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Abstract
The thesis consists of three main parts. Firstly, a molecular dynamics and po

tential energy minimisation package that has been implemented is described in detail 

All potential and force interactions are described and tested successfully. Compound 

tests on minimal energies for clusters of water molecules, the radial distribution function 

for liquid argon and the equilibrium distribution for the dihedral angle in Butane under 

Langevin dynamics are performed and the presence of multiple time scales is noted for 

Butane as well as for a simplified protein model due to Grubmiiller and Tavan

Secondly, fitting stochastic differential equations (SDEs) to time series is stud

ied. Initially, I consider the well-understood case of non-degenerate diffusions, where 

all components of the process are driven directly by Brownian motion. An SDE with 

constant diffusivity and trigonometric force expression is fitted to trajectories obtained 

from simulations of Butane by maximum likelihood methods and fitted diffusion and 

drift parameters depend strongly on the timescale considered. Hypoelliptic diffusion 

processes are considered next. Here, the unexpected failure of simple estimators neces

sitates the use of carefully chosen approximate likelihoods. For the case of only partial 

observations being available, a compound algorithm is designed and numerically seen to 

be asymptotically consistent. It is applied to the same Butane sample path and found 

to equilibrate, although the fitted SDE fails to reproduce the free energy landscape

Thirdly, connections between maximum likelihood estimators (MLEs) and prac

titioners’ methods are investigated. Analytical links are found for reversible processes 

and for second order Langevin processes. In the case of ID  processes, MLE and practi

tioners’ methods for the drift are found to yield estimators identical up to lower order 

terms even for finite times of observation.
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Chapter 1

Introduction

In order to give an overview of what will be treated in this thesis, this chapter will briefly 

touch on current challenges in molecular dynamics simulations and the motivation for fit

ting stochastic differential equations to trajectories from molecular dynamics simulations 

in section 2 and 3. Section 3 then goes on to describe basic techniques of parameter 

estimation and section 4 describes challenges arising from only partial observations be

ing available. Finally, section 5 will comment on relations between practitioners’ and 

statisticians’ methods to estimate drift and diffusion parameters.

1.1 Molecular Dynamics

Molecular Dynamics is currently faced with a computational bottleneck: There is a gap 

of several orders of magnitude between the total time a direct, atomically resolved sim

ulation of a macromolecule of biological interest can cover and the timescales at which 

biologically interesting dynamics occur. Some computational biologists emphasise that 

minimal energy conformations of proteins are a good test for forcefields and are sceptical 

biologically meaningful direct molecular dynamics simulations are at all feasible given 

today’s computational resources. Nonetheless, packages for direct molecular dynam

ics simulation have been developed for a long time, with [17], [20] and [22] being the 

original publications for CHARMm, AMBER and ECEPP respectively, all of which were 

written in the 1970s and 1980s.
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While chemists tend to stress the importance of the forcefield and the molecules 

used to train the forcefield, recent interest in the applied mathematics community has 

been focused on dynamics, in particular on how to extract or compute effective dynamics. 

One point which is thought to be characteristic of proteins is the existence of metastable 

states, states which are separated by a large energy barrier which is seldom crossed at 

room temperature. Reproducing this qualitative feature with a very simple protein model 

was the main focus of [32] and in fact [31].

1.2 Fitting Stochastic Differential Equations

It is not only the generation of molecular dynamics data which currently presents a com

putational bottleneck, other difficulties arise when attempting to interpret this data. The 

extraction of physically meaningful essential dynamics has been a focus for some time 

and one way of extracting this information that has been suggested is to fit stochastic 

processes, or, given the continuous time nature of these processes, stochastic differential 

equations to time series from molecular dynamics. If the fitted SDE is well-chosen, the 

parameters represent physically meaningful quantities and can thus be viewed as the 

extracted dynamical information. Early work in this direction can be found in [32], [59]. 

A more elaborate approach is taken by Hummer in [34] using multiplicative noise, and by 

Schütte and coworkers in [35] using a hidden Markov model to switch between different 

SDEs.

One might ask why one should attempt to fit a stochastic process to an en

tirely deterministic Hamiltonian system. Practitioners generally quote the large number 

of particles involved and vaguely appeal to concepts of statistical physics rather than 

mathematically rigorous ergodic theory. In fact, in the context of a distinguished par

ticle in a heat bath it can be shown that in the limit of large particle numbers, the 

distinguished particle’s trajectory converges to those of a certain SDE in a rather weak 

sense ([27], [63]). Following a different line of argument, one can appeal to the differ

ent timescales involved: fast, oscillatory movement at the atomic level and relatively 

slow movement at the conformational level. This scale separation can also be used to

2



rigorously justify stochastic behaviour if the fast driving process is chaotic, see [25]. An 

overview of extracting effective dynamics from a mathematical perspective can be found

in [10].'
Following this motivation, the current thesis will be concerned with fitting stochas

tic differential equations to trajectory data from molecular dynamics simulations. The 

first step towards this, however, has to be the fitting to trajectories that are actually 

generated from an SDE of the type to be fitted. Only if this fitting is successful, one 

can think of applying the algorithms to molecular dynamics data.

To conclude this section, I briefly review the maximum likelihood estimator tech

nique for fitting parameters in a stochastic differential equation. Consider the equation

dx = @A(x)dt +  HdW ( i. i)

where x : — > Rn is the solution of the SDE, A : Mn — > are suitably well-

behaved force functions, 0  6 MnXm are parameters and E  is the invertible diffusivity 

matrix. The likelihood is then given via the Girsanov formula relating the probability 

density P© on path space for the process specified by (1.1) to that of Wiener measure 

P  with diffusivity E. This is done by specifying the Radon-Nikodym derivative which is 

given as

~  = exp ( j \ - 1eM .x(s))TT'dx. ||S--10yl(I (a) ) f  * )

Given a finite piece of trajectory, {x(f)}i€[0,r]. one can maximise the likelihood of the 

given path using the drift coefficients 0  provided independently of E  by the estimator

0  = dxa <g> ,4(:z(s))) (^J A(x{s)) ® A(x(s))ds^ . (1.2)

if the diffusion process is suitably ergodic. For non-invertible E  some results are known 

if the process is hypoelliptic. In the case of linear force functions it has been shown 

that (1.2) is still viable and there are numerical indications presented in this thesis that 

this extends to suitable force functions A(-). If only some of the entries of © are to 

be estimated, however, knowledge of E  can enter the estimator for 0  and can lead to 

ill-conditioning as highlighted in the next section, see in particular 1.3.3.
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1.3 Failure of Simple Estimators

This introduction will briefly highlight some examples studied in more depth in the 

subsequent chapters. Where full details are not given in the introduction, they will of 

course be provided in subsequent chapters.

1.3.1 Example I: Harmonic Oscillator

Following the example of the distinguished particle in the heat bath, let's consider a 

very simple model: the harmonic oscillator with white noise forcing.

x + 7X + Dx = crW

This second order SDE should be interpreted in the following sense:

dq =  pdt
(1.3)

dp : —Dqdt — ^pdt + adW

where W  is standard Brownian motion and all quantities are scalar.

The initial problem is to estimate the parameters D, 7 and cr given a finite 

number of observations qi, Pi, i € {1 ,..., N} at equidistant times

Several observations lead to consider the problem of only partially available data,

though:

On the side of the fitted model, it is clear from (1.3) that the spatial component, 

q will be C1>a for any a € [0, \) whereas the momentum component, p, will be rougher.

On the other hand, taking data from a molecular dynamics simulation where a 

molecule may be modelled as a Hamiltonian dynamical system, it is clear that this data 

will be smooth, provided the potentials used are sufficiently well-behaved. Therefore, as 

the spacing between the observation times A i  = goes to zero, and the final

observation time goes to infinity, convergence can only be expected in some weak sense. 

Numerically, this manifests itself in experiments with parameter estimators for cr which 

are based on quadratic variation and suffer from a — > 0 as A t  — > 0.

Finally, for molecular dynamics simulations, velocity data is not always available 

at the required times (typically, a Stoermer-Verlet scheme is used which delivers pn+i

4



rather than pn). If simple interpolation formulae are used this is tantamount to numerical 

differentiation which can lead to strange behaviour of estimators for a as next subsection 

shows.

1.3.2 Example II: stochastic growth

Consider model problem I from chapter 4:

q =  p 

p = aW
* (1.4)

Using a straightforward numerical differentiation formula to estimate the unobserved 

velocities

Pn = Q.n+1 Qn
A t (1.5)

which corresponds to a maximum likelihood estimator arising from an explicit Euler 

statistical model, the estimate for the diffusion coefficient a is biased. In fact it is 

shown in subsection 4.4.3:

a2 as (1.6)

Thus, numerical differentiation can lead to completely wrong estimates For the 

harmonic oscillator (1.3), though, even worse is true:

1.3.3 Maximum likelihood estimation for the harmonic oscillator

Suppose observations quPi, i € {1 ,..., N} of the harmonic oscillator (1.3) are available 

at equidistant times U = iAt and we wish to estimate 7, D, a from these observations 

using a maximum likelihood estimator. For the straightforward maximum likelihood 

estimator it is then possible to show that the drift parameters are similarly off-track. In 

fact,

ED = K (1.7)

E 7 = 1
47 (1.8)

5



holds!

It is the hypoelliptic nature of these problems which forces a certain structure 

on the estimators, taking into account the propagation of noise into the smooth com

ponents. This propagation results in ill-conditioned statistical models which necessitate 

careful selection of drift estimators if the compound algorithm is to be asymptotically 

consistent. A full exposition of these issues can be found in chapter 4.

1.4 Statisticians' and Practitioners’ Approaches

Naturally, there is statistical literature about fitting stochastic differential equations to 

time series data, e.g. [50] and more recently [62] provide overviews. The statistical 

literature frequently assumes that estimating diffusion coefficients is easy (e.g. Kutoy- 

ants, [62] completely excludes the problem from consideration) arguing that it can be 

estimated from an arbitrary short piece of continuous-time trajectory using quadratic 

variation.

In the present application, however, this argument is not satisfactory because the 

processes only approximately behave like diffusion processes and their behaviour changes 

on the very shortest timescales.

From a physicist's point of view, estimating drift parameters is easy, provided one 

is given a sufficiently long piece of trajectory, assuming the system is in thermodynamic 

equilibrium in the canonical measure, as one can simply use the invariant measure to 

infer the drift coefficients, provided the temperature of the system is known. Estimating 

the diffusion coefficient is rather more difficult and there does not seem to be a canonical 

way of doing this as Hummer ([34]) points out.

It is thus of interest to link statisticians’ and physicists’ approaches to esti

mating parameters and some links between, firstly, maximum likelihood estimators and 

the fitting of the invariant measure, and, secondly, quadratic variation and fitting of 

the Laplace transform of the spatial autocorrelation are indeed found and described in 

Chapter 5.
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1.5 Challenges and Cross-links -  Conclusion

Having highlighted the continuing challenge of biologically meaningful molecular dynam

ics simulation and the fitting of stochastic differential equations as a means of extracting 

effective dynamics, some problems posed by those fitting procedures have been high

lighted. Also, the cross-links of methods used traditionally in statistics and those used 

by physicists and chemists have been touched upon, thus summarising the main issues 

to be dealt with in this thesis.
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Chapter 2

Basics of Molecular Dynamics

2.1 Introduction

In order to have a source of molecular dynamics data which is completely transparent, 

a simple MD code has been developed, implementing the absolutely essential features 

of CHARMM, [17].

The code has slowly grown into a multi-threaded C++ molecular dynamics and 

potential minimisation code with simple 3D visualisation routines (using GLUT). It 

uses essentials of the CHARMM force field as well as offering some alternative ad-hoc 

forcefields. The second section of this chapter will describe the forcefield and its imple

mentation as well as various tests to which the code has been subjected. Integrators and 

energy conservation as well as compound tests such as properties of Lennard-Jonesium, 

minimal energies of water clusters and a simple protein model will also be studied in 

that section. The third section will focus on Butane and the observed metastability in 

this simplification of the Grubmuller/Tavan model.

2.2 MD Force Field and Code

2.2.1 Protein model and force field

The basics of molecular dynamics modelling can be found in [47] or the more recent 

book by Schlick, [54], A Protein is simplistically modelled here as a system of N mass

8



points with mass m», whose position qi € 

Hamilton equations of motion:

OH
~~

Pij =

dPi,j
dH
dq

as a function of time is governed by the 

j e {1,2,3}
%3

where qitj refers to the jth coordinate of the ith atom. Of course, the main informa

tion is encoded in the Hamiltonian, which for the purposes of this molecular dynamics 

simulation is given as H = T + V where the kinetic energy is

T

(2.1)

(ro.i+r-Q,,)6

and the potential energy is given as

EcHARMMbonds ^ C H A R M M ^  ~  &)2 
+  E sC H L IC K b o n d sl^ S C H L IC K^ 2-^)2
+  E a n g l e s  ( C O S  -  C O S  t ? 0 ) 2

V = + Eharm. angles 5 ^a,harm (# ~ ^ o)

+  E  dihedrals E f e  a k (cos  ̂  .

■■ T  2 s i, j  excl(iJ)=0 n j

2.2.2 Implementation and Parameterisation

The code is set up in a strongly object orientated way, providing classes for atoms, 

bonds, bond angles, proteins as well as the integrator, the display manager etc. having 

grown to approximately 9000 lines of C++.

The code contains both potential and force expressions which can all be switched 

on and off individually and will now be described in turn.

Bond stretch interactions

There are two models for the bond stretch interactions, one taken from the original 

.(1983) CHARMM paper,[17], which is the parametrisation used in [32],

9



The other model for bond stretch interactions comes from 

[57], where it is used as a soft constraint to enforce bond 

length constraints. Its bi-quadratic form reduces the compu

tational cost for force evaluations.

A nonlinear model used by Heyes et al. ([44], [5])

Figure 2 T Atom Bond has been used t0 fit the vibrational frequencies in a testing
configuration but is not currently active in the code.

Bond Angle interactions

Schlick's

The bond angle parameters for the trigonometric approximation are given directly in 

article on water clusters, [57],

For the CHARMM parametrisation, their potential expression 

_  tf0)2 is expanded in powers of and a Taylor series 

fitted for small deviations from the equilibrium angle to the 

trigonometric approximation is used, given by Schlick ([54], 

formula (8.15)) as:

Ca f« 2kg sin2 tin (2 2)
Figure 2.2: Bond Angle 0 ^  ^

This approximation reduces computational cost, but Grubmueller and Tavan used

the original parametrisation from CHARMM. Both potentials have been implemented,

although the harmonic bond angle potential has been tested only briefly.

Dihedral Angle interactions (Torsions)

The dihedral angle is the angle between two planes specified via two adjacent bond 

angles, see figure 2.3 for an illustration. It is (up to its sign) given by:

coscu
(n  x  t2) • (r2 x  r3)

(2.3)||ri x  r21| • ||r2 x  r3||
n = <72 -  <7i (2.4)

CSiCOCrII (2.5)

f3 = Q4-Q3 (2.6)

1 0



Here, q\ ...  q$ denote the position vectors of the 

four atoms involved in the dihedral angle. The 

parameters ao-.-Gs are taken from A. Fischer’s 

diploma thesis, [23]. Dihedral angles are used for 

the simulation of small alkanes which are useful 

as systems with known metastability. They are

not used for the Grubmiiller-Tavan model of pro- 
Figure 2.3: Dihedral Angle tejps

Van der Waals interactions

For the alkane simulations, the van der Waals parameters are given by [17], The interac

tion exclusion function excl(i,j) is one whenever two atoms share a common bond or are 

part of a common bond angle and it is zero otherwise. 

Computationally, the van der Waals interactions also serve to 

avoid collisions of oppositely charged particles which would 

otherwise lead to blow-up in the integrator.

In general, all atom interactions (which are not ex

cluded via exclQ) are computed, yielding an 0 (N 2) algo

rithm. A nearest-neighbour boxing strategy is implemented 

and has been tested, but as the advantage only becomes pal- Figure 2.4: Van der 

pable at large (> 100) numbers of atoms or in the case of Waals Interaction 

well-separated atoms, this further approximation is not made

here. Even the more advanced strategies like particle mesh Ewald methods (which I have 

considered for implementation and studied in some detail) or Multipole methods are re

ported (e.g. in [47]) only to show significant advantages beyond 100 to 1000 atoms in 

the simulation.

1 1



Electrostatic Interactions

For each atom, one can impose an electrostatic charge g*. In the case of water, charges 

to reproduce qualitative behaviour of water droplets are well-known (reported in mutual 

agreement by [57] and [19], Table 1, SPC and F3C),

whereas in the case of the charges given by Grubmuller and 

Tavan in [32] the only information available until the end 

of coding work on the program was their Fig. 1, which 

was qualitatively approximated by two periods of a cosine 

with amplitude 0.5e. See below for a further discussion 

of this point. For the protein simulations, interactions be- 

Figure 2.5: Electrostatic tween partial charges are only allowed if the atoms do not 

Coulomb Interaction share a bond or bond angle. This is as specified in [17].

2.2.3 Verification of Force expressions

The Force induced by the potentials is given via

F =  - V V . (2.7)

This is amenable to direct numerical verification by numerical differentiation of the 

potential. In view of the rather involved force expressions, especially for the dihedral 

angle terms, this turns out to be a very valuable tool.

The approach to verify the implemented force expression adopted here is to 

compute a numerical approximation of the gradient of the potential in a component

wise fashion:

Fi(x) V(x  +  hei) — V(x) 
h (2.8)

Then the deviation from the implemented force is computed, and the two-norm of the

1 2



Force Errors -  bond stretch, bond angle, dihredrai angle

Figure 2.6: Force errors: BS, BA, DA

relative error is output:

E(h) \\F-Fh
\\Fh

(2.9)

Of course, this is still a function of the position vector x, so an initial condition x 

is constructed by placing all atoms of the protein under test at random in a box of 

size 2 x 2 x 2a3. In a doubly logarithmic plot, the force error incurred is plotted as a 

function of h, yielding plot 2.6. This was obtained for a butane atom configuration. The 

slope of the fitted lines are 1.0002, 1.0070 and 1.0068 for the CFIARMM bond-stretch, 

trigonometric bond-angle and dihedral angle interaction respectively. For the van der 

Waals and the electrostatic interaction a cluster of four water molecules with random 

initial conditions produced in the same way was used. The plot obtained is given in 

figure 2.7 where the slopes of the fitted lines are 1.0091 and 1.0058 for the van der 

Waals and the electrostatic interaction respectively.

13



Force Errors -  van der Waals and electrostatic

Figure 2.7: Force errors: vdW, Coulomb 

2.2.4 The Integrator

The scheme used to integrate the Hamiltonian equations of motion is

?„+l = «„ -I+A fM -V n  pi0)

Pn+1 = Pn + AtF(qn+ )̂

where M =  diag(mj) is the mass matrix. If a starting step of the form

pi = pi + AtF(qi)

is used, then starting from an initial condition qi,pi the method is of order 2 and is
2 2

sometimes referred to as the Stormer/Verlet integrator, e.g. in [54], It belongs to the 

class of symplectic integrators which, up to floating point rounding error, constitute a 

symplectic transformation in every step of integration. A full account of the theory can 

be found in [14]. One of the essential features of these integrators is that they exactly 

(up to floating point accuracy) preserve phase space volume. They also approximately 

conserve a Hamiltonian that is close to the true Hamiltonian.

14



Explicit Euler Implicit Euler Stormer-Verlet

Figure 2.8: Comparison of Integrators

To illustrate typical behaviour of this integrator, consider the case of a simple 

harmonic oscillator given by

q = p

P = - q - ,

Using an explicit Euler scheme to integrate these equations yields the trajectory given 

on the left of figure 2.8, whereas an implicit Euler scheme yields the plot in the middle 

of 2.8. In both these, it is clear that phase space volume will be either gained or lost. 

Using the above Stormer-Verlet scheme yields the plot given in figure 2.8 where the 

conservation of phase space volume is mirrored by the fact that the displayed ellipse 

has the same volume as the circle (which corresponds to the true solution). Note, 

however, that the distance from the origin (whose square corresponds to the energy) is 

not exactly constant, so there is no conservation of energy. The long term properties of 

these integrators have seen renewed interest recently.

The order of the numerical scheme (2.10) in the current implementation is ver

ified in the following section.

Order of convergence

A diatomic molecule with one CHARMM bond is started with initial positions in the 

energy minimum position and velocities such that speeds and positions rise to order 

unity size. The bond-stretch interaction is the only active interaction in this model. For 

a fixed final time Tp =T, a variety of timesteps is used, comparing the simulation result

15



Convergence of Verlet integrator, "£=1

Figure 2.9: Verlet Integrator Verification

at the final time to the analytic result. A doubly logarithmic plot reveals an intercept 

with rounding errors around a timestep of size At ft* 2.4 • 10-7 . The slope of the least 

squares fitted line is -2.00099, corroborating the method being of order two. Note, 

however, that the precise value of the slope is easily modifiable by including or excluding 

some of the extreme points.

Order of convergence 2

A typical 100 residue initial condition with cosine charge distribution and in all other 

aspects following [32], is evolved (approximately conserving energy) until a collapsed 

condition is obtained, see the figure below.

