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Abstract

Chapters 2 and 3 of this thesis are based on a paper in preparation, “Partial observations 

of a tree-indexed process” . We begin, in Chapter 1, with an introduction to the theory of 

branching random walks. We then consider stochastic process indexed by Galton-Watson 

trees and highlight the connection between “speeds” for the corresponding branching ran

dom walks and large deviation theory. We relate all of this to a class of martingales 

obtained via a change of measure corresponding to changing the distribution of the tree- 

indexed random variables along a randomly chosen “line of descent” through the tree. 

We show that the issue of uniform integrability for these martingales - a much studied 

subject in its own right - boils down essentially to large deviation calculations.

In Chapter 2 we introduce “recovery problems” . We observe some information about 

a tree-indexed collection of random variables and ask if it is possible to “recover” the 

original random variables in some suitable sense. We motivate this with a simple example 

on the integers and then describe the analogous problem on the binary tree, using the 

theory developed in Chapter 1 to derive conditions on the underlying probability param

eters under which recovery is possible.

In Chapter 3 we turn our attention to “Recursive Distributional Equations” (or RDEs). 

Motivated by the work of Chapter 2 we investigate a recursion for random variables on 

the binary tree and then study the corresponding RDE in its own right by introducing 

the idea of tree-indexed solutions. We are able to give a fairly complete analysis of the 

RDE in the case where recovery of the tree-indexed random variables from Chapter 2 

is possible but find that the non-recovery case is less tractable. Here we provide partial



results and make conjectures based on what we know to be true.

In Chapter 4 we further develop the theory of RDEs by introducing the notion of “en- 

dogeny” . This relates to whether (tree-indexed) solutions to RDEs can be written as 

functions of the original data alone or whether there is some additional randomness com

ing from the system. We conclude the chapter with a particular example, the so-called 

“noisy veto voter model” , and obtain conditions for endogeny in this setting by extending 

some recent work in this area.

Chapter 5 is based on a paper in preparation, “A recursive distributional equation on 

[0,1]” . The RDE in question is obtained from the noisy veto voter RDE of Chapter 4 

via various transformations and conditioning. We make a thorough study of this new 

RDE by identifying all invariant distributions, the corresponding “basins of attraction” 

and addressing the issue of endogeny for the associated tree-indexed problem.

At the end of each chapter we discuss briefly possible extensions to the work and make 

clear any unresolved issues or simplifying assumptions that might be relaxed in future 

research.

2



Chapter 1

Large deviations and martingales

In this chapter we introduce the idea of a branching process, focusing particularly on 

multi-type Galton-Watson branching processes and the underlying tree structure. We 

discuss the Binary tree with “Bernoulli noise” as much of our work will focus on this

calculations and relate this to martingales coming from the associated branching random 

walk.

1.1 Galton-Watson branching processes and trees

Let IV be a non-negative integer-valued random variable. Set Z0 =  1,Z\ =  N and, 

inductively,

where the TV" are independent copies of N. Then we say that Zn is the number of 

individuals in generation n of a Galton-Watson branching process. The population starts 

with one individual and then each individual independently produces a random number 

of offspring according to N. The collection of all individuals forms the vertices of the

specific example. We then study the boundary of the binary tree via large deviation

t=i
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associated Galton-Watson tree, with edges connecting parents to their offspring. It will 

he convenient, especially in the later context of the binary tree, to elucidate a system of 

labelling the vertices of such a tree. First consider a Galton-Watson tree with deterministic 

branching factor N, which we can write as

OO
r = |J{o, i,..., jv — i}n,

n=0

where 0 E {0 ,..., N  — 1}° denotes the “root” . In this notation, the labels 0,1,..., N — 1 

represent the offspring of an individual. The collection of vertices in level n of the tree is 

then denoted Gn and may be represented in terms of “addresses” as points in {0 ,1 ,..., N — 

\}n. We define Tn to be

r„= |J { o , h - , N - i } k,
k<n

the set of vertices belonging to levels up to and including n. We write |m| for the depth 

of a vertex u, so that u 6 if and only if |«| =  n. We denote the boundary (or limit 

set) of T by d r  =  {0 ,1 ,..., N — 1}Z>. Corresponding to each vertex u E V is a sequence 

of length |u| with entries in {0 ,1 ,..., N — l}, which is its “address” in level |u| of the tree. 

For example, the third daughter of the second daughter of the root (ordered from left to 

right say) is denoted (12). Writing u =  ( « i , « 2, for a vertex in level n, we denote

the concatenated sequence (ui,u2, ■■■,un,j) ,  where j  E {0 ,1 ,..., N — 1}, corresponding to 

the possible daughters of u, by uj. A vertex, together with its daughter vertices, is called 

a “family” . We say that a vertex v is an ancestor of a vertex u, written v <  u, if there is 

a sequence of vertices (w\ =  v, ...,wn =  u) with wi+1 a daughter of for i =  1, ...,n  — 1. 

For every point t E dT, there is an infinite sequence of vertices (wi,w2, ...), with

wn E Gn and wn+i a daughter of wn for every n, starting at the root and “ending” at t, 

listing all the ancestors of t. We call this an “infinite line of descent” .

2



Note that in some work, such sequences are referred to as “spines” or “rays” . A line 

of descent from an arbitrary vertex u is just a sequence of vertices (w\ =  it, w2, ■■■j'Wn, ...), 

with wn+i a daughter of wn for every n and a line of descent between two vertices is 

defined in the obvious way. In the more general setting where A  is a random variable, 

we embed the resulting Galton-Watson tree in an N*-ary tree, where N* =  supw N(u) 

and adopt the same notation as for the deterministic tree (though obviously there may be 

some “ghost” vertices that don’t actually exist). Note that if N has positive probability 

of being infinite then we embed in an infinite tree with infinite branching factor. This 

approach will be used in Chapter 5.

We now introduce the notion of “vertex type” . It is assumed throughout that we are 

working on some underlying probability space (fi, T , P). Let £ =  (£u; u € T) be a stochas

tic process indexed by the vertices of T. We will assume that, under P, the £u are 

independent, identically distributed real random variables. The process £ is an example 

of a “multi-type Galton-Watson branching process” , in which a “mark” or “noise” is as

sociated with each vertex. In the context of the associated random walk, one can also 

think of the marks as being “displacements” from parent vertices. This fairly general 

setup is standard in the sense that much work has been done in this setting. We will be 

particularly interested in the deterministic binary tree T, that is, the case where N =  2. 

For us, the associated marks will be independent, identically distributed Bern(p) random 

variables on the two point set { — 1,1}. Key to this is the assumption of independence be

tween the random variables associated with the vertices. A generalisation of this structure 

will be discussed in Chapter 2.
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1.2 Large deviations and rate functions for random

walks

In this section we consider large deviations for random walks via rate functions. This is an 

important concept that will play a major role in our later work on tree-indexed random 

walks.

Let X i,X 2,... be independent, identically distributed random variables defined on some 

common probability space and write fi for their common mean and a2 for their common 

variance (both of which are assumed finite). Let Sn =  X\ +  ... +  X n be the associated 

partial sum. By interpreting the Xi as displacements, we can think of Sn as being the 

position at time n of a random walk with independent, identically distributed increments 

distributed as the X t. The Central Limit Theorem asserts that

Sn nfl
\Jno

converges in distribution to a standard Normal random variable. This “quantifies” the 

probability of Sn differing from its mean fin by an amount of order y/n. Large deviation 

theory deals with events where Sn differs from its mean fin by an amount of order n, 

that is to say, events outside the scope of the Central Limit Theorem. [24], Of particular 

interest is the event

Sn > an, a >  0,

whose probability tends to zero as n —> oo, and the “rate” at which this convergence 

occurs. Linder certain conditions (see Cramer’s Theorem below), the decay is exponential 

in n in that, for a >  0,

lim
logP(S'n >  an)

< 0,



where the quantity on the left is called the rate function. Cramer’s Theorem makes this 

more precise.

Theorem 1. (Cramer) Let X\, X 2 , ... be independent, identically distributed random vari

ables with a well-defined moment generating function, that is, satisfying

(p(t) =  E[etX’] <  00

for every t E 1 . Then

1(a)
lim,, logP(Sn>an)

— limn log P(Sn<qrt)

a > p 

a < p

exists and satisfies

I (z ) =  sup[zt — log</?(i)]. 
tent

The theorem says that the rate function /  is the Legendre transform of log </?(£). Infor

mally, this formula says that the value of I(z ) at a point 2 is given by the greatest possible 

difference between the curve log<^(i) and the line zt. Geometrically speaking, this is the 

point at which the gradient of log(^(i) is the same as that of zt, namely 2. To determine 

this distance we can compute the corresponding equation of the tangent to log </?(£) and 

then the point at which this intersects the y-axis will give —I (z ).

Notice that, by the weak law of large numbers, given e >  0,

P(|— -  p\ < e ) - > ln

as n —> 00. For a < p, we can choose e to be sufficiently small that

Sn
n

> p — e > a,
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Figure 1.1: relationship between log ip and I

and hence

P (—  > a) - »  1, 
n

as n —» oo, so that, for a < //,
log P(*S'n > na) Q

n

as n —> oo. Similarly, for a >  /r, we have

log P (Sn < na) 
n

0

as n —» oo, hence our definition of / .  Some key features of the rate function are that it 

is continuously differentiable and strictly convex at all point where it is finite with the 

properties that 1(a) >  0 (with equality at the mean /i) and, furthermore, I"([i) =  l/a2. 

Indeed these two properties relate to the Strong Law of Large Numbers and Central Limit
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Theorem respectively [24].

We will now compute the rate function for the random walk with independent Bern(p) 

increments as it will feature in later analysis. We present two methods: one via binomial 

coefficients and the other via Cramer’s theorem.

Lem m a 1. The rate function I for the standard random walk Sn with independent Bern(p) 

increments is given, on [0 , 1], by

where q — 1 — p.

Proof, (via binomial coefficients) Throughout this proof we use (for convenience) the 

somewhat sloppy notation na,n( 1 — a) when we really mean |naj +  1, |_n (l — o)J +  1 

respectively, where [_xj denotes the integer part of x. Now, we have

For a > p, we can bound (1.1) by noting that the greatest contribution to the summation 

comes from the first term:

1(a) =  a log -  +  (1 — a) log
1 — a

Q

( 1.1)

k>na

(nna)pnaQnil~a) <  ^(Sn > no) <  < aK V ^

Hence

lim  l o g ( n a ) p " V (1~ a) <  lim  lo g  P ( g n >  » « )  <  ^   ̂lo g  Tl +  l o g Q)

7



and now, since i2221 —» 0 as n —> oo, it follows that5 n

logP(Sn >  na) log(” a)p"agn^
n n

We now claim that, for a >  0,

1 n!
n (an)![(l — a)n]!

—a log a — (1 — a) log(l — a)

as n —> oo. By Stirling’s asymptotic formula

we have

and

Hence

nl ~  y/2ne-nnn+1/2,

log n\ ~  —n +  (n +  1/ 2) logn,

log (an)! ~  —an +  (an +  1/ 2) log(l — a)n

log[(l — a)n]! ~  — (1 — a)n +  [(1 — a)n +  1/ 2] log(l — a)n.

log
nl

(an)![(l — a)n]!
—n +  an +  (1 — a)n +  (n +  1/ 2) logn — (an +  1/ 2) logn

-[(1 — a)n + 1/ 2) logn — an log a — (1 — a)n log(l — a) 

=  O (logn) — n[aloga +  (1 — a) log(l — a)].

The claim now follows by dividing by n and taking limits.

8



Applying this to our limit,we have then

lim71—XX)
iog (ÎL )p "V (1~a)

n = a\ogp+  (1 — a) log <7 — a log a — (1 — a) log(l — a),

which tidies to

a log -  +  (1 -  a) log—!— . 
a 1 — a

The result now follows by interchanging the numerator and denominator of the logarithmic 

terms so as to take account of the minus sign in front of this quantity. It is easily seen 

that we obtain the same formula for a <  p. □

Proof, (via Cramer’s Theorem) Writing p  for the moment generating function of the 

Bern(p) random variables, we have

log P(t) =  log (pe* +  q)

so that the value of t for which log tp(t) has gradient z satisfies

pel
—;------ =  z-pel +  q

This gives

t =  log
qz

p { l~ z )

with corresponding value of log <p(t) given by

log
1 -  z

9



so that the tangent T(t) to log <¿>(7) with gradient z has equation

T ( t ) - l o g  ^  =  z (t -  log

Setting t =  0 we obtain

T(0) =  log — 
1  — z ~ z  log

QZ
P( 1 ~  z)

and now we want —T (0) which simplifies to

Z log -— h ( 1 — z) log 
P

1 -  2
?

<7

precisely the formula we obtained using the binomial coefficients. □

1.3 Probability on dT, large deviations and cloud 

speed

We now return to the subject of the binary tree T  and, in particular, its boundary. In the 

following section we will review the “normal” behaviour of the types along lines of descent 

and then investigate “abnormal” behaviour along such lines. By “normal” we mean that 

the proportions of marks equal to one obey the Strong Law of Large Numbers and by “ab

normal” we mean that the proportions deviate from this. It should be clear, even at this 

stage, that the theory of large deviations discussed in the previous section will be relevant.

We begin with some notation. Let if =  { — 1,1}7 so that the binary tree with Bernoulli 

noise can be thought of as a point in Q. Notice that, in this context, the law of 

£ =  (£tb u E T) is the Bern(p) product measure on Q. For £ E and t E dT, let p,(£, t)

10



denote the limiting proportion (when it exists) of type ¿ € { —1, 1} vertices observed along 

the line of descent corresponding to t in £. That is

when this limit exists. The following two lemmas give us an idea of what to expect in 

terms of the limiting proportions of ones along “typical” lines of descent. By Leb on

can choose a point in dT according to Lebesgue measure via the following construction. 

We start at the root and with equal probability branch off to the left or right. We then 

branch off with equal probability to the left or right from our new position and so on. 

This continues indefinitely. By the time we “reach” the boundary dT, we are equally 

likely to be at any point.

Lem m a 2. Let P  =  {(u;,f) G x dT : =  p}. Then P(w : (u>,t) G P) =  1 for

all t G dT.

