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Abstract: Bayesian hierarchical framework for exposure data compliance testing is highly recom-

mended in occupational hygiene. However, it has not been used for coal dust exposure compliance 

testing in South Africa (SA). The Bayesian analysis incorporates prior information, which increases 

solid decision making regarding risk management. This study compared the posterior 95th percen-

tile (P95) of the Bayesian non-informative and informative prior from historical data relative to the 

occupational exposure limit (OEL) and exposure categories, and the South African Mining Industry 

Code of Practice (SAMI CoP) approach. A total of nine homogenous exposure groups (HEGs) with 

a combined 243 coal mine workers’ coal dust exposure data were included in this study. Bayesian 

framework with Markov chain Monte Carlo (MCMC) simulation to draw a full P95 posterior distri-

bution relative to the OEL was used to investigate compliance. We obtained prior information from 

historical data and employed non-informative prior distribution to generate the posterior findings. 

The findings were compared to the SAMI CoP. The SAMI CoP 90th percentile (P90) indicated that 

one HEG was compliant (below the OEL), while none of the HEGs in the Bayesian methods were 

compliant. The analysis using non-informative prior indicated a higher variability of exposure than 

the informative prior according to the posterior GSD. The median P95 from the non-informative 

prior were slightly lower with wider 95% credible intervals (CrI) than the informative prior. All the 

HEGs in both Bayesian approaches were in exposure category four (poorly controlled), with the 

posterior probabilities slightly lower in the non-informative uniform prior distribution. All the 

methods mainly indicated non-compliance from the HEGs. The non-informative prior, however, 

showed a possible potential of allocating HEGs to a lower exposure category, but with high uncer-

tainty compared to the informative prior distribution from historical data. Bayesian statistics with 

informative prior derived from historical data should be highly encouraged in coal dust overexpo-

sure assessments in South Africa for correct decision making. 

Keywords: non-informative prior; informative prior; 95th percentile; lognormal distributions;  

exposure category’ 

 

1. Introduction 

South Africa (SA) is one of the largest producers of coal in the world, with an esti-

mated 86,000 workers according to the Mineral Council of South Africa, 2019 [1]. During 

coal mining, coal dust is generated, and when inhaled, it can cause coal mine lung disease 

(CMDLD) [2,3]. To lower the risk of coal dust overexposure and potentially prevent life-

threatening CMDLD, the occupational exposure limit for respirable coal dust in SA is set 

at 2 mg/m3 [1,4]. As part of a continuous process of monitoring overexposure and 
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compliance, the South African Mining Industry Code of Practice (SAMI CoP) stipulates 

that the identification of homogenous exposure groups (HEGs) is an important proxy for 

the assessment of personal exposures [5]. HEGs are defined as a group of employees who 

have similar exposure, such that a sample can be drawn from them for predicting the 

exposure of all remaining workers [5,6]. In the SAMI CoP, HEGs are constituted by a step-

wise process [5,6]; in step one, the mine is subdivided into ventilation districts based on 

areas with common intake and return air. In the next step (step 2), the area is divided into 

activity areas (as found in coal mines). The personal exposures in each activity area are 

then compared to the OEL, which is the eight-hour time-weighted average (TWA8h) coal 

dust concentration to which almost all workers may be repeatedly exposed without any 

adverse health effects whatsoever. Each HEG is assigned to exposure classification cate-

gories, which are associated with their distance to the OEL [4] (Table 1). 

Table 1. The exposure classification categories for classifying the P90 of exposure relative to the OEL 

and sampling strategy of HEGs in the SAMI CoP. 

Category Description 
Statistical 

Illustration 

Exposure 

Profile  
Minimum Frequency 

1 

Exposures less than 

10% of the OEL 10% of 

the time  

P90 < 0.1% OEL 
Very highly 

controlled 

No sampling plan for this category. 

Measurement results that are below 10% of 

the OEL will be reported under this 

category 

2 

Exposures exceed 10% 

of the OEL and less 

than 50% of the OEL 

10% of the time 

P90 ≥ 0.1 OEL < 0.5 

OEL 

Highly 

controlled 

Sample 5% of employees within a HEG on 

an annual basis with a 

minimum of 5 samples per HEG, 

whichever is greater. 

