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ABSTRACT
In the Shortest Superstring problem, we are given a set of strings

and we are asking for a common superstring, which has the min-

imum number of characters. The Shortest Superstring problem

is NP-hard and several constant-factor approximation algorithms

are known for it. Of particular interest is the GREEDY algorithm,

which repeatedly merges two strings of maximum overlap until a

single string remains. The GREEDY algorithm, being simpler than

other well-performing approximation algorithms for this problem,

has attracted attention since the 1980s and is commonly used in

practical applications.

Tarhio and Ukkonen (TCS 1988) conjectured that GREEDY gives

a 2-approximation. In a seminal work, Blum, Jiang, Li, Tromp, and

Yannakakis (STOC 1991) proved that the superstring computed by

GREEDY is a 4-approximation, and this upper bound was improved

to 3.5 by Kaplan and Shafrir (IPL 2005).

We show that the approximation guarantee of GREEDY is at

most (13+
√

57)/6 ≈ 3.425. Furthermore, we prove that the Shortest

Superstring can be approximated within a factor of (37+
√

57)/18 ≈
2.475, improving slightly upon the currently best 2

11

23
-approximation

algorithm by Mucha (SODA 2013).

CCS CONCEPTS
•Theory of computation→Approximation algorithms anal-
ysis.
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1 INTRODUCTION
In the Shortest Superstring problem (SSP), we are given a set 𝑆

of strings over a finite alphabet, and we are asking for a string

of minimum length, which contains each member of 𝑆 as a sub-

string. SSP has found important applications in various scientific

domains [9]. One of the early uses was for DNA sequencing [16, 21],

where a DNAmolecule consisting of four different nucleotides (Ade-

nine, Thymine, Guanine, and Cytosine) is gradually assembled from

DNA fragments, which can be viewed as an instance of SSP over

a quaternary alphabet. Interestingly, SSP has been used to study

how effectively viruses compress their genome by overlapping

genes [11].

SSP is NP-hard, even when the alphabet is binary [8]. Moreover,

SSP is APX-hard [3] as it is not ( 333

332
− 𝜖)-approximable for any

constant 𝜖 > 0 unless P = NP [14]. There exists a plethora of

constant-factor SSP approximation algorithms, the currently best

of which has an approximation ratio upper bound of 2
11

23
= 57

23
≈

2.478 [20]. Blum, Jiang, Li, Tromp, and Yannakakis [3] showed that

the GREEDY algorithm, which repeatedly merges two strings of

maximum overlap (breaking ties arbitrarily) until a single string

remains, computes a 4-approximate superstring. Additionally, Blum

et al. gave two simple variants of GREEDY, namely TGREEDY with

approximation ratio at most 3 and MGREEDY with ratio at most 4.

A series of improved approximation algorithms followed, most of

which were published in the 1990s [1, 2, 4, 5, 15, 20, 24, 26]. It is

worth noting that several of these algorithms are significantly more

involved than the natural GREEDY algorithm.

The GREEDY algorithm for SSP was proposed by Gallant, Maier,

and Storer [7]. Tarhio and Ukkonen [25] and independently Turner

[27] showed that GREEDY gives a
1

2
-approximation for the maxi-

mum string compression. The string compression equals the num-

ber of characters that a superstring algorithm saves from the total

length of all strings in 𝑆 , i.e., it is the total overlap between all pairs

of adjacent strings across the superstring. This result, however,

does not imply a constant approximation ratio upper bound for

GREEDY, for the length metric.

Moreover, Tarhio and Ukkonen showed that the approxima-

tion ratio of GREEDY is at least 2, by considering the input 𝑆 =

{𝑎𝑏𝑘 , 𝑏𝑘+1, 𝑏𝑘𝑎}, for which, depending on the tie-breaking choice,

GREEDY will either output the shortest superstring or a super-

string of length twice the minimum, when 𝑘 → ∞ (for input

{𝑐 (𝑎𝑏)𝑘 , (𝑏𝑎)𝑘 , (𝑎𝑏)𝑘𝑐}, the ratio also tends to 2, but no tie-breaking

is involved). Finally, Tarhio and Ukkonen conjectured that GREEDY
is a 2-approximation algorithm, forming the long-standing Greedy
Conjecture. By utilizing the Overlap Rotation Lemma of [4] in

the proof of Blum et al. [3], Kaplan and Shafrir [13] showed that

GREEDY gives a 3.5-approximation.

https://doi.org/10.1145/3519935.3520001
https://doi.org/10.1145/3519935.3520001


STOC ’22, June 20–24, 2022, Rome, Italy Matthias Englert, Nicolaos Matsakis, and Pavel Veselý

The GREEDY algorithm has been commonly used in practical

applications when it becomes infeasible to compute an optimal

solution [11, 17, 21]. Also, the good performance of GREEDY in

practice has been documented within a probabilistic framework [6,

18]. In this paper, we make the first progress on the approximation

guarantee of GREEDY since 2005.

Theorem 1.1. The approximation ratio of GREEDY is at most
(13 +

√
57)/6 ≈ 3.425.

Furthermore, we obtain a better approximation guarantee for

SSP, improving slightly upon the algorithm by Mucha [20].

Theorem 1.2. The Shortest Superstring problem can be approxi-
mated within a factor of (37 +

√
57)/18 ≈ 2.475.

Finally, our techniques also imply better approximation guaran-

tees for TGREEDY andMGREEDY; see Section 3.2.

2 DEFINITIONS
We start by reviewing useful notation and concepts from previous

works [3, 4, 13] that are necessary to explain our contribution in

more detail.

By 𝑆 = {𝑠1, . . . , 𝑠𝑚} we denote the input consisting of 𝑚 ≥ 2

finite strings. Without loss of generality (w.l.o.g.), we assume that

no string in 𝑆 is a substring of another string in 𝑆 . This is because

the addition of any substring of a string in 𝑆 to the input cannot

modify the superstring that any algorithm considered here outputs.

By |𝑠 | we denote the length (i.e., number of characters) of a

string 𝑠 . By 𝑠 [𝑖, 𝑗] we denote the substring of 𝑠 starting at its 𝑖-th

character and ending at its 𝑗-th character, where 𝑗 ∈ [𝑖, |𝑠 |]. For
any two strings 𝑠 and 𝑡 , 𝑠𝑡 will denote their concatenation.

Overlaps and distances. By ov(𝑠, 𝑡) we denote the longest (max-

imum) overlap to merge a string 𝑠 with a different string 𝑡 , i.e.,

ov(𝑠, 𝑡) = 𝑠 [|𝑠 | − 𝑖 + 1, |𝑠 |], where 𝑖 is the largest integer for which
𝑠 [|𝑠 | − 𝑖 + 1, |𝑠 |] = 𝑡 [1, 𝑖] holds. For instance, for 𝑠=’bababa’ and
𝑡=’ababab’, we have ov(𝑠, 𝑡)=’ababa’. By ov(𝑠, 𝑠) we denote the

longest self-overlap of string 𝑠 which has length smaller than |𝑠 |;
for instance, ov(𝑠, 𝑠)=’baba’ for 𝑠=’bababa’.

By pref(𝑠, 𝑡) we denote the prefix of maximally merging string 𝑠

with string 𝑡 , i.e., assuming that 𝑠 = 𝑢𝑣 and 𝑡 = 𝑣𝑧 for strings

𝑢, 𝑣 = ov(𝑠, 𝑡), and 𝑧, it holds that pref(𝑠, 𝑡) = 𝑢. In the same

way, we define pref(𝑠, 𝑠) so that 𝑠 = pref(𝑠, 𝑠)ov(𝑠, 𝑠). The distance
dist(𝑠, 𝑡) = |pref(𝑠, 𝑡) | is the number of characters of the prefix;

possibly dist(𝑠, 𝑡) ≠ dist(𝑡, 𝑠).

Distance and overlap graphs. The distance graph is a complete

directed graph with self-loops, written as 𝐺dist (𝑆) = (𝑉 , 𝐸, dist(, )),
where |𝑉 | = 𝑚, |𝐸 | = 𝑚2

. Each node corresponds to a string in 𝑆

and the weight of a directed edge (𝑠, 𝑡) equals dist(𝑠, 𝑡), the distance
to merge string 𝑠 with the (not necessarily distinct) string 𝑡 . Note

that the edge lengths satisfy the triangle inequality dist(𝑠, 𝑡) ≤
dist(𝑠, 𝑡 ′) + dist(𝑡 ′, 𝑡) as one always obtains the longest overlap by

directly merging 𝑠 to 𝑡 .

Similarly, the overlap graph 𝐺ov (𝑆) is a complete directed graph

(𝑉 , 𝐸, |ov(, ) |) with self-loops, where |𝑉 | = 𝑚, |𝐸 | = 𝑚2
and the

profit of each directed edge (𝑠, 𝑡) equals |ov(𝑠, 𝑡) |, i.e., the longest
overlap to merge string 𝑠 with the (not necessarily distinct) string

𝑡 . We will also write ov(𝑠, 𝑡) as ov(𝑒), where 𝑒 = (𝑠, 𝑡) is a directed
edge of the overlap graph.

We can identify an edge 𝑒 = (𝑠, 𝑡) in 𝐺dist or 𝐺ov with the new

string pref(𝑠, 𝑡)𝑡 which we obtain by merging 𝑠 and 𝑡 . Repeating this

argument, we see that a simple directed path 𝑠0 → 𝑠1 → · · · → 𝑠𝑘
corresponds to a new string pref(𝑠0, 𝑠1) . . . pref(𝑠𝑘−1

, 𝑠𝑘 )𝑠𝑘 which

contains all strings represented by nodes on the path as substrings

in the same order. Accordingly, a superstring of 𝑆 simply corre-

sponds to a directed Hamiltonian path in the graph. If two strings

𝑠 and 𝑡 appear in adjacent positions and in this order (i.e., 𝑠 pre-

cedes 𝑡 ) across a superstring, we say that 𝑠 and 𝑡 are merged in the

superstring.

Cycle Covers. A cycle cover in a complete directed weighted

graph 𝐺 with self-loops is a set of directed cycles such that the

inner degree and the outer degree of each node of𝐺 are both unit.

An 𝑥-cycle, where 𝑥 ∈ [1,𝑚], is a directed cycle consisting of 𝑥

nodes. If 𝑠 and 𝑡 are in the same cycle of a cycle cover containing

edge (𝑠, 𝑡), we say that 𝑠 and 𝑡 are merged in the cycle cover.

By𝑤 we denote the minimum length of a cycle cover in𝐺dist (𝑆),
i.e.,𝑤 is the minimum sum of distances of edges in a cycle cover in

𝐺dist (𝑆). A minimum-length cycle cover in 𝐺dist (𝑆) is a maximum

overlap cycle cover in𝐺ov (𝑆), since for any edge (𝑠, 𝑡), it holds that
|ov(𝑠, 𝑡) | = |𝑠 | − dist(𝑠, 𝑡). Note that we may have more than one

cycle cover with the same length𝑤 ; to see that, consider the input

𝑆 = {𝑎𝑏𝑘 , 𝑏𝑘+1, 𝑏𝑘𝑎}, for which the 3-cycle consisting of strings

𝑎𝑏𝑘 , 𝑏𝑘+1, 𝑏𝑘𝑎 has length 𝑘 + 2, which equals the length of the 2-

cycle for strings 𝑎𝑏𝑘 , 𝑏𝑘𝑎 plus the length of the 1-cycle for string

𝑏𝑘+1
.

Amaximum overlap cycle cover in𝐺ov (𝑆) is computed efficiently

in the second step of the MGREEDY algorithm of Blum et al. [3,

Theorem 10]. In a nutshell, MGREEDY computes an optimal cycle

cover by sorting the edges of the overlap graph non-increasingly

by their overlap lengths (breaking ties arbitrarily), and adding an

edge (𝑠, 𝑡) to the cycle cover if and only if no edge (𝑠, 𝑡 ′) or (𝑠 ′, 𝑡)
has been chosen before (𝑠, 𝑡). Fixing some arbitrary tie-breaking,

we denote the resulting maximum overlap cycle cover by CC(𝑆).
For any cycle 𝑐 of CC(𝑆), the last edge of 𝑐 added by MGREEDY to

the solution is called the cycle-closing edge. We will frequently use

the fact that the overlap length of every edge in a cycle 𝑐 is at least

as large as the overlap length of the cycle-closing edge of 𝑐 . The

sum of overlap lengths of all cycle-closing edges of CC(𝑆) will be
denoted by 𝑜 .

By |ALG(𝑆) | we denote the length of a superstring ALG(𝑆) pro-
duced by an algorithm ALG for input 𝑆 . We use 𝑛 = |OPT(𝑆) |,
where OPT is an optimal Shortest Superstring algorithm. Since

merging the last string of a superstring with the first string of this

superstring gives a cycle cover in the distance graph (namely, a

Hamiltonian cycle), it follows that𝑤 ≤ 𝑛.

Representative strings. By 𝑠𝑐0
→ 𝑠𝑐1

→ · · · → 𝑠𝑐𝑟−1
→ 𝑠𝑐0

we de-

note the cycle 𝑐 ∈ CC(𝑆) consisting of 𝑟 ≥ 1 strings, where the last

edge 𝑠𝑐𝑟−1
→ 𝑠𝑐0

always denotes the cycle-closing edge. By 𝑅𝑐 we

denote the string pref(𝑠𝑐0
, 𝑠𝑐1

)pref(𝑠𝑐1
, 𝑠𝑐2

) . . . pref(𝑠𝑐𝑟−2
, 𝑠𝑐𝑟−1

)𝑠𝑐𝑟−1
,

i.e., the string obtained by opening the cycle-closing edge 𝑠𝑐𝑟−1
→

𝑠𝑐0
of cycle 𝑐 . String 𝑅𝑐 will be called the representative string of

cycle 𝑐; note that 𝑅𝑐 contains all strings of 𝑐 as substrings. As R
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we denote the set of all representative strings. It follows that a

superstring of the strings in R is, also, a superstring of the strings

in 𝑆 .

3 OUR CONTRIBUTION
Our technical result is the following upper bound on 𝑜 , the to-

tal overlap length of cycle-closing edges, in terms of the shortest

superstring length 𝑛 and 𝑤 , the total length of all cycles of the

minimum-length cycle cover CC(𝑆):

𝑜 ≤ 𝑛 + 𝛽 ·𝑤 for 𝛽 =
1 +

√
57

6

≈ 1.425 . (1)

This improves upon similar bounds on 𝑜 in [3, 13], which we out-

line below. In the following two subsections, we explain how this

inequality implies Theorems 1.1 and 1.2. The remaining part of the

paper is devoted to proving (1).

3.1 Improved Approximation Guarantee of
GREEDY

Assuming that all |𝐸 | = 𝑚2
edges of 𝐺ov (𝑆) are ordered by non-

increasing overlap, breaking ties arbitrarily, GREEDY works by

going down this list and picking edge 𝑒 if:

• 𝑒 does not share a head or tail with an edge 𝑒 ′ that GREEDY
picked in a previous step (such 𝑒 ′ precedes 𝑒 in the ordered

list of edges) and

• 𝑒 is not a cycle-closing edge.

Otherwise, GREEDY moves to the next edge in the order. Clearly,

GREEDY outputs a directed path of 𝑚 − 1 edges which gives a

superstring by merging adjacent strings. Note that the computation

of CC(𝑆) by MGREEDY only differs from GREEDY by not using

the second condition.