This is used as a starting condition for simulation for 49fs, using timesteps from 

49-2-4 ... 49-2- 13fs. Note that this simulation takes place at high total kinetic energies 

(of the order of 4000^ ). The result obtained for the finest timestep is considered 

a close approximation to the true solution and the 2-norm deviations of the spatial 

coordinates for the fixed final time and varying timestep is plotted in a doubly logarithmic

16



Figure 2.10: Semifolded intermediary configuration

plot. Again, a line is fitted using a least squares fit and the slope obtained is again close 

to two, see figure 2.11.

Energy conservation

To test the potential evaluation functions (and not only the force evaluation), the same 

semi-folded initial condition as above (2.10) is used as a starting condition. The poten

tial energy terms for the four contributions (using CHARMM bonds and trigonometric 

angles, only) are exported from the program as well as spatial coordinates. The cor

responding velocities are computed in a post-processing step from the coordinates to 

circumvent the problem of split-timesteps. (Having xn but vn+\ and vn_i in the pro

gram...) The total energy of the protein as a function of time is plotted and its standard 

deviation from its equilibrium value is computed.

Plotting the RMS deviation of the total energy from its average value as a 

function of timestep in a doubly logarithmic plot yields the plot in figure 2.12. A line 

is fitted to the data-points using least squares (and omitting the leftmost data-point as 

this is meant to elucidate the asymptotic behaviour only) and its slope is found to be

17



Figure 2.11: Verlet Integrator Verification 2

RMS energy error scaling with timestep

Figure 2.12: RMS Energy deviations

18



Total energy tor & t=0.5fs

Figure 2.13: Total Energy fluctuations

-2.013, which is close to two, as expected from [47], p.83.

A plot of the total energy as a function of time at these high temperatures using 

a timestep typical of later simulations can be seen in figure 2.12.

2.2.5 Lennard-Jonesium

Another qualitative check was done using periodic boundary conditions on a van der 

Waals liquid (using parameters for Argon from [60]). The observed statistical quantity 

is the radial distribution function, g(r), a histogram of which is given in figure 2.14.

Good qualitative agreement with the plot in [47] is obtained. As quantitative 

data for these plots (at T -  300AT, g = 1350kg/m3) was not immediately available, a 

quantitative evaluation was renounced.

2.2.6 Water

In order to verify the interpretation of the parameters, a simple, well-studied molecule 

was needed. Using [57], a parametrisation specifically for water is analysed in the sequel. 

Note that the above article uses a different potential for the bond-stretching term for
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Figure 2.14: Radial Distribution function for Argon

reasons of ease of computations. Schlick et al. restrict the Coulomb interaction to act 

intermolecularly only (as opposed to both, intramolecularly and intermolecularly). Fur

thermore, they have a van der Waals interaction only between oxygen atoms belonging 

to different water molecules, i.e. Hydrogen atoms are completely excluded from van der 

Waals interactions. To compare with the simulations in that paper, I try to reproduce 

some of their TABLE 1 here (all energies in units of ^ ) :

# Molecules £ t o t  / -E 'coul J S v d w -E 'bond ■Wangle

1 ■■■' 6.82385e-31 0 0 2.59956e-31 4.22429e-31

2 -6.9391 -9.43512 2.1476 0.258041 0.0903812

4 -32.4175 -46.0538 10.8098 2.02165 0.804886
Note that the energy minimisations are done using steepest descent with a linear search 

strategy guaranteeing monotonicity. There is no guarantee to find the absolute mini

mum, however, and there seem to be quite a few local minima.

Comparing to the data given in [57], the agreement is found to be approximate 

rather than exact. As a strong dependence on parameters (e.g. Coulomb charges) has 

been observed, it is speculated that small differences in conversions (e.g. of charge
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units, in particular in view of the limited number of digits reported for charge conversion 

in [57]) may greatly affect minimal energy conformations.

2.2.7 Metastability

Using CHARMM bond-stretch, trigonometric bond angle, standard van der Wals and 

electrostatic interaction on a linear chain of 100 CH 2 extended atoms, just as in Figure 

2.10, long-time simulations of the protein have been done using the following simulation 

protocol specified in [32]:

1. Simulate starting from a stretched configuration for 2ns, using lfs timesteps.

2. Cool down by velocity rescaling every 10th timestep such that at every tenth 

timestep the kinetic temperature of the protein is the desired 300K.

3. Observe for a further 2ns, verifying that kinetic temperature remains around 300K.

The initial configuration phase was deemed necessary by Grubmuller and Tavan 

to ensure "proper exploration of phase space” , but from the simulation results, it does 

not seem to bring about much of a change after the first 200ps.

Observation in step 3 above shows that the protein has indeed cooled down and 

that the potential and kinetic energy degrees of freedom have equilibrated. This 2ns 

period together with some extra observation time (usually 5ns) was also used to look 

for metastability, which was expected to occur at a rate of 1.89ns“ 1. No such rare 

transitions of the magnitude reported in [32] have been found.

The potential reasons for this may be:

• Using trigonometric angles instead of harmonic angles makes a large difference in 

overall qualitative behaviour even though the force errors at the angle deviations 

observed at 300K are only a few per cent.

• Most importantly, the charge distribution is critical and the cosine fit to it destroys 

qualitative features of the dynamics of this particular protein model.

• Not enough phase space volume has been scanned.

21



Pursuing Grubmiiller's model further even though no metastabilities have been 

observed so far might not seem desirable. While the precise charge distribution as well 

as the original code have now been made available to me, reverse engineering this code 

did not seem conducive to good research as large amounts of coding would still be 

required and the protein model is, after all, just a simplistic model. The main focus of 

the present chapter is to gain some understanding and intuition for molecular dynamics 

as well as to provide a trusted source of molecular dynamics data for which Butane 

seemed a suitable example. This will be described in the next section.

2.3 Butane

A very simple organic molecule exhibiting metastability at room temperature is butane. 

It has been the subject of A. Fischer’s diploma thesis ([23]) on a hybrid Monte Carlo 

method precisely for this reason. Doing butane necessitated implementing dihedral 

angles which required some debugging effort so careful verification was in order. A 

typical trajectory at three orders of magnitude of time resolution can be seen in figure 

2.15. ■ •

It is easy to verify that dihedral angle potential and force expression fit each other, 

but more verification can be done exploiting theorem 1 in [23], i.e. sampling dihedral 

angles from the canonical ensemble for the butane model yields exactly the same sample 

statistics for dihedral angles as sampling for the canonical measure exp ) for the

dihedral angle alone. ..

In order to do this, the Generalised Verlet Algorithm for Langevin Dynamics 

(p.437 in [54]) for (approximately) sampling from the canonical ensemble was imple

mented. Figure 2.16 shows good agreement between the histogram and the expected 

probabilities.

2.4 Conclusion

The explorations of molecular dynamics described above have provided a learning field 

for molecular dynamics and high performance coding as well as a medium size C++
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D ihed ra l A n g le  o ve r  tim e

Figure 2.15: Butane Dihedral Angle Trajectory



Butane Langevin dynamics, generalised Verlet, a  t=1.2as, T=300K

Figure 2.16: Langevin Dynamics for Butane -  Invariant 
Measure and Empirical Density
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code for MD simulations and energy optimisations. This code has been verified in a 

multitude of ways and will thus be viewed as a sufficiently reliable source of molecular 

dynamics trajectories. These trajectories will be used to test the fitting algorithms to 

be described in the next two chapters.

Further avenues of research into molecular dynamics might include a study of 

Alanine dipeptide in acjueous solution, which seems to be a standard example of con

formational metastability, possibly using GROMACS to deal with the explicit solvent 

representation. While this might take the theoretical work closer to actual application, 

in view of the intricacies of long trajectory simulation I have chosen to follow most 

applied mathematicians’ approach and concentrated on developing mathematical and 

statistical tools using a toy example.
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Chapter 3

First Order Stochastic Differential 
Equations

The easiest way to explain this idea is to contrast it, for ex
ample, with advertising. Last night I heard that Wesson oil 
doesn’t soak through food. Well, that's true. It’s not dishon
est; but the thing I'm talking about is not just a matter of not 
being dishonest; it’s a matter of scientific integrity, which is 
another level. The fact that should be added to that adver

tising statement is that no oils soak through food, if operated
k

at a certain temperature. If operated at another temperature, 
they all will -  including Wesson oil. So it’s the implication 
which has been conveyed, not the fact, which is true, and the 
difference is what we have to deal with.
R.P. Feynman, Caltech Commencement address 1974

3.1 Introduction

After briefly reviewing standard results about parameter estimation using maximum 

likelihood methods for non-degenerate ID diffusion processes in continuous time in 

section 3.2, simple implementations of these estimators for discrete time are considered in 

section 3.3. Random number generators are discussed briefly and parameter estimation 

for a family of SDEs is considered. The algorithm obtained here is applied to time
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series from Langevin dynamics for a single Butane molecule in section 3.4 and problems 

inherent in fitting SDEs with rough paths with finite quadratic variation to data from 

smooth Hamiltonian systems are highlighted.

3.2 Continuous Time Path fitting

This chapter will deal with fitting drift and diffusion parameters in stochastic differential 

equations of the form

where ft are suitably well-behaved (e.g. globally Lipschitz) force functions, x0 is a 

deterministic starting condition and B is standard Brownian motion where a e R+ is 

the diffusivity constant, 0* £ R  are the drift parameters and c e N is the number of force 

terms to be used. Given a piece of trajectory, {æs}se[o,T]< the parametric estimation 

problem is how to estimate the diffusion coefficient a and the drift coefficients $i. 

Estimating the diffusion coefficient is straightforward under these conditions but there 

are many methods for estimating drift parameters. I will consider maximum likelihood 

estimators as the theoretical understanding of these estimators is well-developed and 

they are frequently applied in actual practise. Also, in this context, they are normally 

easy to generalise to a Bayesian framework which might be useful for applications in 

molecular dynamics where posterior variances as well as expected values are of interest.

3.2.1 Estimating Diffusivity

In general, given a continuous piece of trajectory, however short, estimating the diffusivity 

is considered easy, even when multiplicative noise is present. In the case of the process 

given here, (3.1), a few remarks will show how cr can be estimated using only modestly 
technical results.

Firstly, (3.1) can be written in integral form (which is its very definition):

C

dx =  ^  9ift{x)dt + adB x(0) = x0 (3.1)

(3.2)
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Now, the solution of this SDE is a continuous semimartingale with

At =  f  ^ 2  difi(x(s))ds
i=l

being continuous, adapted and of locally bounded variation and Mt = aB(t) being a 

(local) martingale so that overall

x{t) -x (0 )  = At + Mt

holds.

Using theorem (8.6) of [13] it is clear that the approximate quadratic variation 

converges to the true quadratic variation under mesh refinement, where the approximate 

quadratic variation of a: is given as follows:

I<
Qt(x) =  M*) ~ x(tK)f  + (*(**) ~  x (tk-1))2

k=l

Here, A  = (t0 = 0 < ti < t2  . • • < tK < t} is a mesh of the interval [0, f]. If a sequence 

of meshes, A n goes to infinite refinement in the sense lim ^ ^  min{t -  min{i?+1 -  

t” }} = 0 then the theorem’s statement implies that

Qt̂ n(x)x) -—> cr2(B(t),B(t)).

The resulting estimator of the diffusivity parameter a is thus given as

1
a2 = -  lim Q f .t n—>oo 1 _

In particular, the sequence of meshes can be chosen uniformly, i.e. just using = t • -

so that the resulting estimator is finally given as

i ,  f  ( i \  n - i w 2
(3.3)

¿=1
-  lim V  (x ( - t  -  X t n-+oo f—s \ \ n n

Other ways of estimating the diffusivity applied mostly by practitioners from physics 

and chemistry include fitting the invariant density or the Laplace transformation of the 

autocorrelation provided the drift parameters are known. This will be covered in more 

detail in chapter 5.
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3.2.2 Estimating Drift Parameters

Drift estimation in continuous time is a harder problem, as the SDE in question is 

required not only to have a unique strong solution but also to possess certain ergodic 

properties. Sufficient conditions specialised to the SDE in question, (3.1), will be shown 

here. All conditions and theorems quoted in this subsection are taken from [62] or [13], 

Firstly, assuming the /,■ are locally bounded and measurable, existence of a unique 

weak solution is guaranteed by theorem 5.3.2 of [13] if

x ^ 0ifi(x) <A(l + x2) (3 .4)
i

for some A >  0. This is implied by Kutoyants' condition to ensure ergodicity, Ao(@) 

It is assumed that only certain vectors (6>i,...., 9C)T e R c from an open bounded subset 

© C K c are admissible. For these drift parameters the assumption Xo(0) is:
C

V(di) e  0  : lim|a.|_>oosgn(®)^0i/i(x) < 0 (3 .5)
i— 1

To ensure identifiability the information matrix

where the expectation is taken with respect to the induced invariant measure of the SDE 

must be positive definite uniformly on compact subsets K c  0  of parameter space:

inf inf eTI (0)e > 0 /o e\
9eK |e|=l W-b.)

This is sufficient to ensure condition A on p.115/116 of [62] holds. Now, theorem 2.8 

from [62] can be used to infer the following:

Theorem 1. Let conditions (3.6) and (3.5) hold. Then for any fixed 9 e 0 , any of the 

§T attaining the supremum over 0  of the Radon-Nikodym derivative

; (3J)

of the measure on path space induced by 9 w.r.t. to the measure induced by 6 = 0 is 
asymptotically unbiased:

lim So (§x — 9
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Note that the supremum might be attained on the boundary of ©, i.e. §T e dQ 

has positive probability in general. It should be stressed that the aforementioned theo

rem states far more than this, including asymptotic consistency, asymptotic normality, 

convergence of higher moments and asymptotic efficiency, all uniformly on compact 

subsets of parameter space. Since this chapter will be concerned with the behaviour of 

the estimator's bias, E (0 — 0 ), this version seemed most appropriate.

In the setup (3.1), the maximum likelihood estimator is actually unique and can 

be given explicitly. It suffices to note that the Radon-Nikodym derivative (3.7) is given 

explicitly as

d$9
dP

(i9) =  exp —  J2cr2 J Q ¿ « w o )
~i 2

.¿=1
dt

Taking partial derivatives with respect to the 6 i and equating them to zero results in 

the following drift estimator:

6 =  (  [  fi(x(t))fj(x(t))dt\
\J0 /  * ,i€{ l,...,c}

(  rTJo fi(x(t))dxt \

(3.9)

\ Jo fc(x(t))dxt j

3.3 Numerical Implementation

In order to put the estimators (3.3) and (3.9) into practise, the problem has to be discre- 

tised. After introducing two perspectives on estimation in the discrete time framework, 

this section will detail the numerical implementation of these discretised estimators, 

highlighting issues concerning the random number generator and numerically examine 

convergence as the discretisation timestep tends to zero.

Assuming that observations ...Ny at equispaced timepoints Ny

with spacing A i  of the process (3.1) are given, the task is to estimate the parameters 

Oi and a.

While results implying asymptotic consistency are available in the limiting case 

NAt -+ oo, At 0 from [50], the interest in this chapter is to arrive at practical 

implementations of estimators, quantify errors as a function of A i  and apply these
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estimators to the practical problem at hand. The approach taken is therefore to develop 

these estimators using concrete numerically worked examples.

One perspective that can be taken in constructing estimators in the discrete 

time framework is to approximate the sums and integrals occurring in (3.3) and (3.9) 

by Riemann sums. In the case of diffusion estimation, it is straightforward to take the 

available data, insert it into (3.3) and evaluate for some finite A t. In the case of drift 

estimation, the integrals occurring in (3.9) can be replaced by Riemann sums so that 

the resulting estimator reads as follows:

N
)fj(xp)At

/  ¿ , j € {  1......c }

^ E P=o fi(xp)(xp+i — xp) ^

V Sp=0 fc(xp)(xp+l — x p )  J

(3.10)

Another perspective is obtained by replacing the stochastic differential equation 

(3.1) by a stochastic difference equation

C

Xp+i =  xp +At^eifi(xp)At+>/Ai<rZp (3.11)
2=1

where ~ J\i(0,1) are i.i.d. normal random variables. This difference equation will 

be referred to as a statistical model for the diffusion process. One can then employ 

a maximum likelihood approach yielding exactly the same MLE as (3.10), however 

this can be used within a Bayesian framework. Rather than using an approximating 

difference equation, the exact transition density could be used, however, depending on 

the particular choice of force functions /¿, this is not normally available analytically, so 

one can resort to statistical models instead. Other approaches involve perfect inference 

and inference via particle methods.

3.3.1 Diffusion Coefficient

As a means of introducing the numerical implementation of estimators for the problem 

(3.1), the ID Ornstein-Uhlenbeck process is considered as a simple first example:

dx = — axdt +  adB (3-12)
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Here, we assume a, a € R+. Given observations i =  0, . . . ,  N at times U = iAt for 

some At > 0, the aim is to provide an estimator for the parameters a and a.

As explained in the previous subsection, one approach is to formulate a statistical 

model which is in some sense a discrete version of (3.12):

xn+i = xn — Ataxdt + aVAt£n

Here, £n .̂A/^O, 1) are independent identically distributed normal random variables.

Based on the quadratic variation of paths from (3.12), the estimator (3.3) is 

adapted as follows:

1 N ~ 1

~ NAt ^  (Xn+1 “ x") (3.13)
ra= 0

Asymptotic consistency of this estimator is assured as set out in subsection 3.2.1. To 

assess the order of error, one can use an Ito-Taylor expansion for the process (3.12) at 

time tn to tackle the term {xn+\ — xn):

-a x nA t + + 0(A th5)
... At

= a2 + A tE  [a2 x2n] + 0(At2)

(More thorough consideration is given to Ito-Taylor expansions in the next chapter where 

higher orders of accuracy are required.) The Ito-Taylor expansion shows the order of 

error but bounding the error terms uniformly in time and over state space may be hard 

or impossible, depending on the particular process at hand. "

3.3.2 Numerical Validation: Pitfalls

In order to verify the C++-code used for fitting coefficients the above estimator for a, 

(3.13), has been implemented. While testing the code, problems concerning random 

number generators have been observed and these will be highlighted in statistically 

significant experiments.

To generate paths for the experiments, a final time of Ts = 4000 is used and 

the parameters for the Ornstein-Uhlenbeck process are

E (^n+l n̂)
At

E
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a =  1 a =  1.

While it is possible to generate sample paths satisfying the exact statistics for (3.12) 

by just choosing a Gaussian with appropriate mean, variance and correlation at each 

timestep samples are generated here using a subsampled Euler-Maruyama method.

Given a data point Xj, the next data point in a path, Xi+1, is generated using 

several steps of the Euler-Maruyama algorithm. The number of intermediary steps, k, 

is called the subsampling factor. Using the notation for the j-th intermediary step 

involved in generating the (i +  l)th sample point from the ith sample point, this can 

be written as follows:

For the subsampling factor k =  1, the statistical model (3.13) and the generation of the 

data (3.14) coincide, so it is expected that the estimate for a will be exact and this is 

indeed what is observed.

As k is increased, the sample xi + 1  follows the exact statistics more and more..- 

More precisely, one observes that the Euler-Maruyama method converges weakly for this 

SDE so that, in particular, first and second moments converge to the correct values as 

k — » oo. Since all increments are Gaussian, it is clear that the quantity xi+x -  Xi 
occurring in the estimator (3.13) is approximated correctly.

Using a subsampling factor of k =  30, the simulations are repeated with the 

above parameters, averaging the results over Ns =  100 runs with different random 

seeds to both control and estimate Monte Carlo sampling error.

It is clear from the plots given in figures 3.1 and 3.2 that the estimator 

does not converge to a as At — * 0. From the second plot, (3.2), it can be seen that .. 

this is not attributable to Monte Carlo sampling error.

After considerable simplification of the code, the only potential culprit left is the 

random number generator. Linear congruence generators are known to be usable for 

evaluating integrals using Monte Carlo Methods if the correct parameters are chosen. 

But do they perform well for the'differential'task at hand?

(0)

(3.14)

¿̂+1

33



1.1

1.05 ■

q  O O O O O o

o 0.95 ■

0.9 ■

0.85 -

0.8
12 -10 -8  -6  -4

log2(At)
-2

y -5 -
?  ■=: -6 ■%o

-7  ■

Figure 3.1: a Sampling Error

O error of mean value for a  y  

*  , error of mean value + Monte Carlo std. dev.

-1 0 L -8 -6  -4
log2(At)

Figure 3.2: a Sampling Error - logarithmic

34



In order to demonstrate the incorrect statistical behaviour of the standard lin

ear congruence generator in the GNU c-library g lib c , version 2.2.5-34, the following 

experiment is conducted:

Using the built-in random number generator, pseudorandom integers generated 

by randO  which are uniformly distributed between 0 and RANDMAX are generated. Di

viding these by RANDMAX, samples from a uniformly distributed (on a grid with spacing 

random variable are generated. These quasi-uniformly distributed random 

numbers are then used to generate normally distributed random samples employing the 

Box-Miiller scheme from ([21], chapter 7, section 2, p.216).

Using & samples from normally distributed random variables, m, the random

variable

is sampled repeatedly. The random variable s is, of course, itself a Gaussian with mean 

zero and variance one. Using Ns ~ 2 • 107 Monte Carlo samples of s, the observed 

variance for k =  1, . . . ,  49 is given in figure 3.3

It can be seen from this figure that the deviation at k =  30 cannot be attributed 

to Monte Carlo sampling error. It is not entirely clear, however, whether this error can be 

attributed to RANDMAX being finite, i.e. the fact that the uniformly distributed random 

variables input to the Box-Miiller procedure are distributed on an equispaced grid in 

[0,1] rather than all over [0,1],

In any case, it is clear that a better random number generator is required. Con

sulting the Gnu Scientific Library, [18], the Mersenne Twister is recommended, citing 

[46], The experiment is then repeated with the Mersenne twister yielding plot (3.4). It 

can be seen that the Mersenne Twister combined with the Box-Miiller procedure passes 

this statistical test.