Proof. This follows from the Strong Law of Large Numbers. For a fixed t, the law under 

P of the marked line of descent corresponding to t is the Bern(p) product measure on

Lem m a 3. Let Q =  { uj : Leb(t G dT : pi(£(u>),t) — p) =  1}. Then P(Q) =  1.

Proof. We consider the product measure x Leb on the product space Q x dT. Let P  

be as in the previous lemma. Then

t<U

dT (or “uniform measure” ) we mean the Bern(l/2) product measure on { 0 ,1}Z'.  We

{ - 1, 1} Z+. □

(L<: x Leb)(P) =  1 P(£, t)d{Ls x Leb){t, t)
llxdT

11



(by Fubini’s theorem)

=  /  Lt((Z,t) G P)dLeb(t) =  1 
JdT

by the previous lemma. But, again by Fubini’s theorem, we also have

f  [  1 P{£,t)d(L tY .Leb){£ ,t)=  f  { f  l P^ ,t)d L eb(t))dL ^)
J  J n x d r  J n  J a r

=  [  L eb((U ) € P )d L s(a
J n

and it now follows that Leb(t : (£, t) G P) =  1 almost surely. □

The above lemmas give us an idea of what to expect at the boundary of the tree: 

the limiting proportion of type one vertices along a typical line of descent ought to be p, 

though this will not be the case for all lines of descent. With this in mind it is natural to 

wonder by how much the limiting proportions can deviate from p. Indeed which limiting 

proportions are possible and which not for a given value of p? In the following subsections 

we will encounter various inter-related mathematical frameworks within which we can ask 

such questions. We start with the notion of “cloud speed” .

1.3.1 Cloud speed

In this section we state the classical theorem of Hammersley, Kingman and Biggins. This 

serves as preparation for the work of Chapter 2. We are guided in part by [42] and 

[16]. The setting is a general Galton-Watson tree as discussed at the beginning of the 

chapter. Recall that G T) is a collection of independent, identically distributed

random variables associated with the vertices of a Galton-Watson tree T. Define the 

“tree-indexed random walk” (5 (£ ,u );u  G T) by

v<u

12



Then the classical definition of cloud speed, as stated in [42] for example, is

Sdaud =  hm sup m ax----- :— .
n —>oo M  =n n

This is one of various “speeds” that can be associated with a tree-indexed process (see 

[42] for example) and it turns out that cloud speed (and indeed the other speeds) are 

almost surely constant. The following theorem makes this precise.

T h eorem  2. (Hammersley, Kingman, Biggins) Let T be a Galton-Watson tree with mean 

m >  1. Suppose that the vertices ofT  are labelled by independent, identically distributed 

random variables £u satisfying

1. is not almost surely constant,

2. E[eÂu] <  oo for all A > 0.

Then on the event that T survives, we have, almost surely,

Sdcmd =  sup{s : I(s ) <  logm },

where I is the rate function for the random walk with independent increments distributed 

as the £u.

It is worth pointing out at this stage a very quick and informal proof of one half of 

the theorem theorem as it shows clearly the connection between cloud speed and the rate 

function. Let Mn denote max|u|=n S(f, u). Then, for a constant c,

P (M „ >  Cn) =  E [l(Mn>cn)] <  E [ ^  l(S(£,u)>cn)]
\u\=n

=  m "P(S(£,u) >  cn) «  e-"(dc)-iogm)

13



for large n, where I is the rate function for independent increments distributed as the £u. 

Now, by the Borell-Cantelli lemma, we have that

P (Mn > nc infinitely many n) =  0

provided

that is, provided

In this case, it follows that

so that

> P e-n(/(c)-logm) < QOj

/(c )  — logm  > 0.

Mnlim sup-----<  c
n n

Sdcmd <  sup {a : 1(a) <  logm }.

We will see later how to obtain the other half of the proof via martingale calculations.

By interpreting £u as the displacement of a vertex u from its parent vertex, the tree- 

indexed random walk is a branching random walk and the theorem above says that, 

under the assumptions on the the position of the “rightmost” vertex moves linearly 

in time, at a rate given by the cloud speed. In Chapter 2 we will be interested in limit

ing proportions of types along lines of descent and for this reason we make the following 

definitions, based on the idea of cloud speed and in the context of the binary tree with 

Bernoulli noise. Let £ € Q. Define random variables c±(£), the “upper cloud speed” of £ 

corresponding to counts of ones or minus ones by, respectively,

c+(£) =  lim sup max
n—»oo |u|=w

S+(Z,u)
n

. ( 0  =  limsupmax
n—► oo \u\=n n

14



and c± (0 , the “lower cloud speed” of £ corresponding to counts of ones or minus ones by, 

respectively,

M O lim inf minn—>oo |u|=n
S+( 0 « )

Jn c_(0  =  lim inf min 5  ^  ,
n—>oo \u\=n 71

where, in each case,

s + ( 0 0  =  £  l(i.= i)(0 . 5 - ( 0  u) =  5 ]  % = - i ) ( 0 .
u<u ■u<u

Notice that by the elementary properties of limsup and liminf we have c+ (0  +  c_(£) =  1 

for all (  £ !1. To obtain c+ we can now apply the theorem of Hammersley, Kingman 

and Biggins using the formula obtained earlier for the rate function 7. Recall that 7 is 

given on [0,1] by 1(a) — a log 2 +  (1 — a) log Notice that in the case p >  1/2, 7(1) =  

— logp < log 2 so that c+ =  1 almost surely. By interchanging p and q in the formula for 7 

we obtain the rate function 7 corresponding to a random walk with independent Bern(g) 

increments. Now, c_ is just c+ with p and q interchanged so that ones and minus ones are 

swopped. Hence we can use the theorem to obtain c_ simply by interchanging p and q and 

it now follows that, in the case p <  1/ 2, we have c+ =  0 almost surely since c+ =  1 — c_. 

Informally, c± corresponds to the greatest possible limiting proportions (along lines of 

descent) of type ±1  vertices while c± correspond to the least possible limiting proportions 

of type ±1 vertices. In Chapter 2 we will see that determining conditions under which 

c± <  1/2 plays an important role.

1.4 Martingales: change of measure and spines

In this subsection we introduce a class of martingales, obtained as a change of measure, 

which turn out to be closely related to the cloud speed calculations from the previous
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section. We are working throughout on the binary tree with Bernoulli noise. Recall 

that P is the probability measure on O under which the are independent Bern(p) 

random variables on { — 1,1}. Let Q denote the probability measure on (fl,.?7) under 

which the £„ are independent, identically distributed Bern(p) random variables, except 

a long a random line of descent, chosen uniformly on the boundary dT (see our earlier 

discussion of Lebesgue measure on the boundary), along which the £„ are independent, 

identically distributed Bern(0) random variables, independent of the not on this line, 

where 9 E (0,1) and 9 ^  p. Let P „,Q „ denote, respectively, the restrictions of P, Q to 

.Fn, the u-algebra induced on by restricting to level n of the tree (see later for more 

details). The corresponding change of measure,

is, since it is a Radon-Nikodym derivative, a martingale with respect to Tn. We will, 

nevertheless, verify this for our own purposes once we have obtained an appropriate rep

resentation. Strictly speaking, is a function on and so we should write A®(£(w)). 

We will say more about this later. This type of martingale has been studied extensively 

in the literature. See [37], [32], [36] for example. Indeed we will see later that A® is a 

special case of the martingales studied by Biggins in [5] and Lyons in [37]. Before moving 

on, we mention briefly the connection with the “spine approach” , as seen in [19], [20], 

[21], [22] for example.

The way we defined Q corresponds to what is sometimes termed “size-biasing” , in which 

one in some sense “engineers” the dynamics along a distinguished line of descent. One can 

view Qn as the projection onto of a measure Q„ on Q x dT. Indeed the probability mea

sure Q can be obtained via the following construction. We begin with the root 0, which
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gives birth to two daughter vertices (0,1). With equal probability, one of the daughter 

vertices is chosen. The chosen vertex is distributed as a Bern(l/2) random variable while 

the other vertex is distributed as a Bern(p) random variable, both on { — 1,1}. The vertex 

that was not chosen gives birth to two daughter vertices which themselves give birth to 

two vertices and so on. This continues indefinitely, with each vertex being distributed as 

a Bern(p) random variable on { — 1,1}. The vertex that was chosen also gives birth to 

two vertices and, as before, with equal probability one of these is chosen. The one that 

isn’t chosen is distributed as a Bern(p) random variable on { — 1,1} and continues giving 

birth to vertices with the Bern(p) distribution as before. The chosen vertex is distributed 

as a B ern (l/2) random variable and continues giving birth to two vertices, one of which 

is chosen with equal probability at each stage to have the Bern(l/2) distribution and so 

on. This also continues indefinitely. The measure Qn from above is the joint distribution 

of the random marked tree together with the distinguished line of descent. In this type 

of construction the chosen line of descent (which is uniformly chosen on the boundary dT 

since it is uniformly chosen on each level of the tree) is sometimes referred to as a “spine” 

(see [19], [36], [32]) for example. In [19], for example, this term is particularly apt as one 

can think of the chosen line of descent as being the “backbone” of the process from which 

all vertices are born. This type of process is also analagous to what Lyons, Pemantle and 

Peres term “size-biased trees” in [36], in which the authors obtain the martingale of the 

Kesten-Stigum theorem (i.e. the number of vertices in level n of the tree normed by the n 

th power of the mean number) via a change of measure in the same sort of way described 

above.

Proposition 1.
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Proof. For convenience, we work throughout on the canonical probability space. That is, 

we assume Q =  { — 1, l } 7' so that the £u are “coordinate” maps with £u(u>) — luu giving 

the type of the vertex u, that P is the Bern(p) product measure on { — 1, l } 7’ , and that J7 

is the cr-algebra generated by the £u, i.e. T  =  cr(£„;u e  T), which is, of course, the Borei 

cr-algebra on Pi since it is generated by the coordinate maps. Now, to begin the proof, 

notice that the space ({ — 1, l } T,cr(£u; |tt| < n)), together with P„ or Qn, is discrete. We 

can therefore calculate A® by computing the probabilities of “fundamental” events and 

taking their quotient. In this case, the fundamental events in question are collections of 

marked trees with specified vertex types down to level n. Let

A. — {£ . £u Lj 1̂1 ,

where the tu e  { — 1,1} are fixed. Define

N " ( 0  -  tt(u : 4« =  »! M <  n).

For a vertex u € Gn, define

=  #(« : & =  *.« ^  «)•

Then we have

u£Gn

where Q„(A|u) denotes the probability of A given that the distinguished line of descent

and, since
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(i.e. the line of descent along which the types are Bern(|)) goes through u, we have

Qn(4 ) =  ^  pN̂ ’u)qN- ^ ’u)es+^’u\  1 -  e)s~{̂ u),
\u\=n

where S~(£,u) =  J2v<u l($„=-i)(0- Dividing these probabilities gives

= Q n M  = l y  As+(£,u)/l - 0 )S-(e,u)
n F n { A )  2 n ^  ) l  J

\u\=n

_  J _  A s + f o u ) /  1 ~  ^ \n+l-S+ (£ .u )
2" V  V q ’

|u|=n y V

since Sr+(£, u) +  S~(£, u) =  n +  1. Simplifying, we obtain

A 0 =  J _  V  (q 6 \s+^ ( l ~ 9 \nl ~ e
n 2" ^ ^ p l - d 1 [ q ’ q

\u\=n y  H H

_  l ~ d  V ^ f i Z - ? _ ) n ( _ ! f i _ ) S + ( S , u )

q , ^ { 2q p ( !  - o )\u\=n

□

Notice that although it might appear that the formula we have obtained applies only 

to the canonical space described at the beginning of the proof, this result does, in fact, 

hold for any abstract space. To see this, consider the following mapping from an arbitrary 

abstract space to the canonical space:

(Q, F , P, Q) ->« (ii =  { - 1 , 1}T, E =  cr(£u; u E T), L( , u),

where is the law of £ under P and v is the law of £ under Q. Notice that the o- 

algebra on the canonical space induces a cr-algebra on S2, namely (£ _ 1(j4) : A E  E )} so 

that the corresponding restricted cr-algebra is given by Fn =  {^_1(A) : A E  En} : where
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En =  cr(£„; \u\ < n).

Claim  1. Let P „,Q „ be the restrictions of P, Q respectively to Tn as above. Then

dPn a ^ M ) .

Proof. The above is a function on fl and indeed it is ^„-measurable since A®(£) is En 

measurable and £ is ^-measurable. Now take K  6 En with £-1 (K ) =  A 6 Tn. Then

Q (A) =  q (c 1(k )) =  v(k )

= f AIdLt
J K

(by our result in the canonical case)

= f Â cflP.
J A

□

Henceforth we will write A® for the Radon-Nikodym derivative and work with it in 

this form. That is, we will regard it as a function of £.

Lem m a 4. A® is a martingale with respect to the filtration Tn.

Proof. Notice firstly that Ken is adapted to Tn (i.e. it is ^"„-measurable) and that it has 

finite (unit in fact) expectation. Now, to prove the martingale property, we have

E [A "+ .M  =  E [ t - ? £ (
\u\=n

i - e
~2q~

n + 1 , qe 1({U
yp{\-e)}

=i)
\ ? n ] ,
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where £„n+1 is the type of a vertex in level n +  1 of the tree. Hence

E[AS+1|Jf„] =
e 1 - 8 .

~ ( 2q
n+1 E [ £ (

\u\—n

q 6 _
p (l -  8)

)S+ «,»)( ge
p{ 1 -  0)

l(iun+1=l) \Fn]

(taking out the constant term)

)S+{*’U)E[{- „ qd )1» “n+l=1) |jTn]

(since (¿<fib))S+(i’u) is ^„-measurable)

1 - 8 , 1 - 8 «0
«  ' 2« ' Pi1 “ p (l -  0)'

(since p(1̂ g) )1(il‘n+1~1) is independent of ^ „)

q y 2q ' p (l -  8)
\u\=n

1 - 8

q £ <
|it|=n 2q ’ {p( 1 -  0)

)»+«,«) =  a ».

