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Intermittency and the social role of storage 

   

 
  
  

 
 
 

Abstract 
 

Our paper examines the social benefit of energy storage in terms of 
smoothing the intermittent output of wind in Britain in the context of a 
significant wind generation presence. The resultant price smoothing 
creates benefits as follows: grid scale storage has a price suppressing 
effect, decreasing the probability of remaining in the high price and high 
volatility regime during peak hours, and it increases the probability of 
remaining in the normal regime during off-peak hours. Under the 
assumption that the effects on market prices are passed through to final 
consumers, and ignoring the facility construction costs, our results 
strongly suggest that there are clear potential social advantages resulting 
from deploying grid-level storage in the presence of intermittent wind 
generation. 
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1. Introduction 
 
Energy storage potentially has a vital role in maintaining a healthy reliable balance 

between supply and demand for electricity in the presence of intermittent green 

technologies such as wind power. When trying to understand the current and future 

role of energy storage, a major consideration concerns the potential social benefits 

which storage might generate in the context of intermittent technologies. In principle, 

they include:  

 

• Saving capital expenditure on new peaking plant (versus storage construction 

costs) 

• Reduced expenditure on grid reinforcement  

• Avoiding some curtailment of renewable energy 

• Fuel saved through reduced ramp rates  

• Reduced need for low efficiency plant to operate 

 

The private benefits which can be obtained from storage facilities have often been 

investigated by assessing arbitrage possibilities. However, not all the factors listed above 

can be captured through arbitrage, so essentially, there is a missing market problem due 

to uncaptured positive externalities. The problem is then to identify the potential social 

benefits from storage which can be evaluated using market information, i.e. how can we 

use market information to quantify the social benefits of storage? Here we focus on the 

potential social benefits of storage in Britain arising from reduced ramp rates and 

increased efficiency, leaving capital expenditure and grid reinforcement to one side.  
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We approach the issue by considering grid-scale store capacity being used to flatten 

wind generation -as a measure to tackle the variability- and also absorbing the wind 

forecast errors, therefore mitigating the wind impact on the level and volatility of 

market prices. In the absence of storage, the impact of wind generation on price level 

and volatility comes from wind intermittency, which encompasses variability and 

imperfect prediction. The variability of output impacts on both the level and volatility of 

prices, given the underlying need to use high-cost generation to a greater or lesser 

extent depending on the size of the deviation. The imperfect wind prediction results in 

forecast errors which are passed through to the market price as additional price 

volatility. 

The choice of wind as a renewable source of electricity in our analysis is driven by its 

relevance in Great Britain’s generation.  Among renewable sources of electricity 

generation wind has the largest share if we combine onshore and offshore generation.  

In 2020 it accounted for 24% of generation as opposed to around 13% for bioenergy and 

waste and 4% for solar (BEIS, 2021). 

 

With these effects in mind, we set out to evaluate the market price effects of introducing 

grid-scale store capacity sufficient to absorb the wind generation impact on prices. To 

do so, it is first necessary to explore the possible alternatives to storage, namely: 

 

• Interconnectors1 – but these depend on what happens in other geographical 

locations, so cannot be counted on to operate according to domestic interests   

 
1 Interconnectors are high-voltage cables that connect the electricity systems of neighbouring countries. 
They enable excess power, such as that generated from wind and solar farms, to be traded and shared 
between countries. 
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• Open-Cycle Gas Turbines (OCGT)2 - run on very few occasions during the year 

(generation from OCGTs represented about 0.3% of total generation in 2021) 3, 

and is not a good case to consider as new investment is unlikely  

• Closed-Cycle Gas Turbines (CCGT)4 – run much more often, but ramp-up and 

down exceed 1GW within 5 minutes. This is a performance that grid-scale 

storage cannot emulate 

Relative to the alternatives listed above we consider storage as the most attractive 

option  to smooth electricity generation from wind to the extent that it emulates the 

output of a baseload plant (see also Waterson [2017] for a discussion of the role of 

storage in comparison with other technologies in energy systems with high penetration 

of renewables). In the discussion which follows we therefore focus exclusively on the 

behaviour of a grid-scale storage unit, as this represents the most straightforward case 

to evaluate on the basis of publicly available market information.  