3 

Exposures exceed 50% 

of the OEL and less 

than OEL 10% of the 

time  

P90 ≥ 0.5 OEL < 

OEL 

Adequately 

controlled 

Sample 5% of employees within a HEG on 

a 6-monthly basis with 

a minimum of 5 samples per HEG, 

whichever is greater 

4 
Exposures exceed the 

OEL 10% of the time 
P90 ≥ OEL 

Poorly 

controlled 

Sample 5% of employees within a HEG on 

a 3-monthly basis with 

a minimum of 5 samples per HEG, 

whichever is greater 

The sampling size of each HEG is equal to 5 or 5% of the HEG population, whichever 

is greater, whereas the sampling frequency is determined by the exposure classification 

category. The results of each sampling campaign are evaluated independently of the pre-

vious data (i.e., historical data) for compliance. This current practice in South Africa shows 

that HEGs are too heterogeneous concerning exposure levels, resulting in an overestima-

tion or underestimation of exposure for individual workers [7]. Yet, in good practice, pre-

vious sampling results can be used to update current data for the categorization of HEGs 

by using a Bayesian framework to elucidate prior information from the historical data [8]. 

The framework with broad use of informative prior is highly encouraged in occupational 

hygiene because it accommodates historical data into the empirical measurement of mon-

itoring exposure data for accurate exposure grouping [8–12].  

For compliance testing, the SAMI CoP approach assumes that the sample data are 

normally distributed, and the 90th percentile of exposure data (P90) should be below the 

OEL. Overexposure according to the European Standardization Committee (CEN) [13] 

and the British and Dutch guidelines is that the 95th percentile (P95) of the lognormal 

exposure distribution should be below the OEL [14]. It is important to note that SAMI CoP 

is based solely on current data, yet the incorporation of historical data in the Bayesian 

framework could improve the identification of overexposed HEGs as future risk manage-

ment of exposure is based on the exposure profile of the data at hand. The SAMI CoP 
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approach is based solely on a point estimate of the P90 of the current data and does not 

consider uncertainty surrounding the estimate. The Bayesian framework uses the credible 

interval to describe uncertainty surrounding a parameter. For example, the credible inter-

val is interpreted as the probability of an estimate being found between a certain range, 

given the data [15]. The SAMI CoP approach would mean that similar exposure in differ-

ent areas needs to be done repeatedly, but in a Bayesian sense, this can be achieved natu-

rally by using a sample result as a prior distribution from common population distribu-

tion [16]. The Bayesian inference is exact and easily understood by anyone. For example, 

the probability that a person is overexposed to coal dust is 95%. Currently, the Bayesian 

framework has not been applied for exposure to coal dust in the mining industry, and no 

study has emphasized the use of historical data in determining overexposure in a routine 

occupational hygiene assessment. Therefore, the first objective of this study was to com-

pare the posterior P95 of the non-informative and informative application of the Bayesian 

framework and SAMI CoP relative to the OEL. The second objective was to compare the 

grouping of posterior probabilities of the P95 exposure according to the South African 

occupational exposure categories between the two Bayesian approaches. The present pa-

per describes the development of an informative prior, taken from the historical coal dust 

exposure data, and combines this with the present exposure data to achieve posterior dis-

tributions in a Bayesian framework. The decision-making on exposure risk management 

according to SAMI exposure categories is compared to posteriors derived from a non-

informative prior and the strengths and limitations are discussed. 

2. Methods 

2.1. Study Design and Data Collection 

This is a cross-sectional study. Respirable coal dust exposure data were collected pe-

riodically from different geographic locations of the mines. The population included in 

this study were only male mine workers who were working in underground coal mines. 

The data were collected from workers working in HEGs within each mine. 

Aligned with the SAMI CoP approach, a mixed stratified and random selection sam-

pling frame was used, considering that “either 5% of the workers assigned to a HEG, or a 

minimum of five workers should be selected for a measurement campaign” [5]. The sam-

pling collection and sample analysis methods have been described in a previous paper [7]. 

