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Abstract

The thesis consists of three main parts. Firstly, a molecular dynamics and po-
tential énergy minimisation package that has been implemented is described in detail.
All potential and force interactions are described and tested successfully. Compound
tests on minimal energies for clusters of water molecules, the radial distribution function
for liquid argon and the equilibrium distribution for the dihedral angle in Butane under
Langevin dynamics are performed and the presence of multiple time scales is noted for
Butane as well as for a simplified protein model due to Grubmiiller and Tavan.

Secondly, fitting stochastic differential equations (SDEs) to time series is stud-
ied. Initially, | consider the well-understood case of non-degenerate diffusions, where
all components of the process are driven directly by Brownian motion. An SDE with
constant diffusivity and trigonometric force expression is fitted to trajectories obtained
from simulations of Butane by maximum likelihood methods and fitted diffusion and
drift parameters depend strongly on the timescale considered. Hypoelliptic diffusion
processes are considered next. Here, the unexpected failure of SImple estimators neces-
sitates the use of carefully chosen approxmate likelihoods. For the case of only partial
observations being avallable, a compound algorithm is de5|gned and numerically seen to
be asymptotically consistent. It is applied to the same Butane sample path and found
to equilibréte, although the fitted SDE fails to reproducé the free energy landscape.

Thirdly, connections between maximum likelihood estimators (MLEs) and prac-
titionefs’ metho‘ds are investiga‘ted. Analytical links are found for reversible processes
and f& second order Langevin processes. In the case of 1D processes, MLE and practi-

tloners methods for the drift are found to yleld estimators ldentlcal up to lower order

terms even for flmte times of observatlon
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Chapter 1
Introduction

In order to give an overview of what will be treated in this thesis, this chapter will briefly
touch on current challenges in molecular dynamics simulations and the motivation for fit-
ting stochastic differential equations to trajectories from molecular dynamics simulations
in section 2 and 3. Secti_on 3 then goes on to describe basic techniques of parémeter
estimation and section 4 describes challenges arising from only partial observations be-

ing available. Finally, section 5 will comment on relations between practitioners’ and

statisticians’ methods to estimate drift and diffusion parameters. :

1.1 Molecular Dynamics .

Molecular Dynamlcs is currently faced with a computatlonal bottleneck: There is a gap
of several orders of magmtude between the total time a dlrect atomtlxcally resolved sim-
ulatlon of a macromolecule of b|o|og|cal interest can cover and the timescales at which
biologically inyteresting dynamics occur. Some computational biologists emphasise that
‘minimal energy conformations of proteins are a good test for forcefields and are sceptical
biologi;:ally fneaningful direct molecular dynamics simulations are at all feasible given
today’s combutational resources. Nonetheless, packages for direct molecular dynam-
ics simulation have been developed for a long time, with [17], [20] and [22] being the
original publications for CHARMm, AMBER and ECEPP respecti\}ely, all of which were

written in the 1970s and 1980s.



While chemists tend to stress the importance of the forcefield and the mo[ecules
used to train the forcefield, recent interest in the applied mathematics community has
been focused on dynamics, in particular on how to extract or compute effective dynamics.
One point which is thought to be characteristic of proteins is the existence of metastable
states, states which are separated by a large energy barrier which is seldom crossed at

room temperature. Reproducing this qualitative feature with a very simple protein model

was the main focus of [32] and in fact [31].

1.2 Fitting Stochastic Differential Equations

It is not only the generation of molecular dynamics data which currently presents a com-
putational bottleneck, other difficulties arise when attempting to interpret this data.' The
extraction of physically meaningful essential dynamics has been a focus for some time
“and one way of extractlng this mformatlon that has been suggested is to fit stochastic
processes or, given the continuous time nature of these processes, stochastlc dlfferentlal
equations to time series from molecular dynam|cs If the fitted SDE is weII chosen, the'
* parameters represent physically meanmgful quantities and can thus be viewed as the
extracted dynamical information. Early work in this direction can be found in [32] [59].
A more elaborate approach is taken by Hummer in [34] using multiplicative noise, and by
Schiitte and coworkers in [35] using a hidden Markov model to switch between different
SDEs.
" One might ‘ask why c‘)ne' should éttempt to fita stdchaétic-ptocess to an en-
s tirely déterministic Hamiltonian system. Practitioners generally quote the Iarge number
of particles involved and vaguely appeal to concepts of statistical physics rather than
mathematlcally ngorous ergodlc theory In fact in the context of a dlst|ngmshed par-
ticle in a heat bath it can be shown that in the limit of large part|c|e numbers the
| d|st|nguxshed partlcle s trajectory converges to those of 2 certain SDE in a rather weak
sense ({27], [63]). Following a different line of argument, one can appeal to the differ-
ent timescales involved: fast, oscillatory movement at the atomic level and relatively

slow movement at the conformational level. This scale separation can also be used to



rigorously justify stochastic behaviour if the fast driving process is chaotic, see [25]. An
overview of extracting effective dynamics from a mathematical perspective can be found
in [10]. B .

Following this motivation, the current thesis will be concerned with fitting stochas-
tic differential equations to trajectory data from molecular dynamics simulations. The
first step towards this, however, has to be the fitting to trajectories that are actually
generated from an SDE of the type to be fitted. Only if this fitting is successful, one |
can think of applying the algorithms to molecular dynamics data.

To conclude this section“, | briefly review the maximum likelihood estimator tech-

nique for fitting parameters in a stochastic differential equation. Consider the equation
dz = OA(z)dt + LdW (1.1

where z : Ry — R™ is the solution of the SDE, A : R® — R™ are ;suitably well-
_ behaved force functions, © € R**™ are parameters and ¥ is the invertible dlffuswlty
matrlx The |.ke|1hood is then given via the Girsanov formula relating the probablllty
density Pg on path space for the pr‘oc‘esskspecmed by (1.1) to that of Wiener measure
P with d‘)iffusivit}‘/ E; "vl'his is done by specifiying fhe RadopTNikodym derivative which i}s
- given as | |
Lo ([ o) i~ / [==teate(o] a)
dP o
Given 2 flmte‘plece of traJectory. {x(t)}teoﬂ, one can maximise the IlkellhOOd of the |

given path using the drift coefficients © provided independently of E by the estimator

6= ( / dz, ®A(w(s))) (/A(m(s))@A(x(S))ds>—l. (1)

if the diffusion process is suitably ergodic. For non-invertible ¥ some ‘results are known
if the process is hypoelliptic. -In the case of linear force functions it has been shown
that (1:2) is still yiable and there are numerical indications presented in this thesis that
this extends to suitable force functions A(:). If only some of the entries of © are to
be estimated, however, knowledge of £ can enter the estimator for © and can lead to

i.Il-conditioning as highlighted in the next section, see in particular 1.3.3.



1.3 Failure of Simple Estimators

This introduction will briefly highlight some examples studied in more depth in the

subsequent chapters. Where full details are not given in the introduction, they will of

course be provided in subsequent chapters.

1.3.1 Example I: Harmonic Oscillator

Following the example of the distinguished particle in the heat bath, let's consrder a

very simple model: the harmonic oscillator with white noise forcing.
z+ ’yx + Dz = oW
This second order SDE should be interpreted in the following sense:

dg = pdt

L g (1.3)
dp = —Dgqdt—ypdt+ odW '

where W is standard Brownian motion and all quantities are scalar.
The initial problem is to estimate the parameters D, v and o given'a finife

number of observations g;, pi, i € {1,..., N} at equidistant times ¢;.

Several observations lead to consider the problem of only partial’ly available data,
though: | . |
On the side of the fitted model, it is clear from (1.3) that the spatial component,

g W|l| be CL@ for any a € [O, 2) whereas the momentum component, p, will be rougher
On the other hand taking data from a molecular dynamics srmulatlon where a
- molecule may be modelled as a Hamiltonian dynamical system, it is clear that this data
will be smooth, prowded the potentials used are sufficiently well-behaved. Therefore, as
the spacing between the observatlon times At = t; — t;_1, goes to zero, and the final
observation time goes to lnflnlty, convergence can only be expected in some weak sense.
Numerically, this‘ manifests itself in experiments with parameter estimators for o which
are based on quadratic variation and suffer from ¢ — 0 as At —s 0.
Finally, for molecular dynamics simulatio‘ns, velocity data is ’not always available

at the required times (typically, a Stoermer-Verlet scheme is used which delivers Prtl
2



rather than p,,). If simple interpolation formulae are used this is tantamount to numerical

differentiation which can lead to strange behaviour of estimators for o as next subsection
shows,

1.3.2 Example ll: stochastic growth

Consider model problem [ from chapter 4:

g =r

5 oW ¢ (1.4)

Using a straightforward numerical differentiation formula to estimate the unobserved

velocities
~ __ Int+1 —qn | .
b= "At o (1.5)

which corresponds to a maximum likelihood estimator arising from an explicit Euler

statistical model, the estimate for the diffusion coefficient o is biased. In fact, it is

shown in subsection 4.4.3: )

o2 — 202 as T — o0 a “
3 : (1.6)

Thus, numerical differentiation can lead to completely wrong estimates. For the

harmonic oscillator (1.3), thc‘)ugh,‘ even worse is true:

1.3.3  Maximum likelihood estimation for the harmonic oscillator

‘Suppose observations i, Pi, ¢ € {1,..., N} of the harmonic oscillator (1.3) are available
at equidistant times t; = iAt and we wish to estimate «y, D, o from these observations
using a maximum likelihood estimator. For the straightforward maximum likelihood

estimator it is then possible to show that the drift parameters are similarly off-track. In

fact,:
ED = 1p |
= 3 , (1.7)
.1
By = v - (1.8)



holds!

It is the hypoelliptic nature of these problems which forces a certain structure
on the estimators, taking into account the propagation of noise into the smooth com-
‘ponents. This propagation results in ill-conditioned statistical models which necessitate
careful selection of drift estimators if the compound algorithm is to be asymptotically

consistent. A full exposition of these issues can be found in chapter 4.

1.4 Statisticians’ and Practitioners’ Approaches

Naturally, there is statistical literature about fitting stochastic differential equations to
time series data, e.g. [50] and more recently [62] provide overviews. The statistical
literature frequently assumes that estimating diffusion coefficients is easy (e.g. Kutoy-
ants, [62] completely»excludes the problem from consideration) arguing that it can be
estimated from an arbifrary short piece of continuous-time trajectory using quadratic -
" variation.

In the present application, however, this argument is not satisfactory because the
processes only approximately behave like diffusion processes and their behaviour éhanges‘
on the very shortest timescales. '

From a physicist's point of view, estimating drift parameters is easy, provided one
is given a sufficiently long piece of trajectory, assuming the system is in thermodynamic
equilibrium in the canonical measure, as one can simply use the invariant measure to
‘infer the drift coefficients, provided the temperature of the system is known. Estimating
the diffusion coefficient is rather more difficult and there does not seem to be a canonical
way of doing this as Hummer ([34]) points out.

It is thus of interest to link statisticians' and physicists’ approaches to esti-
mating parameters and some links between, firstly, maximum likelihood estimators.-and
the frttmg of the invariant measure and, secondly, quadratic variation and ﬁttmg of

the Laplace transform of the spatial autocorrelation are indeed found and described in

Chapter 5.



1.5 Challenges and Cross-links — Conclusion

Having highlighted the continuing challenge of biologically meaningful molecular dynam-
ics simulation and the fitting of stochastic differential equations as a means of extractir;g
effective dynamics, some problems posed by those fitting procedures have been high-
lighted. Also, the cross-links of methods used traditionally in statistics and those used

by physicists and chemists have been touched upon, thus summarising the main issues

to be dealt with in this thesis.



Chapter 2
Basics of Molecular Dynamics

2.1 Introduction

| In order to have a source of molecular dynamics data which is completely transparent,
a simple MD code has been developed, implementing the absolutely essential ‘features ‘
of CHARMM, [17]. |
~ The code has slowly grown into a multi-threaded C++ molecular dynamics and
potential minimisation code with simple 3D visualisation routines (using GLUT). It
uses essentials of the CHARMM force field as well as offering some alternative ad-hoc
forcefields. The second section of this chapter will describe the forcefield and its imple-
mentatlon as well as various tests to which the code has been subJected Integrators and
energy conservat|on as well as compound tests such as properties of Lennard Jonesium,
minimal energies of water clusters and a simple protein model will also be studied in
that section. The third section will focus on Butane and the obsefved metastability in

" this simplification of the Grubmiiller/Tavan model.

2.2 MD Force Field and Code

2.2.1 ’ Protein model and force field

The basics of molecular dynamics modelling can be found in [47] or the more recent

_book by Schlick, [54]. A Protein is simplistically modelled here as a’system of N mass



points with mass m;, whose position ¢; € R3 as a function of time is governed by the

Hamilton equations of motion:

is = i€ {0,. N

q’J Bpw . { }
. oH

pij = _'8?; 36{123}

where sz refers to the _]th coordlnate of the lth atom Of course, the main mforma-
tion is encoded in the Hamlltonlan whlch for the purposes of this molecular dynamrcs

simulation is given as H =T + V where the kinetic energy is
- Tt
and the potential energy is glven as

ECHARMMbonds 5Ch,crarmm (b — b)?

S SCHLICKbonds 3CbscHLICK (B2 — b%)2

Zangles i » (cos ¥ — cos 190) ‘ Fr
2 harm. angles éca— harm (9 — 190) ' : . ‘(.2.1)
3 ihedrals ks @k (cosw) e o
St /T (L% gty

i
: %9 ~ S
E ,.7 eXCI(Z’J) 0 7'1..7 .

;;+} + o+ 4+ o+ o+

|  2;.2.2 ;‘ lmplementation and Parameterisation :

,‘:The code |s set up in a strongly object orientated way, prowdmg classes for atoms,

: bonds bond angles, protelns as well as the integrator, the display manager etc. havmg

- grown to approxrmately 9000 lines of C4++. |

The code contalns both potential and force expressmns WhICh can all be SW|tched

- on and off |nd|V|duaHy and will now be descnbed in turn

. Bond stretch interactions
 There are two ’models for the bond stretch interactions, one taken from the original

. (1983) ‘,‘CHARMM paper,[17],  which is ‘the parametrisat’ion used in [32].



The other model for bond stretch interactions comes from
[57], where it is used as a soft constraint to enforce bond
length constraints. Its bi-quadratic form reduces the compu-
tational cost for force evaluations.

A nonlinear model used by Heyes et al. ([44], [5])

Figure 2 T Atom Bond has been used tO fit the vibrational frequencies in a testing

configuration but is not currently active in the code.

Bond Angle interactions

The bond angle parameters for the trigonometric approximation are given directly in
Schlick's article on water clusters, [57],
For the CHARMM parametrisation, their potential expression

_ tf0)2 is expanded in powers of and a Taylor series

fitted for small deviations from the equilibrium angle to the

trigonometric approximation is used, given by Schlick ([54],

formula (8.15)) as:

Ca f« 2Zkgsin2tin 22

Figure 2.2: Bond Angle 0 NN
This approximation reduces computational cost, but Grubmueller and Tavan used

the original parametrisation from CHARMM. Both potentials have been implemented,

although the harmonic bond angle potential has been tested only briefly.

Dihedral Angle interactions (Torsions)

The dihedral angle is the angle between two planes specified via two adjacent bond
angles, see figure 2.3 for an illustration. It is (up to its sign) given by:

(n x t2) «(r2x r3)

cosed i x r23=|2x r3] (2:3)
n = @ 4 (2.4)
3 = Q4-Q3 (2.6)

10



Here, d\... gb denote the position vectors of the
four atoms involved in the dihedral angle. The
parameters ao-.-Gs are taken from A. Fischer's
diploma thesis, [23]. Dihedral angles are used for
the simulation of small alkanes which are useful
as systems with known metastability.  They are

not used for the Grubmiiller-Tavan model of pro-
Figure 2.3: Dihedral Angle tejps

Van der Waals interactions

For the alkane simulations, the van der Waals parameters are given by [17], The interac-
tion exclusion function excl(i,j) is one whenever two atoms share a common bond or are
part of a common bond angle and it is  zero otherwise.
Computationally, the van der Waals interactions also serve to
avoid collisions of oppositely charged particles which would
otherwise lead to blow-up in the integrator.

In general, all atom interactions (which are not ex-
cluded via exclQ) are computed, yielding an 0(N 2) algo-
rithm. A nearest-neighbour boxing strategy is implemented
and has been tested, but as the advantage only becomes pal- Figure 2.4: Van der
pable at large (> 100) numbers of atoms or in the case of Waals Interaction
well-separated atoms, this further approximation is not made
here. Even the more advanced strategies like particle mesh Ewald methods (which | have
considered for implementation and studied in some detail) or Multipole methods are re-
ported (e.g. in [47]) only to show significant advantages beyond 100 to 1000 atoms in

the simulation.

11



Electrostatic Interactions

For each atom, one can impose an electrostatic charge g*. Inthe case of water, charges
to reproduce qualitative behaviour of water droplets are well-known (reported in mutual
agreement by [57] and [19], Table 1, SPC and F30),
whereas in the case of the charges given by Grubmuller and
Tavan in [32] the only information available until the end
of coding work on the program was their Fig. 1, which
was qualitatively approximated by two periods of a cosine
with amplitude 0.5e. See below for a further discussion
of this point. For the protein simulations, interactions be-
Figure 2.5: Electrostatic tween partial charges are only allowed if the atoms do not

Coulomb Interaction share a bond or bond angle. This is as specified in [17].

2.2.3 Verification of Force expressions

The Force induced by the potentials is given via
F = -VV. 2.7)

This is amenable to direct numerical verification by numerical differentiation of the
potential. In view of the rather involved force expressions, especially for the dihedral
angle terms, this turns out to be a very valuable tool.

The approach to verify the implemented force expression adopted here is to
compute a numerical approximation of the gradient of the potential in a component-

wise fashion:

V(x + hei) — V(x)

Fi(x) -

(28

Then the deviation from the implemented force is computed, and the two-norm of the

12



Force Errors - bond stretch, bond angle, dihredral angle
4 T T T T — T
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3
e
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fog10(h)

Figure 2.6: Force errors: BS, BA, DA

relative error is output: .

R (29)
" Of course, th|s is still a function of the posxt|on vector z, so an initial condition xz
V: is constructed by placing all ‘atoms of the proteln under test at random in a box of
size 2 x 2 x 2a3. In a doubly logarithmic plot, the force error incurred is plotted as a
functron of A, yreldmg plot 2.6. This was obtamed for a butane atom conflguratlon The
g slope of the fitted lines are 1 0002 1. 0070 and 1 0068 for the CHARMM bond- stretch |
B tngonometrlc bond- angle and dlhedral angle interaction respectively. - For the van der
":’Waals and the electrostatlc interaction a cluster of four water molecules W|th random
initial condltlons produced in the same way was used. The plot obtalned is given in

| ﬁgure 2. 7 where the slopes of the fltted Ilnes are 1. 0091 and 1.0058 for the van der

; Waals and the electrostatlc interaction respectively.
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Force Errors — van der Waals and electrostatic
4 T T T T T T

-2+

log10(|{force error|[2/ lforcel},)

-4 4
-6} 4
~8F 4
van der Waals
x  Electrostatic
-10 1 1 1 1 1
-12 -10 -8 -6 -4 -2 0 2

log10(h)

Figure 2.7: Force errors: vdW, Coulomb

2.2.4 The Integrator

The scheme used to integrate the Hamiltonian equations of motion is

qn+% = qn_% + AtM_lpn

(2.10)
‘Pn-i-AtF(qn_*_%) :

i

Pn+l

where M = diag(m;) is the mass matrix. If a starting step of the form

»

pL = py+AtF(gy)

" is used, then starting from an initial cdndition 91, P4 the method is of order 2 and is
“sometimes referred to as the Stérmer/Verlet integrator, e.g. in [54]. It belongs to the
class of symplectic integrators which, up to floating point rounding error, constitute a
symplectic transformation in every step of integration. A full account of the theory can
be found in [14]. One of the essential features of these integrators is that they exactly
(up to floating point accuracy) preserve phase space volume. They also approximately

conserve a Hamiltonian that is close to the true Hamiltonian.

14
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. Figure 2.8: Comparlson of lntegrators

To illustrate typical behaviour of this integrator, consider the case of a simple

harmonic oscillator given by
g =p
P o= —q

Using an explicit Euler scheme to mtegrate these equatlons yields the trajectory given
on the left of figure 2.8, whereas an |mpl|crt Euler scheme yields the plot in the middle
‘ of 2.8. In both these it is clear that phase space volume will be either gained or lost.
Using the above Stormer-Verlet scheme yields the plot given in figure 2.8 where the i
- conservation of phase space volume is mirrored by the fact that the displayed ’elllpse’
has the same volume as the circle (which corresponds to the true solution). - Note

however that the dlstance from the origin (whose square corresponds to the energy) is
not exactly constant, so there is no conservatlon of energy. The long term properties of -
these mtegrators have seen renewed mterest recently

‘The order of the numerlcal scheme (2. 10) in the current |mp|ementat|on is ver-

 ified in the folIowmg section. -

g Order of convergence e

A dlatomlc molecule W|th one CHARMM bond is started with initial positions in the

energy minimum posmon and velocities such that speeds and posmons rise to order
umty size. The bond stretch interaction is the only active interaction in this model. For

.a fixed ﬁnal tlme Tr =1, a variety of timesteps is used, comparing the 5|mulatlon result

15




Convergence of Verlet integrator, =t

20 T T T T T
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Figure 2.9: Verlet Integrator Verification

at the final time to the analytic result. A doubly logarithmic plot reveals an intercept
with rounding errors around a timestep of size At~ 2.4-10~7. The slope of the least
squares fitted line is —2.00099, corroborating the method being of order two. Note,

however, that the precise value of the slope is easily modifiable by including or excluding

some of the extreme points.

Order o’f convergerr.lce ‘2‘ |
A typical 100 residue initial condition with cosine charge distribution and in all other
~ aspects following [32], is evolved (approximately conserving energy) until a collapsed
_condition is obtained, see the figure below. '

| This is used as a starting condition for simulation fof 49fs, ljsing timesteps f}om
49-2-%...49-2713s. Note that this simulation takes place at high total kinetic energies
(of the order of 4000%—%). The result obtained for the finest timestep is considered
a close approximation to the true solution and the 2-norm deviations of the spatial

" coordinates for the fixed final time and varying timestep is plotted in a doubly logarithmic

16



Figure 2.10: Semifolded intermediary configuration

plot. Again, a line is fitted using a least squares fit and the slope obtained is again close

to two, see figure 2.11.

Energy conservation

To test the potential evaluation functions (and not only the force evaluation), the same
semi-folded initial condition as above (2.10) is used as a starting condition. The poten-
tial energy terms for the four contributions (using CHARMM bonds and trigonometric
angles, only) are exported from the program as well as spatial coordinates. The cor-
responding velocities are computed in a post-processing step from the coordinates to
circumvent the problem of split-timesteps. (Having xn but vn+\ and vn_i in the pro-
gram...) The total energy of the protein as a function of time is plotted and its standard
deviation from its equilibrium value is computed.