Note that the dotted lines in (3.4) represent the 1 -a limits for the average over 

Ns realisations of the random variable s, so that roughly 1/3 of the points is expected 

to lie outside the bounds.
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Figure 3.3: Variance Error for LNC RNG

Figure 3.4: Mersenne Twister -  Variance
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3.3.3 Drift Parameters: Polynomial Potential

In order to move towards applicable parameter estimation procedures, a first order SDE 

with constant diffusion coefficient and variable force expression is considered:
C

dx = y ^ 0jfj(x)dt + crdB (3-16)
i—1

Here, the force basis functions are chosen simply to be powers of x

fi{x)  = x\ (3.17)

and the potentials are defined as follows:

Vi{x) =  [  fi{y)dy
Jo

An arbitrary additive constant can be chosen for the potentials, which has been fixed 

here by starting the integral at 0.

Using (3.10) as an estimator for the drift parameters 0j, the following abbrevia

tions are introduced;
N

Mi,j — (3.18)
■ n=l

AT-1
h =  ̂  fi(xn)(xn+1 - x n). (3.19)

n=0

The estimator (3.10) can now simply be written as

Q = M _1b (3.20)

An analysis of truncation error incurred using the statistical model can be per

formed using Ito-Taylor expansions and predicts a bias of order O(At) for the estimator 

(3.20).

The estimator (3.20) has been put into practise and the implementation is tested 

using the following parameters for an example:

01 = 4 02 =  -0.3 03 = - 4  0A = 0 05 = 0 cr = 0.8 Ns = 1000
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Figure 3.5: 6 5  fit for polynomial potential

The drift parameters obtained from (3.20) are averaged over Ns =  1000 realisations 

for a time interval [0,T/]. Plotting the deviation of the estimated drift parameters 05 

and 03 from the true drift parameters 05 and 6 3 the plots in figures 3.5 and 3.6 are 

obtained. The convergence observed here is representative of the whole parameter set. 

Using a least squares fit, a straight line can be fitted to those datapoints corresponding 

to small At and the obtained slopes of 0.9969 and 0.9976 respectively corroborated the 

estimator being asymptotically consistent with a bias of O(At).

3.3.4 Drift Parameters: Trigonometric Potentials

As à first step towards fitting stochastic differential equations to molecular dynamics 

data, fitting the type of SDE given in (3.1) to the Langevin-trajectories for butane 

obtained in chapter 2 is attempted. In order to adapt the fitted SDE to the process at 

hand, a new set of basis functions based on a trigonometric potential is chosen:

Vi(x) = icosVx)
(3.21)

fi(x) — -sin(x)cos* *(x)
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Figure 3.6: 03 fit for polynomial potential

The same fitting procedure based on the estimator (3.10) remains operational. To 

ensure the method of fitting is sound, we first consider parameter estimation for paths 

generated from the SDE. Since one unfavourable case, in which the errors observed 

decay more quickly than expected from an (to-Taylor expansion, is encountered, this is 

analysed in some detail. An explicit analytical error expression is made available and 

compared to numerically obtained errors. yT o V

In order to find a suitable model case for parameter estimation, it is decided 

mimic metastabilities using the following choice of coefficients:

01 = 1 02 = 2 03 = 0 04 = O 05 = O

a = 0.6 Ns =  1 0 0  Tf =  1.28 • 105

This gives rise to the potential, typical sample path and histogram of figure 3.7.

For constant final time, the timestep is halved and the estimator is sampled 

Ns = 100 times for each time resolution, which yields the error plot given in figure 3.8. 

This plot corroborates the estimator being asymptotically consistent with errors of order 
O(At).
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Figure 3.7: Trigonometric Potential and Sample Path

Convergence of Drift estimators

Figure 3.8: Convergence of 6\



Potential x 104 Histogram of Samplepath

Figure 3.9: Trigonometric potential -  unfavourable case

Unfortunately, there appear to be some combinations of parameters for which 

this convergence is not observed in practise. Consider the following selection:

= l 6% = -1 0z = 0 ^4 =  0  ^5 =  0

a = 1.3 Nt =  100 Tf = 1.28 • 105 k =  2

As can be seen from the figure 3.9, the potential landscape is reasonably well- 

sampled except for the top of the potential. Also, the errors in the drift parameter 

estimators decreases -  only that it does so at too fast a rate! The fastest rate achieved 

seems to increase with k, which might indicate a vanishing of lower order error terms 

due to symmetries.

This phenomenon has only been observed with the above or close by combi

nations of parameters whereas for all other tests, no such super-convergence has been 

found. While behaviour towards small values of At in 3.10 is slightly different for differ

ent random number generators, it should be stressed that the initial superconvergence 

is observed with three different random number generators, not including the built-in 

randQ which was ruled out previously.
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Convergence for 61 in unfavourable case
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Figure 3.10: Low 0\ Errors in unfavourable case

For the case A: = 2 it is feasible to write out the actual statistics of the generated 

sample path and understand the first order error incurred by the Euler statistical model 

in detail. The analysis starts out by writing out the statistics for the k =  2 subsampled 

Euler-Maruyama generator:

® „ + l  . =  X n  +  At ̂ 2  Q i f i ( x n )  +  vVAtt,
i

+ + higher order terms.

where £ and are standard normal random variables (not independent). Using this 

representation those first order components of the error of the estimator

AO = 0 - 0

can be expressed as a solution of the following linear system:

E(MA0)j . = -A t &tfj(xn)fk(xn)fi(xn) + h.o.t.
k , l  n — 0

(3.22)

(3.23)
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Figure 3.11: Predicted 1st Order Errors -  favourable case

Here, the index (MAd)j stands for the j-th entry of the vector MA9 and the matrix 

M  is as given in (3.19).

Since an ergodic theorem of the type

1 f
lim NAtMi'j = /  (3.24)

NAt —^ oo °

A t — »0

with the invariant measure /¿(-) given by its density

d fj, 
dx C(0,o) exp - 2 ZiliViix)

(3.25)

is expected to hold, it should be possible to write down integral expressions for Ad.

Since the basis functions fi chosen here lead to a Fourier decomposition of the 

measure, assuming (3.24) one can show that e.g. the highest order coefficient, A04 and 

also A#i for the above problematic case must be zero.

Also, the above expression for the first order error correction has been im

plemented and found to agree well with the observed mean error in the case 6  =
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[1,2,0,0,0]T presented above. In the unfavourable case 6> = [1 ,-1 ,0 ,0 ,0]T , however, 

the predicted first order correction is well above the observed errors.

While it is conceivable that the error analysis only holds for much smaller At as it 

is only an asymptotic analysis after all, this argument is not very convincing especially in 

the presence of well-fitted analytical error expressions in the favourable case. Also, finite 

final time T together with a non-random starting point may introduce an additional bias 

which could spoil convergence of the parameter estimates to the true value. A complete 

resolution of this problem is left pending in order to enable the study of more pertinent 

problems.

3.3.5 Decay of Variance

The variances for the above estimators of the drift parameters are numerically observed 

to decay like O which is expected from analogy with the law of large numbers.

Proving such a statement cannot be accomplished by mere Ito-Taylor expansions 

- some theorem of ergodic type must be used. There are some results in [50] to this
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effect which are applicable to the trigonometric potential case.

3.4 Application to Butane data

Using the data shown in figure 2.15 it is possible to test fitting first order SDEs with 

the above trigonometric potential to molecular dynamics data -  albeit in an extremely 

simple molecule. To get a first impression of the (in)consistency of such a model, 

fitting at different inter-sample spacings At is considered. This corresponds to only 

using every kth sample from the molecular dynamics simulation. The aim is to establish 

whether SDE models can be fitted convincingly over a range of timescales and one of the 

main problems for short timescales is the fact that the fitted paths have zero quadratic 

variation.

To start the study, consider the fit performed in figure 3.13 using the estimator 

(3.20) for the drift parameters and quadratic variation for the diffusion parameter.

It is clear that completely different potential expressions will be obtained for 

different sampling periods At. This is again shown in figure 3.14.

In particular, o — ► 0 is observed as At — ► 0. O f course, this is due to the 

smooth paths generated by the Hamiltonian dynamical system -  the quadratic variation 

of those paths is zero!

In view of the fact that even if the data originates from a process of the kind 

(3.16) a small A t  is needed to control the bias this observation calls the fitting into ques

tion. For small timescales, the problems are inherent in the path to be fitted, whereas 

for long timescales, the fitting procedure is not sound. Either, different estimators are 

needed, or the process just cannot be fitted to the data. Even if the fit is successful with 

nearly constant drift parameters for some range of sampling rates A t, weak convergence 

as in the situation of a distinguished particle in a heat bath is ruled out.

One way of fitting first order SDEs to molecular dynamics data at longer timescales 

might be to introduce imputed points between sampled datapoints which would then 

have to be sampled from, possibly alternating with samples from drift and diffusion 

parameters. In extremis, one could consider fitting a finite state space Markov chain at
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Diffusion Coeffcient fit for C os-O U  process -  Butane data

Drift Coeffcient fit 9 for C os-O U  process -  Butane data
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Figure 3.13: Fitting Trigonometric Potentials to Butane-Coefficients
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very long time intervals, possibly corresponding to different conformational substates as 

advocated by Schiitte et al. (see [35]). Rather than following this route, the investi

gation turns towards the small timescale structure of the data dealing with hypoelliptic 

diffusion processes in the next chapter.

3.5 The Two scale Potential

Another interesting example which has promise to be analytically tractable is the two- 

scale potential:

d
dx =  -Q^V(x,£)dt +  adD

where the potential V is such that it has a fast component which is averaged out:

V{x,e) = y(x) + sin (2)
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Omitting some technical conditions on V, in this situation, it is known analytically that 

the solutions converge in some weak sense to the solutions of
r\

da; — —— V'(rE) + £d£?
( s X

where £  < cr seems intuitively reasonable.

Studying this process might provide some insight into how the estimators deal 

with the strong high frequency components visible in the data in figure 2.15. This study 

has been carried out for simple maximum likelihood estimators by Pavliotis and Stuart 

in [26], where subsampling was found necessary to avoid 0 (1 ) errors in the estimated 

parameters.

3.6 Conclusions

Standard results concerning maximum likelihood estimators for drift parameters and 

method of moment estimators for diffusivity have been summarised for a particular class 

of ID SDEs. The approximating estimators have been implemented and tested on a 

variety of cases, in particular for trigonometric force expressions. These tested routines 

were then applied to molecular dynamics data for the dihedral angle in butane under 

Langevin dynamics and two issues of practical relevance were highlighted. Firstly the 

fitted potential depends greatly on the timescale on which the fit is performed so that 

even allowing for some error due to the finite At bias of the estimators used, no region 

of acceptable fit could be identified. Secondly, fitting for very short timescales is limited 

by the quadratic variation of the trajectory from molecular dynamics being zero. In this 

context, hypoelliptic diffusions might constitute an interesting class of processes to fit 

to this data and they are the subject of the next chapter.
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Chapter 4

Second Order Stochastic 
Differential Equations

Wenn Sie eine Theorie haben, und Sie können den harmoni
schen Oszillator nicht rechnen, dann vergessen Sie sie.
Prof.Dr.H.D.Doebner, Clausthal

4.1 Overview

This chapter is a slightly enlarged version of [61] treating parameter estimation for 

partially observed hypoelliptic diffusion processes. By partial observation we mean ob

servation of some components of the multidimensional process at discrete times. Since 

exact likelihoods for the transition densities are typically not known, approximations are 

used that are expected to work well in the limit of small inter-sample times A t  and large 

total observation times NAt. Hypoellipticity together with partial observation leads 

to ill-conditioning requiring a judicious combination of approximate likelihoods for the 

various parameters to be estimated. We combine these in a deterministic scan Gibbs 

sampler alternating between missing data in the unobserved solution components, and 

parameters. Numerical experiments display asymptotic consistency of the method when 

applied to simulated data. The chapter concludes with application of the Gibbs sampler 

to molecular dynamics data generated as described in chapter 2.
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4.2 Introduction

In many application areas it is of interest to model some components of a large deter

ministic system by a low dimensional stochastic model. In some of these applications, 

insight from the deterministic problem itself forces structure on the form of the stochas

tic model, and this structure must be reflected in parameter estimation. In this chapter, 

we study the fitting of stochastic differential equations (SDEs) to discrete time series 

data in situations where the model is a hypoelliptic diffusion process,1 and also where 

observations are only made of variables that are not directly forced by white noise. Such 

a structure arises naturally in a number of applications.

One application is the modeling of macro-molecular systems [32] and [34], In 

its basic form the molecule is described by a large Hamiltonian system of ordinary 

differential equations (ODEs). If the molecule spends most of its time in a small number 

of macroscopic configurations then it may be appropriate to model the dynamics within, 

and in some cases between, these states by a hypoelliptic diffusion. While this phrasing 

of the question is relatively recent, under the name of the ’’ Kramers problem” it dates 

back to [41] with a brief summary in section 5.3.6a of [9], As observed in the last 

chapter, the trajectories generated by the Hamiltonian mechanics model of molcular 

dynamics are smooth which compromises the fitting of first order stochastic differential 

equations. Moving to second or higher order hypoelliptic SDEs.might enlarge the range 

of timescales useable for fitting. Furthermore, inertial effects are present even in large 

molecules in solution - otherwise infrared spectroscopic observations .would be entirely 

meaningless, so it might be desirable to model them. Another application, audio signal 

analysis, is referred to in [30] where a continuous time ARMA model is used.

We consider SDE models of the form

f dx = @A(x)dt +  CdB
/N (4-1)

( z(0) = zo

where B is an m-dimensional Wiener process and x a ¿-dimensional continuous process 

with k > m. A : Rk — ► Rl is a set of (possibly non-linear) globally Lipschitz force

'Meaning that the covariance matrix of the noise is degenerate, but the probability densities are 
smooth.
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functions. The parameters which we estimate are the last m rows of the drift matrix, 

0  6 Rkxl, and the diffusivity matrix C which we assume to be of the form

0 1
C =  e R ixra

r

where T € R mxm js nonsingular.

It is known that under the above hypotheses on A and C, a unique L 2-integrable 

solution x(-) exists almost-surely for all times t € R +, see e.g. Theorem 5.2.1 in [3], 

We also assume that the process defined by (4.1) is hypoelliptic as defined in [48],

i.e. it satisfies Hormander's hypothesis as given insertion V.38 of [42]. Intuitively, this 

corresponds to the noise being spread into all components of the system (4.1) via the 

drift.

The structure of C implies that the noise acts directly only on a subset of the 

variables which we refer to as rough. It may then be transmitted, through the coupling 

in the drift, to the remaining parts of the system which we refer to as smooth2. To 

distinguish between rough and smooth variables, we introduce the notation x(t)T =  

(u(t)T,v(t)T) where u(t) € R fc-m is smooth and v(t) 6 Rm is rough. It is helpful to 

define linear functions P : R fc —► R fe-m by Px = u and Q : R fc —> R m by Qx =  v.

We denote the sample path at N + 1 equally spaced points in time by {xn — 

x(nAt)}n=0, and we write x j  = to separate the rough and smooth compo

nents. Also, for any sequence (z\ , . . . ,  zn), N € N  we write A zn = zn+i — zn to denote 

forward differences. We are mainly interested in cases where only the smooth compo

nent, u, is observed and our focus is on parameter estimation for all of T and for entries 

of those rows of 0  corresponding to the rough path, on the assumption that (un}^L0 

are samples from a true solution of (4.1); such a parameter estimation problem arises 

naturally in many applications and an example is given in section 4.8. It is natural to 

consider NAt = T >  1 and At -C 1. It is important to realize that, for continuous 

time observations, the diffusion coefficient F can be found from the quadratic variation 

of a single path on [0,T], any T > 0, see e.g. Theorem 2.8.6 in [13]. For 0 , however, 

the estimates are strongly consistent only as T —► oo. These two facts will be reflected

2We do not mean C°° here, but they are at least C1.
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in the parameter estimation for discrete time observations.

The sequence {xn}^_0 defined above is generated by a Markov chain. By ex

panding the random map xn i-> xn+\ in powers of A t, and retaining the leading order 

contributions to the mean and to the variance in each component of the equation, one 

obtains

xn+i «  xn +  At0^4(a:n) + VAtR(At; ©)£n (4.2)

where xn 6 Mfc, £n G is distributed as J\f(0,1) and ¿2(Af;0) e Rkxk. Because 

of the hypoellipticity, ¿2(Af;0) is invertible, but the zeros in C mean that is is highly 

ill-conditioned for 0 < A t  <C 1. In fact we have:

0 0
¿2(0; 0 ) =

0 r
(4.3)

(4.4)

We refer to expressions of the form (4.2) as statistical models and we will use them 

to approximate the exact likelihood, C(u, w|0 , I T t ), of the path u, v given parameter 

values 0  and I T t .

Given prior distributions for the parameters, ^ (© » ir7 ), the posterior likelihood 

can be constructed as follows: ..

¿ (u ,0 , rT r ) = ■£(w’%,ITT’tt>.

= £(«,«|0 l r r r )f f i ^ l

In principle, this can be used as the basis for Bayesian sampling of ( 0 ,I T t ), viewing 

v as missing data. However, the exact likelihood of the path is typically unavailable. 

In this chapter we will combine judicious approximations of this likelihood to solve the 

sampling problem. The approximations that we use, Ce and £ / r , are found from (4.2), 

in the case of Ce by replacing R{At\ 0) with ¿2(0;©) given by (4.3). Thus Ce is 

found from an Euler-Maruyama approximation of (4.1). The approximate likelihood 

Cjt arises from retaining further terms in the Ito-Taylor expansion to ensure that noise 

is propagated into each component of the map (4.2).

The questions we address in this chapter are:

1. How does the ill-conditioning of the Markov chain xn i-> xn+i affect parameter 

estimation for I T 1’ and for the last m rows of 0  in the regime A t  <C 1, NAt = 

T » 1  ?
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2. In many applications, it is natural that only the smooth data {un}^L0 is observed, 

and not the rough data {un}£ l0- What effect does the absence of observations 

of the rough data have on the estimation for At <C 1 and NAt = T >  1?

3. The exact likelihood is usually not available; what approximations of the likelihood 

should be used, in view of the ill-conditioning?

4. How should the answers to these questions be combined to produce an effective 

method to sample the distribution of parameters 0 , I T t  and the missing data

M i U ?

To tackle these issues, we use a combination of analysis and numerical simulation, 

based on three model problems which are conceived to highlight issues central to the 

questions above. We will use analysis to explain why some seemingly reasonable methods 

fail, and simulation will be used both to extend the validity of the analysis and to illustrate 

good behavior of other methods.

For the numerical simulations, we will use either exact discrete time samples of 

(4.1) in simple linear cases, or trajectories obtained by Euler-Maruyama simulation of 

the SDE on a temporal grid 'with a spacing considerably finer than the observation time 

interval At.

At this point, we introduce some notation to simplify the presentation. Firstly, 

given an invertible matrix R G R raxn we introduce a new norm using the Euclidean 

norm on R ” by setting ||x ||.r = ||i?-1 a:||2 for vectors x e R n. Also, we will occasionally 

refer to a lilkelihood C(B) as a function of some parameters B not mentioning the 

complementary parameter set C. This is understood to refer to the conditional likelihood 

C{B\C) whenever the parameter set C is clear from the context.

In section 2 we will introduce our three model problems and in section 3 we study 

the performance of Ce to estimate the diffusion coefficient. Observing and analysing 

its failure in the case with partial observation leads to the improved statistical model 

yielding Cjt which eliminates these problems; we introduce this in section 4. In section 

5 we show that Cjt is inappropriate for drift estimation, but that Ce is effective in this 

context. In section 6, the individual estimators will be combined into a Gibbs sampler to
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solve the overall estimation problem with asymptotically consistent performance being 

demonstrated numerically. Section 7 contains a simple application to molecular dynamics 

and section 8 provides concluding discussion.

4.2.1 Literature review

The primary novelty of our work is that it concerns hypoelliptic diffusions where only 

smooth components are observed. We set our work in context. First, we review pa

rameter estimation for (4.1) in continuous time. We assume that the observation is 

compatible with (4.1) in that, if the observed path is x(t)T = (u(t)T,v(t)T), then

n = POA(x), 'u(0) = Ps(0); (4.5)

furthermore, if only u(t) is observed, then we assume that (4.5) determines v(t) uniquely. 

(In situations where compatibility fails it is necessary to add observational noise to the 

solution of (4.5) and to estimate it.)

Once v is determined uniquely we have

dv = QQA(x) + VdD, u(0) = Qx(0). (4.6)

The covariance matrix I T 2" can be estimated by noting that

7p Y !  ~ vn)(.vn+1 -  vn)T -* I T 2" as N -+ oo (4.7)
n=0

with T =  NAt fixed [13].

