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[2] L.S. Mosby, M. Polin, and D.V. Köster. A python based automated tracking

routine for myosin II filaments. J. Phys. D Appl. Phys., 53(30):304002, 2020

[3] L.S. Mosby, N. Hundt, G. Young, A. Fineberg, M. Polin, S. Mayor, P. Kukura,
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Abstract

End-binding proteins (EBs) are specialised proteins that can autonomously

track growing microtubule ends whilst recruiting other proteins (+TIPs). By interact-

ing with STIM1, a transmembrane protein associated with the endoplasmic reticulum

(ER), EBs are able to mediate ER re-organisation and tubulation. Intracellular

transport is vital for achieving the correct distribution of organelles. This work aims

to derive an analytical model that can explain how transiently binding proteins can

couple microtubule growth to the motion of cargo inside cells.

It will be shown in this work that EBs exhibit a dwell time distribution that is

best fit by a superposition of two exponential decay functions, which indicates multi-

state binding behaviour. An analytical model has been developed that reproduces

these binding dynamics. Once expanded to study cargo permanently bound to

multiple EBs, this model is able to predict the phenomenon of tip tracking as a

response to position dependence in the EB-microtubule binding rate distribution.

Using experimentally-derived input parameters, it will be shown that the resulting

effective velocity exhibited by cargo acts towards the growing ends of microtubules

and can be of similar magnitude to the microtubule growth velocity. Simulated cargo

exhibit the same qualitative behaviour as multivalent cargo studied in vitro. Finally,

it will be shown that cargo-EB interactions act to inhibit the tip tracking capabilities

of cargo by reducing their average dwell time and the magnitude of their effective

velocity. This work details one method by which cells can utilise the stochasticity of

individual protein dynamics to generate predictable large scale behaviour.
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Chapter 1

Introduction and Motivation

The cytoskeleton has vital roles in cell migration, the maintenance of cell structure,

and intracellular transport. Transport over large distances inside cells mainly relies

on microtubules, which act as ‘tracks’ for the directional transport of vesicles and

other cargo. Microtubules are hollow cylindrical polymers comprised of thirteen

protofilaments of α, β-tubulin heterodimer subunits arranged in a head-to-tail manner

[4]. This polar structure results in microtubules having two distinct ends, the fast

growing plus-end, where β-tubulin is exposed, and the less dynamic minus-end,

where either α-tubulin is exposed or the microtubule is capped with a γ-tubulin ring

complex [4, 5].

Proteins that can bind to microtubules are known as microtubule associated

proteins (MAPs), one family of which are the highly specialised motor proteins.

These proteins use the energy generated by the hydrolysis of ATP to change their

conformational shape and move directionally along microtubules whilst bound [6–8].

By binding to vesicles or other cellular components, motor proteins can transport

intracellular cargo over large distances along microtubules [8]. This is particularly

important in neurons, where it has been shown that the distruption of the transport

of cargo along axons by motor proteins can result in many neurodegenerative diseases

(reviewed in [9]).

There also exist specialised MAPs that bind specifically at the ends of

microtubules, a phenomenon referred to as ‘tip tracking’. Proteins that accumulate

at the microtubule plus-end are known as +TIPs, whereas -TIPs accumulate at or

protect the microtubule minus-end. There are many different sequence motifs that

result in +TIPs and -TIPs selectively associating with microtubule ends, and these

can either interact directly with the microtubule [10–12], or with other +TIPs or

-TIPs as part of a complex and dynamic interaction network [13–15]. Once at the

ends of microtubules, these proteins are at the ideal location to regulate microtubule
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growth dynamics [16–21] and the interactions between microtubule ends and other

cellular components [22–25].

End-binding proteins (EBs) are the central component of the +TIP and -TIP

interaction networks, as the majority of known +TIPs and -TIPs either depend

on EBs for tip tracking, or interact with EBs to further enhance their preference

for microtubule ends [14, 15, 23, 24, 26, 27]. Interestingly, EBs can also mediate

the transport of cargo, despite binding only transiently to the growing ends of

microtubules [28, 29]. It is thought that EBs can couple the growth of the microtubule

to the motion of cargo as a result of their rapid unbinding kinetics followed by

preferential rebinding at positions closer to the microtubule end, but the exact

mechanism behind this phenomenon is currently not well understood. This form

of intracellular transport should be able to generate significant cargo velocities,

since the average microtubule growth velocity is of a similar order of magnitude as

the average transport velocity achieved by motor proteins [30–33]. EB-mediated

transport has been shown to be particularly important for the tubulation of the

endoplasmic reticulum [15, 23, 28].

This work aims to elucidate how the transient binding dynamics of individual

EBs can translate to the directional transport of intracellular cargo, using a combina-

tion of analytical modelling, simulations, and experiments. First the unique binding

dynamics of EBs that vary as a function of distance from the growing microtubule

end will be quantified, and it will be shown that EBs exhibit a dwell time distribution

indicative of multi-state binding dynamics. The simple analytical model used to

describe EB binding will then be expanded to study the dynamics of cargo that can

bind to microtubules by interacting with EBs, and it will be shown that the position

dependent binding dynamics of individual EBs is sufficient to drive the directional

motion of cargo towards growing microtubule ends. It will be tested whether this

model can predict the tip tracking of cargo in biologically relevant conditions, and

the results of this modelling will be compared to experiments studying the binding

dynamics of clusters of the calponin homology (CH) domains of EBs. Finally, the

importance of cargo-EB interactions inside cells will be verified by the addition of a

‘second layer’ of interaction to the model.
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Chapter 2

Background

This chapter will introduce the biological system studied in this work, as well as

the analytical methods that will be used to describe the complex motion of EBs

and cargo in later chapters. Please note that a substantial portion of this chapter

has been accepted for publication in the Encyclopedia of Chemical Biology [1] (see

Declarations).

2.1 Microtubule Structure

As described briefly in chapter 1, microtubules are hollow cylindrical polymers

comprised of thirteen protofilaments of α, β-tubulin heterodimer subunits arranged

end-to-end [4]. Tubulin heterodimers with a GTP molecule bound in the exchangeable

site of β-tubulin are incorporated at the ends of microtubules as they assemble. Upon

incorporation into the microtubule, this associated GTP molecule is hydrolysed over

time to GDP, resulting in the microtubule lattice being primarily composed of

tubulin with associated GDP molecules [34–36]. The loss of the stabilising cap of

GTP-bound tubulin at the growing end of a microtubule, either due to hydrolysis

outpacing new tubulin addition, fluctuations in the stochastic binding or unbinding

processes related to tubulin, or the action of depolymerases, results in a switch from

microtubule assembly to rapid depolymerisation, as shown in Fig.(2.1a,b) [34–37].

This transition is known as microtubule catastrophe, and the subsequent return

to a polymerising phase is referred to as a rescue event. It has also been shown

experimentally that both the binding and unbinding rates of tubulin are greater at

the plus-ends of microtubules than at the minus-ends [37].

Recent advances in cryogenic electron microscopy (cryo-EM) have meant that

the structures of microtubules consisting of either GMPCPP (a slowly-hydrolysable

analog of GTP) or GDP associated tubulin heterodimers can be directly compared

[36, 38]. It has been shown that the hydrolysis of the nucleotide associated with the
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(a)

(b)

(c)

Figure 2.1: Schematic of microtubule dynamics — Simple schematic of a single
(a) growing microtubule and (b) shrinking microtubule. Individual subunits are
α, β-tubulin heterodimers arranged in a 13 protofilament helical structure. Orange
tubulin subunits are associated with a GTP molecule and blue tubulin subunits are
associated with a GDP molecule. Rapid depolymerisation occurs following loss of
the stabilising GTP cap. (c) Simple 1D analytical model for microtubule dynamics,
where each rectangle represents one tubulin subunit. This model can be improved
by the separation of tubulin subunits into those associated with a GTP or GDP
molecule.

tubulin heterodimer results in the remodelling and compaction of the longitudinal

interface between adjacent heterodimers [36]. Most notably, this hydrolysis causes

remodelling of the T3 and T5 loops of the β-tubulin subunit, which interact with

the associated nucleotide at the E-site located at the interface between heterodimers

[36]. Nucleotide hydrolysis also causes a reorganisation of the intermediate domain

of α-tubulin, which generates internal strain within the tubulin heterodimer (due to

lattice constraints) that is released by protofilament peeling during depolymerisation

(see Fig.(2.1b)) [36, 39, 40]. This reorganisation is thought to couple changes in the

structure of the E-site to rearrangements at the surface of the α-tubulin subunit that

can affect the binding of microtubule-associated proteins (MAPs), including +TIPs

and -TIPs [36]. Further modifications to the structure of tubulin heterodimers that

arise due to the binding of EBs have also been quantified using cryo-EM techniques

and will be discussed in section 2.2.1 [38].

A simple model describing the dynamics of microtubule growth and shrinkage
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can be prescribed by approximating a microtubule as a 1D polymer that grows

a distance ∆x with a rate kpol[T ] (after the addition of a tubulin subunit from

solution at concentration [T ]), and that shrinks a distance ∆x with a rate kdepol

(after a tubulin subunit is lost from its end) [31, 41, 42], as shown in Fig.(2.1c). The

length of the polymer at a time t, L(t), will obey a Skellam distribution, since it

depends on the difference between the number of addition and loss events, both of

which are governed by Poisson processes [43]. As a result of the stochasticity of

the addition and loss events, the length of the polymer follows a 1D random walk

in space. The moments of the Skellam distribution can be used to generate the

microtubule growth velocity, vMT , and diffusivity, DMT , that describe the growth

dynamics of the microtubule [31, 42],

vMT = (kpol[T ]− kdepol) ∆x, (2.1)

DMT =

(
kpol[T ] + kdepol

2

)
∆x2. (2.2)

The next step in modelling microtubule structure is to include the one-way

hydrolysis of GTP associated with tubulin in the stabilising cap at a rate kh n,

where n is the number of GTP-bound cap sites, as depicted in Fig.(2.1c) [31]. As

expected, the hydrolysis rate appears to be independent of the microtubule growth

velocity; as the tubulin concentration in in vitro experiments studying the dynamics

of microtubule growth and shrinkage was increased from 10-30 µM, corresponding

to an increase in the microtubule growth velocity from (32± 1) nm s−1 to (91± 3)

nm s−1, the hydrolysis rate remained the same within error, varying only between

(0.19 ± 0.02) s−1 and (0.20 ± 0.02) s−1 [31]. A model of this form predicts the

important result that delta-correlated fluctuations in the microtubule growth velocity

and the number of GTP-bound cap sites that undergo hydrolysis, translate to an

autocorrelation function describing the decay of a fluctuation in the size of the

GTP-bound cap region towards its equilibrium value (in the linear noise regime) of

the form [31],

Cn(τ) =

(
kpol[T ]

kh

)
e−kh|τ |, (2.3)

where tr = 1/kh is the characteristic relaxation timescale for this process. Since

the autocorrelation is defined as Cn(τ) = 〈(n(t+ τ)− n̄)(n(t)− n̄)〉, where n̄ is the

average number of GTP-bound cap sites, the variance is equal to V ar(n) = Cn(0)

for a purely stochastic process. This generates an average fluctuation magnitude

for the GTP-bound cap region of kpol[T ]/kh, which increases as the microtubule
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growth velocity increases (see eq.(2.1)) [31]. Also of interest is the cross-correlation

between a fluctuation in the microtubule growth velocity at time t and the size of

the GTP-bound cap region at time t+ τ , which is equal to [31],

Cv,n(τ) = (kpol[T ] + kdepol) ∆x e−kh|τ |θ(τ), (2.4)

where θ(τ) is the heaviside-step function equal to 1 when τ > 0 and 0 otherwise.

This result correctly predicts that fluctuations in the microtubule growth velocity

can influence the size of the GTP-bound cap region, but not vice versa [31].

By fitting experimental data that shows how the average microtubule growth

velocity varies as a function of the free tubulin concentration, eq.(2.1) can be used to

derive rates of addition and loss of tubulin subunits at the microtubule end equal to

5.1 µM−1 s−1 and 3.9 s−1 respectively (errors not reported) [42]. When substituted

into eq.(2.2) these rates generate a diffusivity approximately an order of magnitude

smaller than that observed experimentally [42]. This is the result of the simple model

defined in eq.(2.1 & 2.2) not taking into account the structure of the microtubule

tip or any asymmetry in the lateral and longitudinal interactions between tubulin

subunits that comprise the microtubule.

In order to derive the correct diffusivity, 2D Monte Carlo simulations are

required that take into account the tapering of the microtubule end [42, 44]. Within

these simulations, addition or loss events occur with rates that are functions of the

free energies associated with the lateral and longitudinal interactions between tubulin

subunits, which have been inferred from experimental results [42, 44]. Comparing

the results of these simulations to experimental data, it has been shown that the

addition of tubulin subunits occurs at a much higher rate than previously predicted,

equal to 52 µM−1 s−1 (error not reported) [42]. This rate is balanced by a similarly

high rate of loss of tubulin subunits, which increases approximately linearly with

the free tubulin concentration due to the increased tapering of the microtubule tip

structure resulting in weaker interactions between the tubulin subunits that comprise

the microtubule [42]. Since both rates are high, the relatively small microtubule

growth velocity observed in experiments can be predicted using eq.(2.1).

Inside cells it is the complex network of +TIPs and -TIPs that regulate the

assembly and disassembly kinetics exhibited by microtubules [16–21]. The binding

of different +TIPs and -TIPs to the ends of microtubules can tailor their growth

dynamics for specific functions. For example, the kinesin-8 family motor protein

KIF18B that accumulates at microtubule plus-ends during mitosis regulates the

length of astral microtubules and correctly positions the mitotic spindle [45–47]. This

means that for a model to correctly describe the dynamics of microtubules inside

cells, it must include both how the binding of +TIPs and -TIPs affect microtubule
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growth and shrinkage, and also how this recursively affects the preferred binding

sites of the +TIPs and -TIPs. Details about a structural model that takes into

account the binding dynamics of EBs and how this influences the hydrolysis rate of

the nucleotide associated with tubulin heterodimers can be found in section 2.2.1

[48].

2.2 Microtubule +TIPs and -TIPs

Tip tracking proteins (+TIPs and -TIPs) belong to a structurally diverse group that

can be classified by the mechanism they use to accumulate specifically at the plus-

or minus-ends of microtubules. The four main groups of tip tracking proteins are as

follows (see Fig.(2.2)):

1. The first group consists of proteins that recognise the nucleotide state of tubulin.

This group includes proteins that recognise the cap of GTP-bound tubulin at

growing microtubule ends or hydrolysis intermediates such as GDP/Pi that are

associated with tubulin incorporated into the microtubule lattice. Examples of

this type of protein include the mammalian EBs (EB1, EB2 and EB3) [49–52],

and their yeast homologues (Bim1 and Mal3) [53, 54].

2. The second group consists of proteins that recognise a structural feature that

is only present at the ends of microtubule, such as the different curvature or

exposed ends of α- or β-tubulin heterodimers (at the minus- or plus-end respect-

ively). Examples of this type of protein include Stu2/XMAP215/Dis1 family

proteins that specifically localise to plus-ends [19], the mitotic centromere-

associated kinesin (MCAK) that preferentially binds to longitudinally curved

protofilaments at either microtubule end [55, 56], and calmodulin-regulated

spectrin-associated protein (CAMSAP) family proteins that specifically track

minus-ends [12, 57].

3. The third group consists of motor proteins that move processively along

microtubules faster than they can grow. The presence of additional interactions

with +TIPs and -TIPs, or with the microtubule itself, can result in the

accumulation of motor proteins at growing microtubule ends. Examples of this

type of protein include the yeast kinesins Kip2 and Kip3, and the mammalian

kinesins KIF18B and KIF1C [47, 58–61].

4. The final group consists of ‘hitchhikers’ that bind to any +TIP or -TIP that

can autonomously recognise and bind to microtubule ends. Examples of this

type of protein include the cytoplasmic linker protein CLIP170 (the first +TIP
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(3)

(1)

(2)
(4)

Figure 2.2: Schematic of +TIP binding modes — Schematic depicting how
the different types of +TIPs listed in section 2.2 interact with microtubules: EBs
(1, green), XMAP215/chTOG (2, pink), MCAK (2, purple), a kinesin such as Kip2,
Kip3, KIF18B or KIF1C (3, red), and STIM1 (4, black) with associated cargo/vesicle
(grey).

to be discovered in 1990) [14, 62, 63], and the transmembrane protein stromal

interaction molecule-1 (STIM1) found in the membrane of the endoplasmic

reticulum [15, 64].

EBs, which are the focus of this work, quickly emerged as the central hub of

the +TIP and -TIP networks since the majority of hitchhiking +TIPs and -TIPs

depend on the autonomous tip tracking capabilities of EBs [14, 15, 24, 26, 27, 64].

The following subsections will detail the structure of EBs, the characteristic binding

motifs that allow hitchhikers to tip track by binding to EBs, the important roles

these +TIPs and -TIPs have in mediating the interactions between microtubules

and other cellular components, and how the interactions between +TIPs and the

microtubule end are regulated inside cells. Although the other types of +TIPs

and -TIPs described above (see group 2 and 3) are important for different cellular

functions, the study of these proteins is outside the scope of this work.

2.2.1 End Binding Proteins (EBs)

Human EB1 was initially identified as a protein that binds to the C-terminus of

the tumour-suppressor Adenomatous Polyposis Coli (APC), which is frequently lost

in APC mutations that cause colorectal cancer [49]. Subsequently, it was shown

that mammalian EB2 and EB3, and the yeast homologues Bim1 (S. cerevisiae) and
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Mal3 (S. pombe), can also autonomously track the ends of growing microtubules

(see Fig.(2.2)) [14, 65–67]. EBs are dimers that contain an N-terminal calponin

homology (CH) domain, which confers microtubule binding [68], a flexible linker, and

the conserved α-helical coiled-coil EB homology domain that mediates the parallel

dimerisation of EBs and interactions with other +TIPs [69, 70].

High-resolution structures obtained using cryo-EM techniques revealed that

the EB calponin homology (CH) domain binds at the vertex of four tubulin heterodi-

mers, and interacts with two α- and two β-tubulin subunits [11, 38]. This means

that EBs can monitor the conformational changes that accompany the hydrolysis of

the nucleotides bound in the exchangeable sites of the two β-tubulin subunits close

to their binding site (see section 2.1) [11, 67]. It has also been shown that EBs do

not bind to the microtubule seam [11, 38]. CH domains have been identified in other

MAPs [71–75] and actin-binding proteins [24, 76–81], but these do not confer the

ability to tip track. Hence, it is the unique surface residues found in EBs and not

only the CH fold that generate specificity for the microtubule end [38, 48, 65, 67].

The exact nature of the preferred EB binding site at growing microtubule

ends remains to be identified precisely, but the majority of evidence suggests that

EBs bind preferentially to tubulin in an intermediary state between their addition

to the microtubule (where they have an associated GTP molecule) and phosphate

release following GTP hydrolysis [11, 38, 48, 67, 82]. Experiments that studied how

the binding dynamics of EBs changed when binding to microtubules containing

tubulin bound to different GTP analogues, found that EBs preferentially bind to

tubulin heterodimers that are compacted, twisted, and associated with nucleotides

that might resemble the GDP/Pi state [38]. The tubulin heterodimer untwists

following phosphate dissociation from the tubulin, resulting in a much lower EB

binding affinity [38]. Tubulin heterodimers in this compacted, untwisted, and

strained state are associated with GDP molecules and constitute the microtubule

lattice (see section 2.1) [36]. EBs have a roughly ten-fold higher affinity for growing

microtubule ends compared to the microtubule lattice (dissociation constants for

Mal3 are Kd = (31± 5.6) nM for the growing ends and Kd = (285± 43.9) nM for the

lattice [83]), and forming entire microtubules from tubulin associated with GTPγS,

or other slowly- or non-hydrolysable GTP nucleotides, results in EBs decorating the

entire microtubule with tip-like affinity [33, 67, 83].

EBs do not exhibit processive motion once bound, but instead accumulate at

growing microtubule ends as a result of their stochastic binding dynamics and passive

diffusion in the cytoplasm when unbound. It has been shown that the transient

binding dynamics of EBs at the ends of microtubules (see table 2.1) are much faster

than the rates of the conformational changes associated with GTP hydrolysis and
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Homologue τ1 τ2 τ3

EB1 (0.055±0.003) s [14] (0.290± 0.20) s [48] (0.66± 0.02) s [84]

EB3 (0.34± 0.04) s [26] 880 ms (error not
reported) [33]

-

Mal3 (0.282±0.003) s [66] (0.28± 0.02) s [83] -

Table 2.1: Average EB homologue dwell times — Average dwell times τ1,2,3

obtained from different sources (where possible) for different EB homologues. Values
obtained from different sources do not agree within error in some cases, but the
average dwell time measured by Song et al. [84] was reported to vary as a function
of the concentration of tubulin and non-labelled EB1. It was reported by Roostalu
et al. [33] that the longer average dwell time may be the result of experiments with
a lower ionic strength buffer.

phosphate release, and hence the loss of the preferred binding site of EBs (reported

values ranging from 5-10 s depending on the concentration of EBs used [14, 66, 83, 84],

1/kh = (5.0± 0.6) s using the result from [31]). The relatively slow turnover of their

preferential binding site means that once unbound and diffusing in the cytoplasm,

EBs can (re-)bind to the microtubule with a preference for the growing end. This

generates the appearance of a population of EBs exhibiting a net flux in the direction

of microtubule growth. It is possible that this phenomenon may be enhanced by the

co-operative binding of EBs that has been observed experimentally [82, 85, 86], and

by the electrostatic repulsion between the negatively charged tail of EBs and the

microtubule lattice [87].

In agreement with the hypothesis that EBs bind preferentially to tubulin

heterodimers that have an associated nucleotide in the GDP/Pi state, the distribution

of their preferred binding sites is a function of the rates associated with the GTPase

cycle and the polymerisation rate of the microtubule [48, 67, 83, 88]. This results in

bound EBs exhibiting a comet-shaped distribution at growing microtubule ends that

peaks where the probability of finding a nucleotide in the GDP/Pi state is maximal,

and that is rapidly lost during depolymerisation [20, 48, 66, 89]. The width of the

EB comet distribution is typically 1-2 microns, but it does not extend all the way to

the tip of the microtubule [20, 48, 66, 89]. As expected, the width of the EB comet

is larger at the plus-end of the microtubule, as its faster growth rate increases the

size of the underlying stabilising cap region [37, 90]. The distance between the peak

of the EB comet distribution and the extreme end of the microtubule tip increases

with increasing microtubule growth velocity, and cannot be explained by tapering

of the microtubule [48]. Instead, this is the result of EBs binding preferentially to

tubulin heterodimers with associated nucleotides that are in an intermediate state of
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Figure 2.3: Model for GTP hydrolysis — Schematic showing the four tubulin
states to be considered when modelling the dynamics of microtubule growth or
shrinkage using eq.(2.5 & 2.6) [48].

the GTPase cycle [38, 48, 67].

The relatively slow turnover of the preferential binding sites for EBs means

that EBs are used experimentally to highlight nucleotide-dependent changes at the

microtubule tip, and thus the dynamic state of the microtubule. However, EBs also

directly modify the dynamics of microtubule growth and shrinkage by facilitating an

increase in the rate of polymerisation and affecting the frequency of catastrophe events

[20, 91]. It has been hypothesised that EB binding can influence the nucleotides

in the exchangeable sites of the two β-tubulin subunits close to their binding site

and increase the rate of GTP hydrolysis or the rates of the conformational changes

associated with this process [38, 48, 83]. This would promote the formation of the

GDP-tubulin lattice. One possible mechanism for the acceleration of GTP hydrolysis

involves the proximity of the EB binding site to the exchangeable sites of β-tubulin

and the local twisting of tubulin heterodimers that coincides with EB binding

[38, 48, 82]. However, the exact mechanism behind this acceleration is currently

not well understood, since it is not known whether EB binding stimulates the local

twisting of the lattice and the hydrolysis of GTP, or whether the conformational

changes are associated with the process of GTP hydrolysis [82]. In either case, this

acceleration acts to decrease the lifetime of the preferential EB binding site and to

decrease the size of the stabilising GTP cap [48].

Using this information about the binding dynamics of EBs, the models of

microtubule structure described in section 2.1 can be expanded upon by introducing

an accelerated hydrolysis rate kEBh that is exhibited by EB-bound tubulin heterodi-

mers [48]. A schematic of this model is shown in Fig.(2.3). This model assumes

linear microtubule growth with velocity vMT (defined in eq.(2.1)), such that any
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fluctuations in the GTP-bound cap size due to the stochastic loss of tubulin subunits

from the ends of microtubules is neglected (see section 2.1). Assuming that tubulin

with associated GDP/Pi are the preferential binding sites of EBs, the hydrolysis rates

kh and kEBh in Fig.(2.3) refer to the dissociation rate of the inorganic phosphate

from GDP/Pi, which will be related to the observed hydrolysis rate that governs the

transition from GTP to GDP. The average rate that the preferred binding sites of

EBs are formed from tapered microtubule tip structures is defined as kp.

It is useful to study how the probabilities of bound tubulin being in the

different states shown in Fig.(2.3) vary in the rest (comoving) frame of the growing

microtubule end. For example, this requires that Ar(x, t) = Al(x− vMT t, t) in the

rest and lab (stationary) frames respectively, such that,

∂Ar(x, t)

∂t
=
dAl(x− vMT t, t)

dt
= −vMT

∂Al(x− vMT t, t)

∂x
+
∂Al(x− vMT t, t)

∂t

= −vMT
∂Ar(x, t)

∂x
− kpAr(x, t),

(2.5)

where the total derivative takes into account time dependence due to hydrolysis

and relative motion with respect to the growing microtubule end. The remaining

tubulin states in Fig.(2.3) can be described mathematically by the coupled differential

equations,

∂B(x, t)

∂t
= −vMT

∂B(x, t)

∂x
+ kpA(x, t)− (kon[EB] + kh)B(x, t) + koffE(x, t),

∂E(x, t)

∂t
= −vMT

∂E(x, t)

∂x
+ kon[EB]B(x, t)− (koff + kEBh)E(x, t),

(2.6)

where the rest frame subscript label is implied. Solutions to the set of equations

defined in eq.(2.5 & 2.6) have been calculated in sections 4.4 & 7.1.2 in this work

in order to simulate the binding dynamics of cargo to microtubules with realistic

structures. These solutions have previously been shown to fit experimental intensity

distributions obtained using fluorescently-tagged EBs [48].

Dimerisation has been shown to not be required for tip tracking [20, 84],

however monomeric EB constructs exhibit reduced accumulation at microtubule ends

[20, 83]. It has also been shown that EBs are obligatory dimers, and that they remain

dimeric at very low concentrations (0.5 nM) [92]. As well as a decreased binding

rate, monomeric EBs exhibit a much smaller average dwell time ((0.16 ± 0.02) s)

than dimeric EBs ((0.60± 0.03) s under the same experimental conditions), and it

has been hypothesised that each of the two CH domains in dimerised EBs contribute
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to microtubule binding [84]. In this case, dimerisation could act to strengthen the

interaction between EBs and growing microtubule ends [84]. The linker domains

connecting the two CH domains of EBs also appear to be important for tip tracking,

as it is thought that EBs are rearranged to a curved conformation with reduced

binding affinity for growing microtubule ends upon the phosphorylation of these

linker domains [84].

The dimerisation of EBs generates a highly conserved surface patch that

contains a hydrophobic cavity and a polar rim, and that acts as a binding site for

other +TIPs [15, 69]. This unique domain is called the end-binding homology (EBH)

domain [15, 69]. Also at the C-terminus is an acidic tail that contains the highly

conserved EEY/F sequence motif [10, 93, 94], and it is the combination of the EBH

domain and the EEY/F motif that enables EBs to interact with so many different

+TIPs and recruit them to growing microtubule ends as part of the complex and

dynamic +TIP interaction network.

Despite having the shared characteristic that all known EBs track growing

microtubule ends, there are still some notable distinctions between the different types.

For example, experiments have indicated that EB1, EB2 and EB3 bind with different

affinities to growing microtubule ends and do not colocalise [67]. Importantly, it

has also been shown that EB1 can diffuse while bound to the microtubule, which

can facilitate its accumulation at microtubule ends [86]. Values of the measured

diffusivity vary in the range 0.1-0.4 µm2 s−1 depending on the salt concentration and

the GTP homologue associated with the tubulin heterodimers used in the experiment

[86]. A small increase in the salt concentration increased the diffusivity exhibited by

EB1, which suggests that the interaction between EB1 and the microtubule has an

electrostatic component [86]. Increasing the diffusivity of EB1 decreased its average

dwell time, which implies that decreasing the strength of the interactions between

EB1 and the microtubule (decreasing the free energy change associated with binding)

increases the ability of EB1 to move whilst bound, but also increases its unbinding

rate [86]. A similar inverse relationship between bound diffusivity and dwell time

has been observed for other MAPs, such as Tau protein [95].

It has been shown that the diffusive motion of EB1 facilitates its accumulation

at the flagellar tip, and that the exhibited diffusivity decreased from 1.06 µm2 s−1

(error not reported) to just (0.063 ± 0.033) µm2 s−1 after reaching the tip region

[96]. This reduction in diffusivity has the effect of increasing the retention time of

EB1 at the microtubule end. It has also been reported that EB1 has a moderate

affinity for GTP in solution, and that this binding triggers the dissociation of EB1

to a monomeric state [97]. This could provide a mechanism for the regulation of its

tip tracking in response to the local GTP concentration.
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Due to the limited number of preferrential binding sites for EBs at growing

microtubule ends, competition has been observed between the different types of

mammalian EBs [67]. Possibly as a result of this, it has also been observed that the

three types of mammalian EBs exhibit different affinities for tubulin heterodimers

associated with nucleotides in different states, such that EB2 can out-compete EB1

and EB3 at positions further from the microtubule end (where there is a lower density

of GDP/Pi nucleotides) and vice versa [67]. The varying properties of the different

types of EBs suggest that they must have distinct functions inside cells. Examples

of this include that the +TIPs CLIP-115, CLIP-170, and MCAK readily bind to

EB1 and EB3 proteins, but exhibit a much lower affinity for EB2 proteins [94, 98],

and that only EB1 and EB3 proteins have been shown to suppress the microtubule

catastrophe frequency in vivo [20].

2.2.2 Hitchhiking on EBs

The vast majority of +TIPs track growing microtubule ends by interacting with

EBs (see Fig.(2.2)). These hitchhikers either bind with a cytoskeleton-associated

protein Gly-rich (CAP-Gly) domain to the acidic C-terminal tail of EBs, or use

SxIP or LxxPTPh motifs to bind the hydrophobic pocket of their EBH domains

[15, 63, 99, 100]. Table 2.2 summarises the key interactions between EBs and other

proteins.

CAP-Gly domains are located at the N-termini of the cytoplasmic linker

proteins CLIP-170 and CLIP-115 and the dynactin subunit p150glued [93, 99].

The globular CAP-Gly fold forms a hydrophobic cavity with a highly conserved

GKNDG sequence motif and multiple conserved Gly residues [93, 101], and this

cavity can bind to the C-terminal EEY/F sequence motifs of EBs, α-tubulin and

CLIP-170 [10, 14, 93, 94, 102]. Binding to α-tubulin alone would result in a uniform

binding pattern along the microtubule, hence it is the presence of the EB comet

that stimulates the tip tracking of proteins possessing CAP-Gly domains by locally

increasing the concentration of EEY/F motifs at the microtubule end. Similar to

the CH domain of EBs, it has been shown that a single CAP-Gly domain and its

adjacent Ser-rich region are sufficient for microtubule plus-end tracking [103]. It has

been observed that CLIP-170 possesses a further C-terminal cargo-binding domain,

that contains two tandemly repeated zinc knuckle metal-binding motifs, as well as a

C-terminal EEY/F motif, both of which can be used to interact with other +TIPs

[102]. Functionally, CLIPs are rescue factors that increase the frequency of rescue

events [17].

The EBH domain, which is generated during the dimerisation of EBs, acts as

a binding site for +TIPs that contain the the Ser-x-Ile-Pro (SxIP, where x is any
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Domain or Motif Found In... Interacts With...

CH The N-terminal half of EBs
[11, 38]

The microtubule

EBH The C-terminal quarter of
EBs [15, 69]

The SxIP and LxxPTPh
motifs

EEY/F The C-termini of EBs, α-
tubulin, CLIP-170 [10, 93, 94]

The CAP-Gly domain

CAP-Gly The N-terminal quarter
of CLIP-170, CLIP-115,
p150glued, etc. [93, 99]

The EEY/F motif

SxIP APC, CLASP1/2, MACF,
MCAK, SLAIN1, STIM1, etc.
[15, 69, 100]

The EBH domain

LxxPTPh Kar9, MACF1, SLAIN1, etc.
[100]

The EBH domain

Table 2.2: +TIP interaction modes — The key interaction modes of the +TIP
network. EBs act as the central component of the +TIP network due to their ability
to autonomously track growing microtubule ends whilst also binding to proteins
possessing at least one CAP-Gly domain or SxIP/LxxPTPh motif.

amino acid) motif in an intrinsically disordered region rich in basic, Ser and Pro

residues [15, 69]. The SxIP motif has been identified in a large number of structurally

diverse tip tracking proteins, including the adenomatous polyposis coli (APC) tumour

suppressor, MCAK, and the transmembrane protein stromal interaction molecule-1

(STIM1) [15, 27]. Replacing the Ile-Pro residues in the SxIP motif with Asn-Asn

abrogated the ability of MCAK and STIM1 to bind to EB1 proteins and accumulate

at microtubule plus-ends [15]. A proteome-wide screen for mammalian plus-end

tracking proteins that contain an SxIP motif, using streptavidin pull-down assays

with EB1, EB2 and EB3 alongside a computational search, found > 800 potential

EB hitchhikers, of which 20/30 tested candidates were experimentally confirmed

as novel +TIPs [27]. Although these proteins cannot bind to the microtubule

end autonomously, hitchhiking can improve their ability to carry out important

cellular functions. For example, the tip tracking of STIM1 enables the tip-mediated

spreading of the endoplasmic reticulum [28, 64, 104]; the enhanced recruitment of

the polymerase chTOG (via SLAIN2) and the depolymerase MCAK increases their

efficiency at regulating the dynamics of microtubule growth and shrinkage [26, 105];

and the tip tracking of MACF and APC mediates crosstalk between microtubules

and actin, including the guidance of microtubule growth along actin bundles and the

nucleation of actin filaments [106–108].
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Another example of proteins that tip track using SxIP motifs are the CLIP-

Associating Proteins (CLASPs) CLASP1 and CLASP2 [15, 109]. CLASPs have been

identified as rescue factors that accumulate at growing microtubule plus-ends near

the cell periphery and promote the pausing of microtubule growth [109]. It has

been hypothesised that this is the result of CLASP dimers also possessing a pair

of sequences similar in structure to Tumor Overexpressed Gene (TOG) domains,

which can bind to tubulin heterodimers in solution [21]. CLASP2M, derived from

the central section of CLASP2, contains two tandemly repeated SxIP motifs, and

replacing the Ile-Pro residues in either of these motifs with Ser-Ser residues does not

significantly reduce their binding to EB1 in GST pull-down experiments, but does

reduce their tip accumulation [15]. Replacing the Ile-Pro residues in both of the

SxIP motifs of CLASP2M (simultaneously) results in a significant reduction in its

ability to bind to EB1, and removes its ability to accumulate at growing microtubule

ends [15]. This suggests that the presence of multiple EB binding motifs enhances

the tip tracking capability of +TIPs.

The dimerisation of short residue sequences from APC and MACF also show

enhanced tip accumulation compared to their monomeric versions [15]. This agrees

with the result presented in section 2.2.1 that stated that the average dwell time

and binding rate of monomeric EBs are both smaller than the equivalent values for

dimeric EBs. This result will be discussed quantitatively in section 2.3.

The ability to hitchhike on EBs is also conferred by the LxxPTPh motif

(where x is any amino acid and h is any hydrophobic amino acid), which binds

to an overlapping region in the hydrophobic groove of the EBH domain [100]. In

contrast to the binding of proteins containing CAP-Gly domains or SxIP motifs, the

acidic C-terminal tail of EBs is not required when binding to proteins containing an

LxxPTPh motif [10, 15, 26, 100, 102]. However, the context of a disordered, basic

region is required for robust tip tracking of LxxPTPh proteins, which is similarly

required for an SxIP motif to confer the ability to tip track [100]. The first +TIP

found to tip track using this interaction was Kar9 from budding yeast, and other

+TIPs, such as MACF1 and SLAIN1, use both LxxPTPh and SxIP motifs to tip

track [100].

The CH, EBH and CAP-Gly domains, and the EEY/F, SxIP and LxxPTPh

motifs, mediate interactions between +TIPs, -TIPs and the microtubule, and contrib-

ute to the hierarchical interaction network that can be observed experimentally at

microtubule ends [10, 14, 15, 100, 110]. A simple example of this hierarchical inter-

action network involves the plus-end tip tracking of the dynactin subunit p150glued,

which facilitates the loading of cargo onto dynein (the minus-end directed motor

protein) when it is positioned at the microtubule plus-end [110, 111]. As well as
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interacting with the EEY/F motif of EB1 using its CAP-Gly domain, the β2-β3

loop in the CAP-Gly domain of p150glued is specifically structured to interact with

the EBH domain of EBs [10]. These interactions mean that p150glued can tip track

by hitchhiking on EBs [110, 112]. However, EBs are necessary but not sufficient for

the tip tracking of p150glued in vivo, as p150glued is out-competed for EB binding

by the large number of proteins that possess SxIP motifs [110, 112].

Although the CAP-Gly domain and the SxIP motif primarily bind to different

sites on EBs, both require the acidic tail of EBs for efficient tip tracking and interact

(in some way) with the EBH domain [10, 15]. In addition to this, a region of the acidic

tail of EBs becomes structured following the binding of a protein possessing an SxIP

motif [15], hence p150glued is in direct competition for EB binding with proteins

possessing SxIP motifs. In contrast to p150glued, CLIP-170 can still hitchhike

robustly by out-competing proteins that possess SxIP motifs, possibly because it

possesses two tandem CAP-Gly domains [99, 110]. CLIP-170 also contains two zinc

knuckle domains and a C-terminal EEY/F motif that can bind to the CAP-Gly

domain of p150glued [102]. This allows CLIP-170 to mediate the recruitment of

p150glued to the microtubule end in vivo [110, 112].

2.2.3 +TIPs and -TIPs Mediate the Attachment of Microtubules

to Other Cellular Components

Interactions between tip tracking proteins and microtubule ends can confer a wide

range of different effects on the dynamics of microtubule growth and shrinkage, as

described in sections 2.2.1 & 2.2.2. Similarly, once localised at the ends of growing

microtubules, +TIPs and -TIPs are in the ideal location to mediate the interactions

between microtubules and other cellular components.

Microtubule minus-ends often remain attached to their nucleation sites, for

example the centrosome in mammalian cells, where there is an enrichment of ‘capping

factors’ such as γ-tubulin [5, 113–116]. CAMSAPs protect free, non-centrosomal

microtubule minus-ends from the action of depolymerases [12, 75, 117–119], but they

also protect microtubules attached to the Golgi via GM130, AKAP450, myomegalin,

EBs, and CLASPs [120–122]. As a result, the majority of microtubule minus-ends

are not very dynamic in vivo, and rarely interact with cellular components other

than the microtubule-organising centre (MTOC).

In contrast, microtubule plus-ends are much more dynamic and make contacts

as they pass other subcellular structures during periods of growth and shrinkage.

An example of this is the process of microtubule growth-dependent endoplasmic

reticulum (ER) remodelling, where it has been shown that interactions between the

EBH domain of EBs and the SxIP motif of ER-bound STIM1 proteins generate
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pulling forces that extend ER tubules [15, 28, 64]. Tubulation has also been observed

to occur when the ER attaches to depolymerising microtubules, but this interaction

is most likely to be the result of interacting with bending protofilaments instead of

interacting with EBs [28, 123]. Although outpaced by the motor-mediated tubulation

mechanism, the existence of a second tubulation mechanism mediated by EBH-SxIP

motif interactions increases the probability of tip-attachment complexes (TACs)

forming [28]. Similar experiments were also able to show that EBH-SxIP interactions

are sufficient to stimulate the tip tracking transport of quantum dots (Qdot705-

streptavidin (Thermo Fisher) [124]) [28, 29] and actin filaments [29, 85]. A simple

1D model was developed to describe ER tubulation as a result of the interactions

between EBs and STIM1 [28], based on a previously published model describing the

adhesion of large vesicles to a substrate [125]. Both of these models will be described

in detail in section 2.3.4.

Transient contacts between microtubule ends and actin fibres can lead to the

guidance of growing microtubules towards specific sites at the cell cortex. For example,

the bifunctional spektraplakins MACF1/ACF7 and Dystonin, that contain N-terminal

actin-binding CH domains, C-terminal SxIP motifs, and Gas2-related microtubule-

binding domains, can interact with growing microtubule ends by hitchhiking on EB1

and EB3 and guide the microtubules along actin filaments [24, 106, 126]. It has been

known for a long time that dynamic microtubule plus-ends repeatedly target focal

adhesions and regulate their turnover [127]. Microtubule plus-ends are captured

and stabilised at cortical sites via interactions between EBs and complexes that

include a wide range of different +TIPs, including CLASPs, APC, spektraplakins,

CLIP-170, and SKAP [22, 126, 128–131]. Links between these complexes and focal

adhesions can facilitate the kinesin-driven delivery of regulatory proteins [132, 133],

and EB2 has also been implicated in delivering specific regulators to adhesion sites

[134, 135]. The formation and stabilisation of attachments to cortical sites allows for

the targeted delivery of intracellular cargo to and from the attachment sites.

Coupling dynamic microtubules to the cell cortex or to mitotic chromosomes

also generates pushing and pulling forces important for the positioning of the mitotic

spindle and the segregation of chromosomes [25, 74, 136, 137]. While dynein couples

microtubules to the cell cortex and facilitates pulling, CLASP1 is required to ensure

an end-on attachment at the cortex [136, 137]. A diverse set of specific kinetochore

proteins mediate the attachment of mitotic chromosomes to dynamic microtubule

ends, which results in their congression to the metaphase plate and their separation

during anaphase [138–140].
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2.2.4 Regulation of +TIP and -TIP Interactions

In order to complete this discussion about the +TIP and -TIP networks, it is also

important to consider how the effects of each family of proteins are regulated in vivo.

The main mechanisms that influence the composition of these networks are tissue-

specific expression and post-translational modifications, with the latter allowing

spatio-temporal control. An alternative regulation pathway is autoinhibition, which

is exhibited for example by CLIP-170 [102, 141].

The important role of EBs in the +TIP and -TIP interaction networks,

and their different binding affinities for microtubules and behaviour once bound

(see section 2.2.1), means that their expression pattern inside cells will have a

significant impact on the network composition. It has been found that EB1 tends

to be ubiquitously expressed, whereas EB3 is highly upregulated in neurons and

muscle, and EB2 is downregulated in differentiating epithelia and myoblasts but

overexpressed in invasive cancer cells [51, 142–144]. As well as this, cell cycle-

dependent phosphorylation also regulates EB binding to microtubules. For example,

microtubule binding of EB2 is reduced following the phosphorylation of multiple sites

near its N-terminus (in its flexible linker region) by Aurora B and CDK1 at the onset

of mitosis, and this is necessary to ensure proper kinetochore microtubule dynamics

and mitotic progression [145]. Similarly, EB3 and Bim1 can be phosphorylated by

Aurora B in their linker region [146, 147], and the phosphorylation of Bim1 also acts

to significantly reduce its microtubule binding affinity [146]. The phosphorylation of

EB3 in the spindle midzone is thought to promote midbody microtubule stability,

whereas dephosphorylated EB3 at the cell cortex is crucial for the re-spreading of cells

during mitotic exit [147]. Although it cannot tip track, it has been shown that MAP1B

can inhibit EB binding to microtubule plus-ends [148]. Since the lattice binding

of MAP1B is regulated by glycogen synthase kinase-3β (GSK-3β) phosphorylation

[149], this is an example of an indirect pathway in which phosphorylation mediates

the composition of the +TIP network.

Additionally, phosphorylation of the basic and Ser-rich region surrounding

the SxIP motif reduces its binding affinity for EBs [15]. This has been demonstrated

for CLASPs and APC, which are phosphorylated by GSK-3β [150, 151], and this

phosphorylation results in a roughly five-fold reduction in their binding affinity [15].

Overexpression of GSK-3β in neurons results in the unbinding of CLASPs from the

microtubule and the inhibition of axonal growth, whereas a low concentration of

GSK-3β triggers lattice-binding of CLASPs and leads to overgrowing microtubules

[151]. Likewise, APC promotes microtubule growth in the absence of GSK-3β,

and dissociates when phosphorylated [150]. Since both CLASPs and APC track

the growing plus-ends of pioneer microtubules within the growth cones of neurons,
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neuronal pathfinding relies on +TIP regulation by phosphorylation [150–152]. The

regulation of +TIP interactions by phosphorylation also underlies changes in the

dynamics of microtubule growth and shrinkage in different stages of the cell cycle.

For example, during interphase the interaction between SLAIN2, EB1 and chTOG is

essential for persistent microtubule assembly, but this interaction is inhibited during

mitosis by CDK1-mediated phosphorylation [105]. The activity of CAMSAP2 is also

regulated by phosphorylation, which leads to its dissociation from microtubules in

prophase [119].

The activity of +TIPs can also be regulated by the post-translational modifica-

tion of tubulin. A prime example of this is the correlation between the detyrosination-

tyrosination cycle of the C-terminal EEY tail in α-tubulin and the binding of proteins

with CAP-Gly domains [102, 153, 154]. The C-terminus of α-tubulin can be modified

by Vasohibins that remove the terminal Tyrosine residue from tubulin heterodi-

mers incorporated into microtubules, and by tubulin tyrosine ligase that re-adds

Tyrosine onto free tubulin heterodimers in solution [154–157]. This means that

freshly assembled microtubules usually contain tyrosinated tubulin, whereas older,

stabilised microtubules accumulate modifications (including detyrosination). The

detyrosination of tubulin reduces the binding affinity of proteins that bind to mi-

crotubules using CAP-Gly domains [14, 102, 153]. For example, p150glued recruits

dynein/dynactin to tyrosinated microtubules, and this is one of the mechanisms that

biases the loading of the major minus-end directed motor protein to the plus-ends of

microtubules [158].

2.3 Modelling Protein Kinetics

Studying the binding kinetics of systems with multiple binding sites and the dynamics

they exhibit once bound requires both discrete (microscopic) and coarse-grained

(macroscopic) modelling approaches. The effects of hydrodynamic flows are often

ignored when studying the motion of proteins inside cells, hence the motion of these

proteins can be split according to the time they spend freely diffusing in solution

(in 3D) and the time they spend bound to a substrate. Once bound to a substrate,

proteins either remain stationary or exhibit diffusive or propagative motion while

tethered either electrostatically or physically to its surface. Different aspects of

protein dynamics can be studied either at the continuous level, for example when

considering the average motion exhibited by a population of diffusing proteins, or at

the discrete level, for example when describing how proteins interact with a substrate

via distinct ligand-receptor interactions. It is the aim of this work to study the

dynamics of intracellular vesicles bound to microtubules both at the continuum and
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discrete levels, and this requires an understanding of the theory at both levels.

2.3.1 Brownian Motion

Brownian motion is the term used to describe the stochastic motion of a body

as a result of its bombardment by a huge number of microscopic particles. Even

those bodies that propagate with a net velocity exhibit Brownian behaviour at short

timescales. At thermal equilibrium, the equipartition theorem links the root-mean-

square velocity of a particle to its temperature, and hence at non-zero temperatures

the particles in a system will exhibit random fluctuations in their dynamics. A large

number of mathematical methods have been developed to study the stochastic motion

of such particles, and the following section will explain the approaches that have

been used or developed upon in this work. Although all of the following derivations

have equivalent forms for 3D dynamics, it helps with understanding to first consider

the 1D case. For detailed reviews of all aspects of Brownian dynamics see [159–161].

A Langevin equation can be used to describe the motion of individual particles,

and can be derived by applying Newton’s second law of motion to a body of constant

mass m that experiences a Stokes’ drag force opposing its motion and that is subject

to a stochastic force Fs(t). Such an equation can be written [159–161],

m
dv(t)

dt
= −αv(t) + Fs(t), (2.7)

for a 1D system, where α is a constant that depends on the viscosity of the medium

and the size of the particle, and v(t) is the particle’s time dependent velocity. The

stochastic force term in eq.(2.7) represents the effect of the large number of collisions

between the body and other microscopic particles, which results in Fs(t) giving a

different result each time it is evaluated. This means that only the average behaviour

of the system is deterministic, relying on the relations[159–161],

〈Fs(t)〉 = 0,

〈Fs(t)Fs(t′)〉 = 2αkBT δ(t− t′),
(2.8)

where δ(t− t′) is the delta-dirac function representing delta-correlated white noise.

In order for the relations in eq.(2.8) to be valid, the particles that generate the

stochastic force acting on the body must be much smaller than the body itself. Since

each EB has a radius of gyration of 4.52 nm (see table 7.1) [87], which is more than

an order of magnitude larger than the radius of a single water molecule (∼ 2.75 Å

[162]), eq.(2.7 & 2.8) can be used to approximate their dynamics. For biological

systems it is also common to work in the overdamped limit, where it is assumed that

the timescales being considered are t� m/α (the timescale that governs relaxation
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of velocity fluctuations according to eq.(2.7)), since the masses and sizes of individual

particles are very small [159]. This relaxation timescale can be approximated as of

the order 10−12 s for an individual EB (assuming a molecular mass of 45 kDa [51], a

system temperature of 37 oC, and that the cytoplasmic viscosity is approximately

equal to that of water at 37 oC (see section 7.1.1)). This allows the inertial term in

eq.(2.7) to be neglected. One example of the Langevin equation being used to study

biological systems is in the work by Bhat et al. [163], where it is used to study the

transport of vesicles by multiple motor proteins that are bound to a substrate.

In the overdamped limit, a general Langevin equation has the form [159, 161],

dx(t) = f(x(t))dt+ g(x(t))dW (t), (2.9)

where dx(t) is the infinitesimally small change in position that occurs within the time

dt. The first term in eq.(2.9) describes the deterministic component of a particle’s

motion due to its net velocity, and the second term describes the stochastic component

of its motion resulting from thermal fluctuations. The factor dW (t) in eq.(2.9)

describes a mathematical construct called a Wiener process, and takes the place

of the stochastic force term in eq.(2.7) such that dW (t) = (dW (t)/dt)dt = Γ(t)dt,

where Γ(t) is the stochastic component of Fs(t) [159]. This removes the unphysical

delta-correlation of fluctuations in the stochastic force term presented in eq.(2.8).

Important relations involving the Wiener process include w(dt) = W (t+dt)−W (t) =∫ t+dt
t dW (t′) ∼ N (0, dt), where N (0, dt) is the normal distribution with mean 0 and

variance dt, and [159–161],

w(0) = 0

〈w(t)〉 = 0

〈w(t)w(t′)〉 = min(t, t′).

(2.10)

Solving eq.(2.9) requires integrating both sides of the equation between the

times t and t+dt (where dt� 1 s is a small timestep), corresponding to the positions

x(t) = x0 and x(t+ dt) = x0 + dx(t) respectively. This can be achieved by taking

the Taylor expansion of f(x(t)) and g(x(t)), assuming small displacements [159],

h(x(t′)) ' h(x0) +
∂h(x(t′))

∂x(t′)

∣∣∣∣
x0

dx(t′) + ...

' h(x0) + h′(x0)(x(t′)− x0),

(2.11)

where the second line truncates the series at O(dx(t′)). Using eq.(2.11), an integral of

eq.(2.9) can be solved iteratively up to O(dt) to give the moments of the displacement

distribution [159],
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〈x(t+ dt)− x0〉 = f(x0)dt+ g(x0)g′(x0)

〈∫ t+dt

t
w(t′)dW (t′)

〉
, (2.12)

〈(x(t+ dt)− x0)2〉 = (g(x0))2dt. (2.13)

The second term in eq.(2.12) cannot be solved using normal calculus methods, as

it depends on the point in time at which the Wiener process term is evaluated.

Discretising the second term in eq.(2.12) generates the equation [161],

〈∫ t+dt

t
w(t′)dW (t′)

〉
=

〈
lim

∆τ→0

N−1∑
i=0

[w(β τi+1 + (1− β)τi) (w(τi+1)− w(τi))]

〉
,

(2.14)

where ∆τ = τi+1−τi, τ0 = t, τN = t+dt, and β governs the time at which the Wiener

process term is evaluated. The two most common conventions for solving eq.(2.14)

are β = 0 (the Îto convention) or β = 1/2 (the Stratonovich convention) [161].

Importantly, the Îto convention does not rely on any future information about the

Wiener process term at the point of evaluation, and results in 〈
∫ t+dt
t w(t′)dW (t′)〉 = 0,

whereas the Stratonovich convention instead results in 〈
∫ t+dt
t w(t′)dW (t′)〉 = dt/2

[159, 161]. These conventions therefore change the definition in eq.(2.12), but as it

will be shown next, not necessarily the population-level dynamics of the system.

In order to define the pair of functions f(x(t)) and g(x(t)) such that eq.(2.9)

correctly describes the motion of an individual particle in a given system, it is

necessary to consider the time evolution of the probability distribution describing

the population of particles in a system. The Chapman-Kolmogorov equation can

be used to define the probability of a particle being at position x at time t, P (x, t),

using the equation [159–161],

P (x, t+ dt) =

∫ ∞
−∞

(Q(x, t+ dt|x′, t)P (x′, t)) dx′ (2.15)

where Q(x, t + dt|x′, t) is the transition probability of the particle moving from

position x′ to position x in a time dt. This equation can be re-arranged by defining

the small displacement ∆ = x− x′ to be of the form [159–161],
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P (x, t+ dt) =

∫ ∞
−∞

[ ∞∑
n=0

((
(−∆)n

n!

)
∂n

∂xn
(Q(x+ ∆, t+ dt|x, t)P (x, t))

)]
d∆

=
∞∑
n=0

[
(−1)n

∂n

∂xn

((
Mn(x, t, dt)

n!

)
P (x, t)

)]
,

(2.16)

where Mn(x, t, dt) =
∫∞
−∞(∆nQ(x + ∆, t + dt|x, t))d∆ are the moments of the

displacement distribution. By truncating the series in eq.(2.16) at its third term,

and taking the limit dt→ 0, a general Fokker-Planck equation can be defined that

describes the time evolution of P (x, t) [159–161],

∂P (x, t)

∂t
= − ∂

∂x
(V (x, t)P (x, t)) +

∂2

∂x2
(D(x, t)P (x, t)) , (2.17)

where M1(x, t, dt) ' V (x, t) dt and M2(x, t, dt) ' 2D(x, t) dt are the net velocity and

diffusivity terms respectively (as they correspond to the first and second moments of

the displacement distribution).

The definitions in eq.(2.12 & 2.13) are directly related to the velocity and

diffusivity terms in eq.(2.17), as both are linked to the moments of the displacement

distribution. The same form of the Fokker-Planck equation can be obtained using

either the Îto or Stratonovich conventions, but this will require different forms of

f(x(t)) and g(x(t)) in the Langevin equation. It can be derived that a particle

diffusing in 1D exhibits a mean-squared displacement that evolves linearly in time,

such that M2(x, t, dt) = 〈(x(t+ dt)− x0)2〉 = 2Ddt [159–161], and this means that

g(x(t)) =
√

2D when using the Îto convention. Assuming that these particles also

exhibit a position-independent drift velocity v, such that M1(x, t, dt) = 〈x(t+ dt)−
x0〉 = v dt, the most common forms of the Langevin and Fokker-Planck equations

can be derived,

dx(t) = v dt+
√

2DdW (t), (2.18)

∂P (x, t)

∂t
= −v∂P (x, t)

∂x
+D

∂2P (x, t)

∂x2
, (2.19)

which describe both the stochastic dynamics of an individual particle, and the

deterministic, population-level dynamics of the whole system of particles.