Blum et al. [3] call the edges rejected by GREEDY for not satisfy-

ing the second condition (but satisfying the first condition) bad back
edges. The reason that they are called “back edges” is that one can

number the input strings 𝑆 = {𝑠1, . . . , 𝑠𝑚} so that the superstring

GREEDY(𝑆) contains the strings in the same order, i.e., 𝑠𝑖 appears

before 𝑠 𝑗 in GREEDY(𝑆) if and only if 𝑖 < 𝑗 . In this subsection, we

assume that the input strings are numbered in this way.

We say that a bad back edge 𝑒 spans interval [𝑖, 𝑗] (for 𝑖 ≤ 𝑗 ) if

𝑒 = (𝑠 𝑗 , 𝑠𝑖 ). Blum et al. show that the intervals spanned by two bad

back edges are either disjoint or one is contained in the other, i.e.,

these intervals form a laminar family [3, Lemma 13]. A culprit is a
bad back edge 𝑒 such that the interval spanned by 𝑒 is minimal in

this laminar family (i.e., there is no bad back edge 𝑒 ′ such that the

interval spanned by 𝑒 ′ is properly contained in the interval spanned
by 𝑒). See Figure 1 for an illustration. A cycle is called culprit if its
cycle-closing edge is a culprit.

Let𝑤𝑐 denote the sum of the lengths of culprit cycles and let 𝑜𝑐
be the sum of overlap lengths of culprit edges. Blum et al. showed

the following two inequalities (paragraph after the proof of Lemma

17 in [3]):

|GREEDY(𝑆) | ≤ 2𝑛 + 𝑜𝑐 −𝑤𝑐 (2)

𝑜𝑐 ≤ 𝑛 + 2𝑤𝑐 (3)

Plugging (3) into (2), we have |GREEDY(𝑆) | ≤ 2𝑛 + 𝑜𝑐 − 𝑤𝑐 ≤
3𝑛 +𝑤𝑐 ≤ 4𝑛, since 𝑤𝑐 ≤ 𝑤 ≤ 𝑛. By using the Overlap Rotation

Lemma of [4], Kaplan and Shafrir [13] improved (3) to𝑜𝑐 ≤ 𝑛+1.5𝑤𝑐

and, hence, the upper bound on the approximation ratio of GREEDY
to 3.5 since |GREEDY(𝑆) | ≤ 2𝑛 + 𝑜𝑐 −𝑤𝑐 ≤ 3𝑛 + 0.5 ·𝑤𝑐 ≤ 3.5𝑛.

Let 𝑆𝑐 ⊆ 𝑆 be the set of input strings which lie on culprit cycles.

Blum et al. show that the application of MGREEDY on 𝑆𝑐 outputs

exactly the culprit cycles [3, Lemma 15] (see also Observation 5.1).

Therefore, our technical result in (1) applied to input 𝑆𝑐 implies

𝑜𝑐 ≤ 𝑛𝑐 + 𝛽 · 𝑤𝑐 where 𝑛𝑐 ≤ 𝑛 equals the length of the shortest

superstring for 𝑆𝑐 . Plugging this into (2), we have: |GREEDY(𝑆) | ≤
2𝑛 + 𝑛𝑐 + (𝛽 − 1) ·𝑤𝑐 ≤ 3𝑛 + (𝛽 − 1) ·𝑤𝑐 ≤ (2 + 𝛽) · 𝑛 ≈ 3.425𝑛.

3.2 Improved Approximation Guarantee for
SSP

As discussed before, the algorithm MGREEDY computes CC(𝑆) or,
more specifically, the set of representative strings R for all cycles.

It then outputs the superstring that is obtained by concatenating

all representative strings in an arbitrary order. The total length

of the representative strings is 𝑤 + 𝑜 , i.e., the minimum length

of a cycle cover in 𝐺dist (𝑆) plus the sum of overlaps of all cycle-

closing edges of the cycle cover. Our main result in (1) states that

𝑜 ≤ 𝑛 + 𝛽 ·𝑤 . Therefore, the superstring computed byMGREEDY
has length 𝑤 + 𝑜 ≤ 𝑛 + (1 + 𝛽) · 𝑤 ≤ (2 + 𝛽) · 𝑛. Hence, just as
for GREEDY, we get that MGREEDY is a (2 + 𝛽)-approximation

algorithm, which improves upon the upper bound of 3.5 implied in

[13].

Instead of just concatenating the representative strings, we can

also attempt to overlap them, i.e., to compute a shorter superstring

of the representative strings. One possibility is to use an approxi-

mation algorithm for Maximum Asymmetric TSP (MaxATSP) for

this in order to find a superstring that aims to maximize the total

overlap between the representative strings.

The following theorem is adopted from the literature [4, 19, 20]

(for this particular version we are following [19, Theorem 21])

and, combined with our new result for MGREEDY, results in an

improved approximation guarantee for SSP. A proof is included in

the appendix of the full version of the paper.

Theorem 3.1. IfMGREEDY is a (2 + 𝛽)-approximation algorithm
and there exists a 𝛿-approximation algorithm forMaxATSP (for 𝛿 ≤ 1),
then there exists a (2 + (1 − 𝛿) · 𝛽)-approximation algorithm for SSP.

Using the
2

3
-approximation algorithm for MaxATSP of [12] or

the more recent and simpler
2

3
-approximation algorithm of [23],

Theorem 3.1 with 𝛿 = 2

3
implies that we get an approximation

guarantee of
37+

√
57

18
≈ 2.475. This improves slightly upon the ap-

proximation guarantee of 2
11

23
≈ 2.478 of the currently best SSP

algorithm [20]. The use of a better than
2

3
-approximation algorithm

for MaxATSP as a black-box will give an even smaller approxima-

tion guarantee for SSP. (For example, there is a recent preprint by

Paluch [22] claiming a
7

10
-approximation for MaxATSP. Combining

our result with a
7

10
-approximation for MaxATSP would result in a

≈ 2.427-approximation for SSP.)

TGREEDY. The TGREEDY algorithm of Blum et al. works by first

computing the representative strings R and then, rather than us-

ing a possibly complicated approximation algorithm for MaxATSP,

applying GREEDY to this set of representative strings. As GREEDY
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𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7 𝑠8 𝑠9 𝑠10 𝑠11 𝑠12 𝑠13 𝑠14

Figure 1: Illustration of culprits. The superstring returned byGREEDYmerges the strings 𝑠1 to 𝑠14 in this order as indicated by
the path (however, the order in which GREEDY picks edges (𝑠𝑖−1, 𝑠𝑖 ) is different). The bend edges are the bad back edges. Out
of the bad back edges, the dashed edges are the culprits.

gives a
1

2
-approximation for such instances of MaxATSP [25, 27]

(more precisely, for the longest Hamiltonian path, which is suf-

ficient), using 𝛿 = 1

2
in Theorem 3.1, we get that TGREEDY is a

25+
√

57

12
≈ 2.7125-approximation algorithm, which improves upon

the upper bound of 2.75 (implied in [4, 19]).

4 THE BIG PICTURE
Small, large, and extra large cycles. Our key idea is to partition

cycles into a few types according to the ratio between their length

and the overlap length of their cycle-closing edge, and treat these

types differently in the analysis. To this end, let 𝑤 (𝑐) denote the
length of a cycle 𝑐 of CC(𝑆), and let 𝑜 (𝑐) denote the overlap length

of the cycle-closing edge of 𝑐 , i.e., 𝑜 (𝑐) = |ov(𝑠𝑐𝑟−1
, 𝑠𝑐0

) |, where
(𝑠𝑐𝑟−1

, 𝑠𝑐0
) is the cycle-closing edge. A cycle 𝑐 of CC(𝑆) is

• a small cycle if 𝑜 (𝑐) > 2𝑤 (𝑐),
• a large cycle if 𝛽 ·𝑤 (𝑐) < 𝑜 (𝑐) ≤ 2𝑤 (𝑐), and
• an extra large cycle if 𝑜 (𝑐) ≤ 𝛽 ·𝑤 (𝑐),

where 𝛽 is the parameter defined in (1). The set of extra large cycles

of CC(𝑆) will be denoted by X(𝑆), the set of large cycles of CC(𝑆)
will be denoted by L(𝑆), and the set of small cycles of CC(𝑆) will
be denoted by S(𝑆).

In Section 5.1, we show that we can assume w.l.o.g. that CC(𝑆)
contains no extra large cycle. For this, we exploit the slack in the

right-hand side of 𝑜 (𝑐) ≤ 𝛽 ·𝑤 (𝑐) for an extra large cycle 𝑐 , com-

pared to the right-hand side of 𝑜 ≤ 𝑛 + 𝛽 · 𝑤 that we want to

show.

Outline. To get our technical result in (1), we prove two indepen-

dent upper bounds on 𝑜 . In Section 6, we improve 𝑜 ≤ 𝑛 + 1.5𝑤 =

𝑛 + 1.5 · ∑𝑐∈S(𝑆) 𝑤 (𝑐) + 1.5 · ∑𝑐∈L(𝑆) 𝑤 (𝑐) of [13] to

𝑜 ≤ 𝑛 +
∑︁

𝑐∈S(𝑆)
𝑤 (𝑐) + 3

2

·
∑︁

𝑐∈L(𝑆)
𝑤 (𝑐) . (4)

On its own, the improvement by
1

2
· ∑𝑐∈S(𝑆) 𝑤 (𝑐) over [13] is

insignificant because the total length of the small cycles may be

very small compared to the total length of the large cycles. However,

we show a different upper bound which is better when small cycles

contribute only very little to𝑤 . Namely, in Section 7, we prove that

𝑜 ≤ 𝑛 + 𝛾 ·
∑︁

𝑐∈S(𝑆)
𝑤 (𝑐) +

∑︁
𝑐∈L(𝑆)

𝑤 (𝑐) (5)

for a positive constant 𝛾 , and this is sufficient to obtain 𝑜 ≤ 𝑛 +
(1.5− 𝜖) ·𝑤 for a positive constant 𝜖 , when combined with the first

upper bound on 𝑜 . Naturally, the smaller𝛾 we get, the smaller the re-

sulting upper bound. We will require that 𝛾 and the aforementioned

parameter 𝛽 satisfy the following four constraints:

(3 − 2𝛽) · 𝛾 = 2 − 𝛽 (6)

3 ·
(
𝛽 − 2

𝛾 − 2

)
≥ 1 (7)

5

2

+ 1

2(𝛽 − 1) ≤ 𝛾 (8)

𝛾 ≤ (𝛾 − 1) · 𝛽 (9)

Solving this system of inequalities, while minimizing 𝛽 , yields

𝛽 =
1 +

√
57

6

≈ 1.425 and 𝛾 =
31 + 3

√
57

14

≈ 3.832 .

Note that (8) and (9) are not tight, i.e., 𝛽 and 𝛾 are determined by (6)

and (7).

Multiplying (4) by (2𝛽 − 2) and (5) by (3 − 2𝛽) and adding the

two resulting inequalities we get

𝑜 ≤ 𝑛 +
(
(2𝛽 − 2) + (3 − 2𝛽) · 𝛾

)
·

∑︁
𝑐∈S(𝑆)

𝑤 (𝑐)

+
(
(3𝛽 − 3) + (3 − 2𝛽)

)
·

∑︁
𝑐∈L(𝑆)

𝑤 (𝑐)

= 𝑛 + 𝛽
∑︁

𝑐∈S(𝑆)
𝑤 (𝑐) + 𝛽

∑︁
𝑐∈L(𝑆)

𝑤 (𝑐) = 𝑛 + 𝛽 ·𝑤 ,

where we use (6) in the second step. This shows (1), as desired.

Intuition. Before we start with formal proofs, we give some intu-

ition and explain the main ideas behind our technical contribution.

First, we observe in Section 5.1 that we can assume that there are

no extra large cycles (as they can be handled separately), which

will be useful in the proof of the second upper bound. Note that

if all (remaining) cycles are large, then our proof is complete as

summing over all cycles gives 𝑜 ≤ 2 · 𝑤 ≤ 𝑛 + 𝑤 . On the other

hand, if all (remaining) cycles are small, the first bound (4) gives

𝑜 ≤ 𝑛 +𝑤 , again implying a better bound than in (1). This means

that it is the presence of both small and large cycles that makes the

analysis challenging.

To facilitate the analysis of small cycles, we show in Section 5.3

that we can make the following assumption: If an optimal super-

string merges two strings from one small cycle 𝑐 , then these two

strings must be merged in the small cycle 𝑐 as well. This essentially

follows from the large amount of overlap length (relatively to𝑤 (𝑐))
in small cycles.
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We obtain the first bound by proving a lower bound on 𝑛, the

optimal superstring length. Roughly speaking, we show that each

small cycle 𝑐 must contribute at least 𝑜 (𝑐) −𝑤 (𝑐) to 𝑛, for which
we use that strings of small cycles must be relatively long (longer

than 𝑜 (𝑐) > 2𝑤 (𝑐)) together with a bound from [3] on the overlap

between two strings from different cycles. For a large cycle, we

use a generalization of the Overlap Rotation Lemma from [4] to

carefully pick a single string from this cycle that is suitable for

obtaining the lower bound on 𝑛.

It is the second upper bound that constitutes our main technical

contribution. Recall that 𝑤 , the length of the optimal cycle cover

CC, is a lower bound on the length of the shortest Hamiltonian

cycle CC0 in 𝐺dist, which is itself a lower bound on 𝑛. In proving

the second upper bound, we make use of the difference between

𝑤 and the length of CC0 and therefore, we derive a stronger lower

bound on 𝑛. Namely, we construct a careful sequence of edge swaps

transforming CC0 into CC such that each step decreases the length

of the current cycle cover by at least a certain suitable amount. In a

nutshell, when an edge swap in the constructed sequence results

in adding a small cycle 𝑐 ∈ CC to the current cycle cover, we show

that this must decrease the length of the cycle cover by at least

𝑜 (𝑐) − 𝛾 · 𝑤 (𝑐) minus a term for certain large cycles affected by

the swap. Summing up over all steps will give us the desired lower

bound on the length of CC0.

Outline. Before proving the two bounds using the ideas outlined
above, we review useful lemmas from previous work in Section 5.2

and derive several properties of strings belonging to small cycles

in Section 5.3. We remark that Sections 6 and 7 are independent of

each other and can be read in any order.

5 PRELIMINARIES FOR THE ANALYSIS
We start by observing that MGREEDY executed on the strings

belonging to a subset of cycles of the minimum cycle cover CC(𝑆)
produces exactly the same subset of cycles.

Observation 5.1. LetCC ⊆ CC(𝑆) be a set of cycles and let 𝑆 ⊆ 𝑆

be the set of input strings that belong to cycles in CC. ThenMGREEDY
on input 𝑆 (with the same tie-breaking rule) outputs CC, which is
thus the minimum-length cycle cover of 𝑆 , i.e., CC(𝑆) = CC.