The Girsanov formula shows that the path space likelihood for (4.6) is propor

tional to

exp T~1Q@A(x(s))r~1dv(s) — ^ J  ||r_1Q 0 J4(x(s))||2 ds

This can be used as the basis for various estimation procedures, one of them being the 

maximum likelihood estimator for the lower rows of 0  which is found by maximizing

© = argmaxe r _1Q 0 J4(x(s))r_1du(s) —  ̂y  ¡|r- 1<30>l(x(s))||2 ds'j (4.8)
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over 0. Such estimators are consistent as T —» oo. In the linear case, where A is just 

the identity, the maximum likelihood estimate for the whole of © is given by

rT rT
© = [/ dxxT][ xxTdt]~1. (4.9)

Jo Jo

This is proved to be consistent as T —> oo in [4]. Note, then, that diffusion parameters 

can be estimated from arbitrarily short pieces of trajectory, whereas drift parameters 

require long time intervals. A discussion of continuous time parameter estimation for 

linear hypoelliptic diffusions with multiplicative noise is given in [39],

In practice, observations are typically made in discrete time. There is substantial 

literature on parameter estimation in this context, much of it concerned with estimation 

of ip in problems of the form

dv = a(v,(p)dt+ Fw, v(0) = Vo, (4-10)

where ITt is everywhere invertible. In some cases, a is allowed to depend on the entire 

path {^(s)}sg[o,i] and then the hypoelliptic problem (4.6) is a special case. We now 

discuss the literature available when only discrete time observations of v, the rough 

variable, are given. Note that, for most of this chapter, we assume that the u-data is 

hidden and only u in (4.1) is observed. Thus although u can be eliminated from (4.1), 

and an equation written for v in the form (4.10) with a depending on the entire path of 

v on [0,t], the existing literature on discrete time observations of (4.10) does not apply 

to the case we consider here, where v is not observed. Nonetheless we overview what is 

known.

One approach is to form continuous time estimators, using the generalization 

of (4.8) to (4.10). If ip appears linearly and only in a, not 7 , then the continuous 

time estimator can be calculated from Riemann and stochastic integrals of v(t). These 

continuous time estimators can be approximated by quadrature, assuming the time in

crement between observations, At, is small, and estimates of (p obtained in this manner, 

see [40] for details. An alternative, when At is small, is to approximate the likelihood of 

the discrete time Markov chain generated by sampling (4.10) at rate At. This approach 

is considered in [55, 29, 11, 24] with several of these papers studying the Euler approx

imation, generating a Gaussian likelihood, as we do in this chapter. Theorems about
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convergence of parameter estimates typically consider the limit A t  —» 0 with NAt —> oo 

[24], Alternatively one may consider A t  —» 0 with NAt = T >  1 and estimate the bias 

due to finite T.

When the time increment between observations, A t, is not small then 0(1) 

errors can enter parameter estimates unless the discrete time likelihood is carefully ap

proximated. One way to do this is by fine Monte Carlo simulation between observation 

points, see [49], A different approach, leading to closed formulas and using Hermite 

polynomials, may be found in [1], In [11] functionals of the Brownian bridge are used 

to build up the approximation; in [53] related ideas are used in a Bayesian approach 

to parameter estimation for discretely observed diffusions. Recent work of Beskos et 

al uses exact sampling of a diffusion process to address this issue, see [16]. Another 

approach is taken by Crommelin and Vanden-Eijnden in [7], [8] in which the transition 

probability matrix is approximated from the data, and then a generator is found to fit 

the spectrum of that matrix as closely as possible. The norm used to facilitate fitting 

is such that quadratic programming techniques can be used to speed up computation. 

A review of estimation for discretely observed diffusion processes, and a discussion of 

martingale estimating functions, can be found in [2].

4.3 Model Problems

To study the performance of parameter estimators, we have selected a sequence of 

three Model Problems ranging from simple linear stochastic growth"through a linear 

oscillator subject to noise and damping to a nonlinear oscillator of similar form. All 

these problems are hypoelliptic diffusions and we will present them in detail in the next 

three subsections. Their general form is given as the second order Langevin equation

'' dq = pdt,
<

dp =  ( - 7p + /(<?)) dt + adB 

where /  is some (possibly nonlinear) force-function and the variables q and p are scalar.

(4.11)
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4.3.1 Model Problem I: Stochastic Growth

Here, x = (q,r)T satisfies
dq = rdt

<
dr = crdB.

The process has one parameter, the diffusion parameter a, that describes the 

fluctuations. In the setting of (4.1) we have

(4.12) 

size of the

HII 0 1 00 =
0 0

, c  =
a

and u = q, v = r. The process is Gaussian with mean and covariance

1 t 90
and E(i) = a2

t3/3 t2/ 2
0 1 ro f2/2  t

The exact discrete samples may be written as

/  ?„+l = + +

f n + l  =  "T <Jy/ A f C n  \

with Co and {Cn}^=o being

(4.13)

4.3.2 Model Problem II: Harmonic Oscillator

As our second model problem we consider a damped harmonic oscillator driven by a 

white noise forcing where x =  (q,p)T :

Idq = pdt

dp = —Dqdt — tpdt + crdB.

This model is obtained from the general SDE (4.1) for the choice

(4.14)

A (x) = x, e  =
0 1 

—D —7

0

a

and u — q, v = p. The process is Gaussian and the mean and covariance of the solution 

can be explicitly calculated.
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In the third model problem, x =  (q,p)T describes the dynamics of a particle moving in a

potential which is a superposition of trigonometric functions and in contact with a heat

bath obeying the fluctuation-dissipation relation, see [43], This potential is sometimes

used in molecular dynamics in connection with the dynamics of dihedral angles -  see

section 4.8. The model is 
/

dq — pdt,
<

dp =  ( - 7p - Y ,Ci=iDjSin(q)cos:i~1(q))dt + adB.

This equation has parameters 7 , Di, i — 1, . . . , c  and a. It can be obtained from the 

general SDE (4.1) for the choice

4.3.3 Model Problem III: Oscillator with trigonometric potential

(4.15

s in  (q)
r  - \ s in  (q)cos(q) r P -,
q V 0 . . 0 1 0a

= , ©  = , c  =
P_ /

s in ( ç )  c o s c - 1 (ç )
-D i  . . • - D c - 7 _ a

P
and u = q, v = p. No explicit closed-form expression for the solution of the SDE is 

known in this case; the process is not Gaussian.

4.4 Euler Statistical Model

In this section, the Euler-Maruyama approximation to (4.1) is used tP generate a sta

tistical model and associated likelihood. Using this likelihood to estimate the diffusivity 

works whenever observations of both the smooth and the rough components are avail

able. However, it yields 0(1) errors in the partially observed case; this is demonstrated 

analytically for Model Problem I and the results are extended by means of numerical 

experiments.

4.4.1 Statistical Model

If the force function .A(-) is nonlinear, closed-form expressions for the likelihood are in 

general unavailable. To overcome this obstacle, one can use a discrete time statistical
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model. The Euler model is commonly used and we apply it to a simple linear model prob

lem to highlight Its deficiencies In the case of partially observed data from hypoelllptlc 

diffusions.

The Euler-Maruyama approximation of the SDE (4.1) Is

X n+i = Xn + AtQA(Xn) + VXtC^n (4.16)

where ~ J\f(0,I) is an I.l.d. sequence of ¿-dimensional vectors with standard normal 

distribution. This corresponds to (4.2) with i? (A f;0 ) replaced by R(0;©) from (4.3). 

Thus we obtain

Un+i = Un + AtPQA{Xn) I ■

Vn+1 =  Vn + AtQ@A(Xn) + y/AtT^n )

where now each element of the I.l.d. sequence Is distributed as Af(0,1) In Mm. This 

model gives rise to the following likelihood:

A vD (c /,v i© ,rrT)=  : ;
ttN - 1 exp(-i\\AVn-A tQ eA (X n)fr) ( un+1- Url . _  \  • ( 4 ’ 1 8 )

1 ln=° ^Trirr1’! v A i \ n))

The Dirac mass Insists that the data Is compatible with the statistical model, I.e. the

V path must be given by numerical differentiation (ND) of the U path. To estimate

parameters we will use the following expression:

Ce (U,V\Q,TTt ) =  Un=o , (4.19)

where we assume that {Un}, {Vn} are related through numerical differentiation when 

the Euler model Is used to estimate missing components.

4.4.2 Model Problem I

The Euler statistical model for this model problem Is

J Qn+1 Qn + Rn&t>

I Rn+1 = Rn + (Jy/At^n
(4.20)

Here, {̂ n} is an i.l.d. ^(0,1) sequence. The root cause of the phenomena that we 

discuss In this chapter Is manifest In comparing (4.13) and (4.20). The difference Is that
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the 0 ((A t)3/2) white noise contributions in the exact time series (4.13) do not appear 

in the equation for Qn. We will see that this plays havoc with parameter estimation, 

even though the Euler method is pathwise convergent.

We assume that observations of the smooth component only, Qn, are available. 

In this case the Euler method for estimation (4.20) gives the formula

Rn =  (4.21)

for the missing data. In the following numerical experiment we generate exact data from 

(4.13) using the parameter value a = 1. We substitute Rn given by (4.21) into (4.19) 

and find the maximum likelihood estimator for a in the case of partial observation. In 

the case of complete observation we use the exact value for {Rn}, from (4.13), and 

again use a maximum likelihood estimator for cr from (4.19).

Using N = 100 timesteps for a final time of T = 10 with a = 1 the histograms 

for the estimated diffusion coefficient presented in the middle column of Figure 4.4.2 are 

obtained. The top row contains histograms obtained in the case of complete observation 

where good agreement between the true a and the estimates is observed. The bottom 

row contains the histograms obtained for partial observation using (4.21). The observed 

mean value of E<r = 0.806 indicates that the method yields biased estimates. Increasing 

the final time to T — 100 (see left column of graphs in Figure 4.4.2) or increasing the 

resolution to A t  = 0.01 do not remove this bias.

Thus we see that, in the case of partial observation, a contains 0(1) errors which 

do not diminish with decreasing A f  and/or increasing T =  N At.

4.4.3 Analysis of why the missing data method fails

Model Problem I can be used to illustrate why this method fails. We first argue that the 

method works without hidden data. The log-likelihood function given in (4.19) yields 

the following expression in the case of stochastic growth:

i Ar-1
logger) = —2iVlog<x -  ^ ( A r n)2

n=0
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Complete Observation Complete Observation 
T=10, At=0.1

Complete Observation 
T=10, A t=0.01

Partial Observation 
T=100, A t=0.1

Partial Observation 
T=10, A t=0.1

Partial Observation 
T=10, A t=0.01

|«t>=0.81491

5 0.75 1 1.25 1.5

Figure 4.1: Estimates of a using Euler Model for Model Problem I.
Top row: fully observed process; bottom row: partially observed process.
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where A  is the forward difference operator. The maximum of the log-likelihood function 

gives the maximum likelihood estimate,

1
NAt

N -l

E < Ar»)2- (4.22)

In the case of complete data, (4.13) gives

N -l

n=0
(4.23)

By the law of large numbers, a2 —* a2 almost surely as IV —► oo. This shows that the 

method works when the complete data is observed.

Let us consider what happens when r  is hidden. In this case, rn is estimated by

__ <7n+1 Qn
n~ At

But since qn is generated by (4.13) we find that

rn+i + rn VÂt a)
~ 2 ~ + ,Tv ï 2 <i ■

and

An, = ", />(i) _  X iA
2 2 V l 2 V;n+1 U  )

= ^  (c S i+c£2) + -  ^ d 1})

When A rn is inserted in (4.22) it follows that

2 N-l /  >(i) A(l)\ 2
?2 = i u E ( i S i + ^  + -"+1_c“^

=o \ V5
2 r^ - l* r v- / .(2) -a) AT— 1

& X U -+ < sc
v ^ n in+1 v n

(i)'

■ * - i  /  ^d)'
+ 2 E  e

n=0 V

The random variables {CrJ^Lo are i.i.d with Co ~ N(0,I). So, by the law of large 

numbers, a2 —> |cr2 almost surely as N —> oo. Furthermore, the limits hold in either 

of the cases where either NAt =  T or At are fixed as N —» oo. This means that
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independently of what limit is considered, a seemingly reasonable estimation scheme 

based on Euler approximation results in 0(1) errors in the diffusion coefficient. 3

4.5 Improved statistical model

The failure of the Euler model to estimate paths having the correct quadratic variation 

is caused by not propagating the noise to the smooth component of the solution. A 

new statistical model is thus proposed which propagates the noise using what amounts 

to an Ito-Taylor expansion, retaining the leading order component of the noise in each 

row of the equation. The model is used to set up an estimator for the missing path 

using a Langevin sampler from path-space which is then simplified to a direct sampler in 

the Gaussian case. Numerical experiments indicate that the method yields the correct 

quadratic variation for the simulated missing path.

The model is motivated using our common framework the Model Problems I, II 

and III, namely (4.11). The improved statistical model is based on the observation that 

in the second row of an Ito-Taylor expansion of (4.11) the drift terms are of size O(At) 

whereas the random forcing term is "typically" (in root mean square) of size 0(y/At). 

Thus, neglecting the contribution of the drift term in the second row on the first row 

leads to the following approximation of (4.11):

Qn+l

Pn+1
Qn + A t Pn + cr
Pn_ /(Q n ) ~  l Pn_ B (A t)

The random vector on the right hand side is Gaussian, and can be expressed as a linear 

combination of two independent normally distributed Gaussian random variables. Com

putation of the variances and the correlation is straightforward leading to the following 

statistical model:

Qn+1 = Qn H~ A t
Pn + (t/ a ì r

£i

Pn+1 Pn f  (Qn) ~  l Pn 6
(4.24)

3There is similarity here with work of Gaines and Lyons [28] showing that adaptive methods for SDEs 
get the quadratic variation wrong if the adaptive strategy is not chosen carefully.
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Here, £1 and £2 are normally distributed Gaussian random variables and R is given as

At At
Vl2 2

0 1

This is a specific instance of (4.2). It should be noted that this model is in 

agreement with the Ito-Taylor approximation up to error terms of order 0(At2) in the
3

first row and O(Ati) in the second row.

If complete observations are available, this model performs satisfactorily for the 

estimation of a. This can be verified analytically for Model Problem I in the same 

fashion as in section 4.4.3. Numerically, this can be seen from the first row (referring 

to complete observation) of Figure 4.2 for Model Problem I and from the first row of 

Figure 4.3 for Model Problem II. In both cases the true value is given by a = 1. See 

subsection 4.2 for a full discussion of these numerical experiments.

If only partial observations are available, however, a means of reconstructing 

the hidden component of the path must be procured. A standard procedure would 

be the use of the Kalman filter/smoother [38, 6] which could then be combined with 

the expectation-maximisation (EM) algorithm [12, 45] to estimate parameters. In this 

chapter, however, we employ a Bayesian approach sampling directly from the posterior 

distribution for the rough component, p, without factorising the sampling into forward 

and backward sweeps.

4.5.1 Path Sampling „

The log likelihood functional for the missing data induced by the statistical model (4.2) 

can be written as follows:
N

logCIT(p) =  - ^ Y , \ \ AXi - @A^ At R̂ +  const- (4'25)
a 1 = 0

We will apply this in the case (4.24) which is a specific instance of (4.2).

One way to sample from this likelihood £/j(p) for rough paths {pi}£L0 's v'a 

the Langevin equation (see section 6.5.2 in [52]) and, in general, we expect this to be 

effective in view of the high dimensionality of p. However, when p is Gaussian it is

64 •



possible to generate independent samples, and we explain how this may be implemented 

below.

The Langevin equation is:

J  = V p log CIT{p) + V 2 ^ -  (4.26)

We explain how the exact sampler (4.29) is derived. The Langevin equation used 

to sample from the distribution of p (given drift parameters and a) is:

g  = i W  + <3(S) + V 2 ^  (4.27)

Here, W  consists of N independent standard white noise processes and p = p(s) is 

thought of as a function

p : [0, oc) — ► IR'V,

and the form of the derivative V p log Cip(p) employed here will be derived shortly. This 

equation is continuous in time but discrete in space. Given that the derivative of lo g £ /r 

is linear in the pi, (4.27) is recognised as an Ornstein-Uhlenbeck process, so that the 

equilibrium measure is expressible as follows:

P ~  A7(-P-i<3(?),-P^t) (4.28)

Given a computer-generated pseudo-random i.i.d. sequence of normally dis

tributed random variables, {£„}, one can generate independent samples with the desired 

distribution, if the root of the covariance matrix is available, simply by setting:

Pn = ~£>mat<3mat<7 + \J ~ i ’mat&i-

As noted above, —T^at ¡s positive definite symmetric. We may thus compute the 

Cholesky factorisation UTU =  —Pmat and use the following observation which yields

e (t/_1e)T) = u-xiu~r 
, = u-lu~T
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as desired.

The suggested sampler for p-paths is then

Pn = ~P-lQ{q) +  U -1Zn. (4.29)

Since a Cholesky factorisation of Pmat is an efficient way to compute the mean, the 

application of XJ~l is just a backsubstitution using the already computed Cholesky 

factor.

A cautionary note from Trefethen ([58], p.177 ) shows that while solving the 

linear system for P _1 is backward stable, the computation of the factor U is not forward- 

stable, i.e. the errors in U might be large for a generic positive definite matrix. In our 

case, P  is very well-conditioned ( Gershgorin yields an upper bound for its condition 

number with respect to the 2-norm of k(P) < 3 + 0(At)) so that we expect U to 

be computed accurately. Employing a combination of Theorem 10.5 for stability and 

Theorem 10.8 for conditioning of the Cholesky factor from [33] this can be substantiated.

Computation of the derivative V p log

Now we compute derivatives of the approximate likelihood Cit needed for a Langevin 

sampler of the missing path p and for the resulting exact sampler (4.29). We have

odC
a a dpi 9i+i(db(7-Arl))

+ qi ( - (1  + A i o ) ^ (7 -  ¿ )  -  AtD(2At~1 -  47) -  G ^ A i '2)

+qi-l ((1 + Afa)6ò-1Af-2 — AD)

+ P i+1 (2At_1 -  47)

+ P i  (6(Af-1 — 7) — (2At_1 -  47)(1 + Atj) + 4Ai_1) + p i - \  (2At~l -  47)

at inner points 0 < i < N. At the boundary points one gets:

0 dC 
a dp0

qo (—(1 + Ata)(6ò-1At_17 — 6ò-1Af-2) — 2D + AjDAt)

+qi (6ò-1At-17 — 6b~1At~2)

+po (—Atb(—6b~lAt~2 + 66-1Af-17) — (1 + A7)(2At-1 — 47)) 

+pi (2At_1 -  47)
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And for i =  N:

2 dC_
dpN

qN-i ((1 + Ata)6b lAt 2 — 4D) + qw (—6b lAt 2) 

+PN-1 (6Af_1 — (1 + Af7)4Af_1) + pn  (4Af-'1)

These derivatives can be expressed using a tridiagonal, negative definite matrix Pmat 

with highest order stencil —1 — 4 — 1 acting on the j»-vector plus a possibly nonlinear 

contribution Q(q) acting on the g-vector only. The gradient of can then be written 

as claimed:

V p log CIT(q, p) =  Pmatp + Q(q).

4.5.2 Estimating diffusion coefficient and missing path

The approximate likelihood Cjx(P,Q\a,Q) can be used to estimate both the missing 

path p and the diffusion coefficient a for our Model Problems I, II and III.

In order to estimate a, the derivative of the log likelihood

log£ j r (cr) = logCIT(P,Q\a,&) + log

(where priors po(©,cr) are assumed to be given) with respect to a is computed:

d , . 2N 1 d , ,
—  log Lit = ------ + - j Z + —  log (po(0 , a)).da a a6 da

Here, we have used the abbreviation

N - l

E
p = 0

Qp -A t
~  f(Q n) -  7Pp

R
• p  J  \  J  K ' Vn j  p

In this case no prior distribution was felt necessary in this example, as when 

N —► oo its importance would diminish rapidly. Thus we set po =  1. The resulting 

maximum likelihood estimator is:

cr2 = 2NAt (4.30)

Instead of providing just the maximum of the likelihood it may be more desirable 

to sample from the distribution of a given observations p and q and the drift parameters.
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As the derivative of the log-likelihood conditional on these obsevations is available we 

can write a Langevin type sampler for this distribution in the following form:

da = + V2dWda

— + -^rZ ] ds + y/2dWa aA J

Empirically, the singularity at a = 0 is seen to be more amenable to numerical solution 

if the transformation ((a) = a4 is used. Using the Ito formula, this yields the Langevin 

sampler:

d( =  ((12 -  8N) x/C + 4z )  ds + 4\/2 (U w . (4.31)

A simple explicit Euler-Maruyama discretisation in s is used to simulate paths for this 

SDE.

This Langevin-type sampler (4.31) can then be alternated in a Systematic-Scan 

Gibbs Sampler (as described on p.130 of [37]) using Afcibbs iterations with the direct 

sampler for the paths, (4.29). This yields estimates of the missing path and the diffusion 

coefficient, where the latter is estimated by averaging over the iVcibbs samples of the 

Gibbs sampler. We illustrate this with an example. For Model Problem I we use the 

following parameters: •

<t = 1 T  e {10,100} A t  g {0.1,0.01} iVcibbs = 10

The sample paths used for the fitting are generated from exact samples using (4.13) 

and the resulting plot is given in Figure 4.2 where the first row corresponds to the 

behaviour when complete observations are available and the second row corresponds to 

only the smooth component being observed. For Model Problem II we use the following 

parameters:

a — 1

T e {10,100}
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Complete Observation Complete Observation Complete Observation
T =100 A t=0.1 T =10 A t=0.1 T =10 A t=0.01

Partial Observation Partial Observation Partial Observation
T=100 At=0.1 T=10 At=0.1 T=10 At=0.01

Figure 4.2: Estimates of a using the Cit Model for Model Problem I.
Top row: fully observed process; bottom row: partially observed process.

