(t, x) := − log x+
t+ 1

p

(
1

2
− γ−1

)
(1− x)

x
+
(
σ̃ − γ−1

) t+ 1

p

and observe that for f(t, x) to be non-increasing in t we need

∂

∂t
f(t, x) ≤ 0 ⇐⇒ x ≤

γ−1 − 1
2

σ̃ − 1
2

,

and since x ∈ [0, 1], this will only be possible if σ̃ > 1/2. So for

σ̃, γ−1 > 1/2, if we choose x smaller than
γ−1 −1/2

σ̃−1/2
, f(t, x) ≤ f(0, x) and

now it suffices to find a set on which f(0, x) is bounded from above by

-1.

Observe that f(0, x) has a maximum at xmax := −p−1(1/2 − γ−1 ),

f(0, x) → −∞ as x → 0, and ∂
∂x
f(0, x) > 0 for all x ∈ (0, xmax). If

f(0, xmax) ≤ −1, then we can set

D :=

{
x ∈ ∆K : x1 ≤

γ−1 − 1/2

σ̃ − 1/2

}
, (5.17)

and then (5.16) holds on (0,∞) × D as required. Otherwise, we are

guaranteed that ∃x̂ ∈ (0, xmax) for which f(0, x) ≤ −1 ∀x ∈ (0, x̂) in

light of the fact that f(0, x) is non-decreasing over (0, xmax). Thus if

we set

D :=

{
x ∈ ∆K : x1 ∈

(
0,

(
x̂ ∧

γ−1 − 1
2

σ̃ − 1
2

))}
, (5.18)

then we have that (5.16) holds on (0,∞)×D as required.

Thus by setting D to be (5.17) or (5.18) (depending on p, γ−1
and σ̃, but regardless observe that D will always be non-empty and

open), taking V (t,x) = (t+1)p

p
(− log x1), and α(t) = (t + 1)p−1, by

Theorem 5.2 we get that

Ex [T pDc ] ≤ Ex [(1 + TDc)
p] ≤ p (β(0) + V (0,x)) = 1− log x1.
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In addition, we get that for any initial distribution ν on ∆K for which∫
∆K
− log x1ν(dx) <∞,

Eν [T pDc ] ≤ Eν [(TDc + 1)p] =

∫
∆K

Ex [(1 + TDc)
p] ν(dx)

≤ 1 +

∫
∆K

− log x1ν(dx)

is finite.

Despite the fact that we can control these moments in terms of

ϑ, there is no straightforward way in which we can relate them to

the regeneration times introduced in Section 5.2. In particular, the

regeneration times are defined at the resolvent chain’s times {Tn}n∈N
whose underlying dynamics are driven by an exponential random

variable, and are “blind” to what happens to the process in between

the exponential time increments. Thus obtaining control over these

regeneration times by appealing to the more granular hitting times

used above does not seem to be feasible.

Nonetheless the above calculations offer some hope that Lya-

punov functions might be a useful tool in obtaining upper bounds

over the regeneration times for some parameter configurations, besides

serving as a suitable testbed through which certain properties of the

generator (5.3) can be brought to light. In particular, the above

imposed restriction on the mutation parameters suggest that different

Lyapunov functions will be necessary to reflect the change in boundary

behaviour as the mutation parameters cross the threshold value of

1/2. However, it might equally be the case that these Lyapunov type

arguments are not the right tool to use for the low mutation regime,

as there is no guarantee that a suitable Lyapunov function exists.

To illustrate this heuristically, assume PIM and that θi < 1 for

all i = 1, . . . , K. The invariant density fϑ is strictly increasing on

approach of the boundary ∂∆K , and is trough shaped as can be

seen in Figure 5.3.2 (where we have plotted the invariant density
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for a neutral three-dimensional Wright–Fisher diffusion, which is

different to the one corresponding to the non-neutral process, but

the general shape of fϑ at the boundary ∂∆K is the same in both cases).

In comparison, the bound (5.16) can be interpreted as finding a

set D whose probability of being visited is strictly decreasing in

time, which would be impossible to find given that no such set exists

for the invariant density. Of course this is far from being a valid

formal statement, but it offers a clear visual representation of the

potential limitations of Lyapunov type arguments. As mentioned

earlier, independently of the above one would need to devise a way to

control `ϑ from above, which coupled with the necessary bounds for

the above moments, enables uniform in the parameter ϑ ergodicity to

be established for the multidimensional Wright–Fisher diffusion.
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Figure 5.3.1: Flow chart illustrating the proof structure for Theorem 5.2
in [LL13]. Arrows and statements in black represent quantities and argu-
ments that can be entertained for the K-dimensional Wright–Fisher diffu-
sion, whilst quantities in orange represent statements or results that are
used in Theorem 5.2 in [LL13] but have not been proved to hold or apply
in the Wright–Fisher case
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Figure 5.3.2: Plot of the invariant density for a neutral three-dimensional
Wright–Fisher diffusion with mutation parameter θ = (0.5, 0.5, 0.5). The
figure on the left is a three-dimensional rendition of the resulting invariant
Dirichlet density fϑ, whilst the plot on the right is the resulting contour
plot
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Chapter 6

Discussion

In this thesis we have derived readily verifiable criteria to establish

ϑ-uniform ergodicity for bounded scalar diffusions with either entrance

or regular boundaries, and extended this result for a specific class of

unbounded functions in the case of a diffusion with solely entrance

boundaries in Chapter 2. These conditions were subsequently used

to deduce the uniform in the selection and mutation parameters

ergodicity of the scalar Wright–Fisher diffusion, as well as the uniform

local asymptotic normality of the family of laws induced by the

solutions to the corresponding SDEs. In Chapter 3 we then utilised

these two properties of the Wright–Fisher diffusion to show that the

ML and Bayesian estimators for selection have a desirable set of

properties in the continuous observation regime, where the results

hinged on the classical Ibragimov-Has’minskii conditions.