Proof. Note thatMGREEDY on input 𝑆 rejects any edge (𝑠, 𝑡)
between 𝑆 and 𝑆 \𝑆 because there is an incident edge (𝑠 ′, 𝑡) or (𝑠, 𝑡 ′)
with larger (or equal) overlap that precedes (𝑠, 𝑡) in the list of edges

sorted by their overlap length. Thus, when we runMGREEDY on

input 𝑆 , it selects exactly the same edges among vertices in 𝑆 as

when we runMGREEDY on input 𝑆 . □

5.1 Dealing with Extra Large Cycles
Let 𝑆 ⊆ 𝑆 be the subset of strings that belong to all small and large

cycles of CC(𝑆). Observation 5.1 implies that CC(𝑆) consists of all
small and large cycles ofCC(𝑆), whileCC(𝑆−𝑆) consists of all extra
large cycles of CC(𝑆). Let �̂� denote the sum of lengths of the (extra

large) cycles in CC(𝑆 − 𝑆) and let 𝑜 be the sum of overlap lengths

of the cycle-closing edges of the cycles in CC(𝑆 − 𝑆). Similarly, let

𝑜 be the sum of overlap lengths of the cycle-closing edges in CC(𝑆)
and let𝑤 be the sum of lengths of the cycles in CC(𝑆). Proving (1)

for input 𝑆 implies that 𝑜 ≤ |OPT(𝑆) | + 𝛽 ·𝑤 , and assuming this,

we show 𝑜 ≤ 𝑛 + 𝛽 · 𝑤 . Indeed, we take the sum of inequality

𝑜 ≤ |OPT(𝑆) | + 𝛽 ·𝑤 with inequality 𝑜 ≤ 𝛽 · �̂� (which holds by the

definition of extra large cycles) and obtain:

𝑜 = 𝑜 + 𝑜 ≤ |OPT(𝑆) | + 𝛽 ·𝑤 + 𝛽 · �̂� = |OPT(𝑆) | + 𝛽 ·𝑤 ≤ 𝑛 + 𝛽 ·𝑤
where the penultimate step uses𝑤 = 𝑤 + �̂� and the last inequality

uses |OPT(𝑆) | ≤ |OPT(𝑆) | = 𝑛, which follows from 𝑆 ⊆ 𝑆 . There-

fore, for proving (1), we assume w.l.o.g. that CC(𝑆) has no extra

large cycle.

5.2 Useful Lemmas from Previous Work
We start with describing further concepts from the literature. A

semi-infinite string is defined as the concatenation of an infinite

number of finite non-empty strings. If these strings are the same

string 𝑥 , then the semi-infinite string will be denoted by 𝑥∞ and

called periodic. For a semi-infinite string 𝛼 and integer 𝑘 ≥ 1, we

denote by 𝛼 [𝑘] its (semi-infinite) substring which starts at its 𝑘-th

character.

We say that a string 𝑠 has a periodicity of length 𝑎 for 𝑎 ≤ |𝑠 | if 𝑠
is a prefix of 𝑥∞ for some string 𝑥 of length 𝑎. Note that pref(𝑠, 𝑠)
is the shortest string 𝑥 such that 𝑠 is a prefix of 𝑥∞. The length of

pref(𝑠, 𝑠) is denoted as period(𝑠) = |pref(𝑠, 𝑠) | = dist(𝑠, 𝑠). In other

words, period(𝑠) is the smallest periodicity of a string. We will need

the following property of periodicity; see e.g. [10, Theorem 16.17.1].

Lemma 5.2. Any string 𝑠 with periodicities 𝑎 and 𝑏 such that |𝑠 | ≥
𝑎+𝑏 has periodicity gcd(𝑎, 𝑏), where gcd(𝑎, 𝑏) is the greatest common
divisor of 𝑎 and 𝑏. Consequently, any periodicity 𝑎 of 𝑠 with 𝑎 ≤ |𝑠 |/2

(if any) is an integer multiple of period(𝑠).

String 𝑧 is a rotation of string 𝑞 if 𝑞 = 𝑢𝑣 and 𝑧 = 𝑣𝑢 for some

strings 𝑣 and 𝑢 (string 𝑧 is a rotation of itself if one of them is

empty). Two strings 𝑠 and 𝑡 are equivalent if pref(𝑡, 𝑡) is a rotation
of pref(𝑠, 𝑠), i.e., there exist strings 𝑥 and 𝑦 (possibly empty) such

that pref(𝑠, 𝑠) = 𝑥𝑦 and pref(𝑡, 𝑡) = 𝑦𝑥 . Two strings that are not

equivalent will be called inequivalent.
For any cycle 𝑐 = 𝑠𝑐0

→ 𝑠𝑐1
→ · · · → 𝑠𝑐𝑟−1

→ 𝑠𝑐0
in𝐺dist (𝑆), we

define 𝑠 (𝑐) as the string pref(𝑠𝑐0
, 𝑠𝑐1

)pref(𝑠𝑐1
, 𝑠𝑐2

) . . . pref(𝑠𝑐𝑟−1
, 𝑠𝑐0

),
which has length 𝑤 (𝑐). Observe that 𝑅𝑐 = 𝑠 (𝑐)ov(𝑠𝑐𝑟−1

, 𝑠𝑐0
) and

that 𝑅𝑐 is a prefix of 𝑠 (𝑐)∞. We define as strings(𝑐, 𝑠𝑐𝑙 ) the string
pref(𝑠𝑐𝑙 , 𝑠𝑐𝑙+1

) . . . pref(𝑠𝑐𝑙−1
, 𝑠𝑐𝑙 ), where subscript arithmetic is mod-

ulo 𝑟 and 0 ≤ 𝑙 ≤ 𝑟 − 1. In other words, strings(𝑐, 𝑠𝑐𝑙 ) is a rotation
of 𝑠 (𝑐) such that string 𝑠𝑐𝑙 is a prefix of strings(𝑐, 𝑠𝑐𝑙 )∞.

The following three lemmas appear in previous works:

Lemma 5.3 (Claim 2 in [3]). For any cycle 𝑐 in the distance graph
for 𝑆 , every string of 𝑐 is a substring of 𝑠 (𝑐)∞.

Lemma 5.4 (Claim 3 in [3]). If all strings of a subset of 𝑆 are
substrings of a semi-infinite string 𝑡∞, then there exists a cycle of
length |𝑡 | in the distance graph𝐺dist (𝑆) that contains all these strings.

Lemma 5.5 (Lemma 13 in [19]). It holds that period(𝑅𝑐 ) = 𝑤 (𝑐)
for any cycle 𝑐 of CC(𝑆).

As a corollary of these lemmas, we obtain:

Observation 5.6. The representative strings 𝑅𝑐 and 𝑅𝑐′ for any
two cycles 𝑐 and 𝑐 ′ in CC(𝑆) are inequivalent. Moreover, any string
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𝑅𝑐′ that contains all strings of cycle 𝑐 ′ as substrings is inequivalent to
𝑠 (𝑐)∞.

Proof. Recall that 𝑅𝑐 is a prefix of 𝑠 (𝑐)∞, which contains all

strings of 𝑐 by Lemma 5.3. Lemma 5.5 implies that pref(𝑅𝑐 , 𝑅𝑐 ) =
𝑠 (𝑐) and pref(𝑅𝑐′, 𝑅𝑐′) = 𝑠 (𝑐 ′). If 𝑅𝑐 and 𝑅𝑐′ were equivalent, then
𝑠 (𝑐 ′) is a rotation of 𝑠 (𝑐) and thus, any string of both cycles appears

as a substring of 𝑠 (𝑐)∞. Therefore, by Lemma 5.4, all strings of both

𝑐 and 𝑐 ′ are contained in a single cycle of length𝑤 (𝑐), contradicting
the minimality of CC(𝑆).

The second claim follows similarly. If pref(𝑅𝑐′, 𝑅𝑐′) is a rotation
of 𝑓 := pref(𝑠 (𝑐)∞, 𝑠 (𝑐)∞), then 𝑓 ∞ = 𝑠 (𝑐)∞ contains all strings of

both 𝑐 and 𝑐 ′, so we again obtain a contradictionwith theminimality

of CC(𝑆) by using Lemma 5.4. □

Since the representative string 𝑅𝑐 contains any string 𝑠 of the

cycle 𝑐 it belongs to, the period of 𝑠 cannot be larger than period(𝑅𝑐 )
and thus, by Lemma 5.5, we obtain:

Observation 5.7. For any string 𝑠 of a cycle 𝑐 ∈ CC(𝑆), it holds
that period(𝑠) ≤ 𝑤 (𝑐).

Next, we need the following upper bound for the overlap length

between inequivalent strings:

Lemma 5.8 (Lemma 2.3 in [13]). For any two inequivalent strings
𝑠 and 𝑡 , it holds that |ov(𝑠, 𝑡) | < period(𝑠) + period(𝑡).

In the case that these two inequivalent strings belong to two

different cycles 𝑐 and 𝑐 ′ of CC(𝑆), we have |ov(𝑠, 𝑡) | < 𝑤 (𝑐) +𝑤 (𝑐 ′)
by Observation 5.7, and more generally:

Lemma 5.9 (Lemma 9 in [3]). Let 𝑐 and 𝑐 ′ be any two cycles of
CC(𝑆). It holds that |ov(𝑠, 𝑡) | < 𝑤 (𝑐) +𝑤 (𝑐 ′), where 𝑠 is any string
of 𝑐 and 𝑡 is any string of 𝑐 ′.

We will need an even more general corollary that follows from

the same argument as in Lemma 9 in [3] (see also Lemma 7 in [19]),

but we provide a proof for completeness.

Corollary 5.10. Let 𝑐 and 𝑐 ′ be any two cycles of CC(𝑆). Any
string ℎ, which is a substring of both 𝑠 (𝑐)∞ and 𝑠 (𝑐 ′)∞, satisfies |ℎ | <
𝑤 (𝑐) +𝑤 (𝑐 ′). In particular, it holds that |ov(𝑠, 𝑡) | < 𝑤 (𝑐) +𝑤 (𝑐 ′),
where 𝑠 is any substring of 𝑠 (𝑐)∞ and 𝑡 is any substring of 𝑠 (𝑐 ′)∞.

Proof. Assume for a contradiction that |ℎ | ≥ 𝑤 (𝑐) + 𝑤 (𝑐 ′).
Since ℎ is a substring of 𝑠 (𝑐)∞, it is a prefix of 𝑥∞

1
for a string

𝑥1 with |𝑥1 | = 𝑤 (𝑐), which is a rotation of 𝑠 (𝑐). Similarly, ℎ is a

prefix of 𝑥∞
2

for 𝑥2 with |𝑥2 | = 𝑤 (𝑐 ′), which is a rotation of 𝑠 (𝑐 ′).
Using |ℎ | ≥ 𝑤 (𝑐) +𝑤 (𝑐 ′), we get that 𝑥1𝑥2 = 𝑥2𝑥1 and by a simple

induction, it holds that 𝑥𝑘
1
𝑥𝑘

2
= 𝑥𝑘

2
𝑥𝑘

1
for any 𝑘 ≥ 1, which implies

𝑥∞
1

= 𝑥∞
2
. Since any string in cycle 𝑐 is a substring of 𝑠 (𝑐)∞, it

is also a substring of 𝑥∞
1

= 𝑥∞
2
, and similarly for 𝑐 ′. Thus, using

Lemma 5.4 gives a contradiction with the fact that 𝑐 and 𝑐 ′ are two
cycles of the minimum-length cycle cover CC(𝑆). □

5.3 Properties of Strings of Small Cycles
In this section, we prove several properties of small cycles. Consider

a small cycle 𝑐 . Recall that the MGREEDY algorithm picks edges

in non-increasing order of overlap length when producing CC(𝑆).
Therefore, 𝑜 (𝑐) is no larger than any other overlap length between

two merged strings in cycle 𝑐 . By this and since the length of any

string 𝑠 in 𝑐 is greater than the length of any of its two (i.e., left and

right) overlaps (or the self-overlap if 𝑐 is a 1-cycle), we have |𝑠 | >
𝑜 (𝑐). Further, by the definition of a small cycle, it is 𝑜 (𝑐) > 2 ·𝑤 (𝑐)
and thus, for any string 𝑠 of 𝑐 , we get:

|𝑠 | > 2 ·𝑤 (𝑐) (10)

Note that the representative string 𝑅𝑐 is even longer as |𝑅𝑐 | =

𝑤 (𝑐) + 𝑜 (𝑐) > 3 ·𝑤 (𝑐), since string 𝑅𝑐 is formed by opening cycle

𝑐 at the cycle-closing edge.

While a string of a cycle 𝑐 is not necessarily equivalent to string

𝑅𝑐 (cf. Lemma 2.1 in [13]), we prove that this property actually

holds for small cycles.

Lemma 5.11. Consider any small cycle 𝑐 of CC(𝑆). All strings of
𝑐 and 𝑅𝑐 are equivalent and in particular, period(𝑠) = 𝑤 (𝑐) for any
string 𝑠 of cycle 𝑐 .

Proof. Recall that 𝑅𝑐 is a prefix of 𝑠 (𝑐)∞. From Lemma 5.5 it

follows that pref(𝑅𝑐 , 𝑅𝑐 ) = 𝑠 (𝑐). Hence, it suffices to show that

pref(𝑠, 𝑠) is a rotation of 𝑠 (𝑐) for any string 𝑠 of the small cycle 𝑐 .

We first prove that period(𝑠) = 𝑤 (𝑐). By Observation 5.7, we have

period(𝑠) ≤ 𝑤 (𝑐). Assume for a contradiction that period(𝑠) <

𝑤 (𝑐). Since 𝑠 has periodicity𝑤 (𝑐) and, by (10), |𝑠 | > 2𝑤 (𝑐), we have
that𝑤 (𝑐) must be a multiple of period(𝑠) by Lemma 5.2. So there ex-

ists an integer 𝑘 ≥ 2 such that 𝑘 · |pref(𝑠, 𝑠) | = 𝑘 · period(𝑠) = 𝑤 (𝑐).
Recall that strings(𝑐, 𝑠) is a rotation of 𝑠 (𝑐) that is a prefix of 𝑠 and
has length𝑤 (𝑐). We thus have that strings(𝑐, 𝑠) = pref(𝑠, 𝑠)𝑘 , which
implies strings(𝑐, 𝑠)∞ = pref(𝑠, 𝑠)∞. Note that every substring of

𝑠 (𝑐)∞ is also a substring of strings(𝑐, 𝑠)∞ = pref(𝑠, 𝑠)∞. By Lem-

mas 5.3 and 5.4, it follows that all strings of 𝑐 belong to a cycle (in

𝐺dist (𝑆)) of length |pref(𝑠, 𝑠) | = period(𝑠) < 𝑤 (𝑐), which contra-

dicts the minimality of CC(𝑆). Hence, period(𝑠) = 𝑤 (𝑐) and thus,

pref(𝑠, 𝑠) = strings(𝑐, 𝑠). This concludes the proof as strings(𝑐, 𝑠) is
a rotation of 𝑠 (𝑐) = pref(𝑅𝑐 , 𝑅𝑐 ). □

As a corollary, we obtain that for small cycles, the triangle in-

equality in 𝐺dist (𝑆) becomes equality.

Lemma 5.12. Consider two strings 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑆 both belonging
to a small cycle 𝑐 ∈ CC(𝑆) and assume that 𝑠 is not merged with 𝑡

across cycle 𝑐 . Then, for any string 𝑡 ′ that lies on cycle 𝑐 between 𝑠

and 𝑡 (in this order), it holds that dist(𝑠, 𝑡) = dist(𝑠, 𝑡 ′) + dist(𝑡 ′, 𝑡).