□

1.5 Uniform integrability

A very natural question to ask at this stage is under what circumstances is the probability 

measure Q absolutely continuous with respect to P or indeed under what conditions are 

they equivalent? For absolute continuity we require that the martingale i\°n converges in 

Ll while for equivalence we require the further property that the limit is almost surely 

positive. The L1 convergence of martingales of this form is a classical subject, much
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studied by authors such as Biggins and Lyons. We will see in the next section that 

is, in fact, a martingale of the form covered by Biggins’ Theorem [5]. For the moment we 

will advance our own methods.

The main idea of the proof of this section relies on the decomposition of as a sum 

of independent copies. This technique is by no means new and has been used, for exam

ple, by Neveu in [40]. We write A  ̂ in terms of

v<u

since, for the purposes of later work, it will be convenient to have it in this form. Noting 

that, for u € Gn,

S+{£,u) +  S“ (£,ii) = n +  1, S+(Z,u) -  S~(£,u) =  S(f,u),

so that

we have then

S+(Z,u)
n +  1 +  S(£,u) 

2

~  0)  V -  , f l ( l - f l ) sn/2/ \S(£,u)/2
pq 4pq p( 1 — 0)

1.5.1 Decomposition of

In this section we write A® as a sum of independent copies associated with the immediate 

daughter vertices of the root. This type of decomposition has been used by authors 

such as Neveu in [40]. Let denote the probability ratio ^  restricted to the er-algebra 

generated by the vertices to level n of the sub-tree rooted at 0 and Ae” be defined similarly
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but rooted at 1. Let

Tl =  {u  € T : 0 <  u}, Tr =  {u G T : 1 <  u}.

We have then

A 0{ 1 - 0)
pq

V  ( e ( i ~ e \ " / * (  q 0  \S (Lu M 24pg ' >(1-0)'

A! - >(1-0)
P<7 E

|u|=n+l,tteTi,

) "/2 ( __ $  \S(£,u)/2-£0/2
4p<? p (l —0) '

Aa"n
/0(i-0)

pq E (
|u|=n+l,ueTij

i«/2 f__ SO.__ )S(Ì,u)/2-€»/2
4p<? > (1  — 0 ) '

It is clear that Af(, A^, A®" all have the same distribution. Furthermore, it is now easy to 

see that we have the following decomposition:

A \ e
= f  K- + AT_i),

where

AS = / » <?» >0/2
pq p(l -  9)'

is the value of the probability ratio at the root. Writing A ^ , A ^ , for the almost sure

limits of A^, A >  A®” (which exist by the Martingale Convergence Theorem), we also have

A^, =  A o (-A ^  +  -A ^ )  a-s-i

with A^j, A^,, A ^  having the same distribution. We will see later that we can use the idea 

of one of the proofs in [40] to deduce when A^ is trivial (i.e. almost surely zero). An 

immediate consequence of the above decomposition is the following.
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P rop osition  2 . Either =  0 almost surely or A^ >  0 almost surely.

Proof. By the decomposition we have that A^ =  0 if and only if A^ — A^ — 0, forcing 

P(A^ =  0) G {0. 1} since A^. A ^  have the same distribution and are independent. D

We remark that one can use the same type of argument to deduce the analogous result 

for the Kesten-Stigum martingale. See [36] for example.

P rop osition  3. A® is uniformly integrable for 9 G (0,1) satisfying

¡(9) <  log 2,

where, as usual, I is the rate function for the random walk with independent Bemfp) 

increments.

By considering the graph of the rate function /  we observe the following. For p <  1/2, 

the proposition says that \en is uniformly integrable for 9 G [0, c ), where c is the upper 

cloud speed” (corresponding to ones), i.e. the almost sure value of c+ (£). For p > 1/2, 

the proposition says that A® is uniformly integrable for 9 G (c», 1], where c» is the lower 

cloud speed” (corresponding to ones), i.e. the almost sure value of Ç+(0 - On ^ e  other 

hand when p =  1/ 2, 1(0) =  1(1) =  log 2 so that the proposition says that A* is uniformly

integrable for all 9 G (0,1).

Lem m a 5 . Let x, y >  0. Then (x +  y)r < xr +  xr y + xy +  y for 1 <  r <  2.

Proof. For x, y >  0 and p G [0,1] we have the well known inequality

(a: +  y)p < x p +  yp.

The result follows by multiplying through by (x +  y) and writing r p +  1.
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Proof, (of Proposition 3) We prove that for the stated values of 9, Ken is bounded in Lr

for some r >  1. Recall that

where

=  , /^ i i ___)ta/20 v pq w - V

is the value of the probability ratio at the root. By mutual independence, we have then

E|(A. r i .  ■ * -■ ) (E [ « _ ,  +  A « li)1 ).

Now, by the previous claim,

E[(A")'l <  ^ ( E K A ^ n  +  E [ « . , r ' ¡ E l A f . , ]  +  E[(A®11)’- 1]E[A^'_1] +  E [(A f) '] ) ,

where

K er =  (2Pf - T9T +  (2g)1_r(i -  ey .

We now appeal to dominance of LP norms: for 1 < r <  2, || • ||Li <  || • || i and hence 

E[(A®)r_1] <  E[A^]r_1 =  1 so that

E[(A®)r] <  AT® [E[(A®_1)r] +  1].

We thus have a recurrence relation in terms of E[(A^)r]. The recurrence an+i =  K(an + 1), 

for K  positive has solution an =  K n(ao +  1) +  K n~l + ... +  K  and hence the solution tends 

to a finite limit provided K < 1. It follows that A® will be bounded in Lr if there exists 

an r £ (1,2) such that K er <  1. Simplifying the expression for and setting it less than 

1 gives

P1~rer +  ql- r{ i -  e y  -  2 T~l <  o.
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Let

f (r )  =  p1~rer +  ç1-r(i -  e y  -  2r~1.

Then / (  1) =  0 and

/ ' (  1) =  01og - +  (1 — 9) log ~~~~~ ~  log 2 < 0

precisely for those 9 satisfying

1(9) -  log 2 < 0.

By the continuity of /  there exists an r >  1 with / ( r )  <  0. This completes the proof. □  

We now verify that the limit is almost surely positive.

Lem m a 6 . Let

lim A®.
n—kx>

Then A^ >  0 almost surely whenever A® is uniformly integrable.

Proof. By uniform integrability, E[A^J =  1 and hence A^ is not almost surely zero. Since 

P(A 0̂ =  0) G {0 ,1 } by Proposition 2, we must have PiA^ =  0) =  0. □

Since A^j is almost surely positive for 9 such that A® is uniformly integrable, it now 

follows that P and Q are equivalent for such values of 9. The obvious question now is 

what happens for the other values of 9 € (0,1)? The following proposition addresses this 

issue. The idea of the proof is based on a proof in [40].

P roposition  4. Let 9 G (0,1) be such that

1(9) >  log 2.

Then \ en converges, almost surely, to zero.
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Proof. Notice first that for any a >  0, b >  0 and r € [0,1], we have

1
1 - r

a ar —1 — (a 4- b)r *] <  max(l, b)

and that

lim -------a[ar_1 — (a +  f))r_1] =  a log Q ^,
rfi 1 — r a

so that, by dominated convergence,

lira ^ [ E K O l  ~ E[A'(A ' + A S r 1]] =  E

Now,

E[(A£ + O l  =  e [(a£ + a£)(a£, +  A ^ 'r 1]

=  E[Ai(Aj, + A ^ 'r 1] +  E[A£(A£ + A^')r_1]

and hence, by symmetry,

A9' log —°° +  A°°°° 1U6 Ĵ g,

E[A^(A^ +  A »»"■ jr-lj =  |e [(a ^ ,+ A ^ n .

But by the decomposition of A®, we have

E[(A^ +  AIY ]
2rE[(A IY\ 

E[(Ag)-]

so that

E[A^ log A9' +  Ae"1 1 1 xnn
A9'1 lOO

- lim —
r f l  1 - E [ (A L n ( i -

ii—i

E[(A»)r]),

where

E[(Ao)r] =  p1~r9r +  <71-r(l -  6)r.
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Dealing with the term in brackets, in the limit we obtain

P &  +  v C - f r  -  r - 1lim — ------------ -----------------
rTi ( l - r ) b ( ? ) r +  9 ( ^ ) 1

p( lY  i°g % +  ? ( • lo§ V  _  2r 1 lo§ 2 
= ™  - W ) r + 9 ( ^ ) 1

Q 2 _ Q
(1.2) =  —01o g -----(1 — 0) lo g ----------- blog 2.

P <7

That is,

E [ < l o g  A" . t A*- ]  =  [ - « l o g I  -  (1 -  ») log +  log2]E[A^]
2 *00 r V

=  (log2-/(0))E[A£j.

Now, the expectations on the left and right hand side are both non-negative and so it 

follows that we must have E[A^] =  0 for values of 9 such that 1(9) >  log 2. This in turn 

forces A^ =  0 almost surely for such 9 since \°n is itself non-negative. □

The previous two results provide us with an interpretation of the upper cloud speed. 

We can think of the cloud speed as being (for given values of p and q) the largest possible 

value of 9 such that the martingale A°n tends to a trivial (i.e. almost surely zero) limit. 

The cloud speed is thus the “transition point” at which the limit of the corresponding 

martingale goes from being trivial to uniformly integrable. We are now also in a position 

to prove the second half of the theorem of Hammersley, Kingman and Biggins. Recall 

that, by the theorem of Hammersley, Kingman and Biggins, the cloud speed is given 

almost surely by

s* =  sup{a : 1(a) <  logm },
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with /  being the rate function for the associated random walk and m the mean of the 

offspring distribution (see an earlier section for full details). Recall also that we pointed 

out an easy method (involving the Borell-Cantelli lemma) for proving that the cloud speed 

is bounded above by s*. We now claim that the uniform integrability arguments of this 

section enable us to conclude that the cloud speed is also bounded below by s*, thus 

giving the desired equality. This ties in with our observation that the cloud speed is the 

value of 9 corresponding to the “transition” of the A® martingales from being trivial to 

non-trivial. We write out the details below.

Under Q, there exists (almost surely) a line of descent with limiting proportion 9 of 

type one vertices (recall the construction of Q). When P and Q are equivalent (i.e. when 

A.0n is uniformly integrable), it follows that the same is true under P. Hence the cloud 

speed must be bounded belowr by 9 whenever the martingale A£ is uniformly integrable. 

The question now is how large can we make 91 The answer comes from an earlier cal

culation in which we remarked that the issue of whether or not A® is trivial depended 

on the sign of log 2 — 1(9). For 9 such that A® is uniformly integrable, we must have 

log 2 -1 (9 )  >  0, that is, 1(9) < log 2. So we can take 9 to be as large as

sup{0 : 1(9) <  log2},

thus establishing that

Sdaud >  sup{(9 : 1(9) <  log 2},

which generalises in a straightforward way to an arbitrary Galton-Watson tree with mean 

m.
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1.6 Martingales again: Biggins’s theorem

In this section we show that our martingales A® are of the form studied by Biggins in 

[5] and later Lyons in [37]. We elucidate the connection, state Biggin’s Theorem relating 

to the convergence of such martingales and then re-derive our earlier results by making 

explicit calculations. The setup is taken directly from [37].

Recall the Galton-Watson tree F with corresponding branching factor E[Ar] and the as

sociated collection of tree-indexed independent, identically distributed random variables 

€ T). Let q be the extinction probability for the underlying tree T. For a € M,

define
N

(a ,A 0  =
1=1

and

m(a) =  E[(a, N)],

where it is assumed that m(0) >  1 so that q <  1. Then if m(a) <  oo for some a, the 

sequence

(1.3) Wn(a) = 2E|t!|=ne______
m (a)n

is a martingale and, being positive, has an almost surely finite limit by the Martingale 

Convergence Theorem, which we denote W (a). Writing

N

m'(a) =  E ^ & e - ^ ' ]
i=l

when this exists, we can now state Biggins’ Theorem [5], which determines when VF(o;) 

is non-trivial.
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T heorem  3. (Biggins 1977) Suppose that a € M is such that m(a) <  oo and m'(a) exists 

and is finite. Then the following are equivalent:

1. P (W (a) =  0) <  1;

2. Wn{a) is uniformly integrable;

3. E[(a, N) log+ (a, N)] <  oo and < logm(a), 

where log+ x  =  max(0 , logx).

This theorem may be regarded, in some sense, as an extension of the Kesten-Stigum 

Theorem, in which conditions for the convergence of the martingale obtained as the num

ber of vertices in level n of the tree, normed by the n th power of the mean, are given. 

Notice that the condition um(a) <  oo” (necessary so that the corresponding sequence 

Wn(a) is a martingale) is essentially a condition on the moment generating function of 

the £u- This should be viewed as the same type of condition governing the existence of 

the rate function /  for the associated random walk (see an earlier section) and hence as 

a link between the two pieces of work. It is self-evident that A® is a martingale of the 

above form. The following result makes this apparent.

Lem m a 7. Our martingale A® is a special case of the Biggins martingales in that

Wn(a) =  n W o K ,

with
1 , p ( l - 0)

a = 2 lo s^ r ~

Proof. Notice that since Wn is expressed in terms of S{fi. u), it is most convenient to work
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with the expression for A® in terms of S(£,u). Recall that

Ae
n

10 (1 -0 )
pq

~ V '/2 / ^  \g((,«)/2
h  \ ^pq )  T (1 ~ 0)

Comparing the exponent term in the martingales Wn(oi) with the corresponding term in 

A£, we see immediately that to have equality we must have

e =
qe

p ( i - e y

which gives the value of a stated. To see that this works, notice that

so that

Wn =
E / / qQ \

\u\=n V y  p (l—8) )

VV

= E<
\u\=n

^(1  yi/2  ̂ ^S(£,u)/2
Apq kp(l -  9)'

= E[Wo]Al

since
T n m r  i /  qQ , Ip (1 -  0) I pq
E[wy = PV W=0) 1 ~ ls ~  = V W^e-y

□

Notice that the “ (E[VT0])” term is a normalising constant. This shouldn’t be too 

surprising when we remember where A® came from: as a Radon-Nikodym derivative (or 

change of measure), we must have E[A®] =  1 for every n. By the martingale property, this 

will be the case provided E[A®] =  1, which is why A® is equal to a normalised version of Wn.
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Having established the connection between the martingales A8n and Wn(a), we can use 

Biggins’ theorem to verify our earlier result, in which we determined conditions under 

which A® is uniformly integrable.