Apart from the theoretical guarantees proved for this limiting

observational regime in the one dimensional case, a practicable

MCMC scheme to conduct exact inference on the allele age and

selection coefficient was proposed in Chapter 4. The method was

applied to simulated data and the output obtained suggests that

it performs reasonably well even when a limited amount of data is

available and priors are mis-specified. We concluded this thesis by

considering the challenges involved in extending the results present in

Chapter 2 to the multidimensional case, providing a brief sketch of how

this might be achieved via regeneration arguments, and highlighting
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the remaining open problems.

Whilst the results in Chapter 2 imposed no undue restrictions

upon the mutation parameters (other than requiring them to be

greater than or equal to 1 to allow for the Radon–Nikodym derivative

to be defined in Corollary 2.6 and Theorem 2.8), Chapter 3 considers

inference for the selection parameter σ when the mutation rates are

known. Although this assumption is a limitation on the study, we

emphasise that in the continuous observation regime considered in

Chapter 3 these can be inferred directly once the diffusion gets arbi-

trarily close to either boundary (see Remark 3.1 for the corresponding

details). Nonetheless, extending this work to include mutation

parameters greater than or equal to 1 would be of great interest,

and proves to be rather challenging using the setup of Chapter 3,

as illustrated in Section 3.4. The likelihood ratio function in this

case would involve expressions featuring the unbounded functions

(1 − x)x−1 and x(1 − x)−1 (as witnessed in Theorem 2.8), which

require much more delicate arguments (if not an entirely different

approach) to proving Propositions 3.5 and 3.6, in order to establish the

same conclusions as in Theorem 3.2. These observations suggest that

perhaps a better way of tackling inference for the mutation parameters

is to directly analyse the boundary behaviour of the diffusion rather

than extend the approach adopted in Chapter 3. By understanding

this boundary behaviour, characterising it precisely, and relating it

explicitly to the mutation parameters, one might be able to devise a

suitable statistical framework within which to phrase and prove re-

sults similar to those present in Chapter 3 for the mutation parameters.

On a similar note to the above, extending the framework devel-

oped in Chapter 4 to accommodate for the mutation parameters is

rather tricky. The main issue here is finding a suitable dominating

measure which is independent of the parameters of interest and with

respect to which all the quantities involved admit a tractable density.

As is evident throughout this chapter, the mutation parameters appear

in all the dominating measures via the laws of the underlying neutral
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Wright–Fisher diffusion, and thus this dependence needs to be tackled

for a Gibbs sampler to be viable. One way around this would be to

fix a specific value for the mutation parameters and use this as the

reference measure, however as pointed out in Section 4.5, this would

only be feasible for mutation parameters greater than or equal to 1,

for otherwise the Radon–Nikodym derivative between the laws of the

Wright–Fisher diffusions with differing mutation rates need not be

defined. In addition, the inclusion of the mutation parameters trans-

lates into the presence of unbounded functions in the exponent of the

resulting Radon–Nikodym derivatives, and thus the Poisson point pro-

cess construction utilised in Chapter 4 breaks down. It is evident that

further work is required before one can entertain the idea of conducting

joint inference of allele age, selection and mutation. We point out

however that other extensions such as accounting for historical demo-

graphic changes, and allowing for soft sweeps are more straightforward.

The conclusions obtained in Chapter 3 offer a certain degree of

confidence that standard inferential schemes for the selection pa-

rameter will return reliable results, at least in the limiting regime of

continuous observations. Whilst this is a rather favourable starting

point, it does not guarantee that these same schemes will return simi-

lar results in the discrete observation setting. The empirical results

present in Section 3.3 do suggest that this might be the case when the

observation regime converges to densely sampled data, however this

is yet to be formally proved. Moreover, the techniques used here do

not provide much in terms of insight on how the corresponding results

could be addressed since the likelihood ratio would now be given by

a product of transition densities, and as illustrated in Chapter 4,

dealing with the latter is rather delicate in view of the intractable

terms involved.

The arguments illustrated in Chapter 5 shed light on the increased

difficulty in proving similar results to those obtained in Chapter 2 for

the multidimensional diffusion setting. Figure 5.3.1 provides a brief

recap of the techniques used in [LL13] to obtain bounds on the rate
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of convergence of time averages to state space averages for a class

of multidimensional diffusions, whilst also illustrating which parts of

the proof hold for the Wright–Fisher case. The main problem here

was verifying Assumption 5.1 or bound (5.2) via a suitable choice of

Lyapunov function for the Wright–Fisher case. In particular, as seen

in the calculations in Section 5.3.2, the results might only apply to a

subset of the cases of interest (i.e. when the mutation parameters are

sufficiently large), whilst the remaining cases (i.e. smaller mutation

parameters) might require a different technique all together as the

Lyapunov function theory seems to fall short.
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Gareth O. Roberts. Barker’s algorithm for Bayesian in-

ference with intractable likelihoods. Braz. J. Probab.

Stat., 31(4):732–745, 2017.

[GJS18] Robert C Griffiths, Paul A Jenkins, and Dario Spano.

Wright–Fisher diffusion bridges. Theor. Popul. Biol.,

122:67–77, 2018.

[GL83] Robert C. Griffiths and Wen-Hsiung Li. Simulating al-

lele frequencies in a population and the genetic differen-

tiation of populations under mutation pressure. Theor.

Popul. Biol., 23(1):19–33, 1983.

[Gri79] R. C. Griffiths. A transition density expansion for a

multi-allele diffusion model. Adv. in Appl. Probab.,

11(2):310–325, 1979.

[Gri80] Robert C Griffiths. Lines of descent in the diffusion ap-

proximation of neutral Wright–Fisher models. Theor.

Popul. Biol., 17(1):37–50, 1980.

[Gri84] R. C. Griffiths. Asymptotic line-of-descent distributions.