Proof. First, it is dist(𝑠, 𝑡) ≤ dist(𝑠, 𝑡 ′) + dist(𝑡 ′, 𝑡) by the tri-

angle inequality in 𝐺dist (𝑆). Next, assume for a contradiction that

dist(𝑠, 𝑡) < dist(𝑠, 𝑡 ′) + dist(𝑡 ′, 𝑡). Consider the semi-infinite string

𝑅′ = pref(𝑠, 𝑡)strings(𝑐, 𝑡)∞. Let 𝑡0 = 𝑡, 𝑡1, . . . , 𝑡ℓ = 𝑠 be the strings

on the directed path from 𝑡 to 𝑠 on cycle 𝑐 . Observe that 𝑠 is a

prefix of 𝑅′
(as 𝑡 is a prefix of strings(𝑐, 𝑡)∞) and a substring of

strings(𝑐, 𝑡)∞, starting at position

∑ℓ−1

𝑗=0
dist(𝑡 𝑗 , 𝑡 𝑗+1). It follows that

dist(𝑠, 𝑠) ≤ dist(𝑠, 𝑡) +
ℓ−1∑︁
𝑗=0

dist(𝑡 𝑗 , 𝑡 𝑗+1)

< dist(𝑠, 𝑡 ′) + dist(𝑡 ′, 𝑡) +
ℓ−1∑︁
𝑗=0

dist(𝑡 𝑗 , 𝑡 𝑗+1) ≤ 𝑤 (𝑐) ,

where the penultimate inequality holds due to our assumption that

dist(𝑠, 𝑡) < dist(𝑠, 𝑡 ′) + dist(𝑡 ′, 𝑡) and the last inequality follows by
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using the triangle inequality in𝐺dist (𝑆) for the edges between 𝑠 and
𝑡 ′ and for those between 𝑡 ′ and 𝑡 . Thus, we have that period(𝑠) =
dist(𝑠, 𝑠) < 𝑤 (𝑐), which contradicts Lemma 5.11. □

Lemma 5.12 implies the following useful property:

Observation 5.13. If two strings that belong to the same small cy-
cle 𝑐 ∈ CC(𝑆) are notmerged in 𝑐 , then there is an optimal superstring
in which they are not merged.

Proof. Suppose that strings 𝑠, 𝑡 belonging to 𝑐 ∈ CC(𝑆) are
not merged in 𝑐 , and let 𝑡1, . . . , 𝑡ℓ (for ℓ ≥ 1) be the strings on the

directed 𝑠-𝑡-path in 𝑐 . Let 𝜎 be any superstring in which 𝑠 and 𝑡 are

merged. Consider string �̂� obtained by removing strings 𝑡1, . . . , 𝑡ℓ
from 𝜎 , which may only decrease its length, i.e., |�̂� | ≤ |𝜎 |. From �̂� ,

we create a superstring 𝜎 ′
by inserting strings 𝑡1, . . . , 𝑡ℓ between 𝑠

and 𝑡 in �̂� . Crucially, by Lemma 5.12, it holds that |𝜎 ′ | = |�̂� | ≤ |𝜎 |.
Thus, if 𝜎 is optimal, then 𝜎 ′

is also optimal. □

By Observation 5.13, we obtain the following remark:

Remark 5.14. If a superstring 𝜎 merges all 𝑟 strings belonging
to the same small cycle 𝑐 = 𝑠𝑐0

→ 𝑠𝑐1
→ · · · → 𝑠𝑐𝑟−1

→ 𝑠𝑐0
(i.e.,

they all appear in adjacent positions across the superstring 𝜎), then
we can transform 𝜎 into a superstring 𝜎 ′ with |𝜎 ′ | ≤ |𝜎 | where
the order of these strings across 𝜎 ′ is a rotation of the ordered set
{𝑠𝑐0

, 𝑠𝑐1
, . . . , 𝑠𝑐𝑟−1

}. In this case, each of the 𝑟 edges of 𝑐 ∈ CC(𝑆) co-
incides with an edge of 𝜎 ′ except for one edge, which is not necessarily
the cycle-closing edge 𝑠𝑐𝑟−1

→ 𝑠𝑐0
of 𝑐 .

6 THE FIRST UPPER BOUND
In this section, we prove (4), which is our first bound on 𝑜 .

We consider a partition of strings of all small cycles such that no

two strings from two different cycles are in one part and moreover,

due to Observation 5.13, if strings 𝑠 and 𝑡 from a small cycle 𝑐 are

in one part, then all strings between 𝑠 and 𝑡 on 𝑐 are in that part

as well. In other words, this partition consists of directed paths

and single nodes that remain after removing a subset of edges

from small cycles. The particular partition that we consider below

is induced by an optimal superstring for a certain subset of the

input 𝑆 containing all strings of small cycles and one (carefully

chosen) string of each large cycle.

Consider a small cycle 𝑐 . Let 𝑟 ′ be the number of parts with

strings from cycle 𝑐 , and for 𝑗 = 0, . . . , 𝑟 ′, denote by 𝑠 𝑗 the string
obtained by merging strings in the 𝑗-th part (in the same order as

they appear on the small cycle 𝑐). In the next technical lemma, we

lower-bound the sum of lengths of the strings 𝑠 𝑗 .

Lemma 6.1. It holds that
∑𝑟 ′−1

𝑗=0
( |𝑠 𝑗 | − 2 ·𝑤 (𝑐)) ≥ 𝑜 (𝑐) −𝑤 (𝑐) for

any small cycle 𝑐 = 𝑠𝑐0
→ · · · → 𝑠𝑐𝑟−1

→ 𝑠𝑐0
, where 𝑟 ′ ≤ 𝑟 .

Proof. Consider string 𝑠 𝑗 , and let 𝑡0

𝑗
, 𝑡1

𝑗
, . . . , 𝑡

ℓ𝑗−1

𝑗
for ℓ𝑗 ≥ 1 be

the strings that are merged into 𝑠 𝑗 . Assuming that the parts are

numbered in the order in which they appear on the cycle, 𝑡0

𝑗+1
is

the string to which 𝑡
ℓ𝑗−1

𝑗
is merged on cycle 𝑐 , with the subscript

arithmetic modulo 𝑟 ′. (In the special case of a 1-cycle, we have

𝑟 ′ = 𝑟 = 1, ℓ0 = 1, 𝑡0

0
is the only string of that cycle, and we use

𝑡0

1
= 𝑡0

0
.) It holds that:

|𝑠 𝑗 | =
ℓ𝑗−2∑︁
𝑘=0

dist(𝑡𝑘𝑗 , 𝑡
𝑘+1

𝑗 ) + |𝑡 ℓ𝑗−1

𝑗
|

=

ℓ𝑗−2∑︁
𝑘=0

dist(𝑡𝑘𝑗 , 𝑡
𝑘+1

𝑗 ) + dist(𝑡 ℓ𝑗−1

𝑗
, 𝑡0

𝑗+1
) + |ov(𝑡 ℓ𝑗−1

𝑗
, 𝑡0

𝑗+1
) | ,

since |𝑠 | = dist(𝑠, 𝑡) + |ov(𝑠, 𝑡) | for any two strings 𝑠 and 𝑡 . Summing

over all 𝑟 ′ strings 𝑠 𝑗 , we get

𝑟 ′−1∑︁
𝑗=0

( |𝑠 𝑗 | − 2𝑤 (𝑐)) =
𝑟 ′−1∑︁
𝑗=0

( ℓ𝑗−2∑︁
𝑘=0

dist(𝑡𝑘𝑗 , 𝑡
𝑘+1

𝑗 ) + dist(𝑡 ℓ𝑗−1

𝑗
, 𝑡0

𝑗+1
)

+ |ov(𝑡 ℓ𝑗−1

𝑗
, 𝑡0

𝑗+1
) | − 2𝑤 (𝑐)

)
= 𝑤 (𝑐) +

(
|ov(𝑡 ℓ0−1

0
, 𝑡0

1
) | − 2𝑤 (𝑐)

)
+
𝑟 ′−1∑︁
𝑗=1

(
|ov(𝑡 ℓ𝑗−1

𝑗
, 𝑡0

𝑗+1
) | − 2𝑤 (𝑐)

)
≥ 𝑤 (𝑐) + (𝑜 (𝑐) − 2𝑤 (𝑐)) + 0 = 𝑜 (𝑐) −𝑤 (𝑐) ,

where the second equality uses that each edge of cycle 𝑐 either

“lies inside a string 𝑠 𝑗 ”, i.e., is an edge (𝑡𝑘
𝑗
, 𝑡𝑘+1

𝑗
) for some 𝑗 and

0 ≤ 𝑘 ≤ ℓ𝑗 − 2, or “leads from string 𝑠 𝑗 to 𝑠 𝑗+1”, i.e., is an edge

(𝑡 ℓ𝑗−1

𝑗
, 𝑡0

𝑗+1
) for some 𝑗 , and the inequality follows from the fact

that 𝑜 (𝑐) is the smallest overlap on cycle 𝑐 and that 𝑜 (𝑐) > 2𝑤 (𝑐)
as the cycle is small. □

We will need the Overlap Rotation Lemma from [4]:

Lemma 6.2 (Lemma 3.3 in [4]). Let 𝛼 be a periodic semi-infinite
string. There exists an integer𝑘 ∈ [1, period(𝛼)] such that period(𝑠)+
1

2
period(𝛼) > |ov(𝑠, 𝛼 [𝑘]) | for any (finite) string 𝑠 inequivalent to 𝛼 .

Note that the index 𝑘 is universal for all strings inequivalent to

𝛼 . We now generalize Lemma 6.2:

Lemma 6.3. Let 𝛼 and 𝑘 be as in Lemma 6.2. For any 𝑘 ′ ∈ [0, 𝑘)
and any (finite) string 𝑠 inequivalent to 𝛼 , the string 𝛼 [𝑘−𝑘 ′] satisfies
|ov(𝑠, 𝛼 [𝑘 − 𝑘 ′]) | < period(𝑠) + 1

2
period(𝛼) + 𝑘 ′.

Proof. For 𝑘 ′ = 0 the statement of the lemma coincides with

Lemma 6.2. It remains to show the lemma for 𝑘 ′ > 0. We have

|ov(𝑠, 𝛼 [𝑘 − 𝑘 ′]) | = |𝑠 | − dist(𝑠, 𝛼 [𝑘 − 𝑘 ′])
≤ |𝑠 | − dist(𝑠, 𝛼 [𝑘]) + dist(𝛼 [𝑘 − 𝑘 ′], 𝛼 [𝑘])
= |ov(𝑠, 𝛼 [𝑘]) | + dist(𝛼 [𝑘 − 𝑘 ′], 𝛼 [𝑘])
≤ |ov(𝑠, 𝛼 [𝑘]) | + 𝑘 ′

< period(𝑠) + period(𝛼)
2

+ 𝑘 ′ ,

where in the second line, we applied the triangle inequality in

𝐺dist (𝑆) and the last step follows from Lemma 6.2. □

In Lemma 6.4, we prove the first upper bound on 𝑜 , i.e., inequal-

ity (4).

Lemma 6.4. We have 𝑜 ≤ 𝑛 +∑
𝑐∈S(𝑆) 𝑤 (𝑐) + 1.5 ·∑𝑐∈L(𝑆) 𝑤 (𝑐).
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Proof. First, for each large cycle 𝑐 , we apply Lemma 6.2 for the

semi-infinite string 𝛼𝑐 = 𝑠 (𝑐)∞ to get an integer 𝑘𝑐 ≥ 1. We also

let 𝑘 ′𝑐 be the smallest integer 𝑘 ′ ≥ 0 such that 𝛼𝑐 [𝑘𝑐 − 𝑘 ′] starts
with a string 𝑓𝑐 from cycle 𝑐 . By the minimality of 𝑘 ′𝑐 , it follows that
𝑘 ′𝑐 < dist(𝑓𝑐 , 𝑡𝑐 ), which is the prefix length between 𝑓𝑐 and string

𝑡𝑐 that 𝑓𝑐 is merged to across the large cycle 𝑐 (in case 𝑐 is a 1-cycle,

we assume that 𝑡𝑐 = 𝑓𝑐 ).

If 𝑐 consists of at least two strings, then since |𝑓𝑐 | = dist(𝑓𝑐 , 𝑡𝑐 ) +
|ov(𝑓𝑐 , 𝑡𝑐 ) | and |ov(𝑓𝑐 , 𝑡𝑐 ) | ≥ 𝑜 (𝑐), we get that 𝑘 ′𝑐 < dist(𝑓𝑐 , 𝑡𝑐 ) =

|𝑓𝑐 | − |ov(𝑓𝑐 , 𝑡𝑐 ) | ≤ |𝑓𝑐 | − 𝑜 (𝑐). If 𝑐 is a 1-cycle consisting of string
𝑓𝑐 = 𝑡𝑐 , we again obtain 𝑘 ′𝑐 < dist(𝑓𝑐 , 𝑓𝑐 ) = |𝑓𝑐 | − |ov(𝑓𝑐 , 𝑓𝑐 ) | =
|𝑓𝑐 | − 𝑜 (𝑐).

Fix input 𝑆𝑟 ⊆ 𝑆 , which contains all strings of 𝑆 belonging to

small cycles and only the single string 𝑓𝑐 from each large cycle

𝑐 . Consider OPT(𝑆𝑟 ), the optimal superstring of 𝑆𝑟 , and let 𝑛𝑟 =

|OPT(𝑆𝑟 ) |. Our aim is to derive a lower bound on 𝑛𝑟 ≤ 𝑛.

Superstring OPT(𝑆𝑟 ) induces a partition of the strings in each

small cycle 𝑐 such that strings in each part are merged together

in OPT(𝑆𝑟 ), while strings from different parts are separated by a

string from a different cycle; this is the partition for which we apply

Lemma 6.1. By Observation 5.13, we may assume that the order

in which strings of the same small cycle 𝑐 are merged in OPT(𝑆𝑟 )
is the same as the order in which they appear on 𝑐 . For a small

cycle 𝑐 , let 𝑟 ′𝑐 be the size of this partition of strings in 𝑐 , and for

𝑗 = 0, . . . , 𝑟 ′𝑐 − 1, denote by 𝑠𝑐,𝑗 the string obtained by merging

strings in the 𝑗-th part (in the same order as they appear on 𝑐).