Briefly, each selected worker was issued with a size-selective cyclone with a mixed cellu-

lose ester filter, which was attached to a dust sampling. The analysis of the cyclone’s filter 

was done according to the standard of the National Institute for Occupation Safety and 

Health (NIOSH) method 0600 [17]. 

2.2. Statistical Analysis 

Statistical analysis was carried out in R version 4.1.1(R Core Team, Auckland, New 

Zealand), using RStan and bayestestR packages [18–20]. Consistent and similar coal dust 

historical data of the HEG was used to update current monitoring data to produce poste-

rior geometric mean, geometric standard deviations, P95, and the posterior probabilities 

of P95 exposure in each of the exposure categories. For the prior specification, we ran-

domly selected a prior sample size of five from each HEG’s historical data, as recom-

mended from previous studies for occupational exposure assessment [21,22]. From the 

occupational exposure perspective, the prior sample size should be between 10% to 40% 

of the current data to get accurate information on the posterior distribution for decision 

making. Therefore, the sample size of five was used to keep the focus of the posterior 

distribution on the current data, as the sample size increased. This is important as in 

Bayesian statistics, the posterior distribution is a compromise between the information 

from the prior and the current data, but the distribution must be observed from the cur-

rent data to a good measure as the sample size increases [15]. For the likelihood function, 

we took all the available current monitoring data.  
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2.2.1. Model Specification Using Current Monitoring Data 

The model was specified by using the geometric mean (GM), given as exp(μ), and 

geometric standard deviation (GSD), denoted as exp(σ), which are the exponents of the 

mean and standard deviation, after log transforming the data. The likelihood function was 

presented as below in Equation (1). 

� ����
�
|�, �2� = �

1

�
�
�√2�

��� �−
1

2

(����
�

− μ)2

�2
�

�

�=1

�

�=1

 (1)

where �� is the log-transformed current monitoring data and n is the number of observa-

tions of current monitoring data. The OEL exposure categories were added as a random 

variable in the model directly to produce the posterior probability distribution of the P95 

to each of the categories [21,22]. From the OEL exposure categories (Table 1), the highest 

category was assumed to have P95 > OEL and the lowest was P95 < 10% of the OEL.  

2.2.2. Model Specification Using a Non-Informative Uniform Prior Distribution 

In occupational health research, uniform prior distribution is highly encouraged. A 

current monitoring data vector,  Y = (��, . . , . . , . . , ��), where n is the sample size, with the 

data Y~����(μσ�), where μ represents the log of the geometric means (GM) and σ is the 

log of the geometric standard deviation (GSD). 

Then, μ = ����~����������� , �2 = �����~����(����) where a and b are the 

lower and upper bounds of the prior distribution, respectively. We took inspiration from 

Gelman 2006 [23], where, for lower bounds, μ was indicated as 0 and for σ was −1/2 and 

the upper bounds were set to infinity. 

2.2.3. Informative Prior Specification from Historical Data 

For informative prior, we assumed that the log-transformed historical data with n0 

observations had sample variance ���
� = ∑(��� − ���)�/(�� − 1). If the historical data y�� ∼

Norm(�, ��), then the mean of the historical data y�� ∼ Norm(�, ��/��), we put μ as a ran-

dom quantity and replace σ2 with the prior estimate s��
� , so that μ takes the form as shown 

below in Equation (2). 

 μ ∼ Norm(y��, s��
� /n�) (2)

The full conditional for � and �� was based on truncated normal prior distributions 

and truncated inverse gamma prior distributions, respectively [9,22]. In the truncated 

prior distributions, we placed bounds on � using the suggestion of Bayesian decision 

analysis (BDA) from Hewett et al., 2006 [12], which was 0.005. We used 0.001 in this study 

to make sure it less likely affected the results, while the upper bound was allowed to vary 

iteratively. The upper bound was allowed to vary to avoid a prior from being unfairly 

skewed toward a more favourable result. 

For ��, the lower bound from BDA was used and the upper bound was let to change 

iteratively. 