Plotting the RMS deviation of the total energy from its average value as a
function of timestep in a doubly logarithmic plot yields the plot in figure 2.12. A line
is fitted to the data-points using least squares (and omitting the leftmost data-point as

this is meant to elucidate the asymptotic behaviour only) and its slope is found to be

17
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Total energy for A 1s0.5fs
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- Figure 2.13: Total Energy fluctuations

—2.013, which is close to two, as expected from [47], p.83.

A plot of the total energy as a function of time at these high temperatures using

a timestep typical of later simulations can be seen in figure 2.12.

1225 Lennard-Jonesium

Another qualitative check was done using periodic boundary conditions on a van der
Waals liquid (using parameters for Argon from [60]). The observed statisi:ical quantity
is the fediel distribution function, g(r), a hietograrh of which is given in figure 2.14.
Good qualitative agreement with the plot in [47] is obtained. As quantitative
data for these pIots (at T = 300K, o = 1350kg/m ) was not immediately available, a

quantltatlve evaluatlon was renounced

2.2.6 Water

In order to verify the interpretation of the parameters, a simple, well-studied molecule
was needed Usmg [57] a parametrisation speaﬁcally for water is analysed in the sequel

: Note that the above artlcle uses a different potential for the bond- stretchmg term for

19



x10°

Figure 2.14: Radial Distribution function for Argon

reasons of ease of computations. Schlick et al. restrict the Coulomb interaction to act
intermolecularly onIy‘ (as opposed to both, intramolecularly and intermolecularly). Fur-
thermore, they have a van der Waals interaction only between oxygen atoms belongfng
to different water molecules, i.e. Hydrogen atoms are completely excluded from van der

Waals interactions. To compare with the simulations in that paper, | try to reproduce

some of their TABLE 1 here ('all energies in units of 1—;%‘% :

o g Molecules Bt - Eoow  Evaw o Epond - Eangle
1 . 6.82385e-31" 0 0 2.50956e-31 4.22429e-31
2 -6.9391 -0.43512 21476  0.258041 0.0903812
4 -32.4175 -46.0538 10.8098 2.02165 0.804886

Note that the energy minimisations are done using steepest descent with a linear search
: strategy‘guérénteein"g .m‘ohotonicity.‘ There is no guarantee to find the absolute mini-
mum,‘ however, and fheré seem to be quité a few local minima.

Comparing to the data given in [57], the agreement is found to be approximate
rather than exact. As a strong dependence on parameters (e.g. Coulomb charges) has

been observed, it is speculated that small differences in conversions (e.g. of charge

20



units, in particular in view of the limited number of digits reported for charge conversion

in [57]) may greatly affect minimal energy conformations.

2.2.7 Metastability

Using CHARMM bond-stretch, trigonometric bond angle, standard van der Wals and
electrostatic interaction on a linear chain of 100 CH; extended atoms, just as in Figure

2.10, long-time simulations of the protein have been done using the following simulation

protocol specified in [32]:
1. Simulate starting from a stretched configuration for 2ns, using 1fs timesteps.

2. Cool down by velocity rescaling every iOth timestep such that at every tenth

timestep the kinetic temperature of the protein is the desired 300K.

3. Observe for a further 2ns, verifying that kinetic temperature remains around 300K.

The initial coﬁfigu‘r‘atio‘h phase was deemed neceéséry bylGrubmijl’Ier“ahcyi. Tavah
to ensure " proper exploratlon of phase space”, but from the simulation results, it AOes
not seem to brlng about much of a change after the first 200ps ~

Observatlon in step 3 above shows that the protein has indeed cooled down and
that the potential and kinetic energy degrees ‘of freedom have equilibr'ated.‘ This 2ns
per‘i‘o‘d together wifh sdmé extra observation time (usually 5ns)”v‘vas' also used to look
for metastablllty Wthh was expected to occur at a rate of 1.89ns~1. No such rare

transntlons of the magnltude reported in [32] have been found.

The potential reasons for this may be:

o Usmg trlgonometrlc angles instead of harmonic angles makes a large difference in
overall quahtatlve behaviour even though the force errors at the angle deviations

observed at 300K are only a few per cent.

. Mos‘t i‘mportantly, the charge distribution is critical and the cosine fit to it destroys

qualitative features of the dynamics of this particular protein model;
- o Not enough phase space volume has been scanned.
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Pursuing Grubmiiller's model further even though no metastabilities have been
observed so far might not seem desirable. While the precise charge distribution as‘ well
as the original code have now been made available to me, reverse engineering this code
did not seem conducive to good research as large amounts of coding would still be
required and the protein model is, after all, just a simplistic model. The main focus of
the present chapter is to gain some understanding and intuition for molecular dynamics
as well as to provide a trusted source of molecular dynamics data for which Butane

seemed a suitable example. This will be described in the next section.

2.3 Butane

A very simple organic molecule exhibiting metastability at room temperatu‘re is butane.
It has been the subject of A. Fischer's diploma thesis ([23]) on a hybrid Monte Carlo
method precisely for this reason. Doing butane necessitated implerhenting dihedral
angles which required some debugging effort so careful verification was in order. A
typical trajectory at three orders of magnitude of time resolution can be seen in figure
2.15. |
| Itis easy to verify that dihedral angle potential and force expression fit each other,
but more verification can ‘be done exploiting theorem 1 in [23], i.e. sampling dihedral

angles from the canonical ensemble for the butane model yields exactly the same sample

stat|st|cs for dihedral angles as sampling for the canonical measure exp ( H(“’)) for the

dlhedral angle alone. “

In order to do this, the Generalised Verlet Algorithm for Langevfn Dynamics
(p.437 in [54]) for (apprOXImately) samplmg from the canonical ensemble was imple-

mented Figure 2.16 shows good agreement between the histogram and the expected
probabilities. .
2.4 Conclusion

The explorations of molecular dynamics described above have provided a learning field

for molecular dynamics and high performance coding as well as a medium size C++
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Butane Langevin dynamics, generalised Verlat, A t=1.2as, T=300K
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Figure 2.16: Langevin Dynamics for Butane - Invariant
Measure and Empirical Density
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code for MD simulations and energy optimisations. This code has been verified in a
multitude of ways and will thus be viewed as a sufficiently reliable source of mole;ular
dynamics trajectories. These trajectories will be used to test the fitting algorithms to
be described in the next two chapters.

. Further avenues of research into molecular dynamics might include a study of
Alanine dipeptide in aqueous solution, which seems to be a standard example of con-
formational metastability, possibly using GROMACS to deal with the explicit solvent
representation. While this might take the theoretical work closer to actual applicafion, ,
in view of the intricacies of long trajectory simulation | have chosen to follow most

applied mathematicians’ approach and concentrated on developing mathematical and

statistical tools using a toy example.
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Chapter 3

First Order Stochastic Differential
Equations -

The easiest way to explain this idea is to contrast it, for ex-
ample, with advertising. Last night | heard that Wessoﬁ oil
doesn't soak through food. Well, that's true. It's no"c‘dishon-
est: but the thing I'm talking about is not just a matter of not

. being dishonest; it's a matter of scientific integrity, which is”
another level. The fact that should be added to that adver-
tising statement is that no oils soak through food, if operated
ata certaln temperature. If operated at another temperature

~ they all will - lncludmg Wesson oil. So it's the implication
which has been conveyed, not the fact, which is true, and the
dlfference is what we have to deal with,

‘ R. P Feynman Caltech Commencement address 1974

3.1 Introduction

~After briefly reviewing standard results about parameter estimation using maximum
likelihood methods for non-degenerate 1D diffusion processes in continuous time in
section 3.2, snmple implementations of these estlmators for discrete time are considered in
section 3.3. Random number generators are discussed briefly and parameter estimation

for a family of SDEs is considered. The algorithm obtained here is applied to time
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series from Langevin dynamics for a single Butane molecule in section 3.4 and problems

inherent in fitting SDEs with rough paths with finite quadratic variation to data from

smooth Hamiltonian systems are highlighted.

3.2 Continuous Time Path fitting

This chapter will deal with fitting drift and diffusion parameters in stochastic differential

equations of the form
e

> 6ifi(z)dt +0dB  2(0) = zo | (3.1)

i=1
where f; ‘are suitably well-behaved (e.g. globally Lipschitz)‘force functiens, Zo is a
deterministic starting condition and B is standard Brownian motion where o € R+ js
the diffusivity constant, 8; € R are the drift parameters and ¢ € N is the number of force
terms to be used. Given a piece of trajectory, {zs}seo,7): the parametric estimation
problem is how to estimate the diffusion coefficient ¢ and the drift coefficients b;.
Estimating the diffusion coefficient is straightforward under these conditions but there
are many methods for estimating drift parameters. | will consider maximum likelihood”
estimators as the theoretical understanding of these ‘estimators is well-developeci and
they are frequently applied in actual practise. Also, in this context, they are normally
easy to generalise to a Bayesian framework which might be useful for applications in

molecular dynamics where posterior variances as well as expected values are of interest

3.2.1 . Estimating Diffusivity

_ In general, given a continuous piece of trajectory, however short, estimating the diffusivity
is considered easy, even when multiplicative noise is present In the case of the process

given here (3.1), a few remarks will show how o can be estimated using only modestly H

technical results.

Firstly, (3 1) can be written in mtegrai form (whlch is its very deﬂmtion)

(1) _2(0) / Za fia(s))ds + oB(e) (32)
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Now, the solution of this SDE is a continuous semimartingale with
t C
Ay =/0 > 6ifi(x(s))ds
i=1
being continuous, adapted and of locally bounded variation and M; = o B(t) being a

(local) martingale so that overall

z(t) — z(0) = A: + M,

holds.
Using theorem (8.6) of [13] it is clear that the approximate quadratic variation

converges to the true quadratic variation under mesh refinement, where the approximate

quadratic variation of z is given as follows: .

. K

Qf (@) = (a(t) — 2(tx)* + D (a(th) — 2(tx-1))?
E k=1

Here, A = {top =0<t; <t2...<tg <t}isamesh of theinterval [0,1]. If a seqﬁence

of meshes, A, goes to infinite refinement in the sense lim,_,o, min{t — th,min{t? | —

© ¢7}} = 0 then the theorem’s statement implies that
Q" (z,z) — o*(B(t), B(t)).

The resulting estimator of the diffusivity parameter o is thus given as

. “ : 1 .
0? = = lim Q.
n—oo

In particular, the sequence of meshes can be chosen uniformly, i.e. just using tl(c”) = ¢. %'

so that the resulting estimator is finally given as

e () e

Other ways of estimating the diffusivity applied fnostly by practitioners from physics
~ and chemistry include fitting the invariant density or the Laplace transformation of the
autocorrelation provided the drift parameters are known. This will be covered in more

detail in chapter 5.
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3.2.2 Estimating Drift Parameters

Drift estimation in continuous time is a harder problem, as the SDE in question is
required not only to have a unique strong solution but also to possessvcertain ergbdic
properties. Sufficient conditions specialised to the SDE in question, (3.1), will be shown
here. All conditions and theorems quoted in this subsection are taken from [62] or [13].
Firstly, assumihg the f; are locally bounded and measurable, existence of a unique

weak solution is guaranteed by theorem 5.3.2 of [13] if
23" 6:fi(z) < AL +2%) (3.4)

i

-

for some A > 0. This is implied by Kutoyants' condition to ensure ergodicity, Ay(O).
It is assumed that only certain vectors (61,... ,"GC)T, € R€ from an open bounded subset
O CRare admissible, For these ’dvri’ft parameters the assumption Ao(©) is:
V(8;) €O ¢ limpeosgn(z) Y 6ifi(z) <O (35)
=1

To ensure identifiability the information matrix
I(6) = Ee (fi(')fj('))i,je{l,...,c}’

where the expectation is taken with respect to the induced invariant measure of the SDE,

must be positive definite uniformly on compact subsets K C © of parameter space:

E ’ ..
‘ elgﬂfq;[nfle I(6)e>0 ’ - (3.6)

ThIS is sufflc:ent to ensure condition A on p. 115/116 of [62] holds. Now theorem 2.8

from [62] can be used to infer the followmg

Theorem 1 Let cond/t/ons (3.6) and (3.5) hold. Then for any fixed 6 € ©, any of the
1 attaining the supremum over © of the Radon-N/kodym der/vat/ve

= O {e@epm) @3.7)

of the measure on path space induced by § w.r.t. to the measure induced by =0is

asymptotically unbiased:

711313301}39(9“}-9) =0 (3.8)
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Note that the supremum might be attained on the boundary of ©, i.e. )
has positive probability in general. It should be stressed that the aforementioned theo-
rem states far more than this, including asymptotic consistency, asymptotic normality,
convergence of higher moments and asymptotic efficiency, all uniformly on compact
subsets of parameter space. Since this chapter will be concerned with the behaviour of
the estimator's bias, E(§ — 6), this version seemed most appropriate.

In the setup (3.1), the maximum likelihood estimator is actually unique and can

be given explicitly. It suffices to note that the Radon-Nikodym derivative (3.7) is given

explicitly as v
i T c ' H2
o 6 —exp | 5 [ Zlez-fxm(t))dxt—ig I [;eifxx(t))] dt

Taking partial derivatives with respect to the §; and equating them to zero results in

the following drift estimator:

T - [on1<m(t)>dxt :
o= ([ senseene) | os)

I3 fe())dz,

3.3 Numerical Implementation

In order to put the estlmators (3 3) and (3.9) into practlse the problem has to be discre-
tised. After |ntroducmg two perspectlves on estlmatlon in the dlscrete time framework,
this section will detail the numerical implementation of these discretised estimators,
vhighlig'hting issues concerning the random number generator and numerically examine
* convergence as the discretisation timestep tends to zero.

" Assuming that observations {zitieqr,...ny at equispatéd tirﬁepdints tiie{l;.:.,N}
with spacing At of the process (3.1) are given, the task is to estimate the parameters “
0; and o. | | '
| While res”'ts implying asymptotic consistency are available in the limiting case

NAt — oo, At — 0 from [50], the interest in this chapter is to arrive at practical

implementations of estimators, quantify errors as a function of At and apply these
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estimators to the practical problem at hand. The approach taken is therefore to develop

these estimators using concrete numerically worked examples.

One perspective that can be taken in constructing estimators in the discrete
time framework is to approximate the sums and integrals occurring in (3.3) and (3.9)
by Riemann sums. In the case of diffusion estimation, it is straightforward to take the
available data, insert it into (3.3) and evaluate for some finite At. In the case of drift

estimation, the integrals occurring in (3.9) can be replaced by Riemann sums so that

the resulting estimator reads as follows:

N -1 110\7:—01 filzp)(@pi1 — zp)
0= (> filzp)filzp)At N (3.10)

i,j€{1,.c} N-1

p=1 p=0 felzp)(@pt1 — xp)

" Another perspective is obtained by replacing the stochastic differential equation

(3.1) by a stochastic difference equation
¢ .
eyt = 2y + A1 Y ufily) At + Vit 611)
: = :

where &, ~ N(O, 1) are i.i.d. normal random variables. This difference equation will
be referred to as a statistical model for the diffusion process. One can then employ
a maximum likelihood approach yielding exactly the ‘same MLE as (3.10), however
this can be used within a Bayesian framework. Rather than using an approximaﬂting
difference equation, the exact transition density could be used, however, depending on
the particular choice of force functions f;, this is not normally available analytically, so
" one can resort to sfatisticél models instead. Other approaches involve perfect inference

_and inference via particle methods.

3.3.1 Diffusion Coefficient

. As a means of introducing the numerical implementation of estimators for the problem

(3.1), the 1D Ornstein-Uhlenbeck process is considered as a simple first example:

dz = -—qzdt+odB (3.12)
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" Here, we assume «a,0 € R,. Given observations z;, ¢ = 0,..., N at times ¢; = ¢At for
some At > 0, the aim is to provide an estimator for the parameters o and o.

As explained in the previous subsection, one approach is to formulate a statistical

model which is in some sense a discrete version of (3.12):
Tntl = Tp— Atoazdt + oV AL,

Here, &, ~ N(0,1) are independent identically distributed normal random variables.

Based on the quadratic variation of paths from (3.12), the estimator (3.3) is

adapted as follows:

) | M-
o = SA7 ZO(%H — z,)" | (3.13)
Y=l

Asymptotic consistency of this estimator is assured as set out in subsection 3.2.1. To

assess the order of error, one can use an [to-Taylor expansion for the process (3.12) at ~

time t, to tackle the term (Zn+1 — Tn):

E [($n+l - xn)2:I - [—amnAt + fn\/A—t + O(At1'5)

At | At ,
= 0%+ AtE [e?22] + O(At?)

(More thorough conSIderatlon Is given to |to-Taylor expansions in the next chapter Where '
hlgher orders of accuracy are reqmred) The Ito-Taylor expansron shows the order of
error but bounding the error terms uniformly in time and over state space may be hard

or impossible, depending on the particular process at hand.

3.3.2 Numerical Validation: Pitfalls

In order to verify the C++—cod‘e used for htting coefficients the ebove estimator for o,
(3.13), has been implemented. While testing the code, problems concerning random |
number generators have been observed and these WI” be highlighted in statistically
5|gn|f|cant expenments

To generate paths for the experlments a final time of Tf = 4000 is used and

the parameters for the Ornstein-Uhlenbeck process are
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While it is possible to generate sample paths satisfying the exact statistics for (3.12)
by just choosing a Gaussian with appropriate mean, variance and correlation at each
timestep ¢;, samples are generated here using a subsampled Euler-Maruyama method.
Given a data point z;, the next data point in a path, z;y, is generated using
several steps of the Euler-Maruyama algorithm. The number of intermediary steps, k,
is called the subsampling factor. Using the notation :vl(-j) for the j-th intermediary step

involved in generating the (¢ + 1)th sample point from the ith sample point, this can :

be written as follows:
(0)

z; = I
W = o) - flaal) 4\ [Rod] @10)
pns = o® |

i+l = i

| For the subsampling factor k =1, the statistical model (3.13) and the generation of the -
data (3.14) coincide, so it is expected that the estimate for o will be exact and this is
indeed what is observed. | |

As k is increased, the sample z;1; follows the exact statistics more and more...”
More precisely, one observes that the Euler-Maruyama method converges weakly for this
SDE so that, in pakticular, first and second moments converge to the correct values as
k — oo. Smce aII mcrements are Gaussian, it is clear that the quantlty $z+1 - x;
occurring in the estimator (3 13) is approximated correctly. '

Using a subsampling factor of k = 30, the simulations are rgpeéted with the
‘above parameters, averaging the results over Ny = 100 runs with different random
seeds to both control and estimate Monte Carlo sampling error.

It is clear from the plots given in figures 3.1 and 3.2 that the estimator ,\/072
"does not com)ergé to o as At — 0. From the second plot, (3.2), it can be seen fhat .
th|s is not attrlbutable to Monte Carlo sampling error.

After consnderable S|mp||f|cat|on of the code, the only potential culprit left is the
random number generator. Linear congruence generators are known to be usable for
evaluating integrals using Monte Carlo Methods if the correct paraheters are chosen.

But do they perform well for the ‘differential’ task at hand? B
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In order to demonstrate the incorrect statistical behaviour of the standard lin-

ear congruence generator in the GNU c-library glibc, version 2.2.5-34, the following

experiment is conducted:

Using the built-in random number generator, pseudorandom integers generated
by rand () which are unlformly dlstrlbuted between 0 and RANDMAX are generated. Di-
viding these by RANDMAX, samples from a uniformly distributed (on a grid with spacing
'——RANI%MAX) random variable are generated. These quasi-uniformly distributed random

numbers are then used to generate normally distributed random samples employing the

Box-Miiller scheme from ([21], chapter 7, section 2, p.216).

Using k samples from normally distributed random variables, n;, the random

1< h
\/;;ni (3.15)

is sampled repeatedly. The random variable s is, of course, itself a Gaussian with mean

variable

zero and variance one. Using N, & 2 107 Monte Carlo samples of s, the observed
variance for k = 1,...,49 is given in figure 3.3 '

It can be seen from this figure that the deviation at k = 30 cannot be attributedﬁ
to Monte Carlo sampling error. It is not entirely clear, hpwevér, whet‘her this erfor can be
attributed to RANDMAX being finite, i.e. the fact that the uniformly distributed random
variables input to the Box-Miiller procedure are distributed on an equispaced grid in
[0, 1] rather than all over [0, 1].

In any c"ase,vit is“cleér that a better random number generator s required. Con-
'sultingy the Gnu Scientific Library, [18], the Mersenne Twister is recommended, citing
[46]. The experiment is then repeated with the Mersenne twister yieldi‘ng plot (3.4). It
can be seen thz{t the Mersenne Twister combined with the Box-Miiller procedure passes
this statistical test. )

‘Note that the dotted lines in (3.4) represent the l;a limits for fhe average over
Ns realisat‘ion‘s‘ of the random variable s, so that roughly 1/3 of the points is expected

to lie outside the bounds.
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3.3.3 Drift Parameters: Polynomial Potential

In order to move towards applicable parameter estimation procedures, a first order SDE

with constant diffusion coefficient and variable force expression is considered:

Z 6;fi(x)dt + odB (3.16)
i=1

Here, the force basis functions are chosen simply to be powers of z
file) = o, (317)

and the potentials are defined as follows:
e = [ fed

An arbitrary additive constant can be chosen for the potentials, which has been fixed

here by starting the integral at 0. ‘
Using (3.10) as an estimator for the drift parameters 6;, the following abbrewa-

tlons are mtroduced

Mi; = ZAtfz (@n)fan) (3.18)

! ' n—l ) . .

b= f‘Zfi(:cn)(:cm—mn).' = (3.19)
. n=0

The estimator (3.10) can now simply be written as
s ‘
0 = M7 (3.20)

. . An analysis of truncation error inc__:”urred using the statistical model can be per-
formed qsing Ito-Taylor expansions and predicts a bias of order O(At) for the estimator

(3.20). : | “
" The estimator (3.20) has been put into practise and thé im‘pleme‘ntation‘is tested

using the following parameters for an example:

=4 62=-03 f3=—4 0,=0 65=0 oc=08 N,=1000
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The drift parameters obtained from (3.20) are averaged over N, = 1000 realisations
for a time interval [0, T%). PIottmg the deviation of the estimated drift parameters 05v
and @5 from the true drift parameters 05 and 63 the plots in figures 3.5 and 3.6 are
obtained. The convergence observed here is representative of thewhole parameter set.
Using a least squares fit, a straight line can be fitted to those datapoints corresponding
to small At and the obtained slopes of 0 9969 and 0.9976 respectively corroborated the

estimator bemg asymptotlcally consistent with a blas of O(Av).