The sample paths used for the fitting are generated using a subsampled Euler-Maruyama 

method with temporal grid ^  where k = 30. This experiment results in the plot given 

in Figure 4.3.

It appears from these figures that the estimator for this joint problem performs 

well for Model Problems I and II for A i  sufficiently small and T sufficiently large. A 

more careful investigation of the convergence properties is postponed to section 6 when 

drift estimation will be incorporated in the procedure.
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T=100, A t=0.02 T=10, A t=0.02 T=10, A 1=0.002
150|
| n  <cr>— 1.05511 

100

50

1

150

100

50

|«r>=1.0049

8.5 0.75 1 1.25 1.5 8.5 0.75 1 1.25 1.5 8.5 0.75 1 1.25 1.5

T=100, A  1=0.02 T=10, A t=0.02 T=10, A t=0.002

{ ■ < ct>=1.0094|

Figure 4.3: Estimates of a using the Lit Model for Model Problem II. 
Top row: fully observed process; bottom row: partially observed process.



4.6.1 Overview

With the approximate likelihoods Ce and Cjt in place, the question arises which of 

these should be used to estimate the drift parameters. Using Mode! Problem II we 

numerically observe that an Ce based maximum likelihood estimator performs well. In 

contrast, ill-conditioning due to hypoellipticity leads to error amplification and affects 

the performance of the Cjt based estimator. The ill-conditioning is made explicit using 

asymptotic singularity of the diffusion matrix RR-1.

Alternatively, the estimator (4.9) suggested by Le Breton and Musiela can be 

used, but this is inappropriate if a harmonic oscillator fit is sought, as it means that all 

entries of 0  must be estimated and known entries of 0  cannot be fixed a priori. While 

it is possible to use a cut-back version of this estimator applying it to only those rows 

of 0  whose entries need to be estimated, it is unclear how to obtain an approximate 

likelihood corresponding to this estimator that is amenable to Langevin sampling of the 

drift parameters and -  at the same time -  avoids the error amplification observed in the 

Cjx-based case.

Hence, since the ££-based estimators also cover Model Problem III, and since 

they are amenable to Langevin sampling, they are our choice for estimating drift param

eters.

4.6.2 Drift parameters from C e

In order to simplify analysis, we illustrate the estimator using mainly the Model Problem 

II, (4.14). Nonetheless, we start from the more general equation (4.11) for which the 

Euler statistical model is given as follows:

| Qn+1 • Qn T  A tPn (4 32)
\  Pn+1 = Pn +  D ifi(Q n) -  At-fPn +y/Atcr^n

4.6 Drift Estimation
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Here, we assume that the force functions {/¿}f=1 are prescaled by parameters A  € R. 

The likelihood functional in this case is given by:

£ e { i , D \ Q , P , o ) oc l
V 2wAtcP̂

( _  ^ N - 1 (A P n- A t E ? = i A A (Q n )+ A t7Pn 
exP I 2jn=0 2 A t a 2

£ (4.33)

Differentiating this likelihood with respect to the parameters { A K = i  and 7 and equating 

to zero yields a linear system of equations which we denote by

A

M g
A

7

bs- (4.34)

In the harmonic oscillator case of Model Problem II, where c = 1 and f\(q) 

-Dq we obtain the following linear system:

’ I S  A * « Zn=0^tQnPn' D H =0 QnAPn

_ ln =0 A tQnPn T,n=0 AtPn .
(4.35)

The continuum limit for A i  — > 0 with NAt =  T of this system is simply:

Jo q(t)2dt Jo D -Jo q(*)dPt

Jo ?(*)«(*)* Jo P(t)2dt _ _7_ -  Jo P(t)dPt_

This corresponds to the estimator of D and 7 alone given by (4.9). Casting aside 

issues about the discretisation error (finite A i), the proof of asymptotic consistency given 

in [4] still applies to this estimator in the linear case.

Using the same likelihood, Ce , a Langevin sampler can also be used for the drift 

parameters. Since the resulting distribution for © is Gaussian, direct sampling can be 

used in the spirit of subsection 4.5.1:

ê ~ M {M Ê lbE,MËl)
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4.6.3 Drift parameters from L i t

As the approximate model based on £ it is observed to resolve the difficulty with es

timating a for hidden p-paths, it is interesting to see whether it can also be used to 

estimate the drift parameters.

The log-likelihood function is given by (4.25). To illustrate the problems arising 

from the use of Lit we use Model Problem II, so that (4.25) becomes

N - 1

logCiT(@) = 2a2At ^  ^ n+1 ~ Xn~ AtQA(Xn))\\2R + const (4.37)

where R =
At At

vT2 2

0 1
irrelevant constants have been omitted and we have

Qn

Pn

IV Qn , e = 0 1=
) . Pn . 1--

-- 1 to 1
1__

In order to obtain a maximum likelihood estimator from this, we take the derivative with 

respect to the parameters D and 7 and equate to zero. This yields the following linear 

system:

" EnQlA i E „  PnQn&t D ~ X /n  Qn̂ -Pn +
E n  \Qn ( A Q n  — P\\ At r n)

_E n  PnQn&t £„-P„2A* . f t  _ _ E n 1

0?.

(4.38)

Comparing this linear system to the successful estimator (4.34) we note the presence of 

an additional term on the right hand side. This term leads to the failure of the above 

estimator.

4.6.4 Numerical Check: Drift

There are two factors influencing convergence: T and At. To illustrate their influence, 

consider the following series of numerical tests. All of the tests share these parameters:

D =  4 7 = 0.5 a =  0.5 k =  30
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T=1000, A t=0.01 T=100, A t=0.01 T=100, A  t=0.001

T=1000, At=0.01 T=100, At=0.01 T=100, At=0.001

Figure 4.4: Drift estimation for Model Problem II, using Cjt
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Data for the tests are again generated using an Euler-Maruyama method on a finer 

temporal grid with resolution A t/k. In the plot given in Figure 4.4 the top row con

tains histograms for the drift parameter D whereas the second row contains histograms 

for the drift parameter 7 in any case using the full sample path for inference. It is 

clear from these experiments summarised in Figure 4.4 that both D and 7 are grossly 

underestimated.

4.6.5 Why the Model fails for the drift parameters

The key is to analyse the error term on the right hand side of (4.38) comparing it to 

the consistent estimator (4.34). Using the 2nd order Ito-Taylor approximation

+ ¿At2A2Xn + O(Atl)

we can compute the error term on the right hand side of (4.38):

1 0 £1Xn+i — Xn + AtAXn + R
- 7  1

---1<N

y '  I n  ( AQn -  P  V¿-in 2 ^ n \ At r n ) ' - b T . n Q » P » M - - , D Y . n Q l M
3 p  ( AQn p  \  

_2—m 2 r n \ At r n )  _ - J D Y , n Q n P A t  -  h Z „ P ^ t _
+ Js + O(At).

(4.39)

Here, D and 7 refer to the exact drift parameters used to generate the sample path, 

whereas D and 7 in (4.38) and (4.39) are the drift parameters estimated using the 

improved statistical model. The term Is on the right hand side contains stochastic 

integrals whose expected value is zero.

As the mean error terms can be written in terms of the matrix elements them

selves, (4.39) can be substituted in (4.38) to obtain:

ED = \d  +  0{ At) (4.40)

E 7 = ± 7  + 0 (A f). (4.41)

This seems to be corroborated by the numerical tests.

4.6.6 Analysis of Drift Estimation Failure

In order to make the ill-conditioning whose effects were exhibited in subsection 4.6.3 

more explicit, a more general analysis is attempted.
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It was seen above that the Euler statistical model does not allow for successful 

estimation of a in the case of hidden p-path whereas the improved model delivers correct 

estimates. On the other hand, the latter model delivers incorrect estimates of the drift 

parameters even if the complete path is known.

Essentially, this stems from the fact that the correlation matrix RR~X is not 

factored out of the drift paramter estimation as it should be. This leads to O(At) errors 

of © in the first (q-) row of the equations (where you implicitly assume exact knowledge 

of the upper row of the drift matrix rather than allowing O(At) errors) to be amplified 

by the At-dependent coefficients of RR_1 to 0(1) errors of © in the second row of 

equations. ;

To analyse this failure more carefully, we derive an estimator which estimates all 

entries of 0  and in the process this interaction of ill-conditioning as At — > 0 and the 

suppression of small errors in some matrix entries is demonstrable.

Statistical model

Assume, like above, that some higher order estimate of the correlation matrix R(At\ 0) 

is given, where 0  is written to indicate that it is supposed to depend only on those entries 

of 0  that are known and not to be estimated. (The matrix used in the construction of 

Lit is such a case.) The point of the following calculation, however, is that this matrix 

will drop out if all of 0  is to be estimated and so the end result of this calculation 

implies that the dependence of R on 0  is irrelevant if all of 0  is estimated. The only 

requirement on R(At]Q) is that it be invertible.

Using the statistical model (4.2) we have again:

Xn+i = Xn -r AtOA(Xn) + R(At\ 0)£ (4.42)

where £ is now an Revalued normally distributed random variable providing d indepen

dent samples from jV (0, 1).

The log likelihood functional can now be written as follows:

1 N -
£ = (4.43)
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The derivative of £  is a linear function of 0  which satisfies

£ (0  + A 0 )  = £ (0 ) + B : A 0  + C>(A02)

for the matrix B which is the Riesz-representative of the linear functional

^  . ftkxN R.

Expanding (4.43) about 0  yields the following expression for the action of the 

derivative of the log-likelihood function:

| | ( A 0 )  = -A t  J2 {(RRT)-l(X n+1 -  Xn -  A tQA(Xn))) ® A(Xn) : A©
n

(4.44)

Crucially, if all variations A© are permissible, a necessary condition for the 0  

maximising the likelihood is for the matrix on the left hand side of the matrix inner 

product to be identically zero (this corresponds to R being independent of 0). In this 

case, the necessary condition can be written as

0 = -A t ^ d R R T y 'i A X n -  AtQA{Xn))) 0  A(Xn)
p

where ,AXn — Xn+\ — Xn has been used to simplify notation. Crucially, this can be 

premultiplied by RRT -  this is the factoring out of the noise model mentioned earlier -

At^2(QA(xp)) 0  A(xp) =  -  ^2 Axp 0  A{xp)
p  p "

so that the estimate © is given by

~ K F E ® A (Xp)'j ( j ^ A (xp ^ A (xp ^  ■ (4-45)

This is but the estimator suggested by Le Breton and Musiela in [4] They 

observe it to be asymptotically consistent in the case of linear A and it can be shown 

to have a bias of order O(At) using an Ito-Taylor expansion.

The crucial step in going from (4.44) to (4.45) is that all variations A 0  in (4.44) 

are permissible so that the matrix to the left of that matrix inner product is identically
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zero. If only some entries of 0  are to be estimated (as in the harmonic oscillator example 

above), only those A 0  corresponding to variations in the components to be estimated 

are permissible. To elucidate this issue further, let us rewrite (4.44) using the symmetry 

of RRt as follows:

| | ( A 0 )  = (Xn+i - X n-  AtQA(Xn)) <g> A(Xn) : (RRT)~1 A 0  (4.46)
n

It is clear from this expression that the direction in which the matrix expression on the 

left of the inner product must be zero changes as a function of A t. Whether this change 

leads to amplification of errors or merely to lower order perturbations depends on the 

exact entries to be estimated. It is the interaction of the scaling in the matrix R and 

the choice of parameters to be estimated that causes the observed 0 (1) errors.

4.6.7 Conclusion for Drift Estimation

It has been observed numerically that the likelihood Le associated with an Euler model 

for the SDE (4.1) yields asymptotically consistent Langevin and maximum likelihood 

estimators for Model Problem II. For the case of continuous time the proof of asymptotic 

consistency in the limit T —► oo given in [4] can be adapted in the linear case (i.e. 

A = id) and it would be expected to carry over to the discretised problem in the limit 

A f  —> 0 and NAt —> oo.

While it is aesthetically desirable to base the estimation of all parameters as 

well as the missing data on the same approximation Lit of the true likelihood L, and 

although this approximation was found to work well for the estimation of missing data 

and the diffusion coefficient, it does not work for the drift parameters.

It is possible to trace this failure to the fact that only the second row of 0  is 

estimated where 0(At) errors in the first row get amplified to 0( 1) errors in the second 

row. Estimating all entries of 0, while being outside the specification of the problem 

under consideration, also yields 0(1) errors if Lit ¡s used and so does not remedy 

the problem. This problem is not shared by the discretised version of the diffusion 

independent estimator (4.9), but this is not a maximum likelihood estimator for Lit-

In summary, for the purposes of fitting our model problems to observed data we
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employ the Euler statistical model (4.33) for the drift parameters.

4.7 The Gibbs Loop

In this section, we combine the insights obtained in previous sections to formulate an 

effective algorithm to fit hypoelliptic diffusions to partial observations of data at discrete 

times. We apply a deterministic scan Gibbs sampler alternating between missing data, 

drift parameters and diffusion parameters. Subsection 4.7.1 describes the approach in 

the general case, when applied to (4.1), wheras subsection 4.7.2 describes the application 

to Model Problem III.

4.7.1 Overview

In this section, the estimators for the hidden rough path V, the covariance r r T and the 

those rows of the drift parameters 0  which are to be estimated are combined in a Gibbs 

sampler. Given a likelihood £(U, V|© ,rTr ), a prior po(©>rT,r) and observation U, a 
Systematic Scan Gibbs Sampler would normally work as follows:

1. Sample V from £(V\U,@,rTT).

2. Sample ©from £(©|f/,F,rrT).

3. Sample rrT from £(rrr|C/, V, ©).

4. Restart from step 1 unless sufficiently equilibrated.

Of course, the exact likelihood for the problem at hand is unavailable and thus approx

imate likelihoods are chosen. Exactly which approximations are chosen depends on the 

problem at hand. We have outlined how to construct Lit approximations to estimate V 

and I T r  by propagating the highest order noise to every row and £& approximations for 

the drift parameter estimation. Numerical and analytical evidence indicates that these 

approximations work well.

Jhe algorithm to be put in practice thus reads:
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1. Sample V  from Ci t {V\U,Q,o).

2. Sample © from £ e (®IU, V,cr).

3. Sample o from jCix(rr\U, V., 0).

4. Restart from step 1 unless sufficiently equilibrated.

In practice, we find that for Model Problem II and III, equilibration is fast. Furthermore, 

convergence of the estimates to the true parameter values is observed numerically for 

Model Problems II and III with 0(At) discretisation errors and O (£) truncation errors 

if the sample paths do not start in the equilibrium measure. The overall bias is therefore 

of order 0(At + y) and the observed variance is of order O(p). We now show this in 

detail.

4.7.2 The Algorithm

The proposed algorithm will be illustrated using Model Problem III.

Algorithm 2. Given observations qit % = 1, . . . ,  TV, the initial p-path is obtained using 

numerical differentiation:
((0) = A & 

A t '
(4.47)

= °> 7 (o)= The"The initial drift parameter estimate is just set to zero: 
start the Gibbs loop:

For k = 1,.. .,  iVcibbs •'

1. Estimate the drift parameters and {Djk̂ }j=1 using sampling from Ce given

2. Estimate the diffusivity cr^ using the Langevin sampler (4.31) based on Lit

3. Get an independent sample of the p-path, j p j  using (4.29) derived from
i= o

Cit given parameters ^ k\ and
J j= i
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Trigonometric Potential Typical q-path

Figure 4.5: Typical sample path for Model Problem III, T = 500

This algorithm is tested numerically where sample paths of (4.15) are generated 

using a sub-sampled Euler-Murayama approximation of the SDE. The data is generated 

using a timestep that is smaller than the observation time step by a factor of either 

k =  30 or k = 60. Comparing the results for these two and other non-reported cases, 

they are found not to depend on the rate of subsampling, k, if this is chosen large 

enough. The parameters used for these simulations are as follows:

D0 =  1 D i = -8  £>2 = 8 7 = 0.5 <7 = 0.7

: £  = 500 A te  (i, - - -, i^s} N g ibbs = 10

The trigonometric potential resulting from this choice of drift parameters is depicted on 

the left of Figure 4.5 and a typical samplepath is given on the right side of Figure 4.5. 

It should be noted that all sample paths are started at (q,p) = (1,1). As the potential 

is inspired by dihedral angle potentials used in molecular dynamics it seems appropriate 

that a is chosen such that metastability occurs. This can be observed in the typical 

g-path given in Figure 4.5.

Using up to 64000 sample paths we obtain estimates of the drift parameters by 

averaging over the latter half of Naibbs = 50 Gibbs iterations. We label these as (Di) 

and (7). We then compute their deviation from the true values, A£>j = (Di) — Di and 

plot A  Di and A 7 versus A t  in a doubly logarithmic plot given in Figure 4.6.

A similar plot which is given in Figure 4.7 is obtained for the shorter final time
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Figure 4.6: Whole loop estimation for Model Problem III: T =  500

82



Drift parameter Drift parameter D2

Figure 4.7: Whole loop estimation for Model Problem III: T = 50

T =  50 which will be helpful in understanding the influence of finite time resolution At 

and finite final time T on the observed bias of the estimators.

A straight line fit for the doubly logarithmic plot is desired to numerically ascer

tain the order of convergence. First attempts at obtaining such a fit using a standard 

least squares procedure yield a slope close to 1 indicating O(At) errors in the fitted 

parameters. However, since the Monte Carlo standard deviations around each datapoint 

get magnified due to the logarithmic transformation, the fact that the apparent variance 

increases as A t  is decreased has to be taken into account. As the observed transformed 

standard deviations cannot be assumed to be small in comparison to the observed mean 

error, a more sophisticated method than the standard least squares fit is suggested.

Given averaged numerically observed parameter estimates yi and their numeri

cally observed Monte Carlo standard deviations a* obtained at timesteps At* we fit b 
and c in the following model:



Assuming that the errors & are normally distributed (which is empirically found to be 

the case) a maximum likelihood fit for the parameters b and c can be performed and 

yields the asymptotic (for A£ —*■ 0) drift parameter values reported in Figures 4.6 and 

4.7. Note that this fit constrains the slope of the fitted line in the doubly logarithmic 

plot to one. This is to minimise the number of parameters fitted and to improve the 

accuracy of the extrapolated value b which is the predicted value for y at At =  0. It can 

be observed in Figures 4.6 and 4.7 that this leads to good agreement with the observed 

average parameter values t/j, and this corroborates the estimator's bias being of order 

0{At).

Comparing the results for the two final times tested, T — 50 and T — 500, we 

find that the deviation of the asymptotic drift parameter (b in (4.48)) from the true 

parameter value is consistent with it being O (£). This error is attributed to all sample 

paths having been started at (q,p) — (1, 1) rather than from a point sampled from the 

equilibrium measure.

For the diffusion parameter a, results analogous to those in Figure 4.6, using the 

same parameter values, are shown in Figure 4.8 (although that figure displays results 

for k =  30 only). Asymptotic consistency can be observed from this figure with a naive 

least squares fit yielding a slope of 0(At°-93). This is consistent with an O(At) error in 

the estimated diffusion parameter.

From these considerations it is apparent that the numerical experiments'outcome 

is consistent with an O(At) + O (^) bias, making the Algorithm 2 an asymptotically 

consistent estimator of the drift and diffusion parameters.

4.7.3 Combining M LE and Langevin estimators in a Gibbs Sampler

The Gibbs algorithm alternating between different Langevin samplers as described in 

section 4.7.1 is suitable whenever it is possible to sample from those likelihoods. It 

was noted in 4.6.1 that a cut-back version of the estimator described in [4] could be 

used to estimate parameters for a harmonic oscillator fit but that it was unclear how 

to convert this maximum likelihood estimator into a sampler for a suitable posterior 

distribution. There may also be other cases where practical computational considera-
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Diffusion parameter a -  convergence

Figure 4.8: Whole loop estimation for Model Problem III: T — 500

tions enable maximum likelihood estimates (or good approximations thereof) but not 

the corresponding posterior sampler. In these cases, it is interesting to ask whether 

combining maximum likelihood estimators and samplers for posterior distribution in a 

common deterministic scan Gibbs sampler is statistically viable. In this subsection, this 

question will be answered analytically in the case of a 2d Gaussian example.

The standard deterministic scan Gibbs sampler as described in [37], p. 130, 

assumes the following setup: For a probability distribution

p :R n — ► M+

where it is assumed that sampling the conditional distributions p(xi\x2 , ■ ■ • xn) is pos

sible at low computational cost. The suggested algorithm then is to deterministically 

cycle through the Xi updating one at a time:

: • Provide starting guess for x\ , . .. , £*.

•  f o r  k — 1,2, .. .

1. fo r  i — 1, 2, . . . ,  n

(a) Sample^ 1 from p(xi\x\;...,x^_1 ,x +̂1 ,. ..x^

It is easy to see that this algorithm leaves the true distribution p invariant and according 

to [37], geometric convergence can be shown under weak hypotheses.
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One variant of the algorithm presented above to sample the missing path, the 

drift parameters and the diffusion coefficient employs a combination of maximum like

lihood estimators for the drift parameters (and possibly the diffusion coefficient) and 

either a Langevin or a direct sampler for the missing path. In addition, it also uses dif

ferent approximations to the true probability distribution p  for the different estimators, 

but even if no such approximations were necessary, it still would not be obvious whether 

such a combination should be expected to yield correct statistics. Such hybrid methods 

seem not to be routinely used in statistics.