To develop prior for 
 
�� , we started with the expression,  (� − 1)��0

2 /�2~��0−1

2 , 

where ��0−1

2  represents the chi-square distribution with (n0 − 1) degrees of freedom. We 

put �� as the random variable, given s��
�  from the historical data. Therefore, the variance 

is given by Equation (3).  

�2~�� �
�0 − 1

2
,
(�0 − 1)��0

2

2
� (3)

For  �0 > 1, where IG (a, b) is an inverse gamma distribution in Equation (4) with 

parameter a and scale parameter b  

Therefore,  
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� = (�� − 1)/2 

� = 2/(���
� ∗ (�� − 1)) 

(4)

Further details on the prior specification for  � and �� and the full conditional dis-

tributions are available in Supplementary File S1 of the Supplementary Materials of 

Quick, 2017 [22]. 

2.2.4. Motivation on Bounds Based on P95 

We placed the bound on the P95 as P95 < 2 ×  OEL with the assumption that the 

correct OEL exposure category for each HEG would be identified. See Supplementary File 

S2 of Supplementary Materials for motivation on bounds based on P95 by Quick, 2017 

[22]. 

Markov chain Monte Carlo (MCMC) algorithms to draw full posterior conditional 

distribution inform of the Gibbs sampler [24] were implemented. The Gibbs sampler was 

applied because of its easy computational application. The Gibbs sampler samples from a 

conditional distribution. For example, if a given parameter has been divided into sub-

parameters, the Gibbs sampler works by drawing each sub-parameter conditional on the 

values of all the others iteratively. The sub-parameter is updated conditional several times 

on the latest values of all the components of the parameter to produce the marginal pos-

terior distribution. We used 20,000 MCMC number of iterations to draw samples from the 

posterior. 

The posterior convergence diagnostic was carried out using the Gelman–Rubin con-

vergence diagnostic, which compares the between and within-Markov chain variability 

for the model parameters to confirm whether they are stationary [25]. The between-Mar-

kov is the variance of the posterior mean of the samples, while the within-Markov is the 

mean of the variance in each sample. If the test statistics denoted by R-hat is ≤1.05, then 

convergence is achieved. The reliability of the posterior quantiles was confirmed using 

the bulk and tail effective sample size [26]. An effective sample size greater than 100 per 

chain is considered good. The convergence diagnostic test indicated an R-hat of less than 

1.05 and an effective sample size of more than 100 in this study (not shown), implying 

convergence was achieved. 

3. Results 

Table 1 indicates the exposure classification of SAMI CoP. The highest category is 

four, which is that P90 exceeds the OEL for exposure to be classified as poorly controlled, 

and the lowest category is that P90 should be less than 0.1 of the OEL for highly effective 

control. In Table 2, a summary of the current monitoring data and corresponding histori-

cal data from nine HEGs are displayed. HEGs C and G had the highest AM of 2.42 in the 

current monitoring data compared to the rest of the HEGs. In the past data, HEG A had 

the highest AM of 2.00. HEGs D and G have the lowest AMs of all the other HEGs in 

current and past data, respectively. GSD indicated a high variability of exposure with the 

current monitoring data in HEG B, D, E, F, H, and I (GSD > 3), while in the past historical 

data, the variability of the exposure was high in HEG B, D, F, G, and I. 

Table 3 indicates the SAMI P90, median, and 95% credible intervals of the posterior 

GM and GSD, and the P95 percentiles for non-informative and informative prior. The 

SAMI CoP P90 values are much lower than the P95 in the non-informative and informa-

tive prior Bayesian approaches. The SAMI approach is the only method that showed that 

only one HEG (HEG D) had P90 values lower (1.62 mg/m3) than the OEL of 2 mg/m3. The 

posterior median GM indicated that all HEGs exposures were below the OEL 2 mg/m3. 