J. Math. Biol., 21(1):67–75, 1984.

[GS09] R. Griffiths and Dario Spanò. Diffusion processes and
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Appendix A

Proposal updates for when

tc = t2, t3

Here we illustrate the update procedures for when tc = t2 or tc = t3. In

these cases, the update procedure is split into separate cases depending

on where the proposed allele age falls in relation to the first couple

of observation times. We point out that the update mechanisms

illustrated below account only for updating the latent path at the

observation times and skeleton points once a proposal for t0 is drawn

as in Step 1 in subsection 4.3.3. In an actual initial path update we

would need to first propose an allele age and then apply the correct

procedure depending on the proposed value for t0.

Note that proposed latent path values at the observation times

and skeleton points will be denoted with a tilde, whilst (in slight abuse

of notation) the same quantity without a tilde will denote the current

value of the chain. So for instance X̃t1 will denote a proposed value

for the latent diffusion at time t1, whilst Xt1 will mean the value the

latent diffusion at time t1 admits in the current iteration of the chain.

A.1 tc = t2

Assume now that Xt3 = x3 is fixed, and observe that in this case the

time interval we need to consider is [t0, t3], and that we need to consider

separately the cases when t0 ∈ (−∞, t1) and when t0 ∈ (t1, t2).
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A.1.1 Proposal mechanism and likelihood contribution when

t0 ∈ (−∞, t1)

In this case, using the same calculations as those used to derive (4.14),

we have that the joint density of the data Yt1:t2 , the allele age t0, the

latent path values at the observation times Xt1:t2 and corresponding

skeleton points {Φk}3
k=1 is given by

p2(t0)(1−Xt1)
nt1

(
nt2
Yt2

)
X
Yt2
t2 (1−Xt2)

nt2−Yt2

× e
σ
2
x3−ϕ−σ (t3−t0)

×
3∏
i=1

∏
{j:ξi,j≤λσ ,
ψ1,j<t1−t0}

ϕ+
σ − ϕσ(ωi,ψi,j)

ϕ+
σ − ϕ−σ

(A.1)

with respect to the dominating measure

PP⊗ PP(t3−t1) ⊗WF(0)
0,θ ⊗ Leb((−∞, tc)× [0, 1]2)⊗ Σ(⊗2

i=1nti)

where as before PP is the law of a unit rate Poisson point process

on (0,∞)2, PP(t3−t1) is the law of a unit rate Poisson point process

on (t1, t3) × (0,∞), WF(0)
0,θ is the law of a neutral Wright–Fisher

diffusion started from 0, and Σ(⊗2
i=1nti) is the counting measure on

{0, . . . , nt1} ⊗ {0, . . . , nt2}.

Given the above likelihood contribution, we employ the follow-

ing procedure to generate a proposal:

1. Conditional on t0 = t, draw U1 ∼ Unif([0, 1]) and

X̃t1 ∼WF(0,t1−t)
σ,θ ,

(i.e. draw X̃t1 from the law of a non-neutral Wright–Fisher dif-

fusion started at 0, sampled at time t1 − t) and check whether

U1 < (1− X̃t1)
nt1 . If this is true, proceed to 2, otherwise redraw.
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2. Conditional on X̃t1 = x, draw U2 ∼ Unif([0, 1])

X̃t2 ∼WF(t3−t1,x,x3,t2−t1)
σ,θ ,

(i.e. draw X̃t2 from the law of a non-neutral Wright–Fisher diffu-

sion bridge starting at x and ending at x3 in time t3− t1, sampled

at time t2 − t1) and check if U2 <
1
M2
X̃
Yt2
t2 (1 − X̃t2)

nt2−Yt2 with

M2 := supz∈[0,1] z
Yt2 (1 − z)nt2−Yt2 . If this is true, proceed to 3,

otherwise redraw.

3. Conditional on t0 = t, X̃t1 = x

κ1 ∼ Pois(λmax (t1 − t)),
{ψ̃1,j}κ1j=1 ∼iid Unif((t, t1)),

{ξ̃1,j}κ1j=1 ∼iid Unif((0, λmax)),

{γ̃1,j}κ1j=1 ∼iid Unif([0, 1]),

ω̃1 ∼WF(t1−t,0,x)
0,θ

4. Conditional on X̃t1 = x, X̃t2 = y, draw

κ2 ∼ Pois(λmax (t2 − t1)),

{ψ̃2,j}κ2j=1 ∼iid Unif((t1, t2)),

{ξ̃2,j}κ2j=1 ∼iid Unif((0, λmax)),

{γ̃2,j}κ2j=1 ∼iid Unif([0, 1]),

ω̃2 ∼WF(t2−t1,x,y)
0,θ

5. Conditional on X̃t2 = y, draw

κ3 ∼ Pois(λmax (t3 − t2)),

{ψ̃3,j}κ3j=1 ∼iid Unif((t2, t3)),

{ξ̃3,j}κ3j=1 ∼iid Unif((0, λmax)),

{γ̃3,j}κ3j=1 ∼iid Unif([0, 1]),

ω̃3 ∼WF(t3−t2,y,x3)
0,θ
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6. If

3∏
i=1

∏
{j:ξ̃i,j≤λσ ,
ψ̃1,j<t1−t}

1ϕσ(ω̃
i,ψ̃i,j

)−ϕ−σ

ϕ+σ −ϕ
−
σ

<γ̃i,j


= 1,

set Ψ̃k = {ψ̃k,j}, Ξ̃k = {ξ̃k,j}, ω̃Ψ
k = {ω̃k,ψ1,j

}, Φ̃k = (Ψ̃k, Ξ̃k, ω̃
Ψ
k )

for k = 1, 2, 3 and proceed, else go back to 3.

7. Compute α as in (A.5), and run a Metropolis–Hastings accept-

reject step. If we accept, set Ψk = Ψ̃k, Ξk = Ξ̃k, ω
Ψ
k = ω̃Ψ

k ,

Φk = Φ̃k for k = 1, 2, 3 and Xt1 = X̃t1 , Xt2 = X̃t2 , or else retain

the old values.