The key step towards lower-bounding 𝑛𝑟 is to obtain suitable

upper bounds on the overlap length of two strings merged in

OPT(𝑆𝑟 ) after we merge strings of small cycles 𝑐 to obtain strings

𝑠𝑐,𝑗 . First, consider string 𝑓𝑐 of a large cycle 𝑐 and string 𝑠 ′ from a

cycle 𝑐 ′ for 𝑐 ′ ≠ 𝑐 such that 𝑠 ′ is either 𝑓𝑐′ or 𝑠𝑐′, 𝑗 (depending on

whether 𝑐 ′ is large or small) and 𝑠 ′ and 𝑓𝑐 are merged in OPT(𝑆𝑟 )
in this order. Consider string 𝑅𝑐′ := strings(𝑐 ′, 𝑠 ′)𝑠 ′1. Note that

period(𝑅𝑐′) ≤ 𝑤 (𝑐 ′) as 𝑅𝑐′ = strings(𝑐 ′, 𝑠 ′)𝑠 ′, 𝑠 ′ is a prefix of

strings(𝑐 ′, 𝑠 ′)∞, and |strings(𝑐 ′, 𝑠 ′) | = 𝑤 (𝑐 ′). Furthermore, 𝑅𝑐′ con-

tains all strings of cycle 𝑐 ′ as substrings, and thus,𝑅𝑐′ is inequivalent
to 𝛼𝑐 by Observation 5.6. Since 𝑓𝑐 is a prefix of 𝛼𝑐 [𝑘𝑐 −𝑘 ′𝑐 ] and 𝑠 ′ is
a suffix of 𝑅𝑐′ , we have |ov(𝑠 ′, 𝑓𝑐 ) | ≤ |ov(𝑅𝑐′, 𝛼𝑐 [𝑘𝑐 − 𝑘 ′𝑐 ]) |. Using
this together with Lemma 6.3 for 𝛼𝑐 , 𝑘

′
𝑐 , and 𝑅𝑐′ , it holds that

|ov(𝑠 ′, 𝑓𝑐 ) | ≤ |ov(𝑅𝑐′, 𝛼𝑐 [𝑘𝑐 − 𝑘 ′𝑐 ]) |

< period(𝑅𝑐′) +
period(𝛼𝑐 )

2

+ 𝑘 ′𝑐

< 𝑤 (𝑐 ′) + 1

2

𝑤 (𝑐) + |𝑓𝑐 | − 𝑜 (𝑐) , (11)

where the third inequality uses period(𝑅𝑐′) ≤ 𝑤 (𝑐 ′), period(𝛼𝑐 ) ≤
𝑤 (𝑐) (by the definition of 𝛼𝑐 = 𝑠 (𝑐)∞ and |𝑠 (𝑐) | = 𝑤 (𝑐)), and
𝑘 ′𝑐 < |𝑓𝑐 | − 𝑜 (𝑐).

Second, consider string 𝑠𝑐,𝑗 for a small cycle 𝑐 (recall that 𝑠𝑐,𝑗 may

be the result of merging several strings appearing consecutively on

𝑐). Let 𝑠 ′ be the string merged to 𝑠𝑐,𝑗 in OPT(𝑆𝑟 ) in this order, and

let 𝑐 ′ be the (large or small) cycle of string 𝑠 ′. From Corollary 5.10

1
Strictly speaking, strings(𝑐′, 𝑠′) is only defined for a string 𝑠′ of cycle 𝑐′. If 𝑐′ is a

small cycle and 𝑠′ = 𝑠𝑐′, 𝑗 is a result of merging strings 𝑡0

𝑗
, 𝑡1

𝑗 , . . . , 𝑡
ℓ𝑗 −1

𝑗
from cycle 𝑐′,

then we let strings(𝑐′, 𝑠′) := strings(𝑐′, 𝑡0

𝑗
) so that �̂�𝑐′ = strings(𝑐′, 𝑡0

𝑗
)𝑠′.

we get

|ov(𝑠 ′, 𝑠𝑐,𝑗 ) | < 𝑤 (𝑐 ′) +𝑤 (𝑐) . (12)

Observe that 𝑛𝑟 ≥ ∑
𝑠 ( |𝑠 | − |ov(𝑠 ′, 𝑠) |), where the sum is over

strings 𝑓𝑐 and 𝑠𝑐,𝑗 as defined above and 𝑠 ′ is the string merged to 𝑠

in OPT(𝑆𝑟 ) (𝑠 ′ is empty for the first string in OPT(𝑆𝑟 )). Next, we
use (11) or (12) to bound |ov(𝑠 ′, 𝑠) | for all such strings 𝑠 . In particular,
since each such string appears once as string 𝑠 ′ (except for the last
one), we get that

𝑛𝑟 ≥
∑︁

𝑐∈L(𝑆)
( |𝑓𝑐 | − 1.5 ·𝑤 (𝑐) − (|𝑓𝑐 | − 𝑜 (𝑐)))

+
∑︁

𝑐∈S(𝑆)

𝑟 ′𝑐−1∑︁
𝑗=0

(
|𝑠𝑐,𝑗 | − 2 ·𝑤 (𝑐)

)
.

(13)

Using Lemma 6.1, we lower-bound the second term in the right-

hand side of (13) and obtain

𝑛𝑟 ≥
∑︁

𝑐∈L(𝑆)

(
𝑜 (𝑐) − 1.5 ·𝑤 (𝑐)

)
+

∑︁
𝑐∈S(𝑆)

(
𝑜 (𝑐) −𝑤 (𝑐)

)
Using that 𝑛 = |OPT(𝑆) | ≥ |OPT(𝑆𝑟 ) | = 𝑛𝑟 as 𝑆𝑟 ⊆ 𝑆 , and that

𝑜 =
∑
𝑐∈L(𝑆) 𝑜 (𝑐) +

∑
𝑐∈S(𝑆) 𝑜 (𝑐), we obtain

𝑛 ≥ 𝑜 − 1.5 ·
∑︁

𝑐∈L(𝑆)
𝑤 (𝑐) −

∑︁
𝑐∈S(𝑆)

𝑤 (𝑐) ,

which completes the proof by rearranging. □

7 THE SECOND UPPER BOUND
In this section we show (5). The first ingredient of our analysis is a

suitable modification of the input set of strings 𝑆 .

7.1 Modifying the Input
For each small cycle 𝑐 = 𝑠𝑐0

→ 𝑠𝑐1
→ · · · → 𝑠𝑐𝑟−1

→ 𝑠𝑐0
in CC(𝑆),

we remove all strings belonging to this cycle from 𝑆 and instead

add the string

𝑅′
𝑐 := pref(𝑠𝑐0

, 𝑠𝑐1
)pref(𝑠𝑐1

, 𝑠𝑐2
) . . .pref(𝑠𝑐𝑟−2

, 𝑠𝑐𝑟−1
)pref(𝑠𝑐𝑟−1

, 𝑠𝑐0
)𝑠𝑐0

to 𝑆 . Note that the representative string 𝑅𝑐 is a prefix of 𝑅′
𝑐 and

thus, 𝑅′
𝑐 contains all strings of the small cycle 𝑐 . We denote the new

set of strings obtained this way by 𝑆 ′.
The length of CC(𝑆 ′) is the same as the length of CC(𝑆). In-

deed, due to Lemma 5.5, the generated optimal cycle cover re-

mains the same except that whenever we had a small cycle 𝑐 in-

volving nodes 𝑠𝑐0
, 𝑠𝑐1

, . . . , 𝑠𝑐𝑟−1
before, we now only have a sin-

gle node (corresponding to the string 𝑅′
𝑐 ) and a self-loop at that

node. In addition, the length of small cycles does not change, i.e.,∑
𝑐∈S(𝑆′) 𝑤 (𝑐) = ∑

𝑐∈S(𝑆) 𝑤 (𝑐), again by Lemma 5.5.

However, the length 𝑛′ = |OPT(𝑆 ′) | of the shortest superstring
of 𝑆 ′ could increase compared to the length 𝑛 = |OPT(𝑆) | of the
optimal shortest superstring of 𝑆 . The following lemma gives a

bound on the increase.

Lemma 7.1. The shortest superstring for 𝑆 ′ is longer by at most∑
𝑐∈S(𝑆) 𝑤 (𝑐) characters than the shortest superstring for 𝑆 .

Proof. We show how to transform any superstring 𝜎 for 𝑆 into a

superstring 𝜎 ′
for 𝑆 ′ (which is also a superstring for 𝑆 as 𝑅′

𝑐 contains

all strings of the small cycle 𝑐) while only increasing the length of

the superstring by

∑
𝑐∈S(𝑆) 𝑤 (𝑐), i.e., |𝜎 ′ | ≤ |𝜎 | + ∑

𝑐∈S(𝑆) 𝑤 (𝑐).
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Namely, for every small cycle 𝑠𝑐0
→ 𝑠𝑐1

→ · · · → 𝑠𝑐𝑟−1
→ 𝑠𝑐0

in CC(𝑆), we replace the first occurrence of 𝑠𝑐0
in 𝜎 by 𝑅′

𝑐 . The

resulting superstring is our new string 𝜎 ′
, which by construction,

contains all strings of 𝑆 ′ as required.
For a small cycle 𝑐 , the length of 𝑅′

𝑐 is equal to |𝑠𝑐0
| + 𝑤 (𝑐).

Therefore, |𝜎 ′ | ≤ |𝜎 | + ∑
𝑐∈S(𝑆) 𝑤 (𝑐) as claimed. □

Corollary 7.2. Let CC0 (𝑆 ′) be a directed Hamiltonian cycle of
minimum length in the distance graph 𝐺dist (𝑆 ′). The length 𝑛 of the
shortest superstring for 𝑆 is at least |CC0 (𝑆 ′) | −

∑
𝑐∈S(𝑆′) 𝑤 (𝑐).

Proof. The length 𝑛′ of the shortest superstring for 𝑆 ′ is at least
|CC0 (𝑆 ′) |, since we can form a Hamiltonian cycle of length at most

𝑛′ by merging the first and last string of the shortest superstring.

With this, the corollary follows from Lemma 7.1. □

Since the sum of overlap lengths of cycle-closing edges inCC(𝑆 ′),
denoted 𝑜 ′, cannot be smaller than 𝑜 , the sum of overlap lengths of

cycle-closing edges in CC(𝑆), showing the following inequality

𝑜 ′ ≤ |CC0 (𝑆 ′) | + (𝛾 − 1) ·
∑︁

𝑐∈S(𝑆′)
𝑤 (𝑐) +

∑︁
𝑐∈L(𝑆′)

𝑤 (𝑐) (14)

implies (5), due to Corollary 7.2.

7.2 Overview of the Proof
Before proceeding, we note that our goal is to show (14) and from

now on we will only be concerned with the modified input 𝑆 ′.
Therefore, for the sake of simplicity, we omit the set 𝑆 ′ from the

cycle cover notation from this point onward (for instance, we shall

indicate CC(𝑆 ′) as CC and CC0 (𝑆 ′) as CC0).

Consider a maximum directed Hamiltonian cycleCC0 in𝐺ov (𝑆 ′)
and note thatCC0 is, in particular, also a (not necessarily maximum)

cycle cover in 𝐺ov (𝑆 ′). We call the total profit of all the edges of a

cycle cover in𝐺ov (𝑆 ′) the total overlap of the cycle cover. Our goal

is to show that the total overlap of CC0 is by at least∑︁
𝑐∈S(𝑆′)

(𝑜 (𝑐) − 𝛾 ·𝑤 (𝑐)) +
∑︁

𝑐∈L(𝑆′)
(𝑜 (𝑐) − 2 ·𝑤 (𝑐)) (15)

smaller than the total overlap of the optimal cycle cover CC. In
terms of the distance graph, this implies thatCC0 has a lengthwhich

is by at least

∑
𝑐∈S(𝑆′) (𝑜 (𝑐) −𝛾 ·𝑤 (𝑐)) +∑

𝑐∈L(𝑆′) (𝑜 (𝑐) − 2 ·𝑤 (𝑐))
larger than the length of CC. The length of CC is

∑
𝑐∈S(𝑆′) 𝑤 (𝑐) +∑

𝑐∈L(𝑆′) 𝑤 (𝑐). Therefore, (14) is then implied by the following

sequence of calculations:

|CC0 | ≥
∑︁

𝑐∈S(𝑆′)
(𝑜 (𝑐) − 𝛾 ·𝑤 (𝑐)) +

∑︁
𝑐∈L(𝑆′)

(𝑜 (𝑐) − 2 ·𝑤 (𝑐))

+
∑︁

𝑐∈S(𝑆′)
𝑤 (𝑐) +

∑︁
𝑐∈L(𝑆′)

𝑤 (𝑐)

=
∑︁

𝑐∈S(𝑆′)
(𝑜 (𝑐) − (𝛾 − 1) ·𝑤 (𝑐)) +

∑︁
𝑐∈L(𝑆′)

(𝑜 (𝑐) −𝑤 (𝑐))

= 𝑜 ′ − (𝛾 − 1) ·
∑︁

𝑐∈S(𝑆′)
𝑤 (𝑐) −

∑︁
𝑐∈L(𝑆′)

𝑤 (𝑐) ,

and this implies (5), as noted above.

To show the desired lower bound on the difference of total over-

lap between CC and CC0, we slowly “transform” CC0 into CC
and track how each step of the transformation increases the total

𝑢 𝑣

𝑢 ′ 𝑣 ′

𝑒 ∉ CC

𝑓 ′ ∈ CC 𝑓 ∈ CC

𝑒 ′ ∉ CC

Figure 2: Illustration of the notation for swap(CC, 𝑒). Note
that we also allow nodes to be equal to one another here,
e.g., it could be that 𝑢 = 𝑣 , in which case 𝑒 is a self-loop.

overlap. Next, we describe these individual transformation steps in

more detail.

Consider any cycle cover CC and a directed edge 𝑒 = (𝑢, 𝑣)
which is not contained in CC (note that 𝑢 = 𝑣 is possible because

the graphs contain self-loops). Thenwe canmodifyCC slightly such

that it does contain 𝑒 . Specifically, let 𝑓 = (𝑣 ′, 𝑣) be the incoming

edge of 𝑣 in CC and 𝑓 ′ = (𝑢,𝑢 ′) be the outgoing edge of 𝑢 in CC.
Then, we can add 𝑒 and 𝑒 ′ = (𝑣 ′, 𝑢 ′) to CC and instead remove 𝑓

and 𝑓 ′ from CC. The resulting set of edges forms a cycle cover CC
′

which now includes the edge 𝑒 . We call this operation an edge swap.
Note that the edge swap is completely determined by the given

cycle cover CC and the edge 𝑒 . We refer to this unique swap as

swap(CC, 𝑒) and always refer to the edges that are added to the

cycle cover as 𝑒 and 𝑒 ′ and to the edges which are removed as 𝑓

and 𝑓 ′; see Figure 2 for an illustration of the notation.

Given a cycle cover CC0 (in our case the maximum Hamiltonian

cycle) and the cycle cover CC, we can transform CC0 into CC by

a sequence of edge swaps. Specifically, if CC𝑖 is a cycle cover, we

can take any edge 𝑒 ∈ CC \ CC𝑖 , i.e., any edge in CC that is not in

CC𝑖 , and obtain a new cycle cover CC𝑖+1 from CC𝑖 by performing

swap(CC𝑖 , 𝑒). Note that because 𝑒 ∈ CC, the edges 𝑓 and 𝑓 ′ which
are swapped out in swap(CC𝑖 , 𝑒) cannot be part ofCC. If 𝑒 ′ belongs
to CC, the symmetric difference between CC𝑖+1 and CC contains

four fewer edges than the symmetric difference between CC𝑖 and

CC (namely all four edges 𝑒 , 𝑒 ′, 𝑓 , and 𝑓 ′). If 𝑒 ′ is not part ofCC, the
symmetric difference between CC𝑖+1 and CC contains two fewer

edges than the symmetric difference between CC𝑖 and CC (it no

longer contains 𝑒 , 𝑓 , and 𝑓 ′, but it now contains 𝑒 ′). In either case,

the number of edges in the symmetric difference always decreases

and therefore, after a finite number of such edge swap operations,

we obtain a cycle cover CCℓ which is identical to CC.
If we obtain CC𝑖+1 from CC𝑖 by swapping in the edges 𝑒 and

𝑒 ′ and swapping out the edges 𝑓 and 𝑓 ′, then the total overlap of

CC𝑖+1 is larger than the total overlap of CC𝑖 by |ov(𝑒) | + |ov(𝑒 ′) | −
|ov(𝑓 ) | − |ov(𝑓 ′) |.