As the benefits from an increased availability of storage facilities are associated with the 

costs of integrating higher proportions of intermittent generation into the energy 

system it is possible to broadly evaluate the potential benefits of storage in monetary 

terms by looking at the potential saving which can be generated by deploying storage at 

the national level. The UK’s National Infrastructure Commission (2016) indicates that 

energy storage, together with interconnection and flexible demand innovation, could 

save consumers £8 billion per year by 2030, while research carried out at Imperial 

College London (2016) reveals that around £7 billion in cost savings could be achieved 

 
2 An open cycle gas turbine is a combustion turbine plant fired by liquid fuel to turn a generator/rotor, that 
produces electricity. The gases coming out from the turbine are exhausted in the atmosphere and the 
working fluid is replaced continuously. 
3 Source: Gridwatch website (https://gridwatch.co.uk/Ocgt) 
4 A closed cycle gas turbine is a combustion turbine in which the air and the working fluid are circulated 
continuously within the turbine. 
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by 2030 by adopting the least cost energy storage options under a market driven 

approach.  

 

The UK energy research centre (Heptonstall et al., 2017) has recently produced a 

detailed report on the costs and impacts of integrating intermittent renewable sources 

into the UK electricity system. One of the key conclusions of the report is that the costs 

of integration can vary widely with the flexibility of the system to which the generation 

is being added and the extent to which the system is optimised for integration.  The 

authors identify two sets of costs of integration which are likely to be non-negligible 

even for relatively modest levels of penetration: 1) the costs associated with short term 

reserves for balancing the system and 2) the cost of generating capacity which can 

reliably satisfy demand at peak times. Furthermore, they point out that an increased 

penetration of renewable sources creates additional costs in terms of curtailment, 

network reinforcement, the potential for reduced efficiency of thermal plant and the 

costs associated with guaranteeing sufficient mechanical inertia to maintain frequency 

stability. For example, when they evaluate capacity costs (which reflect the cost of 

conventional plants which need to be used to compensate for low capacity value of 

renewable generators) at a 30% level of renewable penetration, they produce cost 

estimates ranging between £4/MWh and £7/MWh, with only a few observations above 

£15/MWh. The authors come to the general conclusion that the key challenge for policy 

makers, regulators and markets is to deliver a flexible low carbon system, which 

obviously requires the contribution from storage, interconnection and some form of 

demand side response, as well as more structural changes to system operation, 

regulation and market design. 
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In our investigation of the impact on price and volatility of a bulk storage facility we do 

not assess the technical features of different storage technologies, as this area has been 

covered in several contributions from the science and engineering disciplines (see 

Mahlia et al. 2014 for a review and comparison of different technologies). However, our 

calculations are based on some of the technical features of compressed air storage 

(CAES), so that in our calculations we use a roundtrip efficiency (RTE) of 70%, which is 

line with the estimated RTE for CAES. The choice of this technology is justified by the 

information published by the US Department of Energy (2020) about the relative cost of 

different storage technologies, which identifies CAES as the technology with the lowest 

annualised costs5. Indeed, for a 100 MW 10-hour installed storage system, the 

annualised cost for CAES is about £22/kWh as opposed to about £27/kWh for pump 

hydro storage, about £49/kWh for hydrogen storage systems, about £70/kWh for (grid-

level) lithium-ion phosphate batteries, and about £105/kWh for (grid-level) lithium-ion 

nickel-manganese-cobalt batteries.  

 

In this paper we examine the effect of a grid-level storage facility in Britain which can 

transform the hourly wind generation into the smoother output of a baseload plant 

generating the daily average of wind and which can also absorb the forecast error. We 

discuss the related literature in Section 2. The data used for our empirical analysis is 

presented in Section 3, while Section 4 describes our methodological approach. Section 

 
5 Annualised cost measures the cost to be paid each year to cover all capital and operational expenditures 
across the usable life of the asset while also accounting for additional financial parameters such as taxes 
and insurance. The unit energy or power annualized cost metric is derived by dividing the total annualized 
cost paid each year by either the rated energy to yield $/rated kilowatt-hour (kWh)-year or by rated power 
to yield $/rated kilowatt (kW)-year, where the kWh and kW are rated energy and power of the energy 
storage system, respectively. 
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5 contains a discussion of the main results and their implication before providing 

conclusions in Section 6.  

 

2. Literature Review 

Previous studies have examined the impact of wind power on balancing cost in European 

electricity markets.   Holttinen (2008) looks broadly at the cost impact of increased wind 

power penetration using case studies from European countries and US states. More 

recently Miettinen and Holttinen (2019) have investigated the impact of wind forecast 

errors on balancing needs, with an application to the Nordic market, while Hu et al. 

(2021) evaluate the impact of wind power on the intra-day market in Sweden. 