In the case where g(x(t)) is position-dependent, eq.(2.12) includes an ad-

ditional drift term when using the Stratonovich convention for solving stochastic

integrals. Interestingly, it can also be shown that both the Îto and Stratonovich

conventions result in a net flux of individual particles towards regions of decreasing
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g(x(t)), which creates a population gradient [164].

Whereas eq.(2.18) can only be approached analytically by taking averages, it

is possible to solve eq.(2.19) using Fourier transforms in its current form. However,

even this calculation becomes difficult for particles with position dependent velocities

and diffusivities. Similarly, in order to fully understand the position dependence of

the probability distribution P (x, t) in a physical system, information about where

and how frequently particles bind to and unbind from the domain is also required.

2.3.2 Binding Dynamics

The kinetics of binding events can be modelled in many different ways, such as

by using energy considerations or by using differential equations to describe how

the concentrations of different particles vary as a function of time. For example, a

reversible binding reaction between ligands, L, and receptors, R, to create a complex,

C, can be described using the schematic NL+R
 C (where N is the valency of

the receptor), or using the equation [160, 165],

dC(t)

dt
= kaL(t)NR(t)− kdC(t), (2.20)

where L(t), R(t) and C(t) are the time dependent concentrations of the corresponding

particles, and ka and kd are the association and dissociation rates of the complex

respectively.

In biologically relevant systems, it is usually poignant to assume that L(t) =

Ltot−NC(t) ' Ltot and R(t) = Rtot−C(t), since Ltot � Rtot [165]. Hence, when the

reaction described in eq.(2.20) reaches steady-state, the concentration of complexes

can be described by C̄ ' (LNtotRtot)/(L
N
tot + (kd/ka)), such that increasing the ratio

kd/ka decreases C̄. Similarly, a small fluctuation in the concentration δC(t) will result

in an equivalent change in the concentration of receptors available to bind δR(t) =

−δC(t). This means that the concentration of complexes will decay back towards its

equilibrium value according to the distribution δC(t) ' δC(0) exp(−(kaL
N
tot + kd)t).

The differential equation defined in eq.(2.20) must be adapted to include

biologically relevant effects, such as competitive, cooperative, or non-specific binding,

the diffusive dynamics of the ligands and/or receptors, the effects of electrostatic

interactions, hydrodynamic effects, and the full treatment of valency in the system.

Consider a vesicle that has η distinct binding sites on its surface, as depicted in

Fig.(2.4a) [165]. Although the binding of any single one of those binding sites to a

receptor on the substrate follows eq.(2.20) with N = 1 (after taking into account the

number of binding sites and receptors available instead of their concentrations), the

binding of subsequent binding sites will depend on the vesicle’s physical configuration,
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(a)

(b)

(c)

Figure 2.4: Schematic of vesicle binding dynamics — Schematic showing how
the conformation of a vesicle can affect the binding dynamics of binding sites on
its surface. (a) The vesicle has η = 8 binding sites available to bind to a substrate.
(b) The linkers connecting the binding sites to the vesicle have the freedom to move
within the constraints of a finite flexibility and bending modulus. (c) Once bound to
the substrate with one of its binding sites, only N − 1 = 2 of the vesicle’s binding
sites are still able to bind to the substrate in the future (represented by the red box).
N may vary in time as the conformation of the vesicle and its binding sites varies.

as shown in Fig.(2.4b,c). It can be assumed that once bound to the substrate only

N − 1 of the other binding sites are in positions from which they can bind, where

N ≤ η is the number of simultaneously available binding sites (see Fig.(2.4c))

[165]. In a biologically relevant system, N(t) will vary as a function of time as the

conformation of the vesicle and its binding sites will affect whether or not specific

binding sites are able to bind within a time ∆t. Hence, N(t) will be a function of

the flexibility and bending modulus of the linkers connecting the binding sites to the

vesicle, as well as the ability of the linkers to diffuse on the surface of the vesicle and

the ability of the vesicle to diffuse in the bulk.

For the simplified case where N does not vary as a function of time, and

where any factors associated with the conformation of the vesicle and its binding

sites are included in the relevant binding and unbinding rates, the binding dynamics

of the vesicle obey the system of equations [160, 165],

dC1(t)

dt
= k0,1C0(t)− (k1,2 + k1,0)C1(t),

dCn(t)

dt
= kn−1,nCn−1(t) + kn+1,nCn+1(t)− (kn,n−1 + kn,n+1)Cn(t),

dCN (t)

dt
= kN−1,NCN−1(t)− kN,N−1CN (t),

(2.21)
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where k0,1 is the initial association rate of the vesicle to the substrate, ki,j is the

transition rate from a state with i of the vesicle’s binding sites bound to receptors

on the subtrate to a state with j of them bound, and Cn(t) is the concentration of

complexes in a state with n of their binding sites bound. It has been hypothesised

that ki,i+1 � k0,1 ∀i > 0, since the binding sites are held closer to the substrate on

average once the vesicle is tethered to the substrate (at least one binding site is bound,

see section 2.3.3) [166]. It is more intuitive to interpret eq.(2.21) as a linear algrebra

equation of the form ∂C(t)/∂t = κC(t), where C(t) = (C1(t), C2(t), ..., CN (t)) and

κ is a matrix containing the transition rates between states. This formulation has

been used to approach similar systems of equations in sections 4.2, 4.4 & 5.2.1.

The steady-state values for C̄n corresponding to eq.(2.21) can be calculated

as equal to [160, 166],

C̄n = C̄0

n−1∏
i=0

(
ki,i+1

ki+1,i

)
(2.22)

where C̄0 is the free bulk concentration of the vesicle. This can then be converted to

the probability Pn of a vesicle being bound to a substrate with n of its binding sites,

Pn =

[
1 +

N−1∑
n=0

n∏
i=0

(
ki,i+1

ki+1,i

)]−1 n−1∏
i=0

(
ki,i+1

ki+1,i

)
, (2.23)

using the normalisation condition
∑N

n=0 C̄n = 1. Further renormalisation of eq.(2.23)

using the transformation Pn → Pn/(1− C̄0) ∀n > 0 neglects the probability of the

vesicle being in the n = 0 state. For example, for proteins that move with a velocity

vn when bound to a microtubule with n of their binding sites, the average velocity of

the proteins can be calculated as 〈v〉 =
∑N

n=0 (vn Pn), whereas the average velocity

they exhibit while bound is equal to 〈vb〉 =
∑N

n=1 (vn (Pn/(1− C̄0))) [166].

Since a vesicle described by eq.(2.21) does not unbind from the substrate until

all of its binding sites have individually unbound, it is expected that the total time

that a vesicle spends bound to the substrate increases with increasing N [166, 167].

This agrees with the reduced average dwell times observed for monomeric EBs

compared to their dimerised versions [84]. The effective rate of unbinding keffoff that

satisfies the equation k0,1P0 = keffoff (1− P0) can be found to be equal to [166, 167],

keffoff = k1,0

[
1 +

N−1∑
n=1

n∏
i=1

(
ki,i+1

ki+1,i

)]−1

, (2.24)

where k1,0 ≥ keffoff , and the equality only holds when N = 1. The effective unbinding

rate in eq.(2.24) can alternatively be derived as 1/T1,N , where Ti,N is the average
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time it takes for a vesicle initially in a state with i/N binding sites bound to the

substrate to become completely unbound [160]. The value of T1,N can be found by

iteratively solving the equation [160],

Ti,N −∆t = ki,i−1∆t Ti−1,N +ki,i+1∆t Ti+1,N +(1−ki,i−1∆t−ki,i+1∆t)Ti,N , (2.25)

where ∆t is a small time increment, subject to the boundary conditions T0,N = 0

and TN,N = TN−1,N + (1/kN,N−1).

Although 1/keffoff derived from eq.(2.24) describes the average time a vesicle

spends bound to the substrate, it does not give information about the distribution

Ψi,N (t) that describes the probability of a single vesicle remaining bound for a time

t after initially binding with i/N of its binding sites [166]. It can be shown that

this distribution has the form Ψi,N (t) =
∑N

i=1(Res(−zi)exp(−zit)), where −zi and

Res(−zi) are the poles and residues of a Laplace transformed recursive fraction

derived from eq.(2.21) [166]. A simpler method for obtaining these quantities has

been derived in this work, and is presented in section 4.2.

It has been hypothesised that simple modifications can be made to the rates

kn,n+1 and kn,n−1 to include the effects of co-operative or competitive binding and

force-dependence. In the case where each of a vesicle’s binding sites can interact with

a substrate with a rate that is independent of the configuration of the vesicle and its

other binding sites, it can be derived that kn,n+1 = (N − n)kon and kn,n−1 = nkoff ,

where kon,off are the intrinsic binding and unbinding rates (respectively) of a single

binding site [166]. This approximation assumes non-competitive and non-cooperative

binding dynamics. Using a mean-field approximation, the effects of hard-body

repulsion between the binding sites of a vesicle once bound to the substrate modify

this binding rate to kn,n+1 = (N − n)kon(1− (n/Ns)), where Ns is the total number

of binding sites on the substrate that are available to the vesicle in its current

configuration [166]. A more thorough modification is required for a system with

position-dependent binding rates, and this will be discussed in section 8.1.

Assuming that the load is distributed equally amongst all n currently bound

binding sites, force-dependent unbinding dynamics can be introduced using the rate

[166, 167],

kn,n−1(x, t) = nkoff exp

(
F (x, t)

nFd

)
, (2.26)

where F (x, t) is the current load that can vary as a function of position and time,

and Fd = kBT/d sets the force scale such that |F (x, t)d| = Eb(x) is the height of

the potential energy barrier separating the bound and unbound states. The form
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of the rate in eq.(2.26) agrees with the form famously predicted by Kramers [168],

and a similar distribution can be used to describe experimental data studying the

dynamics of kinesin motors under load [169]. As expected, this force-dependence

has the effect of reducing the average velocity of the vesicle, as well as the average

distance it moves whilst bound [166, 167]. Using a similar unbinding rate to that

defined in eq.(2.26), complex models have been developed that show that vesicles

bound to multiple motor proteins, each of which can move processively once bound

to a substrate, exhibit effective velocities and diffusivities that vary significantly as a

function of the number of motor proteins connecting the vesicle and the substrate

[163, 166, 167].

Since both eq.(2.17 & 2.21) can be used to calculate different aspects of the

time evolution of the probability distribution describing a population of particles

(after the normalisation of eq.(2.21)), the equations can be combined to generate

a composite Fokker-Planck equation that takes into account both the motion of

individual particles and their binding dynamics. This equation has the form,

∂P (x, t)

∂t
= − ∂

∂x
(V (x, t)P (x, t)) +

∂2

∂x2
(D(x, t)P (x, t))− koff (x)P (x, t) + kon(x),

(2.27)

where kon,off (x) are the position-dependent binding and unbinding rates respectively,

and kon(x) takes into account the size of the source term that governs the availability

of particles that can bind. The steady-state solutions of simplified versions of eq.(2.27)

have been derived in sections 5.3.1 & 5.3.2.

An alternative method for probing the dynamics of a system of particles that

exhibit binding dynamics is to implement a periodic and fluctuating potential, where

the minima represent bound states [170–172]. In this case, binding and unbinding

rates can be estimated using Kramers escape theorem [168], and a tilted potential

can generate a resonance-like peak in the diffusivity exhibited by the particles [172].

As was the case for increasing the number of connections between a vesicle and a

substrate, implementing binding dynamics using a potential requires that particle

dynamics are described by an effective velocity and diffusivity [170–172]. It has

also been shown that physical confinement can induce effective dynamics if particles

exhibit different motion once bound to a substrate [173]. Clearly care must be taken

to ensure that the dynamics of vesicles bound to microtubules are derived correctly

after taking into account these phenomena.
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2.3.3 Modelling Binding in 3D

The rate with which unrestricted ligands in solution bind to a receptor can be

derived by considering the diffusion of ligands in 3D [165]. In steady-state, the

probability distribution P (r), that describes the probability of finding a ligand at a

radial distance r from the receptor assuming spherical symmetry, is the solution of

the diffusion equation (eq.(2.19) ignoring the velocity term) in spherical co-ordinates.

Subject to the boundary conditions P (r →∞) = P0 and konP (ε) = −4πε2J(ε) (the

binding rate at the surface ε is equal to the diffusive flux J(ε) into the surface), the

probability distribution can be derived as equal to [165],

P (r) = P0

[
1−

(
konε

(kon + 4πDε)r

)]
, (2.28)

which is always valid for r ≥ ε. Defining a total rate ktot such that ktotP0 is equal to

the total diffusive flux into the surface at r = ε generates the result [165],

ktot =
4πDε kon
kon + 4πDε

=

(
1

kon
+

1

kD

)−1

, (2.29)

where kD = 4πDε is the total rate when the binding dynamics are diffusion limited

(binding occurs spontaneously at r = ε so P (ε) = 0). This means that eq.(2.29)

predicts that the average time required for a ligand to bind to a receptor (per unit

concentration of ligands), 1/ktot, consists of the sum of the average time due to

binding kinetics 1/kon and a component due to the time required for a ligand to

diffuse to the receptor 1/kD. This hypothesis should hold relatively well when the

receptor is diffusing on a substrate, or when the substrate itself is diffusing, since the

diffusivity of the ligand would be expected to be much larger in comparison [165]. A

similar result can be derived by considering a reversable two-step kinetics process,

where the first step is the formation of an encounter complex [174]. A more complex

approach to this problem is required when considering the binding of ligands to

receptors on a cylinder (see section 7.1.1).

Similarly, if particles (modelled as hard-spheres) can instead bind to or

react with other particles that are diffusing in 3D, the probability of an interaction

occurring that results in a binding event or a reaction can be defined as [175],

Pevent =

(
πd2

1,2〈v1,2〉
V

)
exp

(
− u

kBT

)
∆t, (2.30)

to first-order in the time interval ∆t in which the particle is observed, where

d1,2 = (d1 + d2)/2 is the average diameter of the particles, 〈v1,2〉 is the average

relative speed of the particles, V is the total volume of the system, and u is an
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activation energy that the kinetic energy of the two particles has to exceed for them

to bind or react. The average relative velocity in eq.(2.30) can be derived using the

Boltzmann distribution if the system can be assumed to be in thermal equilbrium.

This formula was derived by considering the average volume swept out by a particle of

radius d1,2 in a time interval ∆t, and shows the important result that the probability

of a binding event or reaction occurring increases at least linearly in time [175]. This

dependence on time has important implications when trying to numerically solve or

simulate large systems of interacting particles (see methods section 3.4.1) [175].

It has been observed experimentally that some proteins diffuse along the

microtubule once bound, such as EB1 [86, 96], MCAK/KIF2C [56], and the Ndc80

kinetochore complex [176]. The process of diffusion in 3D followed by 1D diffusion

once bound is called faciltated diffusion, and requires that the protein-substrate

interaction has an electrostatic component [56, 86, 96, 176]. For 3D motion, the

average time taken for a protein to bind to a receptor in the diffusion limited regime

is Tr = 1/(4πDεCr), where Cr is the receptor concentration, but this rate is modified

by the action of facilitated diffusion. Since diffusion in 1D is typically slower than

in 3D (possibly due to the ‘friction’ from electrostatic interactions), an effective

diffusivity for the process can be defined as Deff = D3(1 − Pb), where D3 is the

diffusivity of the protein in 3D and Pb is the probability of it being bound [177].

This smaller effective diffusivity (Deff ≤ D3) acts to increase Tr. In contrast, the

bound diffusion of the protein acts to increase the effective size of the receptor to

the average distance the protein moves whilst bound
√

2D1/koff , where D1 is the

1D diffusivity of the protein and koff is its unbinding rate from the substrate [177].

This changes the average time required for a protein to bind to a receptor to,

Tr =
V

4πD3(1− Pb)
√

2D1/koff
, (2.31)

where it has been assumed that there is a single receptor in the volume V . The

probability of the protein being bound is equal to the fraction of the total time it

spends bound, but this is a function of the binding rate of an individual protein,

which is not known. Further details about how to convert kon to the value for an

individual protein will be presented in section 7.1.1.

The optimal parameters for facilitated diffusion vary depending on the pres-

ence of obstacles on the substrate, for example it may become advantageous to

unbind from the substrate more frequently if many obstacles are present that prevent

the protein from reaching the receptor by 1D diffusion alone [177]. Despite their

transient binding dynamics, it has been shown that the presence of EB3∆T (EB3

deletion mutant lacking the C-terminal tail that includes the EBH domain and the
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EEY/F motif, see section 2.2.1) reduces the diffusivity of MCAK proteins [26]. It has

also been shown that the presence of obstacles can result in subdiffusion for particles

bound to a 2D surface, where 〈(x(t+ dt)−x(t))2〉 = 2Dtα and α < 1 [178]. Different

properties of the obstacles, such as their diffusivity or ‘stickiness’ (describing how

easy it is for particles to pass through them), can have significant effects on the

motion of bound particles [177, 178].

Once one binding site of an elongated protein is tethered to a substrate, the

rest of the protein may still freely diffuse in 3D. The dynamics that decribe how

other binding sites on the protein can interact with the substrate are important

for defining the transition rates required for eq.(2.21). Consider a polymer chain

tethered to a substrate by one of its ends. The average time it takes for the other

end of the polymer to bind to a second binding site a distance a from the tethering

point is approximately equal to [179],

Tt =

(
N2b4

9Dε2

)
exp

(
3a2

2Nb2

)
, (2.32)

where N is the number of monomers in the polymer chain, b is the inter-monomer

distance, D is the diffusivity of the N th monomer (located at the distal end of the

tethered polymer), and ε is as defined in eq.(2.28 & 2.29). The formula in eq.(2.32)

has several important components [179]:

1. A factor ∝ R4
G (where RG =

√
Nb2 is the radius of gyration of the polymer)

that increases the average binding time of the N th monomer as the length of

the polymer chain increases due to the increased volume of states (different

configurations) that it can occupy;

2. A factor ∝ 1/ε2 that increases the average binding time of the N th monomer

as a result of the entropically unfavourable position of the binding site close to

the exclusion region (the polymer cannot overlap with the substrate);

3. A factor ∝ exp(a2/R2
G) that increases the average binding time of the N th

monomer with increasing a/RG due to the entropic barrier that must be

overcome for the polymer to be elonated enough to bind to the target site.

Importantly, for a polymer chain with multiple binding sites along it, it is

entropically favourable for the binding sites to bind to the subtrate in order, a

phenomenon termed ‘zipper’ binding [179]. Although an identical model cannot

be applied to a vesicle coated with binding sites, it is important to note that the

physical configuration of a vesicle can have significant effects on the average time

required for binding sites at different positions on its surface to bind to a substrate.
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(a) (b)

8 nm

Figure 2.5: Models for vesicle adhesion — (a) Tightly bound adhesion zone
(left) can only grow by the binding of membrane-bound ligands (black) close to this
region, as membrane-bound ligands further from this region cannot bind due to the
crowding of large molecules (red). (b) Tubulation of the endoplasmic reticulum (ER)
modelled using the same mechanism as in (a), assuming that all binding or unbinding
of His-GFP-MTLS molecules (cyan) occurs within the reaction zone (represented by
the red).

2.3.4 Models Describing EB-Mediated Tubulation

As stated in section 2.2.3, a simple 1D model has been developed to describe EB-

mediated ER tubulation [28]. In order to understand this, it is first necessary to look

at previously published work studying the adhesion of large vesicles to a substrate

[125]. It is assumed that membrane-bound ligands can bind to receptors on the

substrate surface according to eq.(2.20) (or more accurately eq.(2.21)) [125]. In

this model, nucleation and growth of a tightly bound adhesion zone dominates

the growth of the bound region of the vesicle, since it is assumed that crowding

of relatively large molecules around membrane-bound ligands far from this region

prevent them from binding, as depicted in Fig.(2.5a) [125]. The system is assumed to

be pseudo-1D (assuming flat-fronted growth with width L), such that the diffusion of

the membrane-bound ligands can be described using the diffusion equation ((eq.(2.19)

ignoring the velocity term)). This means that the boundary of the tightly bound

adhesion zone, ξ(t), propagates according to two regimes [125]:

1. When the concentration of membrane-bound ligands that can bind to the

substrate is small, the binding kinetics of the vesicle are limited by the time it

takes for the ligands to diffuse on the surface of the vesicle to the boundary of

the adhesion zone, such that ξ(t) ∝
√
t;

2. When the concentration of membrane-bound ligands is large, the binding

dynamics are instead limited by the timescales governing the ligand-receptor

interaction in eq.(2.20), such that ξ(t) ∝ t.

The EB-mediated tubulation of the ER has also been investigated using this

model, assuming that the tubule grows purely as a result of the binding kinetics of
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membrane-bound ligands (a His-GFP-MTLS construct) close to the tubule tip [28].

The microtubule tip localisation signal (MTLS) of this His-GFP-MTLS construct

contains the SxIP motif from the C-terminus of human MACF2, which interacts with

the EBH domain of EBs (see section 2.2.2) [28]. A schematic describing this model

is shown in Fig.(2.5b). It has been assumed that the tubule exists in the reaction-

dominated (large ligand concentration) regime, and that the binding of membrane-

bound ligands must overcome the lateral tension in the membrane in order to extend

the tubule [28]. The lateral tension can be defined as σ(t) = σ0 exp((8πκα)/(kBT ))

(where σ0 is the initial tension of the membrane before tubulation, κ is the bending

modulus of the membrane, and α = ∆A/A0 is the fractional change in the surface

area of the membrane due to tubulation) assuming small changes in the lateral

tension (σ(t) ' σ0) or a comparatively large elastic modulus of the membrane [180].

As a result of this, it was assumed that the unbinding rate of a ligand depended on

the extension of the tubule according to the equation [28],

kunbind = kunbind,0 exp

(
2πb
√

2σ(t)κ

kBTnp

)
, (2.33)

where b is the characteristic length of the potential barrier between the bound and

unbound states, T is the temperature of the system, and np is the number of ligands

at the tip (lateral tension is distributed uniformly across all ligands). The unbinding

rate in eq.(2.33) is of a similar form to that in eq.(2.26), and using these results

the dynamics of the tubule tip can be described by eq.(2.19) with its velocity and

diffusivity as defined in eq.(2.1 & 2.2) (respectively) [28]. Together, this analysis

results in a tubule extension velocity that decreases to zero as the tubule becomes

very long, or as the lateral tension in the tubule becomes large, which agrees with

experimental results [28].

Adding EB3 to experiments increased the rate of formation of TACs, and

ER tubules were able to be generated at higher microtubule growth velocities [28].

These dynamics were probed computationally by simulating the dynamics of the

membrane-bound ligands using a Gillespie algorithm (specifically the first-family

method [175, 181], see methods section 3.4.1), where the ligands could diffuse and

bind to or unbind from the growing (or shrinking) microtubule with a preference for

the microtubule end when growing [28]. These simulations predicted the qualitative

trends of the ER tubulation velocity and the probability of TAC-mediated tubulation

events [28], and a similar computational approach will be used to study the EB-

mediated intracellular transport of cargo (not tubules) in this work.
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2.4 Objectives

As well as the tubulation of membranes, experiments have verified that EBs can

mediate the transport of beads coated in (His-GFP-MTLS) constructs containing

SxIP motifs [28, 29]. To date, the models described in section 2.3.4 provide the

best analytical evidence that EB-mediated cargo transport is possible [28, 125], but

neither of these models study how ligand binding kinetics affect small vesicles with

widths of the order of nanometres, corresponding to several ligand binding sites on

the substrate. For example, in the absence of a lateral tension term that increases

as the tubule stretches alongside the microtubule, it is possible that vesicles could

propagate with a constant, non-zero velocity until they reach the growing microtubule

end.

This work aims to combine the results of analytical and computational

modelling with experiments in order to discover how the transient binding dynamics

of EBs can stimulate the propagative motion of cargo towards growing microtubule

ends. The following chapters (4-8) will each tackle one aspect of this problem:

4. The binding dynamics of individual EBs will be probed experimentally and

compared to previously published data;

5. An analytical model will be developed that can describe how cargo permanently

bound to EBs can exhibit propagative motion towards regions of increased EB

binding rate;

6. The analytical model will be discretised in order to understand how the position

dependence of the EB binding and unbinding rate distributions result in an

effective cargo velocity;

7. Experimentally-derived parameters will be used as inputs for the cargo transport

simulations in order to test whether tip tracking behvaiour is predicted in

physiologically relevant conditions;

8. Possible additions to the cargo transport model will be discussed with reference

to their biological relevance, including competitive, cooperative, and force-

dependent EB binding dynamics, as well as cargo-EB interactions.
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Chapter 3

Materials and Methods

The binding dynamics of EBs and cargo have been probed in this work by imaging

single-molecule binding assays using TIRF microscopy. Individual EB or cargo tracks

have been extracted from kymographs drawn in ImageJ using MatLab software

developed for this work, and the resulting dwell time distributions were analysed

using Mathematica. These distributions have been compared to numerical solutions

of Fokker-Planck equations and the results of stochastic and molecular dynamics

simulations of EB and cargo motion. The experimental procedures and computational

methods used in this work are detailed below.

3.1 Materials

Purified pig brain tubulin and recombinantly expressed EB3-mCherry (EB3mCh),

EB3-GFP (EB3GFP) and EB2-mCherry (EB2mCh) were available in the Straube

lab following the work by Roth et al. [67]. Fluorescently and biotin-labelled tubulin

was obtained from Cytoskeleton Inc., and restriction enzymes were obtained from

New England Biolabs. Any other chemicals were obtained from Sigma-Aldrich unless

stated otherwise.

3.2 Experimental Procedures

3.2.1 Cloning of Multivalent EB3 and Cargo Molecules

All cloning was performed by Daniel Roth. The plasmids for multivalent clusters

of the CH domains of EBs were based on pET22b-EB3-GFP-6His [67], pDEST14-

SpyCatcher002-oTri, pDEST14-SpyCatcher002-oTet and pDEST14-SpyCatcher002-

oHex [182].

To obtain pET22b-EB3(1-204)-DmrB-GFP-6His, the DmrB homodimerising
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domain was amplified by PCR using the primers 5’TTCGAACTCGAGGGCGT

GCAGGTGGAGAC (AS 782 XhoI-DmrB) and 5’CCACTTCCATGGAGGCAC

CCTCCAGCTTCAG (AS 783 DmrB-NcoI). The 352 bp product was then digested

with XhoI and NcoI, and pET22b-EB3-GFP-6His was digested with XhoI and BstEII

and separately with BstEII and NcoI. All three fragments were ligated.

Trimeric, tetrameric and hexameric EB3 constructs were generated using the

same strategy. Trimeric EB3 constructs were generated by amplifying a trimerisa-

tion domain from pDEST14-SpyCatcher002-oTri with 5’GGTAGCCTCGAGGGCG

GCGAAATTGCAGCAATCAAAAAAG (AS 973 XhoI-oTri fw) and 5’TCGCCCGC

CATGGCGCCCTGCTGTTTAATGGCAG (AS974 oTri-NcoI rev), and digesting

the resulting 144 bp product with XhoI and NcoI. Tetrameric EB3 constructs were

generated by amplifying a tetramerisation domain from pDEST14-SpyCatcher002-

oTet with 5’GTGAACTCGAGGGCGGCAGTGACTATTC (AS956 XhoI-tetramer)

and 5’GTGAACTCGAGGGCGGCAGTGACTATTC (AS957 tetramer-NcoI rev),

and digesting the resulting 144 bp product with XhoI and NcoI. Hexameric EB3

constructs were generated by amplifying a hexamerisation domain from pDEST14-

SpyCatcher002-oHex with 5’GGTAGCCTCGAGGGCGGCGAAATTGCCAAAAG

CCTAAAAG (AS975 XhoI-oHex fw) and 5’TCGCCCGCCATGGCGCCCGAAC

CACTGCCCTTC (AS976 oHex-GSGSGG-NcoI rev), and digesting the resulting 160

bp product with XhoI and NcoI. These fragments were ligated with pET22b-EB3-

GFP-6His XhoI-BstEII and BstEII-NcoI fragments as before to generate pET22b-

EB3(1-204)-oTri-GFP-6His, pET22b-EB3(1-204)-oTet-GFP-6His and pET22b-EB3(1-

204)-oHex-GFP-6His.

Multivalent cargo were constructed from the middle region of human CLASP2

(amino acids 437 − 563) containing two tandem SxIP motifs in a basic Proline

rich region [15], and the trimerisation, tetramerisation or hexamerisation domains

described previously. The oligomerisation domain was followed by a GFP fluorophore

and a hexahistidine tag, as was the case for multimeric EBs. As the extended

basic region resulted in significant microtubule lattice binding (see section 7.3.1), an

improved version was generated by reducing the length of the basic region before the

first SxIP motif (CLASP2 amino acids 485− 563) and adding a single alpha helix

(SAH) domain 17 nm in length from Dictyostelium discoideum MyoM [183] before

the oligomerisation domain.

All plasmid sequences were verified by DNA sequencing over the PCR ampli-

fied portions.
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3.2.2 Expression and Purification of Recombinant Proteins

Protein expression and purification was performed by Daniel Roth and Anne Straube.

DNA constructs were transformed into E. coli BL21 (DE3) and grown to OD 0.6

at 600 nm and 18 oC in 2xYT broth (1.6% peptone, 1% yeast extract and 0.5%

NaCl) supplemented with Ampicilin. IPTG was added to the bacterial culture upon

reaching OD 0.6 to a final concentration of 1 mM, and the bacteria were left for 18

hours at 16 oC. Bacteria were harvested by centrifugation (Thermo Scientific SLA-

3000 rotor) at 3 000 rpm and 4 oC for 15 minutes. The supernatant was discarded,

and the pellet was resuspended in 10× the pellet volume of column buffer (50 mM

KPO4 buffer pH 7.2, 400 mM NaCl, 2 mM MgCl2, 2 mM 2-Mercaptoethanol) and

transferred to a 50 ml tube. Cells were pelleted again in an Eppendorf 5804 R

centrifuge at 3 000 rpm and 4 oC using an S-4-72 rotor for 10 minutes. The pellet was

resuspended in 2× the pellet volume of column buffer with 15% glycerol, transferred

to 15 ml tubes and snap frozen in liquid nitrogen and stored at −80 oC until required.

Cell pellets were defrosted on ice. Bacteria were lysed in binding buffer

(column buffer supplemented with 12 mM imidazole, 0.25% Triton X-100, 2.5 mg/ml

lysozyme, 3 mM PMSF and Complete Protease Inhibitors (Roche)) by sonicating

4−5 times for 30 seconds with breaks for cooling on ice. The lysed cells were clarified

by three consecutive spins in Eppendorf F-34-6-38 rotor at 12 000 rpm and 4 oC

for 10− 20 minutes, or until clear. The supernatant was incubated for one hour at

4 oC with 0.5 ml of Ni-NTA agarose slurry (Qiagen, 30210) per 100 ml of original

culture volume. The Ni-NTA agarose had been equilibrated into binding buffer after

being washed with 1 ml ddH2O, followed by 1 ml binding buffer, 1 ml elution buffer

(column buffer with 300 mM imidazole) and 3 ml wash buffer A (column buffer with

20 mM imizadole). Following incubation, the supernatant was passed through a 5 ml

syringe with a glass wool filter, and the resulting agarose bed was washed with 40

column volumes of wash buffer A and 60 column volumes of wash buffer B (column

buffer with 30 mM imidazole). The protein was eluted in elution buffer and collected

in 250 µl fractions.

The main protein-containing fractions were identified by absorbance at 280

nm (A280) using a Thermo Scientific NanoDrop 2000 Spectrophotometer, and

combined. Proteins were then further purified by size exclusion chromatography

using a Superdex200 16/600 column (GE Healthcare) on an AKTA Go purifier (GE

Heathcare) system, controlled by UNICORN software (GE Heathcare). All buffers

used with the AKTA purifier were filtered using a Millipore Stericup-HV, 0.45 µm,

PVDF, 500 ml. The column was removed from storage buffer (20% ethanol) by

washing with 2 CV of ddH2O at 1 ml/min and equilibrated with column buffer by

washing with 2 CV of column buffer at 1 ml/min. Protein was loaded using a 1 ml
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sample loop equilibrated in column buffer, eluted at 0.3 ml/min, and collected in 0.5

ml fractions. The peak fractions identified by absorbance at 280 nm were combined.

The column was washed with 2 CV of column buffer after use. For storage, the

column was washed with 2 CV of ddH2O or until the conductance was stable, and

then transferred into 20% ethanol.

Peak fractions from size exclusion chromatography were verified to contain

the GFP constructs by measuring fluorescence emission at 509 nm with blue LED

excitation in a Thermo Scientific NanoDrop 3300. If further concentration was

required, the peak fractions were combined and concentrated 20 to 40-fold using

Amicon Ultra-4 30 000 MW cutoff columns (Millipore), and protein concentration

was determined by absorbance at 280 nm (A280) using a Thermo Scientific NanoDrop

2000 Spectrophotometer. The extinction coefficients for proteins were calculated

from their amino acid composition using software created by Cell.BioMol.Net [184].

The protein solution was then supplemented with 20% glycerol, snap frozen, and

stored in nitrogen vapour.

3.2.3 In Vitro Microtubule Assays

In vitro assays were performed by Daniel Roth and imaged either by myself or Anne

Straube.

Preparation of Microtubule seeds

Microtubule seeds were assembled from a 10 µl reaction mix containing a ratio of

85% porcine brain tubulin, 5% biotin-tubulin and 10% of HyLite 647-labelled tubulin

(with a final concentration of ∼ 30 µM), and 1 mM GMPCPP, in MRB80 (80 mM

PIPES, pH 6.8 with KOH, 1 mM EGTA, 4 mM MgCl2). The reaction mix was

first left on ice for 30 minutes to stimulate nucleotide exchange before being left to

polymerise for one hour at 37 oC. The polymerised microtubules were then diluted

10-fold with MRB80 supplemented with Taxol (final concentration 2 µM) and stored

in the dark at RT. For creation of GTPγS extensions, GMPCPP seeds were extended

in a reaction mix with unlabelled tubulin, biotin-tubulin and GTPγS on the day of

the experiment.

Glass coverslip treatment

Square glass coverslips (22 mm) were placed in ceramic holders and incubated in 6.4

M HCl solution overnight at 60 oC. The ceramic holders were transferred to a beaker

containing ddH2O and washed for 5 minutes on a platform shaker. This was repeated

at least three times until it could be verified that the water remained neutral using
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pH indicator paper. The coverslip holders were transferred two more times in fresh

ddH2O and treated in an ultrasonic water bath for 5 minutes. The clean coverslips

were then spun dry and stored between lint free tissue paper until required. On the

day of the experiment, the number of coverslips needed was transferred back into

a ceramic holder and treated for 3 or 5 minutes at 50% power in a plasma cleaner

(HPT-200 Henniker Plasma).

In vitro assay assembly

A 100 µm deep flow chamber was made by attaching a cleaned coverslip to a Thermo

Scientific SuperFrost Plus Adhesion slide using double-sided tape (Scotch 3M) to

form a 5 mm wide and ∼ 100 µm high channel. All incubation steps were performed

in a humidified box with the coverslip facing downwards. Solutions were exchanged

using capillary flow by pipetting solutions at one end of the channel and absorbing

solution with a Kimwipe at the other end. The chamber surface was passivated with

10 µl of 0.2 mg/ml PLL-PEG-50% biotin (PLL(20 kDa)-g[3.5]-PEG(2 kDa)/PEG(3.4

kDa)-biotin(45-65% functionalised) from Susos AG, Zurich) in MRB80 by incubation

for 5 minutes. The chamber was washed with 200 µl MRB80, and incubated with

20µl of ∼ 1 mg/ml streptavidin (CAT S4762-10MG) in MRB80 for 5 minutes. The

chamber was then washed with 50 µl MRB80, and then with microtubule seeds,

diluted to give a suitable surface density in MRB80 (typically 0.5 µl in 30 µl of

MRB80). The seeds were left to attach to the passivated surface via streptavidin-

biotin bonds for 5 minutes. Unattached seeds were then washed out with MRB80, and

the surface was blocked with 1 mg/ml κ-casein (CAT C0406-100MG) for 5 minutes.

A reaction mix containing 12 µM tubulin, 50 mM KCl, 1 mM GTP, 0.6 mg/ml

κ-casein, 0.2% (2% stock solution, 20 mg/ml) methyl cellulose (CAT M0512-100G,

with viscosity 3500-5600 cP) in MRB80, 4 mM DTT, 0.2 mg/ml catalase, 0.4 mg/ml

glucose oxidase, 50 mM glucose in MRB80, supplemented with desired proteins was

clarified for 5 minutes at 200 000 ×g in an airfuge (Beckman). The supernatant was

added to the flow chamber and the chamber was sealed with melted candle wax.

For single-molecule binding experiments with 10− 400 pM EB3-GFP, 13 nM

or 38 nM of EB3-mCherry was added. For single-molecule binding experiments with

picomolar concentrations of EB3(1-204) multimers, either X-Rhodamine-labelled

tubulin or 38 nM EB3-mCherry were added. Single-molecule binding events were

tracked using the methods described in methods sections 3.3.1 & 3.3.2.

For bleaching analysis, the chambers were passivated with 10 µl of 0.2 mg/ml

PLL-PEG-NTA (PLL(20 kDa)-g[3.5]-PEG(3.4 kDa)-NTA from Susos AG, Zurich)

in MRB80, and loaded with NiCl2 so that C-terminally His-tagged labelled proteins

could adsorb to the surface. MRB80 containing 50 mM KCl, 1 mM GTP, 0.6 mg/ml
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Figure 3.1: Schematic of experimental procedure — Experimental setup used
to probe the dynamics of single-molecule EB3GFP, clusters of the CH domains of
EBs, and multivalent cargo using TIRF microscopy (figure adapted from [32, 67]).

κ-casein, 0.2% methyl cellulose, 4 mM DTT, 0.2 mg/ml catalase, 0.4 mg/ml glucose

oxidase, 50 mM glucose was flowed into the flow chamber and the chamber sealed

with melted candle wax.

Imaging

Microtubule assembly was observed on an Olympus total internal reflection fluoresence

(TIRF) system using a 100× NA 1.49 objective, 1.6× additional magnification, 488

nm, 561 nm and 640 nm laser lines and 520/60 and 607/70 emission filters for

GFP/mNeonGreen and mCherry/X-Rhodamine respectively. A schematic of the

imaging process is shown in Fig.(3.1). Images were acquired using a Hamamatsu

ImageEM-1k back-illuminated EM-CCD camera under the control of Xcellence

software. The resulting spatial resolution of the obtained microscope images was

0.162 µm/pxl after 2× 2 binning was used. The exposure time was 0.064 s for 488

nm images and 0.060 s for 561 nm and 640 nm images for EB3GFP experiments,

with a cycle time of 0.100 s between EB3GFP/EB3mCh images. A 561 nm image

was taken before and after a sequence of one hundred 488 nm images, with a total

cycle time of 20 s. The exposure time was 0.190 s for 488 nm and 561 nm images

for multivalent EB3 and cargo experiments, with a cycle time of 1 s between 488

nm images. Only the 488 nm exposure time was reduced to 0.100 s for experiments

containing multivalent cargo and EB3mCh. All 640 nm images of the microtubule

seed had an exposure time of 0.190 s.
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3.3 Experimental Analysis

3.3.1 Kymograph Generation

Microtubules were located in the experimental videos by taking the Z-projection

of the 561 nm images taken before the 488 nm video (see methods section 3.2.3).

Only microtubules that were observed to exhibit linear growth in these Z-projections

were converted to kymographs for further analysis (microtubule growth velocity was

further limited to the range 0 µm s−1 < vMT < 0.15 µm s−1 during particle tracking,

see methods section 3.3.2). Composite videos were generated consisting of 5 frames

of the 561 nm image taken before the 488 nm video, the 100 frames (10 s) of the 488

nm video, and 5 frames of the 561 nm image taken after the 488 nm video. This

allowed for the interpolation of the growing microtubule end position as a function

of time. Kymographs were generated for these composite videos using 1D lines that

were hand-drawn and following the microtubules in the Z-projection of the 561 nm

images. ImageJ macros were used to automate the generation of composite videos

and kymographs as much as possible.

Kymographs were generated using the ‘Kymograph’ plugin for ImageJ, which

extracted the intensity distribution along hand-drawn 1D lines as a function of time.

The signal observed during TIRF microscopy was the fluorescence of individual bound

GFP flurophores convolved with the point-spread function (PSF) of the microscope.

This meant that the approximately Gaussian fluorescence signal associated with each

bound EB or cargo had a width of ∼ 1 pxl (see methods section 3.3.7). In order

to minimise the number of false-positive detections, kymographs were generated

using the mean intensity of the 5 local pixels perpendicular to the pixel on the hand-

drawn line. This method damps the intensity of noisy fluctuations, but amplifies

fluorescence signals spread over multiple pixels. Example kymographs generated

using ImageJ are shown in Fig.(3.2a,d,g). It is unlikely that any kymographs were

drawn from growing microtubule minus-ends as they can be identified by their slower

growth velocity relative to microtubule plus-ends [37]. Since the observed velocity

distribution was not bimodal, microtubule minus-ends cannot have constituted a

large fraction of the kymographs that were analysed.

3.3.2 Particle Tracking

Kymographs generated using ImageJ were analysed using particle tracking code

developed in MatLab for this work. For the position and time dependent intensity

distributions I(x, f), where f = 1, ..., 110 are the frames of the video (corresponding

to the vertical axis of the kymograph, see Fig.(3.2)), growing microtubule ends

were first located in the 561 nm frames of the composite videos (corresponding to
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

1.62 μm

1 s

Figure 3.2: 1D track detection — Procedure used to identify tracks of single-
molecule EB3GFP construct binding events. (a,d,g) Raw kymograph images extrac-
ted using ImageJ (scale bar is the same for all kymographs). High intensity regions in
first and final 5 frames correspond to the growing microtubule end in 561 nm images,
high intensity regions between these images are single-molecule EB3GFP binding
events. (b,e,h) Kymographs after applying the mask defined in eq.(3.1) to highlight
high intensity regions. (c,f,i) Tracks located using the derived tracking algorithm.
Relatively short tracks (blue) use fs = 2 and long tracks (green) use fs = 5. Tracks
that start in the first frame or end in the final frame of the 488 nm video (red) are
not included in further analysis. Kymographs obtained at 100 pM EB3GFP (a-c,g-i)
exhibit more noise than kymographs obtained at 400 pM EB3GFP (d-f).
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f561 = 5, 106, see methods section 3.3.1). Growing microtubule ends were identified as

the positions xt that satisifed the relations I(xt, f561) > I
(561)
t , I(xt±∆x, f561) < I(xt)

and I(xt ± 2∆x, f561) < I(xt ± ∆x, f561), where I
(561)
t is a threshold intensity

(I
(561)
t = 4000 arbitrary units in this work) and ∆x is the grid spacing. In order to

achieve sub-pixel accuracy, the intensity along the kymograph was first interpolated

using a cubic spline fit onto a 10-fold finer grid, such that ∆x = (0.162 µm)/10.

Among the possible positions xt, the positions of the growing microtubule

ends x
(1,2)
t corresponding to f561 = 5, 106 respectively were defined as the positions

that also exhibited the maximum intensity I(xt, f561). A Gaussian distribution was

fitted to the local region surrounding x
(1,2)
t to obtain a final estimate for x

(1,2)
t (the

mean of the Gaussian fit) and σ
(1,2)
t (its width). In the frames f between the two

561 nm images (5 < f < 106), the position of the growing microtubule end was

defined as xe = (f − c)/m, where m = (106 − 5)/(x
(2)
t − x

(1)
t ) and c = 5 −mx

(1)
t .

Example kymographs showing the behaviour of the microtubule end are shown in

Fig.(3.2). Only binding events on microtubules that exhibited growth velocities

vMT = (x
(2)
t −x

(1)
t )/((106−5)∆t), where ∆t is the cycle time between images, within

the range 0 µm s−1 < vMT < 0.15 µm s−1 were included in any further analysis.

In order to locate single-molecule binding events a mask was defined,

m(x, f) =

1 if I(x, f) > 〈I〉+ 1.5σI ,

0 otherwise,
(3.1)

where 〈I〉 is the intensity averaged over all positions and frames of the 488 nm

video and σI is the standard deviation of these intensities. A fluorescence detection

was defined at any position where m(x, f) = 1, m(x±∆x, f) = 1, I(x, f) > I
(488)
t

(I
(488)
t = 〈I〉 + 3σI in this work), I(x ± ∆x, f) < I(x, f) and I(x ± 2∆x, f) <

I(x ± ∆x, f). Additionally, only one fluorescence detection was allowed within

each region of connected positions where m(x, f) = 1. If multiple fluorescence

detections were observed within a region of connected positions where m(x, f) = 1,

then the position that also exhibited the maximum intensity was defined as the only

detection for that region. The requirements for a fluorescence detection were more

strict than those used when detecting growing microtubule ends as the signal-to-

noise ratio was smaller, so false-positive detections were more common. This set

of requirements minimised the observations of false-positive detections, as can be

observed in Fig.(3.2).

After storing the positions of all fluorescence detections for a kymograph,

the detections could be connected to make particle tracks. This was achieved by

looping over the frames following an initial detection at position xd(1) and storing the
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positions of detections that were within the range xd(f − 1)− d ≤ x ≤ xd(f − 1) + d

(d = 2 pxl (0.324 µm) in this work). This range allows for slight fluctuations in

position arising due to thermal fluctuations or vibrations of the microscope. If multiple

detections were observed within this range, the detection closest to position xd(f −1)

was stored. Similarly, if two detections were made equal distances from xd(f − 1),

then the detection added to the track is selected randomly. Once added to a track,

the detection was removed from all storage arrays so that it could no longer be added

to any other track. This results in the preferential elongation of tracks associated

with earlier detections, but this is not a problem for single-molecule experiments

where it is unlikely that another EB or cargo associated with a GFP fluorophore will

bind to the microtubule within the range xd(f − 1)− d ≤ x ≤ xd(f − 1) + d. Any

track that started in the first frame of the 488 nm video or ended in its final frame

was disregarded before being analysed, as the true dwell time for the track could

not be identified. An example track that was disregarded in this way is shown in

Fig.(3.2f).

The integer fs ≥ 0 defines the number of frames that can be skipped between

the frame corresponding to the end of a track and the next frame in which there

is a detection that may be added to the track. For example, fs = 1 means that

if there were no detections within the range xd(f − 1) − d ≤ x ≤ xd(f − 1) + d,

then detections in the next frame can be considered. For fs > 1 this continues

until either a detection is added to the track, or there are no detecions within the

range xd(f − fs − 1)− d ≤ x ≤ xd(f − fs − 1) + d (fs + 1 frames after the detection

corresponding to the end of the track) and the track ends. An example track that

shows the effect of fs > 0 is shown in Fig.(3.2f).

It has been hypothesised that gaps in tracks at growing microtubule ends,

such as those observed in Fig.(3.2f), arise as a result of microtubule end position

fluctuations within the evanescent field of the TIRF microscope, for example due to

the effects of thermal noise. Using fs > 0 prevents tracks being artificially cut short

by this effect, and minimises any impact on the dwell time distributions obtained

from tracking. Using fs > 0 should also mitigate the effects of photoblinking, which

is expected to occur at timescales τblink ≤ ∆t (see section 4.3.4), and the effects of

other intensity fluctuations that could cause a track to be prematurely cut short. All

of these effects would skew the dwell time distributions of tracked particles towards

shorter times.

However, if the number of false-positive detections has not been sufficiently

suppressed, then using fs > 0 could lead to the code connecting noisy intensity

fluctuations to form tracks, or artificially elongating tracks that start or end near

noisy intensity fluctuations. Similarly, using fs > 0 could result in the connection of
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two distinct tracks either belonging to different particles, or belonging to the same

particle that has unbound and rebound again at approximately the same position.

These are all examples of situations where tracks should not be connected, and where

doing so would skew the dwell time distributions of tracked particles towards longer

times. It is possible to reduce the frequency of connecting two distinct tracks by

reducing the particle concentration.

For a single unbinding and rebinding EB to exhibit a detectable gap in

its track, the EB must move sufficiently far from the microtubule in the decay

direction of the evanescent field of the TIRF microscope. This would reduce the

observed integrated intensity of the EB to below the intensity threshold I
(488)
t ,

so that the EB cannot be detected by the tracking algorithm used in this work.

An EB that remains undetectable for fs frames will diffuse a typical distance

ρD =
√

2DEB
aq fs ∆t ∼ 3.85

√
fs µm, where DEB

aq is the diffusivity of the EB in

solution (see section 7.1.1). Following this, the EB must rebind within a distance d

of the end of its original track in order for the two distinct tracks to be connected by

the tracking algorithm. Using this information, an upper bound can be calculated

for the probability of the tracking algorithm incorrectly classifying an unbinding-

rebinding event as a single track equal to 4 d ρMT /πρ
2
D ∼ 0.00033/fs, where ρMT is

the microtubule radius (see table 7.1). As this probability exhibits a maximum value

of 0.00033 (when fs = 1), it is expected that this type of tracking artifact will not

affect the results of tracking EB binding dynamics in this work.

It is possible for any tracking artifacts that cut or elongate tracks to introduce

artificial ‘characteristic unbinding timescales’ in the dwell time distributions of tracked

particles. For this reason, the selected value of fs must minimise the frequency of

each type of artifact being detected, such that the optimal value of fs will depend

on the particle concentration and its diffusivity. The stringent requirements for a

fluorescence detection used in this work, the low concentration of particles included

in single-molecule experiments, and the relatively large diffusivity exhibited by

individual EBs in solution, mean that a value of fs = 2 can be used to correctly

create tracks without connecting noisy intensity fluctuations, the tracks of different

particles, or the tracks of particles that unbind and quickly rebind at approximately

the same position. A track was analysed as long as it did not have a detection in the

final frame of the 488 nm video, regardless of the value of fs.

Uncharacteristically long tracks have been observed in kymographs generated

in this work, as shown in Fig.(3.2i). These tracks are thought to correspond to EBs

or cargo that interact non-specifically with the cover slip, or aggregates of EBs or

cargo that interact strongly with microtubules or the cover slip. It was important to

detect these tracks to ensure that none of the shorter tracks detected by the code

46



were actually truncated regions of these longer tracks. The average position for each

region of connected positions where m(x, f) = 1 weighted by the intensity at each

position was used to define fluorescence detections to be used for long tracks, such

that there was no requirement that m(x±∆x, f) = 1. Similarly, a value of fs = 5

was used to connect the detections along these long tracks. A long track was required

to be more than 35 frames long, but it was required that detections were added

to the track for at least 60% of these frames. Finally, intersections between long

tracks and short tracks were detected by interpolating all tracks at positions where

frames were skipped (if fs > 0). A long track was only analysed if it was intersected

by at least one short track, which further reduced the probability that the track

consisted of connected noisy intensity fluctuations. An example long track is shown

in Fig.(3.2i). Any short tracks that intersect long tracks are not analysed.

Tracks that started within a distance 〈σ〉 = σ1
t + σ2

t of the microtubule end

position in frame f were defined as occurring at the microtubule end. Similarly,

tracks that started at positions x < xe − 〈σ〉 were defined as occurring on the

microtubule lattice, and tracks that were observed at positions x > xe + 〈σ〉 were

not included in any analysis.

This particle tracking algorithm has been used to derive the dwell time

distributions for wild-type EB3GFP constructs (see section 4.1.1), and can be

used to derive their mean-squared displacement distributions. Code has also been

developed to average the EB3GFP intensity distribution along microtubules by

aligning the peaks of the Gaussian distributions fitted to the growing microtubule

ends in 561 nm images (see section 4.4).

3.3.3 Generating Artificial Kymographs

Artificial kymographs have been generated in this work in order to test the validity

of the tracking algorithm presented in section 3.3.2. Artificial kymographs that

emulated background conditions in the absence of microtubules were first generated

by sampling the intensity of each pixel in each frame from the cumulative distribution

function (CDF) describing the background intensity of the experimental data shown

in Fig.(3.3a). Fluorescing particles could then be added by first sampling their

intensity from the CDF of initial detection intensities for 100 pM experiments shown

in Fig.(3.3b), and then sampling their dwell times from either a monoexponential or

biexponential distribution with parameters derived in chapter 4. For simplicity, it

has been assumed that the intensity of each fluorescing particle does not vary as a

function of time. Example artificial kymographs generated using this method are

shown in Fig.(4.7a,b).

The dwell times of fluorescing particles were sampled from a continuous distri-
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(a) (b)

Figure 3.3: Intensity distributions used to generate artificial kymographs
— (a) CDF describing the background pixel intensity in the absence of microtubules.
Appears to be approximately Gaussian with mean (3592.0 ± 0.1) arb. units and
width (143.7± 0.6) arb. units. (b) CDF describing the average intensity of the first
two frames of observed binding events from experimental data.

bution, such that the intensity corresponding to a frame in the artificial kymograph

was defined as the initial intensity multipled by the fraction of time within the frame

that the particle was bound. The binding time of the particle within a frame was

sampled from a uniform distribution, but this effect will only change the observed

intensities in the first and last frame that any particle is bound. In order to maximise

the similarities between the artificial kymographs and those obtained experimentally

(see Fig.(3.2)), the intensity of the fluorescing particle was also spread spatially

according to the PSF of the microscope (see section 3.3.7). It was assumed that

the binding sites for the particle were spaced one tenth of a pixel apart, and that

the intensity of the central pixel (within which the particle bound) was equal to the

sampled initial intensity (since it is the peak pixel intensity that is extracted). The

intensities of adjacent pixels were then calculated by multiplying the sampled initial

intensity by the fraction of the PSF contained within the adjacent pixels.

Using this method, the false-positive detection rate of the tracking algorithm

kfpon can be obtained as the rate of binding event detections in kymographs where

no fluorescing particles are introduced. In this case, fluctuations in the background

intensity of the kymograph are incorrectly identified as binding events. Artificial

kymographs can also be generated without any background intensity fluctuations

by setting the background intensity for all pixels equal to the weighted mean of the

observed background intensity per pixel. Finally, overlap events (see section 4.3.2)

can be ‘turned off’ by ensuring that no two fluorescing particles are bound at the

same pixel in the same frame. This was achieved using a boolean array that stores

whether a fluorescing particle is currently situated at each pixel.
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(a) (b)

(c)

Figure 3.4: Corrections for 2D track detection — (a) Position dependent
inhomogeneity in a 2D ‘blue slide’ (blank slide used for calibration) intensity distri-
bution. (b) 2D Gaussian fit to the intensity distribution shown in (a) that is used for
background equilibration. (c) Example intensity distributions and centroid locations
(red star) for individual fluorescence detections.

3.3.4 Bleaching Analysis

Bleaching experiments were carried out as described in methods section 3.2.3, such

that fluorescently labelled EBs were adsorbed to a surface and unable to unbind. In

contrast to the 1D tracking algorithm described in methods section 3.3.2, this means

that it is more efficient to analyse bleaching videos by detecting and tracking high

intensity regions in 2D without drawing kymographs. Bleaching events can then be

defined as large and permanent decreases in detection intensity that cannot be the

result of thermal fluctuations.