A proposal generated via the above mechanism has density given by

q2(t)(1− X̃t1)
nt1 X̃

Yt2
t2 (1− X̃t2)

nt2−Yt2
e
σ
2
x3−ϕ−σ (t3−t)

pθσ(t3 − t1, X̃t1 , x3)

×
3∏
i=1

∏
{j:ξ̃i,j≤λσ ,
ψ̃1,j<t1−t0}

ϕ+
σ − ϕσ(ω̃i,ψ̃i,j)

ϕ+
σ − ϕ−σ

(A.2)

with respect to the dominating measure

PP⊗ PP(t3−t1) ⊗WF(0)
0,θ ⊗ Leb((−∞, tc)× [0, 1]2).

A.1.2 Proposal mechanism and likelihood contribution when

t0 ∈ (t1, t2)

We now derive the proposal mechanism for when the allele age falls in

between the first and second observation time. So assume that now t0 ∈
(t1, t2), which implies Xt1 = 0,Ψ1 = Ξ1 = ωΨ

1 = ∅, Φ1 = (Ψ1,Ξ1, ω
Ψ
1 ),

and leads to the following expression for the joint density of the data

Yt2 , the allele age t0, the latent path value at the second observation
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time Xt2 and corresponding skeleton points {Φk}3
k=2

p2(t0)

(
nt2
Yt2

)
X
Yt2
t2 (1−Xt2)

nt2−Yt2e
σ
2
x3−ϕ−σ (t3−t0)

×
3∏
i=2

∏
{j:ξi,j≤λσ ,
ψ2,j<t2−t0}

ϕ+
σ − ϕσ(ωi,ψi,j)

ϕ+
σ − ϕ−σ

(A.3)

with respect to

PP⊗ PP(t3−t2) ⊗WF(0)
0,θ ⊗ Leb((−∞, tc)× [0, 1])⊗ Σ(nt2).

In this case, we generate a candidate path via the following procedure

1. Conditional on t0 = t, draw U ∼ Unif([0, 1]) and

X̃t2 ∼WF(t3−t,0,x3,t2−t)
0,θ

and check U < 1
M
X̃
Yt2
t2 (1−X̃t2)

nt2−Yt2 with M := supz∈[0,1] z
Yt2 (1−

z)nt2−Yt2 . If this last condition is true, proceed, else redraw.

2. Conditional on t0 = t, X̃t2 = x, draw

κ2 ∼ Pois(λmax (t2 − t)),
{ψ̃2,j}κ2j=1 ∼iid Unif((t, t2)),

{ξ̃2,j}κ2j=1 ∼iid Unif((0, λmax)),

{γ̃2,j}κ2j=1 ∼iid Unif([0, 1]),

ω̃2 ∼WF(t2−t,0,x)
0,θ

and

κ3 ∼ Pois(λmax (t3 − t2)),

{ψ̃3,j}κ3j=1 ∼iid Unif((t2, t3)),

{ξ̃3,j}κ3j=1 ∼iid Unif((0, λmax)),

{γ̃3,j}κ3j=1 ∼iid Unif([0, 1]),

ω̃3 ∼WF(t3−t2,x,x3)
0,θ

162



3. If

3∏
i=2

∏
{j:ξ̃i,j≤λσ ,
ψ̃2,j<t2−t0}

1ϕσ(ω̃
i,ψ̃i,j

)−ϕ−σ

ϕ+σ −ϕ
−
σ

<γ̃i,j


= 1

then set Ψ̃k = {ψ̃k,j}, Ξ̃k = {ξ̃k,j}, ω̃Ψ
k = {ω̃k,ψ̃k,j}, Φ̃k =

(Ψ̃k, Ξ̃k, ω̃
Ψ
k ) for k = 2, 3 and proceed, otherwise return to 2.

4. Compute α as in (A.5), and run a Metropolis–Hastings accept-

reject step. If we accept, set Ψk = Ψ̃k,Ξk = Ξ̃k, ω
Ψ
k = ω̃Ψ

k ,Φk =

Φ̃k for k = 2, 3, and Xt2 = X̃t2 , otherwise retain the old values.

The above generated proposal has density

q2(t)X̃
Yt2
t2 (1− X̃t2)

nt2−Yt2
e
σ
2
x3−ϕ−σ (t3−t)

pθσ(t3 − t, 0, x3)

×
3∏
i=2

∏
{j:ξ̃i,j≤λσ ,
ψ̃2,j<t2−t0}

ϕ+
σ − ϕσ(ω̃i,ψi,j)

ϕ+
σ − ϕ−σ

(A.4)

with respect to

PP⊗ PP(t3−t2) ⊗WF(0)
0,θ ⊗ Leb((−∞, tc)× [0, 1]).

A.1.3 Acceptance probabilities

Putting (A.1), (A.2), (A.3) and (A.4) together gives the following ac-

ceptance probabilities depending on the current and proposed values
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of the allele age

α =



min

{
1, p2(t̃0)

p2(t0)
q2(t0|t̃0)

q2(t̃0|t0)
e
σ
2 (Xt1−X̃t1)

× a(t3−t1,X̃t1 ,x3,σ)

a(t3−t1,Xt1 ,x3,σ)

pθ0 (t3−t1,X̃t1 ,x3)

pθ0 (t3−t1,Xt1 ,x3)

}
if t0, t̃0 < t1

min

{
1, p2(t̃0)

p2(t0)
q2(t0|t̃0)

q2(t̃0|t0)
e
σ
2
Xt1−ϕ

−
σ (t1−t̃0)

× a(t3−t̃0,0,x3,σ)
a(t3−t1,Xt1 ,x3,σ)

pθ0 (t3−t̃0,0,x3)

pθ0 (t3−t1,Xt1 ,x3)

}
if t0 < t1,

and t̃0 ∈ (t1, t2)

min

{
1, p2(t̃0)

p2(t0)
q2(t0|t̃0)

q2(t̃0|t0)
e−

σ
2
X̃t1−ϕ

−
σ (t0−t1)