3.3.4 Drift Parameters: Trigonometric Potentials
As a first step towards fitting stochastic differential equations to molecular dynamics

data, ﬁttmg the type of SDE glven in (3.1) to the Langevm—trajectones for butane'

' obtained in chapter 2is attempted In order to adapt the fitted SDE to the process at

hand, a new ‘set of ba;:s functlons based on a trigonometric potential is chosen:

Vi(z) = Llcosi(z)

filz) = ‘"Sin(x)cosi‘l(x) (3.21)
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The same fitting procedure based on the estimator (3.10) remains operational. " To
ensure the method of fitting is sound, we first con5|der parameter estimation for paths‘
generated from the SDE. Slnce one unfavourable case, in which the errors observed
decay more quickly than expected from an [to-Taylor expansion, is encountered, this is
analysed in some detail. An explicit analytical error expression is made available and
compared to numerically obtained errors. !2 _q @ S\J’Q

In order to find a suitable model case for parameter estimation, it is dec:ded to

mimic’ metastabllltles using the following choice of coefficients:

01=1 60,=2" §3=0 804=0 65=0
0=06 N,=100 T;=128-10°
’T‘his gives rise to the potential, typical sémple path and histogram of figure 37
For constant final time, the timestep is halved and the estimator is sampled
Nysv= 100 times for each time resolution, which yields the error plot given in figure 3.8.
This plot corroborates the estimator being asymptotically consistent with errors of order
oy, | |
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Unfortunately, there appear to be some combinations of parameters for which

this convergence is not observed in practise. Consider the following selection:

6i=1 0O=-1 03=0 04=0 65=0
s=13 N,=100 T;=128.10° k=2
As can be seen from the figure 3.9, the potential |andscape is reasonably well-
sampled except for the top of the potential. Also, the errors in the drift parameter
estimators decreases — only that it does so at too fast a rate! The fastest rate achieved
seems to increaSe with &, which might indicate a vanishrng ofylow‘er order error terms
due to symmetries.

: - This phenomenon has only been observed with the above or close by corlwbi-
nations of parameters whereas for all other tests, no such super-eonvergence has been
found. While behaviour towards small values of At in 3.10 is slightly different for differ-
ent random number generators, it should be stressed that the initial superconvergence
is observed with three different random number generators, not including the built-in

rand () which was ruled out previously.
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For the case k = 2itis feasrble to wrlte out the actual statrstlcs of the generated
sample path and understand the first order error incurred by the Euler statistical model

in detail. The ana|y5|s starts out by wrrtlng out the statlstlcs for the k 2 subsampled

Euler—Maruyama generator

:’an = a:n—i-AtZsz xn)+av 5

+ AtZG fz fﬁn) Atze fy(fEn) +<7\/ E(l +h1gherorderterms

'where £ and 5(1) are standard normal random varrables (not mdependent) Usmg thls
: 5‘ representatlon those frrst order components of the error of the estimator. i
A0 = b9 g
can be ‘ex‘pressed as a solution of the foIIowing linear system'

E(MA), - —Atzszg(mn fk<a:n)f,<xn>+hot ERRNErS)

kln..r
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Figure 3.11: Predicted 1st Order Errors - favourable case

Here, the index (MA8); stands for the j-th entry of the vector M Af and the matrix

M is as given in (3.19).

Since an ergodic theorem of the type

i 1 27
D 2oy = [ @A (320
NAt — 00 SO . |

At — 0
with the invariant measure u(+) given by its density

exp <__2E;zivi($)) | | (3.25)

is ex‘pectgd to hold, it should be possible to write down integral expressions for AG.

a _
dez =~ C(8,0)

Since "c’he basis functions f; chosen here lead to a Fourier decomposition of the
measure, assuming (3.24) one can show that e.g. the highest order coefficient, A8, and
also Af for the above problematic case must be zero. ‘

Also, the above expression for the first order error correétion has been im-

- plemented and found to agree well with the observed mean error in the case 6 =
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[1,2,0,0 O]T presented above, In the unfavourable case § = [1 —1 O 0,0]7, however,
the predlcted flrst order correctlon is weII above the observed errors, S
Whlle |t is concelvable that the error analysis onIy holds for much smaller At as it

is onIy an asymptotrc anaIySIS after all, this argument is not very convincing especrally in
he presence of well-fitted analytlcal error expressions in the favourable case. Also, finite

final time T together wrth a non-random startlng point may introduce an additional bias
which couId spoil convergence of the parameter estimates to the true value. A complete

: resolutlon of thls problem is left pendlng in order to enable the study of more pertinent

‘problems

3.35 Decay of Variance -

The variances for the above est|mators of the drift parameters are numerically observed
to decay Irke o0 ("T7) which is expected from analogy W|th the law of large numbers.
Proving such a statement cannot be accomplished by mere Ito-Taylor expansions

- some theorem of ergodic type must be used. There are some results in [50] to this
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effect which are applicable to the trigonometric potential case.

3.4 Application to Butane data

Using the data showh in figure 2.15 it is‘possible to test fitting first order SDEs with
the above trigonometric potential to molecular dynamics data — albeit in an extremely
simple molecule. To get a first impression of the (in)consistency of such a model,
fitting at different inter-sample spacings At is considered. - This corresponds to only
using every kth sample from the molecular dynamics simulation. The aim is to establish
whether SDE models can be fitted convincingly over a range of timescales and one of the
main problems for short timescales is the fact that the fitted paths have zero quadratic -
variation. o
To start the study, consider the fit performed in figure 3.13 using the estimator
(3.20) for the drift parameters and quadratic variation for the diffusion parameter.

It is clear that completely‘di‘fferent pqtentiall expressions will be obtainéd for
different sampling periods At. This is again shown in figure3.14.

In particular, & — O is observed as A¢ — 0. Of course, this is due to the
* smooth paths generated by the Hamiltonian dynamical system — the quadratic variation
of those paths is zero! | N '

In view of the fact that even if the data originates from a process of the kind
(3.16) a small Atis needed to control the blas this observatron calls the frttmg into ques-
tion. For small tlmescales the problems are mherent in the path to be fltted whereas
for long timescales, the fitting procedure is not sound. Either, different estimators are
‘needed, or the process just cannot be ﬁtted to the data Even if the fit is successful with
nearly constant drift parameters for some range of samplmg rates At, weak convergence
as in the sltuatron of a distinguished particle in a heat bath is ruled out.

~ One way of fitting first order SDEs to molecular dynamics data at longer tlmescales

mlght be to introduce imputed points between sampled datapoints which would then
have to be sampled from, possibly alternating with samples from drift and diffusion

parameters. In‘ extremis, one could consider fitting a finite state space Markov chain at

45



]
1

Diffusion Coeffcient fit for Cos-OU process — Butane data

3 T T T T T T T T T
2 .
)
1 hdiie L o, SO ORI » & rwi]
| f ] L I ! 1 1 ]
00 100 200 300 400 500 600 700 800 900 1000
Subsampling number
Drift Coeffcient fit 8, for Cos-OU process - Butane data
10 T T T T T T T T T
5 N
o
ot
L 1 L 1 L 1 1 ! 1
o 100 200 300 400 500 600 700 800 900 1000
Subsampling number
Drift Coeffcient fit 9, for Cos-OU process — Butane data
5 T T T T T T T T T

1000

| 1 I ! L i L 1 1
-100 100 200 300 400 500 600 700 800 900
Subsampling nurber
Drift Coeffcient fit 8, for Cos-OU process - Butane data
50 T T T T T T T T T

Drift Coeftcient fit 6 for Cos~0U process - Butane data

| 1 1 ] | { I 1
-50 100 200 300 400 500 600 - 700 800 900 1000
Subsampling number
Drift Coeffcient fit & A for Cos-OU process ~ Butane data
' 40 T T T T T T T T ) T
20 W h
~
ol - .
%0 X 1 ) L ] | 1 L L
0 100 200 300 400 500 600 700 800 900 1000
Subsampling number e

T T 1 T T T T T

Figure 3.13:

i 1
200 300 400 500 600 700 800 900
Subsampling number

Fitting Trigonometric Potentials to Butane — Coefficients

46

1000



Potential forms for theta=-0.5 cos-OU

0.6 ’—— T T T T T T T
04F +  subs=1 .
~y e - subs=20 e
) \_\ SR REEREEEE subs=60 . v /_/‘
021 o o ]
A s
N S
...... N, 4 .
L e T R TP AP
0 ~ s “
- ~ .
E ~._ PR
P
0.2+ 1
-0.4}F d
08k e _
.
i L 1 1 X L 1
08 s 2 1 0 1 2 3 4

Figure 3.14: Different Potentials at Different k |

very long time intervals, possibly correspondmg to different conformatlonal substates as
advocated by Schiitte et al. (see [35]) Rather than followmg this route, the mvestl-

‘gation turns towards the small timescale structure of the data dealing with hypoelliptic
diffusion processes in the next chapter. ‘
3.5 The Two scale Potential

Another interesting example which has promise to be analytically tractable is the two-
~scale potential:

de = — 9 V(z,e)dt 4+ od
| = "% z,e)dt + odB

* where the potential V' is such that it has a fast component which is averaged out:

V(a;, £) - V(m’-&- sin (.”Ef)
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Omitting some technical conditions on V/, in this situation, it is known analytically that

the solutions converge in some weak sense to the solutions of

d -
dz = ~—8;V(x)+EdB

where 3 < o seems intuitively reasonable.

Studying this process might provide some insight into how the estimators deal
with the strong high frequency components visible in the data in figure 2.15. This study -
has been carried out for simple maximum likelihood estimators by Pavliotis and Stuart

in [26], where subsampling was found necessary to avoid O(1) errors in the estimated

parameters.

3.6 Conclusions

Standard results concerning makjmum likélihood éstinﬁatoé for drift parameters and
method of moment estimators for diffusivity have been summarised for a particulal; class
of 1D SDEs. The approximating estimators have been implemented and tested on a
variety of cases, in particular for trigonometric force expressions. These tested routines
were then applied to molecular dynamics data for the dihedral angle in butane under
Langevin ‘dynamics and two issues of practical relevance were highlighted. Firstly, the
fitted potential depends greatly on the timescale on which the fit is performed so that,
even aIIoWing for some error due to the finite At bias of the estimators used, no region
of acceptable fit cpuld be identified. Secondly,‘fitting for very short timescales is limited
by the quadratic variation of the trajectory from molecular dynamics being zero. In this
contexf, hypoelliptic difquions might congtituté an interesting class of processes to fit

to this data and they‘ar‘e the subject of the next chapter.

i
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Chapter 4

Second Order Stochastic

Differential Equations

Wenn Sie eine Theorie haben, und Sie kénnen den harmoni- -
~ schen Oszillator nicht rechnen, dann vergessen Sie sie. ;

Prof.Dr.H.D.Doebner, Clausthal

4.1 Overview

This chapter is a slightly enlarged version of [61] treating parameter esﬁmation for

partially observed hypoelliptic diffusion processes. By partial observation we mean ob- -
servation of some components of the multidimensional process at disgreté times. Since

exact likelihoods for the transition densities are typically not known, approximations are

‘used fhat are expected to work well in the limit of small inter-sample times At and large

total observation times NAL. Hypoellipticity together with partial observation leads

to ill-conditioning requiring a judicious combination of approximate likelihoods for the
. various pa?améters to be estimated. We combine these in a deterministic scan Gibbs

sampler alternating betweén missing data in the unobserved solution components, and

'pa"rémev'te‘rs. Numerical exﬁérifnéhts:display asymptotic consistency of the method when

applied to simulated data. The chapter concludes with application of the Gibbs sampler

" to molecular dynamics data gen‘e‘rated as described in chapter 2.
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4.2 Introduction

In many application areas it is of interest to model some components of a large deter-
ministic system by a low dimensional stochastic model. In some of these applications,
insight from the deterministic problem itself forces structure on the form of the stochas-
tic model, and this structure must be reflected in parameter estimation. In this chapter,
we study the fitting of stochastic differential equations (SDEs) to discrete time series
data in situations where the model is a hypoelliptic diffusion process,! and also where
observations are only made of variables that are not directly forced by white noise. Such
a structure arises naturally in a number of applications. |
One application is the modeling of macro-molecular systems [32] and [34].

its basic form the molecule is described by a large Hamiltonian system of ordinary
differential equations (ODEs). If the molecule spends most of its time in a small number
of macroscopic configurations then it may be appropriate to model the dynamics within,
and in some cases between, these states by a hypoelliptic diffusion. While this phrasing
of the question is relatively recent, under the name of the " Kramers problem” it dates
back to [41] with a brief summary in section 5.3.6a of [9]. As observed in the last
chapter, the trajectories generated by the Hamiltonian mechanics model of molcular
dynamics are smooth which compromises the fitting of first order stochastic differential
equations. Moving to second or higher order hypoelliptic SDEs.might enlarge the range
~of timescales useable for fitting. Furthermore, inertial effects are present even in large
molecﬁles in solution - otherwise infrared spectroscopic observations would be entirely
* meaningless, so it might be desirable to model them. Another application, audio signal
:ana|y5|s is referred to in [30] where a continuous time ARMA model is used.

We consnder SDE models of the form

S dz = ©A(z)dt+CdB oo
,. | (z) | 1)

:L'(O) = X9

where B is an m—dlmenS|onaI Wlener process and z a k-dimensional contmuous process

W|th k > m. A R — Rl is a set of (possnbly non- Imear) globally LIpSChItZ force

!Meaning that the covariance matrix of the noise is degenerate, but the probability densities are
smooth.
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functions. The parameters which we estimate are the last m rows of the drift matrix,

© € R**!, and the diffusivity matrix C which we assume to be of the form

0
C = € Rkxm
r

Where ' € R™*™ is nonsingular.

It is known that under the above hypotheses on A and C, a unique L?-integrable
solution z(-) exists almost-surely for all times t € R+, see e.g. Theorem 5.2.1 i'n‘[3].
We also assume that the process defined by (4.1)‘ is hypoelliptic as defined in [48],
i.e. it satisfies Hérmander's hypothesis as given insection V.38 ot [42]. Intuitively, this
corresponds to the noise being spread into all components of the system (4.1) via the
drift. '

The structure of C implies that the noise acts directly only on a subset ‘or‘ the
variables which we refer to as rough. It may then be transmitted, through the coupling
in the drift, to tlte remaining parts of the system which we refer to as smooth?. To
distinguish between rough and smooth variables, we introduce the notation :p(t)T =
(u®)T,v@®)T) where u(t) € RF~™ is smooth and v(t) € R™ is rough. It is helpful to
define linear functions P : R¥ — Rk_m by Pz =uand Q : R* - R™ by Qz = v.

We denote the sample path at N + 1 equaIIy spaced points in time by {z, =
‘(nAt)}n_O, and we write zl (u ,vL) to separate the rough and smooth compo-
nents. Also, for any sequence (21,...,2y), N € N we write Azn = Zn41— Zp to denote
forward differences. We are mairmlyv interested in cases where only the smooth compo- -
nent, u, is observed and our focus is on parameter estimation for all of I" and for entries
of those rows of © correspondlng to the rough path, on the assumptlon that {un}n ~0
are samples from a true solution of (4.1); such a parameter estimation problem arises
naturally in many appllcatlons and an example is given in section 4.8. It is natural to-
consider NAt T>1land At < 1. ltis important to realize that, for continuous
time observations, the dijusibn coefficient T can be found from the quadratic variation
of a single path on [0,T], any T' > 0, see e.g. Theorem 2.8.6 in [13]. For ©, however,

the estimates are strongly consistent only as T' — co. These two facts will be reflected

2We do not mean C here, but they are at least C?,
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in the parameter estimation for discrete time observations.

The sequence {z,}_, defined above is generated by a Markov chain. By ex-
panding the random map z, — z,4+1 in powers of At, and retaining the leading order
contributions to the mean and to the variance in each component of the equation, one
obtains |

Tns1 & Tn + AOA(z,) + VAIR(AL ©)én (4.2)
where‘a:n € R%, &, € R* is distributed as V(0,1) and R(At;0) € RF**, Because
of the Hypoel'lipticity, R(At; ©) is invertible, but the zeros in C' mean that is is highly
ill-conditioned for 0 < At < 1. In fact we have:

R(0;6) = o0 M@
.o r o

We refer to expressions of the form (4.2) as statistical models and we will use them

to approximate the exact likelihood, L(u,v|0,TTT), of the path u,v givén parameter

~values © and I'T7, | \ i

Given prior distributions for the parameters, po(©,'TT), the posterior likelihood

- can be constructed as follows: ‘ L >

T
£0.0IT) = S r (4.4)
| = E(u,v|®,I‘I‘T)’—’9(%’5Fr)

" In principle, this can be used as the basis for Bayesian sampli[\g of (0,ITT), viewi‘ng
v as missing data. However, the exact likelihood of the path is typically unavailable.
In this chapter we will combine judicious approximations of this likelibédd to solve the
sampling problem. The approximations that we use, Lg and L;r, are found from (4.2),
in the case of Lg by replacing R(At; ©) with R(0;0) given by (4.3). Thus Lg is
‘found from an Euler-Maruyama approximation ofﬁ (4.1). The approximate likelihood
Lyt arises from retaining further terms in the Itd-Taylor expansion to ensure that noise

is propagated into each component of the map (4.2).

The questions we address in this chapter are:

1. How does the ill-conditioning of the Markov chain z, - ZTn41 affect parameter
_ estimation for‘I‘I‘T and for the last m rows of © in the regime At < 1, NAt =
CT>17 R | |
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2. In many applications, it is natural that only the smooth data {u,}\_, is observed,
and not the rough data {v,}Y_,. What effect does the absence of observations

of the rough data have on the estimation for At < 1 and NAt=T > 1?

3. The exact likelihood is usually not available; what approximations of the likelihood

should be used, in view of the ill-conditioning?

4. How should the answers to these questions be combined to produce an effective

method to sample the distribution of parameters ©, I'TT and the missing data

{vn }111v=07

To tackle these issues, we use a combination of analysis and numerical simulation,
based on three model problems which are conceived to highlight issues central to the
questions above. We will use analysis to explein why some seemihgly reasonable methods
fail, and simulation will be used both to extend the validity of the analysis and to illustrate
gobd behavior of other methods. “

For the nﬁmerical simulations, we will use either exact discrete time samples of
(4.1) in simple linear cases, or trajectories obtained by Euler-Maruyama simulation of

the SDE on a temporal grid with a spacing considerably finer than the observation time

1
¢

interval At.

At this point, we introduce some notation to simplify the presentation. Firstly,
given an invertible matrix R € Rﬁx" we introduce a new norm using the Euclidean
norm on R™ by setting ||z||r = || R~1z||2 for vectors z € R™. Also, we will occasionally
refer to a lilkelihood £(B) as a function of some parameters B not mentioning the
complementary parameter set C. This is understood to refer to the condmonal likelihood
L(B|C) whenever the parameter set C is clear from the context. |

In section 2 we will introduce our three model problems and in section 3 we s-tudyu
the performance of Lg to estimate the dlffu5|on coefﬁaent Observing and analysing
its failure in the case with partlal observation Ieads to the improved statistical model
yielding L7 which eliminates these problems; we introduce this in section 4. In section
5 we show that CIT is inappropriate for drift estimation, but that Lg is effective in this

context. In section 6, the individual estimators will be combined into a Gibbs sampler to
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solve the overall estimation problem with asymptotically consistent performance being
demonstrated numerically. Section 7 contains a simple application to molecular dynamics

and section 8 provides concluding discussion.

4.2.1 Literature review

The primary novelty of our work is that it concerns hypoelliptic diffusions where only
smooth components are observed. We set our work in context. First, we review pa-
rameter estimation for (4.1) in continuous time. We assume that the observation is

compatlble with (4.1) in that, if the observed path is z(t)T = (u( )T, u(@)T), then
%= POA(z), u(0)= Pz(0); (4.5)

furthermore, if only u(t) is observed, then we assume that (4.5) determines v(t) uniquély.
(In situations where compatibility fails it is necessary to add observational noise to the
solution of (4.5) and to estimate it.)

Once v is determined uniquely we have
dv = QOA(z) +'dB, (0) Qx(O) | ~(4.6)
T‘h“e covariance matrix I'TT can be‘estimatec‘l by noting that
7 Z(v@.l‘ (vnﬂ‘- vn)T = ITT = N Seo (4.7)

with T' = NAt fixed [13].
. The Girsanov formula shows that the path space likelihood for (4.6) is propor-

tional to -
| s -1 ~1 1 (T -1 ‘ 2
e ([ t0eaepr-ta - 1 [ [r-toeaue|as)

.. This can be used as the basis for various estimation procedures, one of them being the

maximum likelihood estimator for the lower rows of © which is found by maximizing

© = argmaxg (/0 I 1QOA(z(s))Itdv(s) ~— %/o ]IF“IQ@A(m(s))Ilzds) (4.8)
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over ©. Such estimators are consistent as T — oo. In the linear case, where A is just

the identity, the maximum likelihood estimate for the whole of © is given by

= [ / da::z:T] [ / cxldt]” (4.9)

This is proved to be consistent as T' — oo in [4]. Note, then that diffusion parameters

can be estimated from arbltrarlly short pieces of trajectory, whereas drift parameters

require long time intervals. A discussion of continuous time parameter estimation for -
linear hypoelliptic diffusions with multiplicative noise is given in [39].

In practice, observations are typically made in discrete time. There is substantial

literature on parameter estimation in this context, much of it concerned with estimation

of ¢ in problems of the form
dv = a(v, p)dt + T, v(0) = wo, (4.10)

where I‘FT is everywhere invertible. In some cases, a is allowed to depend on the entlre
path {v( )}seOt] and then the hypoelllptlc problem (4 6) is a specnal case. ‘We now
discuss the Ilterature available when only discrete time observations of v, the rough |
" variable, are given. Note that, for most of this chapter, we assume that the 'v-data is
hidden and only u in (4.1) is observed. Thus although u can be eliminated from (4.1),
and an equation written for v in the form (4.10) with a depending on the entire path of
von [0,1], the eX|st|ng Ilterature on discrete time observations of (4.10) does not apply
to the case we consider here, where v is not observed. Nonetheless we overview what is |
known. ' ' ‘ ‘ N

+ One approach is to form continuous time estimators, using the generalization
of (4.8) to (4.10). If ¢ appears linearly and only in a, not 4, then the continuous
time estimator can be calculated from Riemann and stochastic integrals of v(t). These
~ continuous time estirnators can be approximated by quadrature, assuming the time in--
" crement betvlreen observatlons,lAt, is small, and estimates of @ obtained in this manner,
see [40] for details. An alternative, when At is small, is to approximate the likelihood of
the discrete time Markov chain generated by sampling (4.10) at rate At. This approach
|s consudered in [55, 29, 11, 24] with several of these papers studying the Euler approx-

imation, generatmg a Gaussran likelihood, as we do in this chapter. Theorems about
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convergence of parameter estimates typically consider the limit At — 0 with NA{ — oo
[24]. Alternatively one may consider At — 0 with NAt =T >> 1 and estimate the bias
due to finite T'. |
When the time increment between observations, At, is not small then O(1)
errors can enter parameter estimates unless the discrete time likelihood is carefully ap-
broximated. One way to do this is by fine Monte Carlo simulation between observation
points, see [49]. A different approach, leading to closed formulas and using Hermite |
polynomials, may be found in [1]. In [11] functionals of the Brownian bridge are used
to build up the approximation; in [53] related ideas are used in a Baye;ian approach
to parameter estimation for discretely observed diffusions. Recent work of Beskos et
al uses exact sampling of a diffusion proces§ to address this issue, see [16].  Another
approach is taken by Crommelin and Vanden-Eijnden in [7], [8] in which the transition
probability matrix is apprOXImated from the data, and then a generator is found to fit
the spectrum of that matrix as closely as possible. The norm used to factlltate fitting
is such that quadratic programming techniques can be used to speed up computatlon.
A review of estimation for discretely observed diffusion processes, and a discussibn of

martingale estimating functions, can be found in [2].