Before tracking high intensity regions, the position dependent imhomogen-

eity in the 2D intensity distribution across the field of view (FOV) of the TIRF

microscope shown in Fig.(3.4a) must be corrected. Background equilibration of the

form Ic(x, y) = I0(x, y)/G(x, y) was performed, where I0,c(x, y) are the original and

corrected intensity distributions (respectively) for a 2D frame from a bleaching video,

and G(x, y) is the normalised 2D Gaussian fit to the intensity distribution for a
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‘blue slide’, shown in Fig.(3.4b). A blue slide is a blank slide used for calibration

that can be observed using incident 488 nm light. The 2D intensity distributions

for the first and final frames are also passed through a bandpass filter with a lower

bound of 1 pxl (acts to remove random thermal fluctuations) and an upper bound of

7 pxl (the maximum size of a single fluorescence detection, acts to remove large scale

fluctuations that are not due to fluorescence). The bandpass filter code used in this

work is an updated version of that written by J.C. Crocker and D.G. Grier (copyright

1997) [185, 186], which was editted in 2005 by D. Blair and E.R. Dufresne [187]. The

post-filtering image is defined as the difference between the image convolved with a

Gaussian distribution of width 1 pxl and the image convolved with a boxcar function

of width (2× 7) + 1 = 15 pxl.

Following the correction of the intensity distribution, fluorescence detections

are defined as local intensity maxima (I(x, y) > I(x±∆x, y), I(x, y) > I(x, y±∆y),

I(x, y) > I(x±∆x, y ±∆y), I(x, y) > I(x±∆x, y ∓∆y)) in the bandpass filtered

image. Fluorescence detections within a distance of 3 pxl ((7− 1)/2) of a detection

with greater intensity or the boundary of the image are removed before analysis.

Each fluorescence detection is also required to have an intensity above the threshold

I(x, y) > I
(b)
t = 〈I〉+ 8σb in the original image (before applying the bandpass filter),

where the average and standard deviation are calculated using the original image after

removing a 7×7 pxl2 area around each detection and boundary. The final position of a

fluorescence detection is defined as the centroid of a 7×7 pxl2 area around the intens-

ity maximum, such that ck = N (
∑i=7

i=1

∑j=7
j=1(I(xi, yj)xi),

∑i=7
i=1

∑j=7
j=1(I(xi, yj) yj))

defines the centroid of the kth detection, i, j label the x-, y-coordinates within the

local area (respectively), and N =
∑i=7

i=1

∑j=7
j=1 I(xi, yj) is required for normalisation.

This is used to achieve sub-pixel resolution. Example fluorescence detections and

centroid positions are shown in Fig.(3.4c). The codes used for peak and centroid

detection are also updated versions of those written by J.C. Crocker and D.G. Grier

(copyright 1997) [185, 186], which were editted in 2005 by D. Blair and E.R. Dufresne

[187]. During peak and centroid detection both the average frame intensity and

the average intensity per detection (integrated over the local 7× 7 pxl2 area) were

calculated.

Five estimates for the characteristic bleaching timescale were obtained by

comparing the results of this 2D tracking algorithm to formulae derived in section

4.3.4. These estimates can be split into two groups based on how they can be derived;

the first group (methods 1 & 2 in the following list) can be calculated by fitting

an average intensity distribution as a function of time, whereas the second group

(methods 3, 4, & 5) requires the time at which each bleaching event occurred. The

five estimates (with results shown in table 4.5) were calculated as follows:
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1. Fitting the average intensity per frame with eq.(4.23);

2. Fitting the average intensity per detection per frame with eq.(4.23);

3. Directly extracting the time taken for the first large decrease in the intensity

distribution when two are observed, and fitting the distribution with eq.(4.21);

4. Directly extracting the time taken for the second large decrease in the intensity

distribution when two are observed, and fitting the distribution with the first

term of eq.(4.22);

5. Directly extracting the time taken for a large decrease in the intensity distribu-

tion when only one is observed, and fitting the distribution with the second

term of eq.(4.22);

The timescales of methods 3, 4, & 5 rely on the robust detection of large

and permanent decreases in detection intensity. This requires the distribution of

the change in integrated intensity ∆Ij(f) = Ij(f)− Ij(f + 2ts) for the jth detection

between frames f and f + ts, where ts is an integer smoothing timescale (ts = 3 in

this work). The start of the Ij(f) distribution was first appended by ts values of Ij(1)

in order to allow for easier detection of very quick bleaching events. This distribution

was subsequently smoothed by taking a moving average over a timescale 2ts, and

a bleaching event was defined as a local maximum in this smoothed distribution

with magnitude greater than 〈Is〉 + 3σs (where 〈Is〉 and σs are the average and

standard deviation of the smoothed distribution respectively). Bleaching events were

verified by confirming that the intensity averaged over the rest of the video decreased

following the event.

If more than two bleaching events were observed for the jth detection using

this algorithm, or if two bleaching events were detected with corresponding changes

in intensity similar to those detected for noise, then the bleaching timescales obtained

for the jth detection were not included in any further analysis. Method 3 considers

fluorescence detections that exhibit a single bleaching event, where the detection

can still be observed in the final frame of the video. If a single bleaching event was

observed for the jth detection and the detection could not be observed in the final

frame of the video, then it was assumed that only a single fluorophore was observed

(method 5). Finally, if a fluorescence signal was detected in the final frame of a

video following the observation of two bleaching events, then the bleaching timescales

were not included in any further analysis. Example intensity distributions showing

detected events of each type are shown in Fig.(3.5).
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(a) (b)

Figure 3.5: Bleaching event detection — (a) Detections of the first (green) and
second (red) bleaching event of a fluorophore for an example intensity distribution.
(b) Detection of the only (blue) bleaching event for an intensity distribution where
no flurophore was detected in the final frame of the corresponding video. Changes in
the average background intensity between (a) and (b) arise due to position dependent
inhomogeneity of the incident laser light.

3.3.5 Calculating Errors For Binned Data

The binomial distribution can be used to derive the variance of observing qi results

within the ith bin, given the expected probability of observing a result in that bin µi

[188]. According to the central-limit theorem, for qi � 1 the distribution P (qi|µi, Q)

can be approximated by a Gaussian distribution (see eq.(4.3)), where Q is the total

sample size [188]. However, when sampling experimental data µi is not known, and

so Bayes’ theorem must be used to derive the probability distribution P (µi|qi, Q)

[188]. This distribution describes the probability of obtaining a value of µi when qi/Q

results were in the ith bin. Assuming a prior distribution of the form P (µi|Q) = 1, so

as not to make any assumptions about the final distribution, it can be shown that,

P (µi|qi, Q) =
µqii (1− µi)Q−qi

(
Q
qi

)∫ 1
0 (µqii (1− µi)Q−qi

(
Q
qi

)
)dµi

, (3.2)

where
(
Q
qi

)
= Q!/(qi!(Q− qi)!) is the binomial coefficient.

From eq.(3.2), it can be shown analytically that the average and standard

deviation of the expected probability µi are equal to,

〈µi〉 =
qi + 1

Q+ 2
, σµi =

√
(qi + 1)(Q− qi + 1)

(Q+ 2)2(Q+ 3)
, (3.3)

both of which tend towards the approximate values predicted by the central limit

theorem of limQ→∞〈µi〉 = qi/Q = πi and limQ→∞ σµi =
√

(πi(1− πi))/Q respect-

ively. As a result, the error associated with binned data in this work is calculated
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using eq.(3.3).

3.3.6 Problems with Single-Frame Detection Events

Consider a system containing particles that can appear with a rate ka and disappear

with a rate kd. The probability of any particle appearing within the interval [t1, t1 +

dt1] and then disappearing wihin the interval [t2, t2 + dt2] can be written,

P (t1, t2) dt1 dt2 = ka kd e
−kd(t2−t1) dt1 dt2, (3.4)

where t2 > t1 by definition. Assuming that time is separated into bins of size ∆,

where the nth bin contains the times [(n− 1)∆, n∆], and that all particles bind at

some time that falls into the first bin, it is of interest how many particles disappear

in the nth bin. This quantity emulates the dwell time distribution (see section 4.1.1).

The average number of particles that appear within the interval t1 ∈ [0,∆]

and disappear within the interval t2 ∈ [(n− 1)∆, n∆], where n > 1, is equal to,

N(n∆) =

t1=∆∫
t1=0

dt1

t2=n∆∫
t2=(n−1)∆

dt2 P (t1, t2)

=

(
ka
kd

)(
e(kd ∆) − 1

)2
e−(kd n∆),

(3.5)

where the integrals are trivial as the bins of interest do not overlap. In contrast, if

the particle disappears within the first bin, such that t2 ∈ [t1,∆], eq.(3.5) becomes,

Ns =

t1=∆∫
t1=0

dt1

t2=∆∫
t2=t1

dt2 P (t1, t2)

= ka ∆ +

(
ka
kd

)(
e−kd ∆ − 1

)
.

(3.6)

It can be shown that Ns < N(1∆) ∀ka, kd,∆ > 0, since the calculation in eq.(3.5)

includes particles that unbind before binding when n = 1. The magnitude of the

difference between the results of eq.(3.5 & 3.6) increases with increasing ∆, and for

values of ∆� 1/kd, it can be shown that N(1∆) = 2Ns. This finding suggests that

the first bin of data will not obey the same dwell time distribution as all other bins

(n > 1), and so should not be included when fitting experimental data.

3.3.7 Estimating the Point Spread Function

The point spread function (PSF) of the microscope measures the spread of the

fluorescence signal from a single-molecule detection event due to the diffraction of
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(a)
(b)

Figure 3.6: Approximation of the microscope PSF — The (a) 1D and (b)
2D PSFs derived by fitting the average intensity distribution around a fluorescence
signal. The 1D and 2D average intensity distributions were derived using the tracking
algorithms defined in methods sections 3.3.2 & 3.3.4 respectively.

the signal within the experimental apparatus. The observed image is the convolution

of the fluorescence signal with the PSF, which can be approximated by a Gaussian

distribution for the TIRF microscope used in this work.

The width of the PSF for the TIRF microscope used in this work has been

estimated by fitting the average intensity distribution surrounding a detection with

a Gaussian ditribution. Estimates for the width of the PSF have been obtained

by fitting the 1D average intensity distribution found during particle tracking (see

methods section 3.3.2) and the 2D distribution found during bleaching analysis (see

methods section 3.3.4), as shown in Fig.(3.6). The 1D average intensity distribution

was generated by aligning the peaks of the intensity distribution corresponding to a

fluorescence signal after interpolating the distribution using a cubic spline fit onto

a 10-fold finer grid (see methods section 3.3.2). Similarly, the 2D average intensity

distribution was generated by aligning the pixels corresponding to the centroids of

high intensity regions (see methods section 3.3.4) after converting to an 11-fold finer

grid (without interpolation). Both of the distributions in Fig.(3.6) were obtained

using data from 100 pM single-molecule binding experiments in order to minimise

the effects of other EB3GFP constructs binding within the resolution limit of the

microscope or tracking algorithm.

The width of the PSF in 1D is (0.1323±0.0011) µm, and the widths measured

in 2D are approximately σ2,x = 0.1391 µm and σ2,y = 0.1115 µm along the x− and

y−axes respectively. For a bin size ∆x = 0.162 µm, these results suggest that the

PSF is approximately symmetric with a width of ∼ 1 pxl. This reinforces that the

condition m(x ± ∆x, f) = 1 is necessary to define a detection at position x (see
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methods section 3.3.2), and predicts that there will be errors of the order ∼ 1 pxl

associated with the positions of fluorescence detections. There will also be an error of

the order ∼
√

2 pxl associated with lengths of regions of kymographs, since accurate

fluorescence detections cannot be made within a distance ∼ 1 pxl of any edge.

3.4 Simulation Algorithm

3.4.1 The Gillespie Algorithm

EB and cargo binding simulations were carried out using code developed for this

work that uses the Gillespie algorithm [175]. This algorithm was originally designed

for simulating well-mixed gas-phase systems in which many different species interact

via coupled reaction mechanisms [175]. In this case, the time dependence of the

populations of each species can be described by differential equations of the same

form as those defined in eq.(2.21). The Gillespie algorithm includes the effects of

correlations and fluctuations in the number of particles of each population, which

the deterministic approach neglects [175]. Following system initialisation at time

t0 = 0, the Gillespie algorithm can be implemented using the ‘direct’ method as

follows [175]:

1. Randomly generate the time τ after which the next event will occur from

the distribution P (τ) = kt exp(−kt τ) using inverse transform sampling (see

methods section 3.4.2) [189], where kt is the sum of the rates for all possible

events;

2. Increment the simulation time by the randomly generated time, such that

ti+1 = ti + τ (the index i counts the total number of events that have occurred

so far in the simulation);

3. Randomly select which of the possible events has occurred by calculating the

fractional probability of each event occurring Pj = kj/kt, where kj is the rate

for event j;

4. Update system variables based on this event occurring.

This Markovian algorithm does not need to store much data, as only the

current state of the system and the pre-defined rates are necessary to advance

the algorithm to the next step [175]. Each complete iteration of this algorithm

corresponds to one binding, unbinding or microtubule growth event occuring, and the

algorithm is repeated until the EB or cargo unbinds from the microtubule. The rates

kj required for step 3 of the algorithm include the binding rates of all unbound legs
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and the unbinding rates of all bound legs, such that P1,...,N contains N elements for

N -legged cargo. This step can be described as selecting which event will occur from

the distribution P (j|τ), and together steps 1 & 3 sample events from the reaction

probability density function P (τ, j) = P (τ)P (j|τ) [175]. This PDF defines P (τ, j)dτ

as the probability at time t of an event of type j occurring between the times t+ τ

and t+ τ + dτ , where dτ is an infinitesimally small increment in time [175].

Alternatively, the ‘first-reaction’ method involves sampling for the random

time at which the next of each type of event occurs from the distribution Pj(τ) =

kj exp(−kj τ), and selecting the next event as the one that occurs after the smallest

time interval (the index j corresponding to min(τj)) [175]. This method correctly

samples from the same distribution P (τ, j), but requires the generation of N random

numbers (the direct method requires only 2) and the taking of N logarithms for

inverse transform sampling (the direct method requires only one) [175]. The third

form of the Gillespie algorithm is called the ‘first-family’ method, and combines the

two methods for sampling from P (τ, j) described above [181]. After splitting the

possible events into S ‘families’, this method selects the family of the next event

using the first-reaction method, before selecting which event occurred within the

family using the direct method (step 3) [181]. This approach requires the generation

of S+ 1 random numbers and the calculation of S logarithms, which is a compromise

between the numbers required for the direct and first-reaction methods.

For cargo binding simulations it is logical to define S ≤ 7 families that each

describe a different type of transition that can occur (see section 7.3 for simulations

with all 7 families). The possible events within each family correspond to the

positions where an event of each kind can occur, resulting in the code sampling from

the distribution,

P (τ, j, x) = P (τ)P (s|τ)P (xs|τ, s), (3.7)

where P (xs|τ, s) describes the probability of an event from family s occuring at

the discrete position xs, and
∫∞

0 P (τ)dτ =
∑S

s=1 P (s|τ) = 1. The normalisation of

P (xs|τ, s) depends on the family; for binding transitions
∑x0+L

xs=x0−L P (xs|τ, s) = 1

(where x0 is the centre position of the cargo with width 2L + 1), for unbinding

transitions
∑n

m=1 P (xl(m)|τ, s) = 1 (where xl(m) is the position of the mth bound

leg, and n is the number of legs currently bound), and since microtubule growth

events are position independent it can be defined that P (xs|τ, s) = 1. In this case

(S ≤ 7), it is computationally efficient to use step 3 of the direct method to select

the family of the next event after setting j → s and defining ks as the sum of the

rates of all events in family s. An additional step must then be added to sample

from the distribution P (xs|τ, s):
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4. Randomly select where the next leg binds during a binding transition by calcu-

lating the fractional probability of it being added at each position P (xs|τ, s) =

kon(xs)/(
∑x0+L/∆x

xs=x0−L/∆x kon(xs)), or where a leg has unbound during an unbind-

ing transition by calculating P (xs|τ, s) = koff (xs)/(
∑n

m=1 k(xl(m)));

5. Update system variables based on this event occurring.

This new form of the algorithm always requires the generation of 3 random numbers

and the calculation of a single logarithm, and so is advantageous for systems with

large values of both S and N . This method will be called the ‘direct-family method’.

Further computational efficiency has been obtained in the direct-family

method by using an analytical version of the sorting methods proposed by Cao

et al. [190] and McCollum et al. [191]. Since steps 3 & 4 of the direct-family method

rely on finding the value of s that satisfies
∑S−1

s=0 P (s|τ) ≤ r ≤
∑S

s=1 P (s|τ) (or

equivalent) for a randomly generated number r and P (0|τ) = 0, it was hypothesised

in these works that the speeds of these steps could be optimised by organising the

order of the terms P (s|τ) so that the terms with the largest probability are summed

over first [181, 190, 191]. Since the instantaneous probability P (s|τ) is a function

of the number of legs that are currently in a state that can exhibit transitions of

the type s, it is the average value of P (s|τ) exhibited by cargo during simulations

that is of interest. For simulations with S = 3 and position independent binding

and unbinding rates (see section 5.2.1), the average values of P (s|τ) for families of

binding, unbinding and microtubule growth events are,

P (1|τ) =
(N − 〈n〉)kon

kt
, P (2|τ) =

〈n〉koff
kt

, P (3|τ) =
kMT

kt
, (3.8)

where kt = (N −〈n〉)kon+ 〈n〉koff +kMT , and 〈n〉 has been approximated in eq.(5.6).

It can be derived from eq.(5.6) that 〈n〉 ' (N kon)/(kon+koff ) for cargo with N � 1,

such that for kon ' koff ' kMT it is efficient to sum the terms in eq.(3.8) in the

order they are presented. In contrast, if kMT � kon,off then it is efficient to sum

over P (3|τ) first. Similar arguments can be made when extending the algorithm for

S = 7 (see section 7.3).

For comparison, using an Euler approach to solve eq.(2.21) would require

a constant timestep that satisfies ∆t � 1/kt, where kt ∝ N for cargo in the limit

of large N (see section 5.2.1). This results in long and computationally inefficient

simulations. In contrast, the Gillespie algorithm assumes that kj∆t is the probability

of event j occurring in a time ∆t (to first-order in ∆t, or in the limit ∆t→ 0, see

eq.(2.30)), but does not explicitly require the definition of a timestep ∆t [175]. Terms

corresponding to interactions between more than two particles have been neglected
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in eq.(2.30), but would be ∝ ∆tβ with β > 1. This means that in the limit ∆t→ 0

it is correct to assume that only one type of event can occur at a time.

3.4.2 Inverse Transform Sampling

Timesteps for the Gillespie algorithm (see methods section 3.4.1) and Wiener process

displacements for molecular dynamics simulations (see methods section 3.4.5) were

derived using inverse transform sampling [189]. It can be shown that if Y is a random

variable with a uniform distribution on [0, 1], and X is a random variable with the

cumulative distribution function FX(x), then the random variable defined by F−1
X (Y )

has the same distribution as X. Timesteps for the Gillespie algorithm (τ) can be

calculated by substituting randomly generated values of Y into the distribution [175],

F−1
τ (Y ) =

(
1

kt

)
ln

(
1

1− Y

)
. (3.9)

There are cases where analytical inversion of the CDF is not possible, for

example for the Gaussian distribution. In this case, interpolation of the CDF FX(x)

can be used to identify the position where Y = FX(x), and the corresponding value

of x is a random variable with the same distribution as X.

3.4.3 Calculating Mean-Squared Displacements and Autocorrela-

tions

As the Gillespie algorithm randomly selects the time τ after which the next event

will occur from the distribution P (τ) = kt exp(−kt τ), simulations are carried out on

a continuous time domain. In order to obtain distributions for the mean-squared

displacement or autocorrelation, the state of the system must be sampled at the

discrete times t = µ∆t, where µ = 0, 1, ..., (tmax/∆t), ∆t is a small time increment,

and tmax is the final sampling time. In contrast to the timestep used for Euler

simulations, there are no limits on the size of ∆t required for this analysis as it

does not directly affect any simulated dynamics. However, in the case of molecular

dynamics simulations (see methods section 3.4.5), the value of ∆t used to define the

sample times t should be equal to the timestep used in the simulation.

The mean-squared displacement 〈δx2〉(τ) during a time interval τ can be

calculated using the equation,
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〈δx2〉(τ) = 〈(x(t+ τ)− x(t))2〉

=

(
1

Np

) Np∑
i=1

( 1

Ti − τ

) t′=Ti−τ∫
t′=0

(xi(t
′ + τ)− xi(t′))2 dt′

 , (3.10)

where Np is the total number of particles (EBs or cargo) being simulated, Ti is

the dwell time of the ith particle, and xi(t) is the position of the centre of the ith

particle evaluated at time t. The time interval should also be evaluated at the

times τ = µ∆t. Since particles only move due to discrete binding, unbinding,

or microtubule growth events, it is assumed that they move at a speed vevent =

limδt→0((xi(t + δt) − xi(t))/δt) → ∞ (such that the position of the centre of the

particle moves instantaneously when an event occurs).

Similarly, the autocorrelation of any variable fi(t), that has an average value

f̄ over the duration of the simulation, can be calculated during a time interval τ

using the equation,

Cf (τ) = 〈(f(t+ τ)− f̄)(f(t)− f̄)〉

=

(
1

Np

) Np∑
i=1

( 1

Ti − τ

) t′=Ti−τ∫
t′=0

(fi(t
′ + τ)− f̄)(fi(t

′)− f̄) dt′

 . (3.11)

3.4.4 Numerical Methods

In section 5.3.1 the numerical solution to the Fokker-Planck equation defined in

eq.(5.29) was obtained using the built-in MatLab function pdepe() [192]. This

function numerically solves an equation of the form,

c

(
x, t, u,

∂u

∂x

)
∂u

∂t
= x−m

∂

∂x

(
xmf

(
x, t, u,

∂u

∂x

))
+ s

(
x, t, u,

∂u

∂x

)
, (3.12)

where x and t are the spatial and temporal independent variables respectively, and

u is the dependent variable [192]. The variable f(x, t, u, ∂u/∂x) is equal to the flux,

such that f(x, t, u, ∂u/∂x) = Deff (x)(∂u/∂x) − Veff (x)u when solving eq.(5.29),

and the variable s(x, t, u, ∂u/∂x) is a source term, such that s(x, t, u, ∂u/∂x) =

keffon (x) − keffoff (x)u. The system is subject to the initial condition of a uniform

distribution, as well as the boundary conditions a(x, t, u)+b(x, t)f(x, t, u, ∂u/∂x) = 0

at both edges (xL,R) of the one dimensional domain [192]. For the case of periodic

boundary conditions, a(xL,R, t, u) = Veff (xL,R)u and b(xL,R, t) = 1.
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3.4.5 Molecular Dynamics Simulations

The molecular dynamics simulations of cargo performed in section 5.3.3 were carried

out using a forwards Euler scheme of the form,

x(t+ ∆t) = x(t) + f(x(t)) ∆t+ g(x(t))w(∆t), (3.13)

where the forms of f(x(t)) and g(x(t)) are defined in eq.(5.36 & 5.37) respectively,

and w(∆t) ∼ N (0,∆t) (see section 2.3.1). The Wiener process displacements were

sampled using inverse transform sampling (see methods section 3.4.2). A timestep of

∆t = 0.01tc (where the characteristic timescale tc = 1/koff ) has been used in this

work to ensure that the average value of the Wiener process term in eq.(3.13) has a

greater magnitude than the average value of the deterministic term, which should be

the case at short timescales.

Binding and unbinding dynamics were implemented by randomising the

position of the cargo on the periodic domain with probability ∆t/T (x), where

T (x)� ∆t is the position dependent average dwell time of the cargo. For a position

dependent cargo rebinding rate k0,1(x), the randomisation of cargo position following

unbinding should be weighted accordingly. The periodicity of the domain with

width h means that the rebinding position of cargo can be restricted to the range

−h ≤ xrb ≤ h without skewing the resulting probability distribution function.

3.4.6 Calculating Errors for Simulated Data

As a result of the time required to run simulations studying the dynamics of many-

legged cargo and the volume of data obtained from each simulation, it is not possible

to derive the errors of complex distributions using many simulations with the same

input parameters on a reasonable timescale. For this reason, errors in distributions

that cannot be derived simply by binning data (see section 3.3.5) have been calculated

using random samples of the data generated during a single simulation. This technique

is a type of bootstrapping [193].

For each binding or unbinding event in a simulation, the number of bound

legs before and after the event, the wait time before the event, and the displacement

corresponding to the event are stored as a row in a growing array constituting the

ith component of a cell array, where i indexes the position that the cargo started at

before the event. Following the simulation, Nev samples of possible cargo binding

or unbinding events are extracted from this cell array with replacement, where Nev

is the total number of binding or unbinding events in the original simulation. This

sampling process is repeated 24 more times. Distributions derived from the motion

of cargo are then calculated for each of these sampled cell arrays of data. The
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error at each point of a distribution derived using the original data set (obtained

directly from the original simulation) is calculated from the standard deviation of

the corresponding values of the distributions derived from the sampled cell arrays of

data. Whenever necessary, smoothing is carried out before calculating this standard

deviation. Using 25 sampled cell arrays of data generates sufficiently accurate error

values, whilst ensuring that not too much computer memory is required for the

process.

This method was also used to propagate errors associated with fits to the

bound leg distributions obtained from stochastic simulations through the discrete

analysis in chapter 6. In this case, errors in averages at each position were defined as

equal to the standard deviation of 25 artificial values, each generated by randomly

sampling values for the fit parameters describing the relevant bound leg distribution.

Fit parameters were sampled from a multi-variate normal distribution parameterised

by the mean values of the fit parameters (used to calculate the average at each

position) and the covariance matrix obtained during fitting.
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Chapter 4

End-Binding Protein Binding

Dynamics

It was described in sections 2.2.3 & 2.3.4 that the tubulation of the ER can be

driven by interactions between EBs and the membrane-bound protein STIM1, which

possesses an EB-binding SxIP motif [15, 28, 64]. Modelling the EB-mediated in-

tracellular transport of cargo therefore requires a complete understanding of the

binding dynamics of individual EBs. In this chapter, the results of single-molecule EB

binding experiments will be analysed using computational techniques and analytical

modelling. It will be shown that EBs exhibit a dwell time distribution with two

characteristic unbinding timescales, indicating two-state binding behaviour.

4.1 Wild-Type End-Binding Protein Binding Dynamics

The interactions between a small concentration (≤ 400 pM) of fluorescently-labelled

EB3GFP (488 nm absorption) and microtubules were studied experimentally using

the experimental procedures described in methods section 3.2. Approximately

physiological concentrations (13 − 38 nM) of fluorescently-labelled EB3mCh (561

nm absorption) were also included to emulate biologically relevant conditions and

highlight growing microtubule ends [67]. The primary aim of these single-molecule

binding experiments was to obtain the dwell time distribution of EBs with temporal-

resolution greater than previously published results [14, 26, 66, 83, 84]. Kymographs

were generated from the experimental videos, and individual EB3GFP construct

tracks were obtained using software developed for this work (see methods sections

3.3.1 & 3.3.2). Different EB3GFP concentrations were used to optimise the number

of EB binding events observed at growing microtubule ends or on the microtubule

lattice, while minimising the frequency of ‘overlap’ events (see section 4.3.2).
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4.1.1 Dwell Time Distributions

In this work, the dwell times of EB3GFP constructs at concentrations ≤ 400 pM

have been used to probe the dwell time distribution on the microtubule lattice, and

dwell times at concentrations ≤ 100 pM have been used to probe the distribution

at growing microtubule ends. The dwell time distributions obtained using these

concentrations are shown in Fig.(4.1). Single-frame detections have been removed

from these dwell time distributions as a result of the discussion in methods section

3.3.6. As shown in previously published work [26], it can be observed in Fig.(4.1) that

the average dwell times of EB3GFP constructs are skewed towards smaller values

when binding to the microtubule lattice than when binding to growing microtubule

ends.

As a result of the improved temporal-resolution in this work compared to

previously published results [14, 26, 66, 83, 84], it can be observed in Fig.(4.1c) that

the dwell time distributions for the microtubule lattice and growing ends appear to

be best fit by a biexponential distribution (superposition of two exponentials of the

form a2 exp(−t/τ2,1) + b2 exp(−t/τ2,2)) rather than a monoexponential distribution

(a1 exp(−t/τ1)). The characteristic unbinding timescales for experiments using

different EB3GFP and EB3mCh concentrations are presented in table 4.1. The

existence of two characteristic unbinding timescales suggests that EB3GFP constructs

can bind to microtubules in two different states that have distinct affinities for the

microtubule.

The average dwell times for EBs that exhibit a biexponential dwell time

distribution can be calculated as,

τav =
a2 (τ2,1)2 + b2 (τ2,2)2

a2 τ2,1 + b2 τ2,2
, (4.1)

using the fit parameters defined in table 4.1. It can be calculated using eq.(4.1)

that the average dwell time of EB3GFP constructs at growing microtubule ends is

τ tipav = (0.35± 0.04) s (using the ≤ 100 pM data in table 4.1), whereas their average

dwell time on the microtubule lattice is τ latav = (0.20±0.14) s (using the ≤ 400 pM data

in table 4.1). These values reproduce the expected result that EBs dwell for longer

on average at growing microtubule ends, and also agree with previously reported

values for EB3GFP constructs [26]. The average dwell time on the microtubule

lattice obtained using a monoexponential fit (τav ≡ τ1 = (0.189± 0.011) s from table

4.1) also agrees with the previously reported value [26], although this is not the

case for the value obtained at growing microtubule ends. This is the result of the

fraction a2/b2 � 1 for the microtubule lattice, suggesting that the data can be well

described by a monoexponential fit (see section 4.1.2 for a more thorough analysis of
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(a) (b)

(c)

Figure 4.1: EB3GFP dwell time distributions — (a) Dwell time distributions
for EB3GFP constructs binding to the microtubule tip, the microtubule lattice, and
regions of GTPγS-tubulin. Background EB3mCh concentration was 38 nM for all
experiments, and concentrations of EB3GFP are as defined in the key. Experiments
were carried out as described in methods section 3.2, and the resulting kymographs
were analysed using tracking software developed for this work (see methods section
3.3.2). A dwell time distribution obtained by manual kymograph analysis is shown for
comparison (black). (b) Lin-log plot of the distribution in (a). (c) Monoexponential
and biexponential fits to the dwell time distributions in (a,b). All distributions
diverge from the monoexponential fit at long times. All corresponding data sets were
truncated at the bin that first exhibits a number of observations no < 4.

the biexponential fit at growing microtubule ends).

Also shown in Fig.(4.1a,b) is a dwell time distribution for EB3GFP constructs

at the growing ends of microtubules obtained manually (for a single chamber of 100

pM EB3GFP), as opposed to by using the tracking code developed for this work (see

methods section 3.3.2). The agreement between this distribution and the distribution

obtained using the tracking software validates the use of the software for obtaining

accurate dwell time distributions.
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EB3GFP
Conc. (pM)

Region τ1 (s) τ2,1 (s) τ2,2 (s) a2/b2

≤ 400 Tip (0.403± 0.016) (0.21± 0.02) (0.63± 0.04) (3.8± 0.7)

done Lattice (0.189± 0.011) (0.17± 0.02) (0.7± 0.9) (80± 60)

done Background (0.214± 0.018) (0.20± 0.03) (2± 7) (180± 160)

≤ 100 Tip (0.356± 0.015) (0.20± 0.02) (0.60± 0.06) (4.8± 1.1)

done GTPγS (0.179± 0.006) (0.153± 0.007) (0.44± 0.09) (31± 12)

400 Tip (0.54± 0.03) (0.29± 0.09) (0.9± 0.3) (3.0± 1.4)

200 Tip (0.46± 0.02) (0.17± 0.06) (0.59± 0.07) (1.8± 0.6)

100 Tip (0.349± 0.017) (0.19± 0.03) (0.59± 0.09) (4.4± 1.3)

Table 4.1: Experimental dwell time distribution parameters — Experimentally derived characteristic unbinding timescales
for different concentrations of EB3GFP constructs. All experiments used a background EB3mCh concentration of 38 nM. τ1 is the
characteristic unbinding timescale obtained by fitting the dwell time distribution with a monoexponential distribution, and τ2,1 and
τ2,2 are the short and long characteristic unbinding timescales obtained by fitting with a biexponential distribution. a2/b2 is the ratio
of the magnitudes of the exponential terms corresponding to τ2,1 and τ2,2 in the biexponential fit respectively. The characteristic
unbinding timescales of background data obtained in the absence of any microtubules are shown alongside other ≤ 400 pM data
for comparison. Following background subtraction (see Fig.(4.2)), there is not enough lattice data to reliably derive characteristic
unbinding timescales. The presented value for the microtubule lattice is expected to be dominated by the effects of EB3GFP constructs
binding non-specifically to the cover slip. The data corresponding to individual 400 pM, 200 pM, and 100 pM experiments were
obtained on the same day to minimise the variation in experimental conditions and protein overproduction.
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Single-molecule binding experiments were also carried out using microtubules

with regions of GTPγS-tubulin (a non-hydrolysable GTP analogue), to which EBs

bind with a higher binding rate than to the GDP-tubulin lattice [67, 83]. From

the experiments used to derive the distributions in Fig.(4.1), the EB3GFP binding

rate to regions of GTPγS-tubulin ((3.06 ± 0.06) nM−1µm−1s−1 calculated using

100 pM EB3GFP construct data including single-frame binding events or (1.244±
0.032) nM−1µm−1s−1 neglecting single-frame binding events) was higher than to

the lattice ((1.474 ± 0.010) nM−1µm−1s−1 or (0.170 ± 0.004) nM−1µm−1s−1) and

closer to the value obtained for growing ends ((4.16± 0.08) nM−1µm−1s−1 or (3.34±
0.06) nM−1µm−1s−1). In contrast to the average dwell time data, the EB3GFP

construct binding rates measured in this work at growing microtubule ends and on

the microtubule lattice are both ∼ 2× smaller than those presented in previously

published work [26]. This could be due to the loss or aggregation of ∼ 50% of protein

during centrifugation, which has been predicted for the experiments carried out in

this work (tested by western blot). Other differences include the C-terminal (not

N-terminal) His-tagging of proteins in this work, and the use of mouse (not human)

EB3 [26].

The dwell time distribution for EB3GFP constructs binding to regions of

GTPγS-tubulin in Fig.(4.1) also appears to be best fit by a biexponential distribution,

and is similar to the distribution obtained for microtubule lattice binding events. It

can be observed in table 4.1 that the short and long characteristic unbinding timescales

exhibited by EB3GFP constructs binding to GTPγS-tubulin ((0.153± 0.007) s and

(0.44±0.09) s respectively) are shorter than those exhibited when binding to growing

microtubule ends ((0.20± 0.02) s and (0.60± 0.06) s respectively), and do not agree

within error. This results in an average dwell time of τ gtpγsav = (0.177± 0.019) s being

calculated using eq.(4.1) and the ≤ 100 pM data for EB3GFP constructs that bind

to regions of GTPγS-tubulin, which agrees with the value obtained for EB3GFP

constructs binding to the microtubule lattice.

In order to eliminate the effects of background binding events on the dwell

time distribution, for example due to EBs binding non-specifically to the cover slip,

the number of EB3GFP tracks that last a period of time t has been measured using

kymographs in the absence of any microtubules. This distribution has been compared

to the corresponding lattice and tip distributions in Fig.(4.2), after taking into account

the average length of each region. As a result of the reduced binding rate of EB3GFP

constructs, it can be observed in Fig.(4.2) that the number of EB3GFP detections

on the microtubule lattice per unit length is similar to the number measured for the

background. Similarly, the excess at 0.4 s in both the lattice dwell time distribution

(Fig.(4.1a & 4.2)) and the background detection distributions (Fig.(4.2)) are artifacts
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(a) (b)

Figure 4.2: Quantification of background detections — Distributions of the
number of EB3GFP constructs that unbound at each time per unit length of the
region of interest, compared to the number per unit length for kymographs in
the absence of microtubules (background, black) for experiments with EB3GFP
concentrations of (a) ≤ 400 pM, and (b) ≤ 100 pM. The distribution for regions of
GTPγS-tubulin has only been shown for the ≤ 100 pM data, since no GTPγS-tubulin
was included in experiments with > 100 pM EB3GFP.

due to the tracking procedure outlined in methods section 3.3.2. Since tracks are

allowed a ‘frameskip’ of up to two time points, this excess corresponds to two noisy

detections 0.3 s apart that have been connected to form a track. The abundance of

0.4 s tracks is detected for only the lattice and background data due to the reduced

binding rate and signal-to-noise ratio in these kymograph regions. For these reasons,

the lattice dwell time distribution in Fig.(4.1) cannot be used to reliably represent

EB3GFP binding behaviour when interacting with the microtubule lattice, despite

being able to reproduce the previously published value for the average dwell time.

For comparison, the characteristic unbinding timescales measured for back-

ground binding events at an EB3GFP construct concentration of ≤ 400 pM are

shown in table 4.1. The average dwell time measured for background binding events

is (0.214± 0.018) s, assuming that the background data can be well described by a

monoexponential fit (since a2/b2 � 1), which is very similar to the values measured

for EB3GFP binding to the microtubule lattice in this and previously published

work [26]. This result suggests that the majority of tracked lattice binding events are

actually EB3GFP constructs binding non-specifically to the underlying cover slip,

and demonstrates how difficult it is to probe EB3GFP construct binding dynamics

on the microtubule lattice.

In contrast to the microtubule lattice data, Fig.(4.2) shows that the number

of binding detections at growing microtubule ends is approximately two orders of

magnitude greater than for the background, and to regions of GTPγS-tubulin is

approximately one order of magnitude greater for times t . 2 s. This means that

the effects of background binding events on the dwell time distributions in Fig.(4.1)
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(a) (b)

Figure 4.3: Varying EB3GFP & EB3mCh concentrations — (a) Dwell time
distributions for different concentrations of EB3GFP constructs and 38 nM EB3mCh
at the growing microtubule end, fitted by biexponential distributions. An increased
frequency of ‘overlap’ events skews the dwell time distribution towards longer times-
cales as the concentration of EB3GFP constructs increases. (b) Dwell time distribu-
tions for 100 pM of EB3GFP constructs with varying background concentrations
of EB3mCh constructs. All corresponding data sets were truncated at the bin that
first exhibits a number of observations no < 4.

for growing microtubule ends and regions of GTPγS-tubulin are expected to be

negligible, and that these distributions are expected to reliably represent the actual

binding behaviour of EB3GFP constructs.

In order to determine how the dwell time distributions shown in Fig.(4.1)

vary as a function of EB3GFP or EB3mCh concentration, experiments were carried

out with 100 pM, 200 pM or 400 pM EB3GFP, and 13 nM or 38 nM EB3mCh, with

results shown in Fig.(4.3). All experiments where the concentration of EB3GFP or

EB3mCh was varied were performed on the same day to minimise the variation in

experimental conditions and protein overproduction. Fig.(4.3a) shows that increasing

the concentration of EB3GFP increases the observed short and long characteristic

unbinding timescales at growing microtubule ends. This is the result of the EB3GFP

constructs binding to the microtubule more frequently, and so being closer to each

other on average once bound. The observed binding rate kobson = kon[EB3GFP ] at

growing microtubule ends was (0.421± 0.014) µm−1s−1 for the 100 pM experiments

(including single-frame binding events), (0.550 ± 0.018) µm−1s−1 for the 200 pM

experiments, and (0.76± 0.02) µm−1s−1 for the 400 pM experiments. If the distance

between any two binding events is within the spatial resolution of the microscope,

or within the peak-detection resolution used during kymograph analysis, then the

binding events will be strung together to form a single longer track. This has the

effect of artificially skewing the dwell time distribution and the observed characteristic

unbinding timescales towards longer times (see section 4.3.2 for a discussion about

how to correct for this problem). It is for this reason that the fraction a2/b2 is
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smaller for the 200 pM and 400 pM data than for the 100 pM data (table 4.1).

The characteristic unbinding timescales observed with 100 pM and 200 pM are very

similar, which suggests that EB3GFP concentrations ≤ 200 pM are sufficient to

minimise the effect of these ‘overlap’ events.

EB3mCh constructs have been used in these experiments to emulate physiolo-

gical conditions and highlight the growing ends of microtubules, but it is expected

that competition between EB3mCh and EB3GFP constructs will affect the dwell

time distribution observed for the EB3GFP constructs [67, 84]. Fig.(4.3b) shows

that decreasing the background concentration of EB3mCh constructs skews the dwell

time distribution of EB3GFP constructs towards longer times, and increases the

proportion of detections that exhibit the longer characteristic unbinding timescale.

In agreement with previously published data [84], the binding rate of EB3GFP

constructs at growing microtubule ends increases from (1.92± 0.08) nM−1µm−1s−1

to (2.92± 0.10) nM−1µm−1s−1 (including single-frame binding events) as the back-

ground concentration of EB3mCh constructs decreases in these experiments. These

results suggest that EBs bind competitively to growing microtubule ends.

4.1.2 Statistical Tests

Three statistical tests have been used to determine whether the best fits for the dwell

time distributions presented in Fig.(4.1c & 4.3a) for EB3GFP constructs binding

to growing microtubule ends or regions of GTPγS-tubulin are monoexponential or

biexponential. Fits to the lattice dwell time distribution have not been considered in

this section, since it is not possible to distinguish between ‘correct’ lattice binding

events and ‘false’ background binding events in this case (see Fig.(4.2)). In contrast,

it is assumed that the effects of background binding events are negligible for the

dwell time distributions obtained at growing microtubule ends and on regions of

GTPγS-tubulin. The results of the statistical tests carried out in this section are

presented in table 4.2.
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EB3GFP
Conc. (pM)

Region χ2
1 χ2

ν,1 p1 χ2
2 χ2

ν,2 p2 W1,2

≤ 400 Tip 269.39 8.98 2.63×10−40 49.20 1.76 7.93× 10−3 0.24

≤ 100 Tip 158.39 6.09 6.02×10−21 32.44 1.35 0.12 0.29

done GTPγS 142.33 8.37 7.69×10−22 30.10 2.01 1.16× 10−2 0.17

400 Tip 36.89 1.68 2.43× 10−2 19.48 0.97 0.49 0.84

200 Tip 24.97 1.47 9.54× 10−2 9.39 0.63 0.86 0.89

100 Tip 22.02 1.38 0.14 3.73 0.27 1.00 0.67

Table 4.2: Verification of fits to experimental dwell time distributions — Results of applying three statistical tests to the
fits that produced the characteristic unbinding timescale data in table 4.1. Lattice data has not been considered due to the inability
to remove the effects of background binding events (see Fig.(4.2)). Chi-squared (χ2) and reduced chi-squared (χ2

ν) parameters have
been calculated and used to derive p-values that represent the probability of obtaining a worse chi-squared value when fitting using
the same number of free parameters. The p-value obtained using Wilks’ theorem (W1,2) has also been quoted.
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Firstly, the chi-squared value (χ2) for both possible fits (monoexponential or

biexponential) was calculated for each data set as χ2 =
∑b

i=1(((Oi−Ei)/σi)2), where

Oi and Ei are the observed and expected (fitted) probability distribution functions

(PDFs) for the ith bin (respectively), σi is the error in the observed PDF for the ith

bin, and b is the total number of bins [188]. The errors in the observed PDF were

derived using eq.(3.3) from methods section 3.3.5. In general, a smaller value of χ2

represents a better fit for a given number of degrees of freedom. In this case, before

calculating the value of χ2 for each set of data, the data was truncated at the bin

that first exhibits a number of observations no < 4 (this procedure was also used to

present the data in Fig.(4.1 & 4.3)). This ensured that data obtained at the noise

floor due to the limited number of observations did not skew the statistical results.

The reduced chi-squared value (χ2
ν = χ2/ndf) takes the number of degrees

of freedom into account (ndf = b − f is the number of degrees of freedom for a

fit with f free parameters), and so can be used to compare the suitability of the

monoexponential and biexponential fits. It can be inferred that a value of χ2
ν ' 1 is

expected for a good fit (observed data is ∼ σi away from the expected value for each

bin), over-fitting the data results in χ2
ν < 1, and under-fitting the data (or using a

poor fit to the data) results in χ2
ν > 1. It can be seen in table 4.2 that χ2

ν,2 < χ2
ν,1

for all data sets, and that the biexponential fit to the data at growing microtubule

ends is particularly good, such that χ2
ν,2 ' 1.

The values a2/b2 > 1 in table 4.1 reflect that binding events exhibiting

the longer characteristic unbinding timescale are rare. This means that the dwell

time distributions corresponding to data sets where relatively few binding events

are observed (such as the 400 pM, 200 pM, and 100 pM data sets obtained from

experiments carried out on the same day) are reasonably well fit by a monoexponential

distribution. Table 4.2 shows that in these cases the biexponential fit appears to

overfit the data, such that χ2
ν,2 < 1.

A more accurate statistical measure can be obtained from the integral,

p =

∫ ∞
χ2
m

P (χ2|ndf) dχ2, (4.2)

where P (χ2|ndf) is the PDF describing the probability of obtaining a value of χ2

given ndf free parameters [188], and χ2
m is the measured χ2 value. The ‘p-value’ is

the probability of obtaining a worse χ2 value (χ2 > χ2
m) given ndf free parameters.

A small p-value indicates a poor fit to the data (it is unlikely that a fit with the same

number of free parameters will generate a worse χ2 value), but a p-value that is too

large suggests that the data has been over-fitted. As was the case for the χ2 test, it

can be seen in table 4.2 that p1 < p2 for all data sets, indicating that a biexponential
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distribution better represents the dwell time distributions in Fig.(4.1c & 4.3a).

Assuming that the probability of observing a dwell time within the ith bin

is πi = qi/Q (where qi is the number of observations in the bin and Q is the total

number of observations), it can be derived that in the limit of many observations

(large qi) the probability of observing πi is,

P (πi|µi, σi) =

 1√
2πσ2

i

 exp

(
−(πi − µi)2

2σ2
i

)
, (4.3)

where µi is the expected probability of observing a dwell time within the ith bin

(obtained by fitting), and σi is the standard deviation of this expectation value. Since

the probability of observing πi for a given value of µi obeys Poisson statistics in the

small qi limit, it can be approximated that σi '
√
µi [188]. The likelihood for this

distribution can be calculated as L =
∏b
i=1 P (πi|µi, σi) [188]. Using the values of

the likelihoods calculated for the two possible fits to each of the data sets shown in

table 4.1, Wilks’ theorem can be used to directly compare the quality of the fits [194].

This theorem states that −2ln(λ) = −2ln(L0/L1), where L0,1 is the likelihood of

the null hypothesis (monoexponential fit) and the new hypothesis (biexponential fit)

respectively, follows the known distribution P (χ2|ndf)→ P (−2ln(λ)|ndfL), where

ndfL = ndfnew − ndfnull [194]. Substituting this quantity into eq.(4.2) generates a

large value when it is likely that the null hypothesis is a better fit to the data, and

a small value otherwise. This test is possible since the null hypothesis arises when

a = 0 or c = 0 (but not a = c = 0) in the fitted biexponential distribution.

The results of using Wilks’ theorem to compare the monoexponential and

biexponential fits for the dwell time distributions shown in Fig.(4.1c & 4.3a) are

presented in table 4.2. It can be observed that W1,2 < 0.3 for the data sets

with relatively high numbers of detections (≤ 400 pM and ≤ 100 pM EB3GFP

concentration), which suggests that it is unlikely that the biexponential fit better

represents the dwell time distributions by chance. The greater values of W1,2 for

the individual 400 pM, 200 pM, and 100 pM experiments are the result of fewer

observations of events exhibiting the longer characteristic unbinding timescale, such

that the monoexponential fit (null hypothesis) is a reasonable fit for the corresponding

dwell time distributions. In this case, the biexponential distribution over-fits the

data (χ2
ν,2 < 1), and the contribution of the increased likelihood L1 is outweighed by

the increased (but unnecessary) number of degrees of freedom for the fit.

Together, the statistical tests presented in this section predict that the dwell

time distributions for EB3GFP constructs that bind to growing microtubule ends or

regions of GTPγS-tubulin are best fit by biexponential distributions (see table 4.2).
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Returning to the hypothesis that a biexponential dwell time distribution indicates

that EB3GFP constructs can bind to microtubules in two different states, this result

suggests that the two different states cannot be the result of the GTPase cycle

associated with tubulin. Similarly, the characteristic unbinding timescales presented

in table 4.1 are much smaller than the timescale associated with GTP hydrolysis

(5-10 s depending on EB concentration [14, 31, 66, 83, 84]). This contrasts with the

conclusion of the work by Roostalu et al. [33], where a biexponential EB dwell time

distribution was attributed to the hydrolysis of the GTP molecule associated with

the tubulin to which the EBs were bound. An analytical proof that this phenomenon

cannot result in a biexponential dwell time distribution of the form observed in

Fig.(4.1c) is described in section 4.2.1.

It has been shown recently by Song et al. [84] that the binding affinity of EB1

at microtubule ends is enhanced when it is dimerised and possesses two microtubule-

binding CH domains. In particular, it was shown that the phosphorylation of the

linker domain connecting the two CH domains changes the overall conformation of

EB1 and inhibits its binding to microtubules [84]. It is possible that in their high-

affinity binding state EBs are able to bind to the microtubule with either one or both

of their CH domains, whereas after the phosphorylation of their linker domain only

one of these domains is free to bind. This mechanism would account for the distinct

low- and high-affinity binding states observed by Song et al. [84], as well as the

biexponential dwell time distributions exhibited in Fig.(4.1c & 4.3a). This mechanism

would also explain why increasing the background concentration of EB3mCh ‘hides’

the longer characteristic unbinding timescale; increasing the competition for binding

sites would decrease the rate of an EB binding to the microtubule simultaneously

with both of its CH domains.

4.2 Analytical Binding Model

If EBs were to exhibit simple binding and unbinding dynamics in the absence of

different types of bound states, in the rest frame of the growing microtubule end

they would be expected to obey the Fokker-Planck equation (see section 2.3.2),

∂Pt(x)

∂t
= −vEBMT

∂Pt(x)

∂x
− koff (x)Pt(x) + kon(x)s, (4.4)

where Pt(x) is the PDF describing the probability of finding an EB at position x at

time t, vEBMT = −vMT is the velocity exhibited by stationary bound EBs in the rest

frame of the growing microtubule end, and kon,off (x) are the position dependent

EB binding and unbinding rates (respectively). By comparison to eq.(2.19) it can

be observed that eq.(4.4) contains no diffusive term. This means that eq.(4.4) is
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a valid approximation for the bound motion of EB3 proteins, which have not yet

been shown to diffuse on the microtubule lattice, but not for the bound motion of

EB1 proteins, which have been shown to exhibit diffusive motion on the microtubule

lattice in previously published work [86].

Position dependence in the binding and unbinding rates in eq.(4.4) has been

included in this model to take into account the preferential binding of EBs to the

growing microtubule end, as well as their higher unbinding rate from the microtubule

lattice. For simplicity, the rates are assumed to have the form,

kon,off (x) = ktipon,off θ(x) + klaton,off θ(−x), (4.5)

in this section, where θ(x) is the heaviside-step function. It has been assumed that

the microtubule tip region begins at x = 0 and extends in the positive direction,

such that the response of EBs to microtubule growth (vMT > 0, as for those in

Fig.(3.2)) generates an EB velocity in the negative direction (vEBMT < 0). Using the

rates defined in eq.(4.5), the growing microtubule end and lattice can be considered

separately (x > 0 and x < 0 respectively) far from the boundary at x = 0 in order

to remove any position dependence when solving eq.(4.4).

It is possible to derive the dwell time distribution for EBs that obey eq.(4.4)

in the limit vEBMT → 0. Removing the term in eq.(4.4) associated with new EBs

binding (kon(x)s) is equivalent to assuming that all of the EBs bound at the same

time, and allows the decay of a continuous population to be studied. For this

simple case, the normalised PDF decays exponentially according to the equation

Pt(x, t) = koff (x) exp(−koff (x) t), such that the average dwell time is equal to

1/klat,tipoff for the microtubule lattice and tip respectively. However, for a system

where vEBMT 6= 0 or where EBs can diffuse once bound this calculation is not correct,

as EBs may experience different values of koff (x) as they move.

Using this simple model there are three possible explanations for the origin

of the biexponential dwell time distribution obtained experimentally in section

4.1.1 (see Fig.(4.1c)). The first is that there are two independent populations

of EBs that each exhibit distinct (position-dependent) unbinding rates from the

microtubule. In this case, the observed dwell time distribution would be the sum of

the individual (monoexponential) dwell time distributions of each population, each

with an amplitude equal to the corresponding population at time t = 0. Although

uncharacteristically long tracks were detected by the tracking algorithm developed for

this work (see Fig.(3.2g-i)), none were included in the dwell time distributions shown

in Fig.(4.1), and so these cannot have contributed to the observed biexponential

decay. Alternatively, it is possible that there are instead multiple populations of

EB-binding sites to which EBs exhibit different binding affinities. These could
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be the result of the different combinations of nucleotides that can be associated

with the four tubulin heterodimers that comprise the preferential binding site for

EBs [67], or the heterogeneity in microtubule structure caused by different isoform

compositions or post-translational modifications of tubulin heterodimers [195–197].

It is unclear why these effects would result in EBs exhibiting only two different

characteristic unbinding timescales, but this hypothesis cannot be ruled out without

further experimental investigation.

The final possible explanation for the origin of the biexponential dwell time

distribution (using this simple model) is that EBs initially bind in the high affinity

tip region, but that the nucleotide associated with the tubulin they are bound to

can be hydrolysed while they remain bound, resulting in them unbinding from a

weaker affinity state. This idea was originally proposed in the work by Roostalu

et al. [33]. However, in Fig.(4.1) it can be observed that EBs also appear to

exhibit a biexponential dwell time distribution when binding to regions of tubulin

associated with the non-hydrolysable GTP analogue GTPγS. Since no hydrolysis

of the nucleotides associated with underlying tubulin can occur in this case, it is

unlikely that this effect causes the biexponential dwell time distributions observed in

Fig.(4.1). Similarly, the sub-second average dwell times for EBs measured in this

work (see table 4.1) are much shorter than the timescales associated with those of

GTP hydrolysis and phosphate release (∼ 5− 10 s [14, 31, 66, 83, 84]). An analytical

proof that this explanation cannot be correct is presented in section 4.2.1.

Although eq.(4.4) represents a simplified EB binding model that does not

fully describe the binding kinetics of EBs, it demonstrates why EBs must bind

transiently to microtubules [14, 26, 48, 66, 83, 84]; if EBs did not exhibit relatively

small characteristic unbinding timescales they would quickly get ‘left behind’ as the

microtubule end grows with velocity vMT away from them. This would generate

a comet distribution with a very large characteristic decay length towards the

microtubule lattice, which is not what is observed in experiments [20, 48, 66, 67, 89].

Assuming that neither of these explanations for the biexponential dwell time

distribution is correct, a more complex EB binding model is required than that

described in eq.(4.4). The model developed to describe EB binding in this work

assumes that EBs initially bind to the microtubule in a ‘weakly’ bound state, from

which the EB can either unbind or become ‘fully’ bound. This weakly bound

state could be the result of electrostatic interactions between EBs and microtubules

[56, 86, 96, 176], or EBs binding with only one of their two CH domains [84]. The

fully bound state is a state where EBs are bound more tightly to the microtubule,

for example due to binding with both of their CH domains (to adjacent binding sites

on the microtubule) [84], similar to the model proposed by Feng et al. to describe
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Unbound (0)

Weakly Bound (1) Fully Bound (2)

Single Leg Bound (1) Two Legs Bound (2)

k0,1

k0,1

k1,0

k1,0

k2,1

k1,2

k2,1

k1,2

Figure 4.4: Models for EB binding — Two possible EB-microtubule binding
models. (Top) EB exhibits an intermediary state where it is electrostatically bound,
(Bottom) EB can bind with either or both of its CH domains. EBs cannot transition
from state (2) to state (0) in either model.

motor binding kinetics [198]. It can be hypothesised that an EB cannot transition

directly from being fully bound to being unbound (or vice versa), and this agrees

with the assumptions commonly used when numerically solving such systems (see

methods section 3.4.1) [175]. The schematic in Fig.(4.4) shows both possible forms

of this analytical model.