There was high exposure variability in the majority of HEGs, as indicated by GSD greater 

than 3. Three and four of HEGs under non-informative and informative prior had less 

exposure variability according to the GSD. The patterns of the medians of the posterior 

P95 and 95% credible intervals (CrI) from Table 3 are shown in Figure 1. Generally, the 
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median and 95% CrI were similar across all HEGs between the non-informative and in-

formative prior. Five out of nine HEGs in the graph indicated that P95 are lower in the 

non-informative prior with wider 95% CrI bounds compared to the informative. Overall, 

there was high uncertainty in the non-informative indicated by the wider 95% CrI (also 

higher upper bounds) compared to the informative prior distribution.  

The comparison in the grouping of the HEGs’ posterior probabilities of the P95 ac-

cording to the different OEL categories (see Table 1) is presented in Table 4. In both Bayes-

ian approaches of the prior distribution, HEG D showed the lower posterior probability 

of the exposure level being in category four, which is poorly controlled compared with 

the rest of the HEGs. All the HEGs in both prior distributions were in poorly controlled 

category four with more than 90% and 95% probabilities, respectively. Some of the poste-

rior probabilities of the non-informative prior distribution, although all in category four, 

were slightly lower than in the informative prior. 

Table 2. Summary of coal dust exposure for the current monitoring data and their corresponding 

historical past data. 

Data Year N AM SD GM GSD 

Current data       

HEG A 2018 14 2.20 1.96 1.52 2.55 

HEG B 2019 21 2.36 1.45 1.58 3.56 

HEG C 2018 13 2.42 2.22 1.91 1.96 

HEG D 2017 52 0.71 0.66 0.42 3.29 

HEG E 2018 35 1.32 1.74 0.62 3.53 

HEG F 2018 20 1.24 1.90 0.60 3.80 

HEG G 2019 24 2.42 1.70 1.93 2.01 

HEG H 2018 38 1.43 1.75 0.74 3.50 

HEG I 2019 26 2.04 1.58 1.29 3.67 

Past data       

HEG A 2017 20 2.00 1.35 1.51 2.30 

HEG B 2018 21 1.93 2.52 0.69 5.96 

HEG C 2017 19 1.48 0.95 1.20 2.03 

HEG D 2016 53 1.46 1.69 0.76 3.59 

HEG E 2017 50 1.18 1.01 0.78 2.78 

HEG F 2017 32 0.96 0.82 0.60 3.05 

HEG G 2018 40 0.69 0.91 0.29 4.63 

HEG H 2017 45 0.90 0.82 0.62 2.44 

HEG I 2018 39 1.02 0.91 0.59 3.27 

N: sample size; AM: athematic mean; SD: standard deviation; GM: geometric mean; GSD: geometric 

standard deviation. 
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Figure 1. The comparison of the patterns of the posterior median (95% CrIs) of the P95 for non-

informative and informative Bayesian framework across HEGs. The red horizontal is the SA OEL 

of 2 mg/m3.
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Table 3. The median (95% credible interval (CrI)) of the posterior GM, GSD, and the P95 percentiles and the SAMI P90. 

  Non-Informative  Informative 

HEG 
SAMI P90 GM GSD P95 GM GSD P95 

 Median (95% CrI) Median (95% CrI) Median (95% CrI) Median (95% CrI) Median (95% CrI) Median (95% CrI) 

HEG A 4.12 1.47 (0.86, 2.33) 2.67 (2.29, 3.25) 7.42 (4.48, 12.17) 1.56 (1.05, 2.28) 2.59 (2.28, 3.06) 7.50 (4.91, 11.85) 

HEG B 4.02 1.40 (0.82, 2.13) 3.01 (2.66, 3.48) 8.67 (5.44, 12.11) 1.24 (0.72, 1.91) 3.12 (2.77, 3.59) 8.14 (5.07, 11.36) 

HEG C 3.74 1.89 (1.24, 2.78) 2.33 (2.02, 2.86) 7.55 (5.04, 12.70) 1.63 (1.26, 2.08) 2.21 (1.97, 2.64) 6.03 (4.60, 8.60) 

HEG D 1.62 0.42 (0.30, 0.59) 3.01 (2.73, 3.40) 2.58 (1.83, 3.92) 0.46 (0.34, 0.65) 2.99 (2.73, 3.36) 2.83 (2.73, 3.36) 