The fact that convergence is observed numerically for such hybrid methods fos

ters a belief in their usability, so in order to gain some analytical understanding, the 

2D Gaussian case is analysed here. Of course, the joint probability distribution to be 

sampled from in practice will not be Gaussian. However, it is expected to be unimodal 

(otherwise it is very simple to construct counterexamples) and approximately Gaussian.

Given a probability distribution p ( x , y ) on R2, the algorithm to be analysed can 

be written as follows:

• Provide starting guess for x\,yi.

• for k =  1,2,...

1. Sample y u + i  ~ p { y , X k )  using the correct marginal distribution.

2. Sample rfc+i using an MLE: = argmax^p^lyfc+i)

Since the algorithm is translation invariant, it suffices to treat a 2D Gaussian 

distribution centered at 0:

P ( x ,  y )
27T

VdetC exp

V

r T \
X

c
X

y_ y. /
(4.49)

where C is a positive definite symmetric matrix with entries Cÿ which is the inverse of 

the variance of p .  The questions to be answered are:

• Does the algorithm yield the correct expected value? Does this depend on the 

starting values rx, ?/x?
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Does the algorithm produce data with the correct (marginal) variances of x and

y?

The answer to the first question is affirmative as one would expect whereas the 

second answer is negative and the error is quantified.

Starting with a given intermediary value xk, yk+x will be distributed according 

X.op{y\xk), ¡.e. yu+i ~  N  [—xk̂ £^. Moving on, x^+i will then be given as follows:

1 1
Xk+i =  argmaxs exp cn -  xyk+icu -  -jyk + \ c 2 2

2
I C11 /  C22= argmaxx exp I — — I ;x + yk+x —

c 12
= ------Vk+ 1Cll

1
2 Vk+ic 2 2  +

1 r 21 2 c 12
C H

So, overall the iteration relation is:

Xk+ 1 'JV{ Xfc
C11C22 C22

(4.50)

Since C is positive definite symmetric we have that detC > 0 and thus cnc22 > c!22.

The iteration relation for the expected values is simply Exfc+i Ü2_
C H C 2 2

, and this is now

seen to have an attractive fixed point at x = 0 which is the true value. The expected 

value for yk behaves accordingly.

In order to answer the second question, the variance of xk+x has to be computed:

c2Var(xfc+i) =  -^Var(yfc+1)

-12
r-2
“' l l

f^-Vax(xk) + — )  
Vc22 c22 /

The iteration equation for the marginal variance for x under this algorithm is thus given 

as:

vk+i
cfo C

c2 2 Vk + 72 Ci 1 o.
,2
12

11 ‘-'22 cl l c22

where vk = Varx^ was used to simplify notation. Exploiting positive definiteness of C 

one again finds that this equation has an attractive fixed point at the value:

>1«
V =

c22ci2
r2 r2 cllc22

(4.51)
-12
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This should be compared to the true marginal variance of x which can be eval

uated from the marginal distribution

x ■ f  VdetC exp 
Jr 2tt 2

\

C dy

and is found to be

Var c22
true CnC22 -  cf2

So comparing (4.51) and (4.52) the variance is incorrect by a factor

(4.52)

'12
Var true C11C22 T  Ĉ 2

< 1

It is unsurprising that the variance is underestimated by this semi-deterministic algo

rithm. This result cautions that Monte-Carlo variances along Markov Chain Monte 

Carlo simulations should not be used to estimate the posterior variance of the estimated 

parameters if a hybrid algorithm is used.

Just how much the variance may be underestimated in practice can be observed 

from the following example. We consider the trigonometric oscillator with linear damping 

as given in equation (4.15). The following parameters were used:

Tf =  500 D0 =  1 D i = - S  D2 ~ 8  7 = 0.5 cr =,0.7

In the plot given as figure 4.9 we compare histograms for a certain drift paramter, 

©2. Firstly, the distribution of ©2 given smooth sample paths q, i.e. p(©2|<z) is shown 

obtained from repeated experiments using the all-sampling algorithm given in section 

4.7.2. This is contrasted with the posterior distribution for one particular, fixed, realisa

tion of q which is obtained using the same all-sampling algorithm. It can be seen that 

the observed Monte Carlo variance provides a good estimate of the true variance of the 

drift parameter even though the expected value is subject to a fairly large deviation. 

Furthermore, this is contrasted with the approximation to the posterior distribution ob

tained using the same fixed realisation q but this time sampled using a hybrid method
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Posterior Dsitributions for Drift Parameters Comparing All-sampling and Hybrid Algorithm

Figure 4.9: Comparing Hybrid and ail-sampling Algorithms

with an MLE for the drift parameters 0  and a direct sampler for the missing path p. It is 

observed that while the expected value is the same as with the all-sampling method, the 

variance is grossly underestimated. It should be stressed that this example uses different 

approximations to the true likelihood in different steps of the algorithm throughout, 

furthermore the distributions are not Gaussian so that -  strictly speaking -  the above 

analysis does not apply.

This hybrid algorithm takes a middle ground between the EM (Expectation- 

Maximisation) algorithm where the sampling from the marginal distribution would be 

replaced by computing the expected value and the Deterministc Scan Gibbs Sampler. A 

comparison in terms of convergence rates of those two has been carried out by Roberts 

and Sahu, [56]. <

■f
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4.8 Application to Molecular Conformational Dynamics

As a simple application of fitting hypoelliptic diffusions using partial observations we 

consider data arising from molecular dynamics simulations of a butane molecule using 

a simple heat bath approximation. After describing the origin of the data to be fitted, 

we observe that for small At, fitting an elliptic diffusion process is inappropriate as the 

fitted diffusion coeffcient a tends to zero as At — ► 0.

By considering the origin of the data we demonstrate that it is natural to fit a 

hypoelliptic diffusion process which yields convergent results for diminishing inter-sample 

intervals A i.  Also, stabilisation of the fitted force function f(q) =  J2j=i Djfj(q) as the 

number of terms to be included, c, increases, is observed. Thus the hybrid Algorithm 2 

is shown to be effective on real data. It is also clear, though, that the resulting fit has 

only limited predictive capabilities as it fails to fit the invariant measure of the data at 

all well. However, this is a modeling issue which is not central to this chapter.

4.8.1 Molecular Dynamics

The data used for this fitting example are generated using a molecular dynamics (MD) 

simulation for a single molecule of butane. In order to avoid exploit computations 

for solvent molecules, several ad hoc approximate algorithms have been developed in 

molecular dynamics. One of the more sweeping approximation that is nonetheless fairly 

popular, at least as long as electrostatic effects of the solvent can be neglected or treated 

otherwise, is Langevin dynamics. The butane molecule is modelled as a damped-driven 

Hamiltonian system of the form

x =  W ( x ) - f -7  x +  crB. (4.53)

The coordinate x in this equation stands for cartesian coordinates of the four extended 

atoms making up the butane molecule, see [17] for details of the CHARMM forcefield 

used here.

From a chemical point of view interest is focused on the dihedral angle, which 

is the angle between the two planes in R 3 formed by atoms 1,2,3 and atoms 2,3,4 

respectively; see the sketch in figure 4.10. Conformational change is manifest in this
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Figure 4.11: MD Samplepath: Butane

angle, and the cartesian coordinates themselves are of little direct chemical interest. 

Hence it is natural to try and describe the stochastic dynamics of the dihedral angle in 

a self-contained fashion.

Figure 4.10: Sketch of Dihedral 

Angle

One MD run is produced using a timestep of 

A t = 10~16s (one tenth of a femtosecond) and a Ver- 

let variant (see p.435 in [54]) covering a total time of 

T — 4 ■ 10~9s (4 nanoseconds). A section of path of 

the dihedral angle versus time can be seen on the left 

of figure 4.11; the corresponding histogram is depicted 

to the right of that figure. It is known ([23]) that the 

stationary distribution of (4.53) is given by the canoni

cal distribution associated with the torsional potential, 

so that an explicit analytical representation can easily

be obtained.

It should be stressed that the effective stochastic differential equation governing 

the behaviour of the dihedral angles is not of the form (4.15), in particular, it will have 

a non-constant diffusivity a. So, fitting to this data tests the robustness of the fitting
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algorithm in a way that the experiments in previous sections did not.

4.8.2 Fitting

The physical time-units in seconds are miniscule and do not lead to SDE parameter fits 

of order one. It transpires that, in order to obtain parameter values of order one, re

scaling time so that the final time becomes T = 80000 is a good choice. This rescaling 

is useful in comparing convergence properties with what was observed in section 6.

In order to assess consistency, the MD data is subsampled, at timesteps A t  6 {I- 

10_15s, 2 • 10_15s, 3 • 10~15s ...} in physical time units, corresponding to {&0.02}fceN in 

the rescaled time units. The Deterministic Scan Gibbs sampler is then run for Nabbs = 

40 outer iterations on each path using a potential ansatz
C

V(u) =  ^ 2 eicCOSk(u))
■ k=1

where c 6 {3,5,7} is used. This corresponds to a choice of the force function in 

(4.15). The obtained drift parameters under subsampling at timestep A t  can be seen 

from figure 4.12. This plot shows the behaviour of the drift parameters averaged over 

-̂ Gibbs = 100 Monte-Carlo samples 0i , . . . ,#5,7 as the subsampling rate is increased. 

Below a subsampling rate k = 20, behaviour consistent with 0 (A t)  errors is observed 

indicating convergence of the algorithm as A t  is decreased. This is exactly the behaviour 

observed on simulated data and it is a measure of the robustness of the proposed 

algorithm.
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Figure 4.12: Convergence for fitted MD path with subsampling 

4.8.3 Limitations

The desirable convergence properties of the algorithm in A t  and T should not be con

fused with inference about whether fitting this kind of model to this kind of MD data 

gives a good or a bad fit, it merely indicates that, using the algorithm suggested in this 

chapter, it is possible to perform such fitting.

To show limitations of the model in this particular application and see how the 

performance can be assessed using the fitting algorithm from section 4.7.2, we show 

posterior invariant probability densities resulting from the fitted trigonometric poten

tials. In order to do this, we convert the drift parameter samples {D^ } ^ = 1  obtained 

at step m using input data subsampled at rate k = 1 to an invariant density, g 

specified by its values on an equidistant grid on the interval [—•tt, 7r]. These densities 

for m € {1, . . . , 1000} are then averaged and their standard deviation is computed 

pointwise on the grid. This results in the plot given in figure 4.13. There, we dis

play results for three orders of trigonometric potential c to be fitted and contrast this 

with the empirically observed invariant density and the density arising from the classic 

canonical thermodynamic ensemble which is proportional to exp (— For the pa-
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rameterisation used here, it is known that the latter two agree in the limit T —> oo, see

[23]-
With increasing polynomial order c we find some qualitative change in the result

ing probability and also (in particular moving from c = 5 to c = 7) a marked increase 

in posterior variance. This goes hand-in-hand with a marked increase in the condition 

number of the drift parameter matrix Me in (4.36). It is simply an ill-conditioned 

problem to derive higher and higher order polynomial coefficients from a fixed length of 

observed path.

It is observed that even though the empirically observed invariant density is 

smooth and close to the thermodynamical expectation, the fitted potentials induce an 

SDE whose invariant measure is not a good approximation of the empirical density. 

This may simply be attributed to the fact that the SDE that is being fitted does not 

represent a good model of the dynamics of the dihedral angle in the butane molecule 

with second order Langevin heat bath model. One crucial qualitative difference in the 

dynamics is the fact that the butane molecule is described by a (high dimensional) SDE 

with multiplicative noise whereas an additive noise model is being fitted. This will be 

further elucidated in section 5.8.6.
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4.9 Conclusions

A hybrid algorithm for fitting drift 

and diffusion parameters of a hy- 

poelliptic diffusion process with con

stant diffusivity from observation of 

smooth data at discrete times has 

been described. Its performance 

has been validated numerically for a 

number of test cases and an applica

tion to molecular dynamics data has 

been given. While parameter fitting 

can be viewed as an inverse prob

lem for SDE solvers -  and thus ill- 

conditioning of some kind is always 

to be expected -  a detailed under

standing of the ill-conditioning in

duced by hypoellipticity and partial

observation has been attained. 
Figure4.13: PDFs resulting from fitted potentials Whi|e on|y second order

for different orders of trigonometric potential - hypoe||iptic problems have been 

Shaded regions display posterior variance treated ¡n thjs arti?|e; the a|gorithm-s

applicability is expected to encom

pass order k hypoelliptic problems and it has been tested successfully on a third order 

example. Furthermore, non-linear p-dependence in the example (4.11) can be dealt with 

using a Langevin sampler for the missing path and this has also been tested.

Further avenues of investigation include the use of imputed data-points between 

samples to diminish O(At) errors; however there is a risk of bad mixing as a is deter

mined by the small scale behaviour of the process which would then be dominated by the 

imputed data points. This has been analysed in the case of elliptic diffusion processes 

in [53],
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Also, an extension to position dependent diffusion coefficients may prove useful, 

in particular, in may render the algorithm more useful in molecular dynamics contexts 

such as those in [34],
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Chapter 5

Nonparametric Estimation for 
Diffusion Processes

5.1 Overview

In applications such as molecular dynamics it is of interest to fit Langevin-like equations 

to data. Practitioners do this by a variety of ad hoc procedures such as fitting to the 

empirical measure generated by the data, and fitting to properties of auto-correlation 

functions. Statisticians, on the other hand, have well-developed estimation procedures 

which fit diffusion processes to data applying the maximum likelihood principle to the 

path-space density of the desired model equations, and through knowledge of the prop

erties of the quadratic variation. In this chapter we show that the procedures used 

by practitioners and statisticians are, in fact, closely related. We do this by introduc

ing a nonparametric approach to estimation for diffusion processes. Furthermore, we 

present the results of numerical experiments which probe the relative efficacy of the two 

approaches to model identification.

5.2 Introduction

In many applications beyond molecular dynamics (econometrics, atmospheric sciences,

signal processing) it is of interest to fit a diffusion process to a time-series. The purpose

■ / ’ ' ■ ■ ■ ,
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of this chapter is to introduce a non-para metric approach to this estimation procedure. 

We will focus here on reversible processes and non-reversible processes of second order 

Langevin-type. Thus, applications to molecular dynamics are of particular relevance.

The basic idea behind nonparametric drift estimation is to express the pathspace 

likelihood for the diffusion process in terms of integrals across the state space of the 

diffusion, rather than the usual time integrals. In the state space integrals, the infor

mation about the time-series appears through the empirical density that it generates. 

Applying standard calculus of variation techniques to maximise these expressions for the 

likelihood then leads to non-parametric estimation of the drift, with estimates given in 

terms of the empirical density.

We will show that this approach leads to methods closely related to a variety 

of estimation procedures appearing in the literature, in particular to the minimum dis

tance estimator (MDE) and to techniques commonly used by practitioners in molecular 

dynamics based around fitting to the empirical invariant measure.

Whilst it is statistical folklore that drift estimation is considerably harder than 

diffusion estimation (see e.g. [50], [62]), in that the quadratic variation in principle 

reveals the diffusion coefficient, it is common practical experience with real data that 

diffusion estimation is the harder part of the problem (see e.g. [34], [59]). In this 

context, we discuss a variety of different approaches to the estimation of the diffusion 

co-efficient, comparing standard statistical procedures and those used by practitioners.

Our setting is to work with diffusions of the form

Tt = * * ) + ( 5 . 1 )

where TT" is a standard d-dimensional Brownian Motion, x i sa  stochastic process adapted 

to the Brownian Motion, K : R d —> R dxd is a symmetric positive-semidefinite valued 

function, and b : R  ̂—> R d. We assume ergodicity of the stochastic process x.

The chapter is organised as follows. In section 3 we describe non-parametric 

drift estimation for gradient diffusions where results for finite observation times can be 

attained. In section 4 we generalise to drift estimation for reversible processes stating re

sults in the limit of long observation times, and section 5 contains a similar development 

for second-order Langevin equations, an important class of non-reversible processes.
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Section 6 discusses various methods for estimating the diffusion coefficient. In section 7

literature. Section 8 contains numerical experiments in which we compare the effi

cacy of the nonparametric estimation procedures derived here with standard statistical 

procedures.

We conclude the section by discussing some properties of the diffusion (5.1) 

which are pertinent in what follows. In so doing we describe the basic idea underlying 

non-parametric drift estimation.

Given an invertible covariance matrix R € R dxd we define an inner product and 

norm on R d by

and let P and Q be the pathspace measures generated by (5.1) and (5.2) on [0, t], Then 

these measures are absolutely continuous with Radon-Nikodym derivative

we comment on the relationship between the material in sections 3-5, and the existing

{a,b)R = aTR lb Va, 6 € R d, 
|a|\ = {a,a)R a € Rd.

Let z solve equation (5.1) with 6 = 0 so that

(5.2)

(5.3)

where

Recall that the generator for the process (5.1) is the operator

C := b ■ V  + K  : V V (5.5)

and that v(x,t) =  Ey? (a;(t)|x(0) = x) solves

(5.6)
v =  <p, t = 0.
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Probability densities g(x, t) for x solving (5.1) satisfy (see [9], [51]) the Fokker-Planck 

equation
| f  = c*e, t >  o,

Q = QO, t =  0,
(5.7)

where £0 is the initial density for x(0). 

By ergodicity we know that

Inn 7(6) = {e{x)\b(x)^K{x)- 2 (b(x),e(x)Cx)K^  dx

Of course, we do not know g(x) and g(x)Cx exactly -  we only have the time 

series {x(s)}se[o,i]. However, we can approximate q {x )  by the empirical density g(x) 
generated by this time series. If we can also approximate g(x)Cx in terms of the data, 

say by an expression r(x), then we approximate 1 (b) by

1(b) w Ia(b) := - \  j  {q{x)U^)\k {x) -2(&(x),r(x)}^(*)) dx. (5.8)

Maximising Ia(b) then gives a non-parametric estimate of b(x), say b(x). Since Ia(-) is 

a quadratic functional, the optimisation problem can be solved explicitly as follows. We 

have

Ia(b+6 b) =  Ia(b)-\ f g(x)\5b\2K{x)dx+^ [  (r(x)-g(x)b(x),Sb(x))K{x)dx. (5.9) 4 Jmd * Jmd

From this expression it is clear that Ia(b) is maximised by choosing b(x) = b(x) to be

K x) = ^ r (*)- *> (5-10)

Our ability to carry out this program depends upon our ability to approximate g(x)Cx 

by r(x) given only knowledge of the time series. We discuss this issue in sections 3 and 

4, motivated by the examples in section 2.

We conclude this section with a few remarks on the Fokker-Planck equation 

(5.7) for (5.1), and relatedly on reversibility. This equation may be written in the form

If = v - t o ),
1(g) =  —bg + V  • (Kg)

(5.11)
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The quantity 1(g) is known as the probability current ([9], eq. (5.2.8), p.119). 

The steady solution g(x) satisfies

0 = V-(f(£>)),

: m  = ~bg +  V  • (Kg).

The process is reversible if the steady solution g(x) is in the null-space of l so that the 

probability current is zero: l(g(x)) = 0 .

(5.12)

5.3 The Gradient Case

One of the motivational examples which we will use to illustrate our work is a gradient 

diffusion of the form •

|  =  _ w w  +  v ^ ,  <*•»>

where V is a sufficiently smooth and confining potential and k e R+ is a constant. Note

that (5.13) is a special case of (5.1). Also, it should be highlighted that (5.13) is of the 

of the type studied parametrically in chapter 3, albeit potentially in higher dimension. 

In the case of this example, and of gradient diffusion processes in general, a direct link 

can be made between the maximum likelihood estimator and the practitioners' way of 

fitting the empirical density. To do this, we use the Radon-Nikodym derivative (5.3) and 

convert the Ito integral in (5.4) to a Stratonovich integral. Using V V  = b we obtain

I(x) =  ^r{VV(x) ,odx)  + e -£(\VV(x)^ -2kAV(x))dt .  (5.14)

This will be pursued in detail in this section and results that hold even for finite times of 

observation T will be given in the ID case which corresponds exactly to the processes 

treated in chapter 3. We will generalise to reversible processes using a different argument 

in the next section.

5.3.1 Statisticians’ Approach

The maximum likelihood approach to this would be to write VV^a;) is a linear combi

nation of basis functions /¿(x), so that
C

v ^ )  = E w -
■ ■ ■ ■ ■ ■ ¿—l
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Then to substitute this into the expression (5.4) and maximise with respect to 6 . Since 

I{x) is quadratic in 6  in this case, this gives rise to a system of linear equations.

5.3.2 Practitioners’ Approach

The invariant measure for (5.13) is proportional to exp(—^F(a;)). The typical approach 

of the practitioner is to fit V(x) to the logarithm of the empirical measure generated 

by the path {z(i)}te[o,T]- This appears very different from what a statistician would 

do, but is in fact closely related. To see this we attempt a non-parametric estimation 

of the drift potential V(x) via the maximum likelihood principle, based on minimising 

I(x) given by (5.14). Now

I(x) = ±£(VV(x) ,odx)  + ± j \ \ V V ( x ) \ 2 -2kAV(x))dt

= f{V(x(T)) -  F(*(0))) + ±f j \ \ W { x ) \ 2 -  2kAV{x))dt. (5.15)

Under suitable assumptions on the potential the first term tends to zero almost surely 

as T —> oo. Thus for large T it is natural to estimate V(x) by minimising

± j \ \ W ( x ) \ 2 - 2 kAV(x))dt.