4.3 Model Problems

To study the performance of parameter estimators, we have selected a sequence of
three Model Problems ranging from simple linear stochastic growth"through a linear.
oscillator subject to noise and damping to a nonlinear oscillator of similar form. All
fhééé problems are hypoelliptic diffusions and we will present tHem in detail in the next

three subsections. Their general form is given as the second order Langevin equation

dg = pdt,
dp = (—vp+ f(gq))dt+odB

(411)

where f is some (possibly nonlinear) force-function and the variables g and p are scalar.
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4.3.1 Model Problem I: Stochastic Growth

Here, z = (g,7)7 satisfies

dg = rdt ”
(4.12)
dr = odB. , ‘ , ‘

The process has one parameter, the diffusion parameter ¢, that describes the size of the

fluctuations. In the setting of (4.1) we have

ool
Alz)=z , O= , C=
0 0 o

and u = ¢, v = r. The process is Gaussian with mean and covariance

0 - [1 t} [qu md B = o [t3/3 t2/2J_
0 ‘1 7o ‘ t2/2 t .

The exact discrete samples may be written as

3/2 3/2
{ dn+l1 = Qn‘f"f'nAt—i-a'% ,,(Ll) +UL‘£2L 7(12)’

(4.13)
Tn¥l = Tn+ OV At(1(b2)7

with (o ~ N(0,I) and {cn}f:’:Q being i.i.d.

4.3.2 Model Problem Il: Harmonic Oscillator
As our second model problem we consider a damped harmonic oscillator driven by a

white noise forcing where z = (¢,p)T: ~ L “

dg = . pdt ‘
? P - (4.14)
dp = -—Dgqdt— vypdt+ odB.

 This model is obtained from the general SDE (4.1) for the choice
01 . 0
A(z)=z, O= , C=
‘ —;D b ‘ ag

can be explicitly calculated.
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4.3.3 Model Problem ill: Oscillator with trigonometric potential

In the third model problem, z = (g,p)T describes the dynamics of a particle moving in a
potential which is a superposition of trigonometric functions and in contact with a heat
bath obeying the fluctuation-dissipation relation, see [43]. This potential is sometimes

used in molecular dynamics in connection with the dynamics of dihedral angles — see

section 4.8. The model is

dg = pdt,
T=r (4.15)

dp = (—p— X1 Djsin(g)cos’*(q))dt + odB.
This equation has parameters v, D;, i = 1,...,cand 0. It can be obtained from the

general SDE (4.1) for the choice

] sin(g) ]
sin éos '
(9) ’ @ 0 0 1 o
A = . , @ = . , C =
p ) ‘ —-Dl ... =D - o
sin(q) cos®1(q) ‘
I P |

and u = q, v = p. No explicit closed-form expression for the solution of the SDE is

known in this case; the process is not Gaussian.

4.4 Euler Statistical Model

In this section, the Euler-Maruyama approximation to (4.1) is used to generate a sta-
tistical model and associated likelihood. Using this likelihood to estimate the diffusivity
_works whenever observations of both the smooth and the rough components are avail-
able. However, it yields O(1) errors in the partially observed case; this is demonstrated
analytically for Mode] Problem | and the results are extended by means of numérical

experiments.

4.4.1 Statistical Model

If the force function A(-) is nonlinear, closed-form expressions for the likelihood are in

general unavailable. To overcome this obstacle, one can use a discrete time statistical
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model. The Euler model is commonly used and we apply it to a simple linear model prob-

lem to highlight its deficiencies in the case of partially observed data from hypoelliptic

diffusions.

The Euler-Maruyama approximation of the SDE (4.1) is
Xpp1 = Xo+ AtOA(X,) + VAICE, (4.16)

where &, ~ N(0,I) is an i.i.d. sequence of k-dimensional vectors with standard normal
distribution. This corresponds to (4.2) with R(At; ©) replaced by R(0;©) from (4.3).
Thus we obtain
{ Unpr = Un+AtPOA(X,) } | (4'17)'
Vari = Vi + AtQOA(X,) + VAITE, -
where now each element of the i.i.d. sequence &, is distributed as A(0,I) in R™. This
model gives rise to the following likelihood: . '

Lxp(U,V|©,ITT) =

N-1 exp(—3|AVa—AtQOA(Xn)|1 Up —Un ,
H"_O = \/2r|TTT| F)‘S( iy — POA(X, ))

- (4.18)

The Dlrac mass insists that the data is compatible with the statlstlcal model i.e. the
V' path must be given by numerical differentiation (ND) of the U path. To estimate
parameters we will use the following expression: -

LI AVa—AQOA(XA)|IZ)
Neg .

LU, V]©,TTT) = [N 22 (4.19)

where we assume that {Un } {Va} are related through numencal dlfFerentlatlon when

the Euler model is used to estlmate mlssmg components

842 Model Problem |

The Euler statistical model for this model problem is

Qut1 = Qn + RaAt,
n+1 an +0'\/—£n

(4.20)

Here, {§n} is an i.i.d. N(O 1) sequence. The root cause of the phenomena that we

discuss in this chapter is manifest in comparing (4.13) and (4.20). The difference is that
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the O((At)*/2) white noise contributions in the exact time series (4.13) do not appear
in the equation for @,. We will see that this plays havoc with parameter estimation,
even though the Euler method is pathwise convergent.

We assume that observations of the smooth component only, @, are available.

In this case the Euler method for estimation (4.20) gives the formula

Qn+1 Qn
R, = X .(4.21) |

for the missing data. In the following numerical experiment we generate exact data from -
(4.13) using the parameter value o = 1. We substitute R, given by (4.21) into (4.19)
and find the maximum likelihood estimator for ¢ in the case of partial observation. In
the case of complete observation we use thé exact value for {R,}, from (4.13), and
again use a maximum likelihood estimator for o from (4.19).

Using N = 100 timesteps for a final time of T = 10 with o = 1 tHe histograms
for the estimated difffusion coefficient presented in the middle column of Figure' ‘4.4.2 are
obtained. The top row contains histograms obtained in the case of complete observation
where good agreement between the true ¢ and the estimates is obser\)ed. The bottom
row contains the hiétogfams obtained for partial observation using (4.21). The observed
mean value of [EG = 0.806 indicates that the method yields biased estimates. Increasing
the final time to T = 100 (see left column of graphs in Flgure 4 4 2) or increasing the
resolution to At = 0 01 do not remove this bias.

* Thus we see that, in the case of partial observation, & contains 0(1) errors Wthh

do not diminish with decreasing At and/or increasing T = NAt.

4.4.3  Analysis of why the missing data method fails "

Model Problem | can be used to illustrate why this method fails. We first argue that the
" method works without hidden data. The log-likelihood function given in (4 19) yields
the following expressnon in the case of stochastic growth

N-1
log Lg(c) = —2Nlogo — TlA‘t‘ > (ar)?

n=0
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Complete Observation

Complete Observation

Complete Observation

T=100, At=0.1 T=10, At=0.1 T=10, A t=0.01
400 " 400 400,
B <5>=1.0001 Bl <5>=0.9942 Bl <5>=0.99921
300 o : 300 300 : RN
200 200 200
100 100 100
8.5 075 1 125 15 8.5 075 - 1 125 15 8.5 075 -1 125 15 .
c c . (< NN ‘
Partial Observation Partial Observation Partial Observation
T=100, At=0.1 T=10, At=0.1 T=10, At=0.01
400 400 400, .-
Bl <0>=0.81607 Bl <5>=0.80636 Bl <5>=0.81491
300 300 300
200 200 200
100 100 100
8.5 075 1 125 15 8.5 075 1 125 15 8.5 075 1 125 15
(o) o ' Lo

“

Figure 4.1: Estimates of o using Euler Model for Model Problem |.
Top row: fully observed process; bottom row: partially observed process,
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where A is the forward difference operator. The maximum of the log-likelihood function

gives the maximum likelihood estimate,

R o 2 4.22

In the case of complete data, (4.13) gives

2Nl

-5 Sy 7(4.23)

n==0

2 ,02 almost surely as N — oo. This shows that the

By the law of large numbers, &
method works when the complete data is observed.

Let us consider what happens when r is hidden. In this case, r,, is estimated by

‘~ _ Gn+1—Qn
T A

But since g, is generated by (4.13) we find that

7 =’I”n+1+7‘n+o_\/At (1)

and

Arnyt’, Arn | VAt ) )
S jr(f )
or\/ 1 ‘

( P 44 \/-C(l) 1= 53’)

When A7, is inserted in (4.22) it follows that

o? N A 4@ ¢y - :
S (e e

AR, =

n=0
o2 -1 1 2 1 2
=W[Z(C(2) +1) +Z((2) )
n=0
‘ 1)
@ _ G @) Cn+1]
ge-) (@)

The random variables (¢, are i.i.d with (o ~ N(0,1).. So, by the law of large

2 -2

numbers, G4 — 302 almost surely as N — oo. Furthermore, the limits hold in either

of the cases where either NAt = T or At are fixed as N — oco. This means that
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independently of what limit is considered, a seemingly reasonable estimation scheme

based on Euler approximation results in O(1) errors in the diffusion coefficient.

4.5 Improved statistical model

The failure of the Euler model to estimate paths having the correct quadratic variation
‘is caused by not propagating the noise to the smooth component of the solution. A
new statistical model is thus proposed which propagates the noise using what arﬁounts
to an Itd-Taylor expansion, retaining the leading order component of the noise in each
row of the equation. The model is used to set up an estimator for the'missing path
using a Langevin sampler from path-space which is then simplified to a direct sampler in
the Gaussian case. Numerical experimenté indicate that the method yields the correct
quadratic variation for the simulated missing path.

The model is motivated using our common framework the Model Problems |, Il
and Ill, namely (4.11). The improved statistical model is based on the observation that
in the second row of an It&-Taylor expansion of (4.11) the drift terms are of size O(At)
whereas the random forcing term is "typically” (in root mean square) of size O(\/E) ’
Thus, neglecting the contribution of the drift term in the second row on the first row
leads to the following approximation of (4.11):

i1 X P At B(s)ds
Qn+1 Q 1At ‘o 0 (s)

Pn-ijl -\ P f(@Qn) =P B(At)“

The random vector on the right hand side is Gaussian, and can be expressed as a linear
combination of two independent ndrmally distributed Gaussian random variables. Com-
putation of the variances and the correlation is straightforward leading to the following

statistical model:

“| Qn1 _ Qn 1At P, +0‘\/ER €| (4-24)
Pn+1 P, f(Qn)“')’Pn , &

3There is similarity here with work of Gaines and Lyons [28] showing that adaptive methods for SDEs
get the quadratic variation wrong if the adaptive strategy is not chosen carefully.
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Here, &1 and &3 are normally distributed Gaussian random variables and R is given as

At At
R = |Vi2 2
0 1

This is a specific instance of (4.2). It should be noted that this model is in
agreement with the Ito-Taylor approximation up to error terms of order O(At?) in the
‘ﬁrs‘t row,andO(At%) in the second row.

If complete observations are available, this model performs satisfactorily for the
estimation of g. This can be verified analytically for Model Problem | in the same
fashion as in section 4.4.3. Numerically, this can be seen from the first row (referring
tocomplete observation)‘ of Figure 4.2 for Model Problem | and from the first row of
Figure 4.3 for Model Problem I1. In both cases the true value is given by o = 1. See
subsection 4.2 for a full discussion of these numericalexperiments.

If only partial observations are available, however, a means of reconstructlng
the hidden component of the path must be procured A standard procedure would
be the use of the Kalman filter/smoother [38, 6] which could then be comblned W|th
the expectation-maximisation (EM) algorithm [12, 45] to estimate parameters. In this
chapter, however, we employ a Bayesian approach sampling directly from the posterior
‘ distribution for the rough component, p, without factorising the sampling into forward

and backward sweeps.

4.5.1 Path Sampling

The log likelihood functional for the missing data induced by the statistical model (4.2)

can be written as follows:

N o
log L17(p) = Z IAX; — ©A( (X)) At||% + const. (4.25)
=0

We will apply this in the case (4.24) which is a specific instance of (4.2).
One way to sample from this likelihood Lrr(p) for rough paths {p;}¥,, is via
the Langevin equation (see section 6.5.2 in [52]) and, in general, we expect this to be

effective in view of the high dimensionality of p. However, when p is Gaussian it is
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possible to generate independent samples, and we explain how this may be implemented
below.
The Langevin equation is:

dWs

o (4.26)

d
E];) = Vplog Li7(p) + V2

We explain how the exact sampler (4.29) is derived. The Langevin equation used

to sample from the distribution of p (given drift parameters and o) is:

d; aw
Eg = I'matP + Q(q) + \/i'(‘[s- ‘ (427)

Here, W consists of N independent standard white noise processes and p = p(s) is

thought of as a function
p:[0,00) — RV,

and the form of the derivative Vplog Li7(p) émployed here will be derived shortly. This '
“equation is continuous in time but discrete in space. Given that the derivative of log L1
is linear in the p;, (4.27) is recognised as an Ornstein-Uhlenbeck process, so that the

equilibrium measure is expressible as follows:
P~ N(=PpiQ), —Prat) (4.28)

Given a computer-generated pseudo-random i.i.d. sequence of normally dis- -
tributed random variables, {£,}, one can generate independent samples with the desired

distribution, if the root of the covariance matrix is available, simply by setting:
=-P;LQ —PpLe
~ Dn mat&¥matq + ~ 4 matsn-

As noted above, —P_.. is positive definite symmetric. We may thus compute the

Cholesky factorisation UTU = — Pyt and use the following observation which yields

E (U—lg ve") = vuu T

= U ly-T

—p-1

mat
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as desired.

The suggested sampler for p-paths is then

Pn = _Pr;dtQ(Q) + U—lgn- » (4-29)

Since a Cholesky factorisation of Pt is an efficient way to compute the mean, the
application of U~1! is just a backsubstitution using the already computed Cholesky
factor. , ‘
A cautionary note from Trefethen ([58], p.177 ) shows that while solving the
linear system for P~ is backward stable, the computation of the factor U is not forward-
~stable, i.e. the errors in U might be large for a generic positive definite matrix. In our
case, P is very well-conditioned ( Gershgorin yields an upper bound for its condition
number with respect to the 2-norm of x(P) < 3 + O(At)) so that we expect U to
be computed accurately Employmg a combination of Theorem 10 5 for stability and

Theorem 10.8 for condltlonlng of the Cholesky factor from [33] this can be substantlated

Computation of the derivative V,log i1

Now we compute derivatives of the approxnmate ||keI|hood Lt needed for a Langevm

'sampler of the missing path P and for the resultlng exact sampler (4. 29) We have

oL
_g22= 4 1
: g apz %+1 (bAt(7 At ))
e 1o T B g
+ai ( (1+Ata)———b R3O~ )~ AID(AL — ) — 67 A )
+gi21 (1 + Ata)6b~1At~2 — 4D) ) '

+Pit1 (2At‘1 - 4y)
+p; (6(AET — q) — (A7 —dy)(1 + Aty) + AAt7Y) + iy (20871 — 4y)

at inner points 0 < 2 < N. At the boundary points one gets:

-0 gg- _— (=(1+ Ata)(6b~ At 1y — 6b71AL™2) — 2D + 4yDAt)
0
+q1 (667 1Aty — 6b71AL72)
+po (—Ath(—6b7IAL2 + 667 AL 1y) — (14 Av)(2At™! — 4y))

| +p1 (2At—1 — 47)
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And for i = N:

25 = g (L+ M) A2 - 4D) + g (-0 Ar?)
N

+pNn-1 (6At7 — (14 Aty)4AE™Y) + py (4At71)
These derivatives can be expressed using a tridiagonal, negative definite matrix Ppat
with highest order stencil —1 —4 — 1 acting on the p-vector plus a possibly nonlinear
contribution Q(q) acting on the g-vector only. The gradient of £ can then be written

as claimed:

V log ﬁ]T(q, p) matp + Q(q)

4.5.2 Estimating diffusion coefficient and missing path

The approximate likelihood L;r(P, Q|o,©) can be used to estimate both the missing
path p and the diffusion coefficient o for our Model Problems |, il and III

In order to estimate o, the derlvatlve of the log likelihood

(where priors py(©, o) are assumed to be given) with respect to o is computed:

0 2N 1 0
-a—glogEIT -— ———-+ Z+5——log(po(@ o).

Here, we have used the abbreviation

‘ N-1 Q{-+1 Qp | Py
Z = - — At )
= (5 ()2 oman)

In this case no prior distribution was felt necessary in this example, as when

2

R

N — oo its importance would dlmmlsh rapldly Thus we set pg = 1. The resultmg
maximum likelihood estimator is: ' '
— z ,
3 L ‘
c INAL o (4.30)

Instead of providing just the maximum of the likelihood it may be more desirable

to sample from the distribution of o given observations p and ¢ and the drift parameters.
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As the derivative of the log-likelihood conditional on these obsevations is available we

can write a Langevin type sampler for this distribution in the following form:

oL

do

oN '
_ (__ + —1—3Z> ds + V2dW
ag g

do ds + V2dW

Empirically, the singularity at o = 0 is seen to be more amenable to numerical solution

if the transformation (o) = o* is used. Using the Itd formula, this yields the Langevin

sampler:
@ = ((12-8N)\/C+4Z) ds + 42 Haw. (431)

A simple explicit Euler-Maruyama discretisation in s is used to simulate paths for this
SDE. o

This Langevin-type sampler (4.31) can then be alternated in a Systenﬁatic—Scan
Gibbs Sampler (a§ described on p.130 of [37]) using Ngibbs iterations with the direct
sampler for the paths, (4.29). This yields estimates of the missing path and the diffusion
coefficient, where the latter is estimated by averaging over the Ngibbs Samples of'the
Gibbs Sampler. We illustrate this with an example. For Model Problem | we use the

following parameters:
o=1 Te{10,100} Ate {01,001} Ngipps =10

The sample paths used for the fitting are generated from exact samples using (4.13)
and the résulting plot is given in Figure 4.2 where the first row corresponds to the
behaviour when complete observations are available and the second row corresponds to
only the smooth component being observed. For Model Problem Il we use the following |

parameters:

o=1 D=4 . y=05
T e {10,100} * At € {0.02,0.002} Ngipps = 10
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Complete Observation

Complete Observation

Complete Observation

T=100 At=0.1 T=10 At=0.1 T=10 At=0.01
800 250 250
B <0>-0.99821 Bl <c>=1/047 Bl <c>=0.99334
200 200
600 .
150 150
400
100 100
200 50 50
8.5 075 1 125 15 8.5 075 1 125 15 8.5 075 1 125 15
o o c
Partial Observation Partial Observation Partial Observation
T=100 At=0.1 T=10 At=0.1 T=10 A t=0.01
300 400 300
B <o>=1]0031 B <0>=1,0021 Bl <0>=1,0023
300
~ 200 200
200
100 100
100
8.5 075 1 125 15 8.5 075 1 125 15 8.5 075 1. 125 15
c o c .

Figure 4.2: Estimates of o using the £;7 Model for Model Problem I.
Top row: fully observed process; bottom row: partially observed process.

" The sample paths used for the fitting are generated using a subsampled Euler-Maruyama

~method with

temporal grld

in Figure 4.3.

t where k = 30. This experiment results in the plot given

[

It appears from these figures that the estimator for this joint problem performs

well for Model Problems | and Il for At sufficiently small and T sufficiently large. A

more careful investigation of the convergence properties is postponed to section 6 when

drift estlmatlon will be |ncorporated in the procedure

#
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T=100, At=0.02 T=10, At=0.02 T=10, At=0.002

150 200, 15
‘j:]-<6>=1 0551 Bl <o>=1.0428
150, ' =
100} - ) . 100 Bl <c>=1.0049
o 100 o
50 : 50
50

8.5 075 1 125 15 8.5 075 1. 125 15 ,8.5 - 075 . 1..125 15 |
ag (o] o

[o]
. T=100, A1=0.02 " T=10, At=0.02 T=10, At=0.002
150 - 200 150
: M <o>=1.0877 B <0>=1.0094

Ml <c>=1.107

150
100 100
‘ 100
50 50

50|

8.5 075 1 125 15 8.5 075 1 125 15 8.5 075 1 125 15
[+ g [

»

Figure 4.3: Estimates of o using the £y Model for Model Problem I1.
Top row: fully observed process; bottom row: partially observed process.
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4.6 Drift Estimation

4.6.1 Overview

~ With the approximate Iikelihoods Lg and Lyr in place,‘the‘question arises which of‘
_ these should be used to estimate the drift parameters. Using Model Problem Il we
numerically observe that an Lz based maximum likelihood estimator performs well." In
contrast, ill-conditioning due to hypoellipticity leads to error amplification and affects
" the performancekof the’EIT based estimator. The iII-Conditioning is made explicit nsrng
1 asymptotlc singularity of the diffusion matrix RR™1. )
Alternatively, the estimator (4.9) suggested by Le Breton and Musiela can be
used, but thrs is mapproprlate if a harmonic oscillator fit is sought as it means that all ‘
entrles of © must be estimated and known entries of © cannot be flxed a prlorl Whrle |
It is p055|ble to use a cut-back version of this estimator applying it to only those rows
of © whose entries need to be estimated, it is unclear how to obtain an apprOX|mate ‘
likelihood correspondlng to thlS estimator that is amenable to Langevm sampllng of the
drift parameters and - at the same tlme - av0|ds the error amphﬁcatlon observed in the
L7-based case. ‘,
- Hence, since the £g-based estimators also cover Model Problem IIl, and since
they are amenable to Langevin sampling, they are our choice for estimating drift pararn-

eters.

4,6.2 Drift parameters from Lg

In order to Sirnplify analySis, we illustrate the estimator using mainly the Model Problem
B (414) vNonetheless, we start from the more general equation (4.11) for which the

Euler statistical model is given as follows:

an+1 = Qn + AtPn

| (4.32)
Poy1 = Po+AtY 5, Difi(Qn) — AtyP, + VAtog,
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Here, we assume that the force functions {f;}$_; are prescaled by parameters D; e R.

The likelihood functional in this case is given by:

1
_1 (BPa—AtY S| Difi(Qn)+Aty Py :
o[- i =B ppteseson

Differentiating this likelihood with respect to the parameters {D;}¢_; and «y and equating

to zero yields a linear system of equations which we denote by

Dy
Mg| | = bz | (4.34)
T D . | ‘

Y

In the harmonic oscillator case of Model Problem II, where ¢ = 1 and f;(g) =

—Dq we obtain the following linear system:

SNIAQ: SNEAQ.R] (D] [Nt .an] (435’)
oo AtQ. Py zﬁLJ AtP? | |4 ~Talo PalAPy

The continuum limit for At — 0 with NAt =T of this system is simply:

SEqwa [T p)awat] [D _ |- e
Jy e [y p)%de | |4 — I3 p(t)dps
This corresponds to the estimator of D and- 'y alone given by (4. 9) Casting aside
issues about the dlscretlsatlon error (fmlte At), the proof of asymptotlc con5|stency given
in [4] st||| applles to this estlmator in the linear case. ' ‘
Usmg the same likelihood, L, a Langevin sampler can also be used for the drift
parameters. Since the resulting distribution for © is Gaussian, direct sampling can be

used in the spirit of subsection 4.5.1:

6 ~ N (Mg'bg, M5") | | (4.36)
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4.6.3 Drift parameters from L7

As the approximate model based on L7 is observed to resolve the difficulty with es-
timating o for hidden p-paths, it is interesting to see whether it can also be uséd to
estimate the drift parameters.