× a(t3−t1,X̃t1 ,x3,σ)

a(t3−t0,0,x3,σ)

pθ0 (t3−t1,X̃t1 ,x3)

pθ0 (t3−t0,0,x3)

}
if t0 ∈ (t1, t3),

and t̃0 < t1

min

{
1, p2(t̃0)

p2(t0)
q2(t0|t̃0)

q2(t̃0|t0)
e−ϕ

−
σ (t0−t̃0)

× a(t3−t̃0,0,x3,σ)
a(t3−t0,0,x3,σ)

pθ0 (t3−t̃0,0,x3)

pθ0 (t3−t0,0,x3)

}
if t0, t̃0 ∈ (t1, t2)

(A.5)

As in subsection 4.3.3, the problematic terms are the intractable terms

of the form a(t, x, y, σ), as the neutral transition densities can be dealt

with using a refinement scheme. Using a pseudo-marginal implementa-

tion, we need only estimate these quantities unbiasedly via the Poisson

estimator (4.21) for a new proposal, whilst the old estimates are stored

and recycled as detailed in the discussion following (4.21). In this case

we draw

κ ∼

Pois(λσ(t3 − t1)) if t̃0 < t1

Pois(λσ(t3 − t̃0)) if t̃0 ∈ (t1, t2)
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τ ∼

Unif((t1, t3)) if t̃0 < t1

Unif((t̃0, t3)) if t̃0 ∈ (t1, t2)

ζ ∼

WF(t3−t1,X̃t1 ,x3)

0,θ if t̃0 < t1

WF(t3−t̃0,0,x3)
0,θ if t̃0 ∈ (t1, t2)

and then compute

ã(t3 − t1, X̃t1 , x3, σ, τ, ζτ ) if t̃0 < t1

ã(t3 − t̃0, 0, x3, σ, τ, ζτ ) if t̃0 ∈ (t1, t2).
(A.6)

We replace the terms of the form a(t, x, y, σ) in (A.5) by the corre-

sponding ã(t, x, y, σ, τ, ζτ ) term from (A.6), and accordingly store

(τ (k+1), ζ(k+1)
τ ) =

(τ, ζτ ) if we accept the corresponding proposal

(τ (k), ζ
(k)
τ ) otherwise.

A.2 Procedure when tc = t3

Finally we fix Xt4 = x4, and set [t0, t4] as the initial path segment

observation time interval. We now have three separate cases we need

to consider: when t0 ∈ (−∞, t1), t0 ∈ (t1, t2), t0 ∈ (t2, t3).

A.2.1 Proposal mechanism and likelihood contribution when

t0 ∈ (−∞, t1)

For t0 < t1, we have that the joint density of the data Yt1:t3 , the allele

age t0, the latent path at the observation times Xt1:t3 and corresponding

skeleton points {Φk}4
k=1 is given by

p2(t0)
3∏
i=1

[(
nti
Yti

)
X
Yti
ti (1−Xti)

nti−Yti

]
e
σ
2
x4−ϕ−σ (t4−t0)

×
4∏
i=1

∏
{j:ξi,j≤λσ ,
ψ1,j<t1−t0}

ϕ+
σ − ϕσ(ωi,ψi,j)

ϕ+
σ − ϕ−σ

(A.7)
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with respect to

PP⊗ PP(t4−t1) ⊗WF(0)
0,θ ⊗ Leb((−∞, tc)× [0, 1]3)⊗ Σ(⊗3

i=1nti),

where we have that Σ(⊗3
i=1nti) denotes the counting measure over

⊗3
i=1{0, . . . , nti}.

The proposal mechanism for this case is as follows

1. Conditional on t0 = t, draw U1 ∼ Unif([0, 1]) and

X̃t1 ∼WF(0,t1−t)
σ,θ

(i.e. draw X̃t1 from the law of a non-neutral Wright–Fisher dif-

fusion started at 0, sampled at time t1 − t), and check whether

U1 < (1− X̃t1)
nt1 . If this is true we continue, else we redraw.

2. Conditional on X̃t1 = x, draw U2 ∼ Unif([0, 1]) and

X̃t2 ∼WF(x,t2−t1)
σ,θ

(i.e. draw X̃t2 from the law of a non-neutral Wright–Fisher dif-

fusion started at x, sampled at time t2 − t1), and check whether

U2 < (1− X̃t2)
nt2 . If this is true we continue, else we redraw.

3. Conditional on X̃t2 = y, draw U3 ∼ Unif([0, 1]) and

X̃t3 ∼WF(t4−t2,y,x4,t3−t2)
σ,θ

(i.e. draw X̃t3 from the law of a non-neutral Wright–Fisher diffu-

sion bridge started at y and ending at x4 in time t4− t2, sampled

at time t3 − t2), and check whether U3 <
1
M3
X̃
Yt3
t3 (1− X̃t3)

nt3−Yt3

with M3 := supz∈[0,1] z
Yt3 (1−z)nt3−Yt3 . If this is true we continue,

else we redraw.
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4. Conditional on t0 = t, X̃t1 = x, draw