 

Bueno-Lorenzo et al. (2016) use data from the Spanish electricity market to identify a 

pricing scheme which can minimise the need to rely on ancillary services as a result of 

wind intermittency, while Batalla-Bejerano and Trujillo-Baute (2016) provide empirical 

evidence of the positive impact of increased wind output in Spain on constraint 

payments, which include both balancing costs and capacity payments. 

 

Swinand and O’ Mahoney’s (2015) study of the Single Electricity Market (SEM) in Ireland 

has also provided evidence about the impact of wind output on electricity prices, 

considering both the direct effect of wind intermittency and the indirect effect due to 

forecast errors. Vorushylo et al. (2016) use a techno-economic approach to investigate 

the Irish SEM in order to identify the form of flexible generation which maximises 

technical system benefits, economic benefits for consumers and investment viability. 

The authors conclude that advanced CCGT and storage technologies are most able to 
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generate such benefits but acknowledge that they require Government support to be 

financially viable. Di Cosmo and Malaguzzi Valeri (2016) also investigate the Irish SEM 

confirming the positive impact of wind output on balancing payments, importantly 

highlighting that such a positive effect is reinforced in situations of outage of storage 

facilities. 

 

Swinand and Godel (2012) find similar results in their analysis of the impact of wind 

generation on the Great Britain electricity market between 2008 and 2011. Based on an 

econometric cost function approach, they provide evidence of a significant effect of 

wind generation on balancing costs, so that when wind generation increases balancing 

costs also increase. However, they warn that due to the quadratic shape of the cost 

function at high levels of wind generation the effect on balancing costs is negligible. This 

situation applies to the energy system in Great Britain given its current generation 

portfolio.   Joos and Staffel (2018) carry out a comparison of balancing and congestion 

costs associated with the integration of wind power in the energy system in Great Britain 

and Germany. They find that balancing costs are flat or falling in the two countries with 

about 5TWh of wind power being curtailed in 2016. The also record an increase in 

congestion management costs in both countries. 

 

More generally Cambini et al. (2020) discuss the role of storage in meeting the demand 

for flexibility in smart energy systems. They identify and describe several large-scale 

projects at the European level where storage facilities are implemented as part of 

integrated energy systems to address the challenges associated with generation from 

renewable sources. 
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3. Data 

Given that the power flexibility required for the integration of intermittent generation 

is provided through the balancing market,  our first data source is information on the GB 

balancing market prices (APX mid- prices obtained from Elexon6) for the period between 

December 2014 and June 2016.  We split the data into peak and off-peak periods to 

control for different system conditions. Figure 1 shows the balancing market index prices 

for peak (a) and off-peak (b) hours and Figure 2 shows the same data zooming on the 

prices below £120/MWh. These figures help to picture both the existence of price spikes 

during this period (up to £296 /MWh in peak hours and £117 /MWh in off-peak hours) 

and the clearly higher price levels during peak hours (with average of £ 42.13 /MWh and 

£34.46 /MWh, respectively). 

 
 

 
Figure 1. Peak and off-peak prices (£/MWh) 
 
 

 
6 Elexon is the balancing and settlement code company which manages electricity trading arrangements 
in England and Wales (https://www.elexon.co.uk/) 
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Figure 2. Peak and off-peak prices (£/MWh) 
 
 
To analyse the extent of wind intermittency in terms of the wind generation variability 

we use a relativized indicator-based information from National Grid (NG) on actual wind 

generation in Britain. θt is the relative deviation of the hourly wind generation (Wt) from 

its daily average (𝜇𝜇𝑤𝑤) measured as shown in Equation (1) below. Figure 3 shows the 

hourly wind generation (a) with a maximum of 6.7 GWh, the daily average, (b) with a 

mean of 2.9GWh, and the wind relative deviation (c) with a maximum of 2.8 %. 

 

θt = | (Wt  / 𝜇𝜇𝑤𝑤) -1|  (1) 

 
 
 



11 
 

 
Figure 3. Wind generation, daily average and relative deviation (GWh & percentages) 

 
To evaluate the extent of intermittency in term of imperfect wind prediction we use the 

wind forecast error (Kt) measured as the absolute difference between the actual (Wt) 

and the forecast (FWt) generation -see equation 2 below. We use the wind generation 

forecasts published for the next day by NG (day-ahead forecast), extracted from the 

archive of the “Gridwatch” website7. Figure 4 shows the actual wind generation (a), the 

forecasted wind (b) and the wind forecast error (c) with a maximum of 4.9 GWh. 