The log-likelihood function is given by (4.25). To illustrate the problems arising

from the use of Ly we use Model Problem I, so that (4.25) becomes

N-1 . .
1 2
log L17(©) 5o9AT ; [(Xnt1 — Xn — AtOA(X,))||% + const  (4.37)
At At
where R= | V12 2 , irrelevant constants have been omitted and we have
0 1 ' ‘
AN 0 1
Al o] 4.
| P P, - -D -~

In order to obtain a maximum likelihood estimator from this, we take the derivative with

“respect to the parameters D and 7 and equate to zero. This yields the following linear

‘system:
s sana] o] [-Eoan] | S0 (8n)
2on PrQnit 2, PRAt ¥l X PAR . 2on %Pn (AAQtn "Pn>
(4.38)

Comparing this linear system to the successful estimator (4.34) we note the presence of
an additional term on the right hand side. This term leads to the failure of the above

. estimator.

4.6.4 Numerical Check: Drift

There are two factors influencing convergence: T and At. To illustrate their influence,

consider the following series of numerical tests. All of the tests share these parameters:

D=4 4=05 0=05 k=30
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T=1000, A t=0.01

T=100, At=0.01

' T=100, At=0.001

: 400 300 300
‘ S [<D>=-1.008d (g 5oooooeg o B <D>=-1.1015
300 :
200 200
., 200
100 100
100 '
85 1 i5 85 1 15 05 1 15
e D D o ,
/ T=1000, A t=0.01 .. T=100, At=0.01 - - .- T=100, At=0.001 oo
400 i 300~
B = R | [ =
B <>-0.15268 Bl <>=-0.14457
300 : :
Sl © 200 - 200
200 ‘
AR 100, 100
100} '
. 5
ER 04 % 02 . o4 -8

‘
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Data for the tests are again generated using an Euler-Maruyama method on a finer
temporal grid with resolution At/k. In the plot given in Figure 4.4 the top row con-
tains histograms for the drift parameter D whereas the second row contains histdgrams
for the drift parameter 7 in any case using the full sample path for inference. It is
clear from these experiments summarised in Figure 4.4 that both D and « are grossly

“underestimated.
4.6.5 Why the Model fails for the drift parametere ‘

The key is to analyse the error term on the right hand side of (4.38) comparing it to

the consistent estimator (4.34). Using the 2nd order It8-Taylor approximation
Xny1 = Xn+AtAX, + rR| % |+ SAPATX, + O(Atz) |
“ -7 1 &2

we can compUte the error term on the right hand side of (4.38):

n (B8 — P, _3 P,At—3D 2A¢ .
Zn 2Q ( ) — 472nQn n 4 EnQn +I3+O(At)

E 3P (AQn "Pn) _%DZnQnPnAt—g—'yznPgAt

(4 39)
Here, D and ~ refer to the exact drift parameters used to generate the sample path,
whereas D and 4 in (4.38) and (4.39) are the drift parameters estimated using the
improved statistical model. The term I, on the right hand side contains stochastic
mtegrals whose expected value is zero.

As the mean error terms can be written in terms of the matnx elements them-

seres (4 39) can be substltuted in (4.38) to obtain:
]ED = iD+(’)(At) (4.40)
Ey = i-'y-}-O(At). | (4.41)

This seems to be corroborated by the numerical tests.

- 4.6.6 Analysis of Drift Estimation Failure

In order to make the ill-conditioning whose effects were exhibited in subsection 4.6.3

more explicit, a more general analysis is attempted.
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It was seen above that the Euler statistical model does not allow for successful
estimation of ¢ in the case of hldden p—path whereas the improved model delivers correct
estimates. On the other hand the latter model dehvers incorrect estimates of the drift

parameters even if the complete path is known.

Essentially, this stems from the fact that the correlation matrix RR™~! is not
‘,‘factored out of the drift paramter estimation as it should be. This leads to O(At) errors -

of © in the first (g-) row of the equations (where you implicitly assume exact knowledge . ‘.
of the 'upper row of the drift matrix rather than allowing O(At) errors) to be amplified
" by the At-dependent coefﬁaents of RR‘1 to O( ) errors of © in the second row of “

equatlons J

To analyse this failure more carefully, we derive an estimator which estimates al/
entries of @ and in the process thls mteractlon of ill- condltlonlng as At —0 and the‘ .

suppre55|on of small errors in some matnx entnes is demonstrable

Statistical model
~ Assume, like above, that some higher order estimate of the correlation matrix R(At' (:)) :

s grven where O is wrltten to mdlcate thatitis supposed to depend only on those entries |

of © that are known and not to be estimated. (The matrlx used in the constructlon of

E[T is such a case ) The pomt of the followmg calculatlon however is that thls matrlx

-~ will drop out nf all of © is to be estrmated and so the end result of thls calculat|on

; “implies that the dependence of K on @ is |rrelevant if aII of @ is estimated. The only

%

reqwrement on R(At @) is that it be invertible.
- Using the statistical model (4.2) we have again:
Xn;l = X,, +AtOA(X,) + R(A0)E (4.42)

where § is now an Rk—valued normaIIy dlstnbuted random varlable provrdlng d lndepen-

g ”dent samples from N(O 1.

The Iog |lke|lh00d functional can now be wrltten as follows

f 22”3 At@ Xn+1——X At@A(Xn))“ O (4a3)
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The derivative of £ is a linear function of © which satisfies
L(O©+AB) = L(©)+B:A0+0(A6?)

for the matrix B which is the Riesz-representative of the linear functional

%:ka — R

Expanding (4.43) about © yields the following expression for the action of the

derivative of the log-likelihood function:
%(Ae) =AY (RED)=1(Xnp1 — Xn — AIOA(XA))) ® A(X,) : AO
(244)

Crucially, if all varlatlons A© are permussuble a necessary condition for the ©
maximising the likelihood is for the matrix on the left hand side of the matrix inner
product to be identically zero (this corresponds to R being mdependent of ©). In this

case, the necessary condition can be written as

0 _ —-AtY  ((RRT)™ (AXn — AtOA(Xn))) ® A(Xn)

where. AX = X,41 — X, has been used to simplify notation. Crucially, this can be

premultxplled by RRT — this is the factormg out of the noise model mentloned earlier —

At Z (@A(a:p)) @ Azy) = —~ Z Ax,, ® A(xp)
so that the éstimate 6 is given by

| -
(Z ﬁx” ® A(xp)) (Z Alzpy) ® A(:L‘p)> ) (4.45)
P R : :

“This is but the estimator suggested by Le Breton and Musiela in [4]. They

| _ observe it to be asymptotically consistent in the case of linear A and it can be shown
to have a bias of order O(At) using an Itd-Taylor expansion.
The crucial step in going from (4.44) to (4.45) is that all variations A® in (4.44)

are permissible so that the matrix to the left of that matrix inner product is identically
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zero. If only some entries of © are to be estimated (as in the harmonic oscillator example
above), only those A© corresponding to variations in the components to be estimated

are permissible. To elucidate this issue further, let us rewrite (4.44) using the symmetry

of RRT as follows:

gg (A0) = —At)  (Xnt1— X — AtOA(X,)) ® A(X,) : (RRT)1A6  (4.46)
It is elear from this expression that the direction in which the matrix expression on the
left of the inner product must be zero changes as a function of At. Whether this change
leads to amplification of errors or merely to lower order perturbations depends on the

exact entries to be estimated. It is the interaction of the scaling in the matrix R and

the choice of parameters to be estimated that causes the observed O(1) errors.

4.6.7 Conclusion for Drift Estimation

It has been observed numerically that the likelihood Lg associated with an Euler medel
for the SDE (4.1) yields asymptotically consistent Langevin and maximum likelihood
" estimators for Model Problem I1. For the case of continuous time the proof of asymptotic
consistency in the limit T,—r oo given in [4] can be adapted in the linear case (i.e.
A = td) and it would be expected to carry over to the discretised problem in the limit
At — 0 and NAt — co. | |

While it is aesthetically desirable to base the estimation of all parameters as
vweII as the missing data on the same approxmatlon L7 of the true likelihood L, and
aIthough this approximation was found to work well for the estlmatlen of missing data
and the diffusion coefficient, it does not work for the drift parameters.

It is ‘possible to trace this failure to the fact that only the second row of © is
estlmated where O(At) errors in the flI’St row get ampllfled to (’)(1) errors in the second
row. Estlmatmg all entrles of @ wh|Ie bemg outside the speC|f|cat|on of the problem
under consideration, also ylelds O(1) errors if Ly is used and so does not remedy
the problem. This problem is not shared by the discretised version of the diffusion
indepen‘d‘ent estimator (4.9), but this is not a maximum likelihood estimator for £7.

“In summary, for the phrposes of fitting our model problems to observed data we
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employ the Euler statistical model (4.33) for the drift parameters.

4.7 The Gibbs Loop

In this section, we combine the insights obtained in previous sections to formulate an
effective algorithm to fit hypbelliptic diffusions to partial observations of data at discrete
| times. We apply a deterministic scan Gibbs samplef alternating between missing data,
drift parameters and diffusion parameters. Subsection 4.7.1 describes the approach in

the general case, when applied to (4.1), wheras subséctipn 4.7.2 describes the application

to Model Problem IIl.

4.7.1 Overview

In this sec;tion, the estimators for the hidden rough path V, the covariance I'T'T and the -
those rows of the drift parameters © which are to be estimated are combined in a Gibbs
sampler. Given a likelihood £(U,V|0,TTT), a prior po(©, I"I‘T) and observation U, a

‘ Systematlc Scan Gibbs Sampler would normally work as follows:
1. Sample V from L(V|U,©,ITT).
2. Sample © from E(@[U v, ITT)

3, Sample ITT from ll( I‘TIU V @)

4. Restart from step 1 unless sufficiently equilibrated.

- ‘Of course, the exact likelihood for tﬁe problem af hand is unavailable and thus approx-
imate iikelfhoods are chosen. Exactly which approximations are chosen depends on the
‘problem at hand. We ha\)e outlined how to construct £ approximations to estimate V'
~and T'TT by propagating the highest order noise to evefy row and £g approximations for
the drift parameter estimation. Numerical and analytical evidence indicates that these
apprOX|mat|ons work well.

The algorlthm to be put in practlce thus reads '
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1. Sample V from L;r(V|U,©,0).
2. Sample © from Lg(©|U,V, o).
3. Sample o from Lir(c|U,V, ©).

4. Restart from step 1 unless sufficiently equilibrated.

In practice, we find that for Model Problem Il and I, ethbratron is fast. Furthermore
convergence of the estimates to the true parameter values is observed numerically for
Model Problems Il and 11l with O(At) discretisation errors and O () truncation errors
if the sample paths do not start in the equilibrium measure. The overall bias is therefore
of order O(At + #) and the observed variance is of order O(#). We now show fhis in

detail.

4.7.2 The Algorithm
The proposed algorithm will be illustrated using Model Problem I11.

Algorithm 2. Given observations q;, i = 1,..., N, the initial p-path is obtained using

numerical differentiation:

Ag; ' :
p” = —Aq? (4.47)

The initia/ drift parameter estimate is just set to zero: {DJ(-O)}‘T L= 0, 9 =0. Then
. Kl J=

start the Gibbs loop:

For k = 1, ey NGibbs-'

L Estimate the drift parameters ~®) and {D( )}C_l using sampling from Lg given

{ (k- 1)} via (4.36).

2. Est/mate the d/ffusmty o®) using the Langewn sampler (4.31) based on EIT
glven {pfk 1)} ‘and 'y(k) {D(k)}

3. Get an lndependent samp/e of the p- path {p( )}__ using (4.29) derived from
EIT given parameters (%), {D )} and o), ‘ '
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Figure 4.5: Typical sample path for Model Problem Ill, T" = 500

This algorithm is tested numerically ;/vhere sample paths of (4.15) are generated
using a sub-sampled Euler—Murayama approximation of the SDE. The data is generated
using a timestep that is smaller than the observation time step by a factor of either -
k = 30 or k = 60. Comparing the results for these two and other non-reported cases,
they are found not to depend on the rate of subsampling, k, if this is chosen large

enough. The parameters used for these simulations are as follows:

Dy=1 D;=-8 Dy=8 =05 o=0.17
T=500 Ate{l,...,135} Naibbs=10

The trigonemetric potential resulting from this choice of drift.barameters ie depieted on’
the left of Figure 4.5 and a typical samplepath is éiven on the right side of Figure 4.5.
It should be noted that all sample paths are started at (g,p) = (1, 1) As the potential
is inspired by dihedral angle potentials used in molecular dynamics it seems appropriate‘
* that o is chosen such that metastability occurs. This can be observed in the typical
q;path given in Figure 4.5,

Usmg up to 64000 sample paths we obtain estimates of the drift ‘parameters by
: averagmg over the latter half of Ngjhps = 50 G|bbs iterations. We IabeI these as (D )
and (7). We then compute their deviation from the true values, AD; = (Di) —D; and
plot AD; and Ay versus At in a doubly logarithmic plot given in Figure 4.6.

A similar plot which is given in Figure 4.7 is obtained for the shorter final time
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F‘igure 47: Whole loop estimation for M’o’del_ Problem IIl: T =50

T = 50 which will be helpful in understanding the influence of finite time resolution At

“and finite final time 7" on the observed bias of the estimators. e ’
A straight line fit for the doubly logarithmic plot is desired to nUmericaIly’ascer- kS

tain the order of’ convergence. ‘First attempts at obtaining such a fit using a standard

~ least squares procedure yield a slope close to 1 indicating O(At) errors in the fitted

parameters However since the Monte Carlo standard dewatrons around each datapomt

"get magmfled due to the logarrthmlc transformatlon the fact that the apparent vanance :

increases as At i is. decreased has to be taken into account. As the observed transformed

i ‘;“standard deV|at|ons cannot be assumed to be small in comparlson to the observed mean

: error a more sophisticated method than the standard Ieast squares fiti is suggested.

G|ven averaged numerically observed parameter estlmates y; and their numeri-

cally observed Monte Carlo standard deviations o obtarned at tlmesteps At; we fit b

k’and ¢ in the followmg model

S agmyeblean o (448)
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Assuming that the errors &; are normally distributed (which is empirically founfi to be

the case) a maximum likelihood fit for the parameters b and ¢ can be performed and

yields the asymptotic (for At — 0) drift parameter values reported in Figures 4.6 and

4.7. Note that this fit constrains the slope of the fitted line in the doubly logarithmic

plot to one. This is to rﬁin’imise the number of parameters fitted and to improve the

accuracy of the extrapolated value b which is the predicted value for y at At = 0. It can

be observed in Figures 4.6 and 4.7 that this leads to good agreement with the observed '
average parameter values y;, and this corroborates the estimator's bias being of order

O(At).

Coﬁ\paring the results for the two final times tested, T = 50 and T = 500, we
find that the deviation of the asymptotic drift parameter (b in (4.48)) from the true
parameter value is consistent with it being O (%) This error is attributed to all samble
paths having been started at (¢,p) = (1, 1) rather than from a point sampled from the .
equilibrium measure. | ‘

For the diffusion parameter o, results analogous to those in Figure 4.6, using the
same parameter values, are shown in Figure 4.8 (although that figure displays results
for k = 30 only). Asymptotic consistency can be observed from this figure with a naive
least squares fit yielding a slope of O(At%93). This is consistent with an O(At) error in
the estimated diffusion parameter. »

From these considerations it is apparent that the numerical experiments' outcome
is consistent with an O(At) + O (%) bias, making the Algorithm 2 an asymptotically

consistent estimator of the drift and diffusion parameters.

- 4.7.3 Combinihg MLE and Langevin estimators in a Gibbs Sampler

The‘ Gibbs algorithm alternating between different Langevin samplers as described in
section 4.7.1 is suitable whenever it is possible‘ to sample from those likelihoods. it
was noted in 4.6.1 that a cut-back version of the estimator described in [4] could be
used to estimate parameters for a harmonic oscillator fit but that it was unclear how
to convert this maximum likelihood estimator into a sampler for a suitable posterior

~distribution. - There may also be other cases where practical computational considera-

84..



Diffusion parameter o — convergence

&

b

—6- 4|
2.
I
= -8
ke
7 ° <o>
E —LSQ fit, slope=0.93333

-10 -9 -8 -r -3 -2 -1

log2(At)

Figure 4.8: Whole loop estimation for Model Problem [lI: T' = 500

tions enable maximum likelihood estimates‘(or good approximations thereof) but not
the corresponding posterior sampler. [n these cases, it is interesting to ask whether
combining maximum likelihood estimators and samplers for posterior diétribution in a
common deterministic scan Gibbs sampler is statistically viable. In this subsection, thfs
question will be answered analytically’ in the case of a 2d Gaussian example.

The standard deterministic scan Gibbs sampler as described in [37], p. 130,

assumes the following setup: For a probability distribution
p:R* — Rt

where it is assumed that sampling the conditional distributions p(z1|za, ... zs) is pos-

sible at low computational cost. The suggested algorithm then is to deterministically

3

cycle through the z; updating one at a time:
e Provide starting guess for 21,...,zL.

e fork=1,2,...

1. fori=1,2,...,n

SN k+1 k koook k
" (a) Sample ;" from p(z;|xf, ..., 27 4, 51, . Ty

It is easy to see that this algorithm leaves the true distribution p invariant and according

to [37], géoméﬁric convergence can be shown under weak hypotheses.
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One variant of the algorithm presented above to sample the missing path, the
drift parameters and the diffusion coefficient employs a combination of maximum like-
lihood estimators for the drift parameters (and possibly the diffusion coefficient) and
either a Langevin or a direct sampler for the missing path. In addition, it also uses dif—
ferrent approximations t& the true probability distribution p for the different estimators,
~but even if no such approximations were necessary, it still would not be obvious whether
such a combination should be expected to yield correct statistics. Such hybrid methods v ‘
seem not to be rouﬁnely used in statistics. ‘

The fact that convergence is observed numerically for such hybrid methods fos-
ters a belief in their usability, so in order to gain some analytical understanding, the
2D Gaussian case is analysed here. Of course, the joint probability distribution to be
sampled from in préctice will not be Gaussian. However, it is expected to be unimodél
(otherwise it fs véry simple to construct counterexamples) and approximately Gaussian.

Given a probability distribution p(z,y) on R2, the algorithm to be analysed can

be written as follows:

o Provide starting guess for z1, 1.

. fo‘r k= 1,2,...
1. Sample yx41 ~ p(y, 2x) using the correct marginal distribution.
2. Sample Th+1 qsing an MLE: zp41 = argmax,p(z|yk+1)

Since the algorithm is translation invariant, it suffices to treat a 2D Gaussian

distribution centered at O:

T
T T

1 v
-p(z,y) = =—VdetCexp _1 C (4.49)
2 ‘ 2
“where C is a positive definite symmetric matrix with entries ci; which is the inverse of

the variance of p. The questions to be answered are:

¢ Does the algorithm yield the correct expected value? Does this depend on the

a
starting values z1, 4,7
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e Does the algorithm produce data with the correct (marginal) variances of z and
y?
The answer to the first question is affirmative as one would expect whereas the
second answer is negative and the error is quantified.
Starting with a given intermediary value zi, yx4+1 will be distributed according

to p(y|zk), i-e. Y1 ~ N (—xkg—g‘) Moving on, zk4+1 will then beﬁ given as follows:

1

1 2 2
Tp41 = argmax, €xp (—ECE C11 — TYk+1C12 — Eyk_,_ngQ

‘ ) .
c11 C22 1 1 c
= argmax, exp <_—§— (w + yk+la) = §yﬁ+1c22 + §y’%+1~c1i)
€12

= Ykt
i

So, overall the iteration relation is:

N cdy 1 4.50)
Tr1 ~ N |z , ‘ (4.50)

C11C22 €22

Since C is positive definite symmetric we have that detC > 0 and thus ¢;1¢22 > cl22
The iteration relation for the expected values is simply Ezy41 = -6—1—1%; and this is now
seen to héve an attractive fixed point at z = 0 which is the true value. The expected
value for y;, behaves accordlngly

In order to answer the second questlon the variance of zx1 has to be computed

¢

2 E
‘ R
Var(zg4+1) = —1§Var(yk+1)

c? 1
= (Clear(mk) + —;—2—)

C11 22

The |terat|on equat|on for the margmal variance for z under th|s algorlthm is thus given

as.
4 2
_ S92 €12
Vk+1 = 55 Uk 3 ‘
‘ 011022 . €112

'

where v = Varzy was used to simplify notation. Exploiting positive definiteness of C'

one again finds that this equation has an attractive fixed point at the value:

: 2
; ; ; c . C9C
o A o (45])
C11622 — €12
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This should be compared to the true marginal variance of  which can be eval-

uated from the marginal distribution

T
11z z
z N/ ——1—\/detC’exp —= c dy
R 27[' 2 y
Yy
and is found to be
c
Vartrue = _—“23_2. (4.52) ;

C11C22 — 1o

So comparing (4.51) and (4.52) the variance is incorrect by a factor

v* cfQ
Varirue ‘c11¢02 + €3y
<1

It is unsurprising that the variance is underestimated by this semi-deterministic algo- -
rithm. This result cautions that Monte-Carlo variances along Markov Chain Monte
Carlo simulations should not be used to estimate the posterior variance of the“estimated
parameters if a hybrid algorithm is used. ’
Just how much the variance may be underestimated in practice can be observed
from the following example. We consider the trigonometric oscillator with linear damping

as given in equation (4.15). The following parameters were used:
T;=500 Dy=1 Dy=-8 Dp=8 y=05 0=07

[n the plot given as figure 4.9 we compare histograms for a certain drift paramter,
@2.‘.First|y, the distribution of ©y given smooth sample paths ¢, i.e. p(©2]q) is shown
obtained from repeated experiments using the all-sampling algorithm given in section
- AT.2. This is contrasted with the posterior distribution for one particular, fixed, realisa-
" tion of q which is obtained using the'sa’me all-sampling algorithm.- It can be seen that
the observed Monte Carlo variance provides a good estimate of the true variance of the
drift parameter even though the expected value is subject to a fairly large deviation.
Furthermore, this is contrasted with the approximation to the posterior distribution ob-

tained using the same fixed realisation g but this time sampled using a hybrid method
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Posterior Dsitributions for Drift Parameters Comparing All-sampling and Hybrid Algorithm
7 T f ' T —— Approx Trua Distribution o{

- Individual Sample using Hybrid - scaled by factor 1
~——Individual Sample using Marginals
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1

- log,, (Prob Dens)

-100.5

Figure 4.9: Comparing Hybrid and all-sampling Algorithms

with an MLE for the drift parameters © ahd a dir‘ect,samp'ler for the missing path p. | Itis
observed that while the expected value is the same as with the all-sampling method, the
varlance is grossly underestlmated It should be stressed that this example uses different
approximations to the true likelihood in dlfferent steps of the algorlthm throughout,
furthermore the distributions are not Gaussmn so that - stnctly speaking — the above
anaIysrs does not apply. v . i

This hybrid algorithm takes a middle ground between the EM (Expectation-
MaXImlsatlon) algorithm where the samplmg from the marginal dlstrlbutlon ‘would be
replaced by computing the expected value and the Deterministc Scan Gibbs Sampler A

comparison in terms of convergence rates of those two has been carried out by Roberts

and Sahu, [56]. |
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4.8 Application to Molecular Conformational Dynamics

As a simple application of fitting hypoelliptic diffusions using partial observationls we
consider data arising from molecular dynamics simulations of a butane molecule using
a simple heat bath approximation. After describing the origin of the data to be fitted,
we observe that for small At, fitting an elliptic diffusion process is inappropriate as the
fitted diffusion coeffcient & tends to zero as At — 0. |

By considering the origin of the data we demonstrate that it is natural to fit a
hypoelliptic diffusion proceés which yields convergent results for diminishiﬁg inter-sample
intervals At. Also, stabilisation of the fitted force function f(gq) = ;=1 D; f;(q) as the
number of terms to be included, ¢, increases, is observed. Thus the hybrid Algorithm 2
is shown to be effective on real data. It is also clear, though, that the resulting fit ha‘s
only limited predictive capabilities as it fails to fit the invariant measure of the data at

all well. However, this is a modeling issue which is not central to this chapter.