For a cycle cover CC𝑖 , letM(CC𝑖 ) be the set of small cycles of

CC which are also part of CC𝑖 . In other words, if CC𝑖 contains a

self-loop (𝑠, 𝑠) and the string 𝑠 corresponds to a small cycle 𝑐 in CC,
then (and only then) 𝑐 ∈ M(CC𝑖 ). Note that since swap(CC𝑖 , 𝑒)
for 𝑒 ∈ CC \ CC𝑖 only removes edges 𝑓 , 𝑓 ′ ∈ CC𝑖 \ CC from CC𝑖 ,

it holds thatM(CC𝑖+1) ⊇ M(CC𝑖 ).
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Ideally, we would want to show that we can always choose an

edge 𝑒 ∈ CC \CC𝑖 such that the total overlap increase from CC𝑖 to

CC𝑖+1 is at least

∑
𝑐∈M(CC𝑖+1)\M(CC𝑖 ) (𝑜 (𝑐) − 𝛾 · 𝑤 (𝑐)). It would

not be difficult to see that summing over all 𝑖 would then imply

the desired result, i.e., inequality (15), even without the sum over

large cycles. Unfortunately, this appears difficult and in some cases

we have to allow for slightly smaller increases. To address this, we

relate some small cycles and some large cycles to one another.

We define a relation 𝑇 between small cycles and a large cycle

as follows. A small cycle 𝑐 of CC and a large cycle 𝑐 ′ of CC are

related if (𝛾 − 2) ·𝑤 (𝑐) ≤ 𝑤 (𝑐 ′) and the large cycle has a string 𝑠 ′

such that |ov(𝑠, 𝑠 ′) | ≥ 𝛽 ·𝑤 (𝑐 ′) or |ov(𝑠 ′, 𝑠) | ≥ 𝛽 ·𝑤 (𝑐 ′), where 𝑠
is the only string corresponding to the small cycle, by the input

modification in Section 7.1. In this case, and only in this case, we

have (𝑐, 𝑐 ′) ∈ 𝑇 .

Lemma 7.3. For every large cycle 𝑐 ′ of CC, at most two different
small cycles of CC are related to 𝑐 ′.

Proof. Suppose for a contradiction that there are three small

cycles 𝑐1, 𝑐2, and 𝑐3 related to cycle 𝑐 ′. For 𝑗 ∈ {1, 2, 3}, let 𝑠 𝑗 be the
only string of cycle 𝑐 𝑗 and let 𝑜 𝑗 be the overlap from the definition

of the relation satisfying |𝑜 𝑗 | ≥ 𝛽 ·𝑤 (𝑐 ′), i.e., either 𝑜 𝑗 = ov(𝑠 𝑗 , 𝑠 ′𝑗 )
or 𝑜 𝑗 = ov(𝑠 ′

𝑗
, 𝑠 𝑗 ) for some string 𝑠 ′

𝑗
from 𝑐 ′. Note that since 𝑜 𝑗 is

a suffix or prefix of 𝑠 𝑗 (depending on whether 𝑜 𝑗 = ov(𝑠 𝑗 , 𝑠 ′𝑗 ) or
𝑜 𝑗 = ov(𝑠 ′

𝑗
, 𝑠 𝑗 )), Corollary 5.10 implies

|ov(𝑜1, 𝑜2) | < 𝑤 (𝑐1) +𝑤 (𝑐2) ≤
2

𝛾 − 2

·𝑤 (𝑐 ′) , (16)

where the second inequality holds as both 𝑐1 and 𝑐2 are related to

𝑐 ′. Using the same argument, both |ov(𝑜2, 𝑜3) | and |ov(𝑜3, 𝑜1) | are
also strictly smaller than

2

𝛾−2
·𝑤 (𝑐 ′).

Each overlap string 𝑜 𝑗 appears as substring in the semi-infinite

string 𝑠 (𝑐 ′)∞ for the large cycle 𝑐 ′, since each 𝑠 ′
𝑗
is a substring

of 𝑠 (𝑐 ′)∞ by Lemma 5.3. For 𝑗 ∈ {1, 2, 3}, let 𝑖 𝑗 ∈ [1,𝑤 (𝑐 ′)] be
the smallest index such that 𝑜 𝑗 is a prefix of 𝑠 (𝑐 ′)∞ [𝑖 𝑗 ]. W.l.o.g.,

suppose that 𝑖1 ≤ 𝑖2 ≤ 𝑖3 (by reordering indexes of 𝑐1, 𝑐2, and 𝑐3).

Observe that

𝑖2 − 𝑖1 >

(
𝛽 − 2

𝛾 − 2

)
𝑤 (𝑐 ′) ,

since otherwise,𝑜1 and𝑜2 would overlap by at least
2

𝛾−2
𝑤 (𝑐 ′) (using

that 𝑜1 and 𝑜2 have length at least 𝛽 · 𝑤 (𝑐 ′)), contradicting (16).

Similarly, it holds that 𝑖3−𝑖2 >

(
𝛽 − 2

𝛾−2

)
𝑤 (𝑐 ′) and 𝑖1+𝑤 (𝑐 ′)−𝑖3 >(

𝛽 − 2

𝛾−2

)
𝑤 (𝑐 ′); for the latter, we use that 𝑜1 is also a prefix of

𝑠 (𝑐 ′)∞ [𝑖1 +𝑤 (𝑐 ′)] as |𝑠 (𝑐 ′) | = 𝑤 (𝑐 ′) is the length of the smallest

periodicity of 𝑠 (𝑐 ′)∞. Finally, we get a contradiction as follows:

𝑤 (𝑐 ′) = (𝑖2 − 𝑖1) + (𝑖3 − 𝑖2) + (𝑖1 +𝑤 (𝑐 ′) − 𝑖3) >

3 ·
(
𝛽 − 2

𝛾 − 2

)
·𝑤 (𝑐 ′) ≥ 𝑤 (𝑐 ′) ,

where the last step uses (7). □

With this we define

Δ𝑖 =
∑︁

𝑐∈M(CC𝑖+1)\M(CC𝑖 )

(
𝑜 (𝑐) − 𝛾 ·𝑤 (𝑐) − 1

2

·
∑︁

𝑐′:(𝑐,𝑐′) ∈𝑇
(2 ·𝑤 (𝑐 ′) − 𝑜 (𝑐 ′))

)
.

We will show that, for every 𝑖 , we can choose 𝑒 ∈ CC \ CC𝑖

such that the total overlap increase from CC𝑖 to CC𝑖+1 is at least

Δ𝑖 when we obtain CC𝑖+1 from CC𝑖 by performing swap(CC𝑖 , 𝑒).
Note that the value of Δ𝑖 does depend on CC𝑖+1 and therefore on

the edge 𝑒 that we choose.

Summing over all 𝑖 gives the desired result since then the total

overlap increase is at least

ℓ−1∑︁
𝑖=0

Δ𝑖 =
∑︁

𝑐∈M(CCℓ )\M(CC0)

(
𝑜 (𝑐) − 𝛾 ·𝑤 (𝑐) − 1

2

·
∑︁

𝑐′:(𝑐,𝑐′) ∈𝑇
(2 ·𝑤 (𝑐 ′) − 𝑜 (𝑐 ′))

)
=

∑︁
𝑐∈S(𝑆′)

(
𝑜 (𝑐) − 𝛾 ·𝑤 (𝑐) − 1

2

·
∑︁

𝑐′:(𝑐,𝑐′) ∈𝑇
(2 ·𝑤 (𝑐 ′) − 𝑜 (𝑐 ′))

)
≥

∑︁
𝑐∈S(𝑆′)

(
𝑜 (𝑐) − 𝛾 ·𝑤 (𝑐)

)
−

∑︁
𝑐′∈L(𝑆′)

(
2 ·𝑤 (𝑐 ′) − 𝑜 (𝑐 ′)

)
=

∑︁
𝑐∈S(𝑆′)

(
𝑜 (𝑐) − 𝛾 ·𝑤 (𝑐)

)
+

∑︁
𝑐′∈L(𝑆′)

(
𝑜 (𝑐 ′) − 2 ·𝑤 (𝑐 ′)

)
and this is what we wanted in (15). Here, the first line follows

becauseM(CC𝑖+1) ⊇ M(CC𝑖 ) for all 𝑖 as noted above, the second

line follows because CCℓ = CC and M(CC0) = ∅, and the third

line follows from Lemma 7.3. Strictly speaking, it is possible that

M(CC0) ≠ ∅. However, CC0 is a Hamiltonian cycle, and therefore,

the only case in which this happens is if this Hamiltonian cycle is

in fact a single small cycle 𝑐 , in which case, by Observation 5.13,

GREEDY computes an optimal solution.

We will sometimes use the fact that the term 2𝑤 (𝑐 ′) − 𝑜 (𝑐 ′) is
non-negative for every large cycle 𝑐 ′. Therefore, the part of the
definition of Δ𝑖 that sums over large cycles 𝑐 ′ such that 𝑐 is related

to 𝑐 ′ can only decrease the value of Δ𝑖 (and makes it easier to find

a suitable edge 𝑒 in some cases), i.e.,

Δ𝑖 ≤
∑︁

𝑐∈M(CC𝑖+1)\M(CC𝑖 )

(
𝑜 (𝑐) − 𝛾 ·𝑤 (𝑐)

)
. (17)

In Section 7.4, we will show that for any cycle cover CC𝑖 ≠ CC,
it is always possible to find an edge 𝑒 ∈ CC \ CC𝑖 such that if we

obtain CC𝑖+1 by performing the swap(CC𝑖 , 𝑒), the total overlap

increase is at least Δ𝑖 . Before that, we present three useful lemmas.

7.3 Useful Lemmas
Tarhio and Ukkonen [25] and Turner [27] show the following

lemma.

Lemma 7.4. Let 𝑒 = (𝑢, 𝑣), 𝑓 = (𝑣 ′, 𝑣), 𝑓 ′ = (𝑢,𝑢 ′), and 𝑒 ′ =

(𝑣 ′, 𝑢 ′) be edges in 𝐺ov (𝑆 ′) such that

max{|ov(𝑒) |, ov(𝑒 ′) |} ≥ max{|ov(𝑓 ) |, |ov(𝑓 ′) |} .

Then |ov(𝑒) | + |ov(𝑒 ′) | − |ov(𝑓 ) | − |ov(𝑓 ′) | ≥ 0.

The following is a slightly different, but somewhat related in-

equality which gives us better bounds when 𝑒 is the edge of a

small cycle in CC. Another difference to Lemma 7.4 is that the

following lemma can also be applied if max{|ov(𝑒) |, |ov(𝑒 ′) |} <

max{|ov(𝑓 ) |, |ov(𝑓 ′) |}.

Lemma 7.5. Let 𝑒 = (𝑢, 𝑣), 𝑓 = (𝑣 ′, 𝑣), 𝑓 ′ = (𝑢,𝑢 ′), and 𝑒 ′ =

(𝑣 ′, 𝑢 ′) be edges in 𝐺ov (𝑆 ′) such that 𝑒 is an edge in a small cycle 𝑐
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in CC. Then

|ov(𝑒) | + |ov(𝑒 ′) | − |ov(𝑓 ) | − |ov(𝑓 ′) | >
|ov(𝑒) | − max{|ov(𝑓 ) |, |ov(𝑓 ′) |} −𝑤 (𝑐) .

Proof. If min{|ov(𝑓 ) |, |ov(𝑓 ′) |} < 𝑤 (𝑐), then trivially |ov(𝑒) | +
|ov(𝑒 ′) |−|ov(𝑓 ) |−|ov(𝑓 ′) | ≥ |ov(𝑒) |−|ov(𝑓 ) |−|ov(𝑓 ′) | > |ov(𝑒) |−
max{|ov(𝑓 ) |, |ov(𝑓 ′) |} − 𝑤 (𝑐) and we are done. So now assume

min{|ov(𝑓 ) |, |ov(𝑓 ′) |} ≥ 𝑤 (𝑐).
First note that since 𝑒 is an edge of a small cycle in CC, 𝑒 is a

self-loop in 𝐺ov (𝑆 ′) and 𝑢 = 𝑣 . Since ov(𝑓 ) is a prefix of 𝑢 = 𝑣 ,

we observe that ov(𝑓 ) = 𝑢 [1, |ov(𝑓 ) |]. Because 𝑢 has period𝑤 (𝑐)
by Lemma 5.11, this also implies ov(𝑓 ) = 𝑢 [1 + 𝑘 ·𝑤 (𝑐), |ov(𝑓 ) | +
𝑘 ·𝑤 (𝑐)], where we choose 𝑘 ≥ 0 as the largest integer for which

𝑘 · 𝑤 (𝑐) ≤ |𝑢 | − max{|ov(𝑓 ) |, |ov(𝑓 ′) |}. For this choice of 𝑘 , we

have 𝑘 ·𝑤 (𝑐) > |𝑢 | − max{|ov(𝑓 ) |, |ov(𝑓 ′) |} −𝑤 (𝑐).
Furthermore, ov(𝑓 ′) = 𝑢 [|𝑢 | − |ov(𝑓 ′) | +1, |𝑢 |] because ov(𝑓 ′) is

a suffix of𝑢. Hence, the string𝑢 [|𝑢 | − |ov(𝑓 ′) | +1, |ov(𝑓 ) | +𝑘 ·𝑤 (𝑐)]
is a suffix of ov(𝑓 ) as well as a prefix of ov(𝑓 ′). This string has

length

|ov(𝑓 ) | + 𝑘 ·𝑤 (𝑐) − (|𝑢 | − |ov(𝑓 ′) |)
> |ov(𝑓 ) | + |𝑢 | − max{|ov(𝑓 ) |, |ov(𝑓 ′) |} −𝑤 (𝑐)

− (|𝑢 | − |ov(𝑓 ′) |)
= min{|ov(𝑓 ) |, |ov(𝑓 ′) |} −𝑤 (𝑐) ,

which is non-negative by the assumption above.

Every suffix of ov(𝑓 ) is also a suffix of 𝑣 ′ and every prefix of

ov(𝑓 ′) is also a prefix of 𝑢 ′. Hence, 𝑣 ′ has a suffix of length larger

than min{|ov(𝑓 ) |, |ov(𝑓 ′) |} − 𝑤 (𝑐) which is identical to a prefix

of 𝑢 ′. Therefore, |ov(𝑒 ′) | > min{|ov(𝑓 ) |, |ov(𝑓 ′) |} −𝑤 (𝑐), which
implies the lemma. □

Under a certain condition, we can further strengthen the inequal-

ity of the previous lemma.

Lemma 7.6. Consider the edges 𝑒 = (𝑢, 𝑣), 𝑓 = (𝑣 ′, 𝑣), 𝑓 ′ = (𝑢,𝑢 ′),
and 𝑒 ′ = (𝑣 ′, 𝑢 ′). Suppose 𝑒 is an edge in a (large or small) cycle 𝑐 of
CC, 𝑒 ′ is an edge in a (large or small) cycle 𝑐 ′ of CC, and |ov(𝑒 ′) | ≥
𝑤 (𝑐) +𝑤 (𝑐 ′). Then

|ov(𝑒) | + |ov(𝑒 ′) | − |ov(𝑓 ) | − |ov(𝑓 ′) | > |ov(𝑒) | −𝑤 (𝑐) .