Setting
1 ,„_ P (1 -  °)

a  =  2 q$ '

we have

m ( a )  =  2(pe Q + geQ )  =  2(pW , ^  + g W -^1 ,, ^ )
p ( l - 0) g0

=  2 P g
0(1 - 0)

and that

m'(a ) -  2( - p e - Q +  9ea) =  2(1 -  20) pq
0(1 - 0)

so that Biggins’ condition for uniform integrability “ <  log m (a)” becomes

1 -  20 , p( 1 - 0) 1 , 4p9
— —  log < ;; log90 2 0(1 -  0)

which is satisfied if and only if

i  log ^ i  log +  0 log ^ -  0 log ^  ^ (log2 +  log ^ ) -  ^ (log2 +  log YZ-jj) <  0 -

Simplifying, this inequality becomes

0 log -  +  (1 -  0) log - — -  -  log 2 <  0 ,p q
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or the familiar

1(9) — log 2 < 0

condition. Notice that since Biggins’ theorem gives us equivalent conditions, we can 

deduce that for values of 9 not satisfying the above inequality, A6n is almost surely zero 

(negation of the first equivalent condition of the theorem), which tallies with our earlier 

result. It is worth noting that the calculations above and indeed some of the earlier 

calculations are greatly simplified by a prudent choice of 9. For 9 =  1/2, we have, for 

example, that m'(a) =  0. In Chapter 2 we will introduce “recovery problems” and discuss 

a fundamental reason for studying the martingale An ■

1.7 Asymptotic behaviour of S+(£,w)

The theorem on cloud speed tells us about the asymptotic behaviour of S+(£,u). The 

purpose of this section is to draw attention to the fact that we can also make use of the 

convergence of the A°n martingales. In a so-called “critical case” in Chapter 2 this ap

proach will give us more information than can be deduced directly from the cloud speed 

arguments.

Being a positive martingale, we know that Aen converges almost surely to a finite limit 

(Martingale Convergence Theorem). Writing A® as an exponential

A! =  exp{S+( t u )  log ~77~2
2 q |u|=n P(1 ~ e)

nlog 2 q
1 - 9 },
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we now note that we must have A9n < M  for every n, where M  is an almost surely finite 

random variable. Since A® is a sum of positive terms, it follows that

exp{S+(£, u) log ~  n log Y~Tq} < M < oo a.s.

for every u E Gn and for all n, and indeed the same must be true for the exponent:

S+{£, u) log ~  n l°g yZTg < M < 00 a-s -

for every u 6 Gn and for all n. In particular, this statement also holds if we take the 

maximum over vertices in level n:

(1.4) n l o g ^ X o o  « . ..

For 9 > p, log >  0, and so we may divide through by it:

maxis'"1"(£, u) — cdn} <  00 a.s.,
|u|=n

where
log

P ' l o g ^
d : = e ^ p .

P(i-e)

In the case 9 < p there are two possibilities. When max(0,p — q) < 6 < p, we have

- R l V 0' logl V 0,

while when 0 <  9 <  max(0,p — q), we have

qd , 2q
lo g R T ^ < 0 - l0« r r ? s a
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Considering each case separately, it is easily seen that, for 6 <p,

inax{Cpn — S'+ (£, u )} < oo a.s.
\u\=n p

In Chapter 2 we will be interested in when cp E [0,1/2] or [1/2,1] and will use statements 

of the above form to make deductions about the asymptotic behaviour of S+(£,u). As 

was the case earlier, the particular choice 9 — 1/2 will prove crucial. The following 

propositions give a geometric interpretation of c6p and illustrate, once again, the strong 

connection between the martingales A°n and cloud speed.

P rop osition  5. Let Tg(x) be the tangent to the rate function I at 9, where it is assumed 

that 9 > p. Then cep satisfies

Te(cp) =  log 2,

that is, cp is the x-coordinate of the point at which the tangent to the rate function at 9 

intersects the line y =  log 2 .

Proof. We have
T ,( x )  - 1 ( 0 )  , „ m

and hence Tg(x) =  log 2 if and only if x satisfies

I(9) +  I \ 9 )(x -9 )  =  log 2

which re-arranges to give
iog2  - _ m

m
_ log 2 -  log ~~
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lo§ h>
log*f=*j

□

Figure 1.2: graphical interpretation of cep

Lemma 8. The cloud speed c+(£) is given, almost surely, by

c* =  inf c{
9>p :p'

Proof. We have

inf ce =  sup{# : 9 < ce}
6>p F r

Id Q<  log2 +  l ° g g - l ° g ( l  - 0 )
supl . — \Qg q  _p ]0g# _  logp _  l0g(l — Q)

Q J _ Q
=  sup{# : 6 log -  +  (1 -  9) log — —  <  log 2}

}
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=  sup{6> : 1(9) <  log2},

which is (almost surely) the cloud speed. □

If we were to express A°n in terms of S~(£, u) rather than S'+ (£, u) then we would end 

up with results such as

maxIS” (£,u) — d6n} <  oo a.s.,
\u\=n

where
l o g f e ^ p

has essentially the same geometric interpretation as cp: let

e6 =P Pdlog Q( I-«)

be the x-coordinate of the point at which the tangent at 9 to the rate function I  (corre

sponding to a random walk with independent Bern(q) increments - i.e. /  is the same as /  

but with p and q interchanged) intersects the line y =  log 2. Then dp =  ep~e■ Indeed the 

analogous interpretations are true if we obtain the corresponding quantities by expressing 

A® in terms of S(£,u).

A discussion of large deviation calculations would not be complete without mention of 

Hausdorff dimension. The result we state is perhaps the most refined of all, extending 

Hawkes’ theorem [33], and has strong links with both cloud speed and our martingales.
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1.8 Hausdorff dimension

We discuss Hausdorff dimension with great brevity as it doesn’t really play a part in the 

later theory and any role it does play is, in essence, through our earlier calculations. A 

thorough discussion and consideration of the topic can be found in works such as [33] and

[14]-

The following result is a consequence of a theorem of Lalley and Selke in [33]. In their 

work, the setting is far more general than ours in that the types associated with the ver

tices of the underlying Galton-Watson tree are not assumed independent and identically 

distributed. This is one of the reasons for our not giving a more detailed account: a com

plete description of the problem would, at the very least, require a digression into rate 

functions for Markov chains, a subject which is remote from our concerns. For this reason 

we simply state the result of the theorem as it relates to our setup and then indicate how 

it is consistent with our earlier calculations.

Let £ =  (£1, 62, —),£  — (£1,£21 •••) e  { _ 1> 1}Z+- Then we define a metric d by d(£,£') =  

2“ n(i>i')) where n(£,£') is the smallest positive integer such that £„ 7̂  ffn. Let pg be 

the Bern(0) product measure on { —1,1}Z+. We say that a sequence uj =  (ui,UJ2 , ■••) G 

{ —1, l } zf is /^-generic if every finite sequence (or “word” ) x — (x i,x 2, ...,xn), with entries 

in { —1,1}, occurs with limiting relative frequency pe({uj : u)\ =  Xi,...,un =  £ „ }). The 

following theorem tells us about the Hausdorff dimension of the subset of the boundary 

of T corresponding to hq generic sequences.

T heorem  4. (consequence of Lalley’s and Selke’s theorem, [33]) Let be a random

subset of dT corresponding to p$ generic lines of descent. Then if 1(6) >  log 2, S w (^) 

is almost surely empty while if 1(6) <  log 2, then, almost surely, in the metric d, the
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Hausdorff dimension of EMq (£) is given by

dimji(Ew (0 ) =  ! - ^ 2 -

See the earlier sketch of log(2) — /  for an idea of how dim// varies with 9. Now, let 

£ 0(£) be a random subset of dT corresponding to marked lines of descent with limiting 

proportion 9 of type one marks. Then EMe(£) C £ 0(£) and hence the Hausdorff dimension 

stated for £ Me is a lower bound for that of £ 0(£). Heuristically, we expect that there is in 

fact equality since the set of sequences having the correct proportion of ones but which 

are not generic is very “small” compared to the set of generic sequences. The appearance 

of the rate function I in the calculations illustrates the connection between the various 

ideas discussed in this chapter.

We conclude this section and chapter with a very brief discussion of { — 1,1}7 as a metric 

space. The metric is a sequence metric analogous to the metric d introduced in relation 

to Hausdorff dimension, except that we work in terms of the levels of the tree. Define a 

metric D on { - 1, 1} T via

D(£, 0  =  2"n(« ' )>

where n(£, £') is the first level of the tree (relative to the root) in which £ and £' differ (that 

is, n(£,£') =  k if and only if there exists a vertex u G G j with ^  f'u). In this setting 

the open e-ball centered at £ consists of those marked trees which agree with £ on the 

first l  ~j~g J levels of the tree, where we have assumed that 0 < e < 1. The metric space 

({ — 1 ,1}T, D ) is complete and separable. Furthermore the metric D induces a topology 

on { —1, 1} T, which is in fact the product topology.
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Chapter 2

Recovery problems

In example 4.7 of [43], Tsirelson and Vershik describe a recursive process on a binary tree 

and an associated continuous product of probability spaces. Consideration of the random 

variable associated with the root leads to the following multi-type branching process. In 

this process, each individual has either one or two offspring and we denote the possible 

types by S and C. A type C  individual has, with equal probability, either two type C 

offspring or two type S offspring. A type S individual has either a type S and a type C 

offspring, with probability 1/9, or just one type S offspring, with probability 8/9. Start

ing with an individual of unknown type, a random tree is constructed from the branching 

process in the usual way. Suppose that we observe the tree but not the types. Can we 

deduce the type of the individual at root?

We do get some information about the types from the shape of the tree: each time 

we observe only one offspring we know that the parent has type S. Indeed each time we 

are able to deduce the types of two offspring we are able to deduce the type of the parent. 

In this way we are able to construct some of the types associated with the tree, which may 

or may not include the type at root. If we regard the types as possible “explanations” for
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the observed tree, an obvious question to ask is whether there is more than one consistent 

explanation. It may be that there are several explanations consistent with the local rules 

but that all but one can be ruled out on probabilistic grounds on the infinite tree. Going 

back to the example in [43], being able to recover the the types from the shape of the tree 

is equivalent to the existence of a cyclic vector for the Von Neumann algebra generated 

by the projectors of the continuous product.

The recovery problem we study in this chapter is somewhat simpler than the one just 

described. It was devised as a model that displayed the same sort of phenomena but is 

easier to study. We build up to the model and motivate its analysis by first describing an 

analogous problem on the integers.

2.1 A reconstruction problem on the integers

We present here a very simple example of the type of problem to be studied later. The 

setup is as follows. Consider an integer-indexed sequence X  =  (Xu-,u G Z), of indepen

dent, identically distributed Bern(p) random variables taking values in the two-point set 

{ — 1,1}. Define another integer-indexed sequence Y =  (Yu\u G Z) of random variables 

by setting Yu =  X uXu+i for every u G Z. Suppose now that we “observe” the Yu. That 

is, suppose we are given the sequence Y. What information can we deduce about X  from 

Y? Is it possible to “recover” the X u from the YU1 We will see below that it is indeed 

possible to recover the Xu (i.e. determine explicit values), provided p ^  1/2.

P roposition  6 . The values of Y determine uniquely the values of X  almost surely, pro

vided p 1/ 2 .

Proof. To see this, suppose we observe an arbitrary Y*,. We “recover” the Xu as follows. 

Let Xk =  x =  ± 1. The choice is arbitrary (see later). Now, observe Yjt+i- If Yjt+1 =  1,
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then set X k+\ =  x. If yfc+1 =  — 1, then set Xk+i =  —x. Now observe Yk+2 and do the 

same: if Yk+2 =  1 then set X k+2 =  X k+i but if Yk+2 =  —1, then set X k+2 =  —X k+\. 

One can continue in this way, extending to the indices before k in precisely the same 

fashion. That is, inductively, we set X k±n =  if Yk±n =  1 and X k±n =  - X k±nwi if

Yk±n =  — 1, for any n G Z. We have thus defined a sequence (X u; t ig  Z) with the property 

that X uX u+\ =  Yu for every u E Z, that is we have obtained a possible reconstruction for 

the X u consistent with the observed Yu. Of course we made an arbitrary choice X k =  x 

at the beginning. The sequence resulting from the initial choice X k =  —x also satisfies 

X uX u+i =  Yu for every u 6 Z  and is therefore also a possible “reconstruction” for X  

consistent with the observed Y .

Having found two possible reconstructions for X  consistent with Y  we would like to 

rule out one of the possibilities. Thankfully, the strong law of large numbers comes to the 

rescue.

It is a special case of the Strong Law of Large Numbers that the limiting proportion 

u such that X u =  1 is almost surely equal to p. Hence we are able to “distinguish” 

between the two possible reconstructions for X. Denote the two possible reconstructions 

by X ,X '. Then, by virtue of the reconstruction, we have X  = —X'. Now, almost surely, 

either X  or X' (but not both!) has limiting proportion p of ones (and therefore proportion 

1 — p of minus ones) by the above claim which means that the other has, almost surely, 

proportion 1 — p of ones since the minus sign interchanges the plus and minus ones. We 

are therefore able, almost surely, to distinguish between the two possible reconstructions 

on the basis of only one being consistent with the strong law of large numbers. That is, 

unless p =  1/ 2, in which case both possible reconstructions are consistent. □

We now present an analogous formulation for the above problem on the binary tree
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and make use of the theory from Chapter 1 to obtain a solution.

2.2 A recovery problem on the binary tree T

As with the problem on the integers, let £ =  (£„;u 6 T) be a T-indexed collection of 

independent, identically distributed Bern(p) random variables taking values in { — 1,1}. 

Define random variables [r]u\u £ T ) by

Pu — £u£tio£ui) ^ € T.