The motion of EBs that obey the binding model shown in Fig.(4.4) can

be described by a pair of Fokker-Planck equations (one for each bound state, see

eq.(2.21)) of the form,

∂P 1
t (x)

∂t
= −vEBMT

∂P 1
t (x)

∂x
− (k1,0(x) + k1,2(x))P 1

t (x) + k2,1P
2
t (x) + k0,1(x)s, (4.6)

∂P 2
t (x)

∂t
= −vEBMT

∂P 2
t (x)

∂x
− k2,1(x)P 2

t (x) + k1,2(x)P 1
t (x), (4.7)

where the unbound, weakly and fully bound states are labelled 0, 1, and 2 respectively,

and the rate kX,Y (x) represents the position dependent transition rate from state X

to state Y . The position dependence of the transition rates has the same functional

form as in eq.(4.5). In published work by Dey et al. [173], a similar pair of equations

has been used to study a two-state model of motor protein propagation in a confined

environment.

As described in section 2.3.2, a matrix equation can be written that combines

eq.(4.6 & 4.7) in the limit vEBMT → 0 of the form,
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∂

∂t

P 1
t (x)

P 2
t (x)

 =

−(k1,0(x) + k1,2(x)) k2,1(x)

k1,2(x) −k2,1(x)

P 1
t (x)

P 2
t (x)

 = κ(x)P t(x), (4.8)

where κ(x) is defined as the rate matrix and governs the transitions between states,

and P t(x) = (P 1
t (x), P 2

t (x)) is a vector containing the PDFs for the weakly and fully

bound states, and the binding of new EBs has been neglected (s → 0). Position

dependence in the rates kX,Y (x) and the variables that include them (for example

κ(x)) will not be written explicitly for the rest of this derivation, but separate

calculations will be required for the microtubule end and lattice. The matrix equation

eq.(4.8) can be solved in a similar way to eq.(4.4), such that P t(x) = N exp(κ t)P 0(x)

(where N is a normalisation factor and P 0(x) specifies the initial conditions of the

system), but the calculation of the average dwell time is more complicated and requires

the diagonalisation of κ. In this work it has been assumed that P 0(x) = (1, 0), as

EBs always bind in the weakly bound state.

The eigen-values of κ (see eq.(4.8)) are,

e± = −
(
k1,0 + k1,2 + k2,1

2

)
±

√(
k1,0 + k1,2 + k2,1

2

)2

− k1,0 k2,1, (4.9)

and will ultimately dictate the characteristic unbinding timescales of the population.

In the case where all kX,Y > 0, the rate matrix in eq.(4.8) is diagonalisable as the two

eigen-values defined in eq.(4.9) are always different (e+ 6= e−). It should be noted

that this rate matrix is only non-diagonalisable for kX,Y ≥ 0 when k1,0 = k2,1 6= 0

and k1,2 = 0, as in this case e+ = e− when the matrix is non-symmetric. The

eigen-vectors of κ must also be calculated, so that the rate matrix can be written in

the form κ = SDS−1 where D contains only the eigen-values defined in eq.(4.9) along

its diagonal. Expanding the exponential function as a Taylor series, the solution of

eq.(4.8) can be written in the form,
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P t(x) = N

(
1 + κ t+

(κ t)2

2
+ ...

)
P 0(x)

= N S

(
1 +D t+

(D t)2

2
+ ...

)
S−1P 0(x)

= N S

exp(e+ t) 0

0 exp(e− t)

S−1P 0(x)

= N

S1,1

(
S−1

)
1,1

exp(e+ t) + S1,2

(
S−1

)
2,1

exp(e− t)

S2,1

(
S−1

)
1,1

exp(e+ t) + S2,2

(
S−1

)
2,1

exp(e− t)



(4.10)

where P 0(x) = (1, 0) has been used to achieve the final equality.

The total probability of an EB being bound (in any state) at time t is defined

as PEB(x, t) = P 1
t (x) + P 2

t (x), such that the total number of bound EBs decays as a

sum of two exponential functions, as observed experimentally in Fig.(4.1c & 4.3a).

This form of PEB(x, t) agrees with the form of the analytical dwell time distribution

obtained by Klumpp et al. [166] (see section 2.3.2). Stochastic simulations of the

EB binding model depicted in Fig.(4.4) have been developed using the Gillespie

algorithm (see methods section 3.4.1) [175]. In this case, no information about the

spatial distribution of EBs was retained (for simulations including position dependent

binding dynamics see section 5.2.2), and the resulting plots comparing the analytical

and computational decay profiles of PEB(x, t) in time for different values of the rates

kon,off (x) are shown in Fig.(4.5). When k1,2 6= 0 the dwell time distributions exhibit

two characteristic unbinding timescales, corresponding to two distinct gradients in

Fig.(4.5b).

The average dwell time for bound EBs in this model can be calculated as,

Toff (x) =

∞∫
0

[(
−dPEB(x, t)

dt

)
t

]
dt, (4.11)

where eq.(4.11) can be thought of as the integral of the average number of EBs

that unbind between the times t and t + dt multiplied by the time they spent

bound t. For example, substituting the normalised solution of eq.(4.4) (for simple,

single-state binding and unbinding dynamics) into eq.(4.11) generates the result

Toff (x) = 1/koff (x), as expected. Substituting the solution from eq.(4.10) (for

EBs that obey the two-state binding schematic in Fig.(4.4)) into eq.(4.11) instead

generates the average dwell time,
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(a)

(b)

Figure 4.5: Simulated EB dwell time distributions — (a) The dwell time distri-
butions for simulated EBs that obey the schematic shown in Fig.(4.4) with different
transition rates k1,0, k1,2 and k2,1 corresponding to those measured experimentally
for EB3GFP constructs binding to growing microtubule ends or regions of GTPγS-
tubulin (see table 4.3, 10 000 000 simulated for each set of rates). Black dashed lines
are the solutions of eq.(4.10) for each set of rates, which show strong agreement
with simulation results. (b) Lin-log distribution that shows the two characteristic
unbinding timescales (equal to −1/gradient) for simulations with k1,2 6= 0.

Toff (x) = −
(S1,1 + S2,1)

(
S−1

)
1,1

e+
−

(S1,2 + S2,2)
(
S−1

)
2,1

e−
, (4.12)

which is always greater than the value of 1/k1,0(x).

Since EBs exhibit the same biexponential dwell time distribution as was

derived from eq.(4.8-4.10), it is of interest why this would be advantageous. For

example, although eq.(2.24) indicates that the average dwell time of an EB that

can occupy two bound states is greater than that for an EB that can only occupy

one, even with the same value of k1,0(x), there is no reason why EBs that can only

occupy one state could not exhibit a decreased value of k1,0 that results in the same

average dwell time. However, even in a situation where the average dwell times of

these two models are equal (T
(2)
off (x) = T

(1)
off (x), requiring different values of k1,0(x)),

the EBs will exhibit different variances in their average dwell times,

Var(t)(2) =
2 (S1,1 + S2,1)

(
S−1

)
1,1

e2
+

−
2 (S1,2 + S2,2)

(
S−1

)
2,1

e2
−

Var(t)(1) =

(
1

koff (x)

)2

,

(4.13)

where Var(t)(2) is always greater than Var(t)(1). Hence, if it is advantageous for EBs
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to exhibit more variability in their dwell times, it is preferable for them to be able

to bind in two different states.

4.2.1 Introducing the Effects of the GTPase Cycle

In order to confirm that the effects of the GTPase cycle cannot reproduce the

biexponential dwell time distributions shown in Fig.(4.1c & 4.3a), eq.(4.8) can be

converted to the form,

∂

∂t

PGDP/Pi(t)
PGDP (t)

 =

−(k1,0 + kh) 0

kh −k2,0

PGDP/Pi(t)
PGDP (t)

 , (4.14)

where PGDP/Pi(t) and PGDP (t) represent states where EBs are bound to tubulin with

an associated GDP/Pi or GDP nucleotide respectively. This form of the rate matrix

assumes that the hydrolysis of any preferred EB binding site is a purely Poisson

process, such that the average time for a hydrolysis event to occur is independent of

the time that the nucleotide is in the GDP/Pi state before an EB binds, and that EBs

unbind with different rates from tubulin with associated GDP/Pi or GDP nucleotides.

Assuming that an EB initially binds to GDP/Pi associated tubulin (P (0) = (1, 0)),

eq.(4.14) can be solved using the same methods derived in eq.(4.9&4.10). This results

in a biexponential dwell time distribution with the characteristic unbinding rates,

e+ = −(k1,0 + kh), e− = −k2,0, (4.15)

where the e± notation has been used for comparison to eq.(4.9).

Performing stochastic simulations of the binding model described by eq.(4.14)

for different values of the rates k1,0, k2,0 and kh generates the dwell time distri-

butions shown in Fig.(4.6). Inportantly, the distributions in Fig.(4.6) are con-

cave (∂2 ln(PEB(x, t))/∂t2 < 0), whereas those presented in Fig.(4.5) are convex

(∂2 ln(PEB(x, t))/∂t2 > 0). In log-space, the derivative of the biexponential dwell

time distribution PEB(x, t) with amplitudes a(x) and b(x) is equal to,

∂ ln(PEB(x, t))

∂t
=
a(x) e+(x) exp(e+(x)t) + b(x) e−(x) exp(e−(x)t)

a(x) exp(e+(x)t) + b(x) exp(e−(x)t)
, (4.16)

which tends towards e+(x) at long times when |e+(x)| < |e−(x)| and e±(x) < 0. At

short times, the gradient tends towards g(x) = (a(x) e+(x)+b(x) e−(x))/(a(x)+b(x)).

This means that g(x) < e+(x) (|g(x)| > |e+(x)|) when a(x), b(x) > 0, leading to

a convex function in log-space (see Fig.(4.5)), but that |g(x)| < |e+(x)| when
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(a) (b)

Figure 4.6: Simulated EB dwell time distributions including the effects of
the GTPase cycle — (a) The dwell time distributions for simulated EBs that obey
eq.(4.14) with k1,0 = 1/(0.35 s) and k2,0 = 1/(0.177 s) (the reciprocals of the average
dwell times measured for the microtubule end and regions of GTPγS tubulin) with
different values of kh (10 000 000 simulated for each value of kh). Black dashed lines
are the solutions of eq.(4.14) for each set of rates, which show strong agreement with
simulation results. (b) Lin-log distributions that exhibit concavity when kh > 0.

a(x) < 0 or b(x) < 0, leading to a concave function (see Fig.(4.6)). In order for∫ t=∞
t=0 PEB(x, t) dt = 1 it is not possible for a(x), b(x) < 0.

The signs of a(x) and b(x) derived from eq.(4.14) are governed by kh, such

that a(x) > 0 and b(x) < 0 when 0 < kh < k2,0 − k1,0 and a(x) < 0 and b(x) > 0

when kh > k2,0 − k1,0. The former condition is achieved when substituting a

biologically relevant value for the hydrolysis rate (∼ 0.2 s−1 [14, 31, 66, 83, 84])

into eq.(4.14), resulting in |e+(x)| < |e−(x)|, g(x) > e+(x) (|g(x)| < |e+(x)|), and

g(x) < 0. This results in a concave dwell time distribution in log-space with a

gradient that tends towards e+(x) at long times. In contrast, the latter condition is

achieved when substituting an uncharacteristically large hydrolysis rate (& 2.8 s−1)

into eq.(4.14), resulting in |e+(x)| > |e−(x)|, g(x) > e−(x), and g(x) > 0. This

also results in a concave dwell time distribution in log-space, but with a gradient

that instead tends towards e−(x) at long times, and a maximum at the position

where ∂2 ln(PEB(x, t))/∂t2 = 0. The transition from a long-time gradient of e+(x)

to e−(x) occurs when the unbinding rate k2,0 becomes the limiting factor in the

unbinding of EBs.

4.2.2 Deriving Biologically Relevant Transition Rates

It is possible to use the analytical formulae for e± and PEB(x, t) in eq.(4.9 & 4.10)

to find values for the rates k1,0, k1,2, and k2,1 using the experimentally-derived

parameters in table 4.1. The biexponential form of PEB(x, t) is the same as the
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EB3GFP
Conc. (pM)

Region k1,0 (s−1) k1,2 (s−1) k2,1 (s−1)

≤ 100 Tip (3.7± 0.4) (0.7± 0.3) (2.2± 0.2)

done GTPγS (6.2± 0.4) (0.23±0.19) (2.4± 0.5)

Table 4.3: Transition rates from experimental dwell time distributions —
Values of the transition rates k1,0(x), k1,2(x), and k2,1(x) obtained by substituting
the results of ≤ 100 pM experiments (see table 4.1) into eq.(4.9 & 4.10).

fit concluded to best represent the dwell time distributions in Fig.(4.1c & 4.3a)

(a2 exp(−t/τ2,1) + b2 exp(−t/τ2,2)). In this case, the parameters e− = −1/τ2,1 and

e+ = −1/τ2,2 (eq.(4.9)), and the magnitudes of the individual terms of the dwell

time distributions are a2 = N
∑i=2

i=1(Si,2
(
S−1

)
2,1

) and b2 = N
∑i=2

i=1(Si,1
(
S−1

)
1,1

),

where N =
∑i=2

i=1

∑j=2
j=1(Si,j

(
S−1

)
j,1

). Solving these equations using the ≤ 100 pM

data in table 4.1 for the transition rates k1,0(x), k1,2(x), and k2,1(x) generates the

values presented in table 4.3.

It can be observed in table 4.3 that EB3GFP constructs exhibit the transition

rates ktip1,0 < kgtpγs1,0 and ktip1,2 > kgtpγs1,2 , meaning that they are more likely to exhibit

their longer characteristic dwell time when binding to growing microtubule ends.

This is mirrored by the values (a2/b2)tip � (a2/b2)gtpγs in table 4.1. Interestingly,

the transition rates ktip2,1 ' k
gtpγs
2,1 suggest that k2,1 is not a function of the GTPase

cycle of tubulin (but that k1,0 and k1,2 are).

Assuming that EBs can bind to microtubules with either of their CH domains

[84], and that this binding is non-competitive and non-cooperative, it would be

expected that k2,1 = 2k1,0 (see section 2.3.2). The results presented in table 4.3

instead show that 2k2,1 ' k1,0, which suggests that the transition from the fully to

the weakly bound state in Fig.(4.4) is co-operative in nature. In this case, once an EB

binds to the microtubule with both of its CH domains, the unbinding rates of either

are reduced, such that k2,1 < k1,0. The mechanism that confers this co-operativity is

not clear, but it could be linked to the ability of an EB to influence the structure

of the tubulin heterodimer to which it binds and accelerate the hydrolysis of its

associated nucleotide [38, 48, 83]. The co-operative binding of wild-type EBs has

been reported previously [82, 85, 86].

4.3 Corrections for Dwell Time Measurements

As a result of the microscopic and transient nature of EB-microtubule binding, the

results of the experimental and tracking procedures described in methods sections
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3.2 & 3.3.2 (respectively) can be affected by additional factors. Correcting for these

factors can improve the accuracy of the measurements presented in tables 4.1 & 4.3.

4.3.1 Background Subtraction

In order to perform comprehensive background subtraction the frequency of back-

ground detections per unit length must be much lower than the number detec-

ted within the region of interest (see Fig.(4.2)). For this reason, comprehensive

background subtraction has only been performed for the dwell time distribution

corresponding to ≤ 100 pM EB3GFP constructs binding at the growing microtubule

end in this section (see Fig.(4.1)).

The relevant number of background detections was first corrected using the

equation Nbkg(t)(〈Ltip〉/〈Lbkg〉), before being fitted with a biexponential distribution

to minimise the effects of noise and the abundance of unphysical 0.4 s tracks. In

this case, a biexponential distribution is necessary to model the initial decay of

the background distribution in Fig.(4.2), as well as its plateau at small values

of Nbkg(t) (the noise floor). Random numbers were then sampled from Gaussian

distributions (truncated at 0) with mean values equal to the expected values of each fit

parameter and widths equal to their standard errors. These values defined the sample

background distribution as exp(−t/τs,1)+bs exp(−t/τs,2), which was subtracted from

the Ntip(t) distribution in Fig.(4.2b). This background subtracted distribution was

then normalised to generate a dwell time distribution and fitted with a biexponential

distribution. Repeating this procedure generated the statistics required to define

values for the short and long characteristic unbinding timescales of (0.196± 0.005) s

and (0.56± 0.03) s respectively. The characteristic unbinding timescales obtained

using this method agree with those presented in table 4.1 within error, which shows

that the complex binding behaviour observed for EB3GFP constructs at growing

microtuule ends was not due to background effects such as non-specific binding.

As expected, this procedure does not have a large effect on the fit parameters

obtained for EB binding at growing microtubule ends (see table 4.1), but it will

have a larger effect on those obtained for regions of GTPγS-tubulin. It is expected

from Fig.(4.2) that performing this background subtraction on the lattice data

obtained from experiments would remove all meaningful data before fitting. More

experimental data is required in order to perform this comprehensive background

subtraction on the dwell time distributions obtained for the microtubule lattice and

regions of GTPγS-tubulin.

Background subtraction can also be used to obtain corrected values for the

EB3GFP construct binding rates. The background binding rate (1.050 ± 0.008)

nM−1µm−1s−1 corresponds to the values presented in section 4.1.1 for experiments
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at 100 pM EB3GFP including single-frame binding events. Subtracting this rate

from those presented in section 4.1.1 generates the binding rates (3.11 ± 0.08)

nM−1µm−1s−1, (0.424 ± 0.016) nM−1µm−1s−1, and (2.01 ± 0.06) nM−1µm−1s−1

for the growing microtubule end, the microtubule lattice, and regions of GTPγS-

tubulin respectively. Similarly, the corrected binding rates neglecting single-frame

binding events are (3.26± 0.06) nM−1µm−1s−1, (0.087± 0.004) nM−1µm−1s−1, and

(1.16±0.03) nM−1µm−1s−1 for the growing microtubule end, the microtubule lattice,

and regions of GTPγS-tubulin respectively, corresponding to a background binding

rate (0.083± 0.002) nM−1µm−1s−1. Following this correction, the ratio ktipon /klaton no

longer agrees with the ratio in previously published work [26], but it will be shown

in section 4.4 that this correction is necessary to predict the average distribution of

EBs bound to microtubules.

4.3.2 Overlapping Binding Events

It can be assumed that at low concentrations of the EB3GFP construct there is

still a finite probability of one molecule binding close enough to another molecule

that the distance between them is within the spatial resolution of the microscope,

or within the peak-detection resolution used during analysis (see methods sections

3.3.2 & 3.3.7). This would result in the detection of a single binding event with an

anomalously long dwell time, instead of the two distinct binding events that actually

occurred. In this case, the average dwell time observed will follow eq.(2.24), such

that,

Tobs = Tact

[
1 +

∞∑
i=1

(
(kobson Tact)

i

i!

)]
= Tact e

kobson Tact , (4.17)

where kobson = kon[EB3GFP ](2d∆x) is the observed binding rate of the EB3GFP

construct in units of s−1 within the range of positions 2d∆x that can be added to a

track (see methods section 3.3.2), and Tact is their actual dwell time (after correction).

Since the observed binding rate kobson ∝[EB3GFP], the observed average dwell time is

expected to increase ∝ exp([EB3GFP]) according to eq.(4.17). Importantly, eq.(4.17)

indicates that Tobs → Tact as kobson → 0. By rearranging eq.(4.17), it can be shown

that,

Tact =

(
1

kobson

)
W0(kobson Tobs), (4.18)

for kobson Tobs ≥ 0, where W0(x) is the Lambert W function.

Using the best estimates calculated for the binding rates (obtained using all

[EB3GFP]= 100 pM data), eq.(4.18) can be used to calculate the corrected average
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dwell times of (0.33 ± 0.03) s and (0.177 ± 0.019) s for growing microtubule ends

and regions of GTPγS-tubulin respectively. These values are very similar to those

derived in section 4.1.2 as a result of the small concentration of EB3GFP constructs

used in these experiments. This can be explained analytically by approximating the

probability of a single ‘overlap’ event occurring while an EB3GFP construct remains

bound as,

Pov = 1− exp(−kobson (2d∆x)(τav + 2fs∆t)), (4.19)

where the ‘frameskip’ fs was defined in methods section 3.3.2, and ∆x and ∆t are

the spatial and temporal resolution of the experimental videos respectively. For the

100 pM experiments studied in this work, eq.(4.19) states that the probability of an

‘overlap’ event occurring is ∼ 0.15 at the growing microtubule end. The small value

of Pov and the small difference between Tobs and Tact in this work indicate that the

observed dwell time distribution well represents the actual dwell time distribution of

EB3GFP constructs at growing microtubule ends.

4.3.3 Analysing Artificial Kymographs

An alternative method for showing that background or overlap events are not

responsible for the biexponential dwell time distributions shown in Fig.(4.1c &

4.3a) is to generate artificial kymographs for fluorescing particles with pre-defined

monoexponential or biexponential dwell time distributions. These kymographs can

then be analysed using the tracking algorithm defined in methods section 3.3.2 to

check whether it reproduces the correct form of the input dwell time distribution,

or whether background fluctuations or overlap events can cause it to incorrectly

generate a biexponential dwell time distribution for fluorescing particles that do

not exhibit this behaviour. The procedure used to generate artificial kymographs is

described in methods section 3.3.3.

A representative pair of artificial kymographs is shown in Fig.(4.7a,b) for

fluorescing particles with average dwell times of 0.35 s and either a monoexponential

or biexponential input dwell time distribution (see table 4.1 and section 4.3.1 for

input parameters). This means that all of the binding events in the kymographs

emulate EB binding at growing microtubule ends. Following the analysis of 500

kymographs for fluorescing particles with input monoexponential or biexponential

dwell time distributions, the dwell time distributions in Fig.(4.7c,d) were generated.

As a result of the stringent tracking procedure outlined in methods section 3.3.2, the

monoexponential and biexponential input dwell time distributions can be observed

to generate output distributions of the same form.
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(c) (d)

(e) (f)

(a)

(b)

Figure 4.7: Artificial kymograph analysis — (a,b) Artificial kymographs for
fluorescing particles with input (a) monoexponential (τ1 = τav = 0.35 s, see table 4.1)
and (b) biexponential (τ2,1 = 0.20 s and τ2,2 = 0.60 s, τav = 0.35 s calculated using
eq.(4.1)) dwell time distributions. (c,d) Dwell time distributions corresponding to
500 kymographs of the same form as (a,b) with 51 725 and 60 266 detected fluorescing
particles for each type of input distribution respectively. Monoexponential (dashed)
and biexponential (solid) fits to both data sets show that the tracking algorithm
reproduces the forms of input dwell time distributions. (e,f) Dwell time distribu-
tions corresponding to 500 kymographs generated with input (e) monoexponential
and (f) biexponential dwell time distribution after removing background intensity
fluctuations, overlap events, or both (see section 4.3.2).
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Parameter Input Value Monoexponential
Kymographs Value

Biexponential Ky-
mographs Value

kon (µm−1s−1) 0.3916 0.1290± 0.0006 0.1503± 0.0006

kfpon (µm−1s−1) − 0.000142±0.000019 0.00124± 0.00005

τ1 (s) 0.356 0.3571± 0.0018 0.331± 0.010∗

τ2,1 (s) 0.20 0.34± 0.02∗ 0.197± 0.005

τ2,2 (s) 0.60 0.49± 0.16∗ 0.560± 0.012

a2/b2 (s) 4.8 10± 7∗ 5.3± 0.4

τav (s) − 0.3571± 0.0018 0.324± 0.009

χ2
ν,1 − 1.28 48.05∗

p1 − 0.15 0.00∗

χ2
ν,2 − 0.89∗ 1.65

p2 − 0.63∗ 0.06

W1,2 − 0.85∗ 0.08∗

Table 4.4: Fitting parameters for artificial kymographs — Parameters ob-
tained by fitting the dwell time distributions in Fig.(4.7c,d) obtained by analysing

artificial kymographs. The rate kfpon is the binding rate obtained from artificial
kymographs where no fluorescing particles have been introduced (quantifies the
false-positive rate of the tracking algorithm). Input binding rates include single-
frame binding events, but these are removed before calculating output binding rates.
The average dwell time τav was obtained by fitting the dwell time data resulting
from the input monoexponential distribution, and using eq.(4.1) for the dwell time
data resulting from the input biexponential distribution. Input values of − indicate
that the parameter was not required to generate the artificial kymographs, and
output values with a ∗ indicate those obtained by fitting a dwell time distribution
with a different distribution than that used to generate the corresponding artificial
kymographs.

Fitting parameters for the distributions in Fig.(4.7c,d) are presented in table

4.4 alongside the results of applying the statistical tests described in section 4.1.2.

It can be predicted from table 4.4 that the efficiency of the tracking algorithm

presented in methods section 3.3.2 is ∼ 1/3, since kon ∼ kinputon /3 for both types of

input distribution. However, it is important to note that single-frame binding events

are removed before calculating the rates shown in table 4.4 to minimise tracking error.

The tracking parameters defined in methods section 3.3.2 have been used to ensure

a small false-positive detection rate, such that kfpon � kon. Although non-specific

binding events (defined as ‘background binding events’ in section 4.1.1) have not

been included in this analysis, Fig.(4.2) shows that these events are not observed

frequently enough to significantly change the dwell time distribution exhibited by
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EBs binding at growing microtubule ends (see section 4.3.1). In contrast, non-specific

binding events would need to be included when generating artificial kymographs

to study the lattice binding of EBs. Since the values of kfpon in table 4.4 are much

smaller than the rate of detection of background binding events in Fig.(4.2), it can

also be concluded that the majority of background binding events extracted from

experimental data are due to non-specific interactions with the cover slip and not

fluctuations in the background intensity.

The characteristic unbinding timescales τ1, τ2,1 and τ2,2 presented in table

4.4, obtained by tracking the corresponding type of artificial kymograph, are very

similar to the inputted values. The ratio of magnitudes a2/b2 obtained by studying

kymographs with an input biexponential dwell time distribution is also very similar

to that obtained experimentally (see table 4.1). In contrast to these results, the

characteristic unbinding timescales obtained by fitting the dwell time distributions in

Fig.(4.7c,d) with the ‘incorrect’ distribution do not agree with those inputted within

error. Similarly, the ratio of magnitudes a2/b2 obtained by studying kymographs

with an input monoexponential dwell time distribution is significantly different from

that obtained experimentally. As expected, analysis of either type of kymograph

generates an average dwell time similar to that derived from experiments.

In contrast to the results of the statsictical tests shown in table 4.2 for EB3GFP

constructs binding at growing microtubule ends or to regions of GTPγS-tubulin,

the reduced chi-squared values in table 4.4 suggest that the dwell time distribution

derived from artificial kymographs using monoexponential input parameters is best

fit by a monoexponential distribution. The opposite is true for the dwell time

distribution derived from artificial kymographs using biexponential input parameters.

These results are reinforced by the values of p1, p2 and W1,2 shown in table 4.4 (see

section 4.1.2), such that it can be concluded that the biexponential distributions

observed in Fig.(4.1c & 4.3a) are not the result of background intensity fluctuations or

overlap events. This result can be further evidenced by the dwell time distributions

presented in Fig.(4.7e,f), which show that neither type of outputted dwell time

distribution is significantly changed after removing background intensity fluctuations

or overlap events (see methods section 3.3.3).

4.3.4 Photobleaching and Photoblinking Timescales

Photobleaching (bleaching) is the process by which fluorescing molecules (fluoro-

phores) are semi-permanently ‘switched off’ so that they can no longer re-emit

incident light at a longer wavelength [199–201]. It is important that the charac-

teristic timescale associated with bleaching, τb, is considerably longer than the

characteristic unbinding timescales observed in section 4.1.1 in order to ensure that
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neither of these timescales are the result of the experimental procedure. The bleach-

ing rate, kb = 1/τb, is dominated by a term that is proportional to the amount of

incident radiation, but there is thought to be another component that is associated

with non-illumination effects [201]. One explanation for these non-illumination effects

are that they are the result of the protonation or de-protonation of the chromophore

associated with a flurophore, as these chemical changes have been shown to change

the absorption and emission spectra of fluorophores [200]. Also important is photob-

linking (blinking), the process by which fluorophores can ‘switch off’ briefly before

returning to a fluorescing state after a short time [199, 201].

Bleaching results in the exponential decay of the average intensity of individual

fluorophores (∝ exp(−kb t)). The decay of the average fluorescence intensity for a

complex of multiple connected fluorophores can be derived using the same approach

as in eq.(4.8-4.10). In the case of the experiments carried out in this work, individual

EBs have a maximum of two associated fluorphores. In this case, the states of the

EBs can be described by the equation,

∂

∂t

P 0b(t)

P 1b(t)

 =

−2kb 0

2kb −kb

P 0b(t)

P 1b(t)

 , (4.20)

where the superscripts 0b and 1b represent states where 0 or 1 of the associated

fluorophores have bleached (the 2b state does not need to be considered as it is a

sink state, such that P 2b(t) = 1 − (P 0b(t) + P 1b(t))). Solving this equation as in

eq.(4.10) generates the distributions,

P 0b(t) = P 0b(0) e−2kbt (4.21)

P 1b(t) = 2P 0b(0)
(
e−kbt − e−2kbt

)
+ P 1b(0) e−kbt, (4.22)

such that the total number of fluorescing fluorophores Nf (t) = 2P 0b(t) + P 1b(t)

decays exponentially with the characteristic timescale 1/kb. This means that the

detected intensity profile should decay as,

I(t) = 〈If 〉(2P 0b(0) + P 1b(0))e−kbt, (4.23)

where 〈If 〉 is the average fluorescence signal emitted by each fluorescing fluorophore.

The phenomenon of bleaching has been modelled in previously published

work, where the average observed intensity distribution for a fluorophore was derived

assuming that it could blink with rates βoff,on (for ‘switching’ off or on respectively) or

bleach with rate kb [201]. Assuming that fluorophores can only become bleached from
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Method 100 pM EB3, τb (s) 25 pM EB3, τb (s)

Fitting average frame intensit-
ies

(8.17± 0.02) (7.66± 0.05)

Fitting average frame intensit-
ies per detection

(7.63± 0.03) (7.66± 0.04)

Directly detecting first bleach
event

(6.18± 0.2) (7.3± 0.3)

Directly detecting second
bleach event

(3.6± 0.3) (4.0± 0.2)

Directly detecting the only
bleach event for a single fluoro-
phore

(3.46± 0.06) (4.60± 0.09)

Table 4.5: Bleaching timescales — Bleaching timescales of the fluorophore(s)
associated with EB3GFP constructs, τb = 1/kb. The first two methods involve fitting
the intensity distributions in Fig.(4.8a) using eq.(4.23), and the other three methods
involve locating large changes in the intensity distributions for individual fluorescent
detections. Bleaching timescales were obtained for the final three methods by fitting
the distributions in Fig.(4.8b) using the results of eq.(4.21 & 4.22).

the blinking state [199, 201], the probability distribution describing the probability

of a single fluorophore being in the fluorescing state, P fl(t), is the solution to the

equation [201],

d2P fl(t)

dt2
+ (βon + βoff + kb)

dP fl(t)

dt
+ βoffkbP

fl(t) = 0. (4.24)

It has been shown that βoff > βon, and that this effect is enhanced by statistical aging

effects (that are ignored in eq.(4.24) for simplicity), such that fluorophores spend

less time fluorescing than in the blinking state [201]. Solving eq.(4.24) generates the

result [201],

P fl(t) =

(
aλ1 − b
λ1 − λ2

)
e−λ1t +

(
b− aλ2

λ1 − λ2

)
e−λ2t, (4.25)

λ1,2 =

(
βon + βoff + kb

2

)[
1±

√
1−

(
4βoffkb

(βon + βoff + kb)2

)]
, (4.26)

where a = n(0) and b = (βon+βoff+kb)n(0)+(dP fl(t)/dt)|0 are the initial conditions,

and λ1,2 > 0 for the expected rates (βon + βoff + kb) � 4βoffkb. For the rates

βon,off � kb, eq.(4.25 & 4.26) predict that,
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(a) (b)

(c)

Figure 4.8: Bleaching timescale analysis — (a) Intensity distributions for bleach-
ing experiment videos as a function of time, averaged over all pixels in each image
or averaged over just the pixels associated with a detected fluorophore, and fitted
with the single exponential distribution defined in eq.(4.23). (b,c) The probability
distributions describing the probabilities of (b) directly observing the first, second,
or only bleaching event after a time t, and (c) observing a change in the average
detection intensity due to the first, second, or only bleaching event, in the intens-
ity distributions of individual fluorescing detections (see methods section 3.3.4).
The PDFs in (b) have been fitted by eq.(4.21), or either the first or second term
of eq.(4.22). The characteristic bleaching timescales for all fits are presented in
table 4.5.

P fl(t) =
(
f(βon, βoff , kb) e

−(βon+βoff )t + g(βon, βoff , kb)
)
e
−
(

βoff
βon+βoff

)
kbt
, (4.27)

such that the fluorescing probability distribution is limited by the exponential decay

resulting from bleaching. Furthermore, if βon + βoff � 1, then the first term in

eq.(4.27) can be neglected, and if βoff � βon then P fl(t) ∝ exp(−kbt) as anticipated.

The bleaching timescales for the GFP fluorophores used to label EB3 in the

single-molecule experiments carried out in this work are presented in table 4.5 (see

methods section 3.2). These timescales were obtained by fitting the experimental
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intensity distributions of P 0b(t), P 1b(t), and I(t) with the results of eq.(4.21-4.23),

as shown in Fig.(4.8). In this case, P 0b(t) and P 1b(t) (assuming P 1b(0) = 0) are

defined as the PDFs describing the probability of a bleaching event (of the first or

second GFP associated with the EB3 respectively) occurring after a time t, and

were obtained using the procedures defined in methods section 3.3.4. The third

distribution in Fig.(4.8b), describing the probability of a bleaching event when the

system starts in a state with P 1b(0) = 1, represents the second term of eq.(4.22).

The minimum value of the bleaching timescale shown in table 4.5 is much

greater than the long characteristic unbinding timescales obtained for EB3GFP

constructs in table 4.1, and so bleaching is not expected to have a large impact on

the EB3 dwell time distributions presented in section 4.1.1. Since the bleaching

timescale is strongly dependent on the experimental procedure, in particular the

incident laser power used [199], the values observed here cannot be directly compared

to previously published results.

The values of the bleaching timescale obtained by directly detecting either

the second bleach event or the only bleach event for a single fluorophore appear to be

skewed towards smaller values than the other estimates in table 4.5. When detecting

a single bleach event, it is possible that a second bleach event was hidden by thermal

noise, which would skew the distribution towards earlier times. According to eq.(4.21

& 4.22) this would generate a bleaching timescale half as large as that expected,

which agrees with the result in table 4.5. It is also possible that the finite observation

time used in the experiments could skew the bleaching timescale derived from the

detection of the second of two bleaching events towards smaller values.

The distribution of the changes in intensity observed due to bleaching events

is shown in Fig.(4.8c). Changes in intensity were defined as the difference in the

mean intensities calculated before (either from the first frame of the video or the

frame following the previous bleaching event) and after (either to the frame preceding

the next bleaching event or the final frame of the video) the bleaching event. The

similarities between the shapes of the distributions in Fig.(4.8c) validate the tracking

procedure described in methods section 3.3.4. The slower decay of the distribution

corresponding to single bleaching events at changes in intensities greater than the

maximum value suggest that a second bleaching event was not successfully detected

in some cases, which would help to explain the smaller than expected bleaching

timescale observed for this data (table 4.5). Since the bleaching timescale was the

quantity of interest in this work, the stringent bleaching event detection criteria

described in methods section 3.3.4 does not allow for the accurate calculation of the

average number of fluorescing GFP fluorophores per EB.

The larger than expected population of fluorophores that bleach after only
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(a) (b)

Figure 4.9: Blinking event detection — (a) The distribution of changes in
intensity between adjacent frames for 25 pM bleaching experiment data (blue)
compared to a Gaussian fit to the central 41 data points (red). The vertical dashed
lines represent multiples of 2σ (where σ is the standard deviation of the fitted
Gaussian distribution). Significant deviation between the experimental data and
the fit appears after ' 2σ. (b) The corresponding lin-log distribution that shows
approximately linear decay (green) of the distribution at large values of the change
in intensity.

a single timestep in Fig.(4.8a) suggests that a small fraction of fluorophores may

exhibit a different type of ‘switching off’ phenomenon. One explanation for this could

be the light-induced protonation of the chromophore associated with GFP, which

would shift the absorption spectra from ∼ 488 nm to ∼ 390 nm [200]. Alternatively,

this could be the result of an inaccurate duration for the first image, or it could

be representative of the time required for fluorophores to acclimatise to the ‘new’

experimental conditions. As a result of this, the first data point (obtained from the

first frame of the videos) was not used to obtain any of the fits to the curves in

Fig.(4.8), and hence cannot influence the bleaching timescales presented in table 4.5.

Since the blinking timescale is expected to be much smaller than the bleaching

timescale [199], the smoothing procedure used to locate bleaching events (see methods

section 3.3.4) cannot be used to identify blinking events. Information about blinking

events can instead be obtained by considering the distribution of changes in the

fluorescence intensity between adjacent frames, which has been plotted in Fig.(4.9).

It can be approximated that the distribution of small fluctuations can be described

by a Gaussian distribution, as shown in Fig.(4.9). Large decreases in the fluorescence

intensity could be the result of either bleaching or blinking events, but large increases

must be the result of the ‘switching on’ events after blinking. Counting the number

of large decreases, Nd, or increases, Ni, in the fluorescence intensity between adjacent

frames predicts a total number of bleaching events equal to Nd −Ni = 75 485, which

is of the same order of magnitude as the number found using the procedure described
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in methods section 3.3.4, equal to 18 465.

It has been shown in Fig.(4.9b) that the distributions of events corresponding

to large changes in the fluorescence intensity can be well fit by a straight line in

lin-log space. This indicates that these events are Poisson distributed. The gradient

of the linear fit for events that correspond to large decreases in the fluorescence

intensity (md = (0.0303±0.0003) (arb. units)−1) is shallower than that for events that

correspond to large increases in intensity (mi = (0.03149± 0.00018) (arb. units)−1),

which is expected due to the additional contributions to this population by bleaching

events. Since these changes in fluorescence intensity are observed on the timescale of

individual frames, autocorrelation analysis is also not useful for obtaining an exact

value of the blinking timescale.

4.4 Spatial Distribution of EB Binding Sites

In order to study the tip tracking transport of cargo computationally (see chapter

7), it is important to derive the average distribution of the preferential binding

sites for EBs along a microtubule. Microtubule structure can be probed using EBs

as a fluorescent marker, and the distribution of preferred EB binding sites can be

obtained. In this case, the model presented in section 2.2.1 will be used to include

the effects of EB binding on microtubule structure [48].

Aligning the peaks of the Gaussian distributions fitted to the growing mi-

crotubule ends in 561 nm (high EB3mCh concentration) microscope images, and

aligning the expected positions of these growing microtubule ends in the 488 nm

(low EB3GFP concentration) images following linear interpolation, can be used to

generate the average intensity distribution exhibited by EBs bound to microtubules,

as shown in Fig.(4.10a) for 38 nM EB3mCh and 100 pM EB3GFP data. Assuming

that all EB3GFP or EB3mCh constructs exhibit the same average fluorescence, the

distributions in Fig.(4.10a) are proportional to the average probability of finding

an EB3 construct bound at each position along the microtubule. As expected,

Fig.(4.10a) shows that EB3 constructs bind preferentially to growing microtubule

ends, and that changing the fluorophore from GFP to mCh does not change their

binding behaviour. In order to avoid the amplification of noise during deconvolution,

the deconvoluted distribution in Fig.(4.10b) was obtained by counting the number

of single-molecule EB3GFP detections associated with tracks at each position.

In order to reproduce the distributions presented in Fig.(4.10) analytically,

the work by Maurer et al. [48] must be expanded upon by adding equations that

describe the states of tubulin with associated GDP nucleotides (see eq.(2.5 & 2.6)).

The two new equations define the states C(x) and CE(x), where the tubulin has been
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(a) (b)

Figure 4.10: Distributions of EB binding sites — (a) The normalised relative
intensities of EB3GFP and EB3mCh fluorescence averaged over 88 composite experi-
mental videos (see methods section 3.3.1) of 100 pM data. The two distributions are
in agreement at the microtubule tip. (b) Comparing the cumulative distribution of
individual EB3GFP detections that are part of tracks (deconvolved experimental),
the EB3mCh distribution from (a), and the analytically-derived distributions defined
in eq.(4.28) before and after convolution with the PSF of the microscope. Errors in
the analytical distributions (obtained from errors in the experimentally derived EB3
binding and unbinding rates) are not shown for clarity.

incorporated into the microtubule lattice following the hydrolysis of its associated

nucleotide (C(x)), but can still be bound to an EB (CE(x)). The set of equations

defined in eq.(2.5 & 2.6) can be solved using the same method as in eq.(4.8-4.10),

since C(x)+CE(x) = 1−(A(x)+B(x)+BE(x)) (where E(x) defined in eq.(2.6) has

been renamed to BE(x) for clarity). In this case, CE(x) ' ((klaton [EB])/klatoff )C(x)

(assuming that ∂CE(x)/∂x ' 0), and it will be assumed that hydrolysis by the rate

kEBh corresponds to a transition between the states BE(x) and CE(x). Solving the

set of equations defined in eq.(2.5 & 2.6) with the addition of the C(x) and CE(x)

states generates the distributions,

A(x) = A0 e
−λ1(x−x0),

B(x) = B0(e−λ1(x−x0) + γ1 e
−λ2(x−x0) − (1 + γ1) e−λ3(x−x0)),

BE(x) = BE0(e−λ1(x−x0) + γ2 e
−λ2(x−x0) − (1 + γ2) e−λ3(x−x0)),

C(x) =

(
klatoff

klaton [EB] + klatoff

)
(1− (A(x) +B(x) +BE(x))),

CE(x) =

 klaton [EB]

k
lat[EB]
on + klatoff

 (1− (A(x) +B(x) +BE(x))),

(4.28)
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where all of the constants are functions of the transition rates between states, the

rates describing the GTPase cycle, and the microtubule growth velocity vMT , and

x0 is the microtubule tip position. It has been assumed that the rates that govern

the GTPase cycle and the structure of the microtubule (see Fig.(2.3)) are equal to

those derived in previously published work by comparing the model described in

eq.(2.5 & 2.6) to experimental results [48]. This generates the rates kh = 0.23 s−1

and kEBh = 0.73 s−1. The average microtubule growth velocity has been set to

0.75 nm s−1, equal to the average value observed in the experiments carried out in

this work, and the average rate of formation of preferred EB binding sites has been

set to kp = 2 s−1 in order to qualitatively reproduce the experimental distribution.

The EB concentration was defined as equal to the experimental value of [EB] = 38

nM. The variables λ1,2,3 are the effective rate constants that govern the GTPase

cycle in the presence of EBs, and are equal to the the negative of the eigen-values of

the rate matrix corresponding to eq.(2.5 & 2.6).

It can be approximated that ∼ 50% of the tubulin heterodimers within the

region defined as the growing microtubule end during experimental analysis will be

associated with GDP/Pi nucleotides and represent the preferred binding sites of EBs.

In this case, the correct average dwell time of EBs bound to these tubulin heterodimers

solves the equation τ tipav = τ
GDP/Pi
av PGDP/Pi+τ

GDP
av PGDP ' (τ

GDP/Pi
av +τGDPav )/2, and

is equal to (0.45±0.06) s using the experimental parameters derived in methods section

3.3.7 and sections 4.1.2, 4.3.1 & 4.3.2. The average dwell time τGDPav = (0.189±0.011)

s obtained in section 4.1.1 was used in this derivation since it agrees with the previously

reported value [26], despite the expected dominance of background binding events in

the lattice data obtained in this work. The correct average binding rate solves the

equation ktipon = k
GDP/Pi
on PGDP/Pi + kGDPon PGDP ' (k

GDP/Pi
on + kGDPon )/2 and is equal

to (6.43± 0.12) nM−1µm−1s−1. The values for the average dwell time and binding

rate are necessary to calculate accurate values of A0, B0, BE0 and λ1,2,3, and the

resulting normalised distribution of BE(x) + CE(x) has been plotted in Fig.(4.10b).

Also shown in Fig.(4.10b) is the analytical distribution following convolution with a

Gaussian distribution with width σ = 0.162 µm (see methods section 3.3.7).

It can be observed in Fig.(4.10b) that the analytically-derived distributions

defined in eq.(4.28) agree relatively well with the experimental distributions. The

deconvolved experimental distribution extends further beyond its maximum (towards

negative positions) than the corresponding analytical distribution, but this is expected

to be the result of microtubule tapering, which is not included in the model described

by eq.(4.28). This could also be the result of non-linear microtubule growth during

the EB3GFP detection step leading to inaccurate predictions of the tip position.

The increased population observed in the deconvolved experimental distribution
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at the positions 0.5 µm . x . 1.25 µm is expected to be due to the increased

EB3GFP binding rate and average dwell time at growing microtubule ends (see

section 4.1.1). This increased population is the combined effect of EB3GFP contructs

being ‘left behind’ by the growing microtubule end, and the relatively slow decay

of the GDP/Pi associated tubulin distribution resulting in an elongated region of

preferential binding.

Following convolution, the decay of the analytical distribution from its max-

imum towards negatives positions agrees well with the experimental distribution.

Although the analytical and experimental distributions tend towards the same value

far along the microtubule lattice, the experimental distribution exhibits a slower

decay in this direction. This could be the result of the increased population observed

in the deconvolved experimental distribution at the positions 0.5 µm . x . 1.25 µm,

which cannot be explained by the model defined in eq.(4.28). Alternatively, this

could indicate that the rates associated with nucleotide hydrolysis derived by Maurer

et al. [48] are not accurate for this experimental system. Finally, it is possible that

the slower decay is the result of single-frame binding events, which were not included

in the deconvolved experimental distribution in Fig.(4.10b). However, using the

average binding rates reported in section 4.1.1 that include single-frame binding

events in this analysis does not result in agreement between the convolved analytical

and experimental distributions.

4.5 Conclusions

In this chapter the binding dynamics of individual EBs have been probed by tracking

single-molecule binding events in TIRF microscopy videos. It has been shown that

the dwell time distributions of EB3GFP constructs at growing microtubule ends

and on regions of GTPγS-tubulin are best fit by a biexponential distribution with

two characteristic unbinding timescales, and that neither of these characteristic

unbinding timescales are the result of photobleaching of the fluorophores associated

with the EBs. This result supports the hypothesis previously published by Song

et al., [84] that EBs can bind to microtubules with either one or both of their CH

domains. In this case, by comparing the results of analytical modelling to the dwell

time distributions obtained experimentally, it can be derived that the CH domains

associated with a single EB would interact with microtubules co-operatively. This

co-operativity would act to further increase the average dwell time exhibited by EBs

at growing microtubule ends. The experimentally-derived average dwell times and

binding rates for EB3GFP constructs have also been used to reproduce the observed

microtubule-bound EB distribution.
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4.5.1 Further Work

It is of interest to perform single-molecule binding experiments with monomeric and

dimeric EB3GFP constructs that contain either one or both of the CH domains of

an EB3 protein respectively. The results of these experiments can be analysed using

the methods defined in sections 4.1.1 & 4.3 in order to test whether the dwell time

distribution for monomeric EB3GFP constructs is best fit by a monoexponential

or a biexponential distribution. Following this, the reattachment rate k1,2 can be

calculated using the formula derived by Feng et al. [198] and compared to the

rate obtained for wild-type EB3GFP constructs in table 4.3. In the case where the

monomeric EB3GFP constructs exhibit a monoexponential dwell time distribution,

it can be concluded that the complex binding behaviour exhibited by wild-type

EB3GFP constructs is the result of them being able to bind to the microtubule with

either one or both of their CH domains, as predicted by Song et al. [84]. In this case,

it can also be predicted that the rate k10 presented in table 4.3 represents a lower

bound for the unbinding rate exhibited by the monomeric EB3GFP constructs.
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Chapter 5

Modelling Cargo Motion at the

Continuum Level

It has been shown in previously published work that the transient interactions between

EBs and membrane-bound proteins can stimulate ER tubulation (see sections 2.2.3

& 2.3.4), and that EBH-SxIP motif interactions are sufficient to stimulate the tip

tracking transport of quantum dots (Qdot705-streptavidin (Thermo Fisher) [124])

[15, 28, 29, 64]. Although computational models have been developed to describe

the tubulation of the ER, these models cannot describe the tip tracking transport of

cargo, which relies on both the binding and unbinding interactions of associated EBs

with microtubules. This chapter will focus on studying the continuum-level dynamics

of a population of cargo, and so will draw on the ideas presented in sections 2.3.1 &

2.3.2. The following key questions regarding the tip tracking transport of cargo will

be addressed in the following chapters:

1. How does position dependence in the binding rate distribution of EBs along a

microtubule affect cargo motion (continued in chapter 6);

2. What system parameters are required for the tip tracking transport of cargo

(continued in chapter 7);

3. What is the advantage of cargo relying on both cargo-EB and EB-microtubule

interactions for their transport (see chapter 8).

5.1 Introducing the Cargo Binding Model

As was the case for the particles described by eq.(2.21), consider cargo permanently

bound to η EBs, of which only N are local to the microtubule and can bind to

it simultaneously. Similarly, n is the number of associated EBs that are currently
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(a)

(b)
New leg bound

Old leg unbound

2L

Cargo

Microtubule

EB

GDP/Pi tubulin

GDP tubulin

Vesicle / cargo

Cargo legs

Microtubule

Linker with
   SxIP motif

Figure 5.1: Models for cargo binding — (a) Diagram of cargo permanently bound
to M = 12 EB proteins, N = 4 of which (red box) can bind to the microtubule. (b)
Schematic of one binding or unbinding event using the simple cargo binding model.
The cargo centre is defined as the centre of the range of the cargo’s bound legs, and
the width of the cargo (black box) dictates the range within which new legs can bind.
Both binding and unbinding events can cause the centre of the cargo to move.

bound to the microtubule. An example of such cargo (referred to as N -legged cargo

in this work) is shown in Fig.(5.1a). In experiments, the value of N is set by the

shape and flexibility of the membranous cargo (see section 2.3.2). The 1D cargo

binding model presented in this work makes the assumption that the size of a cargo

translates to the range over which any of its N associated EBs, or ‘legs’, can bind to

the microtubule. This means that for a cargo of size 2L, xc(t)−L ≤ xnewl ≤ xc(t)+L

describes the range of positions on the microtubule where one of its legs can bind at

a time t, where xnewl is the position of the newly binding leg and xc(t) is the time

dependent position of the centre of the cargo. The legs of a cargo can only unbind
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once bound to the microtubule, and cannot move otherwise. This means that the set

of bound leg positions {xl}(t) has implicit time dependence as a result of variation

in the configuration of the cargo. The current state of a cargo can be parameterised

by the position of its centre xc(t), the positions of its legs {xl}(t), and the number

of legs it has bound. A schematic of a single binding (n → n + 1) or unbinding

(n→ n− 1) event using this model is shown in Fig.(5.1b).

Two simple models exist for defining the position of the centre of a cargo at

a time t: it can be defined as the centre of the range of its bound leg positions at a

time t, such that xc(t) = (max({xl}(t)) + min({xl}(t)))/2; or the average position

of its bound legs, such that xcm(t) = (1/n)
∑l=n

l=1 xl(t). The first of these models

ensures that all n bound legs are within a distance 2L from each other at all times,

but can only be probed computationally. Defining cargo by the position xcm(t)

is equivalent to requiring the simple force equilibrium
∑l=n

l=1 kl(xl(t) − xcm(t)) in

1D, where kl is the spring constant of the cargo legs. This model can be probed

analytically (see chapter 6), but allows cargo legs to be bound outside the range

xcm(t) − L ≤ xl(t) ≤ xcm(t) + L under certain circumstances. It will be shown

that the choice of defining the centre of cargo using xc(t) or xcm(t) has significant

consequences on whether or not they can exhibit tip tracking transport, but that

the definition xc(t) reproduces experimental findings (see chapters 6 & 7). For this

reason, cargo defined by the position xc(t) will be the focus of this work (especially

chapters 5 & 7), and cargo defined by the position xcm(t) will only be studied as an

analytical approximation to this case.

In order to simplify the cargo model, it has been assumed that each leg can

occupy only a single bound state, despite it being shown that EBs bind with two

characteristic unbinding timescales in section 4.1.1. As such, cargo legs are modelled

as binding and unbinding with the position dependent characteristic rates kon(x)

and koff (x) = 1/τ(x) respectively, where τ(x) is the position dependent average

dwell time. Cargo legs do not interact directly in this model, but the position at

which they bind can influence the position of the centre of the cargo xc(t), and hence

the binding dynamics of legs that bind to the microtubule in the future. The effects

of competitive and cooperative binding have also not been included in this model,

but their effects on cargo motion will be discussed in section 8.1. Other additions to

the model including force-dependent unbinding rates and EB-cargo interactions will

be studied in chapter 8 as well.
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5.2 Simulating Cargo Dynamics

The cargo binding model described in section 5.1 has been implemented computa-

tionally in MatLab using a Gillespie algorithm (see methods section 3.4.1). This

algorithm has been used as it correctly samples the stochastic dynamics of particles

in a system, without requiring the explicit definition of a constant timestep to

iterate the system state by [175, 181]. Briefly, the Gillespie algorithm uses inverse

transform sampling to calculate the time at which the next event occurs from a

Poisson distribution with a rate constant kt, equal to the total rate of any binding

or unbinding event occurring (which implicitly includes information about the cur-

rent cargo configuration) [175, 181]. The type of event that has occurred (binding,

unbinding, etc.) is then selected out of the list of possible events, with the ith type

of event having a probability ki/kt of occurring.

Each cargo is initially bound to the microtubule with a single leg (n = 1),

and the cargo is said to unbind when an unbinding event occurs from the n = 1

state. Once unbound, the dwell time of the cargo is recorded as the length of time it

was bound to the microtubule, and the moments of the displacement distribution

for the time it spent bound can be calculated (see methods section 3.4.3). The

results of simulations have been non-dimensionalised in this work so that they can

easily be compared to experimental findings. Time will always be scaled by the

characteristic timescale tc = 1/koff , and space will be scaled either by cargo size

L or a characteristic lengthscale lc after introducing position dependent binding

dynamics (see section 5.2.2).

The following sections detail the observed dynamics of simulated cargo in the

presence of a position independent or position dependent binding rate distribution.

5.2.1 Simulations with Position Independent Binding Dynamics

In order to understand the basic behaviour of the cargo depicted in Fig.(5.1b),

simulations were carried out using position independent binding and unbinding rates.

In this case, the average dwell time of the cargo is expected to equal T1,N = 1/keffoff ,

as defined using eq.(2.24) [160, 166, 167]. This formula can equivalently be derived

using the method described by eq.(4.8-4.11), after defining N coupled Fokker-Planck

equations that each describe the probability of finding the cargo in a state with

n = 1, 2, ..., N legs bound (the n = 0 state is defined as a probability sink as before).