HEG E 3.27 0.62 (0.41, 0.96) 3.11 (2.76, 3.63) 4.04 (2.61, 6.78) 0.62 (0.41, 0.93) 3.11 (2.78, 3.60) 4.02 (2.65, 6.57) 

HEG F 2.46 0.58 (0.31, 1.02) 3.23 (2.76, 3.93) 4.01 (2.22, 7.41) 0.63 (0.38, 1.03) 3.16 (2.75, 3.76) 4.20 (2.47, 7.43) 

HEG G 4.24 1.93 (1.43, 2.60) 2.34 (2.10, 2.72) 7.79 (5.70, 11.79) 1.66 (1.09, 2.39) 2.70 (2.41, 3.12) 8.53 (5.83, 12.40) 

HEG H 4.02 0.74 (0.49, 1.11) 3.09 (2.76, 3.57) 4.76 (3.14, 7.66) 0.79 (0.57, 1.10) 3.01 (2.71, 3.44) 4.88 (3.36, 7.40) 

HEG I 4.06 1.19 (0.73, 1.80) 3.09 (2.74, 3.54) 7.72(4.88, 10.98) 1.07 (0.66, 1.62) 3.12 (2.77, 3.59) 6.99 (4.50, 10.21) 

P95: 95th percentile; CrI: credible Interval; OEL is ≤2 mg/m3. 

Table 4. The estimated exposure category probabilities of the non-informative and informative Bayesian frameworks for the posterior 95th percentile. 

HEG 
Non-Informative Informative 

P95 Category 1 Category 2 Category 3 Category 4 P95 Category 1 Category 2 Category 3 Category 4 

HEG A 7.42 0 0 0 100% 7.50 0 00 00 100% 

HEG B 8.67 0 0 0 100% 8.14 0 0 0 100% 

HEG C 7.55 0   100% 6.03 0 0 0 100% 

HEG D 2.58 0 0.01% 7.73% 92.26% 2.83 0 0 2.26% 97.74% 

HEG E 4.04 0 0 0.10% 99.90% 4.02 0 0 0.06% 99.94% 

HEG F 4.01 0 0.02% 1.07% 98.91% 4.20 0 0 0.27% 99.70% 

HEG G 7.79 0 0 0 100% 8.53 0 0 0 100% 

HEG H 4.76 0 0 0.01% 99.99% 4.88 0 0 0 100% 

HEG I 7.72 0 0 0 100% 6.99 0 0 0 100% 
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4. Discussion 

We used informative prior from historical data to update current monitoring data on 

lognormal distribution in the Bayesian framework to produce the posterior geometric 

mean, geometric standard deviation, and the P95. Similarly, a non-informative prior was 

used, and SAMI CoP was based on P90. The findings were compared. The posterior prob-

ability of the P95 percentile exposures was also grouped according to the SAMI exposure 

category. The use of the past data is important because decision-making on exposure risk 

management only based on the current data might be misleading. The weight of the his-

torical data in the analysis is important; Symanski et al. [27] used an equal weight for both 

current and past data. We decided that weight should be unequal, with a small prior sam-

ple size to have less influence on the current data. This is consistent with other studies 

where small prior sample size was thought to produce inferential benefits when the re-

sults were compared to non-informative priors [22,28]. The Bayesian framework is also 

known to be robust with a small sample size [15], so even in the paucity of data, exposure 

risk analysis can be conducted with relative confidence. 