For u £ T  we think of the nodes n,uO,ttl as comprising a “family” . In this setting we 

say that a node u has type £„ and we think of rju as being the corresponding family 

type. As before, we are interested in knowing whether we can in some sense “recover” or 

“reconstruct” the vertex types from the family types. It is immediately clear that the 

present situation is far more complex than before: one need only interchange minus and 

plus ones along an infinite marked line of descent from the root and the resulting tree- 

indexed sequence will have the same family types as the original on account of the fact that 

any family that intersects this line of descent does so in precisely two places and therefore 

the effect of interchanging the signs cancels. There are uncountably many marked infinite 

lines of descent corresponding to uncountably many points in the boundary of T and 

hence one could potentially obtain uncountably many different “explanations” consistent 

with observed family types. The results from Chapter 1 are, nevertheless, encouraging 

and motivate further investigation.
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2.2.1 The recovery case p q  <  1/16

Recall the work on cloud speed and the rate function 7 for the random walk with Bern(p) 

increments. We have the following simple result.

Lem m a 9. Let pq <  1/16 with p <  1/2. Then c+(£) < 1/2 almost surely. Let pq <  1/16 

with p > 1/2. Then c_(£) <  1/2 almost surely.

Proof. We use our earlier characterisation of c+ in terms of the supremum of a rate 

function. Recall that for p >  1/2, we have c+ =  1 almost surely. It is therefore necessary 

to impose the constraint p <  1/2. Under this constraint, since 1(a) is increasing for a >  p, 

we have, by the theorem of Hammersley, Kingman and Biggins, c+ < 1/2 if and only if 

7(1/2) >  log(2). Using our formula for 7(a), we require then

1 , 1 1 , 1 . _-  lo g ----- h -  log —  > log 2
2 2 p 2 2 q

which simplifies to requiring

l o g - ! -  >  i0g 4.
4 pq

After exponentiating, the condition becomes pq < 1/16. The proof of the second part of 

the lemma now follows immediately by interchanging p and q. □

Informally, all possible limiting proportions of type one (or minus one) vertices are less 

than 1/2. If would follow then, that after “flipping” in the way described above (along an 

infinite marked line of descent in order to obtain a different tree-indexed sequence with 

the same family types as the original), the corresponding proportion of ones (or minus 

ones) would be greater than 1/2 and, therefore, implausible. The same type of result is 

also motivated by the Hausdorff dimension calculations. Recall £#(£), the subset of the 

boundary corresponding to lines of descent with limiting proportion 9 of type one vertices
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and the corresponding formula Hausdorff dimension given in terms of the rate function I 

from Chapter 1.

Claim  2. Let pq <  1/16. Then the possible values a of (limiting) proportions (i.e. the a 

for which Ea(£) is non-empty) lie on the same side of 1/2.

Proof. This is the same calculation as for the cloud speed in the previous lemma. □

It seems then that we are able to argue that recovery is possible for pq <  1/16 (though 

we will need to make this precise). It turns out that pq =  1/16 is the “critical case” and 

for this we will need to use arguments involving the asymptotic behaviour of S'+ (£, u), 

discussed briefly in Chapter 1.

P rop osition  7. Let pq <  1/16 with p /  0,1. When p <  1/2 we have

Tl
max{S,+ (^,u) — - }  - »  —oo a.s.
\u\=n  Z

whereas when p > 1/2 we have

m a x {-  -  S +(£,u)} -> -o o  a.s.
\u\=n  z

Proof. This is a consequence of the argument advanced in the section on the asymptotic 

behaviour of S+(£,u) in Chapter 1. Setting 0 =  1/2 in the A® martingales gives

A"/2 = A” = Yq E  = Y q e X p {l° g l S + ^ u) ~  n l°g4<?}

and
ci/2 =  r _  l2l i £  
p _  P l o g f

Suppose that pq < 16 with p < 1/2 (we will deal with the “critical” case later). Then it
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Ti 1
S+ (£, u) -  -  =  S+ (£ ,«) -  cvn -  ( -  -  cp)n, 

where 1/2 — cp >  0. Now, since

is easily seen that cp E (0 ,1 /2). It follows that n /2  > Cpfi and hence we have

max
| u | = 7 l

{S'+ (4 ,ti) — cpn} <  oo a.s.

it follows that
n.

m ax{S+(£,u) -  - }  -♦ - o o
\u\=n Z

a.5.

since (1/2 — cp)n -> oo as n -> oo. Similarly, when pt/ <  1/16 with p >  1/2, we have 

cp E (1/2,1). We also have

n
2 S+^ ,u ) — cpn S (£,rt) (cp 2^ ’

where cp — 1/2 > 0. Now,

max{cpn — S+(£,u)} <  oo a.s.
|u |= n

so that
ft

m ax{----- ,S+(£, u)} —* — oo a.s.
|tt|=n 2

since (cp — l/2 )n  —> oo as n —> oo. The case pq =  1/16 is more delicate, requiring us to 

use the fact that A„ converges to zero almost surely. By Proposition [?] from Chapter 1, 

A„ converges to zero almost surely precisely when

7(1/2) >  log 2,
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that is, when pq <  1/16 so that, in particular, this is the case when pq =  1/16. We deduce 

that, for any u G Gn,

exp{S +(f,it) log — 
P

n log 4 q} 0 a.s.

so that, for any u € Gn,

S+(£,u) lo g -  
P

n lo g 4<7 —> — oo a.s.

and hence

m axlS^(£, u) log -  — n log Aq) —> —oo a.s.
\u\=n p

The result now follows by dividing through by log  ̂ and treating the cases where this is 

positive and negative separately, as before. □

This suggests the following.

Lem m a 10. Let
Tl

U — {u> : m ax{5+ (£(u;),«) — —} —>• —oo}.
\u\=n 2.

Let 77 : Q —»• { — 1 ,1 } / be the family type mapping. That is, rj(u})(r)u(ui);u € T), where 

rjui^) — £,u(a>)fuo(ai)fui (cu). Then the restriction of r) to U is injective when pq <  1/16 

with p <  1/ 2 .

Proof. We begin by convincing ourselves of the truth of the following: £ G U implies

Tl
5 + (£ ,u (n ,f)) -  -  -> -0 0

for all t € dT , where u(n,t) is a vertex u in level n (i.e. |u| =  n), on the line of descent
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‘ending” at t. This follows from that fact that

77 77

S +(£, u(n, t)) -  -  <  max{S+(£, u(n, t)) - - }
Z \u\=n Z

for every n and for all t € dT.

Now, let £, £' e  U. We argue that £ ^  £' => p(£) ^  p(C)- Suppose that £ and £' 

differ on a vertex u* £ T  (that is, £u. ^  £(,„). Suppose further that r}(£) =  77(4'). Then 

it must be the case that £„ =  — £' for all w < v (recall that w < v means that v is a 

descendant of w), where m =  \w\ <  |u*|. This is due to the fact that having changed a 

vertex type there are two ways in which the family types may be maintained. The first is 

by changing parent and daughter vertices, that is, changing along a line of descent. But 

one can also change sister vertex type or types at some level on or above |u*|. In this way 

we must have £„ =  — £' for w <  v, with w the first time (relative to u*) that we change a 

sister rather than parent vertex. Denote this distinguished line of descent, starting at w, 

by t. Define, for |w| <  |u|,

S+{£,w,u) =  ^ 2  % = i ) ( 0
w <v<u

and

S (£ ,w ,u) =  % = - i ) ( 0 -
w <v<u

Then we have 5 + (£, w, u) < S+(£,u) and hence by our opening remark,

TX
S+(£,w ,u(n,t)) -  -  -*• —oc.
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S+(£',w ,u(n,t)) =  S~(£, w, u(n,t)) 

and use the fact that, for u G Gn,

S+(£, w, u) +  S _ (£, w, u) =  n +  1 — m

We now observe that

to see that

n +  1 — m — S+(£, w, u(n,t)) —oo

which is equivalent to having

S+(£',w,u(n,?)) -  |  oo,

that is,
Tl

S+{£,u(n,t)) -  -  -»• oo,

contradicting the fact that £' G U. □

Lem m a 11. Let
77

V =  {u  : m ax{— -  S+(^,u)} -> - o o } .
|u|=n Z

Then the restriction of r] to V is injective when pq <  1/16 with p > 1/2.

Proof. The argument is analogous to the previous one, though here we use the fact that 

S+(£,w) <  oo, that is, only finitely many ones occur before w. □

We have found sets of probability one on which the family type map is injective. More 

precisely, when pq <  1/16, either U or V has probability one and r) is injective on the set 

in question. Notice that this is an improvement on the results that would be obtained 

via cloud speed (or indeed Hausdorff dimension) as it takes care of the case pq =  1/16.
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The advantage of the result obtained via the martingale theory over the cloud speed 

calculation is one of finer detail. In the case pq — 1/16, the cloud speed is almost surely 

1/2. That is,
Ti

niax S(£, u) =  -  +  o(n).
\u\=n Z

Our result suggests that the coefficient of the second order term is negative. See [8] for 

details of the second order term in the context of branching Brownian motion.

We now have the ingredients required to prove the following result which makes precise 

the idea that the family and individual vertex types carry the same amount of “informa

tion” when pq <  1/16. We will formulate this in terms of the cr-algebras generated by the 

individual and family types. For this reason we need to clarify precisely what we mean 

by the “cr-algebras generated” . Let

£ =  p =  (rju-,u e  T).

Then £,r/ : f2 —*• { — 1, 1} T. The cr-algebras generated by £,77 will depend on the <7- 

algebras with which we equip the target space { — 1 ,1}T- For the purposes of this work 

(and throughout) we will assume that { — 1, 1} T is equipped with the Borel cr-algebra B 

so that

* (0  =  { C 'A  : A 6 B}

and similarly for cr(77). Notice that it makes sense to talk about the Borel cr-algebra on 

{ —1 ,1} T because it has a metric structure, discussed at the end of Chapter 1.

Before stating and proving the result we have in mind we recall a corollary of Kura- 

towski’s Theorem concerning the image of Borel sets under injective mappings. Recall 

the metric structure of { —1, 1} T via the metric D from Chapter 1.

51



Theorem  5. (Kurtawoski’s Theorem, [31]) Let X\, X2 be complete separable metric spaces 

and Ei C X\, E2 C X 2 subsets with E\ Borel. If E2 =  (j>(Ei), where <f is a measurable 

injective map from X\ into X 2, then E2 is Borel.

Theorem  6. Suppose that pq <  1/16, where q =  1 — p. Then the a-algebras generated 

by the individual vertex and family types are the same up to null sets. That is, their 

completions are equal.

Proof. We will deal with the case p < 1/2 and leave the reader to make the analogous 

argument for p >  1/2 (which is the same as that given with the substitution of V for 

U ). Given A G cr(£u; u G T), we exhibit an A' G cr(rju;u G T) such that P(AA A ') =  0. 

It is sufficient to do this for the canonical space Q =  { —1 ,1}T which we equip with the 

Borel a-algebra (the justification of this result in the general setting is discussed after the 

proof). For A G ct(£u; u G T ), let

A' =  { ^ . V(0 ^ v (U n A ) } .

Then A' =  rj~lB, where B =  q(U fl A). Now, A is Borel since the coordinate maps 

£u generate the Borel cr-algebra and hence q(U D A) is Borel by Kuratoski’s Theorem 

since r/ is injective on U. It follows that A' G <r{r¡) =  a(r¡u;u G T). We now claim that 

U D A =  U D A!. To see this, suppose that £ G U Pi A. We have then r/(£) G r¡(U D 4̂) so 

that £ G A' and hence £ G U ft A. On the other hand, suppose that £ G U fl A'. Then 

V(0  e  O A) and, by the injectivity of 77 on U, this implies that £ G U fl A. Hence 

A A A 1 C Uc so that P(y4AJ4') =  0. □

The reason for working on the canonical space in the above proof is that it enabled us 

to apply Kurtawoski’s Theorem. We now show that the conclusion of the theorem holds 

for any arbitrary probability space. This type of technical detail is similar to the issue 

discussed in Chapter 1 in relation to defining the change of measure A® on non-canonical
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spaces.

Our abstract probability space is (íí, T . P), where we have written the bar over the prob

ability to avoid confusion with the canonical probability measure. Let £,r) : (O,^7) —> 

({ —1, 1}T,0 ), where B is the Borel cr-algebra, denote the non-canonical individual and 

family types so that fj =  r¡ o £. Our aim is to extend the result of Theorem 6: given an 

A G cr(£), we seek an X  G a(fj) such that P ^A ^V ) =  0. Let A =  £ 1 A, where A £ B is 

arbitrary. Define A =  where, as in the proof of the theorem in the canonical case,

B =  r](U fl A). Then

P (A \A ') =  f ( r 1A \ v~ 1B)

= n r 1A \ ( r 1orl- i)B)

=  P(w : |(w) G A\r]- 1B) =  P(/l \ r]~lB)

=  P (4  \ A') =  0,

by the result in the canonical case, where P is the canonical probability measure or, 

equivalently, the law of £ under P. It is easily verified by making essentially the same 

calculation that P ^  \ A) =  0 and the result now follows.

Intuitively, the“pç <  1/16” condition is telling us that “recovery” is possible provided 

p and q are sufficiently different, pq <  1/16 (with p ^  0, 1) corresponds to

, 1  y/Z. A y/3

that is, p is either very large (so that q is very small) or very small (so that q is very large).

Notice also that the above recovery result concerning the equivalence of the (7-algebras
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generated by the individual and family types isn’t a million miles away from the recovery 

result we obtained on the integers. If we write S for event that the limiting proportion of 

ones in X  converges to p then, as we have seen, S has probability one by the strong law 

of large numbers. Furthermore, the family type map is injective on S when p ^  1/2 since, 

of the two possible reconstructions, one will have (almost surely) limiting proportion p of 

ones while the other has (almost surely) limiting proportion 1 — p. We can therefore con

clude, by running the above argument, that the completions of the a-algebras generated 

by X  and the Y  are the same, provided p ^  1/2.