This means that for a system of coupled equations ∂P t/∂t = κP t (with no position

dependence), the rate matrix is equal to,
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κ =



−k1,0 − k1,2 k2,1 0 . . . 0 0

k1,2 −k2,1 − k2,3 k3,2 . . . 0 0

0 k2,3 −k3,2 − k3,4 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . kN−1,N −kN,N−1


, (5.1)

where the rate kX,Y represents the transition rate from state X to state Y . For a

system with position independent rates the steady-state distribution P ss is constant

in space, and so the velocity terms used in eq.(4.6 & 4.7) equal zero for this derivation.

This method generates the same average dwell time formula that can be defined

using eq.(2.24) [160, 166, 167].

For simplicity, in the following analysis it has been assumed that the binding

of individual cargo legs is non-competitive and non-cooperative in this chapter, such

that the n-dependence of the rates required for eq.(5.1) is kn,n+1 = (N − n)kon

(binding) and kn,n−1 = nkoff (unbinding). Using these definitions, the average dwell

time T1,N can be written,

T1,N =

(
1

koff

)(
1 +

N−1∑
n=1

[
n∏
i=1

(
(N − i)kon
(i+ 1)koff

)])
, (5.2)

where inserting N = 2 reproduces the result expected for EBs that can bind to

microtubules independently with either of their CH domains. The average dwell

times obtained for simulated cargo that follow the schematic in Fig.(5.1b) agree with

eq.(5.2), as shown in Fig.(5.2a).

It has been shown in previous work that EBs bind cooperatively to microtu-

bules [82, 85, 86], and in section 4.2 it was shown experimentally that the unbinding

rate k2,1 6= 2k1,0. This implies the existence of some cooperativity in the binding

dynamics of individual CH domains. As discussed in sections 2.3.2 & 2.3.3, it is also

likely that being associated with a cargo bound to a microtubule will increase the

observed EB binding rate by tethering them close to the microtubule surface. This

could also have the effect of increasing the competition or cooperativity exhibited by

EBs. For these reasons, the assumptions of non-competitive and non-cooperative

binding may not be entirely appropriate for this system, but they are used here to

gain a qualitative understanding of cargo tip tracking.

In order to understand the evolution of T1,N in the limit of large N , eq.(5.2)

can be written,
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(a) (b)

Figure 5.2: Simulated cargo dwell time distributions — (a) Average cargo
dwell time increases with increasing N and tends towards a polynomial of the form
T1,N = α(1 + (kon/koff ))N = αβN as N becomes large (100 000 cargo simulated for
N ≤ 7, 50 000 simulated for N = 8, 9, 10 000 simulated for N = 10). Simulations
used kon/koff = 1. (b) Dwell time distributions (PDFs) corresponding to each point
in part (a) (key defines N , error bars omitted for clarity). Each distribution for
N > 1 consists of a superposition of N exponential distributions, as shown by the
lin-log distributions in the inset.

T1,N =

(
1

kon

)(N−2∑
n=0

[(
kon
koff

)n+1( (N − 1)!

(n+ 1)!(N − n− 1)!

)]
+

(
1

N

))
, (5.3)

where (N−1)!/((n+1)!(N−n−1)!) ≡ N−1Cn+1/(N−n−1) ∀n 6= N−1. The range

of this equivalence is a complication due to the notation of the binomial coefficent

XCY , since eq.(5.3) does not diverge when n = N −1 (0! = 1). Rewritten in this way,

eq.(5.3) suggests that T1,N ∼ α(1 + (kon/koff ))N for large N , where α is a constant.

Using kon = koff as in the simulations, the average dwell times for cargo with N = 1

to N = 12 were calculated using eq.(5.3) and fitted using the polynomial αβN

(where α and β are parameters to be fitted), with the result plotted in Fig.(5.2a).

As expected, the average dwell times obtained from simulations tend towards this

polynomial as N →∞. It can be predicted that β ' 2, where small deviations from

this value are expected due to the factor of 1/(N − n− 1) included in eq.(5.3), and

this agrees with the fitted result of β = 1.819.

As derived in eq.(4.10) for the case with N = 2, the dwell time distributions

for N -legged cargo are superpositions of N exponential distributions. Example dwell

time distributions for cargo with N = 1, 2, ..., 8 are shown in Fig.(5.2b). The key

behaviour of the dwell time distributions in Fig.(5.2b) can be captured by fitting the

distributions with a biexponential distribution. In this case, the two characteristic

unbinding timescales are approximately equal to the longest timescale of the N
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superimposed exponential distributions, and the shorter timescale corresponding to

the exponential distribution with the greatest magnitude. This is due to the cargo

exhibiting two distinct regimes; either the cargo binds with only a small number of

legs (n ∼ 1) before stochastically unbinding, or the cargo reaches a state with many

legs bound (n ∼ N) and remains bound for a relatively long time before unbinding.

The rate of ‘rescue’ events kr, defined as the rate of binding a second leg

when in the n = 1 state, can be derived by generalising the derivation by Feng et

al. [198] in which a reattachment rate is calculated for the second motor protein in

two-motor assemblies. As expected, the equivalent rescue rate for N -legged cargo

can be found by rearranging eq.(5.2),

kr = (koff T1,N − 1)

(
N−1∑
n=1

[(
1

2koff

) n∏
i=2

(
(N − i)kon
(i+ 1)koff

)])−1

= (N − 1)kon, (5.4)

which increases linearly as a function of N (for non-competitive and non-cooperative

binding). This means that as N increases, the probability of cargo unbinding when

in the n = 1 state decreases. This increases the relative magnitude of the long

characteristic unbinding timescale term in the cargo’s dwell time distribution (see

Fig.(5.2b).

It is also of interest to study the dynamics of simulated cargo bound to

microtubules. Moments of the displacement distribution were calculated for the

continuous time simulations as described in methods section 3.4.3. Interestingly, the

mean squared displacement of simulated cargo increases linearly as a function of

time, suggesting that they move diffusively once bound, as shown in Fig.(5.3a). This

diffusive motion was not enforced directly, but arises purely due to the stochastic

binding and unbinding of each cargo’s legs. It can also be observed in Fig.(5.3)

that cargo exhibit two distinct ‘effective’ diffusivities, one that occurs at short

times (t < tcross or t . 1.5 tc, see Fig.(5.3c)) and one that occurs at longer times

(t > tcross). The diffusivities derived from the gradients of the mean squared

displacement distributions in Fig.(5.3a) at short and long times have been plotted in

Fig.(5.3b) as a function of N .

For cargo with position independent binding rates, during a binding event

each leg has an equal probability of binding at any position within the range

xc(t) − L ≤ xnewl ≤ xc(t) + L. This means that cargo exhibit the greatest mean

magnitude of their displacement per binding event when n = 1, since the cargo

centre position will be displaced whenever xnewl 6= xc(t). For cargo with n > 1, the

cargo centre position will instead only be displaced when xnewl is outside the range

of currently bound legs, which occurs with probability,
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(a) (b)

(c)

Figure 5.3: Simulated cargo diffusivity — (a) Mean squared displacement (MSD)
evolves linearly in time for N -legged cargo, indicating diffusive motion. (b) Cargo
exhibit distinct short and long time diffusivities that peak at the value of N that
maximises the product of the average rate of binding or unbinding events and
the mean squared displacement averaged over all states. The short and long time
diffusivities were calculated from linear fits to the MSD data in (a) over the ranges
0 ≤ τ/tc ≤ 0.5 and 1.5 ≤ τ/tc ≤ min(Tmax, 10) respectively (where Tmax is the
maximum observed dwell time of an N -legged cargo within the simulations). (c) The
time at which the linear fits to the short and long time MSD data in (a) intersect,
indicating when the short time diffusivity no longer dominates cargo motion. The
distribution diverges as N → 2. The inset shows the linear fits used to calculate tcross
for the 8-legged cargo simulations (linear fits offset from the MSD distribution and
error bars omitted for clarity, maximum fractional error is 0.0033... at τ/tc = 2.5).
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Pd(t) = 1−


(

max({xl}(t))−min({xl}(t))
∆x

)
+ 1(

2L
∆x

)
+ 1

 , (5.5)

on a spatial grid with spacing ∆x between grid points. This means that Pd(t)→ 0 as

n→∞, such that the average magnitude of the displacement of cargo in states with

large n is approximately zero. A similar argument can be made for unbinding events,

where unbinding a leg when n = 2 results in a maximal displacement per unbinding

event. Hence, the description of cargo motion in Fig.(5.1b) means that cargo exhibit

a larger average magnitude of their displacements per binding or unbinding event

when n is small.

The rate of a binding or unbinding event occurring remains constant as a

function of n when kon = koff , since nkoff + (N − n)kon = N kon = N koff in

this case, and so the diffusivity D(n) exhibited by cargo increases as n decreases.

However, the probability of the cargo being in a state with n legs bound varies as a

function of N . This probability can be well approximated by eq.(2.23) following the

renormalisation Pn → Pn/(1 − C̄0) ∀n > 0 (see section 6.1.1 for details about the

calculation of the time dependent probability of cargo having n legs bound). Using

this probability, the average number of bound legs can be calculated as equal to,

〈n〉 =

(
N kon

kon + koff

)
(

1 + kon
koff

)N
(

1 + kon
koff

)N
− 1

 , (5.6)

which increases approximately linearly with increasing N (the second term → 1 as

N →∞). Hence, as N increases, the probability of cargo being in a state with small

n decreases.

For cargo that remain bound to the microtubule for a long time, large

contributions to the short time diffusivity that arise when the cargo is in a state with

small n are damped by the more frequent small contributions arising from states

with n ∼ 〈n〉. The motion of the cargo is dominated by the large fraction of time it

spends in states with n ∼ 〈n〉, and the observed diffusivity will be independent of

time. However, cargo that remain bound to the microtubule for only a short time

have a small probability of occupying states with n ∼ 〈n〉, and their motion will

be dominated by the large fraction of time they spend in states with small n. This

has the effect of increasing only the number of large contributions to the short time

diffusivity, without increasing the number of small contributions that result from

cargo in states with n ∼ 〈n〉. Similarly, the cargo will not remain bound for long

enough to contribute to the long time diffusivity. This means that the unbinding

of cargo acts to increase only the short time diffusivity. The diffusivity regimes
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observed in Fig.(5.3b) are the result of three competing factors:

1. At small N all binding or unbinding events occur in states with small n, so

there is no distinction between the short and long time diffusivities;

2. At moderate values of N both the short and long time diffusivities have

increased due to the increase in the average total rate of binding or unbinding

events occurring, kt = 〈n〉 koff +(N−〈n〉)kon ' 2N kon koff/(kon+koff ) in the

limit of large N . The diffusivity is maximal for the value of N that maximises

the product kt〈δx2〉, where the mean squared displacement is averaged over

the probability of having n legs bound. The short and long time diffusivities

diverge as the relatively small value of T1,N means that a relatively large

fraction of cargo unbind before reaching states with n ∼ 〈n〉 (recall 〈n〉 was

calculated using the renormalised version of eq.(2.23) which assumes that cargo

can rebind, in the case where cargo permanently unbind 〈n〉(t) will depend on

time), and these cargo will make large contributions to only the short time

diffusivity as they remain in states with small n for the majority of the time

they spend bound;

3. At large N the majority of binding or unbinding events occur in states with

large n, since both the values of T1,N and 〈n〉 are relatively large, and the

motion of cargo is dominated by the large fraction of time they spend in states

with n ∼ 〈n〉 that generate small contributions to the diffusivity.

As a result of the different diffusive behaviour exhibited by cargo as N

increases, it can be observed in Fig.(5.3c) that the range of times for which the

short time diffusivity dominates decreases with increasing N . The ‘crossing time’

tcross = (clong − cshort)/(mshort −mlong) corresponds to the time at which the linear

fits to the short and long time MSD distributions in Fig.(5.3a) intersect, where

mshort,long and cshort,long are the gradient and intercept of the fits to the short and

long time diffusivities respectively. The crossing time tcross . 1.5 tc for cargo with

N > 3, and it appears to diverge as N → 2 where there cannot be a contribution

to the long time diffusivity as all binding or unbinding events occur when n = 1, 2.

This result is also shown in Fig.(5.3b), where the short and long time diffusivities for

cargo with N = 2 agree within error.

It was shown in Fig.(5.2b) that as N increases the fraction of cargo that

unbind at short times decreases. This is the result of the rescue frequency defined in

eq.(5.4) increasing with increasing N , such that the probability of binding a second

leg increases with respect to the probability of unbinding from the microtubule

(kr = (N − 1)kon � koff ). As kr increases, the timescale associated with quick
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(a) (b)

m1 = -(0.22 ± 0.19)

m2 =  (0.66 ± 0.08)

m3 =  (1.43 ± 0.07)

m4 =  (2.02 ± 0.04)

Figure 5.4: Short time behaviour of dwell time distributions — (a) Dwell
time distributions for 100 000 4-legged cargo with a varying number of legs initially
bound at the start of the simulation, ninit. (b) The early time data in the distribution
evolves linearly in log-log space with a gradient (m) corresponding to the number of
intermediary states between ninit and N following eqs.(5.7 & 5.8).

unbinding events that occur before cargo reach states with n ∼ 〈n〉 decreases, and

the time over which quickly unbinding cargo make large contributions to only the

short time diffusivity also decreases. As N →∞ the rescue rate kr →∞, and the

short time diffusivity will no longer be observed as all cargo will quickly reach states

with large n.

The reason why there is a distinction between the short and long time

diffusivities exhibited by cargo is the same reason why an inverse relationship has

been found between bound diffusivity and dwell time for other proteins (see section

2.2.1) [86, 95]. As n decreases the strength of the interactions between a cargo and

the microtubule also decrease, and this allows the cargo the freedom to move further

on average during its next binding or unbinding event. However, this also has the

effect of increasing the probability that the cargo will unbind from the microtubule in

a given time, as this can only occur from the n = 1 state. In the work by Lopez et al.,

it was hypothesised that at very high salt concentrations it is only the EB1 molecules

that exhibit the strongest interactions with microtubules that can be observed (as

the rest unbind very quickly), and hence the measured diffusivity is lower than

expected [86]. This is equivalent to increasing koff in simulations such that the short

time diffusivity can no longer be observed, as in this case cargo that reach states

with small n have a very high probability of unbinding from the microtubule before

exhibiting significant diffusion.

It has been derived in the work by Li et al. [202] that the short time

behaviour of the dwell time distribution is dominated by transition events that follow

the shortest possible pathway, whereas at long times the distribution is averaged
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over all transition pathways. It can be shown that the short time evolution of the

dwell time distribution for cargo that are initially observed to be in a state with

ninit legs bound follows the equation [202],

τ(t) '

(
ninit∏
i=1

i koff

)(
tninit−1

(ninit − 1)!

)
= ninit koff (koff t)

ninit−1, (5.7)

where this result differs from the published formula by the change of variables

ninit = N −m. The formula in eq.(5.7) predicts a linear evolution of the dwell time

distribution in log-log space,

ln(τ(t)) ' (ninit − 1)ln(t) + α, (5.8)

where α is a constant. The result of eq.(5.8) correctly describes the short time

behaviour of the dwell time distributions obtained for simulated N -legged cargo, as

shown in Fig.(5.4a,b). As in the work by Li et al., rounding each gradient up to the

nearest integer generates the correct number of intermediary states between ninit

and N , and the result of eq.(5.8) is most accurate for small values of ninit [202]. This

is due to other time dependent terms that can no longer be treated as negligible

when approximating eq.(5.7) for cargo with longer dwell times.

It is possible to extend eq.(5.7) to systems that are initialised with multiple

cargo that exhibit different values of ninit. This would be useful for analysing

experimental data, where it is unlikely that cargo with long dwell times can always

be imaged from the time that they first bind to the microtubule. Similarly, cargo

with kon � koff may be able to enter a state with multiple legs bound within a

single frame of imaging. In this case, the dwell time distribution at times t � 1

would instead be expected to follow the equation,

τ(t) ' koff
N∑
n=1

[
n(koff t)

n−1 Pninit
]
, (5.9)

where Pninit is the probability of having ninit legs bound to the microtubule when

first observed, which will be a function of the time interval between images tim, the

total time spent imaging Tim, and the ratio kon/koff . The distribution Pninit must

be defined such that if tim � 1/kon,off then Pninit → Pn. This means that fitting

the short time data of an experimental dwell time distribution with the polynomial

τfit(t) =
∑N

n=1 δnt
n−1, where δn is the product of all of the time independent

variables in eq.(5.9) for a given value of n, could be used to calculate the number of

states that cargo could initially occupy when binding to a microtubule. In the case
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(a)

(b)

(c)

Figure 5.5: How cargo size influences effective diffusivity — Evolution of
the short and long time effective diffusivities for 4-legged cargo of various sizes,
non-dimensionalised with respect to (a) cargo size L, or (b) the grid spacing ∆x
between positions where legs can bind (100 000 cargo simulated for each condition).
Both distributions suggest that Deff ∝ L2, including the inset of (b) which shows
linear evolution of the short and long time diffusivities with respect to L in log-log
space. (c) The short and long time effective diffusivities non-dimensionalised with
respect to cargo size L (see (a)) increase approximately linearly as a function of the
relative grid spacing Λ = ∆x/L.

where tim � 1/kon,off this value would equal N , but otherwise eq.(5.9) can be used

to estimate a minimum value of N .

In order to fully parameterise the dynamics of cargo that exhibit position

independent binding and unbinding rates, the effect of varying the size of cargo,

L, has also been investigated. It can be observed from eq.(5.2) that the average

dwell time of cargo is not a function of their size, however the effect of varying L

on their diffusivity is shown in Fig.(5.5). Since increasing L increases the range

of positions over which cargo legs can bind, it is expected that the short and long

time diffusivities exhibited by cargo increase with increasing L. After scaling the

effective diffusivities with respect to L, it can be observed in Fig.(5.5a) that they
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decay towards a constant value as L→∞. In contrast, Fig.(5.5b) shows that the

distributions can be well fit by a quadratic function after rescaling the effective

diffusivities using a different lengthscale that is independent of L (in this case the

grid spacing ∆x). These results all suggest that Deff ∝ L2, which will be derived

analytically for cargo defined by the average position of their bound legs in section

6.2.1.

The deviation at small values of L of the effective diffusivities from the

values they tend towards in the limit of large L in Fig.(5.5a) is expected to

be due to the discretisation of the spatial grid to which individual cargo legs

can bind. Writing explicitly all of the dependencies of the effective diffusivit-

ies as Ds,l
eff (kon, koff , L,∆x) (where s, l refer to the short and long time effect-

ive diffusivities respectively), they can then be intuitively non-dimensionalised as

Ds,l
eff (kon, koff , L,∆x) ≡ ds,leff (kon tc,Λ)L2/tc, where Λ = ∆x/L is the relative grid

spacing. In the limit of small values of Λ, it is reasonable to approximate the effective

diffusivities using the Taylor expansion,

ds,leff (kon tc,Λ) ' ds,leff (kon tc, 0) + Λ
∂ds,leff (kon tc,Λ)

∂Λ

∣∣∣∣∣
Λ=0

, (5.10)

to first order in Λ. The relation in eq.(5.10) has been verified in Fig.(5.5c), where

it can be observed that the deviation in the effective diffusivities from the values

they tend towards in the limit of large L (small Λ) increases approximately linearly

as a function of Λ. This means that the quantity (∂ds,leff (kon tc,Λ)/∂Λ|Λ=0) is

approximately independent of Λ, and that the values of ds,leff (kon tc, 0) are equal to

the y-intercepts in Fig.(5.5c), such that dseff (kon tc, 0) = (0.10949 ± 0.00003) and

dleff (kon tc, 0) = (0.09366± 0.00003). Together, these results show that the larger

the value of Λ used in simulations, the greater the degree of overestimation of both

the short and long time effective diffusivities of cargo.

5.2.2 Position-Dependent Simulations

It has been hypothesised that tip tracking cargo transport is the result of the increased

binding affinity of EBs for the growing ends of microtubules, and the analysis carried

out in section 4.1.1 has verified that EBs exhibit both a greater average binding

rate and average dwell time at growing microtubule ends. Simulations have been

carried out in order to probe the dynamics generated by position dependent binding

or unbinding rates (for details about the computational implementation see the

methods section 3.4.1). For the following simulations it has been assumed that both

the initial binding rate of new cargo (k0,1) and the single leg unbinding rate (koff )

are uniform across the whole domain, while the single leg binding rate distribution
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(a) (b)

(c) (d)

Figure 5.6: Position dependent cargo dynamics — (a) Ratio between the
position dependent binding rate distribution and position independent unbinding rate
distribution for individual cargo legs defined in eq.(5.11) (kon(x)tc ≡ kon(x)/koff ).
(b) PDF describing the probability of finding 4-legged cargo of size L = 1 at each
position on a periodic domain (100 000 cargo simulated). Cargo accumulate at
the region of increased kon(x) in part (a). Smoothed distribution is calculated by
fitting the local region (7 grid points surrounding and including the grid point of
interest) with a quadratic function, taking into account periodic boundaries. (c) Mean
displacement 〈δx〉(x) and mean squared displacement 〈δx2〉(x) of cargo resulting from
their binding dynamics. Both distributions are smoothed using the same method as
in (b). (d) Position dependent total rate of binding and unbinding events averaged
over the probability of having n legs bound and smoothed using the same method as
in (b). The spatial extent of the cargo means that the average total rate increases
smoothly from the position where kon(x) begins to increase ±|xinc − L| ' ±1.2lc.

(kon(x)) varies significantly as a function of position. The single leg binding and

unbinding rates have been defined as,

kon(x)

koff
≡ kon(x)tc =

[(
4

1 + e(x/2)6

)
+ 1

]
, (5.11)

where tc = 1/koff is the characteristic timescale defined in section 5.2. A character-

istic lengthscale can be defined as the distance from the origin to the position where

the binding rate distribution defined in eq.(5.11) first satisfies kon(x) < 1.1koff (in
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the positive x-direction), such that,

lc = 2(ln(39))1/6 = 2.48... . (5.12)

This characteristic lengthscale will be used to non-dimensionalise spatial distributions

generated in response to the form of the binding rate distribution defined in eq.(5.11),

which exhibits a flat-topped peak at the centre of the domain, as shown in Fig.(5.6a).

For comparison, the simulations in chapters 5 & 6 that do not investigate the effects

of varying L on cargo dynamics use lc/L = 2.48... as well.

As described in section 5.2, Periodic boundary conditions have been imple-

mented to maximise the amount of data that can be obtained per simulated cargo

close to regions where kon(x) varies. The width of the periodic domain, h, has been

defined such that h � L, and only cargo with large values of N are expected to

remain bound for long enough to move across multiple periodic domains.

The probability distribution function describing the probability of finding

a cargo at each position on the periodic domain is shown in Fig.(5.6b). It can be

observed in Fig.(5.6b) that bound cargo are most likely to be found at positions with

larger values of kon(x). This appears to be the result of two coupled phenomena:

1. The average displacement per binding or unbinding event generates a net flux

of cargo into the region of increased kon(x) (Fig.(5.6c));

2. The average dwell time of cargo inside the region of increased kon(x) is higher

than that measured for cargo outside the region.

The first of these points is the direct result of individual cargo legs preferen-

tially binding at positions with increased kon(x), which generates a net displacement

towards these positions. It is possible for a position dependent increase in the

unbinding rate to counter-act this effect, but this cannot occur for the constant koff

used in these simulations. The second of these points can be probed analytically by

substituting eq.(5.11) into eq.(5.2), but this is not sufficient to predict the position

dependent average dwell time exhibited by cargo due to their finite size. Since cargo

legs can be bound at any position within the range xc(t)− L ≤ xnewl ≤ xc(t) + L, it

is expected that cargo instead exhibit the average binding and unbinding rates when

centred at position xc(t).

It is tempting to state that the decrease in the mean squared displacement of

cargo within the region of increased kon(x) (Fig.(5.6c)) results in the cargo exhibiting

a smaller diffusivity within this region. This would lead to cargo accumulation

at regions of increased kon(x) due to their decreased probability of escaping the

region by diffusion. However, the total rate of binding or unbinding events averaged
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over the probability of having n legs bound increases within the region of increased

kon(x) (Fig.(5.6d), recall kt ∝ kon koff/(kon + koff ) for the position independent

case), which will have the contrasting effect of increasing the diffusivity within the

region. It can be approximated that at any time cargo exhibit the average binding

and unbinding rates within the range xc(t)− L ≤ x ≤ xc(t) + L, and hence that the

form of the average total rate distribution in Fig.(5.6d) is similar to that of kon(x)

after smoothing. A complete analytical treatment is required to derive the net effect

of these two contributions, and this will be carried out in section 5.3.1.

Since the position of the centre of a cargo is defined as the centre of the range

of its bound legs, xc(t) exists on a grid twice as fine as that used for the individual

leg positions xl (∆x→ ∆x/2). This results in the appearance of large error bars in

Fig.(5.6b), when in fact the distribution exhibits small errors at each position but

significant changes in value. These fluctuations arise due to cargo initially binding to

the microtubule and unbinding from the microtubule in the n = 1 state. When only

one leg is bound the cargo centre position xc(t) = xl, which always exists on the

coarser grid with grid spacing ∆x. This means that on average the grid points on

the coarser grid are occupied more frequently than those exclusive to the finer grid,

resulting in a slightly increased probability of cargo occupying those positions in

Fig.(5.6b). Increasing the average dwell time of the cargo (for example by increasing

N) acts to smooth the PDF, as cargo spend less time in the n = 1 state on average.

Manual smoothing has been used in Fig.(5.6b) to minimise this effect.

Cargo accumulation at positions with increased kon(x) can be probed directly

by simulating populations of cargo that initially bind in the n = 1 state at different

positions along the domain, as shown in Fig.(5.7a). It can be observed that the average

position for each population tends towards the centre of the domain where kon(x) is

maximal. The net average displacement generated by the position dependence in

kon(x) (Fig.(5.6c)) acts to ‘capture’ cargo that diffuse towards the region of increased

kon(x). Similarly, the increased average dwell time at positions with increased kon(x)

means that at longer times only cargo that have sucessfully reached the region of

increased kon(x) will still be bound. This phenomenon can be observed through

the dwell time distributions for each population (Fig.(5.7b)), which exhibit two

characteristic unbinding timescales: a shorter timescale due to cargo unbinding

outside of the region of increased kon(x), and a longer timescale due to cargo

unbinding slower within this region. For cargo populations that initially bind far

away from the region of increased kon(x) the majority of the cargo unbind before

reaching the region, and the short unbinding timescale dominates the decay of the

population. In contrast, the dwell times of cargo in the populations that initially bind

within the region of increased kon(x) are always dominated by the longer unbinding
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(a)

(b)

Figure 5.7: Simulated cargo accumulation — (a) Average positions of popu-
lations (different colours) of 250 000 4-legged cargo that initially bind at different
positions on the domain. Single leg binding and unbinding rates are described by
eq.(5.11). The average position for each population tends towards the centre of the
domain. (b) The fraction of cargo that remain bound as a function of time for each
population. The distribution is dominated by the longer unbinding timescale for all
populations after the average position of the population tends towards the centre of
the domain.

timescale.

In order to probe whether N -legged cargo can track growing microtubule

ends, as has been shown experimentally in the literature [28, 29], it is of interest

to observe how long cargo can remain within the region of increased kon(x) defined

by eq.(5.11) when subject to a net velocity. In this case, the region of increased

kon(x) emulates the microtubule end to which EBs have a greater binding affinity

(see section 4.1.1), and the net velocity confers the response of stationary bound EBs

to microtubule growth (see eq.(4.4)). This net velocity has been implemented using

a microtubule growth rate kMT in the Gillespie algorithm, defined as the rate at

which all bound legs of a cargo are shifted a distance ∆x (the spacing between grid

points) in the direction of vEBMT = −vMT . The PDFs resulting from cargo simulations

with a net velocity vEBMT 6= 0 are shown in Fig.(5.8a). While cargo are still most

likely to be found in the region of increased kon(x) (due to the position dependence

of the average displacement and dwell time distributions), the PDFs in Fig.(5.8a)

are now skewed in the direction of the applied net velocity. For comparison, in vitro

values of the dimensionless velocity vEBMT tc/L ' 0.1− 0.6 can be predicted using the

parameters in table 7.1 and the cargo sizes used for simulations in chapter 7.

The escape time τesc has been defined as the average time cargo spend bound

within the region of increased kon(x) before either unbinding or leaving due to their

motion whilst bound. The boundary of the region of increased kon(x) is defined

by the characteristic lengthscale lc in eq.(5.12) (or by the non-dimensionalised co-

116



(a) (b)

Figure 5.8: Simulated cargo escape times — (a) PDFs for 4-legged cargo subject
to a net velocity vEBMT 6= 0 (100 000 cargo simulated for each distribution, key below
plot), compared to the PDF for the system with vEBMT = 0 (green, Fig.(5.6b)). The
PDFs have been smoothed as in Fig.(5.6b), and are skewed in the direction of vEBMT .
(b) The average time τesc taken for N -legged cargo subject to the applied net velocity
vEBMT tc/L = 0.1 to escape the region of increased kon(x) defined by eq.(5.11 & 5.12)
after initially binding at x = 0. For N � 1 cargo become entrained by the net
velocity (see eq.(5.15)).

ordinate x/lc = 1). Cargo are defined as having left the region −lc ≤ x ≤ lc when

all of their legs are at positions min({|xl|}(t)) > lc. For cargo intialised at x = 0

with ninit = 1, the average escape time decreases with increasing |vEBMT |. However,

increasing N (while keeping all other cargo and system parameters the same) does

not monotonically increase the escape time, as shown in Fig.(5.8b). Instead, the

escape time exhibits three regimes:

1. For small values of N , the majority of cargo unbind before leaving the region

due to their motion whilst bound, so τesc ' T1,N ;

2. For moderate values of N , τesc increases rapidly as a function of N due to the

position dependent average displacement distribution (Fig.(5.6c)) that resists

the action of the applied net velocity;

3. For large values of N , cargo become entrained by the applied net velocity as

〈n〉 becomes large and the magnitude of the average displacement exhibited

per binding or unbinding event tends to zero, so τesc → |lc/vEBMT |.

As was the case for the effective diffusivities of cargo in Fig.(5.3b), it is expec-
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ted that cargo with smaller values of 〈n〉(x) exhibit greater maximum magnitudes of

〈δx〉(x) as a result of the greater average magnitude of displacement per binding or

unbinding event. Similarly, cargo with large values of 〈n〉(x) will exhibit 〈δx〉(x)→ 0

in the absence of an applied net velocity as the probability of a binding or unbinding

event occurring outside the range of currently bound legs Pd(t)→ 0 (eq.(5.5)). This

means that cargo with large values of N exhibit 〈δx〉(x)→ ∆x in the presence of an

applied net velocity, and these cargo are described as being entrained. This result

suggests that the transient binding dynamics of cargo legs (or EBs) are necessary to

ensure a small value of 〈n〉(x) so that cargo can resist an applied net velocity and

exhibit tip tracking transport.

The dynamics of particles escaping a semi-infinite region bound at x = [lc,∞)

has been studied analytically in the book by Redner (chapter 3) [203]. In this case

the particles cannot unbind, and can only leave the region by moving across the

boundary at x = lc. The flux of particles into the boundary at x = lc can be written,

F (x = lc, t) =

(
x0 − lc√
4πDt3

)
e−

((x0−lc)−vt)
2

4Dt , (5.13)

where x0 is the starting position of the particles, and v and D are their position

independent velocity and diffusivity respectively. The probability of a particle

escaping by reaching x = lc is equal to [203],

Pesc = e−Pe−|Pe| =

1, if v < 0,

e−2Pe, if v > 0,
(5.14)

where Pe = v(x0−lc)/2D is the Péclet number, which compares the rates of advective

and diffusive transport. When v > 0, eq.(5.14) states that the majority of particles

never reach the boundary at x = lc. In this case, the only particles that escape

are those that stochastically diffuse against their velocity, which means that Pesc

increases with increasing D for fixed values of v and x0 in eq.(5.14). This also means

that escape is most likely to occur at early times when the particle is close to its start

position, since on average the particle will always move away from the boundary

(〈x〉 = x0 + vt).

Considering only particles that escape, the average escape time τesc(x0, lc, v)

can be calculated using eq.(5.13 & 5.14) as,

τesc(x0, lc, v) =
x0 − lc
|v|

, (5.15)

for all values of v, such that τesc(x0, lc, v = 0) =∞ [203]. This formula states that

τesc(x0, lc, v) decreases with decreasing v < 0 as expected, but also decreases with
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(a) (b)

(c) (d)

Figure 5.9: Simulated cargo tracks — (a) Representative tracks for 40-legged
cargo that exhibit the position dependent binding rate distribution defined in eq.(5.11).
Tracks approximately follow the line x(t) = vEBMT t (green, dashed) due to entrainment
by the applied net velocity. This line is equivalent to |vMT t|, which describes the
position of the growing microtubule end in the lab frame. Cargo have escaped when
all of their bound legs are at positions {|xl|}(t) > lc (red). The position of the stable
fixed point of the motion for 15-legged cargo (blue) is also shown (see section 5.3.3).
(b) Single 40-legged cargo track, showing the position of the centre of the range of
bound legs (black) evolving approximately linearly in time. The position of each
individual bound leg is a different colour. (c) Representative tracks for 15-legged
cargo that exhibit slow escape that relies on fluctuations about the stable fixed point
of the motion. (d) Single 15-legged cargo track, showing fluctuations in the position
of the centre of the range of bound legs about the stable fixed point.

increasing v > 0. The latter of these is the result of fewer particles successfully

reaching x = lc (eq.(5.14)), and those that do having less time to reach the boundary

before their average position becomes limiting (〈x〉 = x0 + vt).

These results cannot be directly applied to the dynamics of cargo that exhibit

position dependent binding dynamics, as it has been shown that they will also exhibit

a position dependent velocity and diffusivity (Fig.(5.6c,d)). However, it is expected

that 〈δx〉(x) → ∆x (see Fig.(5.6c)) as N becomes large, such that v → vEBMT in

eq.(5.15), both as a result of the increased value of 〈n〉(x) (see eq.(5.6)) and the
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(a) (b)

m = -(6.1 ± 0.3) x 10-3

m = -(3.7 ± 0.4)
                   x 10-2

Figure 5.10: Time taken for simulated cargo to leave a stable fixed point
— (a) Lin-lin and (b) lin-log distributions of the time taken for 15- and 40-legged
cargo to escape the stable fixed point of their motion. The constant gradient of
decay (m) in log-space indicates a characteristic rate of escape, which is greater for
the 40-legged cargo.

effect of this on the probability of a binding or unbinding event resulting in cargo

displacement (see eq.(5.5)). In this case, eq.(5.15) predicts the behaviour observed

in Fig.(5.8b) that τesc → |lc/vEBMT | as N becomes large.

Representative tracks of individual N -legged cargo are shown in Fig.(5.9). As

shown by Fig.(5.8b), cargo with N = 40 (N � 1) become entrained by the applied

net velocity, such that their positions can be well approximated by the line x = vEBMT t

(Fig.(5.9a,b)). In contrast, Fig.(5.9c,d) shows that cargo with N = 15 resist leaving

the region of increased kon(x). It can be observed from Fig.(5.9d) that this is the

result of the preferential binding of legs to positions with increased kon(x), and that

the resulting motion of xc(t) acts in the opposite direction to the applied net velocity.

In comparison, Fig.(5.9b) shows that the dynamics of cargo with N � 1 are not

influenced by the position dependence in the binding rate distribution. This is the

result of 〈n〉(x) increasing, such that cargo legs occupy the majority of the grid

points within the range xc(t)− L ≤ x ≤ xc(t) + L at all times. This means that the

motion of xc(t) is dominated by the applied net velocity, as individual binding or

unbinding events do not result in the displacement of xc(t) on average.

It can also be observed in Fig.(5.9c) that cargo in the large average escape

time regime of Fig.(5.8b) (τesc � |lc/vEBMT |) spend the majority of the time before

escaping near the stable fixed point of their motion (derived in section 5.3.3). It

can be predicted using Kramers escape theorem [168] that cargo will exhibit a

characteristic rate of leaving the stable fixed point of their motion. It is this rate

that governs the deviation of the average escape timescale distribution in Fig.(5.8b)

from the analytical form of the timescale in eq.(5.15). The distributions of the
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time taken for 15- and 40-legged cargo to escape their stable fixed points are shown

in Fig.(5.10). As predicted, Fig.(5.10b) shows that cargo exhibit an exponentially

decaying distribution of times taken to leave their stable fixed point, and that the

average rate describing this decay (gradient of a linear fit to the decaying region)

increases as N becomes large. The distributions in Fig.(5.10) exhibit smooth peaks

due to the possibility that the configurations of cargo are not fully equilibrated by

the time they reach the stable fixed point, the time taken to escape the stable fixed

point even once entrained τesc = (lc − xfp)/|vEBMT | (for a fixed point position xfp), as

well as any innaccuracies in the definition of the position of the stable fixed point.

5.3 Analytical Results

The dynamics of simulated cargo presented in section 5.2 indicate that position

dependence in the binding rate distribution of individual cargo legs can generate

position dependence in the effective dynamics of the cargo as well. In this section, a

coarse-grained analytical description of cargo motion will be developed that focuses

on the average behaviour of the centre of cargo following the binding or unbinding of

any of their legs. Expanding the terms in the resulting formula generates a Fokker-

Planck equation that can describe the continuum-level dynamics of a population of

cargo that individually obey the schematic in Fig.(5.1b).

5.3.1 Continuum Fokker-Planck Model

Consider a general Langevin equation of the form [204],

x(t+ dt) = B(x(t) + ∆(dt) +
√

2Dw(dt)), (5.16)

where dt is a small increment in time, ∆(dt) is the stochastic displacement due to

Poisson processes within the time dt, and w(dt) is the stochastic displacement due

to a diffusive Wiener process within a time dt (see section 2.3.1). The function B(x)

applies boundary conditions to the system, which in the case of the simulations in

section 5.2 are periodic. This means that,

B(x) = x− 2lh for x ∈ [(2l − 1)h, (2l + 1)h], (5.17)

where the periodic domain of interest is x ∈ [−h, h], which corresponds to n = 0. In

the case of cargo motion ∆(dt) describes displacements due to stochastic binding or

unbinding events. Using the same notation as in eq.(2.9),
√

2Dw(dt) =
√

2D (W (t+

dt) −W (t)) =
√

2D
∫ t+dt
t dW (t′) ∼ N (0, 2Ddt) (where N (0, 2Ddt) is the normal

distribution with mean 0 and variance 2Ddt) describes the stochastic Brownian
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displacement of the cargo due to collisions with many smaller particles in solution

[159–161]. Although cargo diffusion due to thermal effects was neglected from the

simulations in section 5.2, the Wiener process term in eq.(5.16) has been included in

case it is of interest for future study. As a result of the boundary conditions defined

in eq.(5.16 & 5.17), it can be assumed that Pt(x) = Pt(x− 2lh) (l ∈ Z), where Pt(x)

describes the probability of a cargo being at the position x at time t.

In order to derive the evolution of the PDF Pt+dt(x) = 〈δ(x − x(t + dt))〉
(averaged over realisations of noise), the PDFs describing the dynamics of the

Poisson and Wiener process terms in eq.(5.16) must be defined [204]. In this work,

the PDF describing the probability of the Poisson process generating a displacement

∆(dt) = xJ from the position x′ within a time dt has been defined as,

pdt(xJ |x′) '

(
1−

N∑
n=1

[
Pn(x′)

M∑
m=1

(
km(x′|n)

)]
dt

)
δ(xJ)

+

N∑
n=1

[
Pn(x′)

M∑
m=1

(
km(x′|n) qm(xJ |x′, n)

)]
dt+O(dt2)

= (1− Sk(x′)dt) δ(xJ) + Sq(xJ |x′)dt+O(dt2),

(5.18)

where km(x′|n) is the position dependent rate of the mth type of event occurring

when the cargo has n legs bound, qm(xJ |x′, n) is the corresponding probability of

this event resulting in the displacement xJ , and M is the total number of different

types of event that the cargo can exhibit. For example, M = 2 when cargo legs

can bind to the microtubule (m = 1) or unbind from the microtubule (m = 2),

M = 3 when the cargo also moves due to the effects of microtubule growth (m = 3),

and M > 3 is required to describe cargo that exhibit cargo-EB interactions (see

section 7.3). The variables Sk(x′) =
∑N

n=1[Pn(x′)
∑M

m=1(km(x′|n))] and Sq(xJ |x′) =∑N
n=1[Pn(x′)

∑M
m=1(km(x′|n) qm(xJ |x′, n))] have been defined to simplify eq.(5.18),

where Sk(x′) =
∫ +∞
−∞ (Sq(xJ |x′)) dxJ when qm(xJ |x′, n) is normalised. The first term

in eq.(5.18) describes the probability of no displacement occurring (xJ = 0), and the

second term describes the probability of a non-zero displacement occurring. The

form of eq.(5.18) deviates from that used by Jeanneret [204] as a result of introducing

N possible cargo states that can each exhibit M different types of event.

The PDF rdt(η) = (1/
√

4πDdt)exp(−η2/4Ddt) ∼ N (0, 2Ddt) describes the

probability of the Wiener process resulting in a displacement
√

2Dw(dt) = η within

a time dt [204]. This means that the Wiener process term is independent of cargo

position. For future work it would be interesting to implement the PDF rdt(η|n),

such that the cargo diffusivity varies as a function of the number of bound legs. This
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follows the argument that stronger interactions between a protein and a substrate

result in slower diffusion [86, 95], and would be expected to introduce position

dependence into the intrinsic cargo diffusivity.

The analytical form of the PDF Pt+dt(x) can be derived using the chosen

distributions for the Poisson and Wiener processes such that [204],

Pt+dt(x) = 〈δ(x− B(x(t) + xJ + η))〉

=

+h∫
−h

dx′ Pt(x
′)

+∞∫
−∞

dxJ pdt(xJ |x′)
+∞∫
−∞

dη rdt(η)

×
+∞∑
l=−∞

δ(x− (x′ + xJ + η − 2lh))

=

+h∫
−h

dx′ Pt(x
′)

+∞∫
−∞

dxJ pdt(xJ |x′)

 +∞∑
l=−∞

e− (x−(x′+xJ−2lh))2

4Ddt

√
4πDdt

 ,

(5.19)

where the sum over l enforces the periodicity of the system by stating that cargo

initially at a position within the domain x′ ∈ [−h, h] contribute to the probability

Pt+dt(x) if they are at any position x − 2lh (l ∈ Z) following a displacement. In

order to convert eq.(5.19) into a Fokker-Planck equation, it is necessary to calculate

its Fourier Tranform with respect to the position x noting that,

∂P̃t(k)

∂t
= lim

dt→0

(
P̃t+dt(k)− P̃t(k)

dt

)
. (5.20)

Since the position x in eq.(5.19) represents the final position of cargo, and it can

be assumed that Pt(x) = Pt(x− 2lh) (l ∈ Z), the Fourier transform in eq.(5.20) can

be calculated using an integral over all space. Further derivation also requires the

definition of the two Fourier transform identities,

lim
dt→0

 +∞∫
−∞

dx e−ikx

e− (x−(x′+xJ−2lh))2

4Ddt

√
4πDdt

 = lim
dt→0

(
e−ik(x′+xj−2lh)e−k

2Ddt
)

' e−ik(x′+xj−2lh)(1− k2Ddt+ ...),

(5.21)
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+h∫
−h

dx′ f(x′)

+∞∫
−∞

dk

2π

+∞∑
l=−∞

(
eik(x−x′+2lh)

)

=

+h∫
−h

dx′ f(x′)
+∞∑
l=−∞

(
δ(x− x′ + 2lh)

)

=
+∞∑
l=−∞

(f(x+ 2lh)) for x+ 2lh ∈ [−h, h]

= f(x) for x ∈ [−h, h],

(5.22)

where terms of O(dta) with a > 1 have been neglected in eq.(5.21).

The Fokker-Planck equation governing the motion of cargo while bound to a

microtubule can be derived by substituting eq.(5.18, 5.19, 5.21 & 5.22) into eq.(5.20),

and can be written,

∂Pt(x)

∂t
= D

∂2Pt(x)

∂x2
− Sk(x)Pt(x)

+

+h∫
−h

dx′ Pt(x
′)

+∞∑
l=−∞

(
Sq((x+ 2lh)− x′|x′)

)
.

(5.23)

The final term of eq.(5.23) states that there is a contribution to the probability

P (x, t) when a particle that is at a position x′ ∈ [−h, h] at time t jumps to a position

x + 2lh within a time dt. The Fokker-Planck equation defined in eq.(5.23) can

alternatively be derived by assuming that cargo obey a langevin equation that does

not include the effects of periodic boundaries (B(x) = x) by enforcing periodicity

after generating a Fokker-Planck equation for an infinite domain. As well as assuming

that Pt(x) = Pt(x − 2lh) (l ∈ Z), this method also requires the assumptions that

km(x|n) = km(x− 2lh|n) and qm((x+ 2lh)− x′|x′, n) = qm(x− (x′ − 2lh)|x′ − 2lh),

such that Sq((x+ 2lh)− x′|x′) = Sq(x− (x′ − 2lh)|x′ − 2lh).

In the limit where cargo can only exhibit small displacements (xJ = x−x′ � h)

in a time dt, such that qm(xJ |x′, n) decays quickly as a function of xJ , eq.(5.23) can

be simplified to include only the l = −1, 0,+1 terms of the infinite sum. Provided

that the boundaries to the periodic domain at x = ±h are far from any fluctuations

in the Sq(xJ |x) distribution away from zero, and that the characteristic unbinding

timescales of cargo are much smaller than the average time it would take for them

to cross the domain, the solution to a simplified Fokker-Planck equation in the limit

h→∞ including only the l = 0 term of eq.(5.23) will be a good approximation to

the solution of the complete equation. This is equivalent to neglecting the periodicity
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of the system. In this case, a Kramers-Moyal expansion can be used to simplify the

third term of eq.(5.23) by defining x′ = x− xJ , and assuming that the displacements

xJ due to binding or unbinding events are small [159]. This results in the recognisable

Fokker-Planck equation [204],

∂Pt(x)

∂t
=

∂

∂x

[
Deff (x)

∂Pt(x)

∂x

]
− ∂

∂x
[Veff (x)Pt(x)] , (5.24)

with position dependent effective velocity (Veff ) and diffusivity (Deff ) terms,

Veff (x) =

N∑
n=1

[
Pn(x)

M∑
m=1

(
km(x|n) δ(1)

m (x|n)
)]
−
∂Deff (x)

∂x

= S
(1)
δ (x)−

∂Deff (x)

∂x
,

(5.25)

Deff (x) = D +

(
1

2

) N∑
n=1

[
Pn(x)

M∑
m=1

(
km(x|n) δ(2)

m (x|n)
)]

= D +

(
S

(2)
δ (x)

2

)
,

(5.26)

where δ
(i)
m (x|n) =

∫ +∞
−∞ dxJ (xiJ qm(xJ |x, n)) is the ith moment of the cargo displace-

ment distribution for themth type of event, such that S
(i)
δ (x) =

∫∞
−∞ dxJ (xiJ Sq(xJ |x)).

For verification, the distributions kt(x), 〈δx〉(x) and 〈δx2〉(x) shown in

Fig.(5.6c,d) can be reproduced by substituting the average rates km(x|n) and mo-

ments of the displacement distribution δ
(1)
m (x|n) and δ

(2)
m (x|n) obtained directly from

simulations into the formulae Sk(x), S
(1)
δ (x)/Sk(x) and S

(2)
δ (x)/Sk(x) respectively.

For example, it can be shown that,

S
(1)
δ (x)

Sk(x)
=

N∑
n=1

[
Pn(x)

M∑
m=1

(
Pm(x) δ(1)

m (x|n)
)]

= 〈δx〉(x), (5.27)

where Pm(x) = km(x)/kt(x) is the probability of the mth type of event occurring.

This means that the effective velocity and diffusivity can alternatively be written

Veff (x) = kt(x) 〈δx〉(x)− (∂Deff (x)/∂x) and Deff (x) = D + ((kt(x)〈δx2〉(x))/2).

Distributions for Veff (x) andDeff (x) can be found using the cargo simulations

described in section 5.2, and example distributions obtained using the distributions

in Fig.(5.6c) are shown in Fig.(5.11a). The average value of Deff (x) measured

near the edges of the periodic domain (far from the region of increased kon(x)) in

Fig.(5.11a) agrees quantitatively with the effective diffusivity measured in simulations

with position independent rates of the same magnitude as those at these positions

(Fig.(5.3b)). It is expected that eq.(5.26) will probe the short time diffusivity
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(a) (b)

(c) (d)

Figure 5.11: Effective cargo dynamics — (a) Effective velocity and diffusivity
distributions obtained from simulations of 4-legged cargo (100 000 simulated) with the
position dependent binding rate defined in eq.(5.11), calculated using eqs.(5.25-5.26).
The distributions have been smoothed as in Fig.(5.6b). (b,c) PDFs for (b) (100 000)
4- and (c) (15 000) 6-legged cargo (black, green after smoothing) compared to the
numerical solution of eq.(5.29) (orange, see methods section 3.4.4). The analytical
solution defined in eq.(5.28) is included for comparison (yellow, dashed). (d) PDF for
4-legged cargo (100 000 simulated) after including a net cargo velocity vEBMT tc/L = 0.1
(see section 5.2.2), which skews the PDF towards one edge of the region of increased
kon(x). The analytical solution cannot be used to describe the simulated distribution.

of simulated cargo, as only the displacements and rates of individual events are

considered. Similarly, since Pn(x) was calculated using the fraction of time cargo

spent in state n at position x, this short time diffusivity will be influenced by the

effects of quickly unbinding cargo, as described in section 5.2.1.

Since the kt(x) distribution in Fig.(5.6d) increases as kon(x) increases, the

effective diffusivity distribution Deff (x) = S
(2)
δ (x)/2 = kt(x) 〈δx2〉(x)/2 (assuming

D = 0) peaks in the region of increased kon(x) despite this being the position where

〈δx2〉(x) alone is a minimum. This means that the effective diffusivity is greater

within the region of increased kon(x) primarily due to the increased rate of binding
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or unbinding events occurring. In contrast, the kt(x) distribution has little effect

on the effective velocity distribution, since both 〈δx〉(x) and ∂Deff (x)/∂x tend to

zero within the region of increased kon(x) where kt(x) is maximal. As a result, the

effective velocity distribution is very similar to the mean displacement distribution

for cargo that exhibit the binding rate distribution defined in eq.(5.11). The Veff (x)

distribution generates a net flux of cargo into the region of increased kon(x).

Since cargo that obey the schematic in Fig.(5.1b) move purely as a result of

the binding and unbinding of their legs, their Veff (x) and Deff (x) distributions are

coupled to the form of kon(x). Comparing the Veff (x) distribution in Fig.(5.11a) to

the form of kon(x) in Fig.(5.6a) suggests that the positions of the maximum and

minimum of Veff (x) coincide with positions where |dkon(x)/dx| is maximal. Cargo

at these positions experience the greatest bias in their binding dynamics, which

drives directional motion (see Fig.(5.6c)). These positions are also very close to the

maxima of Deff (x) that correspond to maxima in the mean squared displacement

of the cargo. An analytical description of the coupling between kon(x) and cargo

motion will be discussed in section 6.2.

The steady-state solution of the system of equations defined in eq.(5.24-5.26)

can be written,

Pss(x) =

(
Z

Deff (x)

)
e

∫ x( S
(1)
δ

(x′)
Deff (x

′)

)
dx′

, (5.28)

where Z is a normalisation constant, but it can be observed in Fig.(5.11b-d) that this

solution does not agree with the PDF obtained from simulations. This disagreement

is not the result of neglecting the boundary terms in eq.(5.23) since the characteristic

unbinding timescale of cargo in these simulations was much less than the average time

required for cargo to diffuse the length of one periodic domain. However, the binding

dynamics of the cargo were neglected entirely during the derivation of eq.(5.28),

and so once cargo become ‘trapped’ in the region of increased kon(x) by the action

of Veff (x) it is very difficuly for them to escape by diffusion. Binding dynamics

introduce a second mechanism for cargo to escape from this region, acting to spread

the probability distribution more uniformly across the domain. In the limit where

koff →∞ the PDF would become completely uniform, since the initial binding rate

of new cargo (k0,1) is uniform.

Further expanding on the work by Jeanneret [204] by introducing binding

dynamics into eq.(5.24) generates the Fokker-Planck equation,

∂Pt(x)

∂t
=

∂

∂x

[
Deff (x)

∂Pt(x)

∂x

]
− ∂

∂x
[Veff (x)Pt(x)]−keffoff (x)Pt(x)+keffon (x), (5.29)
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where keffon,off (x) are the position dependent effective binding and unbinding rates

(respectively) of cargo modelled as single, composite bodies. The effective binding

rate must take into account the diffusion, flexibility, and valence of cargo in solution,

as well as the number of cargo available to bind. So far it has been assumed that

keffon (x) is independent of position (so that simulations can probe all positions on the

domain), whereas it has been shown that the position dependence in keffoff (x) can

arise as a result of the position dependence of kon(x).

The Fokker-Planck equation defined in eq.(5.29) cannot be solved analytically

for arbitrary effective velocity, diffusivity, and rate distributions, and instead must be

solved numerically (see methods section 3.4.4). The boundary conditions used for this

numerical analysis require that the net flux at the boundaries is equal to Veff (x)Pt(x),

such that there is no diffusive flux at the boundaries and Deff (x)(∂Pt(x)/∂x) = 0.

These boundary conditions are only suitable when kon,off (x) are constant across the

boundaries, which is satisfied by the rates in eq.(5.11), as this will ensure that the

gradient in Pt(x) is zero.

The distributions generated using this numerical analysis are in strong agree-

ment with the distributions obtained directly from simulations, as shown in Fig.(5.11b-

d). The inclusion of binding dynamics in eq.(5.29) means that cargo can unbind from

the region of increased kon(x), and this acts to flatten Pt(x) since the unbinding rate

term in eq.(5.29) is ∝ Pt(x). As N increases, the steady-state solution defined in

eq.(5.28) better describes the solution of the Fokker-Planck equation that includes

the effects of binding dynamics (eq.(5.29)), as shown in Fig.(5.11c). This is the result

of the average dwell time of cargo increasing approximately as αβN (Fig.(5.2a)) and

inhibiting the effect of the unbinding rate term in eq.(5.29). Instead, eq.(5.29) is

dominated by the effective velocity and diffusivity terms, which act to trap cargo in

the region of increased kon(x).

As described previously in section 5.2.2, the region of increased kon(x) can

emulate the growing end of a microtubule when an applied net velocity vEBMT is applied

to bound cargo legs. Fig.(5.8a) shows how vEBMT 6= 0 skews Pt(x) in the direction

of vEBMT . The effects of vEBMT 6= 0 can be included in eq.(5.29) by setting M = 3

in eq.(5.25 & 5.26) and using the distributions k3(x|n) = kMT = |vEBMT |/∆x and

q3(xJ |x, n) = δ(xJ − (2θ(vEBMT ) − 1)∆x), where θ(x) is the heaviside-step function.

This results in the moments δ
(1)
3 = (2θ(vEBMT ) − 1)∆x and δ

(2)
3 = ∆x2. The

resulting Fokker-Planck equation can be solved numerically to generate the PDF

in Fig.(5.11d), which is in good agreement with the distribution obtained using

simulations. In contrast to Fig.(5.11b,c), the disagreement between the analytical

and simulated distributions in Fig.(5.11d) is largely the result of neglecting the

boundary terms in eq.(5.23) for a system where the average distance travelled while
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bound (approximated by T1,N/|vEBMT |) can be equal to or greater than the width

of the domain 2h. This results in cargo that cannot unbind accumulating at the

boundary of the domain.