 

Kt= | Wt -FWt |  (2) 

 
 
 

 
7 https://gridwatch.co.uk/ 

https://gridwatch.co.uk/
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Figure 4. Wind generation, forecasted and forecast error (GWh) 
 
 
Given that we analyse the effect of including a storage facility operating as baseload, it 

is useful to have information on the hourly price pattern during the day. Figure 5 shows 

the hourly average price in our sample8. Here it is noticeable that within both peak and 

off-peak periods prices might be higher or lower, hence, it is possible to identify four 

different states of prices, in order of magnitude: off-peak low, off-peak high, peak low 

and peak high. We follow a parsimonious modelling approach to capture these different 

states of prices. In the next section the models are described in detail.      

 

 

 
8 For comparison purposes, Appendix 2 provides an analogous figure with price during a day of sample.  
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Figure 5.   Average prices (£/MWh) 
 
 
4. Methodology 
 
Although different methodological approaches can be followed to capture price 

fluctuations and answer our research question, two features of the prices we are 

analysing have driven our modelling choice of using Markov regime-switching models 

(RSM); first, the existence of price spikes (see Figure 1), and second, the four price states 

-roughly- identified within the day (see Figure 5). This type of pricing model, developed 

by Hamilton (1989), was used extensively for analysing spikes in stock market prices (for 

instance in Pagan and Schwert [1990]; Sola and Timmermann [1994]), but since 

nowadays wholesale electricity markets work in a similar way to stock markets, these 

models have been increasingly used to analyse the price of electricity in different 

contexts (Huisman and Mahieu [2003]; Weron et al. [2004]; Mount et al. [2006]; 

Huisman and Kilic [2013]; Kilic and Trujillo-Baute [2016]), with a very good fit (Huisman 

[2009]).  
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Basically, in these models the price time series is divided into regimes, with each regime 

having different underlying price processes, so it is possible to identify different means, 

rates of mean reversion and volatilities depending on the state. More precisely, with this 

type of model we obtain different parameters of electricity price dynamics for the 

electricity market price in a normal and a non-normal regime. The non-normal regime 

takes place at times when the price spikes occur, these spikes being positive or negative 

depending on the direction of the frictions in the market. So, in the first regime the 

parameters will characterise the dynamics of market price in its normal state and in the 

second regime the presence of price spikes. 

      

This empirical exercise involves a two-part modelling process. In the first part, we model 

the impact of wind generation intermittency (variability and forecast errors) on the level 

and volatility of the market price. In the second part, we evaluate what happens when 

we introduce a change in the system, i.e. a facility (or a groups of facilities), through 

which the generation from wind is flattened to its daily average and the forecast errors 

are absorbed. This may be seen as a first step towards examining the trade-offs over a 

range of storage levels allowing different degrees of smoothing of wind output.  
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4.1 The impact of wind 

 

The price of electricity produced using wind generation inherits the intermittency of 

wind output, involving both variability and imperfect prediction. The former affects the 

price level -to a higher or lower extent depending on the intensity of the deviation, and 

both are passed through the additional price volatility resultant from the output 

variability and wind forecast error.  

 

In the RSM model (Hamilton, 1994) the price in logs (St) is assumed to be the sum of a 

deterministic component dt and a stochastic component Xt (see Equation 3). The first 

component - see Equation (4)- consists of a constant mean price level 𝜇𝜇1, and the wind 

deviation -as described above- θt. This component might also include some seasonality 

control, usually a peak/off-peak dummy. However, rather than using a dummy variable 

we chose to perform separate estimations for peak and off-peak hours to better capture 

the differences in all the parameters of price dynamics between the two periods.     

 

𝑆𝑆𝑡𝑡 =  𝑑𝑑𝑡𝑡 + 𝑋𝑋𝑡𝑡     (3) 

 

𝑑𝑑(𝑡𝑡) =  𝜇𝜇1 + β θ𝑡𝑡    (4) 

 

The stochastic component in the normal regime consists of a mean reversion 

component α. The error term in regime 1 ε1,t is assumed to be standard normally 
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distributed multiplied by σ1 that represents the standard deviation of the error term. 

The mean reverting stochastic component then is represented in Equation (5): 

 

𝑋𝑋(𝑡𝑡) = (1 − α)𝑥𝑥𝑡𝑡−1 + 𝜎𝜎1 є1,𝑡𝑡  (5) 

 

The stochastic component in the abnormal regime (see Equation (6)) consists of a 

constant mean price μ2, which represents the increase in the price level in the abnormal 

regime. є2,t  is a normally distributed error term with standard deviation σ2. 

 

𝑥𝑥(𝑡𝑡)  =  𝜇𝜇2  + 𝜎𝜎2 є2,𝑡𝑡  (6) 

 

Note that when we condition on the regimes, the parameters of the model can easily be 

estimated by maximum likelihood. The transition probability is determined by a random 

variable that follows a Markov chain with different possible states (see Equation (7)). 