2.2.2 Non-recovery: the case p q  >  1/16

We saw in the last section that, when pq <  1/16, there exist sets of probability one 

on which the family type map is injective. We then showed that this implies, via the 

equivalence of the (completions of) cr-algebras generated by the individual vertex and 

family types, that the “information” carried by the vertex and family types is, in some 

sense, the same. From the section on cloud speed (or Hausdorff dimension) we know 

that, when pq >  1/16, there exist almost surely marked trees having lines of descent with 

proportion 1/2 of type one vertices. One ought then to be able to swap the signs of the 

vertices along this line in order to obtain another marked tree with the same family types 

as the original, making recovery seemingly impossible in this case. From the section on 

cloud speed, we can deduce that when pq > 1/16, c+(£) > 1/2 almost surely but then 

contradictions of the type we derived in the case pq <  1/16 will not be possible. The 

rest of this section will use martingale methods following on from the previous chapter to 

develop results that can be used collectively to prove the following theorem.

T heorem  7. Let pq >  1/16. Then we have strict inclusion between the a-algebras gen
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erated, by the individual vertex and family types:

v(€u',u e  T) D (t{t1u, u E T ).

Recall the probability measure Q (with 0 =  1/2) from chapter one as the probability 

under which the £„ are independent, identically distributed Bern(p) random variables, 

except along a random line of descent, uniformly chosen on the boundary of the tree, 

along which the are independent Bern(l/2) random variables, independent of the 

random variables not on this distinguished line of descent. Our strategy will involve a 

“coupling” argument. That is, we will construct marked trees £,£' having the same law 

under Q and with the same family types.

Claim  3. Let t E dT be chosen uniformly. Define a marked tree f  by giving fu the 

Bem(l/2) distribution for u < t and the Bem(p) distribution for u t. Define another 

marked tree £' by £'u =  —£u for u < t and $,'u =  £u otherwise. Then £,£' have the same 

distribution under Q  and p(£) = p(£').

This is straightforward to see and is made explicit only because it plays a role in the 

following proposition.

Proposition 8.
------------------0 —:------------- HQ)

u e T )  D a (77u; u € T) .

Proof. Let £0 denote the type at root. The event A =  {u> : £0(0;) =  1} is contained in 
------------------Qcr(£„; u E T) . We will show that it is not contained in the other er-algebra. Suppose, for a 

contradiction, that A E a(r/u; u E T) . Then there exists an H E B such that r)~l (H)LsA 

is Q-null. Notice also that has a disjoint decomposition: — C l±) D, with

C =  {lo : £0(0;) =  E H } and D — {u  : £q(uj) =  —1, 77(0;) E H}, so that D C AL>N

for some Q-null set N. Now, since D fl A — 0, we have D C N so that Q(D) =  0.
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On the other hand, we observe that Q (C  l±) D) =  Q(A) =  1/2 and now we must have 

Q(C) =  Q (D) by the previous claim (£(u;) G C if and only if £'(u;) G D and therefore 

Q({w  : £(u;) G C }) =  Q ({o; : f'(u;) G D }) =  Q({u; : £(u) G D}))  so that Q (D) =  1/4, a 

contradiction. □

Notice that the existence of a line of descent along which the proportion of ones is 

1/2 was vital: key to the above proof was the fact that £, £' have the same distribution 

under Q. Had we chosen any other value of 9 in our martingales A® then this would not 

have been the case. We see then that the choice 6 =  1/2 is crucial for the non-recovery 

part of the argument and we will see that for this value the two ends of the argument 

“meet” . That is, we can prove that when we’re not in the recovery regime then we are 

in the non-recovery regime and vice-versa. It was clear from the previous section (via the 

problems with determining when is trivial) that this is not the case for other values 

of 9.

Proof. (Theorem 7) The result follows provided P and Q are equivalent when pq >  1/16. 

This is a corollary of Proposition 3 from Chapter 1: setting 9 =  1/2 the condition for 

uniform integrability of A„ is /(1 /2 ) <  log 2, i.e. pq >  1/16. That is, when pq > 1/16, An 

converges in Ll to a finite limit which is almost surely positive. □

2.3 Further work and unresolved problems

In this section we discuss briefly some of the ways in which one might extend the results 

of the previous sections. For example, one might consider having more types, working 

on a d-ary tree rather than the binary tree, defining the family type in a different way 

and so on. We introduce and discuss some of these possibilities, giving, in some cases, 

motivational results. We also mention briefly a more “classical” type of reconstruction 

problem on trees.
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More types

Suppose that the £u may take one of K  types, where K  =  1,2,.... Our immediate ques

tion is which (if any) of the results of the previous sections translate directly to this more 

general setting. We will not explore the type of family type mapping that might be ap

propriate in this context but illustrate instead the sort of arguments - extending the two 

type case from Chapter 2 - that might be exploited. We suspect that much of the work 

involving martingales obtained via a change of measure should work along the same lines 

as before.

Let be the probability measure under which the £„ are independent, identically dis

tributed Bern(pi, ...,Pk ) random variables and the probability measure under which 

the are independent, identically distributed Bern(p1, ...,pK) random variables, except 

along a random line of descent, chosen uniformly on the boundary of the tree, along which 

the are independent, identically distributed B ern (l/A ',..., 1 /K) random variables, in

dependent of the £u not on this line of descent. Writing

«* • « .» )
v<u

for the number of type tt vertices (i =  1,..., K ) observed along the line of descent to the 

vertex u, it is easily seen that, with obvious notation, (see derivation of the corresponding 

expression for two types in an earlier section for more details)

\K =  dQn =  _1 V  
n dF% 2" . , Kpi  ̂ -  { K Pk>

\u\=n

We could now try to write this in a form consistent with Biggins’ Theorem and then deduce 

results about uniform integrability and so on. It is perhaps more convenient, however, to
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appeal to the decomposition argument used in the previous section. The decomposition 

of the change of measure is a property of the underlying branching structure (i.e. the 

binary tree) and so the same decomposition holds here:

AK \K
= %  (A* + A f 1),71 — 1

where A^_lt are (as before - see previous section for precise formulation) the corre

sponding changes of measure rooted at the vertices 0,1 respectively. Arguing along the 

same lines as before, we can now find a condition on plt ...,px  such that A% is bounded in 

Lr for some r >  1. We write the argument out in brief, omitting some of the calculations 

as the analogous argument can be seen in the previous section.

We have

so that

E i<A*>r] = M w J + ~ + p

K\r-\ ^  yLKKp!
e [(a „ n  <

P ii jh Y  +  -  +  p k ( k^ ) ( E K A ^ n  +  i).?r—1

Writing

e r = p ^ ik iY  +  -  +  P « ( /c b )KpK -
2r—1

we seek an r € (1,2) such that 0 r < 1. Re-arranging, this inequality becomes

sM :=
fc=1

Now,

m - E w - 1k=1

58



and

/ ( l )  =  ¿ l o g Kpk -  log2 =  -  log2K{pi...pKy fK 
fe=l

so that g'(l) <  0 provided

V l - V K  >  ( ¿ ) *

Notice that when K  =  2 this gives the familiar condition “pq >  1/16” .

It is not clear that this martingale would be useful (in the way A„ was with two types) 

in determining whether or not recovery is possible. Re-examining proposition 9 from the 

previous section, we suspect that under conditions on the family type mapping, we ought 

to be able to obtain strict inclusion between the completions (with respect to Q ^) of 

the cr-algebras generated by the family and individual types which would then extend to 

the completions under PK via the uniform integrability argument. Although the details 

are sketchy in this general setting, we do have, however, a concrete example with three 

types, where the family type is given by the product of the individual types as with our 

earlier work. Here, we argue that it is not possible to recover the individual vertex types 

from the family types for certain values of the parameters but the recovery part of the 

argument is more difficult and we obtain only a partial result.

An example with three types

Plus one and minus one are the square roots of unity and so it is perhaps natural to 

consider the cube roots of unity which we label, for convenience, as t\ =  1, ¿2 =  e2,ri/3, t3 =  

e-2xi/3 ĵ s before, we 6efine the family type to be the product of the types of the family 

members and we write rj for the family type map. Recalling the notation we adopted
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above, we have then

A3
n

where we have written p =  pi, q =  P2 , r =  pz for the probabilities of types 1, 2, 3 respec

tively. It follows that A3 is uniformly integrable provided pqr > (1 /6 )3 and, furthermore, 

since linin^oo A3 is almost surely non-zero, we have that Q3 and P3 are equivalent when 

pqr >  (1 /6 )3. We now modify the argument from Proposition 7 to show that this gives 

us the non-recovery part of the argument.

P rop osition  9. Let pqr > (1 /6 )3. Then

----------------------o 3 ----------------------o 3
ct(£u ; u  G T) D u G T) .

Proof. We begin with a “coupling” in the spirit of the two type case. Let t G dT be chosen 

uniformly. Define a marked tree £ =  (£u;u G T ) by giving £u the Bern(l/3) distribution 

for u < t and the Bern(p) distribution for u ^  t. Define another marked tree £' by setting, 

for vertices u < t such that \u\ =  n,

c
3̂

n =  0, 2,4,... 

n =  1,3,5,...

and tfu — otherwise. Then it is easily seen that £, (f have the same distribution under 

Q3 and that ??(£) =

Now, let A  =  {£ : £0 =  1}. Then A  G cr(£„; u G T )Q . We will show that it is 

not contained in the other cr-algebra. Suppose that A  G cr(rju; u G T) . We have 

a(pu',u G T) =  rj~l (B) and hence there exists a set H  E  B  such that p ~1( H ) A A  is
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Q3-null. Notice also that 77“ 1 ( / / )  has a disjoint decomposition, r?_1( / / )  =  D\ l±l D2 tt) D3, 

with Di — {£ : £0 =  ti,r](£) G H }, so that D2 l±l D3 C A U N for some Q3-null set N. 

Now, since D, D A =  0 for i =  2,3, we have D2 W D3 C TV so that Q (£)*) =  0 for i =  2,3. 

Recalling our marked trees observe that

Z e D 1 ^ t ' e D 2, £ g £>3 e  A ,

from which we deduce that

Q3(D i ) =  Q3(D2) =  Q3(£>3).

Since Q3(J9! l±l D2 W D3) =  Q3(A) =  1/3, it now follows that Q3(A )  =  1/9 f°r * =  1)2,3, 

contradicting the fact that D2 and D3 are Q3-null. □

Combining this result with the equivalence of Q>3 and P3 we now have that

------------------------p3 ------------------------ p3
cr(£u; u G T) D a(rju; u G T)

when pqr >  (1/ 6)3.

The recovery part of the argument

By noting that
3

£ S * * (£ ,u )  =  n +  1 
¿= 1

we can write A3 in three possible ways: in terms of S'*1 and St2, in terms of St2 and St3 

or in terms of Su and St3. For brevity we will express A3 in terms of Sl1 and St2 and 

then point out how the argument would work if we had expressed it in terms of the other
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variables. We have then

A" =  X  expO og-S*1^ , « )  +  lo g -S i2(£,u) -  n lo g 6r}.
6 r  |u|=n P q

The idea is now the same as with the two type argument: we wish to obtain a

77
“ maxi»!?*1 (£, u) +  St2(£, u) — — } —>► —oo a.s.”

\u\=n 2

type result. Before we get to grips with how to obtain this, we will first verify that this 

is the right type of result.

Lemma 12. The family type map rj is injective on

77
S =  {£ : max {S h (£,u) +  St2(£,u) -  -  - o o } } .

\u\=n Z

Proof. We will only sketch the argument as it is analogous to the two type case. Let 

£,£' E S. Then, as with the two type case, if £,£' differ on a vertex u, then it must be 

the case that £' =  tj£v for all u < v, where tj corresponds to changing daughter vertices 

so as to maintain the family types amongst the families descended from u. Along this 

distinguished line of descent t*, we have

Su (f,,u(t*)) + St2(£,u(t*) -  ^  > - o o

Now, a type can be changed to either of the other two and hence we have
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5 t3( ^ , « ) < 5 tl(^ u ) +  5 t2(e,n).

Hence

St3{Ç',u(t*)) -  ^  - »  - o o  

or

n +  1 -  S ^  -*• - o o  

which holds if and only if

77
s*'(C,«((»))+ s*2(?', »((»))- -  ->«>,

contradicting the fact that f  G S. □

We now need to argue that S has probability 1 under certain conditions on p, q, r. As 

with the two type case, we have

maxflog u) +  log -S t2(Ç, u) -  n lo g 6r }  <  oo a.s.,
M=n p  q

else would fail to converge and now it is just a case of conducting careful analysis. 

By taking r > p we can divide through by log £ and by taking p > q we can make the 

coefficient of St2(£,u) greater than or equal to 1. The result now follows provided we can 

control the term
log 6 r

lQg^

to be less than or equal to 1/2. This corresponds to having pr <  1/36. That is, S has 

probability 1 provided pr <  1/36 with r > p >  q. Of course when r <  p, we would be 

dividing through by a negative quantity and so we would then have to work with the set

77
5" =  {£ : m a x {-  -  5'tl(£,u) -  St2(£,u) -> - o o } } .

\u\=n Z

63



It is readily seen that r) is also injective on S' and that S' has probability 1 provided pq < 

1/36 with r < p and p >  q. Recall now that we could have written A3 in three different 

ways, depending on which of the S^(^,u) we use in the representation. Furthermore, in 

our argument above we divided through by log £ but could equally have divided through by 

log Lq and then argued analogously. The analysis holds equally for each such representation 

and for division (provided it’s permitted) by either of the coefficients of the Stj. It follows 

that there exist sets of probability 1 on which rj is injective when

pr <  1/36,p > q,r ^  p, qr <  1/36, q > p, r ±  q,

or when

pq <  1/36, g >  r,p q, pr <  1/36, r >  q,p ±  r ,

or when

pq <  1/36, p > r , q ^ p ,  qr <  1/36, r > p , q ^ r .

We can simplify these conditions to give

pq <  1/36, p > r ; q > r , p ^ q ,

pr <  1/36,p > q;r > q,p ^  r, 

rq <  1/36, q >  p\r >  p,q ^  r.

This isn’t quite the recovery result we hoped for, namely upqr <  (1 /6 )3” . As with many 

arguments, it is often relatively straightforward to prove that something is not true by 

finding a counterexample. In contrast, to prove that something is true requires a proof 

that works in generality. Here, we were able to construct marked trees having the same 

distribution under Q3 and with the same family types. This enabled us to complete the
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non-recovery part of the argument. Going back to the two type case, recall that if we 

change the type of a vertex then to maintain the corresponding family type we must also 

change one (but not both) of the types of the other two vertices comprising the family. 