5.3.2 Interpretation of Results

It is not immediately clear how to decide whether individual cargo are tip tracking

from the results derived in section 5.3.1. For a system in which cargo cannot

completely unbind from the microtubule, a change in the sign of Veff (x) indicates a

(stable or unstable) fixed point of cargo motion. This coincides with the maximum of

the steady-state distribution defined in eq.(5.28) (since Deff (x) > 0 ∀x). However,

for cargo that bind to or unbind from a microtubule with a position dependent rate,

it is more difficult to state where cargo accumulation will occur.

The Fokker-Planck equation defined in eq.(5.29) cannot be solved analytically

for arbitrary effective velocity, diffusivity, and rate distributions, but the effects

of position dependence in the effective binding rate can be investigated using the

simplified equation,

∂Pt(x)

∂t
= D

∂2Pt(x)

∂x2
− v∂Pt(x)

∂x
− koffPt(x) + kon(x), (5.30)

which can only be solved analytically for specific forms of kon(x). Fourier transforms

and the residue theorem can be used to derive the steady-state solution when

kon(x) = konδ(x),

Pss(x) =

 kon

2D

√(
v

2D

)2
+

koff
D

 e
−
(√

( v
2D )

2
+
koff
D
− v

2D
(2θ(x)−1)

)
|x|
, (5.31)

where θ(x) is the heaviside step function. This distribution has been plotted in

Fig.(5.12a) for various values of D, and exhibits a cusp at x = 0. In order to observe

time dependence in the solution to eq.(5.30), the binding rate distribution should be

modified to equal konδ(x)θ(t− t0), such that cargo only start binding after a time t0.

When kon(x) = kon exp((x− x0)2/(2σ2))/
√

2πσ2 (Fig.(5.12b)), the solution

to the Fokker-Planck equation defined in eq.(5.30) is the solution to the convolution,

P (x) =

∞∫
−∞


e− ((x−x0)−y)

2

2σ2

√
2πσ2


e−

(√
( v
2D )

2
+
koff
D
− v

2D
(2θ(y)−1)

)
|y|

2D

√(
v

2D

)2
+

koff
D


 dy, (5.32)

129



(a)

(c)

(b)

(d)

Figure 5.12: Effects of position dependent binding dynamics — (a) The PDF
defined in eq.(5.31) with input parameters kon = 1, koff = 1, v = 1, and varying
values of D (all values are in arbitrary units). The distribution is asymmetric due to
the net velocity, but becomes more symmetric as the ratioD/v increases. (b) Gaussian
binding rate distributions following the equation kon exp((x− x0)2/(2σ2))/

√
2πσ2,

with kon = 1, x0 = 2, and varying values of σ. (c) The probability distribution
defined in eq.(5.32) with the input values kon = 1, koff = 1, v = 1, D = 1, x0 = 2,
and varying values of σ. (d) The flux corresponding to the probability distributions
plotted in (a).

which is shown in Fig.(5.12c) for various values of σ. The convolution has the effect

of ‘blurring’ the solution defined in eq.(5.31), such that in the limit where σ → 0

the distribution in eq.(5.32) tends towards eq.(5.31) (subject to the transformation

x → x − x0). The maximum of the PDF defined by eq.(5.32) is at the position

where the binding rate distribution is a maximum (x0). Similarly, the width of the

distribution in eq.(5.32) can be increased by increasing the width of the Gaussian

binding rate distribution σ (as well as by increasing the diffusivity or decreasing

the unbinding rate). This shows that the binding dynamics of cargo can have a

large impact on their steady-state distribution, and that maxima in this distribution

may not always represent the accumulation of cargo due to their bound motion. A

similar argument can be made by studying position dependence in the unbinding

rate in eq.(5.30), but since such position dependence must be coupled to position

dependence in the velocity and diffusivity for cargo, this has not been studied here.
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The Fokker-Planck equation defined in eq.(5.29) can be rewritten in terms of

a dynamic cargo flux (J(x, t)) and a source or sink term (s(x, t)), such that,

∂Pt(x)

∂t
= −∂J(x, t)

∂x
+ s(x, t), (5.33)

J(x, t) = −Deff (x)
∂Pt(x)

∂x
+ Veff (x)P (x, t). (5.34)

The equivalent dynamic cargo flux for eq.(5.30) is shown in Fig.(5.12d). Since the

steady-state distribution in Fig.(5.12a) is non-uniform, the corresponding dynamic

cargo flux J(x, t) 6= 0 ∀x. In fact, it is the position corresponding to the maximum

of the steady-state distribution that also exhibits the largest dynamic flux. Hence,

the position of the maximum of a steady-state PDF that arises from a Fokker-Planck

equation with position dependent binding and unbinding terms does not necessarily

give any information about the dynamics of the cargo once bound. For example, if

individual cargo in the system described by eq.(5.30) were followed on a timescale

t� 1/koff , they would be observed to exhibit simple advection-diffusion dynamics

with no inherent position dependence.

The definition of tip tracking requires individual cargo to remain near the

growing microtubule end as a result of their bound dynamics, and not due to position

dependence in their binding or unbinding rates. Hence, it may be expected that

bound cargo accumulate at the point of zero dynamic flux (x∗) in the rest frame of

the growing microtubule end. From eq.(5.34) this results in the condition,

∂Pt(x)

∂x

∣∣∣∣
x∗

=

(
v(x∗)

D(x∗)

)
Pt(x

∗), (5.35)

which must be satisfied for the dynamic flux to equal zero. However, this condition

is a function of the PDF Pt(x) that is influenced by the binding dynamics of the

cargo population, and so only describes the population-level accumulation of cargo.

In order to understand the dynamics of individual cargo, the Fokker-Planck equation

in eq.(5.29) must be converted to a Langevin equation (see section 2.3.1).

5.3.3 Molecular Dynamics Calculations

It is possible to find Langevin equations that, when averaged over realisations of

noise, tend towards specific Fokker-Planck equations at the continuum level [159–161].

In order to use a Langevin equation to calculate the expected position of a cargo

after a binding or unbinding event, it is expected that the coarse-grained effective

velocity and diffusivity of the cargo should be evaluated prior to the event at the

cargo’s current position. In this case, the dynamics of the cargo correctly rely on
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(a) (b)

Figure 5.13: Individual cargo dynamics — (a) PDFs for 4-legged cargo obtained
using molecular dynamics simulations based on eq.(2.9, 5.36 & 5.37). The simulations
used 1 000 000 timesteps of size ∆t = 0.01tc, and took place on a periodic domain.
The analytical steady-state solution in eq.(5.28), the numerical solution of eq.(5.29),
and the (smoothed as in Fig.(5.6b)) distribution obtained from stochastic simulations
are plotted for comparison (Fig.(5.11b)). (b) Representative cargo track from the
molecular dynamics simulations neglecting binding dynamics, showing the cargo
getting trapped at the centre of multiple periodic domains (alternating dashed lines)
due to the effects of the effective velocity distribution.

the binding and unbinding rate distributions in the range xc(t)− L ≤ x ≤ xc(t) + L.

As a result of this, the stochastic integrals in the following derivation will be solved

using the Itô convention (see section 2.3.1) [159–161].

Neglecting the effects of periodic boundary conditions, this means that the

generalised Langevin equation from eq.(5.16) can be rewritten to have the same form

as eq.(2.9) (with dx(x(t)) = x(t+ dt)−x(t)). Combining the results of eq.(2.12, 2.13,

2.16 & 2.17), it can be shown that in order to reproduce the Fokker-Planck equation

in eq.(5.24) by inspection, the required terms are,

f(x(t)) = Veff (x(t)) +
∂Deff (x)

∂x

∣∣∣∣
x(t)

= S
(1)
δ (x(t)), (5.36)

g(x(t)) =
√

2Deff (x(t)), (5.37)

where S
(1)
δ (x(t)) was defined in eq.(5.25). Molecular dynamics simulations were

carried out using eq.(2.9, 5.36 & 5.37) as described in the methods section 3.4.5,

with the aim of understanding the dynamics of individual cargo once bound.

Molecular dynamics simulations of 4-legged cargo have been carried out using
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the effective velocity and diffusivity distributions shown in Fig.(5.11) (local values

and derivatives were approximated using a cubic spline fit to the local region (local

position ±10 grid points)), with results shown in Fig.(5.13). Although the individual

cargo track in Fig.(5.13b) shows it getting trapped in regions of increased kon(x)

(eq.(5.11)) on a periodic domain, the PDF Pt(x) for the cargo cannot reproduce the

numerical solution of eq.(5.29) since the effects of binding dynamics are not included

in eq.(2.9, 5.36 & 5.37). Binding dynamics were added to the molecular dynamics

simulations by randomising the position of the cargo on the periodic domain with

probability dt/T1,N , where T1,N was calculated by substituting the binding and

unbinding rates defined in eq.(5.11) into eq.(5.2). The results of these simulations in

Fig.(5.13a) show much better agreement with the results of the stochastic simulation

and the numerical solution of eq.(5.29).

The Langevin equation defined from eq.(2.9, 5.36 & 5.37) can be used to

investigate the conditions required for the tip tracking transport of cargo. Cargo must

remain stationary in the rest frame of the growing microtubule end in order to tip

track, which requires that the average displacement 〈x(t+ dt)− x(t)〉 = 〈δx(t)〉 = 0

for a short increment of time dt when averaged over noise realisations. Evaluating

the average displacement yields the equation,

〈δx(t)〉 = S
(1)
δ (x(t)) dt+ 〈N (0, 2Deff (x(t)) dt)〉 = S

(1)
δ (x(t)) dt, (5.38)

which is purely deterministic. Since Pn(x) ≥ 0 ∀x and km(x|n) ≥ 0 ∀x, n,m,

〈δx(t)〉 = 0 as a result of a change in sign of at least one of the mean displacements

per event δ
(1)
m (x|n).

When considering the motion of individual cargo that cannot interact with

other cargo bound to the microtubule, the position where 〈δx(t)〉 = 0 defined in

eq.(5.38) cannot depend on the distribution of the cargo population (Pt(x)). Similarly,

eq.(5.38) cannot depend on Deff (x(t)) when using the Itô convention for stochastic

integrals, since its average effect on cargo motion is zero. As discussed in section

5.3.2, this means that the position where 〈δx(t)〉 = 0 will not necessarily coincide

with the maximum of Pt(x) when the binding dynamics of the cargo are position

dependent.

Perturbing the position of cargo by the small displacement dx shifts the result

of eq.(5.38) to S
(1)
δ (x(t) + dx) dt. In order to locate a stable fixed point of cargo

motion, this places the additional constraints that S
(1)
δ (x(t) + dx) < 0 if dx > 0 and

S
(1)
δ (x(t) + dx) > 0 if dx < 0, or that,
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∂S
(1)
δ (x(t))

∂x
< 0. (5.39)

The constraint in eq.(5.39) is necessary to ensure that small perturbations in position

result in cargo returning to the stable fixed point. This constraint also agrees with

the result of eq.(5.28), which states that a maximum in Pss(x) occurs for a system

without binding dynamics at the position where S
(1)
δ (x) = 0 and ∂S

(1)
δ (x)/∂x < 0.

It was shown in Fig.(5.11c) that eq.(5.28) can describe the solution of eq.(5.29) for

cargo that exhibit very large dwell times (or on timescales t� T1,N , where t is long

enough to allow the cargo to adequately sample the space), hence it is expected that

the maximum of eq.(5.28) coincides with the stable fixed point of the cargo motion.

In order to predict when tip tracking can occur, it is of interest to derive how

the position where 〈δx(t)〉 = 0 defined in eq.(5.38) varies as a function of an applied

net velocity. Introducing an applied net velocity does not explicitly change the forms

of eq.(5.38 & 5.39), but requires the introduction of k3(x|n) = kMT = |vEBMT |/∆x
and q3(xJ |x, n) = δ(xJ − (2θ(vEBMT )− 1)∆x) (M = 3, δ

(1)
3 = (2θ(vEBMT )− 1)∆x, and

δ
(2)
3 = ∆x2) as described in section 5.3.1. For there to exist a stable fixed point in

this case, there must be a position where the average displacement of individual

cargo in a time dt that arises due to the position dependence of their binding and

unbinding rates is equal in magnitude to their average displacement due to the

applied net velocity, but acts in the opposite direction. Re-arranging eq.(5.38) it can

be shown that this defines the condition,

N∑
n=1

[
Pn(x(t))

(
k1(x(t)|n) δ

(1)
1 (x(t)|n) + k2(x(t)|n) δ

(1)
2 (x(t)|n)

)]
= −vEBMT . (5.40)

In order to generate tip tracking transport, eq.(5.40) predicts that it is

necessary for cargo legs (or EBs) to bind only transiently to microtubules. Since

it has been implicitly shown in Fig.(5.3b & 5.8b) that δ
(1)
1 (x(t)|n) and δ

(1)
2 (x(t)|n)

decrease as 〈n〉(x) increases, a large value of the ratio k2(x(t)|n)/k1(x(t)|n) is required

to maintain a small value of 〈n〉(x) by skewing Pn(x) towards small values of n (see

eq.(5.6)). This means that although increasing k1(x(t)|n) would increase the effective

velocity defined in eq.(5.25), k2(x(t)|n) would also need to be increased to ensure

that 〈n〉(x) remained small. For these reasons, cargo legs (or EBs) must exhibit

comparatively large unbinding rates k2(x(t)|n) to achieve tip tracking transport.

The bifurcation diagram in Fig.(5.14a) shows the positions of the stable and

unstable fixed points for 4-legged cargo that exhibit the binding and unbinding rates

defined in eq.(5.11). For comparison, the corresponding distributions of S
(1)
δ (x) have
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(a) (b)

Figure 5.14: Bifurcation analysis — (a) Bifurcation diagram showing positions
corresponding to the stable and unstable fixed points for cargo dynamics that
obey eq.(5.25, 5.26 & 5.29) (100 000 cargo simulated for each condition, errors

approximated as ∆x/2). Fixed points occur when S
(1)
δ (x) = 0. (b) Distributions of

S
(1)
δ (x) for different values of vEBMT showing shifts in the x-intercepts that correspond

to fixed points of the cargo motion (distributions were smoothed as in Fig.(5.6b)
over a distance of 43 grid points and errors have been omitted for clarity). The
y-intercepts of the distributions indicate the value of vEBMT used in simulations.

been plotted in Fig.(5.14b). Separate simulations were used to obtain the positions

of each fixed point in Fig.(5.14a), but these positions could have been derived by

adding different values of vEBMT to the distribution of S
(1)
δ (x) calculated using only

binding and unbinding events (vEBMT = 0, M = 2).

It can be observed in Fig.(5.14a) that the stable fixed points are those located

closest to the region with increased kon(x) for all values of vEBMT . Since S
(1)
δ (x) acts

in the direction of increasing kon(x) (cargo exhibit S
(1)
δ (x)− vEBMT < 0 when kon(x) is

decreasing), the fixed points that arise when vEBMT ≷ 0 occur at positions xfp ≷ 0. Of

the two fixed points corresponding to a given value of vEBMT , only the fixed point closer

to the region of increased kon(x) will satisfy both eq.(5.39 & 5.40). The fixed point

further from the region of increased kon(x) will satisfy eq.(5.40) but not eq.(5.39).

This method of defining the stable fixed points for cargo was used to derive the

positions of the stable fixed points in Fig.(5.9). The representative cargo tracks in

Fig.(5.9c,d) show that cargo with moderate values of n spend the majority of their

time at the stable fixed point (the unstable fixed point is never occupied due to it

being outside the boundary for escape).

5.4 Conclusion

In this chapter the continuum-level motion of N -legged cargo has been analysed by

comparing the results of stochastic simulations to analytical formulae describing a
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jump-diffusion system. It has been shown that N -legged cargo exhibit an effective

velocity and diffusivity as a result of position dependence in the transient binding

and unbinding rates of their legs. This effective velocity and diffusivity generate a

net flux of cargo towards regions of increased binding rate, and have forms that are

coupled to the form of the binding rate distribution. In order for individual cargo to

tip track, it has been shown that there must be a position where the component of

the effective velocity due to the mean displacement of the cargo is zero in the rest

frame of the growing end of the microtubule. Since the derived form for the effective

velocity increases as a function of the binding and unbinding rates of cargo legs, the

transient binding dynamics of EBs to microtubules are expected to enhance the tip

tracking capabilities of cargo.

5.4.1 Further Work

It is of interest to study how the dynamics of the cargo legs bound to the cargo affect

the effective velocity and diffusivity generated by the cargo. The model described

in section 5.1 assumes that cargo legs can rebind at any position within the range

xc(t)− L ≤ xnewl ≤ xc(t) + L at any time after they unbind from the microtubule,

but it is likely that the rebinding positions of cargo legs depend on where the leg is

located on the cargo. Allowing the cargo legs to diffuse on the surface of the cargo

with a position independent diffusivity results in a Gaussian distribution (constrained

by the size of the cargo) describing the positions on the microtubule to which the

legs can bind after a finite time. The assumptions used in this work are equivalent

to setting this diffusivity Dleg →∞. Limiting this diffusivity is likely to limit the

effective velocity exhibited by the cargo, and should be investigated in future work.

It is possible to rewrite eq.(5.28) to be of the form,

Pss(x) = Z e

∫ x( Veff (x
′)

Deff (x
′)

)
dx′

= Z e
− V(x)
kBT , (5.41)

where V(x) is an effective potential that encapsulates the effects of the binding and

unbinding dynamics of the cargo, and kBT is the energy associated with thermal

fluctuations. This effective potential can be used to parameterise the motion of cargo

once bound to the microtubule, and can be used instead of the effective velocity

and diffusivity in molecular dynamics simulations (see section 5.3.3). Although

not studied in this work, the effective potential may be a more general method

for parameterising the motion of cargo bound to microtubules. For example, the

effective potential could be used to approximate the average rate cargo escape from

the stable fixed point of their motion using Kramers escape theorem [168]. This

could lead to an analytical derivation of Fig.(5.8b).
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The effects of adding cargo-EB interactions to the cargo simulations and the

response of cargo to competition or external forces will be discussed in section 7.3

and chapter 8 (respectively).
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Chapter 6

Discrete Modelling of Cargo

Motion

In the previous chapter a framework for analysing the continuum-level motion of cargo

bound to microtubules was established. In particular, it was shown that a Fokker-

Planck equation with effective velocity and diffusivity terms was able to replicate

the cargo probability distributions obtained using stochastic cargo simulations (see

section 5.3.1). Since the effective velocity and diffusivity govern the tip tracking

capabilities of cargo (see section 5.3.3), it is of interest whether they can be calculated

without requiring potentially lengthy simulations. In this chapter, a discrete method

for calculating the effective velocity and diffusivity of cargo will be derived, which

generates results in agreement with those found using the continuum-level analysis

in chapter 5. This discrete analysis can be used to obtain simplified formulae that

relate the binding rate distribution and effective velocity and diffusivity of cargo.

6.1 Discrete Calculation of the Effective Velocity and

Diffusivity

It was derived in eq.(5.25 & 5.26) that the effective velocity and diffusivity of bound

cargo are functions of the first and second moments of the cargo displacement

distribution for each type of event that can result in the displacement of the cargo

(for example the binding or unbinding of individual cargo legs). An analytical

approximation for the forms of these moments δ
(i)
m (x|n) can be derived by considering

how the position of the centre of mass (COM) xcm(t) of a cargo moves as a result of

each type of event. As discussed in section 5.1, tracking the COM of cargo can lead

to unphysical leg configurations, but defining the centre of the cargo in this way is

necessary in order to further simplify the description of cargo motion. Discussions
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about when this simplification is valid can be found in section 6.3.

When tracking the COM of cargo, the ith moment of the cargo displacement

distribution corresponding to binding (m = 1) or unbinding (m = 2) events can be

defined as,

δ(i)
m (xcm|n) =

〈[(
nxcm + ∆m xl

n+ ∆m

)
− xcm

]i〉

=

(
1

n+ ∆m

)i
xcm+L∫
xcm−L

(
[∆m(x− xcm)]i km(x)

)
dx

xcm+L∫
xcm−L

km(x) dx

 ,

(6.1)

where xl is the stochastic position of the next binding or unbinding event, ∆m =

δm,1 − δm,2, δi,j is the Kronecker delta function (δi,j = 1 if i = j and δi,j = 0

otherwise), and km(x) is the position dependent rate of the mth type of event for an

individual cargo leg (for example k1(x) = kon(x) and k2(x) = koff (x)). As defined

in chapter 5, n is the number of legs the cargo currently has bound out of a possible

N . Comparing eq.(6.1) to the definition of δ
(i)
m (x|n) following eq.(5.25 & 5.26) shows

that the jump resulting from binding or unbinding a leg at position xm is equal

to xJ = (∆m(xm − xcm))/(n+ ∆m), since unbinding a leg at a position xm > xcm

results in a cargo displacement in the negative direction. The probability of this

jump occurring is qm(xJ |xcm, n) = km(xcm + xm|n)/
∫ xcm+L
xcm−L km(x|n) dx, assuming

that xcm − L ≤ xm ≤ xcm. Since eq.(6.1) can only be used to calculate δ
(i)
m (xcm|n)

for events that change the number of bound legs of the cargo (for m 6= 1, 2, ∆m = 0

and δ
(i)
m (xcm|n) = 0), the ith moment of the cargo displacement distribution due to

an applied net velocity (m = 3) must be defined separately as δ
(i)
3 (xcm|n) = (∆x)i,

assuming that ∆x is the constant distance moved per event of this type.

The position dependent rate of the mth type of event as a function of the

number of legs bound to the microtubule can be defined as,

km(xcm|n) =

(
(N − n)δm,1 + n δm,2 + δm,3

2L

) xcm+L∫
xcm−L

km(x) dx, (6.2)

where it has been assumed that cargo legs bind non-competitively and non-cooperatively.

Defining k3(x) = kMT means that eq.(6.2) generates the correct rate of km(xcm|n) =

kMT , since the motion of the cargo resulting from the applied net velocity is in-

dependent of n. Using eq.(6.1 & 6.2), the effective velocity and diffusivity can be
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(a) (b)

Figure 6.1: Discrete effective cargo dynamics — Position dependent distribu-
tions of the (a) effective velocity, and (b) effective diffusivity for 4-legged cargo,
calculated by substituting the discrete formulae eq.(6.1 & 6.2) into eq.(5.25 & 5.26).
The values of kon(x) and koff used for these calculations are defined in eq.(5.11),
and the distribution Pn(x) is calculated using the renormalised version of eq.(2.23).
These distributions are purely analytical and do not have associated errors.

calculated using eq.(5.25 & 5.26), with results shown in Fig.(6.1). Since there is

no simple analytical formula for the derivative of the effective diffusivity defined in

eq.(5.26), a cubic spline interpolation has been used to estimate its derivative at

each position. The renormalised version of eq.(2.23) with the position dependent

rates km(x) has been used as an approximation for Pn(xcm) (see section 6.1.2 for

the derivation of an exact distribution).

Although the Veff (x) distribution obtained using this discrete analysis has

a similar magnitude to that obtained using simulations (compare Fig.(6.1a) to

Fig.(5.11a)), the Deff (x) distribution is roughly a factor of two larger and lacks

the peak in the centre of the region of increased kon(x) (compare Fig.(6.1b) to

Fig.(5.11a)). These errors are the result of over-simplifying the discrete analysis of

cargo motion in eq.(6.1 & 6.2), and will be corrected in the following subsections.

6.1.1 Deriving the Bound Leg Distribution

In simulations, the total rate of an unbinding event occurring when n of a cargo’s

legs are bound to the microtubule is
∑n

l=1 koff (xl), where xl is the position of the

lth bound leg. It is important to store the positions {xl} at each time, as they will

govern the displacement the cargo exhibits if the lth leg unbinds (see Fig.(5.1b)).

In order to include this behaviour in the discrete calculation of k2(xcm|n)

in eq.(6.2) (m = 2 for unbinding events), the bound leg distribution PNl (x|xcm, n)

can be used to describe the probability of a cargo leg being found at the pos-

ition x when the centre of the cargo is at the position xcm and it has n legs

bound. This will modify the rate k2(x) → k2(x)PNl (x|xcm, n) in eq.(6.2), assum-
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ing that
∫ xcm+L
xcm−L P

N
l (x|xcm, n)dx = 1 ∀xcm, n. This modifies the probability of a

jump occurring due to an unbinding event q2(−(xm − xcm)/(n − 1)|xcm, n) →
(k2(xcm + xm|n)PNl (xcm + xm|xcm, n))/

∫ xcm+L
xcm−L (k2(x|n)PNl (x|xcm, n)) dx, where

xJ = −(xm − xcm)/(n − 1) is the jump that occurs due to an unbinding event

at position xm since the relationship between the position of an unbinding event and

the resulting cargo displacement is linear when tracking xcm(t). Only the unbinding

rate needs to be modified in this way since only xcm influences the positions of future

binding events (m = 1), and kMT is a constant (m = 3).

It is non-trivial to derive analytical forms for PNl (x|xcm, n) for arbitrary values

of xcm, n, and N , as the distribution PNl (x|xcm, n) requires information about the

distribution PNl (x|xcm, n± 1). The boundary condition PNl (x|xcm, 1) = δ(x− xcm)

is necessary to correctly define the centre of a cargo. For the simplest non-trivial

case of cargo with N = 2, the bound leg distribution can be defined as,

P 2
l (x|xcm, 1) = δ(x− xcm),

P 2
l (x|xcm, 2) =

kon(x)
(
θ
(
x−

(
xcm − L

2

))
− θ

(
x−

(
xcm + L

2

)))
xcm+L∫
xcm−L

kon(x) dx

. (6.3)

where θ(x) is the heaviside step function. In the case where the binding rate

distribution is uniform, eq.(6.3) becomes a step function, which agrees with the

results of simulations. Analytical formulae of the bound leg distributions for cargo

with N > 2 are much more difficult to derive, as transitions between states with

n > 1 mean that the distributions no longer exhibit the sharp boundaries set by the

heaviside step functions in eq.(6.3). For example, an unbinding event when n = 3

can result in a state where the two remaining bound legs are separated by a distance

greater than L, which is not possible for cargo with N = 2 according to eq.(6.3).

Using the assumption that PNl (x|xcm, n) = PNl (x|xc, n), which is expected

to be true in the limit n→∞, the bound leg distribution can be found using the

simulations described in section 5.2. In this case, PNl (x|xc, n) was defined as the

normalised probability of finding a cargo leg at the position x when the cargo has

n legs bound and is centred at the position xc. Example bound leg distributions

obtained from simulations with position independent binding and unbinding rates

are shown in Fig.(6.2a). The distribution PNl (x|xc, n) was then fitted using the

function,
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FNl (x|xc, n) =

(
4

1 + e(bn(xc) (x−xc))6

)
[an(xc) + fn(xc)tanh(8(x− xc)− σn(xc))

+ gn(xc)tanh(−8(x− xc)− σn(xc))],

(6.4)

where an(xc), bn(xc), fn(xc), gn(xc), and σn(xc) are fitting parameters. The fitting

function FNl (x|xc, n) consists of three terms: an envelope with magnitude an(xc)

and width governed by bn(xc) (of the same form as kon(x) defined in eq.(5.11)), and

two tanh function terms with magnitudes fn(xc) and gn(xc) and width governed by

σn(xc). The envelope term ensures that FNl (x|xc, n)→ 0 as x→ ±L ∀xc, n.

In the case of position independent binding and unbinding rates, the fitting

parameters defined in eq.(6.4) are also position independent. In order to increase the

accuracy of the bound leg distributions obtained using simulations, this means that it

is possible to average over the distributions measured at any of the available positions

for xc. Therefore, the distribution PNl (x|n) = [
∑xc=h

xc=−h P
N
l (xc + x|xc, n)]/(2h+ 1)

can be used to describe the position independent bound leg distribution, where h

is the width of the simulated periodic domain and it can be assumed without loss

of generality that xc = 0 for all cargo at all times. In this case, it was found that

eq.(6.4) could be simplified to the form,

FNl (x|n) = an

(
4

1 + e(bn (x−xc))6

)(
3 +

(
tanh(8x− σn) + tanh(−8x− σn)

2

))
,

(6.5)

since PNl (x|n) must be symmetric (fn = gn). The fitting function defined in eq.(6.5)

has proved to be a good fit to all sampled distributions, with one example shown in

Fig(6.2a).

As n increases, the bound leg distributions in Fig.(6.2a) become less centred

around x = 0 and more uniform. For cargo that are defined by the centre of the

range of their bound legs, this means that binding events that occur at positions

far from xc(t) are less likely to cause displacement of the cargo as n increases. It is

this behaviour coupled with the unbinding dynamics of the cargo that give rise to

the distinct short and long time diffusivities observed in Fig.(5.3). For cargo that

are defined by the COM of their bound legs, eq.(6.1) predicts that the displacement

generated by a binding or unbinding event will decrease ∝ 1/(n+ ∆m), but will not

decay to zero even for large n (unless xl = xcm(t), where xl is the position of the

binding or unbinding event). Although Fig.(6.2a) shows that the average distance of

an unbinding event from the cargo centre
∫ xc+L

0 ((x− xc)PNl (x|xc, n)) dx increases

as a function of n, this factor of 1/(n− 1) for unbinding events (m = 2) means that
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(a)

(b)

(c) (d)

(e) (f)

Figure 6.2: Derivation of the bound leg distribution — (a) Fits using eq.(6.5)
(green) to the bound leg distributions for 10-legged cargo obtained from simulations
with position independent binding and unbinding rates (red, 10 000 simulated).
Observable error bars for simulated data are mostly limited by size of plot markers,
error in fit is not shown for clarity, but is quantified in (b-e). (b) Evolution of the
fitting parameters obtained from (a). Parameters bn and σn are fitted by the equation
j(1− exp(−l n)) + l. (c) Parameter an is best fit by a pair of straight lines that cross
at n = 5. (d) Evolution of the an distribution for N -legged cargo tends towards a
pair of straight lines. (e) The evolution of all fitting parameter distributions does not
vary significantly with increasing N (key for (d,e) is in (d)). Errors in (d,e) excluded
for clarity. (f) Comparison between the values of the effective diffusivity obtained
using different methods. Including the effects of the bound leg distribution increases
the agreement with the distribution obtained from simulations.
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cargo in states with small n still exhibit greater values of δ
(i)
m (xcm|n). The fact that

δ
(i)
m (xcm|n) does not decay to zero for large n when tracking xcm(t) means that the

results of the discrete analysis in eq.(6.1 & 6.2) are expected to diverge from the

results of simulations tracking xc(t) as N becomes large.

If the evolution of an, bn, and σn could be derived as a function of n and N

for cargo that exhibit position independent binding dynamics, then PNl (x|n) could

be calculated for these cargo without the need for further simulations. Similarly,

extrapolation of the results of this analysis could be used to study the motion of

cargo with large N that cannot be probed efficiently using simulations. The evolution

of an, bn, and σn as a function of n for cargo with N = 10 is shown in Fig.(6.2b,c).

While the evolution of the parameters bn and σn is best fit by a decaying exponential

of the form f1(1− exp(−f2 n)) + f3 (where fi are fitting parameters), the evolution

of the parameter an is best fit by a pair of linear equations that intersect at n = 5.

Plotting the evolution of an as a function of N shows that it tends towards the form

of two intersecting lines from a smoother curved distribution (Fig.(6.2d)), but the

reason for this is not known. It can be assumed from Fig.(6.2d) that this form of

an is valid for N ≥ 10. In contrast, Fig.(6.2e) shows that the fits describing the

evolution of bn and σn as a function n do not appear to change as a function of N .

The diffusivity calculated using eq.(6.1, 6.2 & 6.5) is in much better agreement

with the long time diffusivity obtained from simulations for cargo with N ≤ 10, as

shown in Fig.(6.2f). The difference between the values of Deff calculated using

this discrete method and those obtained from simulations appears to increase as

N increases, which is most likely due to the fact that δ
(i)
m (xcm|n) does not decay

to zero for large n when tracking xcm(t), but it is expected to when tracking

xc(t). The values of Deff calculated with and without the inclusion of PNl (x|n)

converge as N becomes large. This is due to 〈n〉 increasing with increasing N , and

PNl (x|n)→ θ(x−(xcm−(L/2)))−θ(x−(xcm+(L/2))) for large n. Since the average

dwell time of cargo increases approximately polynomially for large N according to

Fig.(5.2a), and the diffusivity distribution in Fig.(6.2f) decays slower than this, the

average distance cargo will move along microtubules whilst bound 2DeffT1,N will be

a monotonically increasing function of N .

6.1.2 Correcting the Probability of Having n Legs Bound

The distribution Pn(x) defined using the renormalised version of eq.(2.23) has been

used so far to calculate Veff (x) and Deff (x) distributions using eq.(6.1, 6.2 & 6.5).

However, the distribution defined in eq.(2.23) assumes that there is an n = 0 state

from which the cargo can rebind to the microtubule with rate N k0,1. This allows

the system to reach a steady-state value of 〈n〉 that is skewed towards smaller values
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(a) (b)

Figure 6.3: Correction of the discrete cargo diffusivity — (a) Comparing
the average number of bound legs 〈n〉(t) for 4-legged cargo (calculated using four
different methods) to the result of simulations (100 000 simulated). The corrected
bound leg distribution P cn(t) agrees with the results of simulations. (b) The effective
diffusivity calculated using the bound leg distribution PNl (x|n) and the corrected
bound leg distribution P cn(t) agrees with the long time diffusivity obtained using
simulations, but they begin to diverge as N becomes large. The effective diffusivity
calculated using the fit parameters defined in eq.(6.5) agrees only qualitatively.

of n. In order to fully reproduce the long time diffusivity obtaing using simulations,

the time-dependent distribution Pn(x, t) must be calculated in a way that does not

allow cargo rebinding.

The probability distribution Pn(x, t) describing the probability of cargo having

n legs bound at position x after being bound for a time t can be calculated by

substituting the rate matrix defined in eq.(5.1) into eq.(4.8). The time-dependence

of Pn(x, t) is the result of cargo unbinding and being lost from the system, and cargo

initially binding in the n = 1 state, which cannot correspond to the average value

exhibited by a population of cargo with N > 1 while bound (for kon(x) > 0). A

comparison between the value of 〈n〉(t) calculated using this method and the values

predicted using eq.(2.23) is shown in Fig.(6.3a) for 4-legged cargo that exhibit position

independent binding dynamics. In order to consider only the cargo that remain

bound in the calculation of Pn(t), the distribution must be normalised such that

P cn(t) = Pn(t)/
∑N

n=1 Pn(t). This ensures that P cn(t) does not get skewed towards

smaller values of n by including unbound cargo (n = 0) in its calculation.

The distributions Pn(t) and P cn(t) generate 〈n〉(t) distributions that agree

with those obtained using stochastic simulations (Fig.(6.3a)). In contrast, the steady

state values of 〈n〉 found using eq.(2.23) cannot replicate the early time behaviour

of the cargo system and incorrectly predict the value of 〈n〉 observed at long times.

This means that the Pn distribution found using eq.(2.23) cannot be used to derive
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the short time diffusivity of cargo, as it does not take into account quickly unbinding

cargo that exhibit a Pn distribution skewed towards smaller values of n for the whole

time they are bound (see section 5.2.1). For this reason, it is expected that the short

time diffusivity of cargo can be approximated using the equation,

Deff (x) '

∞∫
0

(
τ(t)

t∫
0

(
N∑
n=1

[
P cn(x, t′)

M∑
m=1

(
km(x|n) δ

(2)
m (x|n)

)])
dt′
)
dt

2
∞∫
0

(τ(t) t) dt

, (6.6)

where τ(t) is the dwell time distribution of the cargo.

The best estimate of the long time diffusivity obtained using PNl (x|n) and

P cn(t) has been plotted in Fig.(6.3b), and is in good agreement with the results of

simulations. The values of the effective diffusivity derived using PNl (x|n) with Pn

are shown in Fig.(6.2f), and indicate that Pn is a reasonable approximation for P cn(t)

when calculating the long time diffusivity for relatively large N . Since the evolution

of the fit parameters defined in eq.(6.5) was derived using PNl (x|n) for 10-legged

cargo, this approximation is not valid for small values of N where it has been shown

that the fitting parameter an exhibits different behaviour (Fig.(6.2d)). The matrix

algebra required to derive P cn(t) becomes computationally expensive for large N , and

P cn(t) must be calculated on a case-by-case basis for different values of kon,off , so

the renormalised version of eq.(2.23) can offer a simpler method to approximate the

long time cargo diffusivity when N is large. Similarly, since the rescue rate defined

in eq.(5.4) increases with increasing N , the distribution defined in eq.(2.23) tends

towards its renormalised distribution as N becomes large. This means that the Pn

distribution defined in eq.(2.23) can be used to calculate approximate dynamics for

cargo with large N .

While P cn(x, t) varies as a function of kon,off (x) even if they are position

independent, it has been shown in Fig.(6.4a) that the bound leg distribution PNl (x|n)

is invariant under changes in position independent values of kon,off . This is the

result of the bound leg distribution being dependent on the probability of a binding

or unbinding event occurring at a given position, but not on the length of time a

cargo leg spends at a given position. Using this result simplifies the calculation

of the long time diffusivity as a function of N and kon,off , such that the number

of cargo legs that maximises Deff for a given pair of kon,off can be calculated, as

shown in Fig.(6.4b). The values of Deff for cargo with large N were calculated by

extrapolating the values of an, bn, and σn obtained by fitting N ≤ 10-legged cargo

(Fig.(6.2b-f)), and Pn was used as a resonable approximation for P cn(x, t). The fact
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(a)

(b)

Figure 6.4: Optimisation of the discrete cargo diffusivity — (a) Comparison
between the bound leg distributions PNl (x|n) exhibited by cargo with L = 1 and
kon/koff = 1 (red, 10 000 10-legged cargo, Fig.(6.2b)), with L = 1 and kon/koff = 0.5
(blue, 50 000 10-legged cargo), and with L = 0.5 and kon/koff = 1 (green, 10 000
10-legged cargo). The distribution PNl (x|n) is the same for all systems where
the rates kon,off are position independent (after rescaling with L). Due to the
lower average dwell time for the system with the larger value of koff , the bound
leg distributions for large n exhibit more noise in this case. (b) Number of legs
NDmax that generate the maximum effective diffusivity using eq.(6.1, 6.2 & 6.4) as a
function of the ratio kon/koff decays approximately linearly in log-log space (the line
ln(NDmax) = 0.8− 0.95 ln(kon/koff ) has been plotted for comparison (red, dashed)).
Different colours indicate different (arbitrary) values of kon used during analysis.

that the number of cargo legs that maximises Deff for kon/koff = 1 in Fig.(6.4b) is

approximately equal to the value obtained using stochastic simulations in Fig.(5.3b)

supports the validity of this approach.

Fig.(6.4b) indicates that the number of legs that result in a maximal value

of the long time diffusivity increases with increasing koff for a given value of kon.

Since the distributions in Fig.(6.4) decay approximately linearly with increasing

kon/koff in log-log space, it can be inferred that NDmax = α(kon/koff )β , where α, β

are constants that can be found by fitting. Increasing koff results in a smaller value

of 〈n〉 according to eq.(5.6), which leads to larger average displacements per binding

or unbinding event and a larger diffusivity. Increasing the number of legs of the

cargo increases the total rate of binding or unbinding events occurring (see section

5.2.1), but also acts to increase 〈n〉. Therefore, the number of legs that result in a

maximal value of the long time diffusivity increases with increasing koff such that

the total rate of events is maximal subject to the constraint that 〈n〉 remains small.

Although not part of this analysis, increasing N will also counteract the decrease in

the average dwell time of the cargo that results from increasing koff .
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6.1.3 Studying the Position Dependent Bound Leg Distribution

The Veff (x) and Deff (x) distributions shown in Fig.(6.1) were not calculated using

the bound leg distribution PNl (x|xcm, n), and so cannot reproduce the distributions

obtained from simulations (Fig.(5.11a)). For cargo that exhibit position dependent

binding and unbinding rates PNl (x|xcm, n) can be asymmetric, such that fn(xcm) 6=
gn(xcm) after fitting the distribution using eq.(6.4). An asymmetric increase in

PNl (x|xcm, n) at positions x > xcm could be the result of either an increased kon(x)

at positions x > xcm, or an increased koff (x) at positions x < xcm. This asymmetric

increase will increase the total unbinding rate k2(x)PNl (x|xcm,n) at this position,

since there is a higher probability of an unbinding leg being at that position. Example

bound leg distributions obtained from simulations (PNl (x|xc, n)) using the position

dependent binding and unbinding rates defined in eq.(5.11) have been plotted in

Fig.(6.5a) alongside their fits obtained using eq.(6.4).

The asymmetry in the bound leg distribution at each position can be quantified

by the difference fn(xc)− gn(xc), which has been plotted for different values of n in

Fig.(6.5b). By definition only PNl (x|xc, n > 2) can be asymmetric, and Fig.(6.5b)

shows that the distributions of fn(xc)− gn(xc) for n > 2 have similar forms to that

of Veff (x) in Fig.(5.11a). These forms arise as a result of variations in kon(x), since

an increasing kon(x) will skew PNl (x|xc, n > 2) towards the positive x direction

(fn(xc) − gn(xc) > 0) and a decreasing kon(x) will skew PNl (x|xc, n > 2) towards

the negative x direction (fn(xc) − gn(xc) < 0). A constant value of kon(x) within

the range xc(t)− L ≤ x ≤ xc(t) + L results in a symmetric PNl (x|xc, n) distribution

where fn(xc) = gn(xc), as can be observed in Fig.(6.5b). Both the forms of Veff (x)

and fn(xc)− gn(xc) are the direct result of the form of kon(x).

For cargo that exhibit a position independent unbinding rate, the ith moment

of the displacement distribution due to an unbinding event (m = 2) can be defined

using eq.(6.1) as,

δ
(i)
2 (xcm|n) =

(
1

n− 1

)i xcm+L∫
xcm−L

(
(xcm − x)iPNl (x|xcm, n)

)
dx, (6.7)

such that all of the position dependence in δ
(i)
2 (xcm|n) arises due to the position

dependence of PNl (x|xcm, n). This formula assumes that it is possible to derive the dis-

tribution PNl (x|xcm, n), but the distribution obtained from simulations (PNl (x|xc, n))

and the corresponding fit parameters (an(xc), bn(xc), fn(xc), gn(xc), and σn(xc))

will be used when calculating quantitative results. The integral in eq.(6.7) can be

simplified by defining,
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(a)

(b)

(d)(c)

Figure 6.5: Position dependent bound leg distributions — (a) Fits using
eq.(6.4) (green) to the bound leg distributions for 4-legged cargo of size L = 1
obtained from simulations with the position dependent binding rate distribution
defined in eq.(5.11) (red, 250 000 simulated). Distributions near to significant changes
in kon(x) (x/lc . 1, Fig.(5.6a)) are skewed in the direction of increasing kon(x). (b)
The difference fn(xc)− gn(xc) of the fit parameters defined in eq.(6.4) that governs
the asymmetry of the bound leg distribution. (c) Components of the effective velocity
distribution due to binding events, unbinding events, or position dependence in the
effective diffusivity. The analytical approximation for the contribution of unbinding
events to Veff (x) was calculated using eq.(6.10). (d) The position dependent effective
diffusivity distribution derived using eq.(5.26, 6.1, 6.2 & 6.4).

φn(xcm) =
fn(xcm) + gn(xcm)

2
, εn(xcm) =

fn(xcm)− gn(xcm)

2
, (6.8)

which represent the average of the fit parameters fn(xcm) and gn(xcm) (the symmetric

component), and the difference between them (the asymmetric component propor-

tional to the distributions in Fig.(6.5b)), respectively. Substituting the variables

defined in eq.(6.8) into eq.(6.4 & 6.7) generates two integrals over even functions

(corresponding to the an and φn terms), which integrate to zero for odd values of i,

and an integral over an odd function (corresponding to the εn terms).

The result of substituting eq.(6.8) into eq.(6.7) can be further simplified using
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the approximation,

4

1 + e(bn(xcm) (x−xcm))6
' 2 (θ(x− (xcm − L))− θ(x− (xcm + L))) , (6.9)

where θ(x) is the heaviside step function. This approximation is useful for calculating

an upper bound on the effects of unbinding on the effective velocity, and is expected

to be valid in the limit of large n where PNl (x|xcm, n) tends towards a step function

(Fig.(6.2b,e)). Similarly, it can be derived from the exponential fit in Fig.(6.2b,e)

that σn(xc) ' 5 in this limit. These assumptions have been inferred from the forms

of PNl (x|xc, n) obtained using simulations, and it is not known whether the bound

leg distributions obtained when tracking xcm(t) will exhibit the same behaviour.

Substituting the definitions from eq.(6.8 & 6.9) into eq.(6.7) generates a mean

displacement due to unbinding events equal to,

δ
(1)
2 (xcm|n) = −2 εn(xcm) In(xcm)

n− 1
, (6.10)

where In(xcm) =
∫ +L
−L (y(tanh(8y−σn(xcm))− tanh(−8y−σn(xcm))))dy ≥ 0 ∀n, xcm.

The result of eq.(6.10) for 4-legged cargo has been plotted alongside the different

components of the effective velocity distribution calculated using eq.(5.25, 6.1, 6.2

& 6.4) in Fig.(6.5c). This result generates a Veff (x) distribution that peaks at the

positions where |dkon(x)/dx| is approximately maximal (where Veff (x) calculated by

substituting eq.(6.1 & 6.2) into eq.(5.25 & 5.26) peaks), but that acts in the opposite

direction of the effective velocity generated due to binding events at these positions,

in agreement with the distribution calculated without making any assumptions

described above.

At positions where dkon(x)/dx > 0, εn(xcm) > 0 since fn(xcm) > gn(xcm), and

the mean displacement due to unbinding events defined in eq.(6.10) δ
(1)
2 (xcm|n) < 0.

This is the result of legs preferentially unbinding from positions x > xcm compared to

positions x < xcm. The opposite argument is true for positions where dkon(x)/dx < 0,

resulting in the mean displacement δ
(1)
2 (xcm|n) > 0. When both kon and koff are

position independent εn(xcm) = 0 and δ
(1)
2 (xcm|n) = 0 ∀n, xcm, since the bound leg

distribution must be symmetric (Fig.(6.2a)). Although the component of Veff (x)

due to unbinding events in Fig.(6.5c) is considerably smaller than the term due to

binding events at all positions, this will not necessarily be the case for cargo that

exhibit both position dependent binding and unbinding rates.

The Deff (x) distribution derived using eq.(5.26, 6.1, 6.2 & 6.4) is shown in

Fig.(6.5d). This distribution has a similar form to that obtained using simulations

(Fig.(5.11a)), but these distributions do not agree quantitatively as this discrete
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analysis calculates a position dependent long time diffusivity, not the position

dependent short time diffusivity calculated using simulations.

6.2 How the Binding Rate Distribution Influences Cargo

Motion

In order to understand how the forms of the binding and unbinding rate distributions

exhibited by cargo affect their effective velocity and diffusivity, eq.(6.1) must be

further simplified by assuming that kon,off (x) vary slowly in comparison to the size

of the cargo, or that L� 1. In this case, the binding rate can be approximated by

its Taylor expansion to first order,

kon(x|xcm) ' kon(xcm) + (x− xcm)k′on(xcm) +O((x− xcm)2), (6.11)

within the range xcm(t)− L ≤ x ≤ xcm(t) + L, where k′on(xcm) is the first derivative

of the binding rate with respect to position evaluated at the position xcm. If

the unbinding rate distribution varies significantly slower than the binding rate

distribution, it can be assumed that koff (x) = koff (xcm) within this range. This

assumption is valid for systems with a position independent unbinding rate (eq.(5.11)),

but also for EBs unbinding from microtubules at all positions except the very tip of

the microtubule (see Fig.(7.1b)).

Substituting the result of eq.(6.11) into eq.(6.1) generates the effective velocity,

Veff (x) =

N∑
n=1

[
Pn(x)

((
(N − n)L2

3(n+ 1)

)
k′on(x)−

(
2n εn(x) In(x)

n− 1

)
koff (x)

)]
+ vEBMT −

∂Deff (x)

∂x
,

(6.12)

where the term generated by unbinding events was defined in eq.(6.10) and vEBMT was

defined in section 5.2.2. After averaging xm and km(x) over the region xc(t)− L ≤
x ≤ xc(t) + L in eq.(6.1 & 6.2), eq.(6.12) only depends on the cargo centre position

xcm, which has been written xcm → x in eq.(6.12) for clarity. It was shown in Fig.(6.5)

that both the unbinding rate and diffusivity gradient terms were considerably smaller

than the term due to binding rates at all positions, which can be predicted by

the k′on(xcm) term in eq.(6.12) and the steep kon(x) gradient defined in eq.(5.11)

(Fig.(5.6)). Assuming that this term dominates the Veff (x) distribution, eq.(6.12)

predicts that Veff (xcm) ∝ L2, such that increasing the size of the cargo increases
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(a) (b)

Figure 6.6: Approximation of the effective velocity — (a) A comparison
between the position dependent effective velocity distributions for 4-legged cargo
with varying sizes L calculated using eq.(5.25, 6.1, 6.2 & 6.4), and the analytical
approximation calculated using the binding event (first) term of eq.(6.12). The
agreement between the distributions increases as L decreases. (b) Plots of the
binding rate distribution kon(x) and its first and second derivatives with respect to
position (key below plot), showing that the locations of the maximum and minimum
of the effective velocity distribution (V ′eff (x) = 0, where V ′eff (x) was calculated using
eq.(6.13)) occur when k′′on(x) ' 0.

the ability of the cargo to resist an applied net velocity (see section 5.3.3).

To test whether it can be assumed that the binding rate term in eq.(6.12) alone

is sufficient to predict the effective velocity of cargo, it has been plotted in Fig.(6.6a)

alongside Veff distributions calculated using eq.(5.25, 6.1, 6.2 & 6.4). It has been

assumed that the bound leg distributions shown in Fig.(6.5a) for cargo of size L = 1

can be used to describe the distributions PNl (x|n, xc) for cargo with L < 1 after

applying the transformation x− xc → (x− xc)/L to eq.(6.4). This assumption was

shown to be valid for cargo that exhibit position independent binding and unbinding

rates in Fig.(6.4a). However, this assumption may generate artificial asymmetry in

PNl (x|n, xc) for cargo that exhibit position dependent binding or unbinding rates, as

the cargo will exhibit a PNl (x|n, xc) distribution that is influenced by changes in the

binding and unbinding rate distributions for L ≤ |x| ≤ 1 (where L = 1 was used to

obtain the original distributions shown in Fig.(6.5a)). This results in the calculation

of an upper bound for the effective velocity distribution.

The agreement between the distributions in Fig.(6.6a) increases as the size of

the cargo decreases, since eq.(6.11) is only valid in the limit L� 1. This indicates

that the effects of position dependence in the binding rate distribution govern the

deterministic motion of small cargo with position independent unbinding rates.

However, the unbinding rate term in the calculation of Deff (x) (eq.(5.26)) cannot

be neglected even in the limit L� 1, since δ
(2)
1 = L2/(3(n+ 1)2) is independent of
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k′on(x) and the magnitude of the binding and unbinding rates in eq.(5.11) are equal

far from the region of increased kon(x). It is the symmetric components of eq.(6.4 &

6.8) that govern the contribution of unbinding events to Deff (x), but the first term

of eq.(6.4) is not analytically integrable and must be solved for numerically.

The positions where Veff (x) is a maximum or minimum can be estimated

using the binding rate term of eq.(6.12) to be where,

dVeff (x)

dx
'
(
L2

3

) N∑
n=1

[
P ′n(x)

(
N − n
n+ 1

)
k′on(x) +

〈
N − n
n+ 1

〉
k′′on(x)

]
= 0, (6.13)

where P ′n(x) is the first derivative of Pn(x) with respect to position and 〈(N −
n)/(n+ 1)〉 =

∑n=N
n=1 (Pn(x) (N −n)/(n+ 1)). As predicted in section 5.3.1, eq.(6.13)

indicates that the maximum and minimum of the Veff (x) distribution coincide with

positions where k′′on(x) = 0 (|dkon(x)/dx| is maximal) as long as k′′on(x) varies quickly

compared to P ′n(x). Fig.(6.6b) shows that this is the case for the binding rate

distribution defined in eq.(5.11). The results of eq.(6.12 & 6.13) show that the form

of the binding rate distribution governs the motion of bound cargo that obey the

schematic in Fig.(5.1b).

6.2.1 Effects of Simplified Binding Rate Distributions

For cargo that exhibit any of the binding rate distributions plotted in Fig.(6.7a)

and uniform unbinding rates, the assumption that the binding rate term in eq.(6.12)

dominates the calculation of the effective velocity is valid. Although less biologically

relevant than the binding rate distribution defined in eq.(5.11) (k′on(x) is discontinuous

in all distributions in Fig.(6.7a)), these simple distributions can be used alongside

the formulae presented in section 6.1 to probe the effects of varying N and L on the

Veff (x) (specifically the component due to binding events) and Deff (x) distributions

exhibited by cargo.

The positions of the maximum and minimum of the Veff (x) distributions

corresponding to the kon(x) distributions defined in Fig.(6.7a) are shown in Fig.(6.7b).

These positions are located where cargo exhibit the smallest value of kon(xcm) whilst

also exhibiting the maximum change of kon(xcm) across their length (where the

gradient |kon(xcm +L)− kon(xcm−L)|/2L is maximal). The first of these conditions

maximises the mean displacement per binding or unbinding event by minimising

the value of 〈n〉(x) (see section 5.2.1), and the second maximises the directionality

of these displacements. In eq.(6.12), these conditions correspond to maximising

〈(N − n)/(n + 1)〉 (increases with decreasing kon(x) as fewer legs are bound on

average) and |k′on(x)| respectively. Fig.(6.7c) shows an example Veff (x) distribution
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(a)

(b)

(c)

(d) (e)

Figure 6.7: Effects of gradients in the binding rate distribution — (a)
Example binding rate distributions kon(x)/koff with different (constant) gradients
of the form 2/m for the mth distribution outside a central region of maximal binding
rate with width 2L = 2. (b) The absolute positions of the maximum (or minimum) of
the effective velocity distributions calculated using the binding event term of eq.(6.1
& 6.2) to the kon(x) distributions in (a) (key is the same for (a,b,e)). (c) The effective
velocity distribution due to binding events for N -legged cargo that exhibit the final
kon(x) distribution in (a) with the smallest gradient. The magnitude of the effective
velocity decreases despite k′′on(x) = 0 within this region. (d) The approximately
linear growth of the maximum of the effective velocity due to binding events with
increasing m, as predicted by eq.(6.12) (key for (c,d) is in (c)). (e) The maximum
magnitude of the effective velocity due to binding events plateaus at N ' 5 for all
gradients of the kon(x) distributions in (a) (key is the same for (a,b,e)).

for cargo that exhibit the final binding rate distribution in Fig.(6.7a). As predicted

by eq.(6.12), the effective velocity can be observed to decay within the region where
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(c)

(a) (b)

Figure 6.8: Effects of cargo size and valency — (a) The maximum magnitude
of the effective velocity due to binding events plateaus at N ' 5 for all cargo sizes.
(b) The maximum magnitude of the effective velocity due to binding events evolves
quadratically at small values of L, but linearly at larger values of L. The magnitude
of the effective velocity is limited by L for N & 5. (c) The evolution of the effective
diffusivity for cargo that exhibit position independent binding and unbinding rates
(kon/koff = 1) as a function of N for different values of L (key in (b)).

|kon(xcm + L) − kon(xcm − L)|/2L is maximal as kon(x) increases. Similarly, as

predicted by eq.(6.12), it can be observed in Fig.(6.7d) that Veff (x) is approximately

proportional to |k′on(xc)|. In Fig.(6.7e) the magnitude of the maximum and minimum

of the effective velocity distribution plateaus for N ≥ 5, and the results of Fig.(6.7d,e)

suggest that it is the number of legs of a cargo that limits its effective velocity for

cargo with N ≥ 5. For cargo that exhibit a smoother binding rate distribution

than those in Fig.(6.7a), the positions of maximum and minimum Veff (x) will

correspond to where cargo maximise the product |k′on(x)〈(N − n)/(n+ 1)〉|, which

will not necessarily correspond to the locations where either of the two terms are by

themselves maximal.