The transition probability for switching from one regime to the other regime, modelled 

as logistic functions, ensure that predicted probabilities have values between 0 and 1. 

The element Pi,t denotes the conditional probability that the process is in regime i at 

time t, given that the process was in regime i at time t−1: Pi,t = Pr St=i|St−1 = i.  

 

𝑃𝑃𝑖𝑖,𝑡𝑡  =  𝜆𝜆𝑖𝑖  +  γ𝑖𝑖θ𝑡𝑡 + 𝑓𝑓𝑖𝑖  κ𝑡𝑡   (7) 
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4.2. Introducing storage 

 

In this part of the model we evaluate what happens to electricity pricing when we 

introduce a change in the system -i.e. the inclusion of a facility (or a groups of facilities), 

through which the generation from wind is flattened to its daily the average minus the 

efficiency loss and the forecast errors are absorbed. These will imply only two changes 

in the previous model, more precisely in Equation (4) and Equation (7), which are now 

as follows: 

 

𝑑𝑑(𝑡𝑡) =  𝜇𝜇1 + β τ𝑡𝑡  (4.1)  

 

𝑃𝑃𝑖𝑖,𝑡𝑡 =  𝜆𝜆𝑖𝑖  +  γ𝑖𝑖 τ𝑡𝑡   (7.1)   

 

where τ𝑡𝑡 is the generation from the storage facility with a 70% turnaround efficiency 

used system wide during the day. It is assumed that the 30% efficiency loss takes place 

when the wind generation is input into the store9.  Summary statistics of the variables 

described in the models are presented in Table 1. 

 

 
9 To calculate the hourly baseload of the storage facility with an input loss the following reasoning was 
used:   
First, during the hours when the wind generation is above the average power will be stored (𝑆𝑆𝑆𝑆𝑑𝑑).  
𝑆𝑆𝑆𝑆𝑑𝑑 =     ∑ (24

1 𝑊𝑊𝑡𝑡 −  𝜇𝜇𝑤𝑤)     𝑖𝑖𝑖𝑖    𝑊𝑊𝑡𝑡 ≥ 𝜇𝜇𝑤𝑤  (8) 
Second, the generation (𝑊𝑊𝑊𝑊𝑡𝑡) could be equal to the average without storage when the wind generation 
is above the average and equal to the actual wind generation when wind generation is below the average. 

𝑊𝑊𝑊𝑊𝑡𝑡 =  �𝜇𝜇𝑤𝑤    𝑖𝑖𝑖𝑖    𝑊𝑊𝑡𝑡 ≥ 𝜇𝜇𝑤𝑤 
𝑊𝑊𝑡𝑡     𝑖𝑖𝑖𝑖    𝑊𝑊𝑡𝑡 < 𝜇𝜇𝑤𝑤      (9) 

Therefore, the hourly -daily average- generation of the storage facility, considering the efficiency losses, 
will be: 
 τ𝑡𝑡 = [∑ 𝑊𝑊𝑊𝑊𝑡𝑡24

1 + (0.7 ∗ 𝑆𝑆𝑆𝑆𝑑𝑑) ]/24  (10) 
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 Peak Off-peak 

 Mean Std. Dev. Min Max Mean Std. Dev. Min Max 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 42.13 12.15 13.50 296.07 34.46 8.32 10.18 117.68 

𝑊𝑊𝑡𝑡 2675.96 1692.07 72.00 6779.00 2557.61 1589.40 53.00 6708.00 

FWt 3206.79 1987.58 174.00 7233.00 3116.40 1994.34 114.00 7377.00 

Kt 786.61 681.88 0.00 4719.00 793.17 714.34 0.00 4940.00 

θt 0.19 0.17 0.00 1.31 0.28 0.27 0.00 2.80 

τ𝑡𝑡 2542.59 1490.29 133.08 6098.65 2542.38 1490.29 133.08 6098.65 

Note: Peak 6,936 obs. and Off-peak 6,935 obs. 

Table 1. Summary statistics 

 

In sum, to evaluate the impact of wind generation on prices we estimate the first model 

including Equations (3) to (7). To analyse the effect of introducing storage we estimate 

the second model including Equations (3), (4.1), (5), (6), and (7.1). The parameters of the 

two regimes switching models are estimated using maximum likelihood (see for instance 

Harvey, 1989). Results for peak and off-peak hours are discussed below.  
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5. Results 

Regression results from the first model -without storage- are presented in Table 2. 