Proof. We show that |ov(𝑒 ′) | > |ov(𝑓 ) |+ |ov(𝑓 ′) |−𝑤 (𝑐), which
implies the lemma. If min{|ov(𝑓 ) |, |ov(𝑓 ′) |} ≤ 𝑤 (𝑐), this inequality
holds because by using Lemma 5.9, we get

|ov(𝑒 ′) | ≥ 𝑤 (𝑐) +𝑤 (𝑐 ′)
> max{|ov(𝑓 ) |, |ov(𝑓 ′) |}
≥ max{|ov(𝑓 ) |, |ov(𝑓 ′) |} + min{|ov(𝑓 ) |, |ov(𝑓 ′) |} −𝑤 (𝑐)
= |ov(𝑓 ) | + |ov(𝑓 ′) | −𝑤 (𝑐) .

Hence, for the remainder of the proof, we assume that we have

min{|ov(𝑓 ) |, |ov(𝑓 ′) |} > 𝑤 (𝑐).
Now, assume for contradiction that |ov(𝑒 ′) | ≤ |ov(𝑓 ) |+|ov(𝑓 ′) |−

𝑤 (𝑐). We claim that in this case ov(𝑒 ′) has a periodicity of length

𝑤 (𝑐), i.e., ov(𝑒 ′) is a prefix of 𝑥∞ for some string 𝑥 with |𝑥 | =
𝑤 (𝑐). To show this, first recall that |ov(𝑒 ′) | ≥ 𝑤 (𝑐) + 𝑤 (𝑐 ′) >

max{|ov(𝑓 ′) |, |ov(𝑓 ) |} by Lemma 5.9. Since ov(𝑓 ′) is a prefix of 𝑢 ′

and a suffix of 𝑢 and since ov(𝑒 ′) is a prefix of 𝑢 ′, the first |ov(𝑓 ′) |
characters of ov(𝑒 ′) are also a suffix of 𝑢, i.e.,

ov(𝑒 ′) [1, |ov(𝑓 ′) |] = ov(𝑓 ′) = 𝑢 [|𝑢 | − |ov(𝑓 ′) | + 1, |𝑢 |] .

Similarly, since ov(𝑓 ) is a prefix of 𝑣 and a suffix of 𝑣 ′ and since

ov(𝑒 ′) is a suffix of 𝑣 ′, we get that

ov(𝑒 ′) [|ov(𝑒 ′) | − |ov(𝑓 ) | + 1, |ov(𝑒 ′) |] = ov(𝑓 ) = 𝑣 [1, |ov(𝑓 ) |] .

Observe that for all 1 ≤ 𝑖 ≤ |ov(𝑒 ′) | −𝑤 (𝑐), a character at position
𝑖 of ov(𝑒 ′) must be the same as the character at position 𝑖 +𝑤 (𝑐)
of ov(𝑒 ′). Indeed, if 𝑖 + 𝑤 (𝑐) ≤ |ov(𝑓 ′) |, this is true as 𝑢 has a

periodicity of length𝑤 (𝑐). If 𝑖 > |ov(𝑒 ′) |− |ov(𝑓 ) |, it is true because
𝑣 has a periodicity of length 𝑤 (𝑐). One of these two cases must

apply because otherwise, 𝑖 + 𝑤 (𝑐) > |ov(𝑓 ′) | and 𝑖 ≤ |ov(𝑒 ′) | −
|ov(𝑓 ) |, which implies |ov(𝑓 ′) | − 𝑤 (𝑐) < 𝑖 ≤ |ov(𝑒 ′) | − |ov(𝑓 ) |,
contradicting our assumption that |ov(𝑓 ′) | + |ov(𝑓 ) | ≥ |ov(𝑒 ′) | +
𝑤 (𝑐). Hence, ov(𝑒 ′) has a periodicity of length𝑤 (𝑐) (in particular,

period(ov(𝑒 ′)) ≤ 𝑤 (𝑐)).
Next, we show that ov(𝑒 ′) is a substring of the semi-infinite

string 𝑠 (𝑐)∞. Because ov(𝑒 ′) has a periodicity of length𝑤 (𝑐) and
𝑠 (𝑐)∞ has period 𝑤 (𝑐), it is sufficient to argue that the first 𝑤 (𝑐)
characters of ov(𝑒 ′) are a substring of 𝑠 (𝑐)∞. This is indeed the case

since ov(𝑒 ′) [1, |ov(𝑓 ′) |] is a substring of 𝑢 which is a substring of

𝑠 (𝑐)∞ and we assume that |ov(𝑓 ′) | > 𝑤 (𝑐).
Since ov(𝑒 ′) is a substring of 𝑠 (𝑐)∞ as well as of 𝑠 (𝑐 ′)∞ (because

𝑒 ′ lies on cycle 𝑐 ′), Corollary 5.10 implies |ov(𝑒 ′) | < 𝑤 (𝑐) +𝑤 (𝑐 ′)
which contradicts the assumption of the lemma. □

7.4 Analysis
In this section, we will show that for any cycle cover CC𝑖 ≠ CC,
it is always possible to find an edge 𝑒 ∈ CC \ CC𝑖 such that if we

obtain CC𝑖+1 by performing the swap(CC𝑖 , 𝑒), the total overlap

increase is at least

Δ𝑖 =
∑︁

𝑐∈M(CC𝑖+1)\M(CC𝑖 )

(
𝑜 (𝑐) − 𝛾 ·𝑤 (𝑐) − 1

2

·
∑︁

𝑐′:(𝑐,𝑐′) ∈𝑇
(2 ·𝑤 (𝑐 ′) − 𝑜 (𝑐 ′))

)
.

The following defines the concept of a good edge. It is a slightly
technical definition, but it is useful in the sense that (a) we will

be able to show that a good edge 𝑒 is always a suitable choice for

swap(CC𝑖 , 𝑒) and (b) in many cases we can find a good edge. For

the remaining cases (i.e., when it is not obvious whether a good

edge exists), we will have separate arguments that show that an

appropriate swap is possible.

Definition 7.7. We call an edge 𝑒 = (𝑢, 𝑣) ∈ CC\CC𝑖 a good edge

if the following statements hold for swap(CC𝑖 , 𝑒) which swaps out

edges 𝑓 = (𝑣 ′, 𝑣) ∈ CC𝑖 \ CC and 𝑓 ′ = (𝑢,𝑢 ′) ∈ CC𝑖 \ CC and

swaps in edges 𝑒 = (𝑢, 𝑣) and 𝑒 ′ = (𝑣 ′, 𝑢 ′):
• 𝑒 belongs to a small cycle 𝑐 of CC and 𝑒 ′ does not belong to

a small cycle of CC.
• If |ov(𝑓 ) | ≥ |ov(𝑓 ′) |, then for the cycle 𝑐 ′ inCC that contains

the string 𝑣 ′, it holds that either |ov(𝑓 ) | ≥ 𝑜 (𝑐 ′) or 𝑐 ′ is a
small cycle with𝑤 (𝑐 ′) ≤ 𝑤 (𝑐).

• If |ov(𝑓 ′) | > |ov(𝑓 ) |, then for the cycle 𝑐 ′ inCC that contains

the string 𝑢 ′, it holds that either |ov(𝑓 ′) | ≥ 𝑜 (𝑐 ′) or 𝑐 ′ is a
small cycle with𝑤 (𝑐 ′) ≤ 𝑤 (𝑐).



STOC ’22, June 20–24, 2022, Rome, Italy Matthias Englert, Nicolaos Matsakis, and Pavel Veselý

The following lemma shows that if there is a good edge 𝑒 , per-

forming swap(CC𝑖 , 𝑒) results in a sufficient increase of the total

overlap.

Lemma 7.8. If 𝑒 is a good edge, then after performing swap(CC𝑖 , 𝑒),
the resulting cycle cover CC𝑖+1 has by at least Δ𝑖 larger total overlap
than CC𝑖 .

Proof. By definition of a good edge, 𝑒 is the edge of a small

cycle 𝑐 . Due to Lemma 7.5, |ov(𝑒) | + |ov(𝑒 ′) | − |ov(𝑓 ) | − |ov(𝑓 ′) | >
|ov(𝑒) | − max{|ov(𝑓 ) |, |ov(𝑓 ′) |} −𝑤 (𝑐).

Suppose |ov(𝑓 ) | ≥ |ov(𝑓 ′) | (the other case is analogous) and let

𝑐 ′ be the cycle containing the string 𝑣 ′. Then

|ov(𝑒) | − max{|ov(𝑓 ) |, |ov(𝑓 ′) |} −𝑤 (𝑐)
= |ov(𝑒) | − |ov(𝑓 ) | −𝑤 (𝑐)
> |ov(𝑒) | −𝑤 (𝑐) −𝑤 (𝑐 ′) −𝑤 (𝑐) = |ov(𝑒) | − 2𝑤 (𝑐) −𝑤 (𝑐 ′) ,

where the inequality follows from Lemma 5.9. Hence, it is sufficient

to show that |ov(𝑒) | − 2𝑤 (𝑐) −𝑤 (𝑐 ′) ≥ Δ𝑖 .
Since 𝑒 is the only edge of a small cycle in CC and 𝑒 ′ is not

an edge of a small cycle in CC (by the definition of a good edge),

if we obtain CC𝑖+1 from CC𝑖 by performing swap(CC𝑖 , 𝑒), then
M(CC𝑖+1) \ M(CC𝑖 ) = {𝑐}. In this case,

Δ𝑖 = 𝑜 (𝑐) − 𝛾 ·𝑤 (𝑐) − 1

2

·
∑︁

𝑐′′:(𝑐,𝑐′′) ∈𝑇
(2 ·𝑤 (𝑐 ′′) − 𝑜 (𝑐 ′′))

= |ov(𝑒) | − 𝛾 ·𝑤 (𝑐) − 1

2

·
∑︁

𝑐′′:(𝑐,𝑐′′) ∈𝑇
(2 ·𝑤 (𝑐 ′′) − 𝑜 (𝑐 ′′))

≤
{
|ov(𝑒) | − 𝛾 ·𝑤 (𝑐) − 1

2
· (2 ·𝑤 (𝑐 ′) − 𝑜 (𝑐 ′)) if (𝑐, 𝑐 ′) ∈ 𝑇

|ov(𝑒) | − 𝛾 ·𝑤 (𝑐) otherwise

≤
{
|ov(𝑒) | − 𝛾 ·𝑤 (𝑐) − 1

2
· (𝑤 (𝑐 ′) −𝑤 (𝑐)) if (𝑐, 𝑐 ′) ∈ 𝑇

|ov(𝑒) | − 𝛾 ·𝑤 (𝑐) otherwise

.

(18)

The last step follows since if (𝑐, 𝑐 ′) ∈ 𝑇 , then 𝑐 ′ is a large cycle and
therefore, 𝑜 (𝑐 ′) ≤ |ov(𝑓 ) | < 𝑤 (𝑐)+𝑤 (𝑐 ′), where the first inequality
follows from the definition of a good edge and the last inequality

follows from Lemma 5.9.

The following fact establishes an upper bound on 𝑤 (𝑐 ′) by a

function of𝑤 (𝑐).

Fact 7.9.

• If 𝑐 ′ is a large cycle and (𝑐, 𝑐 ′) ∈ 𝑇 , then𝑤 (𝑐 ′) < 1

𝛽−1
𝑤 (𝑐).

• Otherwise,𝑤 (𝑐 ′) < (𝛾 − 2) ·𝑤 (𝑐) holds.

Proof. If 𝑐 ′ is a large cycle, then 𝑤 (𝑐) + 𝑤 (𝑐 ′) > |ov(𝑓 ) | ≥
𝑜 (𝑐 ′) > 𝛽 ·𝑤 (𝑐 ′), where the first step follows from Lemma 5.9, the

second step follows from the definition of a good edge, and the last

step follows from the definition of a large cycle. Rearranging this

inequality gives𝑤 (𝑐 ′) < 1

𝛽−1
𝑤 (𝑐).

Now, to show the second claim, there are two cases. If 𝑐 ′ is a large
cycle, but (𝑐, 𝑐 ′) ∉ 𝑇 , then we again recall that |ov(𝑓 ) | ≥ 𝛽 ·𝑤 (𝑐 ′).
Since (𝑐, 𝑐 ′) ∉ 𝑇 , this implies that𝑤 (𝑐 ′) < (𝛾 − 2) ·𝑤 (𝑐) as claimed.

On the other hand, if 𝑐 ′ is a small cycle, then, due to the definition of

a good edge, either𝑤 (𝑐 ′) ≤ 𝑤 (𝑐) or |ov(𝑓 ) | ≥ 𝑜 (𝑐 ′). In the former

case, we are already done as 𝛾 > 3. In the latter case, |ov(𝑓 ) | ≥
𝑜 (𝑐 ′) > 2𝑤 (𝑐 ′) and hence𝑤 (𝑐) > |ov(𝑓 ) | −𝑤 (𝑐 ′) > 𝑤 (𝑐 ′), where

the first inequality follows from Lemma 5.9. Again, this implies the

second claim as 𝛾 > 3. □

Finally, to show that |ov(𝑒) |−2𝑤 (𝑐)−𝑤 (𝑐 ′) ≥ Δ𝑖 , we distinguish
two cases and utilize the upper bound on Δ𝑖 derived in (18).

• If 𝑐 ′ is large cycle and (𝑐, 𝑐 ′) ∈ 𝑇 , then using the first claim

in Fact 7.9,

|ov(𝑒) | − 2𝑤 (𝑐) −𝑤 (𝑐 ′)

= |ov(𝑒) | − 2𝑤 (𝑐) − 1

2

𝑤 (𝑐 ′) − 1

2

𝑤 (𝑐 ′)

> |ov(𝑒) | − 2𝑤 (𝑐) − 1

2

𝑤 (𝑐 ′) − 1

2(𝛽 − 1)𝑤 (𝑐)

= |ov(𝑒) | −
(
2 + 1

2(𝛽 − 1)

)
·𝑤 (𝑐) − 1

2

𝑤 (𝑐 ′)

= |ov(𝑒) | −
(

5

2

+ 1

2(𝛽 − 1)

)
·𝑤 (𝑐) − 1

2

𝑤 (𝑐 ′) + 1

2

𝑤 (𝑐)

≥ |ov(𝑒) | − 𝛾 ·𝑤 (𝑐) − 1

2

𝑤 (𝑐 ′) + 1

2

𝑤 (𝑐) ≥ Δ𝑖 ,

where the last line uses (8).

• Otherwise, |ov(𝑒) | − 2𝑤 (𝑐) −𝑤 (𝑐 ′) ≥ |ov(𝑒) | − 𝛾 · 𝑤 (𝑐) ≥
Δ𝑖 . □

There may be cases where CC \CC𝑖 does not necessarily have a

good edge. In such cases, we can use other arguments. The following

lemma is an example of this.

Lemma 7.10. If there exists an edge 𝑒 ∈ CC \ CC𝑖 such that
(i) swap(CC𝑖 , 𝑒) swaps in edges 𝑒 and 𝑒 ′,
(ii) neither 𝑒 nor 𝑒 ′ are edges of a small cycle in CC, and
(iii) max{|ov(𝑒) |, |ov(𝑒 ′) |} ≥ max{|ov(𝑓 ) |, |ov(𝑓 ′) |},

then after performing swap(CC𝑖 , 𝑒), the resulting cycle cover CC𝑖+1

has by at least Δ𝑖 larger total overlap than CC𝑖 .