The application of both approaches to the prior distribution indicated that the poste-

rior estimates of GM were below the OEL. This means that the level of coal dust risk con-

trol was similar in the past and the present. However, risk mitigation and decision making 

regarding exposure control should not be based on the central distribution (mean/median) 

of the data, but on P95, which constitute at least 95% of the underlying distribution. The 

posterior GSDs were also quite similar across the two Bayesian prior distributions, how-

ever, those of the non-informative distributions tended to be somewhat higher. The GSD 

indicated high variability in the informative prior distribution. The comparison of the SA 

SAMI using the P90 for compliance and Bayesian prior methods showed that P90 was 

lower (with one HEG exposure below the OEL) compared to P95. This is consistent with 

our previous study, where the SAMI approach tended to underestimate overexposure risk 

[4]. The Bayesian approaches considered the uncertainty of overexposure not just based 

on a point estimate as to the SAMI CoP. All the HEGs in the Bayesian approach indicated 

their P95 were very high and above the OEL. The distribution of the median and P95 was 

similar to the non-informative and informative prior distribution (Figure 1). The majority 

of HEGs in the non-informative prior indicated that P95 were a bit lower and had wider 

95% CrIs, indicating a high uncertainty compared with the informative prior derived from 

the historical data. This underscores the importance of the use of historical data in coal 

mining occupational exposure assessment. Decisions on overexposure risk can be made 

with greater confidence when historical data are brought together to update the current 

data, as it is only natural that they are part of the current data.  

We then compared the posterior probabilities of grouping the P95 in each exposure 

category between the Bayesian approach from non-informative and informative prior 

(from historical data) distribution (Table 4). In both approaches, the highest probabilities 

(greater than 95%) of P95 were observed in category four of the exposure, which indicates 

poorly controlled exposure. None of the HEGs’ posterior P95 was in the lower exposure 

category. From these results, the use of historical data to update current data in Bayesian 

statistics for occupational exposure assessment is very important, as non-informative 

prior tend to assign HEGs’ in a lower category. This affects informed decision making 

with the regard to overexposure risk mitigation. Assigning HEGs to a lower category is 

similar to a simulation study that showed that non-informative uniform priors group the 

P95 probabilities in lower exposure categories [22]. The difference with the informative 

prior from historical data might be because of the possible use of incorrect prior for certain 

HEGs, resulting from a lack of adequately repeated measurements and sampling of prior 

data. 

As seen from the above, the uncertainty to inform risk management decisions is not 

low and high variability of exposure is shown by the non-informative prior distribution 

compared to the informative prior from the historical data. Although this study showed 

that non-informative priors tend to locate the posterior probabilities of P95 in a lower 
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category and increase variability, its interpretation must be taken with caution as the prob-

ability density function used to specify the prior, usually an infinite integral might yield 

improper posterior distributions [29]. Therefore, the specification of the non-informative 

uniform prior must be considered. Our findings could indicate that the decision to regard 

these HEGs as compliant or non-compliant should also consider the variability of the data.  

The strength of this study is that the Bayesian analysis naturally allows for combining 

prior information from historical data with current data within a solid decision-making 

framework [30]. With the robustness of the findings based on even a small sample size, 

the Bayesian analysis provided inferences that are based conditionally on the data, which 

makes them exact and easily interpretable. For example, the probability of the posterior 

P95 being in category four (poorly control group) can be expressed quantitatively [31]. 

Regarding the limitations of this study, it is important to recall that HEGs used in this 

study are created by grouping workers based on the common air intake and return air. 

This might mean that the HEGs can be too heterogeneous because within a HEG there can 

be several job titles with different exposure variabilities [7]. As demonstrated earlier [7], 

HEGs tend to have high variability, which also affects their compliance to the OEL and 

grouping according to exposure category. From the Bayesian perspective, sometimes his-

torical data are unavailable or are not similar and consistent to the current data, and hence 

it is not possible to conduct an informative prior. 

5. Conclusions 

It is clear from the findings that the use of the Bayesian framework with informative 

prior can inform concise decision making on occupational exposure risk mitigation in the 

coal mining industry with great confidence. Bayesian analysis from the non-informative 

uniform prior distribution tends to put HEGs in lower exposure categories than informa-

tive prior distribution derived from historical data. The non-informative prior findings 

also showed high uncertainty and variability, thus a decision on exposure risk assess-

ments would likely be made with less confidence. This makes overexposure risk likely to 

be underestimated. We recommend increased use of the Bayesian framework with the use 

of prior information from historical data in the coal mining occupational exposure assess-

ment. This will improve solid decision-making concerning coal dust overexposure risk 

and compliance. 
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