κ1 ∼ Pois(λmax (t1 − t)),
{ψ̃1,j}κ1j=1 ∼iid Unif((t, t1)),

{ξ̃1,j}κ1j=1 ∼iid Unif((0, λmax)),

{γ̃1,j}κ1j=1 ∼iid Unif([0, 1]),

ω̃1 ∼WF(t1−t,0,x)
0,θ

5. Conditional on X̃t1 = x, X̃t2 = y, draw

κ2 ∼ Pois(λmax (t2 − t1)),

{ψ̃2,j}κ2j=1 ∼iid Unif((t1, t2)),

{ξ̃2,j}κ2j=1 ∼iid Unif((0, λmax)),

{γ̃2,j}κ2j=1 ∼iid Unif([0, 1]),

ω̃2 ∼WF(t2−t1,x,y)
0,θ

6. Conditional on X̃t2 = y, X̃t3 = z, draw

κ3 ∼ Pois(λmax (t3 − t2)),

{ψ̃3,j}κ3j=1 ∼iid Unif((t2, t3)),

{ξ̃3,j}κ3j=1 ∼iid Unif((0, λmax)),

{γ̃3,j}κ3j=1 ∼iid Unif([0, 1]),

ω̃3 ∼WF(t3−t2,y,z)
0,θ

7. Conditional on X̃t3 = z, draw

κ4 ∼ Pois(λmax (t4 − t3)),

{ψ̃4,j}κ4j=1 ∼iid Unif((t3, t4)),

{ξ̃4,j}κ4j=1 ∼iid Unif((0, λmax)),

{γ̃4,j}κ4j=1 ∼iid Unif([0, 1]),

ω̃4 ∼WF(t4−t3,z,x4)
0,θ
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8. If

4∏
i=1

∏
{j:ξ̃i,j≤λσ ,
ψ̃1,j<t1−t0}

1ϕσ(ω̃
i,ψ̃i,j

)−ϕ−σ

ϕ+σ −ϕ
−
σ

<γ̃i,j


= 1

set Ψ̃k = {ψ̃k,j}, Ξ̃k = {ξ̃k,j}, ω̃Ψ
k = {ω̃k,ψ̃k,j}, Φ̃k = (Ψ̃k, Ξ̃k, ω̃

Ψ
k )

for k = 1, 2, 3, 4 and proceed, otherwise go back to 4.

9. Compute α as in (A.14), and run a Metropolis–Hastings accept-

reject step. If we accept, set Ψk = Ψ̃k, Ξk = Ξ̃k, ω
Ψ
k = ω̃Ψ

k ,

Φk = Φ̃k, for k = 1, 2, 3, 4, and Xti = X̃ti for i = 1, 2, 3, otherwise

retain the old values.

The resulting proposal has density given by

q2(t)(1− X̃t1)
nt1 (1− X̃t2)

nt2 X̃
Yt3
t3 (1− X̃t3)

nt3−Yt3

× e
σ
2
x4−ϕ−σ (t4−t)

pθσ(t4 − t2, X̃t2 , x4)

×
4∏
i=1

∏
{j:ξ̃i,j≤λσ ,
ψ̃1,j<t1−t0}

ϕ+
σ − ϕσ(ω̃i,ψ̃i,j)

ϕ+
σ − ϕ−σ

(A.8)

with respect to

PP⊗ PP(t4−t1) ⊗WF(0)
0,θ ⊗ Leb((−∞, tc))× [0, 1]3).

A.2.2 Proposal mechanism and likelihood contribution when

t0 ∈ (t1, t2)

In the case when t0 ∈ (t1, t2), we set Xt1 = 0,Ψ1 = Ξ1 = ωΨ
1 = ∅,

Φ1 = (Ψ1,Ξ1, ω
Ψ
1 ), and observe that the joint density of the data Yt1:t3 ,

the allele age t0, the latent path at the observation times Xt2:t3 and
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corresponding skeleton points {Φk}4
k=1 is given by

p2(t0)(1−Xt2)
nt2

(
nt3
Yt3

)
X
Yt3
t3 (1−Xt3)

nt3−Yt3e
σ
2
x4−ϕ−σ (t4−t0)

×
4∏
i=2

∏
{j:ξi,j≤λσ ,
ψ2,j<t2−t0}

ϕ+
σ − ϕσ(ωi,ψi,j)

ϕ+
σ − ϕ−σ

(A.9)

with respect to

PP⊗ PP(t4−t2) ⊗WF(0)
0,θ ⊗ Leb((−∞, tc)× [0, 1]2)⊗ Σ(⊗3

i=1nti).

To generate a candidate path, we set Xt1 = 0, Ψ̃1 = Ξ̃1 = ω̃Ψ
1 = ∅, Φ̃1 =

(Ψ̃1, Ξ̃1, ω̃
Ψ
1 ), and then

1. Conditional on t0 = t, draw U2 ∼ Unif([0, 1]) and

X̃t2 ∼WF(0,t2−t)
σ,θ

(i.e. draw X̃t2 from the law of a non-neutral Wright–Fisher dif-

fusion started at 0, sampled at time t2 − t), and check whether

U2 < (1− X̃t2)
nt2 . If this is true, we proceed, else we redraw.

2. Conditional on t0 = t, X̃t2 = x, draw U3 ∼ Unif([0, 1]) and

X̃t3 ∼WF(t4−t2,x,x4,t3−t2)
σ,θ

(i.e. draw X̃t3 from the law of a non-neutral Wright–Fisher dif-

fusion started at x and ending at x4 in time t4 − t2, sampled at

t3 − t2), and again check that U3 <
1
M3
X̃
Yt3
t3 (1− X̃t3)

nt3−Yt3 , with

M3 := supz∈[0,1] z
Yt3 (1− z)nt3−Yt3 . Proceed if true, else redraw.
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3. Conditional on t0 = t, X̃t2 = x, draw