4.8.1 Molecular Dynamics

The data used for this fitting example are generated using a molecular dynamics (MD)
simulation for a single molecule of butane. In order to avoid explcit computations
for solvent molecules, several ad hoc approximate algorithms have been developed in
molecular dynamics. One of the more sweeping approximation that is nonetheless fairly
- popular, at least as Iohg as electrostatic effects of the solvent can be neglected or treated
“othérv\’/ise, is Lanééﬁn dynamics. The butane molecule is modelled as a damped-driven

Hamiltonian system of the form

i = VV(z)+~%+0B. © (453)
‘The coordinate  in this equation stands for cartesian coordinatgs of the four extended
atoms making up the butane molecule, see [17] for details of the CHARMM forcefield

used here.
From a chemical point of view interest is focused on the dihedral angle, which
is the angle between the two planes in ]R3‘ formed by atoms 1,2,3 and atoms 2,3,4

" respectively; see the sketch in figure 4.10. Conformational change is manifest in this
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Figure 4.11: MD Samplepath: Butane

angle, and the cartesian coordinates themselves are of little direct chemical interest.
Hence it is natural to try and describe the stochastic dynamics of the dihedral angle in
a self-contained fashion.

One MD run is produced using a timestep of
At = 10~16s (one tenth of a femtosecond) and a Ver-
let variant (see p.435 in [54]) covering a total time of
T —4 m10~9s (4 nanoseconds). A section of path of
the dihedral angle versus time can be seen on the left
of figure 4.11; the corresponding histogram is depicted
to the right of that figure. It is known ([23]) that the
stationary distribution of (4.53) is given by the canoni-

Figure 4.10: Sketch of Dihedral

Angle cal distribution associated with the torsional potential,
so that an explicit analytical representation can easily

be obtained.
It should be stressed that the effective stochastic differential equation governing
the behaviour of the dihedral angles is not of the form (4.15), in particular, it will have

a non-constant diffusivity a. So, fitting to this data tests the robustness of the fitting
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algorithm in a way that the experiments in previous sections did not.

4.8.2 Fitting

The physical time-units in seconds are miniscule and do not lead to SDE parameter fits
of order one. It transpires that, in order to obtain parameter values of order one, re-
scaling time so that the final time becomes T' = 80000 is a good choice. This rescaling
is useful in comparing convergence properties with what was observed in section 6.

In order to assess consistency, the MD data is subsampled, at timesteps At € {1-
10~15s, 2107155, 3.10715s ...} in physical time units, corresponding to {k0.02}x¢n in
the rescaled time units. The Deterministic Scan Gibbs sampler is then ru’n for Ngibps =

40 outer iterations on each path using a potential ansatz
c
Viw) = ZOkcosk(w)
k=1

where ¢ € {8,5,7} is used. This corresponds to a choice of the force function in
(4.15). The obtained drift parameters under subsampling at timestep At can be seen
from figure 4.12. This plot shows the behaviour of the drift parameters averaged over
Naibbs = 100 Monte-Carlo samples 61, ...,05,~ as the subsampling rate is increased.
Below a subsampling rate k& = 20, behaviour consistent with O(At) errors is observed
indicating convergence of the algorithm as At is decreased. Tflis is exactly the beha\)iour
observed on simulated data 'and it is a measure of the robustness of the proposed

algorithm.



-0.2] 0.8} 7]
0.55)
0.4
07 o
0.5 o4 0.8
02| 8
o 09|
@ 045 o - o a” 4
-
1.2 3
04 14 1.1
2|
. -1.2]
o8] 1.6
1.8} -1 1
) 10 20 % ] 10 20 » 16 20 an ] 10 20 E]
Altis Atlis At/ls Allls
X
4 11 054
-1.2]
2 052
=13, 0.8
= 14
. .48
@ 4 = -18] ©
0.48]
= -1}
-17] 044
|
1.8 042
7 -19) 0.4
] 10 20 20 10 20 3¢ O% 0 E] 30
Allla . Atlfs at/fs

Figure 4.12: Convergence for fitted MD path with subsampling

4.8.3 Limitations

| The de5|rab|e convergence propertles of the algorithm in At and T should not be con-
fused W|th mference about whether fitting this kind of model to this kind of MD data
gives a good or a bad fit, it merely indicates that, using the algorithm suggested in this
chapter, it is possible to perform such fitting. ' |

To show limitations of the model in this particular application and see how the
performance can be assessed using the fitting aléorithm from section~4.7.2, we show «
posterlor invariant probability densities resulting from the fitted trigonometric poten-
tlals In order to do this, we convert the drift parameter samples {D( )}] —; obtained
at step m using input data subsampled at rate k = 1 to an invariant density, o(™)
specified by its values on an equidistant grid on the interval [, 7]. These densities
*for m E‘ {1,..‘.,1000} are then a‘veraged and their standard deviation is computed
pointwise on the grid. This results in the plot‘ given in figure 4.13. There, we dis-
play results for three orders of trigonometric potential ¢ to be fitted and contrast this
with the empirically observed invariant density and the density arising from the classic

canonical thermodynamic ensemble which is proportional to exp — Y)Y For the pe-
. ‘ kT
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rameterisation used here, it is known that the latter two agree in the limit T — oo, see
[23].

With increasing polynomial order ¢ we find some qualitative change in the result-
ing probability and also (in particular moving from ¢ = 5 to ¢ = 7) a marked increase
in posterior variance. This goes hand-in-hand with a marked increase in the cbn’ditio'n
_number of the drift parameter matrix Mg in (4.36). It is simply an ill-conditioned
problem to derive higher and higher order polynomial coefficients from a fixed leﬁgth of
observed path. |

It is observed that even though the empirically observed invariant density is
smooth and close to the thermodynamical expectation, the fitted pdteﬁtials induce én
SDE whose mvanant measure is not a good approximation of the empirical den5|ty
This may S|mply be attributed to the fact that the SDE that is bemg fitted does not
represent a good model of the dynamics of the dihedral angle in the butane molecule .
with second order Langevin heat bath model. One crucial qualitative difference in th-e
dynamics is the fact that the butane molecule is described By a (high dimensi‘bnél) SDE
with multiplicative noise whereas an additive noise model is belng fitted. ThlS will be

further eluadated in section 5.8.6.
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4.9 Conclusions

| ngure 4.13: PDFs resulting from fitted potentials

for different orders of trigonometric potential -
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A hybrid algorithm for fitting drift
and diffusion parameters of a hy-
poelliptic diffusion process with con-
stant diffusivity from observation of
smooth data at discrete times has
been described.  lts performance
has been validated numerically for a
number of test cases and an applica-
tion to molecular dynamics data has
been given. While parameter fitting
can be viewed as an inverse prob-
lem for SDE solvers — and thus ill-
conditioning of some kind is aIWays
to be expected — a detailed under-
standing of the ill-conditioning in-
duced by hypoellipticity and partial
observation has been attained.

While only‘ second order

_hypoelliptic problems have been

treated in this article, the algorithm’s

applicability is expected to encom-

~ pass order k hypoelliptic problems and it has been tested successfully on a third order

example. Furthermore, non-linear p-dependence in the example (4.11) can be dealt with

using a Langevin sa(r‘npler for the missing path and this has also been tested.

Further avenues of investigation include the use of imputed data-points between

samples to diminish O(At) errors; however there is a risk of bad mixing as o is deter-

mined by the small scale behaviour of the process‘whi‘ch would then be dominated by the

imputed data points. This has been analysed in the case of elliptic diffusion processes

~in [53].
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Also, an extension to position dependent diffusion coefficients may prove useful,

in particular, in may render the algorithm more useful in molecular dynamics contexts

such as those in [34].

A
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Chapter 5

Nonparametric Estimation for

Diffusion Processes

5.1 Overview

In applications such as molecular dynamics it is of interest to fit Langevin-like equatiohs
to data. Practitioners do this by a variety of ad hoc procedures such as fitting to the
empirical measure generated by the data, and fitting to properties of auto-correlation
functiéns. Sfatisticians, on the other hand, have well-developed estimation procedures
which fit diffusion‘ processes to data applying the maximum likelihood principle to the
path—ébaéé density of the desired model éduatibns,) ahd through knowledge of the brop—
erties of thé quadratic vz;riatidn. In thkis chépter we show that fhg procedures used

- by practitioners and statisticians are, in fact, closely related. We do this by introduc-
- ing ahnonparametric approach to estimation for diffusion processes. Furthermore, we
. present the results of numerical experiments which probe the relative efficacy of the two

approaches to model identification.

5.2 Introduction

In many applications beyond molecular dynamics (econometrics, atmospheric sciences,

signal processing) it is of interest to fit a diffusion process to a time-series. The purpose

S
b
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of this chapter is to introduce a nonQparametric approach to this estimationl proeedure.
We will focus here on reversible processes and non-reversible processes of second order
Langevin-type. Thus, applications to molecular dynamics are of particular relevance.
The basic idea behind nonparametric drift estimation is to express the pathspace
likelihood for the diffusion process in terms of integrals across the state space of the
‘difvalsion,‘ rath‘er than the ustral time integrals. In the state space integrals, the infor; |
mation about the time-series appears through the empirical density that it generates.
Applying standard calculus of variation techniques to maximise these expressions for the
likelihood then leads to non- -parametric estimation of the drift, with estimates given in

terms of the emplrlcal den5|ty

We will show that this approach Ieads to methods closely related to a variety

of estlmatlon procedures appearlng in the literature, in partlcular to the minimum dis-

" tance estimator (MDE) and to teehniques commonly used by practitioners in molecular
dynamics based around ﬁttmg to the empirical invariant measure.

: WhllSt it is statrstrcal folklore that drift estimation is conSIderably harder than
diffusion estimation (see e.g. [50], [62]), in that the quadratlc variation in prmaple
reveals the dlffuswn coefficient, it is common practlcal experience with real data that
* diffusion estimation is the harder part of the problem (see e.g. [34], [59]). In this
context, we discuss a variety of different approaches to the estimation of the diffusion
co-efficient, comparing standard statistical procedures and those used by practitioners.

Our settlng is to work WIth diffusions of the form

dz dW ‘ w ‘
= =‘b( ) 2K(m) | : (5.1)

, where Wisa standard d-dimensional Brownian Motion, = lS a stochastic process adapted
l to the Brownian Mot|on K :R% - R¥djsa symmetrlc posmve—semldefmlte valued
function, and b : R? — R?. We assume ergodicity of the stochastic process z. :

The chapter is organised as follows.  In section 3 we describe non-parametric
_ drift estimation for gradient diffusions where results for finite observation times can be
attained. In section 4 we generalise to drift estimation for reversible processes stating re-
‘sults in the limit of long observation times, and section 5 contains a similar development

for second-order Langevin equations, an important class of non-reversible processes.
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Section 6 discusses various methods for estimating thé diffusion coefficient. In section 7
we comment on the relationship between the material in sections 3-5, and the.existing
literature. Section 8 contains numerical experiments in which we compare the effi-
cacy of the nonparametric estimation procedures derived here with standard statistfcal
procedures.

We conclude the section by discussing some properties of the diffusion (5.1)
which are pertinent in what follows. In so doing we describe the basic idea underlying
non-parametric drift estimation. k o

Given an invertible covariance matrix R € R%*? we define an inner product and

norm on R¢ by

(a,b)p = aTR™ b Va,beRY,

ok = (a,0)r a€R%

Let z solve equation (51) with b = 0 so that

dz aw
& =~ VGG

dt : ,(572,)

and let P and Q be the pathspace measures generated by (5.1) and (5.2) on [0, ¢]. Then

these measures are absolutely continuous with Radon-Nikodym derivative

% = exp(-TI(b)) = -~ (53)
~where |
. ; |
10) =~z [ (b@lkedt - 20) do)xe) (54)

Recall that the generator for the process (5.1) is the operator ,
Li=b-V+K:VV, ‘ (5.5

and that v(z, £) = Eg (2(£)](0) = 1) solves

dv
= Lu, t>0,
o | (5.6)
v o=, t=0.
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Probability densities p(z,t) for = solving (5.1) satisfy (see [9], [51]) the Fokker-Planck

equation
9 . o
= 0, t>0
o , ’ (5.7)
g = 0o, = 07 )

where gg is the initial density for z(0).

By ergodicity we know that

tim 76) = -3 | (e@lb@)liee) — 200(0), o)) xe) d

00

Of course, we do not know g(z) and p(z)Lz exactly — we only have the time
series {:c(s)}se[(),t]; However, we can approximate o(z) by the empirical density §(x)

generated by this time series. If we can also approximate g(z)Lx in terms of the data,
say by an expression r(z), then we approximate I(b) by

I(b) = Ia(b) = —i /IR , (@(m)lb(x)ﬁ((m) - Z(b(a:),r(va:)) K(x))dd:. o (‘5.8) :

Maximising I, (b) then gives a non-parametric estimate of b(z), say 5(:1:). Since Ia(-) is

a quadratic functional, the optimisation problem can be solved explicitly as follows. We

have
I,(b+6b) = Ia(b)—i/Rd @(w)|5b|§((z)dx+% /Rd(r(x)—@(x)b(m),5b(x))K(z)di. (5.9)

From this expvre‘ssion it is clear that I,(b) is maximised by choosing b(z) = b(z) to be .-
1
o(x)

‘ Our ability to carry out this program depends upon our ability to approximate o(z)Lz

b(z) = —r(z). . (5.10)
by r(z) given only knowledge of the time series. We discuss this issue in sections 3 and

4, motivated by the examples in section 2.

 We conclude this section with a few remarks on the Fokker-Planck equation

(5.7) for (5.1), and relatedly on reversibility. This equation may be written in the form

% = V@),
o) = —be+V-(Ko).

(5.11)
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The quantity I(g) is known as the probability current ([9], eq. (5.2.8), p.119). |

The steady solution o(z) satisfies .
| 0 = V-((e)),

o) = =bo+V-(Ko).

The process is reversible if the steady solution p{z) is in the null-space of [ so that the .

612

- probability current is zero: I(g(z)) = 0.

5.3 “The Gradient Case -

One of the motlvatlonal examples Wthh we will use to ||Iustrate our work is a gradlent .

dlffu5|on of the form
‘ o dz
dt

where V is a sufficiently smooth and conﬁnlng potentlal and k € R¥ is a constant.. Note

—VV<>+v”' o ey

that (5.13) is a special case of (5. 1) Also, it should be hlghhghted that (5.13) i |s of the
of the type ‘studied parametrlca”y in chapter 3, albelt potentlally in higher dlmenSIon :

In the case of this example and of gradlent dlffuswn processes in general a dlrect link

~-can be made between the max1mum likelihood estimator and the pract|t|oners Way of

ﬁttmg the empirical density. To do this, we use the Radon- leodym derlvatlve (5 3) and" '

convert the Ito mtegral in (5.4) to a Stratonovich mtegral Usmg VV =bwe obtam o
T

:c)‘ 7 / YV (), odm)+§1T (]VV(x)] ——2kAV(a:))dt. (5,14)1

This will be pursued in 1 detail in this section and results that hold even for flnlte times of

‘ observat|on T will be given in the 1D case which corresponds exactly to the processes

o ftreated in chapter 3 We w1|l generalise to rever5|ble processes usmg a dlfferent argument

ln the next sectlon

5, 3 1 Statlstluans Approach

- The maxxmum hkellhood approach to thns would be to write VV(:c) is a Imear combl-

“,natlon of basis functlons fz(a:) so that e
| VV(x) =Y 0:fi(z).
L i=1 o
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Then to substitute this into the expression (5.4) and maximise with respect to 8. Since

I(z) is quadratic in @ in this case, this gives rise to a system of linear equations.

5.3.2 Practitioners’ Approach

The invariant measure for (5.13) is proportlonal to exp(—— (z)). The typical approach
of the practitioner is to fit V(z) to the logarithm of the empirical measure generafed
by the path {z(t)}icjo,)- This appears very different from what a statistician would
do, but is in fact closely related.” To see this we attempt a non-parametric estimationv

of the drift potential V() via the maximum likelihood principle, based on minimising

I(z) given by (5.14). Now
= l ) T),0dx —1— ’ z)|? - T
I@)=7 /o (VV (@), oda) + 5 / (IVV (@) - 2kAV (z))dt
= L(VG@) - VEO) + o5 [ (V@ -2kaVE)E (15

Under suitable assumptions on the potential the first term tends to zero almost surely -

as T — oo. Thus for large T it is natural to estimate V(z) by minimising

1

T (|VV(x)|2—2kAV( ))dt.

- For large T' we approximate the time-average by average against the empirical measure

with dehsity p. This suggests that we minimise the following functional of V(:b), namely
1 @
I(V) =5 / d([VV(:z:)]"’ — 2kAV (z))p(z)dz.
R "

Now
IV W) =I(V)+ /R (@) YV (&) + K9p(), VW) dz + (W)

~ Hence Z(V) is minimised where
p(x)VV (z) + kVh(z) = 0.
Assuming that the empirical measure is zero at infinity we see that

V(z) = —klog j(z). (5.16)
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A practitioners’ approach would involving fitting V() to the logarithm of the empirical
density and hence can be thought of as invoking a maximum likelihood princip.le, as in
the statisticians’ approach. Note, however, that this fit determines V'(z) only up to a

time constant, k. We show how to estimate this time-constant in section 5.6 below.

5.3. 3 Speaahsmg to 1D - flnlte T results

In the one—dlmensmnal case, rather than moving to the limit of long observatlons T
oo, it can be instructive to employ the local time L of the process (5.13), which
|ntU|t|ver corresponds to the time spent at a up to time ¢. ’

Theorem 2.11.7 in [13] states that for belng a 1-d continuous semlmart‘ln- '

gale w:th local time L¢ the following identity holds for any Borel-measurable, bounded

function g:
00 ‘ t | ' _
/ Lig(a)da = / glz)dz)s ©(5.17)°
—_00 0
Note that for the process (5.13) we have ; '
| 2 - L iy
ok

so that the new integral becomes

16) = VG -Veo)+ g [ (g V@ -ve)

where flrst and second derivatives of the potential V' have been expressed as V'(z) =

L4y(z)and V" = WV(I'). It can be shown that the local time L§ is jointly continuous
~in (t,a), however it is not in general differentiable. - By looking at a suitable weak
interpretation of the sequel, it might be possible to disregard this technical problem. So

we integrate by parts to obtain:

W)= 706 =VEO) + g7 [ o V@ L+ Vi) Lt 519
© Consider the variational derlvatlve of (5.18):
I(V 4+ eW) = I(V) += (W(x(T)) - W(z(0))) + §1T A (E%V’(q) -W'(a)L§

e W’(a) iL“)da—{—O( )

e
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Rewriting the point values W(z(t)) using Dirac-d-distributions and integrating these

partially results in the following expression:

oI - o :
TW) = /R(‘W(a)Hx(T)(a)+W(a)Hz(0)(a)
+5-V/(a) W'(a )L;‘-l—%W’(a)-d—dC;L?)da

So the non-parametric estimator of the gradient of the potential V' is given by:

Hy0) — Hy(my)

s (5.19)

vV = 2k£—llogL§+

Given that the Heaviside function will be zero in the far negative, this couId be mtegrated

This equation should be compared to (5 16)

Since this functional is also used to characterise the maximum likelihood estima-
tor for parametric inference for V, thislshows a close link between the two estimatots.
For finite final time T this link is perturbed by the Heaviside functions in (5.19). This"
pertt:rbation, however, is typically of order O(T!) whereas the average (root mean
square) deviation of the first term in (5.19) is O (\/TTI) so that this link for finite
final time reveals a much closer relationship than the limiting arguments above would

lead one to believe.

' 5.3.4 Extension to higher dimensions?

Extending local time to mult| D is not feasible via the trick using the Meyer-Tanaka
formula. One could attempt to define a random measure on RY that still fulfils (5.17),
however this would not normally be continuous in space, so taking its gradient and

integrating V' against it might present a technical problem.

5.4 Drift Estimation for Reversible Processes

We describe nonparametnc estimation of b(x) in (5.1) assuming that K(z) is known,
and that the process is reverSIble Notlce that Lz, with generator L glven by (5.5), is
given by Lz = b(z). Thus

o@@)lz = o(a)b(z) - . (520)

104



Recall that we wish to approximate g(z)Lz in terms of the time series data alone. The
identity (5.20) fails to do this because b(z) is not known to us — we wish to estimate

it. However, if the process is reversible then, from (5.12),
b(z)o(z) = V - (K(z)e(z)) | (5.21)

and so we have

)o =V (K@el).  (522)
Since K(z) is assumed to be known we deduce that we may approximate o(z)Lz by
r(z) = V- (K(z)d(z)). The approximate scaled log-likelihood given by (5.8) is a
quadratic functional of b(z). Thus, using formula (5.9) we obtain for b maximising L(")

from: ’
' 1 1 N
= é—(wjr(x) = —@—(:c_)v - (K(z)d(x)) (5.23)

The identity (5.23) provides our non-parametric estimate of b(z). We make several

b(z)

remarks.

1. The expression (5.23) shows that, provided 4(X) — o(z) as T — oo in an
appropriate function space including derivatives, then b(z) — b(z), by (5.21).

2. To ensure convergence of §(z) to p(z), and in particular convergence of derivatives

is, in general, non-trivial.

3. For the case K(z) = K € R%*4, a symmetric positive-definite matrix, independvent

of z, éqbuation (5.21) shows that for a reversible process

b(z) = -KVV(e) (5.24)

for some scalar potential V' : ]Rd — R. In this case, too, the non-parametric

‘estimate (5.23) can be written as
b(z) = KV log §(z). ~ (5.25)

Since we know that the true drift has the form given by (5.24), it is natural to

estimate b(z) ‘non—parametrically as b(z) = ~KVV(z). Then (5.25) implies that
V(z) = —log d(x). (5.26)
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4. It is reassuring to find that (5.26) is the same as (5.16) so that our argument for

reversible processes generalises the argument put forward in the gradient case.