Results from this model indicate as expected that the normal regime is characterized by 

lower prices and volatility than in the non-normal regime (μ2 > 0 and σ1 < σ2). Deviations 

of the hourly wind generation from the daily average increase the price level (β1 >0) and 

decrease the probability of remaining in the normal volatility regime (γ1< 0). In other 

words, wind intermittency increases the probability of passing from the normal to the 

high volatility regime (from one hour to the next, having started in the normal regime).  

 

Regarding the impact of wind forecast errors we observe different effects on off-peak 

and peak hours, but both acting to make price spikes more likely. During off-peak hours, 

the wind forecast error decreases the probability of remaining in the normal volatility 

regime (f 1< 0). In other words, the forecast error increases the probability of passing 

from normal to the high volatility regime (from one hour to the next starting in the 

normal regime). During peak hours, the wind forecast error increases the probability of 

remaining in the non-normal volatility regime (f 2> 0), in other words, the forecast error 

decreases the probability of passing from the non-normal to the low volatility regime 

(from one hour to the next starting in the non-normal regime).   
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 Peak Off-peak 

μ1 3.666 (0.0125) 3.331 (0.0196) 

μ2 0.132 (0.0165) 0.187 (0.0240) 

β 0.036 (0.0120) 0.004 (0.0066) 

α 0.115 (0.0066) 0.099 (0.0063) 

λ1 2.024 (0.1257) 1.725 (0.1107) 

λ2 -0.452 (0.1929) -0.203 (0.1783) 

γ1 -1.370 (0.3318) -1.153 (0.2503) 

γ2 0.477 (0.5303) 0.831 (0.4518) 

f1  -0.011 (0.0879) -0.335 (0.0721) 

f2  0.204 (0.0137) -0.048 (0.1151) 

σ1 0.082 (0.0017) 0.074 (0.0014) 

σ2 0.773 (0.0516) 0.989 (0.0931) 

 

Table 2. Wind generation effect on market prices 

 

Our conception of storage is of bulk storage that is less than perfectly efficient. The 

running costs of the store are incorporated into the assumption that the store is 70% 

efficient10 in transforming input into output; that is, for every 10MWh input, useful 

output corresponds to 7MWh. Once storage is introduced in the system generation from 

wind is assumed flattened to its daily average (with a 70% efficiency) and the forecast 

errors are absorbed. Results (in Table 3) are consistent with those of the first model. 

 
10 Results with 100% and 60% are reported in Appendix 1. 
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Again, we have two regimes -the first one with low price and volatility, and the second 

one with high price and volatility. The inclusion of the new storage facility has a price 

suppressing effect (β1 <0).  

 

Regarding the storage effect on the transition probabilities, during peak hours the 

storage decreases the probability of remaining in the non-normal regime (γ2< 0), and 

during the off-peak hours it increases the probability of remaining in the normal 

volatility regime (γ1> 0). 

 

 Peak Off-peak 

μ1 3.629 (0.015) 3.374 (0.020) 

μ2 0.176 (0.016) 0.191 (0.022) 

β -0.017 (0.003) -0.019 (0.003) 

α 0.117 (0.007) 0.113 (0.006) 

λ1 1.858 (0.115) 2.963 (0.116) 

λ2 0.446 (0.149) -1.087 (0.184) 

γ1 -0.025 (0.039) 0.316 (0.034) 

γ2 -0.112 (0.052) 0.309 (0.523) 

σ1 0.080 (0.002) 0.073 (0.001) 

σ2 0.267 (0.007) 0.375 (0.009) 

Table 3. Storage effect on market prices 
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5.1 Main implications 

 

Implications of these results on the effects of combining storage and wind generation 

can be classified in terms of price level, price volatility and transition probability. Our 

results show that during peak hours there is a significant decrease in the price level of 

the normal and non-normal regime (see Table 4), implying a saving for consumers. The 

significant decrease in the price volatility (see Table 5) of the non-normal regime implies 

that spikes are softer and more predictable. The lower volatility of the non-normal 

regime combined with the lower mean price implies that the market will become more 

stable. Our results also show that when the storage is in the system there is a decrease 

the probability of observing spikes, both in peak and off-peak hours, and that once we 

have a spike the probability of returning to the normal price increases (see Table 6).  

 

 

 
Wind Storage Diff. 

Peak 
  

 

Norma 40.556 37.057 -3.498 

Non-normal 46.291 44.212 -2.079 

Off-peak 
  

 

Norma 28.097 29.021 0.924 

Non-normal 33.865 34.910 1.045 

Table 4. Price levels   
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Wind Storage Diff. 