κ2 ∼ Pois(λmax (t2 − t)),
{ψ̃2,j}κ2j=1 ∼iid Unif((t, t2)),

{ξ̃2,j}κ2j=1 ∼iid Unif((0, λmax)),

{γ̃2,j}κ2j=1 ∼iid Unif([0, 1]),

ω̃2 ∼WF(t2−t,0,x)
0,θ

4. Conditional on X̃t2 = x, X̃t3 = y, draw

κ3 ∼ Pois(λmax (t3 − t2)),

{ψ̃3,j}κ3j=1 ∼iid Unif((t2, t3)),

{ξ̃3,j}κ3j=1 ∼iid Unif((0, λmax)),

{γ̃3,j}κ3j=1 ∼iid Unif([0, 1]),

ω̃3 ∼WF(t3−t2,x,y)
0,θ

5. Conditional on X̃t3 = y, draw

κ4 ∼ Pois(λmax (t4 − t3)),

{ψ̃4,j}κ4j=1 ∼iid Unif((t3, t4)),

{ξ̃4,j}κ4j=1 ∼iid Unif((0, λmax)),

{γ̃4,j}κ4j=1 ∼iid Unif([0, 1]),

ω̃4 ∼WF(t4−t3,y,x4)
0,θ

6. If

4∏
i=2

∏
{j:ξ̃i,j≤λσ ,
ψ̃2,j<t2−t0}

1ϕσ(ω̃
i,ψ̃i,j

)−ϕ−σ

ϕ+σ −ϕ
−
σ

<γ̃i,j


= 1

set Ψ̃k = {ψ̃k,j}, Ξ̃k = {ξ̃k,j}, ω̃Ψ
k = {ω̃k,ψk,j}, Φ̃k = (Ψ̃k, Ξ̃k, ω̃

Ψ
k )

for k = 2, 3, 4, and proceed. Otherwise go back to 3.

7. Compute α as in (A.14), and run a Metropolis–Hastings accept-
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reject step. If we accept, set Ψk = Ψ̃k, Ξk = Ξ̃k, ω
Ψ
k = ω̃Ψ

k ,

Φk = Φ̃k for k = 2, 3, 4, and Xti = X̃ti for i = 2, 3, otherwise

retain the old values.

A proposal generated according to the above leads to the following

density

q2(t)(1− X̃t2)
nt2 X̃

Yt3
t3 (1− X̃t3)

nt3−Yt3
e
σ
2
x4−ϕ−σ (t4−t0)

pθσ(t4 − t2, Xt2 , x4)

×
4∏
i=2

∏
{j:ξ̃i,j≤λσ ,
ψ̃2,j<t2−t0}

ϕ+
σ − ϕσ(ω̃i,ψ̃i,j)

ϕ+
σ − ϕ−σ

(A.10)

with respect to

PP⊗ PP(t4−t2) ⊗WF(0)
0,θ ⊗ Leb((−∞, tc)× [0, 1]2).

A.2.3 Proposal mechanism and likelihood contribution when

t0 ∈ (t2, t3)

The final case to consider is when t0 ∈ (t2, t3). We set Xtk = 0,Ψk =

Ξk = ωΨ
k = ∅,Φk = (Ψk,Ξk, ω

Ψ
k ) for k = 1, 2. The joint density of the

data Yt1:t3 , the allele age t0, the latent path at the observation time

Xt3 and corresponding skeleton points {Φk}4
k=1 in this case is now

p2(t0)

(
nt3
Yt3

)
X
Yt3
t3 (1−Xt3)

nt3−Yt3e
σ
2
x4−ϕ−σ (t4−t0)

×
4∏
i=3

∏
{j:ξi,j≤λσ ,
ψ3,j<t3−t0}

ϕ+
σ − ϕσ(ωi,ψi,j)

ϕ+
σ − ϕ−σ

(A.11)

with respect to

PP⊗ PP(t4−t3) ⊗WF(0)
0,θ ⊗ Leb((−∞, tc)× [0, 1])⊗ Σ(⊗3

i=1nti).

We generate a proposal by setting X̃tk = 0, Ψ̃k = Ξ̃k = ω̃Ψ
k = ∅ for

k = 1, 2, and
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1. Conditional on t0 = t, draw U ∼ Unif([0, 1]) and

X̃t3 ∼WF(t4−t,0,x4,t3−t)
σ,θ

(i.e. draw X̃t3 from the law of a non-neutral Wright–Fisher dif-

fusion started at 0 and ending at x4 in time t4 − t, sampled

at t3 − t), and check that U < 1
M
X
Yt3
t3 (1 − Xt3)

nt3−Yt3 with

M := supz∈[0,1] z
Yt3 (1 − z)nt3−Yt3 . If this condition is met, pro-

ceed, else redraw.

2. Conditional on t0 = t and X̃t3 = x, draw

κ3 ∼ Pois(λmax (t3 − t)),
{ψ̃3,j}κ3j=1 ∼iid Unif((t, t3)),

{ξ̃3,j}κ3j=1 ∼iid Unif((0, λmax)),

{γ̃3,j}κ3j=1 ∼iid Unif([0, 1]),

ω̃3 ∼WF(t3−t,0,x)
0,θ

3. Conditional on X̃t3 = x, draw

κ4 ∼ Pois(λmax (t4 − t3)),

{ψ̃4,j}κ4j=1 ∼iid Unif((t3, t4)),

{ξ̃4,j}κ4j=1 ∼iid Unif((0, λmax)),

{γ̃4,j}κ4j=1 ∼iid Unif([0, 1]),

ω̃4 ∼WF(t4−t3,x,x4)
0,θ

4. If

4∏
i=3

∏
{j:ξ̃i,j≤λσ ,
ψ̃3,j<t3−t0}

1ϕσ(ω̃
i,ψ̃i,j

)−ϕ−σ

ϕ+σ −ϕ
−
σ

<γ̃i,j


= 1

then set Ψ̃k = {ψ̃k,j}, Ξ̃k = {ξ̃k,j}, ω̃Ψ
k = {ω̃k,ψ̃k,j}, Φ̃k =

(Ψ̃k, Ξ̃k, ω̃
Ψ
k ) and proceed, else go back to 2.

5. Compute α as in (A.14), and run a Metropolis–Hastings accept-
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reject step. If we accept, set Ψk = Ψ̃k,Ξk = Ξ̃k, ω
Ψ
k = ω̃Ψ

k for

k=3,4 and Xt3 = X̃t3 , otherwise retain the old values.

A proposal generated according to the above has density

q2(t)X̃
Yt3
t3 (1− X̃t3)

nt3−Yt3
e
σ
2
x4−ϕ−σ (t4−t0)

pθσ(t4 − t, 0, x4)

×
4∏
i=3

∏
{j:ξ̃i,j≤λσ ,
ψ̃3,j<t3−t0}

ϕ+
σ − ϕσ(ω̃i,ψ̃i,j)

ϕ+
σ − ϕ−σ

(A.12)

with respect to

PP⊗ PP(t4−t3) ⊗WF(0)
0,θ ⊗ Leb((−∞, tc)× [0, 1]).