5.5 Drift Estimation for Second Order Langevin Equations

5.5.1 Direct Variational Approach

We now consider an example of a non-reversible process: the second order Langevin

equation C
d’q , .dq
—m HhB— +VV(g) = V2k

where G is the damping constant, k is the diffusivity and W is standard Brownian motion.

aw
dt’

(5.27)
Note that (5.27) is a special case of (51) Also, it should be highlighted that (5.27)
is the process studied parametrically in chapter 4. Mimicking the presentation in the
first order case, we will first present a direct approach applying variatiénal‘calculus,tb -
the Radon-Nikodym derivative in the gradient case and then move to the more general

framework using the Kolmogorov equation (5.6).

o If we set p= %‘tl then from (5.27) we obtain the following system of equations:

- P | - (5.28)
= —kBp—VV(g) + V2R,

SO

The Radon-Nikodym derivative of the measure on path-space for (4.1) with respect to

the measure generated by

dp aw N DT
prl 2k—[17 ' (5.29)
is proportional to
eXp(—%I (q,p)) oo (530)

" where

‘ o T : 1 T
Han) = [ G650+ VV@.d 4 5 [ (VV@P + (161l + 2689V (9), ).
(5.31)
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Statisticians’ Approach

As in the first order case, a statisticians’ maximum likelihood approach would be to

represent N
Vig)=> 0:£(q)
i=1

and then to minimise I(g, p) with respect to 6.

Practitioners’ Approach

The invariant measure for (5.28) is a product measure, Gaussian A(0, 21) in p and

identical to that arising in the first order case in ¢, namely proportional to exp(—8V (g)):

pa.p) = Cexp(—BV(q))exp (—%npnz)

= p(q)g(p)

As in the first order case we attempt a non-parametric estimation of the drift poten-
tial V(g) via the maximum likelihood principle. This suggests minimising‘.I(q,p). An

integration by parts shows that
L1 )—1/T<kﬁ LYV,
Cpllep) =7 | kOp q), dp)
1 T
+57 | (VY@ + ()bl + 246(9V (), phat)
[ N
= _T/ D*V(q):p®pdt
0 ,

1‘
+.._

T
o7 J ¢

. ‘ ‘ T
[VV(9)I* + (k6)Ip|* + 2kB(VV (9), p))dt + T/o kB(p, dp).
For large T we approximate the time-averages in the non-stochastic integrals by

average against the empirical measure with density 5(q)g(p), assumi.ng some algorithm
_is used to approximately factorise the empirical measure. This suggests that we minimise

‘the following functional of V(g):
) . B ) . R 1 . . . | ‘
V)=~ [ (0V(@ :pp i@ite)dadp + 5 [ (VY@ pla)da

n % /R (kB IpPo(p)dp + /R 20 FBVV (@) p) A(9)3(p)dgdp + —% /0 ' kB(p, dp).

e
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The fourth integral is zero if we impose the condition that Ep = 0 and the first integral
simplifies to an integral over ¢ alone if we impose Ep ® p = 11. This suggests that we

minimise
10) =4 [ (ov@ye-2avio)a@azr Lo [ 1Paor [ kst do.
2 R4 ﬂ 2 R4 T 0 ,, .
Setting the variation of Z(V') with respect to V(g) to zero, we obtain
A 1. .
Vig) = —glos A(a)

as in the first order case. Thus, the non-parametric maximum likelihood principle for
estimation of V(g) leads to the fitting of V(z) to the empirical measure in z. The

damping parameter (3 can also be estimated in this setting.

5.5.2 Langevin in the general Framework

We now show how to integrate the previous subsection into the general framework of
(5.1) as well as how to incorporate estimation of the damping. Firstly, the prdcess (5.27)
can be cast in the general framework of this chapter as follows:

Let z € R% with

b(z) = —BK (z)VH(z) + JVH(z) (5.32)
whefe ‘ | | | o |
z= ( q), H@) =12 +v(), J= ( 0 1).
P —-1*0
Then - ‘ ‘ ‘ ' ] L e : .
| VH(z) = ( vV ) . JVH(z) = ( P ) . (5.33)
| P | -VV(q) -
Assume - “

(VK@) =0 (5.34)

The stationary measure for this process is then giveh by o(z) = Cexp(-BH(x)). To
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see this, note that -

Vo(z) = —pBVH(z)o(z), (5.35)

—bz)e(z) = —K(m)V@(w)+%V@(x) | (5.36)
= -V (K(@)o()) + —gvg(m). (5.37)

Thus I(o(z)) = %JVQ(:L‘) and, since skew-gradients are divergence free,
V - l(o(z)) = 0. (5.38)

Equation (5.38) shows that g(z) is stationary by (5.11).Note that since {(o(z))
is not identically zero, the process is not rgversible. '
Now we ask whether we can express 7(z) Lz = o(z)b(x) in (5.8) purely in terms

of time-series data in this case. From (5.36) we deduce that

~be)els) = ~K(@)Vela) + ( / p2@<x)dx) IVo(),

since p is Gaussian with distribution A/(0, 713-) under the stationary measure. This sug-

gests that we approximate o(z)b(z) by

r(z) = K(2)Vé(z) — ( / p2@(x)d¢) IVez). o (5.39)
We may use this expression in (5.10) to estimate b(x) nonparametricélly.

5.5.3 Nonparametric Estimation of b(z)

With the above definition of r(z), we deduce from (5.10) that b is maximised where
b(z) = b(z): ‘ e I |
Wb = K@Vee) - ( [Powhia) Ve@) (540
The identity (5.40) provides our non-parametric estimate of b(z). We make several

‘remarks.

1. If Vi(z) = Vo(z) and §(z) — o(z) as t — oo then V(z) — —BVH(z)o(z),
and [ p?4(z)de — % Hence b(z) — b(z) by (5.40).
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2. As in the reversible case, it is of interest to estimate the potential V/(g) non-
parametrically. Since V(g) and g together determine b(z) given by (5.40) it is in

fact natural to estimate (3, V(q)); we study this question in the next subsection.

3. The specific instance of the second order Langevin equation (5.27) corresponds
to a singular diffusion matrix K. However, the next subsection will show that this
singularity can be handled in the general context of this section, recovering the

calculations of section 2.

5.5.4 Nonparametric Estimation of (V(g),0)

We study the situation above in the case where

K(z) = ( Ki(g) O )
0  Kag)

and we introduce the notation

(a) = ( :E; ) a=(f p2@<m>dw)_1-

We start with the assumption that K(z) = K(q) is positive definite uniformly on
R?. However, we will show that, when eétimating (V(q),ﬂ) only, the singular’limit of
K1(g) — 0 may be taken. Rather than trying to estimate b we try to estimate (3, V(q));
together these‘quantities determine b(z). Recall the functional we wish to minimise,
I,(b) from (5.8). To understand how I, depends on (8, V') we cal\c;ula;te the two terms

under the integral in (5.8). Firstly, we have
by = BIVH@ o + IVHE R e
o = ‘ﬂ2|VV(Q)|%{1(q)-1 +ﬁ2lp|§(2(q)—l + Pl + IVV(Q)G(Z,@) :
Also | | o '
6@,k = (FKE@VHE)+IVHE), @)k
| - =BVV(9),r1(2)) = Blp,2(2)) + Py 1(2)) ki g (5.42)
. —{VV(9),72(2)) ks (q)-
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In the singular limit K1(g) = O there are two terms in the preceding expressions for
Ib(x)]%{(q) and (b(x), r(z)) k(g which become unbounded. However, neither’depend
upon 3 and V(q); they are hence irrelevant to the likelihood calculation and we ignore
them. Further simplifications to I(b) are possible, using the structure of the invariant

measure. Notice that

/R L, A@pe(z)de = 0
/ (a(Q)y vp@(l'))dl’ =
R2d |
/de@, Vp@(l'))Kz(q)“ld:L' = —ﬁ/}de Q(x)lplg{z(q)_ldfp.

Thus in the following we will make the substitutions

fRZdA(Q)P@(QE)dx ;—;l 0
fR2d<a(Q)avpé(l')>d$ — 0 o ' (543)

fde <p7 vpé(z)Kz(q)"l - -B fde é(w)lplfﬁ(g)—ldﬂ?-

Now, from (5.39),
o= Ki@Vadle) - 3V500),
n = K@Vyd) + 5V5ila).
Hence, applying (5.43) to (5.42), we obtain

Jr2a{VV(a),ri(2))dz = [R2a(VV(9), Vd(x)) gy ()10 |
| fde(p,rz(:L‘))d:E — —Bfde‘@(x)'pl%{Z(q)-ldf B (544)
Jrea(VV (@), m2(2)) Ky () 5 Jrea(VV(9), V4i(2)) k() -

Substituting (5.41) and (5. 42) into the expression (5. 8)' for I,(b), applying
~ (5.44) and droppmg terms independent of 8 and V(q) gives the followmg functional
of (V(9),B):
L(BYV) = =5 foou @IV @I, )12 = F fiaa 6@)lpl )1
—~18(@)IVV (@)l - éfmzd (VV(9), Vobla) ky(-1da  (5.45)
+8F Jgas o (@)plfqade - fmzd (VV(9), Veb(@)) key(q)do
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This functional is quadratic in each of 8 and VV(q) separately. It may be written as

L(BYV) = =1 fpeu 8@)plk,p)-1d2(8 — B)?
—1 faoa [03VV(9) + %vég_f)(?ﬁg(q)d‘” (5.46)
— B frea |0(2)3VV (g) + ¥ ’ dz + €.
g 2@)? 1K1(9)-1
- where € > 0.

From this expression it is clear that the maximum is attained by choosing 3=

and V(q) = V(q) where 3= and V = —%log o(z).

5.6 Estimating the Diffusion Coefficient

The discussion in sections 5.5 and 5.4 shows that it is possible to fit first and second-order
Langevin equations to the empirical measure generated by a time-series. -In doing so the
model fit is completely specified, up to a time-constant k. In fhis section we show hbw'
standard practitioners’ approaches to determining this time-constant, through fitting
the auto-correlation function, are closely related to common statistical practise which
focuses on finding the quadratic variation. We concentrate on the first order case, and

assume that we are given a time series {z,, }"-!. The second order case is similar.

5.6.1 Statisticians’ Approach
The statisticians’ approach is to fit the diffusion co-efficient using the quadratic variation.

For the first order Langevin equation standard properties of diffusion processes show that

1 can be estimated by the formula

k
{ -1 |
2k] =~ m n;o (?n—}—l - wn) ® (mn-l-l - x") | (547)

'5.6.2 Autocorrelation Function
The (unnormalised) autocorrelation function is defined by

~ C(r) = Ex(0)a(r)
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on the assumption that z(0) is distributed according to the invariant measure. It is
known that ¢(0) = ——};—. By ergodicity the auto-correlation function can be expressed

as the time-average
T

C(r) = %ﬂo% (t)e(t + 7)dt.
For the first-order Langevin equation, practitioners will often estimate 1 by adjusting it
so that the autocorrelation function of the model best fits the data. For example one
might fit the constant so that the slope C’(0) fits the data. We show that this latter
procedure is directly related to estimating the quadratic variation as above.

Rearranging the expression used to estlmate in (5.47) we find that

’ 1 N-1 N-1
[C(O) - C(At)] :N Z x'?z - Z TnTn41
, : . n=0 . n=0
N-1
1 2 _ .2
=7V— Z (xi — xn:vn+1) + mLzNEO_ '
- n=0
) N-1 e :
=5N Z 721+1 + xi - 2xna:n+1)
n=|
N-1
2N Z Intl — ® ($n+1 - wn)- ‘
n=0

The first ‘Iine is a natural approximation for the derivative of the auto-correlation func-
tion expressed in terms of time—averages Subsequent lines show that this approximation
can be re—wrltten in terms of the quadratlc vanatlon Thus flttmg the slope of the em-
pmcal auto—correlatlon as practltloners do, is closely related to the standard statistical
procedure of estlmatmg the quadrat|c varlatlon Fitting various transforms of the auto-

‘ correlatlon, however, is more involved and exploits knowledge of the drift terms.

5.7 Relationship to existing literature

In the statistical literature, the estimation of diffusion parameters is usually viewed as
straigthforward: In the case of continuous time trajectories the estimate is given using
quadratic variation and a limiting process like the one in (3.3), this is noted e.g. in

the foreword of [62]. For discrete time observations, an assumption of high frequency
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observations is usually made and estimators tend to be based on quadratic variation at
finite inter sample times like (3.13). Theorems on the aéymptotic behaviour of these
estimators are available, e.g. in [50].

In the chemistry and physics literature, estimating the diffusion coefficient has
been viewed in conjunction with assessing a range of timescales where the diffusion pro-
cess proVides a good approximation of the true dynamics. Hummer notes in [34] that
position dependent diffusivity should be employed which corresponds to multiplicative
noise. He offers a fully Bayesian algorithm based on binning and then considering tran-
sition rates between bins. More traditional methods from this field reduce consideration
to a small region around an equilibrium point in phase space, using a harmonic approxi-
mation for the potential. One can then fit analytic expressions for the Fourier spectrum
of the velocity autocorrelation in the harmonic oscillator case, see [32] and [59], yielding
the frictic;n coefficient vy (and o via fluctuation-dissipation). Alternatively (depending
on whether the over- or under damped regime is considered) one can consider a fit to “
the Laplace transformation of the velocity autocorrelation as described in [36]. Even
- more traditionally, one can look at the mean square displacement of the particles and
infer diffuéivity. Again; if the drift parameters are known (or can be approximated well
in the region of interest) one ca‘n identify the diffusivity from spatial autocorrelations. -

Estimating the drift coefficients is generally considered easy as they can be in-
| ferred from the potential of mean force, as‘kpointed out by Hummer, [34], although
computing the potenktial of mean force in areas that are less well sampled poses a
challenge that has led to a plethora of algorithms. The statistical literature typically
coﬁsidérs drift baramétér estimatfoﬁ to be the harder problem of the two. Methods akin
to the practit‘ioners' approach via counting population densities include in particular the
~minimum distance estimator. Kutoyants (see [62]) gives two realisations of the min-
"~ imum di’sta‘h‘cﬁe estimator. Since the cumulative distribution function of the Erocessés
involved here is not explicitly available here, whereas the pdf is, we settle for Kutoyants'

second minimum distance estimator which seeks to minimise the following functional:
0 = argmingeg [|2(-) — 0(0, )l 2 ‘ (5.48)
Here, as above, 6(+) refers to the empirical density whereas g(6, -) denotes the invariant
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|’:>roba‘b‘i|i"cy density ind'uced‘ by our SDE for the choice of drift parameters 6.

. The choice of L2-norm in this case is somewhat arbitrary, although it is of course
useful, from an implementation point of view. The relationship of this minihum distance
: estimétor to the préctitioners' estimator studied in this paper is not as straightforWérd
as it seems (see section 5.8) because the potential fitted by the practitioners in a least
" "squares sense needs to be exponentiated, normalised and then fitfed in an L2-sense.
T‘hve fact that 4 will normally be finite-dimensional implies that some interpblatioh
error will always be made, and this interpolation error is transformed by the nonlinearity

of exp(-) and L2fitting in a nonlinear way.

5.8 Numerical Experiments

5.8.1 Introduction

As an example on which to perform experiments we choose the simple one-dimensional

diffusion with a gradient vector field given by
cdr = <—x3 + gm) dt +2.5dW, z(0)=0 : (5.49)

- Using this special case of (5.13) we will study how the practitioners’ method, the second
minimum distance estimator as well as the maximum likelihood estimator perform when

used to estimate drift parakmevters'. The functional form to be fitted to this SDE is given

- as:

. -

dz = Y (') dt+odW, z(0)=0 . (5.50)
‘ pt ,

Here, both the 0; as \‘Nell"‘ és the difFusibn coefficient o are to be estimated. In order

to distinguish contributions due to the O(1/T) term in (5.15) related to the initial

condition and other contributing factors, a new drift estimator is introduced based on

maximising the functional given in (5.15) without the first term:

T
0 = argming—QlT—/ (IVV (z;0)% - %AV(i;G))dt. (5.51)

This estimator can be expressed explicitly in the case of linear parameter dependence,

. (5.50‘),‘tha‘t is at hand.
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This section is organised as a collection of numerical experiments as follows:

1. A non-parametric view of the correlation between estimated potentials expected
from the link between MLE and Practitioners’ methods is presented in subsection
5.8.2, see figure 5.1. This serves as preliminary numerical confirmation of the

practical relevance of the claimed link.

2. Parametric estimation based on the MLE, the practitioners’ approach and the

second MDE will be introduced in subsection 5.8.3 including numerical illustration

of asymptotic consistency in figures 5.2 to 5.7.

3. The correlation structure of four parametric drift estimators (MLE, 2nd MDE,

Practitioners’, ©-method) will be investigated in subsection 5.8.4 with figures 5.9

to 5.11 summarising the main results.

4. A brief note on comparing estimated parameters via their induced autocorrelations
is made in subsection 5.8.5 giving results in figures 5.12 and 5.13. It shows
that in the first order case induced autocorrelations may not be a very sensitive

benchmark, whereas in the second order case it is more telling as shown in figure

5.14.

5. Finally, we will investigate in subsection 5.8.6 how these estimators perform in
the case of a missp(eciﬁed model where the sample_paths are generated ueing
multiplicative rloise. As figure 5.15 shoWs, the invariant probability densities are

' ba‘dly reproduced by the MLE and fairly well reproduced‘oy‘the second MDE

while both estimators fail to produce the correct induced autocorrelations, see

figure 5.16.

5.8.2 Empirical and MLE-induced Probability Densities

In order to broach the relatron of maximum I|kel|hood estimates for drift parameters and
the empmcal densrty produced by the process we perform a few prellmmary essentlally
non-parametric experiments and folIow these up with a more careful study of correlatron

of estimated drift parameters usrng the different estimators.
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Figure 5.1: 'probability density functions from one particular
samplepath

An ensemble of N = 100 sample paths for the SDE (5.49) is created for final
time T' = 100 and sampled at spacing At = 0.01. The pathé are created using a
subsampled (k = 30) Euler-Maruyama method. On each of these paths, a maximum
likelihood estimator based on an Euler approximation is used for the parameters ;. Also,
a histogram is computed for each of these paths using B = 50 bins spaced equidistantly
on the interval [—4,4]. ‘ ‘

. The true probability density function (pdf) as well as the pdf arising from the
M‘LE—estime’ated parameters @ and the émpirical pdf from the histogram are plotted in
figure (5.1) in a typical case.
| As‘ it is difficult to derive from these graphs whether such an agreement is indeed
typical or merely coincidental, a measure of correlation is cémputed as follows. At the
centres of the bins, denoted by {¢;}i1,... 50, the deviations of the MLE-derived pdf for
bath i, 91(\/1LEi) from the true pdf, g, as well as the deviation of the empirical pdf, gg}w;

are computed to form the following correlation coefficient, summing over N = 100
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realisations:

N SE (dhue(e) - 9(e)) - (98() — 9(e))

o Z;%Efil (Fasp () = 9(en)) -/ 2oy (ghaz(es) - 9(e)’

The correlation coefficients obtained in two experiments with different random

Seeds were ¢ = 0.83 and ¢ = 0.81 respectively, so that some degree of correlation is
present. However, the presence of terms relating to the initial and final conditions in
(5.18) shows that no more should be expected. Also, errors due to finite At and finite
number of Biné B will play a role. |

The (root mean square) average deviation in (5.18’) will be of size’(?‘(ﬁ) ’
w‘hereas the deviation due to the initial conditions is only % so that in;réasing the final

time T would be expected to improve this correlation, provided that effects due to finite

At are negligible.

5.8.3 Parametric Estimation
Implementation of the Practitioners’ method

We wish to adapt and implement the estimator given by (5.26) for the standard - 1d
example (5.49). Since the estimator is inherently non-parametric whereas the model to
be fitted, (5.50), is parametric, some adaptation is needed. |
This comes in the form of first computing the histogram (based‘on a number of
bins B (usually 50)) on the interval [4,4]. Using this histoéfam data and the quadratic
variation estimator for o in (5.49), a least-squares fit is performed so that (5.26) is
satisfied approximately in a least error squares sense given the fdﬁctional form, (5.49)

to be fitted:

B 02 c 2
6 = argmin, Z o) log(e(cs)) — Z‘%‘Vi(cb) ~ - (5.52)

b=1 i=1
It should be pointed out that any finite choice of the number of bins B is

likely to incur an error in estimated parameters as the choice of the bin centre ¢cp for
evaluation of V; is arbitrary. To be accurate, this would have to be replaéed by an

_ appropriately (logarithmically) weighted integral of this function over the bin interval.

118



A further problem with this method arises when some parts of the interval [—4,4] are
poorly sampled. This poor sampling results in a jagged logarithmic histogram and large
deviations from any accessible invariant density in the parameter space spanned by the
{8} seem to negatively affect the estimator. To mitigate this problem, a cutoff is
introduced whereby only those bins which contain at least -1% of the samples to be
expected under uniform distribution are taken into account in the least squares fitting.
Practitioners might well introduce a weighting for the errors to mitigate these effects and
a mathematically more sophisticated approach might use the Kullback-Leibler divergence
(relative entropy) to obtain the estimate. This, however, is computationally slightly’
more cumbersome and we feel that for simple illustration purposes, this ad-hoc criterion

performs well without unduly affecting the core performance of the estimator.

Implementation of the second MDE

In order to compare MDE and MLE estimates of the drift coefficients, a parametric
minimum distance estimator is required. Kutoyants (see [62]) gives two variants of the
minimum distance estimator. Since the cumulative distribution function of the processes
involved here is not explrcrtly available, whereas the pdf is, we settle for Kutoyants

second minimum distance estimator which seeks to mlnlmlse the following functlonal
6 = argmingee llgr () — £(6, )2 : (5.53)

Here, gr(-) refers to the empirical density whereas f(6,) denotes the invariant proba-

bility density induced by our SDE for the choice of drift parameters §.

n general the minimum need not be attained and there are no guarantees that

it rs unique, either. We therefore search for a local minimum and apply a steepest

‘ descent algorlthm ina 50—b|n discretisation of the pdfs. The termination criterion is for

the gradient of the functional wrt, 6 to be below a certain threshold. Convergence is
observed in an large maJorlty of cases, occasionally, if the histogram is very jagged, the

algorrthm grlnds to a halt.

The input value for the diffusion coefficient o to this algorithm is computed from

the quadratic variation of the input path using the estimator (3.13). This is the only
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Figure 5.2: Convergence as At — 0 of drift parameters for MLE

part where effects resulting from finite inter sample times At enter the estimator.

Asymptotic consistency

To demonstrate asymptotic consistency of these estimators, we compute MDE, Prac-
titioners’ and MLE ’estimates of drift parameters using the SDE 5.49. Performing this
with a final time of T = 100 and timesteps from At € {0.1, %i,---,%%} we obtain
the plots given in figures 5.2 and 5.3 for the MLE estimates using the same linear error
model as in (4.48). - | ‘ ‘

The estimate for the asymptotic drift coefficients is not expected to be consistent

(statistical significance is open for now) since there is error related to finite final time in
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o estimates via MLE-drift-augmented quadratic variation
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Figure 5.3: Convergence as At — 0 of diffusion parameter for MLE

conjunction with starting all sample paths from the starting point 2(0) = 0. Error due
to finite At is imported into the MDE estimates via the o estimate which is why figures
5.4 and 5.5 show At related error. Those drift parameters which are zero (i.e. 8; and
f3) show vefy small estimation error indeed. Since this error is not necessarily caused
by the incérrect o (and hence not multiplicative, Ed = 6(1 + O(At))) but more likely
to be due to the finite number of bins, it is understandable that the linear error model
cannot convincingly account for At related error. Concerning this graph it should also
be pointed out that the confidence intervals sometimes extend all the way to —co which‘
is simply dué to the extrapolated (for At — 0) value for the drift parameter being inside
the confidence intehal, so that the set distance between the conﬁden;e interval and the
extrapolated value is zero, corresponding to the logarithm —00. |

It should be noted that, similarly to the practitioners" estimator, choosing a
. constant number B =50 of bins for the MDE is questionable. Howevér, given perfect
histogram data (attained by a‘rtiﬁ’cially setting the histogram entries to the values of
the pdf génerated by the correct values for drift and diffusion parameters) the MDE
as implemented has been observed vto converge to the true drift parameter values (to

- within £0.004) from 100 randomly sampled starting conditions, see figure 5.6.