This is not the case with the three type case. In some cases we can change both of the 

other vertex types and still maintain the family type. For example, consider

=  e27ri/3, U  =  h  =  e~27ri/3

so that the corresponding family type is rju =  1. Now suppose we change £u to £'u =  1. 

Then there are three ways in which we can maintain the family type:

d  _  d  _  1 • d  — c
“iuO S u l  SuO c  > >1ul — g-2n/3. d n== p - 2 « / 3  d  _  p SuO c > S>ul c

27Tt/3

In the first, we have changed £„1, in the second £u0, and in the third both £u0 and ûi- This 

means that if two marked trees have the same family types then they can differ in a more 

complicated way than was the case with two types. We suspect that we ought in fact to 

have equality between the completions of the cr-algebras generated by the individual and 

family types when pqr <  (1 / 6)3 but there is more work to be done here.

Non-binary branching structure: working on the d-ary tree

If we assume that the types are independent, identically distributed Bern(p) random 

variables and that the family types are defined in the usual way (i.e. as the product of 

the individual types) then we saw what happened in the case d =  1 with the reconstruction 

problem on the integers. Reconstruction turned out to be possible for all but one value 

of the parameter p. We then saw what happened on the binary tree: reconstruction is 

possible provided p is either very large or very small. In fact it turns out that this problem 

isn’t very interesting for d > 2 for the only thing that differs is the mean branching factor
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which plays only a minor role in the theory. Looking at the cloud speed calculation, for 

example, the only modification necessary is to write

“ sup{a : 1(a) <  lo g i}”

rather than "... <  log 2” . Indeed it is easily seen tha-, reconstruction is possible provided 

pq <  1/4d2.

Conditional independence of types

We now relax the assumption that the (£u;u G T) be independent, imposing instead con

ditional independence. We assume still that the types are either —1 or 1 and that we 

are working on the binary tree. Suppose that the root type is chosen according to an 

arbitrary distribution n. Conditionally on £0 =  x G { — 1,1}, pick (£o>£i) according to a 

distribution Px(.,.), depending on x. To construct the next level, pick offspring(£oo>£01) 

and (£10, £11) independently and according to P̂ 0 and P  ̂ respectively. We continue to 

generate the entire marked tree G T) in this fashion. The family type remains

the same as before, namely the product of the individual types. This type of multi-type 

branching process has been considered in more generality by Biggins and Kyprianou in 

[7]. There, a random tree is embedded in one in which every individual has a countably 

infinite number of offspring, with the type of an individual taken from a very general set, 

conditional on the parent type.

We begin by establishing the martingales in this setting, analogous to the ones considered 

in Chapter 1. That is, we determine conditions under which the sum

a(tu)<*Sniiiu)Pn
M=*
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is a martingale.

Lemma 13. Let a, /3 € M and a : { — 1,1} —> R be a function. Then the sum

Mn = ^ 2  a({u)as"^ / 3 n
\u\=n

is a martingale with respect to the a-algebra generated by the types to level n of the tree 

provided that the eigenvalue problem

^ = b -

is satisfied, where a =  (a (—l) ,a (+ l ) )  and

_  (  Pa(~  1 ,-1 )  P a( -1 ,+ 1 )  ^

\ ^ ( + 1 , - 1 )  P Q(+ 1 ,+ 1 ) j

Here, Pa[x,x') =  p(x, x')ax', where p(x,x') is the probability that £0 =  x> given £$ =  x 

(which we assume is also the probability that £i =  x' given — x - i.e. left/right 

symmetry).

Proof. It is enough to show that E[M\\ro] =  M0. We have

M0 =  a(£0)0̂ ®

and

Mi =  {a(£0)a io +  a d i)«* 1}«*®/?
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so that

E[Mx|ro] =
a/3 [2a(l)PQ(+ l, +1) + 2 a ( - l ) P “ (+ l, -1 )], £0 = 1

a _1/3[2a(+ l)P“ (—1, +1) + 2 a ( - l ) P “ ( - l ,  -1 )], 6  = - 1

We now define a and Pa as in the statement of the lemma and equate E[Mi\Fo] to M0. □

In what follows we show that this martingale may be obtained as a change of measure 

between the “standard” offspring distribution described above and one under which a 

uniformly chosen line of descent has a modified distribution. Let P be the law of the 

standard offspring distribution. Let P be the probability measure under which the nodes 

are distributed according to the standard offspring distribution except for those along a 

distinguished spine and their immediate siblings. Along this spine, given the vertex un in 

generation n >  0, the law of its offspring distribution with respect to the standard law has 

Radon-Nikodym derivative Mi(a,un), where Mi(a,un) is the version of M\(ot) obtained 

by treating un as the root. Furthermore, the vertex un+1 is chosen from the offspring of 

un with probability p^(un+1), where

( \ -  afo*n + l)Q^n+1
mUn+1> a^Un0) a ^ O +  a( U i h ^ -

We have

M i ( a , U n )  =  cu„/3ai“n{a((Un0)aUn0 +  a(£uni)ctUn1},

and hence if we denote by Px(y, z ) the standard offspring distribution, that is the proba

bility of a parent of type x having offspring of types y, z and by Qx(y, z) the corresponding 

“modified” distribution along the spine, then we have

Qx{y,z) 
Px(y,z ) f (x ,y ,z ) ,
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where f (un, un0, unl) =  Mi(a,un). Another way of looking at the construction is as 

follows. P is the projection of P* onto the space of marked trees, where P* is the law 

of the random marked tree together with a distinguished spine. Having chosen the type 

at root according to some arbitrary distribution n, choose its offspring according to the 

law Q, where Q is as above. Now choose the first vertex (after the root) to be on our 

distinguished spine according to and assign the types of its offspring according to Q 

while assigning the types of the offspring of the other vertex (not on the spine) according 

to P. Continuing in this way we obtain a marked tree, some types distributed according 

to P  and others to Q. In doing so we also “generate” a distinguished spine.

Lem m a 14. Let pn =  ^  be the Radon-Nikodym derivative of the restrictions of the 

measures to level n of the tree. Then pn =  M „(a).

Proof. We have

p „K) =  £  (6,0, ) ■
|u|<n

Let P„ be the probability measure on Q x dT corresponding to the way in which we 

generated a marked tree together with a distinguished spine (described above). Then

£*«.»)=*(&) n 0)£vl) 11 F’Zv (C’Oi C;1) 11
v<u,\v\<n  « ^ u , |t ) |< n  i> < u ,|u |> 0

Writing Q in terms of Mi and tidying up a little gives

Pn ( £ , « ) =n i f y w n PtMvo,£v\) n Cvaiv n
|u|<n «<u,|t»|<n «<«,|u|>0

=*■(&)/?" n  p(v(Zvo,tvi) n  n  a ^ ) « ^
|u|<n u<u,|i)|<n y v<u,|t;|>0

ii<„ a & )
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1
= A ^ )P n n PevitvO'tvM tJa3*™

\v\<n

-  n(€<t)(3n JJ  Ptv(€vO,Zvi)a(€u)otSny-'c<i,(«),
|u|<n

Summing over nodes in level n we obtain

V O  =  E  II PtMvo,Zvi)c0a(£u)a s" (u)/T\
|w |=n  \v\<n

and now when we divide this by Pn(£) we obtain

Pn =  cOa(tu)a!Sn{u)/3n =  Mn(a),
\u\=n

as claimed. □

In terms of the issue of recovering types, we would like the process along the spine to 

be “invariant under flipping” . More precisely, we would like the distribution of types along 

the spine to be the same when we interchange the types (recall how the argument worked 

for two types). One way this could be achieved is if the process along the spine were a 

Markov chain with symmetric transition matrix. The question of interest is then whether 

there exists a value of a for which this is the case. One approach to the non-recovery part 

of the argument would be to relate the martingales Mn to those studied by Kyprianou 

and Sani in [32], The authors establish a matrix M(9) which is analagous to our Pa but 

with q =  exp(—9). There they deal with a multi-type branching random walk having p 

types whereas we are interested in only two. We specialise their notation accordingly to 

illustrate the connection between their work and ours. Following their setup, let e(a) be 

the maximum eigenvalue of Pa (which exists by the Perron-Frobenius theorem provided 

Pa is positive regular) and v(a) =  (i>_i(a), u+1(a)) be the corresponding right normalised

70



eigenvector. Define, for i E {  — 1,1},

m « )  = E
\u\=n

v̂ u(a)aSn̂ ,û
V i ( a ) e ( a ) n

This is a martingale with resect to the cr-algebra generated by the types to level n of 

the tree and we see immediately its connection to Mn: our constant /3 is l/e(a) and 

the function a is the appropriate entry of the right eigenvector corresponding to e(a). 

The authors go on to show that these martingales can in fact be obtained as a change 

of measure and give a description analogous to ours. Among the results of the paper is 

a criterion for uniform integrability which could potentially be used (in the sort of way 

we have illustrated with two and three types) to prove that under certain circumstances 

recovery of the individual types from the family types is not possible. As with some of 

our other work, this is an open problem.

We conclude this section with a brief description of a different type of reconstruction 

problem on trees that has been widely studied.

Classical reconstruction on trees

We use [39] and [26] as our main references for this. The problem take place on a deter

ministic d-ary tree (Galton-Watson tree where the number of offspring is always d). The 

type at root is chosen from some finite set according to an arbitrary probability distri

bution. With the value at root fixed, each vertex iteratively chooses its type from the 

one of its parent by an application of a Markov transition rule, with all such applications 

being independent. The basic question of interest is then typically whether the boundary 

of the tree contains any information about the type at root. The formulation is abstract 

but essentially boils down to whether the value at root is “encoded” into the boundary
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in a significant way. See [39] for full details. It turns out that in such problems it is the 

eigenvalues of the transition matrix for the associated Markov chain that are crucial for 

deciding whether or not the problem is “solvable” . This type of problem is more akin to 

the conditional independence example just given, though the type of recovery studied is 

mathematically different. It might be interesting to investigate further the possible links 

between the two types of problem.
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Chapter 3

Recursive Distributional Equations

In this chapter we introduce the idea of a “recursive distributional equation” (RDE). We 

begin with some background and then study a particular example coming from the work 

of the previous chapters. This leads us to the study of a particular RDE. We obtain a 

complete understanding of this equation in the case pq <  1/16 (where p,q are the prob

ability parameters from Chapter 1) and obtain partial results for the more difficult case 

pq >  1/16, drawing particular attention to the special case p =  1/2.

The initial setup and discussion of tree-indexed solutions will set the scene for later chap

ters. We are guided throughout by the work of Aldous and Bandyopadhyay in [1].

3.1 Introduction: the basic idea

In a variety of problems, particularly in applied probability, distributional equations of 

the form

(3.1) X  =  g ( Z u X i - , i =  1 ,...,N )
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are often of interest. Here, the & and g are known, N  may be random or deterministic 

and the X{ are independent copies of a random variable with some unknown distribution. 

In some work the £, are referred to as “innovations” or “noise” . The primary aim is to 

determine whether there exists, in the context of (3.1), a distribution g such that if the 

Xi are independent with distribution g, then X  also has distribution g. Writing V  for the 

set of probability measures on a space A, suppose we are given a joint distribution for a 

family of random variables (&; i =  1,..., N) and an A-valued function g with appropriate 

domain (we will make this precise in the next section). Then we can define a mapping 

T : V  —* V  by setting T(g) to be the distribution of <?(£, Xg i =  1,.... N), where the X t 

are independent with distribution g and independent of the & and N. We can now ask 

about the existence (and uniqueness) of fixed points, that is, distributions g for which 

T(g) =  g. We can also iterate: starting with independent copies X t(0)(g) of a random 

variable with some arbitrary distribution g, we apply the distributional equation (3.1) to 

obtain mutually independent random variables X [x\g) with distribution T(g). Applying 

the equation again we obtain mutually independent random variables X^2\g) with distri

bution T(T(g)) and so on. Inductively we write Tn(g) for the distribution of the mutually 

independent random variables X\n\g), obtained by applying the distributional equation 

n times. By iterating in this way we think of (3.1) as being a recursive distributional 

equation (RDE) of the form

(3.2) x j n+1) =  2(&,X<n);z = l , . . . ,N )

so that invariant distributions for the RDE correspond to fixed points of the induced map 

T or, equivalently, solutions to the distributional equation (3.1). This can be viewed in 

terms of an underlying “tree structure” . We will say more about this later.
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In this context we can also talk about the basin of attraction of a fixed point g: for 

which distributions u do we have Tn(v) —> g as n —> oo, in some suitable sense? Ques

tions such as these have been studied fairly widely by authors such as Aldous [1], Biggins 

[5] and Liu [38]. This type of work is also related to the study of “random hierarchical 

systems” , as studied by authors such as [27]. A comprehensive survey of what is known 

about RDEs can be found in [1], with particular attention being drawn to equations in 

which g is essentially a maximum function. A subclass of RDEs which is well understood 

is the linear type. We will define precisely what we mean by this and present a summary 

of the relevant theory in a later section.

3.2 The precise setup

We now specify a precise setup for the study of RDEs. This is taken from Aldous and 

Bandhapadhyay in [1], In this chapter we will be working on the binary tree and so this 

level of detail is unnecessary but will be useful preparation for later chapters. Let (A, A) 

be a measurable space, let V(A)  be the set of probability measures on (A, A)  and let 

(B, B) be another measurable space. Define

B* =  B x IJ  An,
0< n< oo

where the union is disjoint and An denotes product space with the usual interpretation 

that A0 is a singleton (point). Let g : B* —> A be a measurable map and let u be a 

probability measure defined on B x (Z+ U {+ o o }) . We assume throughout (for simplicity) 

that the random variable N is finite. Define a map T : V(A)  —> V{A)  by defining T(g) 

to be the distribution of g(£,Xg 1 <  i <  N ), where

1. the (Xgi  >  1) are independent with common distribution g\
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2. (£, N) has distribution v\

3. the random variables in 1 and 2 are independent.

Notice that this is consistent with (3.1) by writing £ =  ( £ i ) i< i<00 and thinking of (£,) as a 

single random element. The setup given in [1] does allow for the possibility that N  may 

be infinite. A complication may arise here in that g may not be well-defined on the whole 

of B x A00. See [1] for full details.