Peak 
  

 

Norma 0.082 0.080 -0.003 

Non-normal 0.773 0.267 -0.506 

Off-peak 
  

 

Norma 0.074 0.073 -0.001 

Non-normal 0.989 0.375 -0.614 

Table 5. Price volatility 

 

 
Wind Storage 

Peak 
  

P (1,1) 0.66 0.86 

P (2,2) 0.56 0.58 

Off-peak 
  

P (1,1) 0.56 0.96 

 P (2,2) 0.64 0.31 

Table 6. Transition probabilities 

 

Beyond the probability of transitioning from one state to the other, to better assess the 

differences in the prices obtained for two models, it is relevant to determine the 

probability of each state occurring. Following Hamilton (1989) it is possible to compute 

the probability of each state from the transition probabilities, using Equation (11): 

  

𝜋𝜋(𝑖𝑖) ≡ (1 − 𝑞𝑞)/(1 − 𝑝𝑝 + 1 − 𝑞𝑞)  (11) 
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where 𝑝𝑝 = 𝑃𝑃(1,1) and 𝑞𝑞 = 𝑃𝑃(2,2).  

 

The results, presented in Table 7, indicate that storage significantly decreases the 

probability of a high price and high volatility regime in both peak and off-peak periods, 

or in other words, storage increases the probability of having lower and less volatile 

prices. More precisely, in the peak period the probability of having lower prices 

increases from 0.56 in the model with only wind to 0.75 when we include storage, and 

in the off-peak period this increase is from 0.45 to 0.95.     

 

 
Wind Storage 

Peak 
  

𝜋𝜋 (1) 0.56 0.75 

𝜋𝜋 (2) 0.44 0.25 

Off-peak 
  

𝜋𝜋 (1) 0.45 0.95 

𝜋𝜋 (2) 0.55 0.05 

Table 7. Probability of states 

 

Results from the two models are graphically illustrated in Figure 6 (wind only) and Figure 

7 (wind with storage), with the four different states of prices -average and probability- 

identified in each model. From these figures it is possible to observe, first, a considerable 

similarity between Figure 6 and Figure 5, describing the hourly average price in our 

sample, and second, the price level and volatility decreasing effects from the inclusion 

of storage in the system. 
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Figure 6. Wind model results illustration 
   
 

 
Figure 7. Storage model results illustration 
 
 

Finally, combining prices and probabilities obtained from the models (in Table 4 and 

Table 7, respectively) we have the simulated weighted average prices in the different 

electricity system conditions. The results shown in Table 8 highlight the price 

suppressing effects from storage and the consequent savings in terms of costs per MWh. 

Average price decreases during the peak period by £4.24 /MWh (from £43.063 /MWh 
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to £38.827/MWh) and by £2.33/MWh (from £31.275/MWh to £28.944 /MWh) during 

the off-peak period. With the calculated cost savings from transforming the hourly wind 

generation into a smoother baseload plant with storage, the case from a system 

perspective is apparent, as mitigating intermittency effects through storage captures at 

least some of the value of flexibility.  

 

 

 Wind Storage 

Peak 43.065 38.827 

Off-peak 31.275 28.944 

Table 8. Simulated weighted average prices (£/MWh) 

 

6. Conclusions and policy implications 

 

The analysis of the social role of storage is increasingly relevant in the current context 

characterized by an increasing use of intermittent generation in power systems. This 

relevance is magnified by the massive electrification expected in the coming decades in 

pursuit of net zero ambitions, which predictably will be covered mostly with renewables 

sources, including wind power generation. In this paper the social potential of storage is 

quantified using market information, capturing the benefits arising from reduced ramp 

rates and from the increased efficiency introduced when considering grid-scale store 

capacity being used to mitigate the wind impact on the level and volatility of market 

prices.  
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Results from a Markov regime switching model confirm that, in the absence of storage, 

wind intermittency increases the probability of passing from the normal to the high price 

and high volatility regime (from one hour to the next), and the impact of wind forecast 

errors makes price spikes more likely. The mechanism behind the observed effects 

comes from wind intermittency (variability and imperfect prediction). While the 

variability of output impacts on both the level and the volatility of prices (from the 

underlying need to use generation from higher cost sources), the imperfect wind 

prediction results in forecast errors which are passed through to the market price as 

additional price volatility.  

 

The inclusion of grid scale storage has a price suppressing effect, decreasing the 

probability of remaining in the high price and high volatility regime during peak hours, 

and it increases the probability of remaining in the normal regime during off-peak hours. 