Finally, the drift parameters graph obtained for the practitioners’ estimator is
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Figure 5.4: Convergence as At — 0 of drift parameters for MDE
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o estimates via quadratic variation

LSQ tit, slope— 1.005

Figure 5.5: Convergence as At —>0 of diffusion parameter for MDE

MD Estimates for perfect histogram data
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Figure 5.6: Confluence of MD estimates for perfect his-
togram data
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Figure 5.7: Convergence as At — 0 of drift parameters for Practi-

tioners' estimator
displayed in ﬁ‘gure‘ 5.7‘, a sepafafe display for the consistency of o is redundant as
& is arrived at using the estimator (3.13) based on quadratic variation alone which
was previously shown to be asymptotically consistent in this implementation. Similar
” comkmelr‘i‘ts’ és to small errors in 61 and 03 as well as éonfidence intervals extending to

—oo in the logarithmic display épply.

5.8.4 Correlation of estimated drift parameters

The experiment in 5.49 is repeatedA with diffusivity o = 1.5, final times
Ty € {10,20,40,.. ., 10240} and timestep sizes At € {2:107%,2.1073,2.10~4,2-10~5}.
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Figure 5.8: Deviations of drift Parameter 83 from mean, Ty = 20480

Using N,, = 500 sample paths for each configuration, the MLE and MDE estimates are
computed. It is found that their variances do indeed decay like (9(%) The deviations of

the estimators from their respective means (over fixed T;) is computed. These deviations

display an approximately Gaussian distribution, A (0, <), as shown in figure 5.8 for

Ty = 20480 and At = 0.02.
Plotting the averaged correlations as a function of final time T} yields the plot

in figure 5.9. ' ‘ o DR .
It seems that the maximal obtainable correlation coefficient is around 0.7. For
small final times T, the influence of errors related to finite resolution At is apparent and

an increase in observed autocorrelation with resolution is clear. For larger final times,

however, the increase is not maintained.

It may be hypothesised that the © estimator should be more correlated with

the MDE since it is based on performing the same Stratonovich /integration process as
above. In fact, the de-correlation of the © and MLE should indicate the influence of

the initial-condition related term in (5.15) on the parameter estimates. We compute
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Correlations of MDE and MLE vs T for different A t

Figure 5.9: Correlations of drift parameter deviations

the correlation of the A estimate and the MLE for the same drift parameter as above,
again using Tf e {10,20,40,, 10240 and At = 0.0002 in this case, which results in
figure 5.10.

The remarkably high degree of correlation indicates that the first term which is
of order is of little influence.

The main reason for the correlation not approaching 1 in figure 5.9 must thus
be sought elsewhere. Since the discretisation influence exerted by finite At as well
as scaling with final time Tj have been investigated and do not seem to account for
all of the deficiency, other potential culprits may include finite numbers of bins in the
histogram. However, this is unlikely given the observed asymptotic consistency of the
second MDE.

While the variational characterisation of the optimal fitted potential as a critical
point of the functional connected to 6 is correct, the second MDE does not provide a
potential which is a critical point of that functional. The projection process involves ad-

hoc choices such as an L2 norm as well as a choice of basis for the space of potentials.
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Figure 5.10: Correlations of drift parameter deviations for A vs. MLE

It would be interesting to see whether, as more and more basis vectors are included, the
maximal observed correlation is increased. In view of the ill-conditioning and it being
questionable whether there would be sufficient decay of the ('Fourier’) coefficients of
the potential a numerical investigation of this question seems hopeless. |

To further elucidate the question whether the low observéd correlations between
estimated drift parameters should be attributed to uncorrelated interpolation error due -
to finite polynomial order or exponentiation and the choice of the.\Jflz;norm, correlations
with drift parameters estimated using the Practitioners’ estinﬁafcor, (5.52) are examined.
Using a constant timestep At and a range of final times as above it can be seen from
figure 5.11 that the Practitior;ers' estimator and the MLE are more strongly correlated
than any other pair of estimators. While some caution has to' be exercised as this
- experiment was conducted onlyb for one size of timestep and in view of the rather large
.standard deviatior{s, it would seem that the source of de-correlation is in fact related to

exponentiation and L2-norm rather than interpolation error.
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Correlations vs final time, two variants of MDE with MLE

Figure 5.11: Comparing correlations of estimated drift parameters for MDE,
Practitioners’ and MLE estimated drift parameters

5.8.5 Comparing autocorrelations

In order to compare MDE and MLE some ‘independent’ yet meaningful statistical test
would be helpful. Kutoyants ([62]) points out that the MLE is best (asymptotically
efficient) at reproducing the likelihood integral (of the kind /@ dt with appropriate
interpretation relative to Wiener measure), whereas the MDE is best at reproducing the
histogram for slightly contaminated models. This is hardly surprising.

On the other hand, it seems clear that in fitting 'slightly’ misspecified models (e.g.
multiplicative noise for path sampling vs. additive noise parameter fitting, see subsection
5.8.6) there will always be some statistical test which the fitted model will not pass (e.g.
binning of local quadratic variation showing statistically significant differences of the
fitted model from the supplied path). If fitting is to be used as a means of establishing
parameters that 'work best’ if used in a simplified model of a real system, then some
practically meaningful benchmark of how the fitted model is doing is more helpful than

a contrived statistical test aiming only at highlighting its specific deficiencies.
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Figure 5.12: Comparing autocorrelations for MDE and MLE estimated parameters

Such a practically meaningful benchmark may be given by the induced autocor-
relation. This comparison is performed for the same experirﬁental setup as above, using
o = 1.5, otherwise as given in (5.49). Figure 5.12 gives plots of the difference of the
autocorrelations ‘obt“ain’ed for the MDE-estimated and MLE-estimated drift and diffu-
sion coefficients. It appears that the main difference is induced by incorrectly estimated
diffusion coefficients. '

Performing the same experiment giving the MDE the true value of o yields
autocorrelations for the MDE that were found to be on the verge of being statisti'i:ally
significantly different from the true autocorrelations only at considerable CPU cost.
Note that the data presented in figure 5.13 does not take into account the deterministic

numerical error in computing the autocorrelations.
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Autocorrelations from MD and ML estimates of drift and diffusion

hfw-

Figure 5.13: Comparing autocorrelations for MDE and MLE estimated pa-
rameters, true a for MDE
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Spatial autocorrelations for damped-driven harm osc, 7=0.5, 0=0.5

Figure 5.14: Autocorrelations for damped-driven harmonic oscillator

As comparing autocorrelations may be more interesting in the second order case,

we consider a damped-driven harmonic oscillator as described by the following SDE:

dg = pdt
dq

(5.54)

(—Dg —7p)dt + odB

In order to establish identifiability, numerical autocorrelations are computed employing

one sample path each generated using the following parameter values:

T=5104 At=005 7=05 a=05 D 6 {4,4.4}
The autocorrelations obtained for three different random seeds are displayed in figure
5.14. It is clear that deviations of the drift parameters can be discerned using the
autocorrelation so that a meaningful comparison of MDE and MLE might be possible.
The form of the deviation is easily understood: A higher value for D means going further
into the under damped regime, yielding higher correlations overall as well as a faster
eigenfrequency so that a time-lag rescaling occurs.

It is apparent that spatial autocorrelation provides a means of distinguishing

131



different sets of drift parameters in the second order case and could thus be used to
benchmark fitted SDEs. In some way, this is the reverse of the approach of [32], [59] and
many others, where the (velocity) autocorrelation is used to estimate drift parameters.

It is clear that much more can be done concerning the second order case which has been

central to many practical applications.

5.8.6 Misspecified model — multiplicative noise

Motivated by observations made fitting scalar (1d) second order Langevin-type SDEs
with trigonometric polynomial potential and additive noise to Langevinised MD simula-
tion data in chapter 4 we investigate robustness of MLE and MDE against misspecified
models.

To create an even simpler example exhibiting the main problem in the aforemen-

tioned application, we consider the following SDE:

dr = (—:c3+§a:)dt+ _ 3
2 4+ (122 —1)?

dB, z(0)=0  (5.55)
This corresponds to a higher 'temperature’ at the right equilibrium than at the left
equilibrium point, so while it does not change the sampled drift parameters when an
MLE is used, it greatly changes the histogram (particles spending less time at the 'hot’
equilibrium). |

Using the parameters Ty = 80, At = 0.002 and k = 32, the average drift
parameter (over N = 400 realisations) and diffusion parameters 6 and o induce pdfs
displayed in figure 5.15. N A

It is clear that the MDE estimated drift parameters are far better at reproducing

the true pdf, éven though it is apparent that the variation in the induced pdf is a bit too
large. This can be traced back to a slightly underestimated o, which would be expected
to improve with increased temporal resolution. |

It should be stressed that when fitting misspecified models, one can always find
a statistic which the fitted model does not reproduce correctly, just that it happens

to be the histogram (and hence the fitted potential) is inconvenient in a physically

relevant case. Given its construction, it is clear that the MDE would be expected to
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Induced PDFs for MLE and MDE-estimated drift parameters
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Figure 5.15: Comparing induced PDFs for MLE and MDE

yield misspeciﬁed fitted models which reproduce the invariant pdf better“ however it
would be expected to be bad at minimising the true likelihood.  (analogous to formula‘
(2.81) of [62] being optlmlsed by the MLE rather than MDE). Having derived the MLE
from the statistical model (3.11) in chapter 3 it is equally clear that this estimator will
tend to reproduce the correct drift parameters. In fact, given a few extra technical
hypotheses, theorem 1 still holds in this case so that asymp;eotically in the limit At — 0
and Ty — oo the true drift parameters will be recovered. In the presence of additive
noise, however, these will lead to the wrong invariant distribution‘.\

It is worth noting vthat this supports the contention that the failure of fhe es-
timator presented in chapter 4 to reproduce the invariant density for the Langevinsed
butane molecule (see figure 4.13) is due to the presence of multiplicative noise.

The autocorrelations for this misspecified model are not Well—fepreduced by either
of the estimators,‘ as can be seen from figure 5.16, where N = 100 realisations have
been used. |

The fact that MLE-estimated potentiaIS yield faster de-correlation than MDE-
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Autocorrelations for misspecified model
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Figure 5.16: Comparing induced autocorrelations for MLE and MDE

estimated potentials is attributable to the deep well in the MDE—estimatedeotential in
which paths can get 'stuck’, resulting in strong correlation. | H

Also, the fact that the initial slopes of all three autocorrelations agfee is reassur-
ing, since this measure small-scale, diffusion-dominated de—c’orreylation. Since the fitted
(constant) diffusivity can be viewed as an ergodic average of diffusion over all paths,
and even in the multiplicative noise case, variation of diffusi;/ity is small over small time

spans (smooth o(-)), this is expected.

5.9 Conclusions énd Future Woi'k

Significént analytical links between the maximum likelihood estimator used widely in
the statistical literature and the Practitioners’ estimator based on counting population
densities have been found and studied on selected numerical examples. In the special case
of gradient diffusions these estimators are even more closely linked as their deviations

from the mean value satisfy the same statistics to leading order. While the minimum
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distance estimator initially seems to be very close to the practitioners’ approach, this
turned out not to be accurate. Other links have been found between the statisticians'
approach of estimating diffusivity via quadratic variation and the practitioners’ I:eliance
on fitted autocorrelations, although these are less close.

This chapter leaves open many avenues of further enquiry:

e Fitting diffusion coefficients given the drift parameters using only O(1) spaced
data for a restricted class of models to be fitted might prove interesting from a
statistical perspective. This could be built into a full sampling algorithm sampling

alternately from drift and diffusion parameters.

e More consideration should be given to multiplicative noise models as applications

are otherwise restricted to near-equilibrium configurations.

o A characterisation of the class of stochastic processes for which the link between
MLE and the practitioners’ method can be established would be desirable. Gener-
alising from gradient diffusions to reversible processes ié a first step. lt is unclear,
however, whether there is a more general class that would aléd include th_e second

order Langevin process.

e It would be interesting to perform estimation for processes involving coloured noise

such as
¢+VV(g = B

where r is a suitable m-dimensional Ornstein-Uhlenbeck process involving ¢ to
satisfy energy balance. Set up correctly, the process (g, q,r) can have a product

measure similar to the second order case.

e

135



Bibliography

[1]

2

3]

Y. Ait-Sahalia. Maximum likelihood estimation of discretely sampled diffusions: A’

closed-form approximation. Econometrica, 70(1) 223-262, 2002.

B. M. Bibby and M. Sgrensen. On estimation for discretely observed diffusions: A
review. Theory of Stochastic Processes 2(18):49-56, 1996.

B.Oksendal. Stochastic differential Equations. An Introduction with Applications.

- Springer, Berlin; 2000.

[4]

[5]

I

[7]

A. Le Breton and M. Musiela. Some parameter estimation problems for hypoelliptic

homogeneous gaussian diffusions. Seq. Meth. in Stat., 22:337-356, 1985..

M.E. Parker C. Xiao, D.M. Heyes. Cavitation in liquids by classical nucleation
theory and molecular dynamics simulations, in a.r.imre et al. (eds.), liquids under

negative pressure. pages 231-242, 2002,

D. E. Catlin. Estimation, Control and the Discrete Kalman Filter. Springer-Verlag,

1989. | \ .

D.T. Crommelin and E. Vanden-Eijnden. Fitting timeseries by continuous-time

" markov chains: A quadrafic programming approach. J. Comp. Phys., page accepted

(8]

9

for publication, 2006.

D.T. Crommelin and E. Vanden-Eijnden. Reconstruction of diffusions using spectral

data from timeseries. Comm. Math. Sci., page submitted, 2006.

C.W.Gardiner. Handbook of Stochastic Methods. Springér, Berlin, 1985.

136



[10]
[11]
[12]
[13]

[14]

[15]
[16)
| )
[18]

[19]

o

21]

A. M. Stuart D. Givon, R. Kupferman. Extracting macroscopic dynamics: model

problems and alorithms. Nonlinearity, 17:55-127, 2004.

D. Dacunha-Castelle and D. Florens-Zmirou. Estimation of the coefﬁcients of a

diffusion from discrete observations. Stochastics, 19(4):263-284, 1986.

A. P. Dempster, N M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data with the EM algorithm. J. R. Stat. Soc., Ser. B, 39(1):1-38, 1977.

R. Durrett. Stochastic Calculus - A practical Introduction. CRC Press, London,

1996.
G. Wanner E. Hairer, C. Lubich. Geometric Numerical Integration. Springer, 2002.

Y. Pokern E. Vanden-Eijnden, A. Stuart. Nonparametric estimation for diffusion

processes. in preparation, 2006.

A. Beskos et al. Exact and computationally efficient estimation for discretely ob-

served diffusion processes. J. R. Statist. Soc. B, 68(2):1-29, 2006.

B.R.Brooks et al. Charmm: A program for macromolecular energy, minmization

and dynamics caleulations. J. Comp. Chem., 4:187-217, 1983.

M. Galassi et al. Gnu Scientific Library Reference Manual (2nd Ed.), release 1.4.
http://www.gnu.org/software/gsl/.

M. Levitt et al. Calibration and testing of a water model for simulation of the
molecular dynamics of proteins and nucleic acids in solution. J.Phys.Chem.B,

101:5051-5061, 1997.

S.J . Weiner et al. A new force field for molecular mechanical simulation of nucleic

acids and proteins. J. Am. Chem. Soc., 106:65—784,‘ 1984,

W.H.Press et al. Numerical fecipes in C : the art of scientific computing. CUP,

1992,

137


http://www.gnu.org/software/gsl/

[22]

[23]
[24]
23]
[26]
[27]

28]

A. W. Burgess F. A. Momany, R. F. McGuire and H. A. Scheraga. Energy param-
eters in polypeptides. geometric parameters, partial atmoic charges, nonbonded
interactions, hydrogen bond interactions, and intrinsic torsional potentials for the

naturally occurring amino acids. J. Chem. Phys., 79:2361-2381, 1975.

A. Fischer. Die Hybride Monte-Carlo-Methode in der Mo/ekulphys:k Diplomarbeit,
Institut fiir Mathematlk und lnformat|k FU Berlin, 1997.

D. Florens-Zmirou. Approximate discrete-time schemes for statistics of diffusion

processes. Statistics, 20(4):547—557, 1089,

A. M. Stuart G. A. Pavliotis. An introduction to Multiscale Methods, lecture notes.

2006.

A. M. Stuart G. A. Pavliotis. Parameter estimation for multiscale diffusions. sub-

mitted, 2006.

M. Kac G. Ford. On the quantum langevin equation. J. Stat. Phys., 46:803-810, “
1087. | “

J. G. Gaines and T. J. Lyons. Variable step size control in the numerical solution

. of stochastic differential equations. SIAM J. Appl. Math., 57(5):1455-1484, 1997.

[29]

[30]

1]

132

V. Genon-Catalot and J. Jacod. On the estimétioh of fhe diffusion coefficient for

multi-dimensional diffusion processes. Ann. Inst. Henri Poincaré, 29(1):119-151,
1993.
P. Giannopoulos and S.. J. Godsill.  Estimation of car: processes observed

in noise using bayesian inference.  Proc. IEEE International Conference on

~ Acoustics, Speech and - Signal Processing, available from http://www-com-

- serv.eng.cam.ac.uk/ %7Esjg/pubs/pubs_n‘oabst.html, 2001.

H. Grubmiiller. Molekulardynamik von ’Proteinen auf langen Zéitskélén. Dissérta-

tion, Fakultét fiir Physik, TU Miinchen, 1994.

P.Tavan H.Grubmiiller. Molecular dynamics of conformational substates for a sim-

plified protein model. J.Chem.Phys., 101:5047—5057, 1994,

138


http://www-com-serv.eng.cam.ac.uk/%7Esjg/pubs/pubs.noabst.html
http://www-com-serv.eng.cam.ac.uk/%7Esjg/pubs/pubs.noabst.html

[33] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 1996.

[34] G. Hummer. Position-dependent diffusion coefficients and free energies from
bayesian analysis of equilibrium and replica molecular dynamics simulations. New

Journal of Physics, 7(34), 2005.

[35] A. Fischer I. Horenko, E. Dittmer and C. Schiitte. Automated model reduction for

complex systems exhibiting metastability. Mult. Mod. Sim., to appear, 2005.

[36] B.J.Berne J.E.Straub, M.Borkovec. Calculation of dynamic friction on intramolec-

ular degress of freedom. J. Phys. Chem., 91:4995~4998, 1987.
[37] J.S.Liu. Monte Carlo Strategies in Scientific Computing. Springer, Berlin, 2001.

[38] R. E. Kalman. A new approach to linear filtering and prediction problems. Journa/

of Basic Engineering, 82:35-45, March 1960.

[39] R. Khasminskii, N. Krylov, and N. Moshchuk. On the estimation of parameters for -
linear stochastic differential equations. Probab. Theory Related Fields, 113(3):443-

472, 1999.

[40] P. E. Kloeden, E. Platen, H. Schurz, and M. Sgrensen. On effects of discretization
on estimators of drift parameters for diffusion proéesses. J. Appl. Prob., 33:1061-
1076, 1996.

[41] H. A. Kramers. Physica, 7(284), 1940.

[42] D. Williams L. C. G. Rogers. Diffusions, Markov Processes and Martingales, Vol.2.
~ CUP, 2000.

[43] A. Lasota and M. C. Mackey. Springer, 1994.

[44] D. M. Heyes M. E. Parker. ‘Molecular dynamics simulations of stretched water:

; Local structure and spectral signatures. J.Chem.Phys., 108:9039-9049.

[45] X.-L. Meng and D. van ’Dyk. The EM algorithm—an old folk-song sung to a fast
new tune. J. R. Stat. Soc., Ser. B, 59(3):511-567, 1997.

139



[46] T.Nishimura M.Matsumoto. Mersenne twister: A 623-dimensionally equidistributed
- uniform pseudorandom number generator. ACM Transactions on Modeling and

Corhputer Simulation, 8 No. 1:3-30, 1998.
* [47] D.J.Tildesley M.P.Allen. Computer Simulation of Liquids. OUP, 1987.
[48] D. Nualart. The Malliavin Calculus and Related Topics. Springer-Verlag, 1991.

[49] A. R. Pedersen. A new approach to maximum likelihood estimation for stochastic

differential equations based on discrete observations. Scand. J. Statist., 22:55-71,

1995.

[50] B.L.S. Prakasa Rao. Statistical Inference for Diffusion Type Processes. Arnold

Publishers, London, 1999.
[51] H. Risken. The Fokker Planck Equation. Springer, 1984.
[52] C. P. Robert and G. Casella. Monte‘Cérlo Statistical Methods. Springer, 1999.

[53] G. O. Roberts and O. Stramer. On inference for nonlinear diffusion models using

the hastings-metropolis algorithms. Biometrika, 88(3):603f621, 2001.

[54] T. Schlick.  Molecular Modeling and Simulation, an Interdisciplinary Guide.
Springer, New York, 2002. ” v

[65] 1. Shoji and T. Ozaki. Comparative study of estimation methods for continuous

time stochastic processes. J. Time Ser. Anal., 18(5):485-506, 1997.

[56] G.O. Roberts S.K. Sahu. On convergence of the em algo‘l"ithm and the gibbs
- sampler. Statistics and Computing, 9:55-64, 1999.

[57] M. Mezei T. Schlick, S. Figueroa. A molecular dynamics simulation of a water

‘droplet by the implicit-euler/langevin scheme. J.Chem.Phys., 94:2118-2129, 1994,
[58] L. N. Trefethen and D. Bau lIl. Numerical Linear Algebra. SIAM, 1997,

[59] K. Schulten W. Nadler, A. T. Briinger and M. Karplus. Molecular and stochastic
dynamics of proteins. Proc. Natl. Acad. Sci., 84:7933-7937, 1987.

140



| [60] X.-G. Liang Y.-K. Guo, Z.-Y. Guo. Three-dimensional molecular dynamics simula-
tion on heat propagation in liquid argon. Chin.Phys.Lett., 18:71-73, 2001.

[61] P.Wiberg Y. Pokern, A.M.Stuart. Parameter estimation for partially observed hypo-
elliptic diffusions. submitted to J. Roy. Stat. Soc., 2006. :

[62] Y.A.Kutoyants. Statistical Inference for Ergodic Diffusion Processes. Springer,

2004,

[63] R. ZWanzig. Nonlinear generalised langevin equations. J. Stat. Phys., 9:215—220,_
1073.

141



	Insert from: "WRAP_Coversheet_Theses_new.pdf"
	http://wrap.warwick.ac.uk/164408