A.2.4 Acceptance Probabilities

Putting (A.7), (A.8), (A.9), (A.10), (A.11) and (A.12) together we get

that the corresponding acceptance probabilities for this initial path

update, which can be found on the next page. Again we resort to the

Poisson estimator which we compute by drawing

κ ∼

Pois(λσ(t4 − t2)) if t̃0 < t1 or t̃0 ∈ (t1, t2)

Pois(λσ(t4 − t̃0)) if t̃0 ∈ (t2, t3)

τ ∼

Unif((t2, t4)) if t̃0 < t1 or t̃0 ∈ (t1, t2)

Unif((t̃0, t4)) if t̃0 ∈ (t2, t3)

ζ ∼

WF(t4−t2,X̃t2 ,x4)

0,θ if t̃0 < t1 or t̃0 ∈ (t1, t2)

WF(t4−t̃0,0,x4)
0,θ if t̃0 ∈ (t2, t3)

and then compute

ã(t4 − t2, X̃t2 , x4, σ, τ, ζτ ) if t̃0 < t1 or t̃0 ∈ (t1, t2)

ã(t4 − t̃0, 0, x4, σ, τ, ζτ ) if t̃0 ∈ (t2, t3).
(A.13)

173



We replace the terms of the form a(t, x, y, σ) in (A.14) by the corre-

sponding ã(t, x, y, σ, τ, ζτ ) term from (A.13), and accordingly store

(τ (k+1), ζ(k+1)
τ ) =

(τ, ζτ ) if we accept the corresponding proposal

(τ (k), ζ
(k)
τ ) otherwise.
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α =



q2(t0|t̃0)

q2(t̃0|t0)

p2(t̃0)
p2(t0)

e
σ
2 (Xt2−X̃t2)

× a(t4−t2,X̃t2 ,x4,σ)

a(t4−t2,Xt2 ,x4,σ)

pθ0 (t4−t2,X̃t2 ,x4)

pθ0 (t4−t2,Xt2 ,x4)
if t0, t̃0 < t1

q2(t0|t̃0)

q2(t̃0|t0)

p2(t̃0)
p2(t0)

e
σ
2 (Xt2−X̃t2)

× a(t4−t2,X̃t2 ,x4,σ)

a(t4−t2,Xt2 ,x4,σ)

pθ0 (t4−t2,X̃t2 ,x4)

pθ0 (t4−t2,Xt2 ,x4)
if t0 < t1,

t̃0 ∈ (t1, t2)
q2(t0|t̃0)

q2(t̃0|t0)

p2(t̃0)
p2(t0)

e
σ
2 (Xt2)−ϕ

−
σ (t2−t̃0)

× a(t4−t̃0,0,x4,σ)
a(t4−t2,Xt2 ,x4,σ)

pθ0 (t4−t̃0,0,x4)

pθ0 (t4−t2,Xt2 ,x4)
if t0 < t1,

t̃0 ∈ (t2, t3)
q2(t0|t̃0)

q2(t̃0|t0)

p2(t̃0)
p2(t0)

e
σ
2 (Xt2−X̃t2)

× a(t4−t2,X̃t2 ,x4,σ)

a(t4−t2,Xt2 ,x4,σ)

pθ0 (t4−t2,X̃t2 ,x4)

pθ0 (t4−t2,Xt2 ,x4)
if t0 ∈ (t1, t2),

t̃0 < t1
q2(t0|t̃0)

q2(t̃0|t0)

p2(t̃0)
p2(t0)

e
σ
2 (Xt2−X̃t2)

× a(t4−t2,X̃t2 ,x4,σ)

a(t4−t2,Xt2 ,x4,σ)

pθ0 (t4−t2,X̃t2 ,x4)

pθ0 (t4−t2,Xt2 ,x4)
if t0, t̃0 ∈ (t1, t2)

q2(t0|t̃0)

q2(t̃0|t0)

p2(t̃0)
p2(t0)

e
σ
2
Xt2−ϕ

−
σ (t2−t̃0)

× a(t4−t̃0,0,x4,σ)
a(t4−t2,Xt2 ,x4,σ)

pθ0 (t4−t̃0,0,x4)

pθ0 (t4−t2,Xt2 ,x4)
if t0 ∈ (t1, t2),

t̃0 ∈ (t2, t3)

q2(t0|t̃0)

q2(t̃0|t0)

p2(t̃0)
p2(t0)

e
−σ

2
X̃t2−ϕ

−
σ

(
t
(k)
0 −t2

)
× a(t4−t2,X̃t2 ,x4,σ)

a(t4−t0,0,x4,σ)

pθ0 (t4−t2,X̃t2 ,x4)

pθ0 (t4−t0,0,x4)
if t0 ∈ (t2, t3),

t̃0 < t1
q2(t0|t̃0)

q2(t̃0|t0)

p2(t̃0)
p2(t0)

e
−σ

2
X̃t2−ϕ

−
σ

(
t
(k)
0 −t2

)
× a(t4−t2,X̃t2 ,x4,σ)

a(t4−t0,0,x4,σ)

pθ0 (t4−t2,X̃t2 ,x4)

pθ0 (t4−t0,0,x4)
if t0 ∈ (t2, t3),

t̃0 ∈ (t1, t2)

q2(t0|t̃0)

q2(t̃0|t0)

p2(t̃0)
p2(t0)

e
−ϕ−σ

(
t
(k)
0 −t̃0

)
× a(t4−t̃0,0,x4,σ)

a(t4−t0,0,x4)

pθ0 (t4−t̃0,0,x4)

pθ0 (t4−t0,0,x4)
if t0, t̃0 ∈ (t2, t3).
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