It was shown in Fig.(6.6a) that the size of cargo has a significant effect on

their Veff (x) distribution, affecting both its magnitude and its decay profile on

either side of a maximum or minimum. Using the same assumptions for the bound

leg distributions of cargo with L < 1, and returning to the single leg binding and

unbinding rate distributions defined in eq.(5.11), it can be observed in Fig.(6.8a,b)
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that |Veff (x)| evaluated at the maximum or minimum of the distribution remains

constant for N & 5 for any value of L. This does not agree with the result of

Fig.(5.8b), which predicts that the mean displacement per binding or unbinding

event δ
(1)
1,2(x|n)→ 0 for large N (increasing N increases 〈n〉), such that cargo become

entrained by an applied net velocity. When tracking xcm(t) instead of xc(t), every

binding or unbinding event with xl 6= xcm(t) generates cargo displacement (where xl

is the position of the binding or unbinding event), not only those outside the range

of the cargo’s currently bound legs. Although small, these non-zero displacements

occur frequently (kt ∝ N in section 5.2.1), and result in a non-decaying Veff (x)

distribution for increasing N .

As predicted by eq.(6.12), it can be observed in Fig.(6.8b) that the magnitude

of the maximum or minimum value of the Veff (x) distribution increases ∝ L2 for

small values of L. However, for larger values of N where the assumption L� 1 is

not valid, this increase becomes ∝ L instead. It can also be observed in Fig.(6.8b)

that the size of the cargo is the factor that limits the maximum magnitude of the

effective velocity for N & 5 (for a fixed kon(x) distribution), since varying N & 5

does not significantly affect Veff (x).

The effect of varying L on the Deff distribution for a system with position

independent binding and unbinding rates is shown in Fig.(6.8c). Once again, it

has been assumed that the bound leg distributions shown in Fig.(6.5a) for cargo

of size L = 1 can be used to describe the distributions PNl (x|n, xc) for cargo with

L < 1 after applying the transformation x − xc → (x − xc)/L to eq.(6.4). It

can be shown that eq.(6.1) yields δ
(2)
1 (xcm|n) = (2/3)(L/(n + 1))2 for a system

with position independent binding and unbinding rates. For unbinding events,

applying the change of variables y = x/L to eq.(6.1) results in δ
(2)
2 (xcm|n) =

(L/(n − 1))2
∫ +1
−1 (y2 PNl (y|n, xc))dy = α(L/(n − 1))2, where α is a constant when

assuming that PNl (x/L|n, xc) is independent of any changes in L (see Fig.(6.4a)).

Substituting these results into eq.(5.26) generates an effective diffusivity Deff ∝ L2

∀N , and results in the distributions in Fig.(6.8c) collapsing onto a single curve.

This is the same proportionality that was previously observed in Fig.(5.5) for cargo

defined by the centre of the range of their bound legs. In contrast to the result of

Fig.(6.8b) for the Veff (x) distribution, Fig.(6.8c) suggests that it is the value of N

(not L) that limits the magnitude of Deff .

6.3 Comparing Discrete Calculations to Simulations

The same Gillespie algorithm simulations used to probe the dynamics of cargo defined

by the centre of the range of their bound legs xc(t) in section 5.2 can be modified
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to study the motion of cargo defined by their COM xcm(t). The resulting cargo

dynamics still obey the Fokker-Planck equation defined in eq.(5.29), but deviate

from the dynamics shown in Fig.(6.5c,d) due to changes in the form of the bound

leg distribution PNl (x|xcm, n).

Compared to the bound leg distributions PNl (x|xc, n) shown in Fig.(6.5a),

the equivalent distributions PNl (x|xcm, n) obtained by tracking the COM of cargo

(Fig.(6.9a)) exhibit only slight asymmetry at positions where |dkon(x)/dx| is maximal.

In this case, PNl (x|xcm, n) are the cumulative distributions for cargo with positions

xcm(t) in the range xcm − (∆x/2) ≤ xcm(t) < xcm + (∆x/2) at any time during

the simulation. Using the COM of cargo to define their position decreases the

average distance 〈xl − xcm(t)〉 for leg positions xl, which acts to concentrate the

distributions PNl (x|xcm, n) near xcm and to reduce their asymmetry. As a result of

this, it can be approximated that εn(xcm) ' 0 ∀n, xcm for cargo that exhibit the

bound leg distributions in Fig.(6.9a), such that δ
(1)
2 (xcm|n) ' 0 (eq.(6.10)). In this

case, only the terms δ
(1)
m (xcm|n) for m 6= 2 contribute to the effective velocity, and

these contributions can be well estimated using eq.(6.1 & 6.2).

The effective velocities Veff (xcm) and Veff (xc) for 4-legged and 40-legged

cargo subject to the external applied net velocity vEBMT tc/L = 0.1 within the region

of increased kon(x) have been compared in Fig.(6.9b). Although the two types of

effective velocity are similar for 4-legged cargo, only Veff (xcm) crosses zero and

exhibits a stable fixed point for 40-legged cargo (assuming that S
(1)
δ (x) also crosses

zero, see section 5.3.3). The lack of a stable fixed point in the motion of 40-legged

cargo defined by the position xc(t) can be predicted by Fig.(5.8b), which shows that

the cargo become entrained by an external applied net velocity. Similarly, it was

predicted in section 6.1.1 that the motion of cargo defined by the position xcm(t)

would exhibit moments of the displacement distribution δ
(i)
m (xcm|n) > 0 ∀n, xcm,

such that cargo with large N would still be able to generate an effective velocity to

resist an external applied net velocity.

Comparing the components of the effective velocity distributions Veff (xcm)

and Veff (xc) obtained from simulations in the same way as for the discrete analysis

in Fig.(6.5c), it can be observed that the components of the effective velocity

distributions generated by binding events, the diffusive dynamics of the cargo, and

microtubule growth events for 4-legged cargo are qualitatively similar (Fig.(6.9c)).

As expected from the bound leg distributions in Fig.(6.9a), the component of

the effective velocity Veff (xcm) due to unbinding events is approximately zero,

whereas the corresponding component of Veff (xc) is non-zero at the positions where

|dkon(x)/dx| is maximal and acts in the same direction as the component of Veff (xc)

due to binding events. In this case, the effective velocity acts in the opposite direction
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(b)

(c) (d)

(a)

Figure 6.9: Effects of tracking the COM — (a) Fits using eq.(6.4) (green) to the
bound leg distributions for 4-legged cargo obtained from simulations that track their
COM, with the position dependent binding rate distribution defined in eq.(5.11) (red,
100 000 simulated). Distributions near to significant changes in kon(x) (Fig.(5.6a))
exhibit very little asymmetry. (b) Effective velocity distributions exhibited by 4-
(100 000 simulated) and 40-legged cargo (100 (COM) and 5 000 (centre of range)
simulated) subject to a net velocity vEBMT tc/L = 0.1. 40-legged cargo defined by the
centre of the range of their bound legs become entrained by the applied net velocity.
(c) Components of the effective velocity distribution due to binding events, unbinding
events, position dependence in the effective diffusivity, or microtubule growth events,
for the 4-legged cargo simulations in (b). Distributions have been smoothed by fitting
the local region (7 grid points surrounding and including the grid point of interest)
with a quadratic function, taking into account periodic boundaries. (d) Components
of the effective velocity distribution derived using the discrete analysis in section 6.1
and the bound leg distribution in (a).

to that predicted by eq.(6.10) purely as a result of tracking xc(t) instead of xcm(t).

In contrast to the explanation of eq.(6.10), when tracking xc(t) an unbinding event

is more likely to generate a displacement when it occurs at a position far from xc(t),
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where PNl (x|xc, n) is smaller. In this case, it is less likely that other legs are bound

at position nearby, and therefore more likely that the centre of the range of bound

legs will shift following the unbinding event.

Repeating the discrete analysis carried out in section 6.1 using the distribu-

tions PNl (x|xcm, n) from Fig.(6.9a) generates the Veff (x) component distributions

presented in Fig.(6.9d). These distributions exhibit a significantly damped Veff (x)

as a result of unbinding events compared to the distribution in Fig.(6.5c), and agree

with those obtained using simulations tracking the COM of cargo (Fig.(6.9c)). Since

the possible positions of binding and unbinding events for simulated cargo defined by

xcm(t) remain on a grid with spacing ∆x, these cargo can only change the effective ve-

locity they exhibit on timescales tcm ' ∆x/(2
∑N

n=1 Pn(xcm) k1(xcm|n) δ
(1)
1 (xcm|n))

(assuming that their motion is dominated by binding events). This condition states

that the COM of the cargo must move an average distance ∆x/2 in order to change

the grid points within the range xcm(t)−L ≤ x ≤ xcm(t)+L. Hence, if the timescale

tMT = |∆x/vEBMT | = 1/kMT < tcm then the cargo will not be able to ‘react’ fast

enough to resist the external applied net velocity. The timescale tcm is limited by

∆x, such that cargo that cannot resist an external applied net velocity on a grid

with spacing ∆x may be able to when binding to a finer grid. Since the discrete

analysis derived in section 6.1 is carried out in continuous space, this dependence

cannot be observed.

6.3.1 Track Autocorrelation

A representative track for a 40-legged cargo defined by the position xcm(t) is shown

in Fig.(6.10a). Unlike the respresentative tracks shown in Fig.(5.9a,b) for 40-legged

cargo defined by the position xc(t), the corresponding track in Fig.(6.10a) cannot

be well approximated by the line x = vEBMT t. Instead, the cargo exhibits small

fluctuations about the stable fixed point of its motion (see section 5.3.3), such that

τesc � 1. The stable fixed point of the cargo motion in Fig.(6.10a) appears to be closer

to the origin than for 4-legged cargo defined by the position xc(t) (Fig.(5.9c,d)),

and the fluctuations about this point appear to be smaller in magnitude. The

characteristic behaviour of these fluctuations can be quantified by studying the

autocorrelation Cx(τ) of the tracks in Fig.(5.9 & 6.10a), which can be calculated for

these continuous time simulations using eq.(3.11).

The autocorrelation distributions for representative tracks of 40-legged cargo

defined by the positions xcm(t) and xc(t) are shown in Fig.(6.10b). The characteristic

decay timescale of the autocorrelation distribution τcor describes the average time

for a signal to decorrelate, or in this case for the position of the cargo to return to

its equilibrium position at the stable fixed point. For this reason, simulated cargo
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(a) (b)

Figure 6.10: Autocorrelation of simulated cargo tracks — (a) Representative
track for 40-legged cargo defined by their COM that exhibit the position depend-
ent binding rate distribution defined in eq.(5.11) when subject to a net velocity
vEBMT tc/L = 0.1. Only the first section of the track is shown for clarity, as the track
quickly deviates from the line x(t) = vEBMT t (green, dashed) and does not cross the
boundary for escape (red) for a long time. The position of the stable fixed point
of the motion of 15-legged cargo defined by the centre of the range of their bound
legs (blue) is shown for comparison (see section 5.3.3). (b) The autocorrelation
distributions for 40-legged cargo defined by either the centre of the range of their
bound legs (5 000 simulated) or by their COM (100 simulated). Cargo defined by
their COM exhibit smaller magnitude fluctuations and return to their equilibrium
position after a fluctuation faster.

were first allowed to equilibrate and reach the region local to their stable fixed points

before the autocorrelation was calculated using eq.(3.11). The variance in the spatial

fluctuations can also be defined as Var(δx) = 〈δx(t)2〉 − 〈δx(t)〉2 = Cx(0), where

δx(t) = x(t) − 〈x(t)〉 and 〈δx(t)〉 = 0 at the stable fixed point by definition (see

section 5.3.3).

It can be observed in Fig.(6.10b) that the autocorrelation distributions cor-

responding to cargo defined by the position xcm(t) exhibit smaller values of τcor

than the corresponding distributions for cargo defined by the position xc(t). This

indicates that cargo with positions xcm(t) can react faster to fluctuations and return

to their equilibrium position faster than cargo with positions xc(t), since all binding

and unbinding events at positions xl 6= xcm(t) generate cargo displacements that can

lead to equilibration. The average fluctuation amplitude, quantified as the variance

of the spatial fluctuations Var(δx) = Cx(0), is also smaller for cargo defined by the

position xcm(t) (Fig.(6.10b)). Together, these results suggest that cargo defined by

their COM will be better at tip tracking, as after reaching the stable fixed point of

their motion they exhibit smaller fluctuations from which they recover faster. The

slight deviation from C(∞)→ 0 for the autocorrelation distributions in Fig.(6.10b)

is due to inaccuracy in the prediction of the position of the stable fixed point 〈x(t)〉.
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6.4 Conclusion

In this chapter it has been shown that the continuum-level motion of N -legged cargo

has been studied at the discrete-level by deriving the average rate and displacement

of binding and unbinding events for the COM of cargo. It has been shown that

the bound leg distribution has a significant impact on the dynamics exhibited by

cargo, and that position dependence of this distribution originates from the position

dependence of the binding rate distribution. Similarly, it has been shown that the

binding rate distribution directly governs the form of the effective velocity exhibited

by cargo, and therefore also the locations of the stable fixed points of their motion.

Tracking the COM of cargo instead of the centre of the range of their bound legs

allows the cargo to react faster to fluctuations in their position around the stable

fixed point, meaning that they can tip track more easily. It is expected that the

centre of biological cargo will be located somewhere between the COM and the centre

of the range of their bound legs, such that they will exhibit motion between the two

extremes presented in chapters 5 & 6.

6.4.1 Further Work

In order to describe the motion of cargo using the discrete analysis in section 6.1

without requiring simulations, it is necessary to derive analytical forms for the bound

leg distribution for all positions and values of n (see eq.(6.3)). This is non-trivial, but

it may be possible to derive the form of the bound leg distribution in certain limits

to constrain the cargo parameters that will result in tip tracking transport. For

example, it can be assumed from Fig.(6.2a & 6.4a) that the bound leg distribution

will tend towards a step function for large values of n when tracking the centre of

the range of bound legs of cargo, but this is not the case for cargo defined by their

COM (Fig.(6.9a)). As a result of this discrepancy, it is of interest to analytically

investigate the relationship between the COM of cargo and the centre of the range

of their bound legs.
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Chapter 7

Comparing the Cargo Model to

Experimental Results

The previous two chapters have outlined the development of a continuum and discrete

model for describing the tip tracking behaviour of cargo bound to microtubules.

Together, these two models have shown that the transient binding dynamics of the

individual legs of cargo can generate an effective velocity that acts to move cargo

towards regions of increased single leg binding rate. In this chapter, experimentally

derived parameters will be used as inputs for the simulations and analytics developed

in chapters 5 & 6 in order to test whether this new model for cargo dynamics can

generate tip tracking cargo transport in biologically relevant conditions.

In this chapter, the binding and unbinding rates of wild-type (dimeric) EB3

proteins from previously published work have been used to approximate the binding

and unbinding rates of individual cargo legs. Previously published parameters have

been used to remove any errors associated with the dwell time distribution of EB3GFP

constructs binding to the microtubule lattice due to background binding events in

this work (see section 4.1.1). Similarly, although it was shown in chapter 4 that

EB3 proteins exhibit biexponential dwell time distributions at growing microtubule

ends and on regions of GTPγS-tubulin, without further experiments to elucidate the

nature of the EB3-microtubule interaction it is not possible to conclude how this

could influence the motion of cargo bound to multiple EB3 proteins. For this reason,

it has been assumed that the binding and unbinding rates of each simulated cargo

leg can be approximated using the coarse-grained average dwell times and binding

rates of wild-type EB3 proteins. The results of these simulations will therefore

be qualitatively equivalent to those that would be generated when studying cargo

connected to multiple EB3 CH domains (monomeric EB3 proteins), especially since

it has been reported that the average dwell time of monomeric EB1 proteins at
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growing microtubule ends ((0.22± 0.05) s or (0.16± 0.02) s depending on whether or

not the positively charged linker domain is included in the construct, respectively)

is only a factor of ∼ 3 smaller than the value obtained for wild-type EB1 proteins

((0.60± 0.03) s) [84]. Using the coarse-grained average binding parameters of EB3

proteins for each cargo leg also allows the use of the models developed in chapters 5

& 6 to derive the dynamics of cargo motion.

In order to experimentally verify the simulated dynamics of cargo permanently

bound to different numbers of EB3 proteins, the motion of clusters of different

numbers of oligomerised EB3 CH domains has been studied. The model presented in

chapters 5 & 6 has also been extended to investigate the role of cargo-EB interactions

in cargo motion, and in this case simulated cargo dynamics have instead been

compared to experiments with multivalent cargo that can bind to wild-type (dimeric)

EB3 proteins in solution.

7.1 Experimentally-Derived Simulation Parameters

In order to apply the cargo dynamics model developed in chapters 5 & 6 to a

biologically relevant system, parameters describing the growth of microtubules, the

binding dynamics of EBs and the size of cargo are required. Parameters obtained from

previously published work have been used in the simulations in this chapter, and these

parameters are shown in table 7.1 [26, 33, 82, 87, 124, 205]. The simulations carried

out in chapter 5 require as inputs the binding and unbinding rates of individual

EBs (see methods section 3.4.1). Firstly, this means that the average EB dwell

times in table 7.1 must be converted to the average unbinding rates ktip,EBoff = 1/τ tip

and klat,EBoff = 1/τ lat. However, since the observed binding rate in experiments is a

function of the EB concentration in solution, the average EB binding rate must be

converted from the rate of any EB binding to the microtubule, to the rate a single,

specific EB binds. This is equivalent to converting from units of per mole per unit

length per unit time (κ (nM−1µm−1s−1)) to units of per EB per unit time (k (s−1)).

The average EB dwell times obtained experimentally in chapter 4 for EB3GFP

constructs agree with the previously published values presented in table 7.1. However,

in this work it has been shown that background binding events are expected to

significantly affect the form of the dwell time distribution obtained for lattice binding.

Similarly, it was shown in sections 4.3.1 & 4.4 that background subtraction applied

to the measured EB3GFP construct binding rates was required to qualitatively

reproduce the bound EB distribution observed in experiments (see Fig.(4.10)).

Assuming that the EB3GFP construct average dwell times and binding rates derived

in sections 4.1.1 & 4.3.1 (respectively) are correct, the tip-to-lattice ratio at growing
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Parameter Representative Literature Value

Average EB protein dwell time at micro-
tubule ends, τ tip

(0.34± 0.04) s [26]

Average EB protein binding rate at micro-
tubule ends, κtipon

(6.5± 0.5) nM−1µm−1s−1 [26]

Average EB protein dwell time on the
microubule lattice, τ lat

(0.16± 0.03) s [26]

Average EB protein binding rate on the
microtubule lattice, κlaton

(2.3± 0.9) nM−1µm−1s−1 [26]

Average microtubule growth rate, |vMT | 57 nm s−1 [33]

Average size of microtubule tip region, Ltip 220 nm [33]

Average tubulin dimer length, ∆z (dis-
tance between EB protein binding sites)

8.185 nm [82]

Microtubule radius, ρMT 12 nm [205]

Bead size, Lb ∼ 15− 20 nm [124]

Radius of gyration of EB3, ρEB 4.52 nm [87]

Maximum diameter of EB3, ρmaxEB 13.6 nm [87]

Table 7.1: Experimental parameters for simulations — Experimentally derived
cargo binding model parameters obtained in previously published work. Average EB
dwell times are for wild-type, dimeric EB3 [26]. Average EB binding and unbinding
rates are effectively independent of the background concentration of EBs and the
microtubule growth rate [84]. Microtubule growth rate is assumed to be independent
of the EB concentration [33, 48]. The size of the microtubule tip region (extracted
from fitting an exponentially modified gaussian distribution to the PDF describing
the positions of EB protein binding) is a function of the microtubule growth rate
and hence tubulin concentration, and one set of in vitro values is quoted here
[33]. Average tubulin dimer length was obtained using cryo-electron microscopy,
and the value presented is the average of the GDP lattice (8.176 nm) and GTPγS
lattice (8.193 nm) values [82]. Cargo size depends on the form of the construct,
but previously published work has shown that quantum dots (Qdot705-streptavidin
(Thermo Fisher) [124]) can exhibit EB-mediated tip tracking transport [28, 29]. The
radius of gyration and maximum diameter of an EB3 homodimer were found using
small-angle X-ray scattering experiments [87].

microtubule ends of (τ tipav κ
tip
on )/(τ gtpγsav κlaton ) = (13.7 ± 1.9) predicted in this work is

a factor of ∼ 2 greater than the ratio (τ tipav κ
tip
on )/(τ latav κ

lat
on ) = (6± 2) obtained using

the parameters in table 7.1. Since eq.(6.12) predicts that Veff (x) is approximately

proportional to L2 k′on(x), and cargo are expected to exhibit stable fixed points in

their motion at the positions that satisfy S
(1)
δ (x) = 0 and ∂S

(1)
δ (x)/∂x ≤ 0 (see

section 5.3.3), the increased tip-to-lattice ratio measured in this work would allow

smaller cargo or cargo with fewer legs to exhibit tip tracking transport. For example,
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direct comparison of the ratios (τ tipav κ
tip
on )/(τ latav κ

lat
on ) results in the prediction that

smaller cargo of size ∼ Lmin(N)/
√

2 would be able to tip track using the parameters

measured in this work (where Lmin(N) is the minimum cargo size that generates tip

tracking for a given number of legs, N , using the parameters in table 7.1).

7.1.1 Conversion of Experimental Binding Rates

The conversion of the average EB binding rate obtained from experiments to the

form required for simulations can be achieved by assuming that only EBs within

a cylinder of fixed length and radius can bind to the microtubule. The desired

binding rate can then be calculated from the number of these EBs that bind to the

microtubule within one second. The length of this cylinder can be defined as the

length of one tubulin dimer (∆z from table 7.1), assuming that EB proteins can

bind to any of the 13 protofilaments at any time. Since this binding rate for EBs

will be used to describe the binding dynamics of individual cargo legs in simulations,

this assumption also assumes very flexible EB-cargo linkers. The correct value to use

for the radius of the cylinder is currently unknown, but is expected to be between

the radius of an EB protein ρEB (see table 7.1), such that EBs must be in contact

with the microtubule to bind, and the distance an EB can move while diffusing in

solution in one second, such that EBs within this diffusive distance can bind to the

microtubule at any time.

The diffusive distance ρD is equal to
√

2DEB
aq , where DEB

aq is the diffusivity

of an EB in solution. An estimate for DEB
aq can be derived using the Einstein

relation, following the assumptions that the system temperature is 37 oC, that the

cytoplasmic viscosity is approximately equal to that of water at 37 oC, and that

EBs are approximately spherical with a radius equal to their radius of gyration (see

table 7.1 [87]). These assumptions result in an EB diffusivity of (7.41×10−11) m2s−1,

which is of a similar order of magnitude to values measured for different biological

molecules [206]. This generates a diffusive distance ρD ∼ 2700ρEB � ρEB.

Using cylindrical coordinates, it can be assumed that the concentration of

EBs c(ρ, t) in the system tends to c(P, t) = c0 at ρ = P , such that the system can

be described as a grand canonical ensemble that is at thermodynamic equilibrium

with an external resevoir of particles. Assuming that the EBs only interact with

microtubules through binding interactions (neglecting any electrostatic interactions),

it is the chemical potential that dictates the form of c(ρ, t). Therefore, in the

absence of any additional interactions between EBs and microtubules beyond hard

repulsion, the concentration of EBs in thermodynamic equilibrium will be constant

(c(ρ, t) = c0). This assumption might break down close to the microtubule as a result

of electrostatic interactions. For example, it is possible that interactions between EBs
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and the negatively charged C-terminal tails of tubulin can re-orient nearby EBs [207].

As a result, it is likely that electrostatic interactions affect the potential energy of

EBs close to microtubules, which would alter the concentration of EBs in equilibrium.

These effects will not be considered here, and the interaction volume derived in

this work can be interpreted as an effective interaction volume that reproduces the

binding rate observed in experiments.

In thermodynamic equilibrium the binding and unbinding events of EBs must

obey detailed balance [159], defined by the equation,

c0 kub

2π∫
0

dφ

ρMT+ε∫
ρMT

ρ dρ = π((ρMT + ε)2 − ρ2
MT )c0 kub = Nb kbu, (7.1)

where ε is the radius within which EBs can bind to the microtubule, Nb is the number

of particles bound to the domain per unit length in the z direction, and kub and kbu

are the binding and unbinding rates per particle (respectively). The radius of the

interaction volume for EB-microtubule interactions can be derived from the result in

eq.(7.1) to be,

ε(z) =

(√(
〈Nb〉(z)kbu(z)

π c0 kub(z)

)
+ ρ2

MT

)
− ρMT , (7.2)

where the z dependence arises as a result of the dependence of the 〈Nb〉(z) distribution

(proportional to the deconvolved experimental distribution in Fig.(4.10b)) and the

dependence of the rates kub and kbu predicted by the results of Fig.(4.1). The volume

of interaction around a length ∆z of the microtubule can be defined using eq.(7.2) as

Vint(z) = π((ρMT + ε(z))2 − ρ2
MT )∆z, but this is expected to be independent of z as

the increase in 〈Nb〉(z) towards growing microtubule ends should be mirrored by a

decrease in the ratio kbu/kub. Once again however, eq.(7.2) cannot be solved without

knowing the binding rates kub of EBs per EB (and not per unit concentration).

The binding rates per unit concentration presented in table 7.1 can be

converted to equivalent rates per EB using the formula,

k(z)(s−1) =

(
∆z c0

Nav
EB

)
κ(z)(nM−1µm−1s−1)

=
κ(z)(nM−1µm−1s−1)

πNA((ρMT + ε)2 − ρ2
MT )

,

(7.3)

where c0 is the molar concentration of EBs, NA is Avagadro’s number, and Nav
EB =

NA c0 Vint is the number of EBs available to bind (within the interaction volume) at

the specified molar concentration. In eq.(7.3) it has been assumed that the radius
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Parameter Minimum Value Maximum Value

Average EB protein unbinding rate
at microtubule ends, ktip,EBoff

(2.9± 0.3) s−1 (2.9± 0.3) s−1

Average EB protein binding rate at
microtubule ends, ktip,EBon

(0.0231±0.0018) s−1 (27000± 2000) s−1

Average EB protein unbinding rate
from the microubule lattice, klat,EBoff

(6.3± 1.0) s−1 (6.3± 1.0) s−1

Average EB protein binding rate to
the microtubule lattice, klat,EBon

(0.008± 0.003) s−1 (9000± 4000) s−1

Table 7.2: Range of possible binding and unbinding rates derived from
experimental parameters — Experimentally derived EB binding and unbinding
rates converted to units of per EB per unit time using eq.(7.3). Experimental
unbinding rates do not require conversion. The range of converted binding rates for
the microtubule tip and lattice each span approximately six orders of magnitude.

of the cylindrical interaction volume ε is independent of z, and has a value within

the range ρEB ≤ ε ≤ ρD. This results in a conversion factor 0.003560 molµm−2 <

ψ < 4100.35 molµm−2, such that k = ψ κ, and yields the average values shown in

table 7.2 that can be used in simulations. The minimum values of kEBon in table

7.2 correspond to the maximum radius of the interaction volume (where Nav
EB is

large), and the maximum values of kEBon correspond to the minimum radius of the

interaction volume (where Nav
EB is small).

Without knowing an accurate value for ε or Vint, it is only possible to probe

the experimental system using simulations by sweeping through the possible values

of the EB binding rates defined in table 7.2 and observing which give realistic

results. Applying these binding rates to the cargo simulations carried out in chapter

5 assumes that each leg of a bound cargo is permanently held within a distance ε of

the microtubule (within the interaction volume). Since cargo-bound EBs will diffuse

in solution while unbound from the microtubule, the fraction of time that they spend

within the interaction volume will actually be a function of the diffusivity of the

EBs DEB
aq as well as the length and elasticity of the linkers connecting them to the

cargo [179]. The length of these linkers will define the maximum separation between

an EB and the microtubule. Finally, the binding rates defined in table 7.1 do not

consider the effects of competitive or cooperative binding, or the complex binding

dynamics of EBs derived in chapter 4.
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7.1.2 Deriving Possible Forms of the Binding Rate Distribution

The position dependent binding and unbinding rate distributions for use in simulations

can be derived by substituting the parameters presented in table 7.2 into the solutions

of the microtubule structure model defined in eq.(4.28). In this case, the rates

kp = 10 s−1, kh = 0.23 s−1 and kEBh = 0.73 s−1 were used as derived for the EB

concentration [EB] = 50 nM in the work by Maurer et al. [48]. This value of the

concentration was chosen as it is the closest of the values studied in the work by

Maurer et al. [48] to that used in the experiments by Rodŕıguez-Garćıa et al. that

recapitulate tip tracking cargo transport using quantum dots as cargo [28]. Since the

average rate of formation of preferred EB binding sites kp has been shown to vary as

a function of [EB] and not |vMT | [48], a value of |vMT | = 57 nm s−1 has been used

for the following derivation (see table 7.1). Using these parameters, the probabilities

of observing tubulin in different states as a function of distance from the growing

microtubule end are shown in Fig.(7.1a).

Assuming that EBs exhibit non-competitive and non-cooperative binding,

there is a probability B(x) +BE(x) of there being a preferential binding site for EBs

at position x for any given pair of microtubule protofilaments (recall that EBs bind

at the vertex of four tubulin heterodimers, excluding at the seam [11, 38]). Individual

EBs will bind or unbind to these preferential binding sites with the rates ktip,EBon,off

defined in table 7.2. Similarly, there is a probability C(x) + CE(x) of there being a

lattice binding site, to which EBs will bind or unbind with the rates klat,EBon,off . The

ability of cargo to bind to sites on adjacent pairs of protofilaments is not considered

in the following simulations, but a method for implementing this is discussed in

section 8.3.

Since the converted binding rates in table 7.2 span approximately six orders

of magnitude, thirteen representative values distributed uniformly in log-space were

used in simulations to probe the dynamics of the system in different binding regimes.

The variable 1 ≤ ik ≤ 13 was defined to differentiate between these different values

of the binding rate, such that,

kEBon (x|ik) = min
(
ktip,EBon

)max
(
ktip,EBon

)
min

(
ktip,EBon

)


ik−1

12

(B(x) +BE(x))

+ min
(
klat,EBon

)max
(
klat,EBon

)
min

(
klat,EBon

)


ik−1

12

(C(x) + CE(x)),

(7.4)
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(a) (b)

Figure 7.1: Binding and unbinding rate distributions derived from experi-
mental parameters — (a) Steady-state distributions of the different states that
are exhibited by tubulin dimer that have been incorporated into microtubules, de-
scribed by eq.(4.28) and using the experimentally derived quantities in table 7.1.
Black vertical line indicates the average size of the microtubule tip region Ltip found
experimentally (see table 7.1). (b) Unbinding rate distribution (blue) and the binding
rate distributions (black) for all values of ik to be used in simulations to emulate
experimental EB protein binding dynamics. Binding rates were converted from
experimentally derived quantities using eq.(7.3) and the range of possible values is
shown in table 7.2.

where the minimum and maximum binding rates are those defined in table 7.2. The

average unbinding rate is independent of ik, and is equal to,

kEBoff (x) =
ktip,EBoff (B(x) +BE(x)) + klat,EBoff (C(x) + CE(x))

B(x) +BE(x) + C(x) + CE(x)
, (7.5)

where the normalisation factor 1/(B(x) +BE(x) + C(x) + CE(x)) ensures that the

unbinding rate is not reduced at positions where A(x) > 0. The distributions defined

in eq.(7.4 & 7.5) have been plotted in Fig.(7.1b).

The experimentally derived value for the size of the microtubule tip region

Ltip (see table 7.1) is very similar to the value at which the unbinding rate reaches

90% of its maximum value in Fig.(7.1b), equal to 218.16 nm. Alongside the agreement

with experimental results shown in Fig.(4.10b), this validates the use of the tubulin

state probabilities defined in eq.(4.28). However, compared to the deconvolved

experimental EB distribution in Fig.(4.10b), the tip-to-lattice ratio in Fig.(7.1a) is

significantly reduced. As discussed in section 7.1, this will limit the size and number

of legs required for cargo to be able to tip track.
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7.2 Comparing Simulations to Experiments

Simulations have been carried out using the experimentally-derived parameters

defined in tables 7.1 & 7.2 and Fig.(7.1b), with the aim of understanding the

properties of cargo that allow them to tip track. These simulations tracked the

centre of the range of each cargo’s bound legs, and not the COM as was described

in section 6.3. Non-competitive and non-cooperative cargo leg binding has been

assumed, such that the binding of cargo legs does not alter the binding or unbinding

rate distributions for other legs from those shown in Fig.(7.1b).

Assuming that tip tracking is possible for cargo with values of N in the range

2 ≤ N ≤ 12 (which will be verified experimentally in section 7.2.3), the correct value

of ik that is necessary for eq.(7.4) to reproduce experimental observations can be

derived by simulating cargo with various values of ik and studying which can tip track.

Tip tracking cargo have been defined as those that exhibit a value of S
(1)
δ (x) < 0 (see

section 5.3.3) for at least four adjacent grid points along the domain, and the stable

fixed point of their motion is at the position where S
(1)
δ (x) = 0 and ∂S

(1)
δ (x)/∂x < 0

according to eq.(5.39). Fig.(7.2a) shows the simulated phase-space for N , L, and ik,

and indicates the values of each that generate tip tracking transport.

From Fig.(7.2a) it can be observed that the tip tracking capabilities of cargo

are very sensitive to variation in L and ik. This sensitivity can be explained using

the approximate formula defined in eq.(6.12) for cargo defined by their COM, where

it was shown that the component of Veff (x) due to binding events increases ∝ L2

(Fig.(7.2b)) and ∝ k′on(x) ∼ exp(ik) (see eq.(7.4)). Similarly, it was shown in

Fig.(6.5c & 6.9c) that binding events dominate the effective velocity distributions

exhibited by cargo. Whereas eq.(6.12) predicts that the N -dependence of the effective

velocity arises due to variation in the sum
∑n=N

n=1 (Pn(x)(N − n)/(n+ 1)), which is a

monotonically increasing function of N for position independent values of kon and

koff , it has been shown in Fig.(5.8b & 6.9b) that this is not the case for cargo defined

by the centre of the range of their bound legs. Instead, it was shown in section

5.2.2 that cargo with large values of N cannot tip track as they become entrained

by the microtubule growth velocity. This means that the maximum magnitude of

the effective velocity distribution that can be generated by cargo for a given pair of

L and ik begins to decrease as N becomes large, as shown in Fig.(7.2c). Since the

value of 〈n〉 increases with increasing kon ∼ exp(ik) (see eq.(5.6)), and cargo with

more legs bound on average exhibit smaller average displacements during binding or

unbinding events (see section 5.2.1), the optimal value of N that generates tip track

tracking transport decreases as ik increases (see L = 160 nm in Fig.(7.2a)). This has

the effect of reducing 〈n〉 so that cargo can generate sufficient average displacements

per binding or unbinding event to counteract the microtubule growth velocity.
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(a)

(b) (c)

(d) (e)

- Cargo exhibit
tip tracking

Figure 7.2: Effective cargo dynamics using experimental parameters — (a)
Phase-space for simulated values of N , L, and ik showing which cargo do (yellow)
or do not (blue) exhibit tip tracking transport (100 000 simulated for 2 ≤ N ≤ 8,
2 ≤ ik ≤ 6; 50 000 for 10 ≤ N ≤ 12, 2 ≤ ik ≤ 6, and N = 2, ik = 8; 20 000 for
N = 4, 6, ik = 8; 10 000 for N = 8, 10, ik = 8; 5 000 for N = 12, ik = 8). (b,d)

Distributions of (b) S
(1)
δ (x) and (d) Deff (x) for cargo of various sizes with N = 6 and

ik = 6 (key for (b,d) is above (b)). The inset of (b) shows that the maximum value of
the effective velocity component due to binding and unbinding events approximately

evolves ∝ L2 (green dashed line is a x2 + b fit). (c,e) Distributions of (c) S
(1)
δ (x)

and (e) Deff (x) for N -legged cargo with 2L = 160 nm and ik = 6 (key for (c,e) is
above (c)). The inset of (c) shows that the maximum value of the effective velocity
component due to binding and unbinding events at N ' 8.
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The effective diffusivity distributions corresponding to the effective velocity

distributions in Fig.(7.2b,c) are shown in Fig.(7.2d,e). The distribution in Fig.(7.2d)

shows that Deff (x) approximately increases ∝ L2, as predicted in section 6.2.1.

Although Deff (x) increases monotonically at the tips of growing microtubules as a

function of increasing N (Fig.(7.2e)), the maximum value of Deff (x) close to the

stable fixed points of cargo motion (∼ −300 nm in Fig.(7.2b)) is instead exhibited

by cargo with N ' 4, 6. This is similar to the dependence of vEBMT −min(S
(1)
δ (x))

on N shown in Fig.(7.2c), and follows the same argument as to why maxima were

observed in the short time and long time effective diffusivity distributions shown in

Fig.(5.3b).

As well as affecting the ability of cargo to tip track, the number of legs of

a cargo also has a significant impact on its dwell time distribution, as shown in

Fig.(5.2). Even if cargo with very small values of N were observed to tip track

in simulations, they would not remain bound to the microtubule long enough for

tip tracking transport to be observed experimentally. The escape timescales τesc

for cargo (see section 5.2.2) as a function of N , L and ik are shown in Fig.(7.3).

Assuming that τesc directly correlates with the tip tracking capabilities of cargo,

Fig.(7.3) shows that increasing L monotonically increases a cargo’s ability to tip

track, whereas there is an optimal value of N that promotes tip tracking. Cargo

with large values of N become entrained by the net velocity due to microtubule

growth and are unable to tip track, as shown in Fig.(5.8b). Similarly, as predicted

from Fig.(7.2a), the optimal value of N required for cargo to exhibit tip tracking

decreases with increasing ik, which increases 〈n〉 (the peak of τesc(N) has not been

reached in Fig.(7.3a), but is visible in Fig.(7.3b)).

It can be hypothesised that cargo with values of L > Ltip will not be able

to tip track as efficiently as smaller cargo as the ratio
∫ x=xc(t)+L
x=xc(t)−L (ktip,EBon (B(x) +

BE(x)))dx/
∫ x=xc(t)+L
x=xc(t)−L (klat,EBon (C(x) + CE(x)))dx will decrease, resulting in ‘prefer-

ential’ lattice binding despite the increase in binding rate at growing microtubule

ends. For large cargo (L ≥ Ltip) the assumption that cargo legs can rebind to the

microtubule at any position any amount of time after unbinding breaks down (see

section 5.4.1), and the cargo binding models decribed in chapters 5 & 6 will require

additional terms in order to accurately describe experimental findings.

Cargo experiments are required to elucidate which value of ik correctly

reproduces biologically relevant cargo dynamics. Although tip tracking transport

has been observed for beads coated in MTLS [28, 29], the local densities of EB3

and MTLS that generated this transport are not clear. Qualitative results of cargo

experiments carried out as part of this work will be discussed in section 7.2.3. It can

be approximated that for beads of width ∼ 15− 20 nm [124] and EB-cargo linkers of
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(a) (b)

Figure 7.3: Simulated cargo escape times using experimental parameters
— Evolution of the time τesc for cargo that exhibit the velocity vEBMT = 57 nm s−1 to
escape the tip region defined by Ltip = 220 nm (table 7.1) for various values of N
and L with (a) ik = 6 or (b) ik = 8 (errors excluded for clarity).

approximate length ∼ 10 nm, that the maximum size of the cargo is approximately

2Lmax = 20 + 2(10) + 2ρmaxEB ∼ 70 nm. It can be observed in Fig.(7.2a-c) that cargo

of this size cannot tip track for any appropriate value of N or ik. As suggested

in section 7.1, it is likely that using the average EB binding rates and dwell times

obtained in chapter 5 will allow cargo to tip track more easily as a result of the

greater gradient in the EB binding rate distribution near the growing microtubule

end. Similarly, there are additional modifications that can be made to the cargo

binding models decribed in chapters 5 & 6 that will increase their biological relevance

and tip tracking capabilities. These modifications will be discussed in chapter 8.

7.2.1 Tracking Shrinking Microtubule Ends

It can be observed in Fig.(7.2b,c) that cargo located at the tip of growing microtubules

exhibit a large effective velocity due to binding or unbinding events directed away

from the end. This effective velocity is due to the microtubule boundary at xtip = 0

nm, after which it is assumed that there are no EB binding sites. This generates

a large effective velocity away from the end by skewing the possible positions that

cargo legs can bind towards only one side of the cargo. In the case of the discrete

model derived in section 6.1, this generates an average displacement due to binding

events equal to,

δ
(1)
1 (xcm|n) =

(
1

n+ 1

)
xcm+L∫
xtip

((x− xcm) k1(x)) dx

xcm+L∫
xtip

k1(x) dx

 , (7.6)
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(a) (b)

Figure 7.4: Simulated cargo track shrinking microtubule ends — (a) S
(1)
δ (x)

distributions for N -legged cargo of size 2L = 160 nm subject to a position inde-
pendent binding (second term of eq.(7.4), ik = 6) and unbinding (eq.(7.5)) rate
distribution, and a cargo velocity in response to microtubule shrinkage equal to
vEBMT = −280 nm s−1 (100 000 simulated for N = 10 − 20, 50 000 simulated for
N = 25, 30, 25 000 simulated for N = 35, 10 000 simulated for N = 40). (b) The
dwell time distributions corresponding to the simulations carried out in (a). A
peak can be observed due to the effect of the microtubule shrinkage velocity at
t = |(80 nm)/vEBMT | ' 0.3 s.

for cargo centre positions in the range xtip ≤ xcm ≤ xtip + 2L (see eq.(6.1)). This for-

mula will generate δ
(1)
1 (xcm|n) 6= 0 even for cargo that exhibit a position independent

rate k1(n).

Simulations have been carried out to test whether this phenomenon is sufficient

to allow cargo to track shrinking microtubule ends, with results shown in Fig.(7.4).

Compared to the microtubule growth velocity of vMT = −57 nm s−1 used in

the simulations that generated Fig.(7.2) (corresponding to vEBMT > 0), in these

simulations a net microtubule shrinkage velocity equal to vMT = 280 nm s−1 was

introduced (corresponding to vEBMT < 0). The factor of 5 increase in the magnitude

of the microtubule tip velocity was derived from the approximate ratio between the

microtubule growth and shrinkage velocities in the kymographs in Fig.(7.7 & 7.10).

Cargo legs were said to be unbound if this velocity caused them to leave the domain

of the microtubule (if xl < xtip). In order to emulate a depolymerising microtubule,

the binding and unbinding rate distributions for individual cargo legs were calculated

using eq.(7.4 & 7.5) assuming that B(x) = BE(x) = 0. Cargo were initialised with

one leg bound at x = −320 nm, and generated effective velocities that could resist

the effects of microtubule shrinkage (Fig.(7.4a)).

Cargo of size 2L = 160 nm with ik = 6 were shown to be able to track growing

microtubule ends in Fig.(7.2a) only for values of N = 8, 10. In contrast, Fig.(7.4a)

shows that similar sized cargo can track shrinking microtubule ends for all values of
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N ≥ 10, despite N normally limiting the effective velocity that cargo can generate

(Fig.(5.8b, 6.9b & 7.2a,c)). As N increases, Fig.(7.4b) shows that a higher proportion

of cargo can resist the effects of the microtubule shrinkage velocity and remain bound

at times t > |(80 nm)/vEBMT |. This means that the characteristic timescale of cargo

loss, equal to 1/gradient of dwell time distribution decay in log-space (Fig.(7.4b)),

also increases with increasing N .

As well as being due to the effect described by eq.(7.6), these observations

are the result of the unbinding of cargo legs with positions xl < xtip replenishing

the unbound pool of cargo legs (N − n) and reducing the average range of a cargo’s

bound legs. The large net velocity due to microtubule shrinkage also has the effect

of artificially skewing the Pn(x) distribution towards smaller values of 〈n〉(x) near

the shrinking microtubule end. Together, these effects mean that the average cargo

displacement per binding or unbinding event increases as a function of N and ik, and

that it is large enough to resist the effects of an applied net velocity even for cargo

that cannot tip track. Fig.(7.4a) also shows that increasing N or ik increases the

stability of the stable fixed points of the cargo motion by increasing the magnitude

of the gradient ∂S
(1)
δ (x)/∂x through the points. This allows cargo to respond faster

to fluctuations in their position (see section 6.3.1).

As a result of the fast microtubule shrinkage and cargo binding dynamics,

it is likely that the shrinking microtubule end tracking observed in Fig.(7.4) will

be significantly affected if the range of positions that cargo legs can rebind to after

unbinding is limited by their diffusivity (see section 5.4.1). Similarly, the effective

velocity generated by cargo at the microtubule tip will be damped by any tapering

of the microtubule [42, 44]. It has also been hypothesised that curved protofilaments

generated by shrinking microtubule ends can exert physical forces on cargo that

cause them to move processively in the direction of microtubule depolymerisation

[208]. Further analysis is required to probe this phenomenon quantitatively, but

Fig.(7.4) shows that the asymmetric binding dynamics of cargo legs can generate

shrinking microtubule end tracking.

7.2.2 How Cargo Size Affects their Ability to Tip Track

It can be observed in Fig.(7.2b) that larger cargo (within a biologically relevant

range) can tip track more efficiently. This is the result of each binding or unbinding

event resulting in a larger cargo displacement on average, as explained in sections

5.2.1 & 6.2.1.

It can be observed in Fig.(7.1) that the binding rate distribution increases

approximately exponentially towards its peak value before decaying quickly towards

zero at xtip = 0 nm. Following the predictions made in section 6.2, and the result
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that cargo exhibit large effective velocities in the direction of the microtubule lattice

when they overhang the microtubule end (see section 7.2.1), the maximum effective

velocity exhibited by cargo will therefore be observed at a position ' xtip + L (for

vMT > 0), as shown in Fig.(7.9b). At this position, S
(1)
δ (x) can be approximated as,

S
(1)
δ (xtip + L) =

(
1

2L

)〈
N − n
n+ 1

〉 xtip+2L∫
xtip

((x− (xtip − L)) k1(x)) dx

−
(

1

2L

)〈
n

n− 1

〉 xtip+2L∫
xtip

((x− (xtip − L)) k2(x)) dx

+ kMT ∆x,

(7.7)

using the definitions in eq.(6.1), which have been shown to generate the same cargo

dynamics as those defined by the position xc(t) for relatively small values of N (see

Fig.(6.9)). However, no further simplifications to eq.(7.7) can be made for large

cargo, since L will be comparable or larger than the length scale associated with

fluctuations in kon,off (x).

It can be observed that the first two terms in eq.(7.7) decay to zero as L

becomes large for the binding and unbinding rate distributions shown in Fig.(7.1b).

This contrasts the result of eq.(6.12) for small cargo, which suggests that Veff (x) ∝ L2,

but explains the slight deviation from this trend observed in the inset of Fig.(7.2b)

at relatively large values of L. Since the location of the stable fixed point of cargo

motion can be derived by finding the position where eq.(7.7) is equal to zero, eq.(7.7)

predicts that there exists an optimal cargo size for tip tracking with N legs at the

interface between the ∝ L2 and decay regimes. In this case, eq.(7.7) also predicts

that there is a limit on the size of cargo that can tip track. This is the result of

overlap between cargo and the microtubule lattice inhibiting interactions with the

microtubule tip by reducing the moments of the displacement distribution exhibited

by the cargo (see eq.(6.1)).

As cargo become large, it is likely that the assumption that cargo legs can

rebind at any position within the range xc,cm(t)− L ≤ xnewl ≤ xc,cm(t) + L at any

time after they unbind from the microtubule breaks down (see section 5.4.1). This

would mean that the results of eq.(7.7) reflect an upper limit for the dynamics of

cargo, and that the effective velocity exhibited by cargo decays faster with increasing

L than currently predicted. It is expected that the density of cargo legs on the

surface of cargo remains constant as L increases, especially for systems with cargo-EB

interactions (see section 7.3). In this case, it is the interplay between the optimal

176



(b)

3 μm

(a)

10 μm

6
0

 s

t = 0 s

10 s

20 s

30 s

40 s

50 s

60 s

70 s

80 s

90 s

100 s

110 s

120 s

130 s

(b)

Figure 7.5: Trimeric clusters of EB CH domains track growing microtu-
bule ends — Kymographs showing the dynamics of (a) low concentration (∼ 10
pM oligomer concentration) and (b) high concentration (∼ 300 pM oligomer con-
centration) trimeric clusters (green) when binding to microtubules with labelled
tubulin (magenta). The kymographs in (a,b) use the same scale bars. The timelapse
of trimeric cluster motion (centre) shows that trimeric clusters exhibit tip tracking
transport (blue boxes) and lattice diffusion. Trimeric clusters that are left behind by
the growing microtubule end do not immediately unbind (60-80 s).

values of N and L (see Fig.(7.2b,c)) that will generate an optimal cargo size for tip

tracking. Estimating the relationship between N and L, which is required to find

this optimal size, is outside the scope of this work.

7.2.3 Experiments Studying Clusters of EBs

In order to validate the results of the simulations in section 7.2, trimeric, tetrameric

and hexameric clusters of connected EB CH domains (from this point referred to only

as ‘clusters’) have been generated according to the procedure described in methods

section 3.2. Since the CH domains in these clusters cannot unbind from each other,

they emulate the cargo shown in the schematic in Fig.(5.1) and simulated in section

7.2. Some representative kymographs that demonstrate the behaviour of trimeric,

tetrameric and hexameric clusters in vitro are shown in Fig.(7.5-7.7). Growing

microtubule plus-ends can be identified by their faster average growth velocities, and

are directed to the right in all kymographs.

As discussed at the start of this chapter, it is not possible to quantitatively
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compare the results of the simulations carried out in section 7.2 to the experimental

data shown in Fig.(7.5-7.7), since the rates used for the simulations correspond to

the average properties of dimeric EBs, while only oligomerised CH domains have

been studied experimentally. For this reason, it is the qualitative behaviour of the

clusters and how this changes as a function of N that is of interest. It can also be

observed in Fig.(7.5) that the trimeric clusters appear to regularly exhibit dwell

times of > 10 s near the growing microtubule end, whereas simulated trimeric cargo

exhibit average dwell times ∼ 0.1-5 s for reasonable values of ik. This suggests

that the average dwell time of clusters does not follow eq.(5.2), and that it is not

simply the result of them being able to bind to the microtubule independently

with each of their legs at a rate equal to that of the first leg from solution. Since

monomeric EBs exhibit a smaller average dwell time than when they are dimerised

[84], the observed increase in the average dwell time of clusters could be the result

of electrostatic interactions between the clusters and the microtubule (see section

7.3.1), co-operative binding of CH domains to the microtubule (see section 4.2.2), or

an increased binding rate for legs when n > 0 due to their closer proximity to the

microtubule or the shape of the cluster (see sections 2.3.2 & 8.1). For example, it

is possible that electrostatic interactions between the flexible linker regions of the

clusters and the negatively charged C-terminal tails of tubulin could increase the

rate that clusters are ‘re-captured’ before diffusing away from the microtubule after

unbinding, or could introduce an additional electrostatic ‘weakly bound’ state as

shown in Fig.(4.4). Provided that the observed motion of the clusters is the result of

the binding dynamics of their legs it would be expected to obey the models presented

in chapters 5 & 6, such that the key conclusions presented in this work should apply.

It can be observed in Fig.(7.5) that the trimeric clusters can efficiently

track the growing plus- and minus-ends of microtubules. Unlike EBs, the clusters

exhibit motion whilst bound that allows them to co-move with growing microtubule

ends (see the timelapse in Fig.(7.5a)), and they can also be observed to diffuse

on the microtubule lattice (see 70-110 s in Fig.(7.5a)). This range of motion was

demonstrated by simulated cargo in section 7.2.

As was the case for individual EBs in section 4.1.1, the average dwell time of

the trimeric clusters in Fig.(7.5a) is greater at the growing microtubule end than

on the microtubule lattice. The average dwell time for the trimeric clusters is a

minimum on the darkened lattice region, which represents the GMPCPP-tubulin

microtubule seed. This reduced interaction strength can be observed to result in

greater cluster diffusivity, as has been shown previously for other MAPs [86, 95].

It can be inferred from the kymographs in Fig.(7.5) that the stable fixed points

of the motion of the clusters are several pixels (& 500 nm) behind the microtubule
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Figure 7.6: Tetrameric and hexameric clusters of EB CH domains cannot
track growing microtubule ends — Kymographs showing the dynamics of (a)
low concentration (∼ 10 pM oligomer concentration) and (b) high concentration (∼ 80
pM oligomer concentration) tetrameric clusters (green), and (c) low concentration
(∼ 10 pM oligomer concentration) and (d) high concentration (∼ 80 pM oligomer
concentration) hexameric clusters (green) when binding to microtubules with labelled
tubulin (magenta). All kymographs use the same scale bars.

tip. This agrees qualitatively with the results of eq.(6.13) and Fig.(7.2b,c), which

predict that the fixed points should be located close to the positions where the

gradient of the individual leg binding rate distribution is a maximum (assuming that

Veff (x) is dominated by its component due to binding events), and that this will not

coincide with the position of the microtubule tip. In experimental systems it is likely

that fewer preferential EB binding sites would be found in the tapered structure at

growing microtubule ends [42], and that this would generate an effective velocity

acting away from the microtubule tip (k′on(x) < 0 in eq.(6.12)). This would have the

effect of shifting the stable fixed point of cluster motion away from the microtubule

tip.

The representative kymographs for tetrameric and hexameric clusters shown

in Fig.(7.6) indicate that tetrameric clusters tip track relatively poorly at microtubule

plus-ends, and that hexameric clusters cannot tip track at microtubule plus-ends at

all. This observation agrees qualitatively with the results of Fig.(7.2a,c), where it

was shown that there is an optimal value of N for tip tracking transport, and that

increasing N beyond this value decreases the effective velocity exhibited by cargo

and their ability to tip track. This result suggests that of the two binding models

presented in chapters 5 & 6 it is the one that tracks the centre of the range of each

cargo’s bound legs that more accurately predicts the behaviour of experimental cargo,

since Fig.(6.7c-e & 6.8a,b) show that the effective velocity exhibited by cargo defined
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Figure 7.7: Hexameric clusters of EB CH domains track shrinking micro-
tubule ends — Kymographs showing the dynamics of hexameric clusters (∼ 40 pM
oligomer concentration, green) when binding to microtubules with labelled GMPCPP
seeds (magenta) in the presence of labelled EB3mCh (red). All kymographs use the
same scale bars.

by the average position of their bound legs increases monotonically with increasing

N . Although the average dwell time for hexameric clusters appears to be longer than

the corresponding values for trimeric and tetrameric clusters, it can also be observed

in Fig.(7.6c) that the hexameric clusters appear to exhibit a reduced diffusivity when

bound to the lattice. This result also agrees with that of Fig.(7.2c) assuming that

the optimal value of N required for these clusters to exhibit tip tracking is N ' 3.