For large T we approximate the time-average by average against the empirical measure 

with density p. This suggests that we minimise the following functional of V(x), namely

1(V) = \ [  C V F ( i )!2 -  2kAV{x))p{x)dx. '

Now

1(V +  W ) =  X(V) + f (p(x)VV(x)+kVp(x),VW)dx + l(W).
J r*

Hence T(V) is minimised where

p(x)VV(x) + kS7p(x) =  0.

Assuming that the empirical measure is zero at infinity we see that

V{x) =  — k\ogp{x). (5-16)

102



A practitioners' approach would involving fitting V(x) to the logarithm of the empirical 

density and hence can be thought of as invoking a maximum likelihood principle, as in 

the statisticians' approach. Note, however, that this fit determines V(x) only up to a 

time constant, k. We show how to estimate this time-constant in section 5.6 below.

5.3.3 Specialising to ID - finite T  results

In the one-dimensional case, rather than moving to the limit of long observations, T —* 

oo, it can be instructive to employ the local time L% of the process (5.13), which 

intuitively corresponds to the time spent at a up to time t.

Theorem 2.11.7 in [13] states that for x being a 1-d continuous semimartin

gale with local time Lf the following identity holds for any Borel-measurable, bounded 

function g:

/ OO

I%g(a)da =
-OO

Note that for the process (5.13) we have

V (it = ±d(x)t

so that the new integral becomes

where first and second derivatives of the potential V have been expressed as V'(x) — 

&V{x) and V " =  ̂ V (x ) .  It can be shown that the local time L “ .is jointly continuous 

in (f, a), however it is not in general differentiable. By looking at a suitable weak 

interpretation of the sequel, it might be possible to disregard this technical problem. So 

we integrate by parts to obtain:

m =  ^ ( V W T ) ) - V ( x ( 0 ) ) )  + i j f i j V ' ( a ) f L ‘t + V ' ( a ) . ± L t i a  (5.18) 

Consider the variational derivative of (5.18):

I(V +  sW) = I(V) + L  (]W(x(T)) -  W(*(0))) + ±  • W'{a)L\»

+ f W'(a) ^ ) da + 0(s2)

1Ja
g(xs)d{x)i (5.17)
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Rewriting the point values W(x(t)) using Dirac-5-distributions and integrating these 

partially results in the following expression:

SIT SV (W) = [  ( -W'{d)Hx{T){a) +  W'{a)Hx{0){a)
J R v

+±:V\a) . W'{a)Lat + V ( a )  •

So the non-parametric estimator of the gradient of the potential V is given by:

d
V

2 kl a l°g L * +
Hx{o) —

Lf
(5.19)

Given that the Heaviside function will be zero in the far negative, this could be integrated. 

This equation should be compared to (5.16).

Since this functional is also used to characterise the maximum likelihood estima

tor for parametric inference for V, this shows a close link between the two estimators. 

For finite final time T this link is perturbed by the Heaviside functions in (5.19). This 

perturbation, however, is typically of order 0(T~~X) whereas the average (root mean 

square) deviation of the first term in (5.19) is O ^\/X'~1j ,  so that this link for finite 

final time reveals a much closer relationship than the limiting arguments above would 

lead one to believe.

5.3.4 Extension to higher dimensions?

Extending local time to multi-D is not feasible via the trick using the Meyer-Tanaka 

formula. One could attempt to define a random measure on R d that still fulfils (5.17), 

however this would not normally be continuous in space, so taking its gradient and 

integrating V against it might present a technical problem.

5.4 Drift Estimation for Reversible Processes

We describe nonparametric estimation of b(x) in (5.1) assuming that K(x) is known, 

and that the process is reversible. Notice that with generator £  given by (5.5), is 

given by Cx =  b(x). Thus

q(x )C x  =  p(x)b(x) (5 -20)
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Recall that we wish to approximate g{x)£x in terms of the time series data alone. The 

identity (5.20) fails to do this because b(x) is not known to us -  we wish to estimate 

it. However, if the process is reversible then, from (5.12),

b(x)g(x) =  V • (K(x)q(x)) (5.21)

and so we have

g{x)Cx =  V  • (K(x)g(x)). (5.22)

Since K{x) is assumed to be known we deduce that we may approximate g(x)Cx by 

r(x) = V  ■ (K(x)g(x)). The approximate scaled log-likelihood given by (5.8) is a 

quadratic functional of b(x). Thus, using formula (5.9) we obtain for b maximising 7a(-) 

from:

Hx) =  ¿ ¿ y  r (x ) = (5-23)

The identity (5.23) provides our non-parametric estimate of b{x). We make several 

remarks.

1. The expression (5.23) shows that, provided g(X) —> g(x) as T —* oo in an 

appropriate function space including derivatives, then b(x) — ► b(x), by (5.21).

2. To ensure convergence of ¿5(a:) tog(x), and in particular convergence of derivatives 

is, in general, non-trivial.

3. For the case K(x) = K € R dxd, a symmetric positive-definite matrix, independent 

of x, equation (5.21) shows that for a reversible process

b(x) =  -KVV(x)  (5.24)

for some scalar potential V : Rd —► M. In this case, too, the non-parametric 

estimate (5.23) can be written as

b(x) =  KVlogg(x). (5.25)

Since we know that the true drift has the form given by (5.24), it is natural to 

estimate b(x) non-parametrically as b(x) = -KVV{x). Then (5.25) implies that

V(x) =  - lo g e (x ) . (5-26)

105



4. It is reassuring to find that (5.26) is the same as (5.16) so that our argument for 

reversible processes generalises the argument put forward in the gradient case.

5.5 Drift Estimation for Second Order Langevin Equations

5.5.1 Direct Variational Approach

We now consider an example of a non-reversible process: the second order Langevin 

equation

| | + ^ + V F ( 9) = ^ .  (5.27)

where (3 is the damping constant, k is the diffusivity and W  is standard Brownian motion. 

Note that (5.27) is a special case of (5.1). Also, it should be highlighted that (5.27) 

is the process studied parametrically in chapter 4. Mimicking the presentation in the 

first order case, we will first present a direct approach applying variational calculus to 

the Radon-Nikodym derivative in the gradient case and then move to the more general 

framework using the Kolmogorov equation (5.6).

If we set p = ^  then from (5.27) we obtain the following system of equations:

dt P' (5.28)
t  = - W p - W ( q) + V2 k ^ .

The Radon-Nikodym derivative of the measure on path-space for (4.1) with respect to 

the measure generated by

l  = ■ w
is proportional to

exp(-^ (< Z ,P )) (5.30)

where

= f  (WP + VV(q),dp) + 1 ^ (1  W ( g )|2 + m 2 \P? + 2kf3(VV(q)>P)dt) .

(5.31)
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Statisticians’ Approach

As in the first order case, a statisticians' maximum likelihood approach would be to 

represent
N

¿=1
and then to minimise I(q,p) with respect to 0 .

Practitioners’ Approach

The invariant measure for (5.28) is a product measure, Gaussian jjl) in p and 

identical to that arising in the first order case in q, namely proportional to exp(—(3V(q)):

p(q,P) =  Cexp(-f3V(q))exp

= p(qM p)

As in the first order case we attempt a non-parametric estimation of the drift poten

tial V(q) via the maximum likelihood principle. This suggests minimising I(q,p). An 

integration by parts shows that

fI(<hP) = f J o (kPp + W(q),dp)

+  ^  J \ I W(?)!2 + m 2\P? + 2k/3(VV(q),p)dt)

D2 V(q) : p ® p dt

+ ^ J o (\VV(q) \ 2 + (kf3)2 \p\2 +  2kp(Vv (q),p))dt+?pJ^ k/3{p,dp).

For large T we approximate the time-averages in the non-stochastic integrals by 

average against the empirical measure with density p{q)g(jp), assuming some algorithm 

is used to approximately factorise the empirical measure. This suggests that we minimise 

the following functional of V(q):

1 ( V ) = -  f  (D2 V(q) : p®p p(q)g(jp)dqdp+l- j  ( |W (g )|2 p{q)dq 
Jr  2d 2 j Rd.

+ l [  (kP)2 \p\2 9 (p)dp+ [  k/3(VV(q),p) p(q)g(p)dqdp +  ^ f  k(3{p,dp).
z JRd J R2d 1 J o

. ■ ■ 1 0 7



The fourth integral is zero if we impose the condition that Ep = 0 and the first integral 

simplifies to an integral over q alone if we impose Ep®p = jjl. This suggests that we 

minimise

1(V) = l  fRd(^V(l))\2 -^V{q))fHq)dq+^(kf) ) 2  \p\2 g(p)dP+f £  W(p,dp}. 

Setting the variation of 1(V) with respect to V(q) to zero, we obtain

V(g) = ~  log p(q)

as in the first order case. Thus, the non-parametric maximum likelihood principle for 

estimation of V(q) leads to the fitting of V{x) to the empirical measure in x. The 

damping parameter ¡3 can also be estimated in this setting.

5.5.2 Langevin in the general Framework

We now show how to integrate the previous subsection into the general framework of 

(5.1) as well as how to incorporate estimation of the damping. Firstly, the process (5.27) 

can be cast in the general framework of this chapter as follows:

Let a; € M2d with

b(x) = -PK(x)VH( x) + JVH(x)

where

Then

Assume

x = <1

V
Hix) =  \p2 + V{q), J =

0 1
—1"0

V ff(x )  =
VV(q)

P
JVH{x) =

(5.32)

(5.33)

(V - iO ( x )  = 0. (5.34)

The stationary measure for this process is then given by p(x) = Cexp(—(3H(x)). To

108



see this, note that

Ve(x) -f3VH(x)g(x),
J.—b{x)g{x) =  —K(x)'Vg(x) +  —'Vg(x)

= -V-(K(x)g(x)) + ^Vg(x).

Thus l(g(x)) = j) JV g(x) and, since skew-gradients are divergence free,

V  • 1(q(x )) = 0.

(5.35)

(5.36)

(5.37)

(5.38)

Equation (5.38) shows that g(x) is stationary by (5.11).Note that since l(g(x)) 

is not identically zero, the process is not reversible.

Now we ask whether we can express r{x)Cx — g{x)b{x) in (5.8) purely in terms 

of time-series data in this case. From (5.36) we deduce that

—b(x)g(x) = — K(x)'Vg(x) + (^J p1 2 g{x)dx  ̂ JVg(x),

since p is Gaussian with distribution Af(0, ^) under the stationary measure. This sug

gests that we approximate g(x)b(x) by

r(x) =  AT(x)V^(x) — ( / p2 g{x)dx ) JVg(x). (5.39)

We may use this expression in (5.10) to estimate b(x) nonparametrically.

5.5.3 Nonparametric Estimation of b(x)

With the above definition of r(x), we deduce from (5.10) that b is maximised where

b(x) = b(x):

g(x)b(x) = K(x)Vg(x) — (^Jp2 g(x)dx'j J V g(x) (5.40)

The identity (5.40) provides our non-parametric estimate of b(x). We make several 

remarks.

1. If Vg(x) —* Vg(x) and g(xj —► g(x) as t —► oo then Vg(x) —> — /3VH(x)g(x),

and f  p2 g(x)dx —> Hence b(x) —* b(x) by (5.40).
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2. As in the reversible case, it is of interest to estimate the potential V{q) non- 

parametrically. Since V(q) and j3 together determine b(x) given by (5.40) it is in 

fact natural to estimate (/3,V(q)); we study this question in the next subsection.

3. The specific instance of the second order Langevin equation (5.27) corresponds 

to a singular diffusion matrix K. However, the next subsection will show that this 

singularity can be handled in the general context of this section, recovering the 

calculations of section 2.

5.5.4 Nonparametric Estimation of (V(q),  P)

We study the situation above in the case where

* ( .  ) = ( «  0
V 0 K 2(q)

and we introduce the notation

ri(x) 

r2(x)

We start with the assumption that K{x) = K(q) is positive definite uniformly on 

However, we will show that, when estimating (V(q),(3) only, the singular limit of 

K\(q) —> 0 may be taken. Rather than trying to estimate b we try to estimate (f3,V(q)); 

together these quantities determine fc(x). Recall the functional we wish to minimise, 

Ja(6) from (5.8). To understand how Ia depends on (/?, V) we calculate the two terms 

under the integral in (5.8). Firstly, we have

i^ )iic(x) = +  (541)
= /32 \VV(q) + +

Also

(b(x),r(x))K{q) =  (~pK(x)VH(x) + JVIl(x),r(x))K{q)

=  -p{^V(q),ri(x)) - /3(p,r2 (x)) +  (p,ri{x))Kl(q) (5.42)

- ( V y ^ ) , r 2(x))A-2(7).
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In the singular limit K\(q) =  0 there are two terms in the preceding expressions for 

|6(a:)|2K{q) ar|d {b{x),r(x))K (q) which become unbounded. However, neither'depend 

upon ¡3 and V(q)\ they are hence irrelevant to the likelihood calculation and we ignore 

them. Further simplifications to 1(b) are possible, using the structure of the invariant 

measure. Notice that

/  A(q)pg(x)dx = 0 
JM.2d

/ («(?)> Vpg(x))dx = 0
J K2d

J^2d(P,VPe(x))K2(q)-ldx = - P  J  e(z)\p\K2(.q)-ld x -

Thus in the following we will make the substitutions

fR2d A(q)pg(x)dx ■ - ► O '

fR2d{a(q), Vpg(x))dx ■-► 0 (5.43) ^

fR3d(p,Vpg(x)Ka(g)-i >-> - f i  fR2d êW lplx^ -xdx.

Now, from (5.39),

r l = d<i(q)Vqg(x) -  l v pg(x), 

r2 =  K 2 (q)Vpg(x) + h v qg(x).

Hence, applying (5.43) to (5.42), we obtain

■ /^(W fa),^® ))«*®  ■-► fR2d(VV(q),Vqg(x))Kl{q)-idx

JR2d(p,r2 (x))dx - P j R2dQ(x)\p\2K2{qrldx (5.44)

JR2d(VV(q),r2 (x))K2{q) ■-* ± f R2d(W(q),Vqg(x))K2 (g)dx.

Substituting (5.41) and (5.42) into the expression (5.8) for Ia(b), applying 

(5.44) and dropping terms independent of ¡3 and V(q) gives the following functional

of (V(q),/3):

■W, V) - -  =  . . - Ç f R2dê(x)\'VV(q)\jCî )_1 d x -^ -J jlL2dê(.x)\p\j(2iq). 1dx
(5.45)

k 2dQ{x)\p\K2 {q)-idx~ ^Im (^V (q) ,V qQ(x))K2{q)dx
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This functional is quadratic in each of /? and W ( q )  separately. It may be written as

W , V )  = ¡&,d Q(x)\p\2K2 (q)-idx(J3 ■
|2

_ £ l
4

2
1 Vgg(i)

JiR2d g(x)2VV(g) + £—- r g?x  +  e.

(5.46)

where e > 0.

From this expression it is clear that the maximum is attained by choosing /? = $ 

and V(q) = V{q) where /3 = ¡3 and V =  — ̂ log q ( x ) .

5.6 Estimating the Diffusion Coefficient

The discussion in sections 5.5 and 5.4 shows that it is possible to fit first and second-order 

Langevin equations to the empirical measure generated by a time-series. In doing so the 

model fit is completely specified, up to a time-constant k. In this section we show how 

standard practitioners' approaches to determining this time-constant, through fitting 

the auto-correlation function, are closely related to common statistical practise which 

focuses on finding the quadratic variation. We concentrate on the first order case, and 

assume that we are given a time series {xn}^~Q. The second order case is similar.

5.6.1 Statisticians' Approach

The statisticians' approach is to fit the diffusion co-efficient using the quadratic variation. 

For the first order Langevin equation standard properties of diffusion' processes show that 

£ can be estimated by the formula

1 N~i
2kl & j ^ Y ^ { xn+l-Xn)®{Xn+l-Xn)- (5.47)

n=0

5.6.2 Autocorrelation Function

The (unnormalised) autocorrelation function is defined by

C(t) = Ex(0)x(r)
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on the assumption that a:(0) is distributed according to the invariant measure. It is 

known that <7(0) = — Jj. By ergodicity the auto-correlation function can be expressed 

as the time-average
1 f TC(t) =  l i m  -  /  x(t)x(t  +  r)dt.

T—oo 1 J 0

For the first-order Langevin equation, practitioners will often estimate jj by adjusting it 

so that the autocorrelation function of the model best fits the data. For example one 

might fit the constant so that the slope C'{0) fits the data. We show that this latter 

procedure is directly related to estimating the quadratic variation as above.

Rearranging the expression used to estimate |  in (5.47) we find that

1 J V - l  N - l

[C(0) -  C(At)} = ± £  4  -  £  X „ x „ + 1

n = 0  n=0

= Jj^ 2 (Xn -  Xn*n+1) + '
n = 0

.  ̂ N_ x

2 i V  ^  " F  2 a ' r , x r, _ i )
n=0  

!  N - l

2 i V  ^  '  ( ® n + l  ® n )  ®  ( ^ - n + l  ^ n )  •
ra = 0

The first line is a natural approximation for the derivative of the auto-correlation func

tion, expressed in terms of time-averages. Subsequent lines show that this approximation 

can be re-written in terms of the quadratic variation. Thus fitting the slope of the em

pirical auto-correlation, as practitioners do, is closely related to the standard statistical 

procedure of estimating the quadratic variation. Fitting various transforms of the auto

correlation, however, is more involved and exploits knowledge of the drift terms.

5.7 Relationship to existing literature

In the statistical literature, the estimation of diffusion parameters is usually viewed as 

straight-forward: In the case of continuous time trajectories the estimate is given using 

quadratic variation and a limiting process like the one in (3.3), this is noted e.g. in 

the foreword of [62]. For discrete time observations, an assumption of high frequency
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observations is usually made and estimators tend to be based on quadratic variation at 

finite inter sample times like (3.13). Theorems on the asymptotic behaviour of these 

estimators are available, e.g. in [50],

In the chemistry and physics literature, estimating the diffusion coefficient has 

been viewed in conjunction with assessing a range of timescales where the diffusion pro

cess provides a good approximation of the true dynamics. Hummer notes in [34] that 

position dependent diffusivity should be employed which corresponds to multiplicative 

noise. He offers a fully Bayesian algorithm based on binning and then considering tran

sition rates between bins. More traditional methods from this field reduce consideration 

to a small region around an equilibrium point in phase space, using a harmonic approxi

mation for the potential. One can then fit analytic expressions for the Fourier spectrum 

of the velocity autocorrelation in the harmonic oscillator case, see [32] and [59], yielding 

the friction coefficient 7 (and cr via fluctuation-dissipation). Alternatively (depending 

on whether the over- or under damped regime is considered) one can consider a fit to 

the Laplace transformation of the velocity autocorrelation as described in [36], Even 

more traditionally, one can look at the mean square displacement of the particles and 

infer diffusivity. Again, if the drift parameters are known (or can be approximated well 

in the region of interest) one can identify the diffusivity from spatial autocorrelations.

Estimating the drift coefficients is generally considered easy as they can be in

ferred from the potential of mean force, as pointed out by Hummer, [34], although 

computing the potential of mean force in areas that are less well sampled poses a 

challenge that has led to a plethora of algorithms. The statistical literature typically 

considers drift parameter estimation to be the harder problem of the two. Methods akin 

to the practitioners' approach via counting population densities include in particular the 

minimum distance estimator. Kutoyants (see [62]) gives two realisations of the min

imum distance estimator. Since the cumulative distribution function of the processes 

involved here is not explicitly available here, whereas the pdf is, we settle for Kutoyants' 

second minimum distance estimator which seeks to minimise the following functional:

0 =  argminee0 ||g(-) -  q(0,-)\\l * (5-48)
Here, as above, £(•) refers to the empirical density whereas g(9, •) denotes the invariant

" l l 4



probability density induced by our SDE for the choice of drift parameters 9.

The choice of i 2-norm in this case is somewhat arbitrary, although it is of course 

useful, from an implementation point of view. The relationship of this minimum distance 

estimator to the practitioners’ estimator studied in this paper is not as straightforward 

as it seems (see section 5.8) because the potential fitted by the practitioners in a least 

squares sense needs to be exponentiated, normalised and then fitted in an L 2-sense.

The fact that 9 will normally be finite-dimensional implies that some interpolation 

error will always be made, and this interpolation error is transformed by the nonlinearity 

of exp(-) and I/2-fitting in a nonlinear way.