Implications from these effects are straightforward: the decrease in the price level leads 

to direct savings for consumers and the decrease in the price volatility implies that spikes 

are softer and more predictable. The combination of both effects ultimately leads to the 

prediction that the market will become more stable in the presence of wind generation 

combined with grid scale storage.  

 

In addition, when considering the probability of occurrence for each state, the results 

imply that storage significantly increases the probability of having lower and less volatile 

prices. Moreover, the simulated weighted average prices in the different electricity 

system conditions highlight the price suppressing effects of storage and the consequent 
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savings in terms of costs per MWh. With the calculated cost savings from combining 

wind generation and grid-scale storage, the supporting evidence from a social 

perspective is clear. While we expect that our results would be different if the 

generation from other sources was also included in the analysis, we believe that our 

results would likely be reinforced by the consideration of other renewable sources with 

variable output at different times of day and year, given the ability of our proposed 

storage facility to adjust to unexpected changes in output. Furthermore, given the 

leading role of wind in the GB electricity system we believe that we are accounting for 

the most significant source of intermittency. 

 

Overall our results imply that introducing storage to render wind hourly generation into 

the activity of a smoother baseload plant and to absorb the forecast error, makes it more 

likely that lower and more stable market prices will be observed. Finally, under the 

assumption that the effects on market prices are passed through to final consumers, 

and ignoring the facility construction costs, these results strongly suggest that there are 

clear potential social advantages resulting from deploying grid-level storage in the 

presence of intermittent wind generation.   

 

It is important to stress that our analysis allows us to evaluate the value of storage based 

on market information, but we are not able to assess the cost implications of our 

proposed approach to mitigating wind power intermittency. Based on current estimates 

of annualised costs of storage technology presented above it would appear that the 

costs of storage technology are not yet sufficiently low compared to the potential 

benefits derived from the reduced volatility in the wholesale market, however other 
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potential benefits of storage technology are not limited to the impact on wholesale price 

level and volatility.    

 

Indeed, natural extensions of this first approximation to the social role of storage might 

come from alternative approaches. The valuation of consumers’ willingness to pay for 

having a guaranteed energy supply in the presence of intermittency is one option, while 

keeping in mind that the social value of security of supply and reduced dependence from 

fossil fuel sources might be difficult to assess in monetary terms. Another approach 

could be to look at the different alternatives to storage, including grid reinforcement, 

interconnectors or demand side management, through a cost comparison. More 

generally, evaluating the relative costs and benefits of alternative ways to promote 

increased flexibility in the energy systems remains a critical area for future research in 

order to support an efficient transition to a low carbon economy.  These considerations 

should be kept in mind when developing policy interventions aimed at supporting 

alternative sources of market flexibility, able to mitigate the impact of the intermittency 

of generation from renewable sources. While we have characterised storage, and CAES 

technology in particular, as the most appealing technology compared to alternative 

sources of flexibility, only a full comparison of the costs and benefits of the different 

technologies available can provide policy makers with informed guidance about the 

most economically efficient and most appropriate technologies. We would like to 

address this more extensive comparison across technologies in future research which 

would complement the current work.   
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Appendix 1 - Summary to compare results with different levels of efficiency 
 

Price         
  Wind Store 100 Store 70 Store 60 Diff (S-W) Diff (S7-W) Diff (S6-W) 
Peak         

Norma  40.556 37.048 37.057 37.076 -3.507 -3.498 -3.480 
Non-normal  46.291 44.195 44.212 44.236 -2.096 -2.079 -2.055 

Off-peak         
Norma  28.097 28.642 29.021 29.081 0.545 0.924 0.984 

Non-normal  33.865 34.660 34.910 34.888 0.795 1.045 1.023 
 

Volatility        
 Wind Store 100 Store 70 Store 60 Diff (S-W) Diff (S7-W) Diff (S6-W) 
Peak        

Norma 0.082 0.080 0.080 0.080 -0.003 -0.003 -0.003 
Non-normal 0.773 0.267 0.267 0.267 -0.506 -0.506 -0.506 

Off-peak        
Norma 0.074 0.073 0.073 0.073 -0.001 -0.001 -0.001 

Non-normal 0.989 0.375 0.375 0.375 -0.614 -0.614 -0.614 
        

 
T. Probabilities    
 Wind Store 100 Store 70 Store 60 
Peak     

P(1,1) 0.66 0.86 0.86 0.86 
P(2,2) 0.56 0.58 0.58 0.58 

Off-peak     

P(1,1) 0.56 0.96 0.96 0.96 
P(2,2) 0.64 0.31 0.31 0.31 
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Appendix 2 – Price during a day of sample (£/MWh) – First day  
 

 