As predicted in section 7.2.1, the hexameric clusters that cannot track the

growing plus-ends of microtubules can be observed to track shrinking microtubule

ends in Fig.(7.7). It can be observed in Fig.(7.7) that hexameric clusters diffusing

on the microtubule lattice are ‘swept up’ by a depolymerising microtubule end, and

exhibit a large velocity towards the microtubule lattice until a rescue event occurs.

This large velocity is expected to be the result of a skewed preferential binding rate

distribution (see section 7.2.1) and physical forces exerted by curved protofilaments at

the shrinking microtubule tip [208]. Following rescue, it can be observed in Fig.(7.7)

that the gathered hexameric clusters cannot generate a large enough effective velocity

to co-move with the growing microtubule ends. Labelled EB3mCh was used in these

experiments both to visualise the growing ends of microtubules, and to ensure that

hexameric clusters cannot change the expected structure of microtubules to generate

extended regions of preferential EB binding sites (which could explain their increased
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average dwell times). Since the EB3mCh constructs accumulate only at the growing

ends of microtubules in Fig.(7.7) and not near any bound hexameric clusters, it can

be concluded that adding more legs to cargo abrogates their ability to tip track, as

derived in chapter 5.

Although they were not able to track growing microtubule plus-ends, it can be

observed in Fig.(7.6 & 7.7) that tetrameric and hexameric clusters can track growing

minus-ends. Tip tracking at microtubule minus-ends was not probed in section

7.2, but can be predicted from the results of eq.(6.12) and Fig.(7.1). Microtubule

minus-ends exhibit slower growth velocities than plus-ends (Fig.(7.5-7.7)), but the

hydrolysis rate of the GTP associated with bound tubulin heterodimers is expected

to be position independent. This decreases the width of the GDP/Pi binding

site distribution in Fig.(7.1a), and increases the corresponding maximum value of

k′on(x) in Fig.(7.1b). Since eq.(6.12) predicts that Veff (x) ∝ k′on(x) (assuming that

Veff (x) is dominated by its component due to binding events), this means that

cargo are expected to exhibit larger average displacements and effective velocities

at the growing minus-ends of microtubules. For a monotonically increasing kon(x)

distribution within the range xc − L ≤ x ≤ xc + L, an increased value of k′on(x)

also increases the probability of a cargo leg binding outside the range of a cargo’s

currently bound legs. Together, these effects will shift the optimal value of N for tip

tracking transport to larger values, as the total rate of binding or unbinding events

occurring is ∝ N (see section 5.2.1). This means that hexameric clusters that cannot

track growing plus-ends can successfully track growing minus-ends.

7.3 Introducing Cargo-EB Binding Dynamics

In order to obtain a complete picture of how EB-mediated cargo transport occurs

inside cells, cargo-EB interactions must be added to the cargo model derived in

chapter 5. Expanding on the schematic in Fig.(4.4), Fig.(7.8) shows a complete

cargo binding model that includes cargo-EB interactions. Computationally, this

corresponds to adding more families to the direct-family method of the Gillespie

algorithm (see methods section 3.4.1). The additional interaction layer between

cargo and microtubules is expected to reduce the average dwell time and increase

the effective diffusivity of cargo. In the limits kc,ce →∞, kce,c → 0, kc,m → 0, and

km,c → 0 cargo that obey the schematic in Fig.(7.8) should reproduce the dynamics

observed in chapter 5, as each cargo leg will always be bound to an EB.

Despite adding cargo-EB interactions to the model, the locations and dynamics

of individual EBs are not calculated or stored in these simulations, and instead

it has been assumed that EBs bound to the microtubule follow the steady-state
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Figure 7.8: Model for cargo-EB interactions — Schematic showing the two
possible methods for cargo leg-microtubule binding. (Top) Cargo leg can bind
directly to EB that is already bound to the microtubule, (Bottom) Cargo leg can
bind to EB that is unbound from the microtubule, before subsequently binding to
the microtubule. Once bound to an EB bound to the microtubule, the cargo leg has
no memory of which binding method was used, and the final states of both methods
are equivalent. Rates ki,j and kn are equivalent, and the latter has been introduced
to simplify the analytics.

distribution shown in Fig.(7.1a). As was the case in section 7.2, it has also been

assumed that interactions between cargo with associated EBs and microtubules do

not influence this steady-state distribution, and that these interactions follow the

binding and unbinding rates derived in section 7.1.1 (kce,m(x|ik) = kEBon (x|ik) and

km,ce(x) = kEBoff (x)).

Cargo-EB binding and unbinding rates have not been probed experimentally

in this or any previously published work. However, since EBs were still observed

to accumulate at growing microtubule ends in Fig.(7.7), it can be assumed that

cargo-EB binding affinity is of a similar order of magnitude to EB-microtubule

binding affinity (see section 7.3.1). For this reason, it has been estimated that

kce,c = klatoff and kc,ce = klaton ∆z [EB] (see table 7.1), where [EB] = 50 nM has

been used in accordance with the derivation of the binding and unbinding rate

distributions in Fig.(7.1b) (see section 7.1.2). The binding rate kc,ce does not need

to be converted to a single-molecule binding rate as in section 7.1.1, as for this

interaction it does not matter which EB binds to the cargo. In contrast, the binding

rate kc,m must be converted to a single-molecule binding rate as the quantity of

interest is the binding rate of a specific cargo leg to an EB-occupied binding site on

the microtubule. Following from the assumption that kc,ce ∝ klaton , the rate kc,m(x|ik)
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can be approximated as,

kc,m(x|ik) = min
(
klat,EBon

)max
(
klat,EBon

)
min

(
klat,EBon

)


ik−1

12

(BE(x) + CE(x)), (7.8)

using the same conversion as in eq.(7.4). It is possible that differences between

EB-microtubule and cargo-EB interactions could manifest in different values of ik

governing their interaction volumes, but it has been assumed that the values of ik

in eq.(7.4 & 7.8) are the same for all simulations carried out in this work. Finally,

following the schematic in Fig.(7.8), the rate that cargo unbind from an associated

EB once bound to a microtubule km,c is position independent and equal to kce,c.

Whereas in previous simulations it was assumed that cargo were initialised

with a single leg bound (n = 1) and all other legs unbound (see section 5.2.1), in

simulations with cargo-EB interactions it is necessary to initialise the cargo in a

state with nm = 1 (one leg associated with an EB bound to the microtubule) and

0 ≤ nce ≤ N − 1 (any number of unbound legs associated with EBs in solution).

Setting nce = 0 for all simulations when kc,ce 6= 0 would artificially skew the

probability of whether the first simulated event involved the binding or unbinding of

EBs or cargo legs. Instead, it can be assumed that cargo are first equilibrated at

positions where no microtubules are within their interaction volume. This can be

achieved by temporarily setting kc,m = kce,m = 0, such that the probability of cargo

having η legs associated with EBs can be derived from the binomial distribution,

P (η|Pce, N) =

(
N !

η!(N − η)!

)
P ηce(1− Pce)N−η, (7.9)

where Pce = kc,ce/(kc,ce+kce,c) is the probability of a single cargo leg being associated

with an EB. After randomly selecting a value of η from the binomial distribution

defined in eq.(7.9), the first leg that binds to the microtubule must be randomly

selected either as one of the η legs associated with an EB or one of the N−η legs that

is not. In this case, the number of legs initially associated with EBs is equal to nce = η

with probability (N − η)kc,m/(η kce,m + (N − η)kc,m) (the first bound leg was not

associated with an EB), or nce = η−1 with probability η kce,m/(η kce,m+(N−η)kc,m)

(the first bound leg was associated with an EB), when nm = 1.

Analytically, the addition of the second interaction layer consisting of cargo-

EB interactions acts to increase the number of possible types of events that contribute

to the definitions of the effective velocity and diffusivity in eq.(5.25 & 5.26) from

M = 3 to M = 7. These additional interactions include (Fig.(7.8)): the association
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and dissociation of a cargo leg to an unbound EB (m = 4, 5), and the association

and dissociation of a cargo leg to an EB bound to the microtubule (m = 6, 7). When

considering the COM of cargo, eq.(6.1) can only be used to calculate the moments of

the displacement distribution for events that change the number of cargo legs bound

to the microtubule (with ∆m = (δm,1 + δm,6)− (δm,2 + δm,7)). Whereas microtubule

growth events cause a net shift in the positions of all bound cargo legs, it is necessary

to set δ
(i)
4,5(xcm|n) = 0 ∀xcm, n, since the binding and unbinding of cargo legs and

EBs in solution does not shift the cargo position. For this analysis, the rates defined

in eq.(6.2) become,

km(xcm|n) =

(
nce(δm,1 + δm,5) + nm(δm,2 + δm,7) + δm,3 + nc(δm,4 + δm,6)

2L

)

×
xcm+L∫
xcm−L

km(x|ik) dx,

(7.10)

where k4(x) = kc,ce and k5(x) = k7(x) = kce,c are position independent, and

k6(x|ik) = kc,m(x|ik) (the dependence on ik is only relevant for k1(x|ik) and k6(x|ik)).

Assuming that the position dependent binding rates k1(x|ik) and k6(x|ik) vary slowly

in comparison to the size of the cargo, and that the position dependent unbinding rate

k2(x) varies slower than these binding rate distributions (see section 6.2), eq.(6.11)

can be used to show that,

S
(1)
δ,CEB(x) =

N∑
nm=1

[
Pnm(x)

(
L2

3(nm + 1)

)
(〈nce〉(nm)k′1(x|ik) + 〈nc〉(nm)k′6(x|ik))

]

−
N∑

nm=1

[
Pnm(x)

(
2nm εnm(x) Inm(x)

nm − 1

)
(k2(x) + k7)

]
+ vEBMT ,

(7.11)

where 〈nce〉(nm) =
∑N−nm

η=1 (η P (η|Pce, N − nm)) (see eq.(7.9)) and 〈nc〉(nm) =

N−nm−〈nce〉(nm). In this unique case where k2(x) varies slowly in comparison to the

size of the cargo and the binding rate distributions, the two types of unbinding event

(governed by k2(x) and k7) generate the same moments of the cargo displacement

distribution, which are effectively the moments of the bound leg distribution (see

section 6.1.3).

The formula presented in eq.(7.11) predicts that the magnitude of the com-

ponent of Veff (x) resulting from unbinding events increases for any system with

k7 > 0. Although the definition of Veff (x) in eq.(7.11) is not an explicit function
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of k4 or k5, the probability Pce governs the values of 〈nce〉(nm) and 〈nc〉(nm), such

that 〈nce〉(nm) = N − nm and 〈nc〉(nm) = 0 when k4 →∞. In this case, the results

of eq.(7.10 & 7.11) are equivalent to eq.(6.2 & 6.12) respectively. In the following

simulations Pce = 0.131, such that 〈nce〉(nm) < 〈nc〉(nm). The addition of the

second interaction layer will always increase the magnitude of the component of

Veff (x) resulting from binding events when k4 > 0 and k′6(x|ik) > k′1(x|ik). It can be

observed in Fig.(7.1a) that |BE′(x) +CE′(x)| ≤ |B′(x) +BE′(x) +C ′(x) +CE′(x)|,
and therefore it can be predicted that S

(1)
δ,CEB(x) . S(1)

δ (x) ∀x,N . According to the

analysis in section 5.3.3, this will make it more difficult for cargo with a set number

of legs to tip track.

The average dwell time of cargo can also be estimated analytically by sub-

stituting the average binding and unbinding rates of individual cargo legs into

eq.(2.24 & 5.2). Assuming that the cargo is initially in a state defined by the vector

P 0 = (1−Pce, Pce) (see section 4.2), the average cargo leg binding rate can be derived

using the method in eq.(4.10) to be,

kCEBon (x|Pce, ik) =
k1(x|ik) k4 + k6(x|ik)(k1(x|ik) + k5)

k4 + k5 + k1(x|ik)(1− Pce) + k6(x|ik)Pce
, (7.12)

assuming that the bound (m) state is a sink state. As expected, the average binding

rate kCEBon (x|Pce, ik) → k1(x|ik) when Pce is large (k4 � k5) and k4 � k6(x|ik).
Similarly, eq.(7.12) states that kCEBon (x|Pce, ik)→ k6(x|ik) when Pce is small (k5 � k4)

and k5 � k1(x|ik). The total cargo leg unbinding rate is equal to k2(x) + k7. Using

eq.(5.2), it can be shown that for cargo that exhibit the predicted rates k5 > k4

(or Pce < 0.5), k6(x|ik) ≤ k1(x|ik) and k1−7 > 0, that TCEB1,N (x|Pce, ik) < T1,N (x|ik)
∀x, ik, N . This means that the results of eq.(7.11 & 7.12) suggest that cargo-EB

interactions act to decrease both the average dwell time of cargo and the effective

velocity that they can generate.

Including the effects of cargo-EB interactions in simulations generates the

results shown in Fig.(7.9), which mirror the plots in Fig.(7.2). As expected from the

analysis of eq.(7.9), the reduced magnitude of S
(1)
δ,CEB(x) means that fewer parameters

in the phase space of Fig.(7.9a) generate tip tracking cargo transport compared to

Fig.(7.2a). In particular, it can be observed that tip tracking can only be exhibited

by cargo with large values of both N and L when ik = 6. Comparing the insets of

Fig.(7.2c & 7.9c) it can be observed that the maximum magnitude of the effective

velocity distribution as a function of N has not yet been achieved in Fig.(7.9c).

This is the result of the increased total unbinding rate nm(k2(x) + k7) shifting 〈nm〉
towards smaller values, which means that a greater value of N is required to maximise
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- Cargo exhibit
tip tracking

Figure 7.9: Effective cargo dynamics with cargo-EB interactions — (a)
Phase-space for simulated values of N , L, and ik with cargo-EB interactions, showing
which cargo do (yellow) or do not (blue) exhibit tip tracking transport (same number

simulated as in Fig.(7.2)). (b,d) Distributions of (b) S
(1)
δ,CEB(x) and (d) Deff (x) for

cargo of various sizes with N = 6 and ik = 6 (key for (b,d) is above (b)). Dashed lines
are the corresponding distributions without cargo-EB interactions from Fig.(7.2).
The inset of (b) shows that the maximum value of the effective velocity component
due to binding and unbinding events approximately evolves ∝ L2 (green dashed line

is a x2 + b fit). (c,e) Distributions of (c) S
(1)
δ,CEB(x) and (e) Deff (x) for N -legged

cargo with 2L = 160 nm and ik = 6 (key for (c,e) is above (c)). The inset of (c)
shows that the effective velocity has not yet reached a maximum as a function of N .
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the product of the average event rate and displacement (see section 5.2.1).

AsN increases, the behaviour of cargo with cargo-EB interactions (Fig.(7.9b,c))

tends towards the behaviour observed for cargo in Fig.(7.2b,c) near any stable fixed

points. This is also the result of k7 > 0 reducing the value of 〈nm〉, since larger

values of N are required to reproduce the values of 〈nm〉 and 〈nce〉(nm) observed in

simulations without cargo-EB interactions, and therefore reproduce the observed

cargo dynamics. Comparing the insets of Fig.(7.2c & 7.9c) it can be estimated that

Nmax
CEB ' 2Nmax, where Nmax is the value of N that generates the minimum value of

S
(1)
δ(,CEB)(x). This means that the S

(1)
δ,CEB(x) distributions exhibited in Fig.(7.9b,c)

are approximately equivalent to the S
(1)
δ (x) distributions corresponding to cargo with

N/2 legs, and that the effect of adding cargo-EB interactions to the cargo binding

model is to reduce the effective number of cargo legs that are available to bind to

the microtubule and generate an effective velocity.

Assuming that Veff (x) is dominated by the component resulting from binding

events (see section 6.2), it can be predicted by eq.(7.11) that S
(1)
δ,CEB(x) ∝ L2 for

slowly varying binding rate distributions. Once again this behaviour is shown in

the inset of Fig.(7.9b), and it breaks down at similar values of L as observed in

Fig.(7.2b). This suggests that the distributions 〈nce〉(nm)k′1(x|ik) + 〈nc〉(nm)k′6(x|ik)

and k′1(x|ik)〈nce〉(nm) vary on similar length scales. It is clear from Fig.(7.9b,c) that

it is the value of N and not L that limits the magnitude of the S
(1)
δ,CEB(x) distribution

compared to the magnitude of the S
(1)
δ (x) distribution.

As well as inhibiting the tip tracking capabilities of N -legged cargo, it can be

observed in Fig.(7.9b,c) that Nmax
CEB ' 2Nmax results in the inhibition of the capability

of cargo to track shrinking microtubule ends (see section 7.2.1). The reduced effective

velocity exhibited by cargo at the microtubule tip can also be observed by a reduction

in the effective diffusivity at this position. Additional effects resulting from the

interplay of the interactions in Fig.(7.8) mean that the Deff (x) distribution exhibits

a minimum at the microtubule tip as opposed to near the stable fixed point of the

cargo motion (Fig.(7.9d,e)), although an intuitive understanding of this behaviour

has not yet been achieved. Fig.(7.2e) shows that the Deff (x) is a maximum at

the microtubule lattice for N = 4-6, but this value is increased to N = 8-12 after

the introduction of cargo-EB interactions (Nmax
CEB ' 2Nmax). The introduction

of cargo-EB interactions does not significantly vary the evolution of Deff (x) as a

function of increasing L in Fig.(7.9d), but the result that Nmax
CEB ' 2Nmax means

that the magnitude of Deff (x) at the microtubule lattice is greater for values of

Nmax . N . Nmax
CEB in Fig.(7.9e).
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Figure 7.10: Cargo-EB interactions reduce tip tracking capability — Ky-
mographs showing the dynamics of (a) low concentration (∼ 100 pM oligomer
concentration) and (b) high concentration (∼ 10 nM oligomer concentration) trimeric
cargo molecules containing only the central region of human CLASP2 (green) when
binding to microtubules with labelled GMPCPP seeds (magenta). Labelled EB3mCh
(red) has been added to identify growing microtubule ends. (b) Cargo molecules
completely cover the microtubule lattice at high concentrations. (c) A kymograph
showing the dynamics of moderate concentration (∼ 400 pM oligomer concentration)
trimeric cargo molecules after shortening the basic region of the CLASP EB-binding
region and adding a 17 nm SAH domain as a spacer (green). The kymographs in
(a-c) use the same scale bars.

7.3.1 Experiments Studying Multivalent Cargo

Experiments have also been carried out using multivalent cargo molecules that can

interact with wild-type (dimeric) EB3 proteins in solution via SxIP motifs (see

methods section 3.2.1). Some representative kymographs that show the behaviour of

two different types of trimeric cargo in vitro are shown in Fig.(7.10). As described in

methods section 3.2.1, the first type of multivalent cargo (Fig.(7.10a,b)) contains the

middle region from human CLASP2 (amino acids 437− 563) [15], and the large basic

region associated with this insert generates significant lattice-binding affinity. This

is most likely the result of interactions with the negatively charged C-terminal tails

of tubulin [207]. For this reason, a preference for growing microtubule ends can only

be observed at low concentrations in Fig.(7.10a), and at high concentrations there is

complete lattice coverage (Fig.(7.10b)). In Fig.(7.10b) it can also be observed that

the EB3mCh constructs are relocalised from growing microtubule ends to the cargo

decorating the lattice, which indicates that cargo-EB binding affinity is of a similar

order of magnitude to EB-microtubule binding affinity (see section 7.3).
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Two changes were made to the structure of the multivalent cargo in order to

reduce their lattice-affinity and improve their tip tracking capabilities. First the basic

region from human CLASP2 was shortened (amino acids 485 − 563), and second

a 17 nm long SAH domain was introduced as a spacer (see methods section 3.2.1).

Together, these modifications reduced the density of positive charge by removing

basic residues and increasing the size of the cargo. The average dwell time of this

second type of cargo appears to be smaller (Fig.(7.10c)), and they exhibit more

frequent and longer tip tracking events. It is expected that this second type of cargo

better represents those found inside cells.

Although a quantitative comparison between the average dwell times of the

trimeric clusters in Fig.(7.5) and the trimeric cargo in Fig.(7.10c) cannot be made

without carrying out lower concentration cargo experiments, it can be observed in

Fig.(7.10c) that the trimeric cargo appear to exhibit reduced tip tracking affinity.

This result was predicted by eq.(7.11) to be the result of the reduced average gradient

〈nce〉(nm)k′1(x|ik) + 〈nc〉(nm)k′6(x|ik) < (〈nce〉(nm) + 〈nc〉(nm))k′1(x|ik) observed

by the cargo, but it should be noted that the rates k1,6(x|ik) and the averages

〈nc,ce〉(nm) will be different for dimerised EBs compared to individual CH domains.

Since eq.(7.11) also predicts that Veff (x) ∝ L2 (assuming that Veff (x) is dominated

by its component due to binding events), it is expected that the increase in cargo size

following the addition of the SAH domain will increase the tip tracking capabilities

of the cargo. For this reason, it is possible that the tip tracking events observed in

Fig.(7.10c) would be completely abrogated for smaller trimeric cargo.

Since the trimeric cargo only exhibit robust tip tracking after the shortening

of the basic region of the human CLASP2 insert and the addition of the SAH domain

(Fig.(7.10a,c)), it can be hypothesised that electrostatic interactions between the

cargo and the microtubule act to inhibit the tip tracking capabilities of the cargo.

One potential route for this inhibition could be to uniformly increase the effective

binding rate of cargo legs to the microtubule, which would decrease the magnitude

of Veff (x) by reducing the average gradient 〈nce〉(nm)k′1(x|ik) + 〈nc〉(nm)k′6(x|ik) in

eq.(7.11). Alternatively, the electrostatic interactions could alter the average height of

the cargo above the microtubule, which could change the position dependence of the

binding rate distribution (see section 8.1). As discussed in section 7.2.3, electrostatic

interactions could also result in cargo exhibiting an increased ‘re-capture’ rate. In all

of these cases, it is expected that the addition of electrostatic interactions between

the cargo and the microtubule will increase the observed average dwell time of the

cargo.

It is of interest to consider the advantages that can be gained by cargo

exhibiting the two interaction layers shown in Fig.(7.8). For systems where it is
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difficult to regulate the number of cargo legs available for binding to microtubules,

it is possible that the cargo-EB interaction layer could act to increase the optimal

number of legs required for tip tracking (Fig.(7.9a,c)). Similarly, the range of values

of N that generate this optimal motion will be increased, such that the motion is less

affected by fluctuations in 〈n〉(x). Although not included in the cargo simulations in

sections 7.2 & 7.3, it is also possible that the addition of competition will significantly

inhibit the tip tracking capabilities of cargo permanently bound to EBs, but not

those of cargo that can exhibit cargo-EB interactions. This is the result of the latter

exhibiting a binding mode that allows them to interact with EBs already associated

with microtubules at the growing microtubule end. Cargo that cannot exhibit this

binding mode must compete with these bound EBs to be able to generate any effective

velocity. For example, it has been shown that the value of the dissociation constant

Kd for EB3 binding to growing microtubule ends is of the same order of magnitude

as [EB3mCh] = 38 nM used in the experiments that generated Fig.(7.10) [67], such

that the EB3mCh occupancy at growing microtubule ends will be ∼ 50%. Despite

this, tip tracking can be observed in Fig.(7.10c), suggesting that the two interaction

layers allow cargo to ‘adapt’ to the local density of bound EBs. Competition could

be introduced to the cargo binding models using the method described in section 8.1.

7.4 Forces Associated with Tip Tracking Transport

Since forces associated with cargo-EB-microtubule interactions have not yet been

included in the cargo binding model described in this work (see section 8.2), the

internal forces of cargo systems that have been shown to tip track in Fig.(7.2b,c &

7.9b,c) cannot be quantified. For example, since it has been assumed that cargo

move instantaneously to their new position following a binding or unbinding event,

the instantaneous velocity and acceleration of cargo, as well as the instantaneous

forces acting on them, are infinite. However, it is possible to interpret the effective

velocities and diffusivities of cargo (see Fig.(5.11a, 7.2b-e & 7.9b-e)) as the results of

net forces.

In a state of constant velocity it can be hypothesised that the effective force

F (x) acting on cargo towards growing microtubule ends is balanced by an effective

drag force equal to Fdrag(x) = −γ(x)Veff (x) = −F (x), where γ(x) is an effective

drag coefficient that takes into account the binding dynamics of the individual legs

of cargo to the microtubule. In this case, Veff (x) must be measured in the lab frame

and not the rest frame of the growing microtubule end. Using the same methods as

in previously published work, it can be assumed that the effective drag coefficient

can be calculated using the Einstein relation, such that γ(x) = kBT/Deff (x) [29].
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(a)

(c)

(b)

Figure 7.11: Effective forces obtained from simulations — Effective forces
calculated as F (x) = (kBT V

lab
eff (x))/Dlab

eff (x) from the results of simulations with (a)
N = 6, ik = 6 and varying L (Fig.(7.2b,d & 7.9b,d)), and (b) 2L = 160 nm, ik = 6
and varying N (Fig.(7.2c,e & 7.9c,e)). Dashed lines correspond to the results of
simulations without cargo-EB interactions. The effective force is a maximum at the
growing microtubule end, and decreases when cargo-EB interactions are introduced
to the model. (c) Effective forces calculated from the results of the simulations
shown in Fig.(7.4) with vEBMT = −280 nm s−1 (without cargo-EB interactions). For
shrinking plus-end tracking, the force of interest acts in the positive x-direction.

It can be observed from Fig.(7.2d,e & 7.9d,e) that the drag coefficient will be a

maximum near the growing ends of microtubules, where the effective diffusivity of

cargo exhibits a minimum. This can be interpreted as the result of an increased

average number of cargo-microtubule connections near the growing microtubule end

that inhibit cargo motion. The assumed form of the effective drag coefficient can be

used to derive the effective potential shown in eq.(5.41), since,

Pss(x) = Z e

∫ x( Veff (x
′)

Deff (x
′)

)
dx′

= Z e

∫ x( γ(x′)Veff (x′)
kBT

)
dx′

= Z e

(
1

kBT

) ∫ x F (x′)dx′

= Z e
− V(x)
kBT ,

(7.13)
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where the effective potential V(x) is related to the force via F (x) = −dV(x)/dx.

The position dependent effective forces associated with the simulations that

generated Fig.(7.2b-e & 7.9b-e) have been calculated using the assumptions that

V lab
eff (x) = Veff (x)−vEBMT and Dlab

eff (x) = Deff (x)−((vEBMT )2/(2kMT )), and are shown

in Fig.(7.11a,b). Effective forces acting towards the growing microtubule end in the

lab frame (F (x) < 0 in Fig.(7.11a,b)) represent a force that can theoretically be

utilised by EB-microtubule interactions to transport cargo. As a result of the shape of

the Deff (x) distributions shown in Fig.(7.9d,e), the positions of the minima of F (x)

for different input parameters (corresponding to the maximum force acting towards

the growing microtubule end) do not coincide with the locations of the corresponding

stable fixed points of cargo motion, especially following the introduction of cargo-EB

interactions to the model. For the majority of input parameters, it can be observed

in Fig.(7.11a,b) that introducing cargo-EB interactions reduces the effective force

exhibited by cargo. However, the total work done on any cargo will be significantly

decreased in the presence of cargo-EB interactions as a result of their reduced dwell

times (for the same values of N and L).

It can be observed that the forces shown in Fig.(7.11a,b) are of the same

order of magnitude as those measured for SxIP-EB interactions in optical trap

experiments [28, 29], and are approximately an order of magnitude smaller than

those generated by individual motor proteins [209]. Since tip tracking transport

must result in cargo velocities similar to the microtubule growth velocity, which is of

a similar order of magnitude to the average transport velocity achieved by motor

proteins (Veff ' Vmotor) [30–33], it can be predicted that the maximum size of cargo

that can be transported by the mechanism of tip tracking transport is less than that

that can be transported by motor proteins. Assuming that the maximum force that

can be maintained during tip tracking transport is Fmaxtip , compared to a maximum

force of Fmaxmotor that can be exerted by motor proteins, and that γ ∼ ρ in accordance

with Stokes’ drag force (where ρ is the radius of the cargo), it can be shown that the

maximum size of cargo that can be transported by tip tracking is approximately,

ρmaxtip =

(
Fmaxtip

Fmaxmotor

)
ρmaxmotor ∼ 0.1ρmaxmotor. (7.14)

The effective force distributions corresponding to the shrinking microtubule

plus-end tracking shown in Fig.(7.4) have also been plotted in Fig.(7.11c). Forces

acting in the direction of microtubule shrinkage (F (x) > 0 in Fig.(7.11c)) at the

microtubule tip are of a similar order of magnitude to those in Fig.(7.11a,b), but

increase with increasing N . Since |Fmaxshrinking| > |Fmaxgrowing| (acting in the relevant

transport direction) in Fig.(7.11), eq.(7.14) suggests that larger cargo can be trans-

ported by microtubule plus-ends when they are shrinking compared to when they
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are growing.

7.5 Conclusion

In this chapter it has been shown that the cargo binding models derived in chapters

5 & 6 can qualitatively reproduce the tip tracking phenomena observed in vitro

for clusters of EB CH domains and multivalent cargo. These models were able to

correctly predict that there exists an optimal number of legs for cargo to exhibit tip

tracking transport, that cargo can diffuse when bound to the microtubule lattice,

and that cargo with many legs can track shrinking microtubule ends even when they

cannot tip track. Following the introduction of cargo-EB interactions to these cargo

models, they also correctly predicted that both the average dwell times and the tip

tracking capabilities of cargo would be reduced. The experiments carried out in this

section showed that cargo require relatively few microtubule binding sites in order to

tip track, and that cargo-EB interactions may be necessary to overcome competition

for binding sites near growing microtubule ends.

7.5.1 Further Work

In order to more accurately predict the behaviour of cargo in experiments, the tubulin

state distributions derived in section 4.4 should be used to generate the binding and

unbinding rate distributions to be inputted into simulations. It can be predicted

using eq.(7.11) that this would result in simulated cargo exhibiting larger effective

velocities, such that tip tracking could be observed for smaller cargo with fewer legs.

Similarly, by introducing competition between bound EBs and the legs of cargo it

may be possible to understand the reason that two interaction layers (cargo-EB and

EB-microtubule) are utilised for tip tracking transport inside cells. Discussions about

introducing competition and other modifications to increase the biological relevance

of the cargo binding models derived in chapters 5 & 6 can be found in chapter 8.
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Chapter 8

Extending the Cargo Model

The continuum and discrete models of tip tracking cargo transport developed in

chapters 5 & 6 have been shown to be able to predict tip tracking with biologically

relevant input parameters in chapter 7. In this chapter, modifications that can be

made to these cargo binding models will be discussed with the aim of increasing

their biological relevance. Although not all of the suggested modifications will be

introduced into the simulations, this chapter outlines the next steps for the models

derived in this work.

8.1 Introducing Cargo Shape and Competition

A simple method for incorporating competition into the binding rates of cargo

was suggested in section 2.3.2, but this would not work for systems with position

dependent binding rates. Similarly, it was alluded to in section 2.3.3 that the shape

and orientation of cargo could have a significant effect on their interactions with a

substrate. Both the effects of cargo shape and competition can be introduced to the

binding models derived in chapters 5 & 6 through a coarse-grained ‘shape factor’

S(x|xc, n) that modifies the local binding rate distribution.

As was the case for the bound leg distribution defined in section 6.1.1, the

shape factor can be added to the discrete model by modifying the rates k1(x) →
k1(x)S(x|xcm, n) and k6(x) → k6(x)S(x|xcm, n) (where xcm denotes the COM of

a cargo instead of the centre of the range of its bound legs). This is an intuitive

method for writing the local region of the binding rate distribution, since the shape

factor S0(x|xcm) = θ(x− xcm +L)− θ(x− xcm−L) naturally generates the limits of

the integrals in eq.(6.1 & 6.2). This means that a shape factor of the form S0(x|xc)
was effectively used when simulating cargo in chapters 5-7. It is not necessary to add

the shape factor to the calculation of the unbinding rate, as the shape of the cargo

implicitly defines the form of the bound leg distribution. For example, the forms of
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PNl (x|n) presented in Fig.(6.2a & 6.4a) set the limits xc − L ≤ x ≤ xc + L on the

local region of the unbinding rate distribution.

Further modifications of the shape factor within the range xc−L ≤ x ≤ xc+L
can be used to describe the probability of a cargo leg being able to bind at any

position on a microtubule as a function of the cargo’s configuration. For example,

spherical cargo may exhibit a reduced binding rate far from the cargo centre position

as a result of how much the cargo legs would need to stretch to interact with the

microtubule. As well as introducing any forces associated with the elasticity of the

cargo legs (see section 8.2), this stretching would result in the linkers being in an

entropically unfavourable state, and so the probability of cargo legs binding at these

positions would decrease.

The shape factor can also be used to implement competition in cargo binding

simulations. For example, a shape factor of the form,

Sc(x|xc, n) =

S0(x|xc) if {xl(t)} 6= x,

0 otherwise,
(8.1)

where {xl(t)} is the set of bound leg positions at a time t, does not allow cargo legs

to bind at any positions where other legs are already bound. Implicit n dependence

arises in eq.(8.1) through the current configuration of bound legs {xl(t)}. This form

of the shape factor assumes that there is a single binding site for cargo legs (or EBs)

at each discrete position along the microtubule, but methods for introducing the

effects of binding to sites on adjacent pairs of protofilaments are discussed in section

8.3. In the case where competition is taken into account, the BE(x) and CE(x)

terms should be removed in eq.(7.4) (but not eq.(7.5)), as cargo legs (or EBs) cannot

bind at positions that are already occupied.

Although the shape factor defined in eq.(8.1) cannot be implemented in

the discrete analysis in chapter 6, it can be approximated using the bound leg

distribution obtained from simulations implementing eq.(8.1). In this case, the shape

factor SNl (x|xc, n) can be defined as the normalised probability of not finding a

cargo leg at the position x when the cargo has n legs bound and is centred at the

position xc (the inverse of the definition of the bound leg distribution in section

6.1.1). Example shape factors SNl (x|xc, n) are shown in Fig.(8.1b), and are equal to

SNl (x|xc, n) = α− β PNl (x|xc, n) where α, β are fitting parameters. For this reason,

the shape factor SNl (x|xc, n) represents the average probability of a position within

the range xc − L ≤ x ≤ xc + L not being occupied by a cargo leg.

The bound leg distributions in Fig.(8.1a) are less centralised than the equi-

valent distributions in Fig.(6.2a) without competition, particularly for n = 2, 3.
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(a) (b)

Figure 8.1: Shape factors derived from simulations — (a) The bound leg
distributions for 10-legged cargo obtained from simulations implementing competition
via eq.(8.1), with position independent binding and unbinding rates (10 000 simulated).
(b) The averaged shape factor distribution for the same simulations.

Similarly, the shape factors SNl (x|xc, n) in Fig.(8.1b) predict that binding will be

enhanced near the extremities of cargo (|x| ∼ L). Together, these results suggest that

introducing competition will increase the magnitude of the average displacement of

cargo per binding or unbinding event. Despite the decreased average binding rate of

cargo legs as a result of the reduced average number of available binding sites, it can

be observed that introducing competition in simulations using eq.(8.1) can increase

the effective diffusivity exhibited by cargo. As a result of the more centralised forms

of the bound leg distributions in Fig.(6.9a) for cargo defined by their COM, it is

expected that the introduction of competition using this method will have a greater

effect on the motion of these cargo.

As was the case for the position dependent bound leg distribution in section

6.1.3, asymmetry in SNl (x|xc, n) can generate an effective velocity. It can be predicted

using Fig.(8.1) that this effective velocity would act away from regions of increased

cargo leg binding rate, as was the case for the component of the effective velocity

due to unbinding events in Fig.(6.5c). However, in the same way that the shape

factors in Fig.(8.1b) can increase the effective diffusivity exhibited by cargo, it is

expected that they will also increase the magnitude of the component of the effective

velocity due to binding events, which should dominate over the asymmetry effects.

This means that the forms of SNl (x|xc, n) in Fig.(8.1b) are expected to increase the

range of input parameters over which tip tracking can be observed in section 7.2.

The increased effective diffusivity of cargo is also expected to increase the frequency

of ‘recapture’ events, where cargo that are left behind by the growing microtubule

end can catch up and tip track again without first unbinding.
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8.1.1 Potential Application: Motor Protein Dynamics

It is possible to study the dynamics of motor proteins using the discrete cargo binding

model derived in chapter 6 and the mathematics associated with the shape factor.

Motor proteins are specialised proteins that can move directionally once bound to

microtubules by generating energy through the hydrolysis of ATP [6–8]. Assuming

that the motors consist of two motor head domains that can bind to microtubules

(N = 2), the preferential binding of a motor head domain on one side of the motor

can be described using the shape factor,

Sm(x|xcm, n) =

(
1√

2πσ2
1

)
e
− (x−(xcm+µ1))

2σ21 , (8.2)

where xcm + µ1 is the mean binding position of the motor head domain and σ1 is

the standard deviation in this position. A value of µ1 > 0 generates a component of

the effective velocity due to binding events that acts in the positive x direction. The

motor head domain binding rate can be defined as k1, such that k1(xcm|n) = k1 δn,1

according to eq.(6.2).

Since N = 2 for these motors, after a binding event has occurred only

unbinding events are possible. However, instead of using the definitions of the

unbinding rate and bound leg distributions defined in eq.(6.2 & 6.4), it can instead

be assumed that the trailing motor head domain is always the one that unbinds. In

this case k2(xcm|n) = k2 δn,2, after also assuming that the motors cannot unbind

from the microtubule (Tmotor1,N � T cargo1,N ). Using a similar form for the bound leg

distribution as was used for the shape factor in eq.(8.2), it can be defined as,

PNl (x|xcm, n) =

(
1√

2πσ2
2

)
e
− (x−(xcm−µ2))

2σ22 , (8.3)

where a value of µ2 > 0 generates a component of the effective velocity due to binding

events that acts in the positive x direction. Since eq.(8.2) states that the free motor

head domain binds in front of the centre of the motor for µ1 > 0, and eq.(8.3) states

that the trailing motor head domain unbinds behind the centre of the motor for

µ2 > 0, the motor will ‘walk’ directionally along the microtubule. It can also be

derived that,

P1 =
k2

k1 + k2
, P2 =

k1

k1 + k2
. (8.4)

in steady-state, since the motor can only occupy the states n = 1, 2.

It can be shown that setting µ2 = µ1/2 results in binding and unbinding events

occurring the same average distance from the centre of the cargo. Finally, it has been
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assumed that σ1,2 < µ1,2 to ensure that stepping cannot cause ‘backwards’ motion.

In the case of motor proteins, values of σ1,2 > 0 effectively include the ‘slipping’

behaviour of motors that has been observed in experiments [210]. Alternatively,

motor slipping can be added as a different type of event (see eq.(5.25 & 5.26). The

bidirectional transport of motor proteins recently observed in experiments can also

be added to this model through different types of events, or the distributions defined

in eq.(8.2 & 8.3) can be re-defined as being bimodal.

Subject to these assumptions, the effective velocity and diffusivity for motor

proteins can be derived using eq.(5.25 & 5.26) to be equal to,

V motor
eff (xcm) = kmotort µ1, (8.5)

Dmotor
eff (xcm) = kmotort

[
µ2

1

2
+

(
σ2

1

4
+ σ2

2

)]
, (8.6)

where kmotort = k1k2/(k1 + k2) is the total rate of a binding or unbinding event

occurring. As expected, the effective velocity is directly proportional to the total rate

of binding or unbinding events and the average distance moved per event. Similarly,

the effective diffusivity is dependent on the widths of the distributions described in

eq.(8.2 & 8.3).

8.2 Introducing Force-Dependence

It was shown in eq.(2.26) that a simple method for adding force-dependence to an

unbinding rate was to use the form predicted by Kramers [168]. Multiple models have

since been developed to study how the force-dependence of motor protein binding

dynamics affects their ability to transport cargo inside cells [163, 166, 167]. Due to

the small, stochastic displacements of cargo that rely on EB-mediated transport, it

can be assumed that the effect of Stokes’ drag force is negligible (the time for which

the cargo is moving following a binding or unbinding event is negligible compared to

the average time between binding or unbinding events) [166]. Of particular interest

is how cargo motion is affected by the elasticity of the linker proteins that connect

cargo and EBs.

The force dependent unbinding rate for the ith cargo leg is expected to be of

the form [163, 167],

k
(i)
off (x|xc) = koff (x) exp

(
kl ∆i(xc)

Fd

)
, (8.7)

where kl is the spring constant of the cargo leg (linker protein), and Fd sets the
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force scale (see eq.(2.26)). The variable ∆i = |xi − (xc + δi)| − λ defines the

difference between the equilibrium length of the linker protein λ and its current

length |xi − (xc + δi)|, where xi is the position where the ith cargo leg is bound to

the microtubule and δi is its position on the surface of the cargo relative to xc. Once

forces are introduced to the cargo model, it is expected that the centre of the cargo

xc should be defined as the equilibrium position where the total force associated

with the stretching of cargo legs is zero (subject to thermal fluctuations).

Calculating the unbinding rate from eq.(8.7) requires multiple assumptions

about the properties of cargo legs (linker proteins). For example, there are currently

no reliable estimates for the values of kl, Fd or λ. As well as being necessary to

calculate the force-dependence of the unbinding rate using eq.(8.7), the stiffness

and length of the cargo legs will also influence their binding rate. As described in

section 8.1, this could be introduced using a shape factor that takes into account

the forces and entropy associated with cargo legs stretching to reach a binding site.

In order to ensure internal consistency, the same input parameters must be used

when calculating the force-dependence of the unbinding rate and the shape factor.

Both the binding and unbinding rates could also be affected by the diffusion of cargo

legs on the surface of cargo, as discussed in section 5.4.1. The unbinding rate would

vary in response to changes in δi (eq.(8.7)), which could also increase the distance

between the end of a freely diffusing cargo leg and a potential binding site.

It is expected that the increased unbinding rate of cargo legs at the extremities

of cargo will act to decrease their average dwell time, such that fewer cargo remain

bound long enough to exhibit tip tracking transport. Since the binding rate of cargo

legs is also predicted to decrease at the extremities of cargo as a result of them

needing to stretch and occupy an entropically unfavourable state, it is expected that

introducing force dependent binding dynamics will act to centralise the bound leg

distributions shown in Fig.(6.2a & 6.5a). This would have the effect of reducing the

magnitudes of the first and second moments of the cargo displacement distribution

due to either binding or unbinding events, which would decrease the effective velocity

and diffusivity exhibited by cargo. Overall, it is expected that introducing force

dependent binding dynamics will decrease the range of input parameters over which

tip tracking can be observed in section 7.2.

8.3 Introducing Microtubule Structure Effects

It was assumed in chapters 5 & 6 that cargo legs could not bind to sites on adjacent

pairs of protofilaments once bound to a microtubule. Since EBs bind at the vertex of

four tubulin heterodimers (excluding at the seam) [11, 38], each spatial gridpoint in
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simulations represents an average of 12 possible EB binding sites. It was also shown

in section 7.1.1 that the concentration of EBs in solution is constant in 3D space

for a system in thermodynamic equilbrium. However, the effects of competitive and

cooperative EB binding prevent the average number of EBs bound at the position x

being equal to 12(BE(x) + CE(x)) (see sections 4.4 & 7.1.2).

Instead of the cargo shape factor, a cooperativity ς(m(x)) (where m(x) is

the number of EBs currently bound at the position x) can be defined to study how

EB-EB interactions affect the steady-state distribution of EBs bound to microtubules.

The cooperativity is not explicitly a function of position, and only depends on the

number of EBs bound for each value of x. In order to study how this cooperativity

affects the binding of EBs to microtubules, eq.(2.5, 2.6 & 4.28) must be rewritten in

terms of the number of empty and EB-bound binding sites at each position, such

that m(x) = BE(x) + CE(x). The binding rates in eq.(2.5, 2.6 & 4.28) can then be

redefined as ktip,laton → ktip,laton ς(m(x)), and A0 = 12 defines the maximum number of

EB binding sites at each position. A first approximation of ς(m(x)) could be written,

ς(m(x)) =


A0 −B tanh(m(x)/B) for cooperative binding,

max(A0 −m(x), 0) for non-cooperative binding,

max(A0 −B atanh(m(x)/B), 0) for anti-cooperative binding,

(8.8)

where B is a constant that governs the position of the asymptote of ς(m) for (anti-)

cooperative binding. The form of eq.(8.8) for different values of B has been plotted

in Fig.(8.2a).

In the case of competitive but non-cooperative binding, Fig.(8.2a) shows

that the binding rates ktip,laton ς(m(x)) decrease linearly with increasing m(x). This

represents the decrease in available binding sites for EBs as m(x) increases. Similarly,

it can be observed in Fig.(8.2a) that limm(x)→0(∂ς(m(x))/∂m(x)) = −1 for all types

of binding, since it is expected that (anti-) cooperative effects are negligible when

few EBs are bound. As m(x) increases eq.(8.8) predicts that ς(m(x)) decreases

sub-linearly for cooperative binding (asymptotes at A0 −B, the presence of bound

EBs increases the binding rate of other EBs), and decreases super-linearly for anti-

cooperative binding (ς(m(x)) = 0 at m(x) = B tanh(A0/B) ≤ A0, the presence of

bound EBs decreases the binding rate of other EBs). Including the cooperativity

in eq.(2.5, 2.6 & 4.28) would require the recalculation of the steady-state tubulin

and bound EB distributions shown in Fig.(7.1a), resulting in more biologically

relevant binding and unbinding rate distributions than those shown in Fig.(7.1b).

Further cooperativity between EBs bound at adjacent positions (x±∆x) can also
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Figure 8.2: Model for cooperativity and effects of fluctuations in micro-
tubule structure — (a) The EB binding cooperativity defined in eq.(8.8) as a
function of B for A0 = 12. (b) A schematic showing how the tip tracking capabilities
of cargo can be instantaneously enhanced as a result of the stochasticity of GTP
hydrolysis.

be introduced using this model.

It is possible that using the steady-state distribution of bound EBs in the

cargo simulations carried out in sections 7.2 & 7.3 could prevent the observation of

phenomena that occur due to the stochasticity of GTP hydrolysis and the binding

dynamics of EBs. For example, Fig.(8.2b) shows a tubulin configuration that would

instantaneously enhance cargo tip tracking. Since these ‘patches’ of GDP associated

tubulin are expected to become increasingly common towards the microtubule lattice,

this effect could increase the average effective velocity exhibited by cargo in the

direction of growing microtubule ends. Although it is possible to include the tracking

of individual EBs in simulations by adding additional families to the direct-family

Gillespie algorithm used in this work (see methods section 3.4.1), the resulting

simulation would be significantly more computationally expensive. Alternatively,

it may be more accessible to perturb the steady-state distribution of bound EBs

derived using eq.(2.5, 2.6 & 4.28) during simulations instead.

The effects of being able to bind to adjacent pairs of protofilaments during

simulations must also be considered for cargo. In this case, as well as potential

cooperativity, the position of the centre of the cargo with respect to the position of

the EB binding site (x− xc), the finite size of the cargo (2L), the Young’s modulus

of the linker proteins connecting the cargo to EBs (Y ), and the diffusivity of the

cargo legs (linker proteins) in solution (Dl
aq) will prevent an individual cargo from

‘observing’ all 12 potential EB binding sites at each position at a given time. It can

be assumed that u(x− xc, L, Y,Dl
aq) ≤ 12 of the potential EB binding sites at the

position x can be observed by a cargo centred at position xc. In this case, the shape
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factor defined in eq.(8.1) should be modified to be of the form,

Sc(x|xc, n(x), u(x− xc, L, Y,Dl
aq)) =

S0(x|xc) if n(x) < u(x− xc, L, Y,Dl
aq),

0 otherwise,

(8.9)

where n(x) is the number of cargo legs bound at the position x. Cooperativity can

be introduced to cargo binding using a similar factor as that defined in eq.(8.8) for

EB binding, following the transformation m(x)→ m(x) + n(x).

8.4 Conclusion

In this chapter modifications for the cargo binding models derived in chapters 5 &

6 have been developed with the aim of increasing their biological relevance. It has

been shown that introducing competition through the use of a shape factor enhances

the effective diffusivity of cargo, but decreases their average dwell time. In contrast,

introducing force dependent binding and unbinding rates to the binding models is

expected to decrease the effective velocity and diffusivity exhibited by cargo. This is

the result of individual cargo legs binding less frequently at positions far from the

cargo centre, as well as unbinding more frequently from these positions. In order to

ensure internal consistency, the same biological parameters must be used to define

the shape factor and the force dependence of the binding and unbinding rates of

individual cargo legs, but many of these parameters are currently unknown. Other

modifications to the binding models include the effects of microtubule structure and

competition with EBs not associated with cargo.

8.4.1 Further Work

Including all of the modifications described in this chapter, the final forms of the

binding and unbinding rate distributions to be used in simulations are,

kfinc/ce,m(x|n, xc) = kc/ce,m(x)S(x|xc, n(x), u(x− xc, L, Y,Dl
aq)) ς(n(x)), (8.10)

kfinm,c/ce(x|n, xc) = km,c/ce(x)PNl (x|xc, n) exp

(
kl ∆i(xc)

Fd

)
, (8.11)

where the appropriate forms of the shape and force factors and the cooperativity

should be probed experimentally. It is possible that the forms of these distributions
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will also be dependent on the initial state of the cargo leg (c/ce). For example, it

is likely that the diffusivity of a cargo leg in solution Dl
aq changes when associated

with an EB. Although these additional distributions increase the biological relevance

of the cargo binding model, eq.(8.10 & 8.11) have a very large phase space that

would be impossible to probe computationally. For this reason, experiments are first

required to derive values for the parameters L, Y and Dl
aq, as well as the degrees of

competition and cooperativity exhibited by cargo legs.
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Chapter 9

Key Conclusions

The aim of this work was to probe the EB-mediated tip tracking transport of cargo

analytically and computationally in order to derive a model that could reproduce

experimental findings. Comparisons between experiments and the cargo binding

model derived in chapters 5 & 6 suggest that the model can be used to obtain a

qualitative understanding of EB-mediated cargo transport.

In chapter 4, the analysis of experimental EB binding data generated the

result that EBs exhibit multi-state binding dynamics when interacting with the

growing ends of microtubules. This analysis also reproduced the known result

that EBs preferentially bind to growing microtubule ends, where they also dwell

for longer on average before unbinding. This position dependence originates from

the hydrolysis of GTP nucleotides associated with the tubulin heterodimers that

comprise the microtubule, which converts the preferred binding sites of EBs to

significantly lower affinity sites. In chapter 5, it was shown that the tip tracking

transport of cargo is driven by the position dependent distribution of these preferred

EB binding sites. Cargo exhibit an effective velocity as a result of their associated

EBs preferentially binding to regions of increased binding rate and unbinding from

regions of increased unbinding rate. The transient binding dynamics of EBs to

microtubules acts to increase the magnitude of this effective velocity by reducing the

average number of cargo legs bound to the microtubule at any one time. Depending

on the values of various parameters, it was shown in chapter 7 that the effective

velocity exhibited by cargo can be of greater magnitude than the microtubule growth

velocity in biologically relevant conditions, which results in the tip tracking transport

of multi-legged cargo.

Upon further analysis, it was shown in chapter 6 that the effective velocity

exhibited by cargo can be defined explicitly as a function of the position dependent

binding or unbinding rates of individual EBs. For small cargo, this effective velocity
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is directly proportional to the gradient of the binding rate of individual EBs, such

that cargo are most likely to be found at the position where this gradient is maximal.

Significant differences have been demonstrated between the dynamics of cargo defined

by the centre of the range of their bound legs (chapter 5) or their average leg position

(chapter 6). Much like choosing between the Îto and Stratonovich conventions, this

result suggests that small changes in how cargo motion is derived can result in

significant changes in observed dynamics.

Experiments studying the dynamics of multimeric clusters of the CH domains

of EBs and multivalent cargo in chapter 7 showed that cargo require relatively few

microtubule binding sites in order to tip track, but that the introduction of the

cargo-EB interaction layer acts to increase this number. The key experimental

observations that there exists an optimal number of legs for cargo to exhibit tip

tracking, that cargo can diffuse when bound to the microtubule lattice, and that

cargo with many legs can track shrinking microtubule ends even if they cannot tip

track, were predicted using the cargo binding models developed in chapters 5 &

6. Modifications that can be made to these cargo binding models to increase their

biological relevance were discussed in chapter 8.

In conclusion, it has been shown in this work that tip tracking cargo transport

is a passive process that arises as a result of position dependence in the transient

binding and unbinding dynamics of individual EBs. This process demonstrates one

method by which cells can harness stochasticity at the molecular level to generate

useful and predictable behaviour at larger length scales. In this case, the randomness

associated with the transient binding dynamics of many individual proteins can

be harnessed to robustly transport cargo in the direction of microtubule growth or

shrinkage. Control of this process requires the regulation of the local concentration

of EBs, the structure of nearby microtubules, and the distribution of cargo-EB linker

proteins on the surface of each cargo. This work presents the first analytical model

that can qualitatively reproduce the experimentally observed tip tracking behaviour

of multivalent cargo, and hence that can explain the underlying mechanisms behind

this phenomenon.
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and D.V. Köster. Myosin II filament dynamics in actin networks revealed with

interferometric scattering microscopy. Biophys. J., 118(8):1946–1957, 2020.

[4] E. Nogales, M. Whittaker, R.A. Milligan, and K.H. Downing. High-resolution

model of the microtubule. Cell, 96(1):79–88, 1999.

[5] Y. Zheng, M.L. Wong, B. Alberts, and T. Mitchison. Nucleation of microtubule

assembly by a γ-tubulin-containing ring complex. Nature, 378(6557):578–583,

1995.

[6] I.R. Gibbons and A.J. Rowe. Dynein: A protein with adenosine triphosphatase

activity from cilia. Science, 149(3682):424–426, 1965.

[7] R.D. Vale, T.S. Reese, and M.P. Sheetz. Identification of a novel force-

generating protein, kinesin, involved in microtubule-based motility. Cell,

42(1):39–50, 1985.

[8] R.J. Lasek and S.T. Brady. Attachment of transported vesicles to microtubules

in axoplasm is facilitated by AMP-PNP. Nature, 316(6029):645–647, 1985.

[9] X. Liu, V. Rizzo, and S.V. Puthanveettil. Pathologies of axonal transport in

neurodegenerative diseases. Transl. Neurosci., 3(4):355–372, 2012.

[10] S. Honnappa, O. Okhrimenko, R. Jaussi, H. Jawhari, I. Jelesarov, F.K. Winkler,

and M.O. Steinmetz. Key interaction modes of dynamic +TIP networks. Mol.

Cell, 23(5):663–671, 2006.

206



[11] P.M. Maurer, F.J. Fourniol, G. Bohner, C.A. Moores, and T. Surrey. EBs

recognize a nucleotide-dependent structural cap at growing microtubule ends.

Cell, 149(2):371–382, 2012.

[12] M.C. Hendershott and R.D. Vale. Regulation of microtubule minus-end dy-

namics by camsaps and patronin. PNAS USA, 111(16):5860–5865, 2014.

[13] H. Browning, D.D. Hackney, and P. Nurse. Targeted movement of cell end

factors in fission yeast. Nat. Cell Biol., 5(9):812–818, 2003.

[14] P. Bieling, S. Kandels-Lewis, I.A. Telley, J. van Dijk, C. Janke, and T. Sur-

rey. CLIP-170 tracks growing microtubule ends by dynamically recognizing

composite EB1/tubulin-binding sites. J. Cell Biol., 183(7):1223–1233, 2008.

[15] S. Honnappa, S.M. Gouveia, A. Weisbrich, F.F. Damberger N.S. Bhavesh,

H. Jawhari, I. Grigoriev, F.J. van Rijssel, R.M. Buey, A. Lawera, I. Jelesarov,
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