5.8 Numerical Experiments

5.8.1 Introduction

As an example on which to perform experiments we choose the simple one-dimensional 

diffusion with a gradient vector field given by

 ̂ = (-! + H di+2Wl x(0) = 0 >49)
Using this special case of (5.13) we will study how the practitioners' method, the second 

minimum distance estimator as well as the maximum likelihood estimator perform when 

used to estimate drift parameters. The functional form to be fitted to this SDE is given 

as:
C

dx =  Y  (OjX1-1) dt + adW, x(0) = 0 » (5.50)
2— 1

Here, both the 9{ as well as the diffusion coefficient a are to be estimated. In order 

to distinguish contributions due to the (D{l/T) term in (5.15) related to the initial 

condition and other contributing factors, a new drift estimator is introduced based on 

maximising the functional given in (5.15) without the first term:

6  = a r g m i n Jq (|VV(s ; 9) \ 2 -  | a V (s ; 6 ))dt. (5.51)

This estimator can be expressed explicitly in the case of linear parameter dependence, 

(5.50), that is at hand.
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This section is organised as a collection of numerical experiments as follows:

1. A non-parametric view of the correlation between estimated potentials expected 

from the link between MLE and Practitioners' methods is presented in subsection 

5.8.2, see figure 5.1. This serves as preliminary numerical confirmation of the 

practical relevance of the claimed link.

2. Parametric estimation based on the MLE, the practitioners’ approach and the 

second MDE will be introduced in subsection 5.8.3 including numerical illustration 

of asymptotic consistency in figures 5.2 to 5.7.

3. The correlation structure of four parametric drift estimators (MLE, 2nd MDE, 

Practitioners', 0 -method) will be investigated in subsection 5.8.4 with figures 5.9 

to 5.11 summarising the main results.

4. A brief note on comparing estimated parameters via their induced autocorrelations 

is made in subsection 5.8.5 giving results in figures 5.12 and 5.13. It shows 

that in the first order case induced autocorrelations may not be a very sensitive 

benchmark, whereas in the second order case it is more telling as shown in figure 

5.14.

5. Finally, we will investigate in subsection 5.8.6 how these estimators perform in 

the case of a misspecified model where the sample paths are generated using 

multiplicative noise. As figure 5.15 shows, the invariant probability densities are 

badly reproduced by the MLE and fairly well reproduced by the second MDE 

while both estimators fail to produce the correct induced autocorrelations, see 

figure 5.16.

5.8.2 Empirical and MLE-induced Probability Densities

In order to broach the relation of maximum likelihood estimates for drift parameters and 

the empirical density produced by the process, we perform a few preliminary essentially 

non-parametric experiments and follow these up with a more careful study of correlation 

of estimated drift parameters using the different estimators.

116



Probability Density functions for samplepath 10

Figure 5.1: probability density functions from one particular 
samplepath

An ensemble of N =  100 sample paths for the SDE (5.49) is created for final 

time T =  100 and sampled at spacing At =  0.01. The paths are created using a 

subsampled (k =  30) Euler-Maruyama method. On each of these paths, a maximum 

likelihood estimator based on an Euler approximation is used for the parameters d{. Also, 

a histogram is computed for each of these paths using B =  50 bins spaced equidistantly 

on the interval [—4,4].

The true probability density function (pdf) as well as the'pdf arising from the 

MLE-estimated parameters 6  and the empirical pdf from the histogram are plotted in 

figure (5.1) in a typical case.

As it is difficult to derive from these graphs whether such an agreement is indeed 

typical or merely coincidental, a measure of correlation is computed as follows. At the 

centres of the bins, denoted by {ci}i=i )...t5o, the deviations of the MLE-derived pdf for 

path i, ĝMLPi) from the true pdf, g, as well as the deviation of the empirical pdf, g$MP 

are computed to form the following correlation coefficient, summing over N = 100
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realisations:

^  J2b=l (9EMp(Cb) ~  9(cb)) ■ {d^MLE^b) ~  5(ct)j 

i=1 \ jj2 b =1 (9e Mp (C>>) ~  d{cb)) ' \/]CfL 1 (9m l e (C1>) ~  9(cb))

The correlation coefficients obtained in two experiments with different random 

seeds were c = 0.83 and c = 0.81 respectively, so that some degree of correlation is 

present. However, the presence of terms relating to the initial and final conditions in 

(5.18) shows that no more should be expected. Also, errors due to finite At and finite 

number of bins B will play a role.

The (root mean square) average deviation in (5.18) will be of size O j  

whereas the deviation due to the initial conditions is only so that increasing the final 

time T would be expected to improve this correlation, provided that effects due to finite 

A i  are negligible.

5.8.3 Parametric Estimation

Implementation of the Practitioners' method

We wish to adapt and implement the estimator given by (5.26) for the standard Id 

example (5.49). Since the estimator is inherently non-parametric whereas the model to 

be fitted, (5.50), is parametric, some adaptation is needed.

This comes in the form of first computing the histogram (based on a number of 

bins B (usually 50)) on the interval [4,4]. Using this histogram data and the quadratic 

variation estimator for a in (5.49), a least-squares fit is performed so that (5.26) is 

satisfied approximately in a least error squares sense given the functional form, (5.49) 

to be fitted:

B

§ =  arginine
6=1

^r-log{g{cb))
Z i= 1

(5.52)

It should be pointed out that any finite choice of the number of bins B is 

likely to incur an error in estimated parameters as the choice of the bin centre q, for 

evaluation of Vi is arbitrary. To be accurate, this would have to be replaced by an 

appropriately (logarithmically) weighted integral of this function over the bin interval.
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A further problem with this method arises when some parts of the interval [—4,4] are 

poorly sampled. This poor sampling results in a jagged logarithmic histogram and large 

deviations from any accessible invariant density in the parameter space spanned by the 

{&i} seem to negatively affect the estimator. To mitigate this problem, a cutoff is 

introduced whereby only those bins which contain at least ^  of the samples to be 

expected under uniform distribution are taken into account in the least squares fitting. 

Practitioners might well introduce a weighting for the errors to mitigate these effects and 

a mathematically more sophisticated approach might use the Kullback-Leibler divergence 

(relative entropy) to obtain the estimate. This, however, is computationally slightly 

more cumbersome and we feel that for simple illustration purposes, this ad-hoc criterion 

performs well without unduly affecting the core performance of the estimator.

Implementation of the second MDE

In order to compare MDE and MLE estimates of the drift coefficients, a parametric 

minimum distance estimator is required. Kutoyants (see [62]) gives two variants of the 

minimum distance estimator. Since the cumulative distribution function of the processes 

involved here is not explicitly available, whereas the pdf is, we settle for Kutoyants' 

second minimum distance estimator which seeks to minimise the following functional:

Q =  argmine6© ||<7r(') — /(#> OIIl2 (5.53)

Here, <7x (-) refers to the empirical density whereas f(9, •) denotes the invariant proba

bility density induced by our SDE for the choice of drift parameters 9.

In general, the minimum need not be attained and there are no guarantees that 

it is unique, either. We therefore search for a local minimum and apply a steepest 

descent algorithm in a 50-bin discretisation of the pdfs. The termination criterion is for 

the gradient of the functional wrt. 9 to be below a certain threshold. Convergence is 

observed in an large majority of cases, occasionally, if the histogram is very jagged, the 

algorithm grinds to a halt.

The input value for the diffusion coefficient a to this algorithm is computed from 

the quadratic variation of the input path using the estimator (3.13). This is the only
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Drift parameter 01 Drift parameter 02

Drift parameter 0g Drift parameter 04

log2(A t)

Figure 5.2: Convergence as At -+ 0 of drift parameters for MLE 

part where effects resulting from finite inter sample times At enter the estimator.

Asymptotic consistency

To demonstrate asymptotic consistency of these estimators, we compute MDE, Prac

titioners’ and MLE estimates of drift parameters using the SDE 5.49. Performing this 

with a final time of T =  100 and timesteps from At € {0.1, ^ r,. . . ,  we obtain 

the plots given in figures 5.2 and 5.3 for the MLE estimates using the same linear error 

model as in (4.48). .

The estimate for the asymptotic drift coefficients is not expected to be consistent 

(statistical significance is open for now) since there is error related to finite final time in
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a  estimates via MLE-drift-augmented quadratic variation

Figure 5.3: Convergence as At —> 0 of diffusion parameter for MLE

conjunction with starting all sample paths from the starting point x(0) = 0. Error due 

to finite At is imported into the MDE estimates via the a estimate which is why figures 

5.4 and 5.5 show At related error. Those drift parameters which are zero (i.e. and 

$3) show very small estimation error indeed. Since this error is not necessarily caused 

by the incorrect <r (and hence not multiplicative, E 0 = 0(1 + 0(At))) but more likely 

to be due to the finite number of bins, it is understandable that the linear error model 

cannot convincingly account for A t  related error. Concerning this graph it should also 

be pointed out that the confidence intervals sometimes extend all the way to —00 which 

is simply due to the extrapolated (for At —> 0) value for the.drift parameter being inside 

the confidence interval, so that the set distance between the confidence interval and the 

extrapolated value is zero, corresponding to the logarithm —00. ,,

It should be noted that, similarly to the practitioners' estimator, choosing a 

constant number B =  50 of bins for the MDE is questionable. However, given perfect 

histogram data (attained by artificially setting the histogram entries to the values of 

the pdf generated by the correct values for drift and diffusion parameters) the MDE 

as implemented has been observed to converge to the true drift parameter values (to 

within ±0.004) from 100 randomly sampled starting conditions, see figure 5.6.

Finally, the drift parameters graph obtained for the practitioners’ estimator is

121



lo
g2

(A
 0

3)
 

_̂_
__

__
_

 
lo

g2
(A

0 
)

Drift parameter 01 Drift parameter ©2

log2(At) log2(At)

Drift parameter 03 Drift parameter 04

Figure 5.4: Convergence as A i  —► 0 of drift parameters for MDE
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Figure 5.5: Convergence as At —> 0 of diffusion parameter for MDE
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Drift parameter 03 Drift parameter 04

Figure 5.7: Convergence as At —> 0 of drift parameters for Practi
tioners’ estimator

displayed in figure 5.7, a separate display for the consistency of a is redundant as 

a is arrived at using the estimator (3.13) based on quadratic variation alone which 

was previously shown to be asymptotically consistent in this implementation. Similar 

comments as to small errors in Q\ and 6 3 as well as confidence intervals extending to 

—00 in the logarithmic display apply.

5.8.4 Correlation of estimated drift parameters

The experiment in 5.49 is repeated with diffusivity a =  1.5, final times

Tf e (10,20,40,..., 10240} and timestep sizes At € (2-10-2 ,2-10-3 ,2-10-4 ,2-10-5}.
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Drift Parameter deviations, MLE Drift Parameter deviations, MDE

Figure 5.8: Deviations of drift Parameter O3 from mean, T f  = 20480

Using Nav = 500 sample paths for each configuration, the MLE and MDE estimates are 

computed. It is found that their variances do indeed decay like O(^). The deviations of 

the estimators from their respective means (over fixed T f )  is computed. These deviations 

display an approximately Gaussian distribution, J\f (0, as shown in figure 5.8 for

T f  = 20480 and At =  0.02.

Plotting the averaged correlations as a function of final time T f  yields the plot 

in figure 5.9.

It seems that the maximal obtainable correlation coefficient is around 0.7. For 

small final times T f ,  the influence of errors related to finite resolution At is apparent and 

an increase in observed autocorrelation with resolution is clear. For larger final times, 

however, the increase is not maintained.

It may be hypothesised that the 0  estimator should be more correlated with 

the MDE since it is based on performing the same Stratonovich/integration process as 

above. In fact, the de-correlation of the 0  and MLE should indicate the influence of 

the initial-condition related term in (5.15) on the parameter estimates. We compute
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Correlations of MDE and MLE vs T for different A t

Figure 5.9: Correlations of drift parameter deviations

the correlation of the A estimate and the MLE for the same drift parameter as above, 

again using Tf e  {10, 2 0 , 4 0 , ,  10240 and At =  0.0002 in this case, which results in 

figure 5.10.

The remarkably high degree of correlation indicates that the first term which is 

of order is of little influence.

The main reason for the correlation not approaching 1 in figure 5.9 must thus 

be sought elsewhere. Since the discretisation influence exerted by finite At as well 

as scaling with final time Tj have been investigated and do not seem to account for 

all of the deficiency, other potential culprits may include finite numbers of bins in the 

histogram. However, this is unlikely given the observed asymptotic consistency of the 

second MDE.

While the variational characterisation of the optimal fitted potential as a critical 

point of the functional connected to 6 is correct, the second MDE does not provide a 

potential which is a critical point of that functional. The projection process involves ad- 

hoc choices such as an L2 norm as well as a choice of basis for the space of potentials.
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1.002
Correlation for A —tilde vs. MLE in drift parameter 03

Figure 5.10: Correlations of drift parameter deviations for A vs. MLE

It would be interesting to see whether, as more and more basis vectors are included, the 

maximal observed correlation is increased. In view of the ill-conditioning and it being 

questionable whether there would be sufficient decay of the ('Fourier') coefficients of 

the potential a numerical investigation of this question seems hopeless.

To further elucidate the question whether the low observed correlations between 

estimated drift parameters should be attributed to uncorrelated interpolation error due 

to finite polynomial order or exponentiation and the choice of the L 2-norm, correlations 

with drift parameters estimated using the Practitioners’ estimator, (5.52) are examined. 

Using a constant timestep A t  and a range of final times as above it can be seen from 

figure 5.11 that the Practitioners' estimator and the MLE are more strongly correlated 

than any other pair of estimators. While some caution has to be exercised as this 

experiment was conducted only for one size of timestep and in view of the rather large 

standard deviations, it would seem that the source of de-correlation is in fact related to 

exponentiation and L 2-norm rather than interpolation error.
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Correlations vs final time, two variants of MDE with MLE

Figure 5.11: Comparing correlations of estimated drift parameters for MDE, 
Practitioners’ and MLE estimated drift parameters

5.8.5 Comparing autocorrelations

In order to compare MDE and MLE some 'independent' yet meaningful statistical test 

would be helpful. Kutoyants ([62]) points out that the MLE is best (asymptotically 

efficient) at reproducing the likelihood integral (of the kind / Q7 dt with appropriate

interpretation relative to Wiener measure), whereas the MDE is best at reproducing the 

histogram for slightly contaminated models. This is hardly surprising.

On the other hand, it seems clear that in fitting 'slightly' misspecified models (e.g. 

multiplicative noise for path sampling vs. additive noise parameter fitting, see subsection 

5.8.6) there will always be some statistical test which the fitted model will not pass (e.g. 

binning of local quadratic variation showing statistically significant differences of the 

fitted model from the supplied path). If fitting is to be used as a means of establishing 

parameters that 'work best’ if used in a simplified model of a real system, then some 

practically meaningful benchmark of how the fitted model is doing is more helpful than 

a contrived statistical test aiming only at highlighting its specific deficiencies.
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MDE, MLE-induced autocorrs forA t=0.02 MDE, MLE-induced autocorrs for A 1=0.04 MDE, MLE-induced autocorrs forA t=0.08

Figure 5.12: Comparing autocorrelations for MDE and MLE estimated parameters

Such a practically meaningful benchmark may be given by the induced autocor

relation. This comparison is performed for the same experimental setup as above, using 

<7 = 1.5, otherwise as given in (5.49). Figure 5.12 gives plots of the difference of the 

autocorrelations obtained for the MDE-estimated and MLE-estimated drift and diffu

sion coefficients. It appears that the main difference is induced by incorrectly estimated 

diffusion coefficients.

Performing the same experiment giving the MDE the true value of cr yields 

autocorrelations for the MDE that were found to be on the verge of being statistically 

significantly different from the true autocorrelations only at considerable CPU cost. 

Note that the data presented in figure 5.13 does not take into account the deterministic 

numerical error in computing the autocorrelations.
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Autocorrelations from MD and ML estimates of drift and diffusion

Figure 5.13: Comparing autocorrelations for MDE and MLE estimated pa
rameters, true a for MDE
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Spatial autocorrelations for damped-driven harm osc, 7=0.5, o=0.5

Figure 5.14: Autocorrelations for damped-driven harmonic oscillator

As comparing autocorrelations may be more interesting in the second order case, 

we consider a damped-driven harmonic oscillator as described by the following SDE:

dq = pdt

dq = (—Dq — 7p)dt + odB
(5.54)

In order to establish identifiability, numerical autocorrelations are computed employing 

one sample path each generated using the following parameter values:

T = 5 • 104 At = 0.05 7 = 0.5 a = 0.5 D 6 {4,4.4}

The autocorrelations obtained for three different random seeds are displayed in figure 

5.14. It is clear that deviations of the drift parameters can be discerned using the 

autocorrelation so that a meaningful comparison of MDE and MLE might be possible. 

The form of the deviation is easily understood: A higher value for D means going further 

into the under damped regime, yielding higher correlations overall as well as a faster 

eigenfrequency so that a time-lag rescaling occurs.

It is apparent that spatial autocorrelation provides a means of distinguishing
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different sets of drift parameters in the second order case and could thus be used to 

benchmark fitted SDEs. In some way, this is the reverse of the approach of [32], [59] and 

many others, where the (velocity) autocorrelation is used to estimate drift parameters. 

It is clear that much more can be done concerning the second order case which has been 

central to many practical applications.

5.8.6 Misspecified model -  multiplicative noise

Motivated by observations made fitting scalar (Id) second order Langevin-type SDEs 

with trigonometric polynomial potential and additive noise to Langevinised MD simula

tion data in chapter 4 we investigate robustness of MLE and MDE against misspecified 

models.

To create an even simpler example exhibiting the main problem in the aforemen

tioned application, we consider the following SDE:

dx =  ( — x3 + -̂x ] dt -|----— -   ̂ d/R t (0) = 0 (5.55)
V 2 J  a/ 4  + (1.22 — x )2 K J '

This corresponds to a higher 'temperature' at the right equilibrium than at the left 

equilibrium point, so while it does not change the sampled drift parameters when an 

MLE is used, it greatly changes the histogram (particles spending less time at the 'hot' 

equilibrium).

Using the parameters Tf =  80, At =  0.002 and k =  32, the average drift 

parameter (over N = 400 realisations) and diffusion parameters 6  and a induce pdfs 

displayed in figure 5.15.

It is clear that the MDE estimated drift parameters are far better at reproducing 

the true pdf, even though it is apparent that the variation in the induced pdf is a bit too 

large. This can be traced back to a slightly underestimated a, which would be expected 

to improve with increased temporal resolution.

It should be stressed that when fitting misspecified models, one can always find 

a statistic which the fitted model does not reproduce correctly, just that it happens 

to be the histogram (and hence the fitted potential) is inconvenient in a physically 

relevant case. Given its construction, it is clear that the MDE would be expected to
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Induced PDFs for MLE and MDE-estimated drift parameters

Figure 5.15: Comparing induced PDFs for MLE and MDE

yield misspecified fitted models which reproduce the invariant pdf better, however it 

would be expected to be bad at minimising the true likelihood, (analogous to formula 

(2.81) of [62] being optimised by the MLE rather than MDE). Having derived the MLE 

from the statistical model (3.11) in chapter 3 it is equally clear that this estimator will 

tend to reproduce the correct drift parameters. In fact, given a few extra technical 

hypotheses, theorem 1 still holds in this case so that asymptotically in the limit At —» 0 

and Tf —■> oo the true drift parameters will be recovered. In the presence of additive 

noise, however, these will lead to the wrong invariant distribution.

It is worth noting that this supports the contention that the failure of the es

timator presented in chapter 4 to reproduce the invariant density for the Langevinsed 

butane molecule (see figure 4.13) is due to the presence of multiplicative noise.

The autocorrelations for this misspecified model are not well-reproduced by either 

of the estimators, as can be seen from figure 5.16, where N =  100 realisations have 

been used.

The fact that MLE-estimated potentials yield faster de-correlation than MDE-
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Autocorrelations for misspecified model

Figure 5.16: Comparing induced autocorrelations for MLE and MDE

estimated potentials is attributable to the deep well in the MDE-estimated potential in 

which paths can get 'stuck', resulting in strong correlation.

Also, the fact that the initial slopes of all three autocorrelations agree is reassur

ing, since this measure small-scale, diffusion-dominated de-correlation. Since the fitted 

(constant) diffusivity can be viewed as an ergodic average of diffusion over all paths, 

and even in the multiplicative noise case, variation of diffusivity is small over small time 

spans (smooth <r(-)), this is expected.

5.9 Conclusions and Future Work

Significant analytical links between the maximum likelihood estimator used widely in 

the statistical literature and the Practitioners’ estimator based on counting population 

densities have been found and studied on selected numerical examples. In the special case 

of gradient diffusions these estimators are even more closely linked as their deviations 

from the mean value satisfy the same statistics to leading order. While the minimum
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distance estimator initially seems to be very close to the practitioners' approach, this 

turned out not to be accurate. Other links have been found between the statisticians' 

approach of estimating diffusivity via quadratic variation and the practitioners' reliance 

on fitted autocorrelations, although these are less close.

This chapter leaves open many avenues of further enquiry:

• Fitting diffusion coefficients given the drift parameters using only 0(1) spaced 

data for a restricted class of models to be fitted might prove interesting from a 

statistical perspective. This could be built into a full sampling algorithm sampling 

alternately from drift and diffusion parameters.

• More consideration should be given to multiplicative noise models as applications 

are otherwise restricted to near-equilibrium configurations.

• A characterisation of the class of stochastic processes for which the link between 

MLE and the practitioners' method can be established would be desirable. Gener

alising from gradient diffusions to reversible processes is a first step. It is unclear, 

however, whether there is a more general class that would also include the second 

order Langevin process.

• It would be interesting to perform estimation for processes involving coloured noise 

such as

q + V  V  (q) = Br

where r is a suitable m-dimensional Ornstein-Uhlenbeck process involving q to 

satisfy energy balance. Set up correctly, the process (q,q,r) can have a product 

measure similar to the second order case.
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