Proof. If neither 𝑒 nor 𝑒 ′ are edges of a small cycle in CC,
then performing swap(CC𝑖 , 𝑒) results in a cycle cover CC𝑖+1 for

which M(CC𝑖+1) \ M(CC𝑖 ) = ∅. Therefore, Δ𝑖 = 0. Since we

have max{|ov(𝑒) |, |ov(𝑒 ′) |} ≥ max{|ov(𝑓 ) |, |ov(𝑓 ′) |}, Lemma 7.4

implies that |ov(𝑒) | + |ov(𝑒 ′) | ≥ |ov(𝑓 ) | + |ov(𝑓 ′) |. Hence, |ov(𝑒) | +
|ov(𝑒 ′) | − |ov(𝑓 ) | − |ov(𝑓 ′) | ≥ 0 = Δ𝑖 . □

If there exists an edge 𝑒 ∈ CC \ CC𝑖 such that performing

swap(CC𝑖 , 𝑒) reduces the symmetric difference between CC and

CC𝑖 by four, then we show that swap(CC𝑖 , 𝑒) increases the total
overlap by at least Δ𝑖 .

Lemma 7.11. If there exists an edge 𝑒 ∈ CC\CC𝑖 such that perform-
ing swap(CC𝑖 , 𝑒) reduces the symmetric difference between the cycle
cover CC𝑖 and CC by four edges, then after performing swap(CC𝑖 , 𝑒),
the resulting cycle cover CC𝑖+1 has by at least Δ𝑖 larger total overlap
than CC𝑖 .

Proof. Recall that swap(CC𝑖 , 𝑒) adds the edges 𝑒 and 𝑒 ′ to the

cycle cover CC𝑖 and removes the edges 𝑓 and 𝑓 ′. Thus, if the sym-

metric difference to CC decreases by four edges, then it must be

the case that 𝑒, 𝑒 ′ ∈ CC \ CC𝑖 and 𝑓 , 𝑓 ′ ∈ CC𝑖 \ CC.
We have max{|ov(𝑒) |, |ov(𝑒 ′) |} ≥ max{|ov(𝑓 ) |, |ov(𝑓 ′) |}, since

otherwise, MGREEDY would have picked the edge of greater over-

lap between 𝑓 and 𝑓 ′ for inclusion in CC, before picking either one
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of 𝑒 or 𝑒 ′. First, suppose that both 𝑒 and 𝑒 ′ belong to the same cycle,

which can only be large, since all small cycles consist of a single

edge. In this case, Lemma 7.10 applies and the proof is complete.

Now, suppose that 𝑒 and 𝑒 ′ belong to two different cycles of CC.
We consider the following four cases:

• Suppose 𝑒 and 𝑒 ′ both belong to large cycles in CC. Then
Lemma 7.10 applies and we are done.

• Suppose 𝑒 and 𝑒 ′ both belong to small cycles in CC. Let these
two small cycles be 𝑐 and 𝑐 ′, respectively. If we obtain CC𝑖+1

from CC𝑖 by performing swap(CC𝑖 , 𝑒), then M(CC𝑖+1) \
M(CC𝑖 ) = {𝑐, 𝑐 ′}. Thus, using (17) together with |ov(𝑒) | =
𝑜 (𝑐), |ov(𝑒 ′) | = 𝑜 (𝑐 ′), and 𝛾 > 2, we obtain

Δ𝑖 < |ov(𝑒) | − 2𝑤 (𝑐) + |ov(𝑒 ′) | − 2𝑤 (𝑐 ′) .

Due to Lemma 5.9, max{|ov(𝑓 ) |, |ov(𝑓 ′) |} < 𝑤 (𝑐) +𝑤 (𝑐 ′).
Therefore, |ov(𝑒) | + |ov(𝑒 ′) | − |ov(𝑓 ) | − |ov(𝑓 ′) | ≥ |ov(𝑒) | −
2𝑤 (𝑐) + |ov(𝑒 ′) | − 2𝑤 (𝑐 ′) > Δ𝑖 as claimed.

• Suppose 𝑒 belongs to a small cycle 𝑐 and 𝑒 ′ belongs to a large
cycle 𝑐 ′ in CC.
We distinguish between three cases:

– If |ov(𝑒 ′) | ≤ max{|ov(𝑓 ) |, |ov(𝑓 ′) |}, then 𝑒 is a good edge
(note that 𝑜 (𝑐 ′) ≤ |ov(𝑒 ′) | because 𝑒 ′ belongs to the cycle

𝑐 ′) and we apply Lemma 7.8.

– If𝑤 (𝑐) +𝑤 (𝑐 ′) ≥ |ov(𝑒 ′) | > max{|ov(𝑓 ) |, |ov(𝑓 ′) |}, then
using Lemma 5.9,

max{|ov(𝑓 ) |, |ov(𝑓 ′) |} < 𝑤 (𝑐) +𝑤 (𝑐 ′)
= 𝑤 (𝑐) + 𝛾 ·𝑤 (𝑐 ′) − (𝛾 − 1) ·𝑤 (𝑐 ′)
≤ 𝑤 (𝑐) + (𝛾 − 1) · 𝛽 ·𝑤 (𝑐 ′) − (𝛾 − 1) ·𝑤 (𝑐 ′)
≤ 𝑤 (𝑐) + (𝛾 − 1) · 𝑜 (𝑐 ′) − (𝛾 − 1) ·𝑤 (𝑐 ′)
≤ 𝑤 (𝑐) + (𝛾 − 1) · |ov(𝑒 ′) | − (𝛾 − 1) ·𝑤 (𝑐 ′)
≤ 𝑤 (𝑐) + (𝛾 − 1) ·𝑤 (𝑐) = 𝛾 ·𝑤 (𝑐) ,

where the second line uses (9), the third line follows from

𝑐 ′ being large, the fourth one from that𝑜 (𝑐 ′) is the smallest

overlap on cycle 𝑐 ′, and the fifth line uses the case condi-

tion. Now, the increase in the total overlap when perform-

ing swap(CC𝑖 , 𝑒) is at least |ov(𝑒) | + |ov(𝑒 ′) | − |ov(𝑓 ) | −
|ov(𝑓 ′) | ≥ |ov(𝑒) | − |ov(𝑓 ) | > 𝑜 (𝑐) −𝛾 ·𝑤 (𝑐) ≥ Δ𝑖 , where
we use (17) together with |ov(𝑒) | = 𝑜 (𝑐) and 𝛾 > 1.

– Otherwise, we have |ov(𝑒 ′) | > 𝑤 (𝑐) +𝑤 (𝑐 ′). It follows, by
Lemma 7.6, that |ov(𝑒) | + |ov(𝑒 ′) | − |ov(𝑓 ) | − |ov(𝑓 ′) | ≥
|ov(𝑒) | −𝑤 (𝑐) ≥ Δ𝑖 .

• Suppose 𝑒 belongs to a large cycle and 𝑒 ′ belongs to a small

cycle in CC. Observe that swap(CC𝑖 , 𝑒
′) results in exactly

the same cycle cover CC𝑖+1 as swap(CC𝑖 , 𝑒). Therefore, we
just apply the previous argument to swap(CC𝑖 , 𝑒

′), and we

are done. □

Lastly, if neither of the previous two lemmas applies, we can find

a good edge for sure:

Lemma 7.12. Suppose Lemmas 7.10 and 7.11 do not apply, i.e., no
edge with the corresponding properties exists. Then there exists a good
edge in CC \ CC𝑖 .

𝑢 = 𝑣

𝑢 ′ 𝑣 ′

𝑓 ′ 𝑓 = 𝑓max ∈ CC𝑖 \ CC

𝑒 ′ ∉ CC

𝑒 = 𝑒ℎ ∈ CC

𝑐

𝑒𝑡 ∈ CC 𝑐 ′

ℎ ∈ CC𝑖 \ CC

Figure 3: Illustration of Case A in the proof of Lemma 7.12.

Proof. Let 𝑓max be an edge of CC𝑖 \ CC that has the maximum

overlap among the edges of CC𝑖 \ CC. We will show that 𝑓max is a

candidate for either 𝑓 or 𝑓 ′.
Let 𝑒ℎ be the edge of CC that has the same head node as 𝑓max

and let 𝑒𝑡 be the edge of CC that has the same tail node as 𝑓max.

We will later pick one of these as our edge 𝑒 . We have |ov(𝑓max) | ≤
max{|ov(𝑒ℎ) |, |ov(𝑒𝑡 ) |} as otherwise,MGREEDYwould have picked

edge 𝑓max for inclusion in CC before picking either one of 𝑒ℎ or 𝑒𝑡 .

We first show that 𝑒ℎ or 𝑒𝑡 satisfies the first condition of a good

edge in Definition 7.7.

Fact 7.13.

• If |ov(𝑒ℎ) | ≥ |ov(𝑓max) |, then 𝑒 = 𝑒ℎ satisfies the first condition
of a good edge.

• Similarly, if |ov(𝑒𝑡 ) | ≥ |ov(𝑓max) |, then 𝑒 = 𝑒𝑡 satisfies the
first condition of a good edge.

Proof.

• To see that 𝑒 = 𝑒ℎ satisfies the first condition of a good edge

if |ov(𝑒ℎ) | ≥ |ov(𝑓max) |, consider swap(CC𝑖 , 𝑒ℎ) and use the
same notation as in Figure 2.

First of all, in this case, 𝑓 = 𝑓max = (𝑣 ′, 𝑣) and because

𝑓max was chosen to have the maximum overlap in CC𝑖 \CC,
|ov(𝑓 ) | ≥ |ov(𝑓 ′) |. From this we conclude that |ov(𝑒) | ≥
max{|ov(𝑓 ) |, |ov(𝑓 ′) |}. Lemma 7.11 applies if 𝑒 and 𝑒 ′ both
belong toCC. Sincewe assume that the lemma does not apply

and since we know that 𝑒 ∈ CC, it follows that 𝑒 ′ ∉ CC. If 𝑒
belongs to a large cycle in CC, Lemma 7.10 applies because

𝑒 ′ ∉ CC and |ov(𝑒) | ≥ max{|ov(𝑓 ) |, |ov(𝑓 ′) |}. Because we
assume that the lemma does not apply, we conclude that 𝑒

must belong to a small cycle. Together with 𝑒 ′ ∉ CC, this
satisfies the first condition of a good edge.

• By symmetric arguments to the above, it also follows that if

|ov(𝑒𝑡 ) | ≥ |ov(𝑓max) |, then 𝑒 = 𝑒𝑡 satisfies the first condition

of a good edge. □



STOC ’22, June 20–24, 2022, Rome, Italy Matthias Englert, Nicolaos Matsakis, and Pavel Veselý

To show that we can also satisfy the second or the third condition

(for an edge that satisfies the first), we distinguish three cases:

Case A: Suppose |ov(𝑒ℎ) | ≥ |ov(𝑓max) | and |ov(𝑒𝑡 ) | ≥ |ov(𝑓max) |.
Let 𝑐 be the cycle of CC to which 𝑒ℎ belongs and let 𝑐 ′ be the

cycle of CC to which 𝑒𝑡 belongs; see Figure 3 for an illustration. We

assume that𝑤 (𝑐) ≥ 𝑤 (𝑐 ′) as the arguments for the other case are

completely symmetric with the roles of 𝑒ℎ and 𝑒𝑡 reversed.

We claim that 𝑒 = 𝑒ℎ is a good edge. It follows from Fact 7.13 that

𝑒 satisfies the first condition of a good edge. Since |ov(𝑓 ) | ≥ |ov(𝑓 ′) |
as 𝑓 = 𝑓max, it only remains to show the second condition. Since

𝑒𝑡 is an edge in the cycle 𝑐 ′ in CC, we have |ov(𝑒𝑡 ) | ≥ 𝑜 (𝑐 ′). If
𝑜 (𝑐 ′) ≤ |ov(𝑓 ) |, the second condition of a good edge is already

satisfied. So suppose 𝑜 (𝑐 ′) > |ov(𝑓 ) |.
Assume for a contradiction that 𝑐 ′ is a large cycle in CC. Then

consider the edge ℎ in CC𝑖 \ CC that has the same head node as

𝑒𝑡 . We know that |ov(𝑓 ) | ≥ |ov(ℎ) | because 𝑓max = 𝑓 was cho-

sen to have the maximum overlap among all edges in CC𝑖 \ CC.
Hence, |ov(𝑒𝑡 ) | ≥ 𝑜 (𝑐 ′) > |ov(𝑓 ) | ≥ |ov(ℎ) | and thus |ov(𝑒𝑡 ) | >
max{|ov(𝑓 ) |, |ov(ℎ) |}. Consider swap(CC𝑖 , 𝑒𝑡 ), i.e., with edge 𝑒𝑡
acting as edge 𝑒 in the operation. If swap(CC𝑖 , 𝑒𝑡 ) reduces the

symmetric difference between CC𝑖 and CC by four edges, then

Lemma 7.11 applies. Otherwise, 𝑒 ′ ∉ CC, so Lemma 7.10 applies

as the cycle 𝑐 ′ containing 𝑒 = 𝑒𝑡 is large. This is a contradiction to

our assumption that neither Lemma 7.11 nor Lemma 7.10 can be

applied.

Thus, 𝑐 ′ must be a small cycle. Since we initially assumed that

𝑤 (𝑐) ≥ 𝑤 (𝑐 ′), the second condition in Definition 7.7 follows and

thus, 𝑒 is a good edge.

Case B: Suppose that |ov(𝑒ℎ) | ≥ |ov(𝑓max) | > |ov(𝑒𝑡 ) |. We claim

that 𝑒 = 𝑒ℎ is a good edge. It follows from Fact 7.13 that 𝑒 satisfies

the first condition of a good edge. Since |ov(𝑓 ) | ≥ |ov(𝑓 ′) |, it only
remains to show the second condition.

Let 𝑐 ′ be the cycle containing the string 𝑣 ′. Observe that 𝑒𝑡 is
an edge in the cycle 𝑐 ′ and recall that 𝑓 = 𝑓max and |ov(𝑒𝑡 ) | <
|ov(𝑓max) |. We conclude that 𝑜 (𝑐 ′) ≤ |ov(𝑒𝑡 ) | < |ov(𝑓 ) |, so the

second condition in Definition 7.7 is satisfied and 𝑒 is good edge.

Case C: Otherwise, since max{|ov(𝑒ℎ) |, |ov(𝑒𝑡 ) |} ≥ |ov(𝑓max) |, we
have |ov(𝑒𝑡 ) | ≥ |ov(𝑓max) | > |ov(𝑒ℎ) |. This case is symmetric to

the previous one with the roles of 𝑒𝑡 and 𝑒ℎ swapped. □

To summarize, for any arbitrary cycle cover CC𝑖 , there exists an

edge 𝑒 ∈ CC \ CC𝑖 such that if we obtain the cycle cover CC𝑖+1

from CC𝑖 by performing swap(CC𝑖 , 𝑒), then the total overlap of

CC𝑖+1 is by at least Δ𝑖 larger than the total overlap of CC𝑖 . This

follows because either one of Lemmas 7.10 and 7.11 directly applies

or, if that is not the case, Lemma 7.12 guarantees the existence of

a good edge 𝑒 ∈ CC \ CC𝑖 . For such a good edge, swap(CC𝑖 , 𝑒)
provides the claimed increase of the total overlap due to Lemma 7.8.
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