3.2.1 Recursive tree process

Suppose that we associate the random A-valued variables A, in (3.1) with the vertices of 

a Galton-Watson tree T having offspring distribution N. In the distributional equation

X  =  g(Zi,Xi-i=  1 , . . . , N ) ,

we can think of A  as being the random variable associated with a parent vertex, de

termined by the independent A* associated with its offspring and some random noise £ 

associated with the parent. This extends in an obvious way to earlier generations of the 

tree via iterating (3.2) and we call the resulting structure a recursive tree process. This 

leads to the idea of a “tree-indexed” solution to the RDE (3.2). We say that (A U\u € T) 

is a tree-indexed solution to the RDE (3.2) if

1. for every n, the random variables (X u; |u| =  n) are independent and identically 

distributed, having as distribution a fixed point of the induced map T;

2. for every u G T, X u =  #(£„, A ui; i — 1,..., Nu), where (£u, Nu) has the distribution u 

from the previous section, independently as u varies;

3. for every n, the random variables (A u; |u| =  n) and (£u, Nu] \u\ < n — 1) are inde

pendent.
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Notice that we can also talk about tree-indexed solutions down to level n of the tree. Let

F„ =  { «  6 T : |tt| <  n }. Then we say that (X u;u E Tn) is a tree-indexed solution to level 

n if

1. for 1 <  m <  n, the random variables (Xu; |u| =  m) are independent and identically 

distributed, having as distribution a fixed point of the induced map T ;

2. for every u E Tn,X u =  g(£u,X ui;i =  1 ,...,NU), where (^U,NU) has the distribution 

v from the previous section, independently as u varies;

3. for every 1 <  m < n, the random variables (Xu\ |u| =  m) and (£„, Nu; \u\ < m  — 1) 

are independent.

Tree-indexed solutions will not be investigated in this chapter but will play an important 

role in Chapters 4 and 5. Nevertheless, the natural tree structure is particularly convenient 

as an indexing set for iterating and will prove to be a useful tool in some of the proofs of 

this chapter.

3.2.2 Solutions, invariant measures and basins of attraction

By invariant measure for (or solution to) the RDE (3.2) we mean a solution to the cor

responding distributional equation (3.1) or a fixed point of the induced map T. We now 

make precise the idea of a basin of attraction of a solution to the RDE (3.2). For a 

solution p to the RDE (3.2), we say that a distribution u is in the basin of attraction of p 

if Tn(u) converges weakly to p (strictly speaking we mean in the weak* sense), by which 

we mean that

for every bounded continuous function on A (which we assume is endowed with the struc

ture of a metric space). This is, of course, equivalent to saying that the iterates x[n\u)
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converge in distribution to a random variable with distribution //.

3.3 Some examples of RDEs

3.3.1 Stable laws

A well known problem is that of finding independent, identically distributed random 

variables X\, X 2 on R such that the random variable

X  =  ~^=(Xi +  X 2)

has the same distribution as X i , X 2 or belongs to the same class of distribution. The 

non-trivial solutions in this case are centred normal distributions. The trivial solution 

is just the unit mass at zero. We could of course regard this as an RDE. We have, by 

iteration,
v (n) X[0) +  ... +  X ^
Xi ~  2 f

so that if the x j 0̂ have finite mean m and finite positive variance a2, then X -71'1 is asymp

totically Normal with mean \Jnm and variance a2. It follows that any distribution with 

mean 0 and variance a2 is in the basin of attraction of the normal solution with mean 0 

and variance a2.

3.3.2 Population size of a Galton-Watson process

Let Z be the total population of a Galton-Watson branching process with offspring dis

tribution N . Then it is easily seen that Z satisfies the RDE

N

(3.3) Z =  1 +  z i-
1=1
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Writing H for the probability generating function of TV, the existence of an invariant 

distribution for this RDE is equivalent to finding a generating function G such that

G(s) =  sH(G(s)), s e  [-1 ,1 ].

In simple cases this provides a practical means of obtaining the solution (indeed we will 

make use of this type of argument in Chapter 5). For example, if TV takes value 2 with 

probability p and value 0 with probability q =  1 — p, then G satisfies a quadratic:

psG(s)2 -  G(s) +  q =  0,

from which we are able (with a little analysis) to obtain G. When E[TV] <  1 and P(TV =  

1) < 1, it can be shown that the total population size of a Galton-Watson branching 

process with offspring distribution TV is the unique solution to the RDE (3.3). See [1]

3.3.3 Smoothing transformations

Recall that the martingale An from the previous chapters satisfies the equation

A . - V . + C . ) ,

where A'n, A" are independent copies of A„ and

A0 = 1 ( - ) ia/2.
\/4pq P

Thus one solution to the RDE

(3.4) X  =  - ^ = ( ^ / 2(X1+ X 2),
y/ïëpq PJ
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where £ takes value 1 with probability p and value —1 with probability q =  1 — p, is the 

law of the martingale limit A^. (3.4) is an example of a linear RDE. Linear RDEs are of 

the form

(3.5) *  =
i

The induced map T corresponding to the process of obtaining a random variable X  via

(3.5) is sometimes referred to as a “smoothing transformation” since X  is a weighted 

average of the A*. This type of RDE has been studied extensively in [1], [5], [38] and 

there are fairly comprehensive results concerning the existence and uniqueness of invariant 

distributions and basins of attraction for these distributions. We will study the RDE (3.4) 

in more detail and summarise some of the important aspects of this type of RDE in a 

later section on linear RDEs.

3.4 Tree-indexed recursions

Recall from Chapter 2 the independent Bern(p) individual types (£u;u G T) on { — 1, l }7 

and the corresponding family types {rju]U G T), where, for u G T,

Vu £u£uo£ul-

In this chapter we will be interested in the conditional probability

P0 :=  P(& =  u G T).

Of course when pq <  1/16, the (completions of the) cr-algebras generated by the random 

variables (£ «;«  G T ) and (r/u; u G T) are the same and hence pg will be, almost surely,
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m  =  i)-

T heorem  8. Let pq >  1/16. Define

Pu =  P(£u =  l\Vv',v e  Tu), 

where Tu is the sub-tree rooted at u. Let

be the associated “odds ratio", which is well defined since pu 6 (0,1) almost surely. Then 

the su satisfy the recursion

su =  ^ (  ̂ Su0,Sm1 
Q su o +

Proof. We consider

P ( £ 0  =  l k / 0  =  l ,V u  =  a u ; 1 <  |u |  <  n ) ,

where au € { — 1,1}. That is, we begin by considering the probability of the root having 

type one, conditional on the family types to level n of the tree and on the family type at 

root being 1 (later we will do the same calculation conditional on the family type at root 

being —1). For ease of notation, we will write this probability as N/D, where

N  =  P(& =  l,r /0 =  1, 77„ =  au] 1 <  \u\ < n)

(the numerator) and

D =  P(t70 =  1, rju =  au] 1 <  |u| <  n)
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(the denominator). We have £0 =  770 =  1 => £0 =  £1 =  1 ° r £0 =  £1 =  — 1 so that 

N  = P((& =  1) n (& =  1) n &  =  1) n p | (Vu = au))
1 < u < n

+P((&  =  1) n ( 6  =  - 1 )  n (& =  - 1 )  n p | {vu = au)).
1 < u < n

We now re-write this in order to emphasise independence between various terms. Recall 

the notation

Tl =  {u e  T  : u <  0}, Tr =  {u e  T : u <  1}

for vertices to the left and right of the root. We will specialise this notation for our 

purposes by writing

T£ =  {u  € T : u <  0,1 <  |u| < n }, Tr =  {u € T : u <  1,1 <  |tt| <  n}.

Then

N  = P ( ( 6  =  1) n [(& =  1) n p | fa. =  a«)] n [(& =  1) n p | =  att)])
ueT£ U€T%

+ p ((C0 = 1) n [(Co = - 1 )  n P l (Vu = au)] n [(& =  - l )  n p | fa, =  a«)]).
u€T£ ueT%

By independence, we have then that

-  = P((Co = 1) n p) f a  = au))P((Ci =  1) n p |  f a  = au))
^ u€T£ ueT%

+P((Co =  - 1 )  n p | f a  =  au))p ( ( 6  =  - 1 )  n p | f a  =  au)).
u€T£ u€Tr
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Now, the denominator D is given by D =  N +  N', where

N' = P((£o =  - l )  n (t?0 =  i ) n f |  (Vu = au)).
l< u < n

By an argument analogous to that given above, we have

— = P((& = -1) n f l  (Vu =  flu))P ( ( 6  = 1) n f l  (Vu =  a u ))
^  u e T £  u <eT%

+P((£o =  ^ 0  u =  a«))P ((£ l =  — 1) ^ P'1 (Wu =  au))-
u<ET£ u e T £

We now divide both numerator N and denominator D of our conditional probability by 

F(r]u — au; u G T£)F(r]u =  au]u G Tr) to obtain the following expressions respectively:

(3.6) P(£o =  MVu =  au; u G T^)P(^ =  l\rju =  au; u G T£)

+  P(£o — l\Vu — du'iu € T£)P(£i — 1|î7u — a«; u G 7^),

and

(3.6) +  F{to =  l\Vu =  au-,ueTÏ)Ÿ{Zï =  -l\r]u =  au-,ueTZ)  

+  P ( £ o  =  — 1|Vu =  o,u',u G T l )P ( £ i =  1|r]u =  au] u G 7 / ) ) -  

Now, for u G T, |it| <  n , let

?Z =  p (£« =  l \Vv] M < n).

We have then

_________________ N_________________
P(?7« =  au] u e  T £ )F (riu =  au; u G Tg) p (pSp î  +  ( i - P o) ( i - p î ))
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and

_______________ _D________________
{̂Pu =  au\ u7^)P (tju =  au; u G T^) p(pSpî+(i - p5)(i - pî))+?(pSi(i - p5)+pS(i - pî))

for those points a; such that

770(0») =  l,??u(w) =  au, 1 <  |it| <  n.

Since the au are arbitrary these hold as equalities between random variables on the event 

{770 =  1}. Hence on the event {770 =  1},

(3.7) vn =  -  =  ______________ P(pgP? +  ( l - P o ) ( l - P ? ) ) _______________
0 D v{VoVi +  (1 - P o X 1 “ Pi)) +  <7(P?(! -PÔ) +  Po(1 ~  P i)) '

By mimicking the arguments above we find that, on the event {770 =  — 1},

73 ox „ =  ______________ P(Pi(l -Po) +Pp(l -P " ) ) ______________
P® p(p?( 1 -  Po) +  Po(1 *  Pi)) +  QÍPoPi +  (1 “  Po)(! -  P i)) ’

Now, the sequence (p|J)n is a uniformly integrable martingale with respect to the cr-algebra 

generated by the family types to level n of the tree and hence we have, almost surely,

P0 P0, n 00,

justifying the above expressions in the limit as 71 —» 00. That is, 

(3.9) p0 =  Pi 1(770 =  1) +  P21(770 =  - 1 )  a-s;

where
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(3.10) ______________p(PoPi +  (1 ~ P o)(l -  Pi))______________
PiPoPi +  (1 - p o ) ( l  -  Pi)) +  9(pi(l ~Po) +  Po(l -  Pi))

and

(3.11) ______________p (p i(l ~Po) +  Po(l -  Pi))______________
p (p i ( i - p o )  + po( i -  Pi)) +  g(poPi +  ( i — po) ( i — P i)) ‘

Now, we want to write p0 in terms of

S0 P0
1 -P 0

and so we need to make sure that p$ E  (0,1) almost surely, else s0 will not be well defined. 

Let

a =  P(p0 =  0), /3 =  P(p0 =  l).

By considering (3.10) and (3.9) we see that, on the event {770 =  1}, P0 =  0 if and only if 

Po =  0,pj =  1 or po =  1, pi =  0. Since P0,Po,Pi all have the same distribution and po,Pi 

are independent, this gives

P(p0 =  l|p0 =  1) =  2 otp.

Similarly, by considering (3.11) and (3.9), we see that, on the event {p0 =  —1}, p0 =  0 if 

and only if p0 =  p\ =  0 or p0 =  pi =  1. Hence

P(P0 - O|770 =  -  1) =  a2 +  (32.

Multiplying these conditional probabilities by the probabilities of the events {p© =  1} and 

{P0 =  —1} and summing gives us P (pa =  0):
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(3.12) a =  (p3 +  3pq2)2af3 +  (q3 +  3 p2q)(a2 +  (32).

It is easily seen that, on the event {770 =  1}, p® =  1 if and only if p0 =  px = 0  or 

Po =  Pi =  1 and that, on the event {r/0 =  —1}, p0 =  1 if and only if p0 =  0,pi =  1 or 

Po =  l,p i =  0. Arguing along the same lines as before, this gives

(3.13) (3 =  (p3 +  3 pq2)(a2 +  /32) +  (p3 +  2,p2q)2af3.

Adding (3.12) and (3.13) gives

a +  ¡3 =  (a +  /3)2(p +  q f  =  (a +  (3)2

so that a +  (3 =  0 or 1. If a 4- ft =  0, it follows that a =  (3 — 0. If a +  (3 =  1, P0 is 

concentrated on {0 ,1 }. In this case, since P0 has mean p, it follows that P0 =  1(E) almost 

surely, where P(E) =  p. Hence 1(^0 =  1) is measurable with respect to the completion of 

a(Vu',u € T). From the work of Chapter 2 we know that when pq <  1/16, this is indeed 

the case but that when pq > 1/16, this fails to be true. Hence we must have P0 € (0,1) 

when pq >  1/16. Writing P0 in terms of s0 we have then

P / l  +  SoSi, so +  «1 , ^
l  +  S0Sl

or, equivalently,

se =
q So +  Si

Notice that there is nothing special about the root in these arguments. The same applies
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to any arbitrary vertex u 6 T:

(3.14) Su _  P^l +
Q s u0 +  s u l

□

Rem ark 1. The expression for su can be extended to the case pq <  1/16 by interpreting 

it suitably at infinity.

The problem with equation (3.14) is the following. We would like to regard the equa

tion as an RDE for the unknown distribution but the fact that r)u depends on suo and 

makes life difficult. We would like, therefore, to re-write this equation in terms of 

independent random variables. This will be our next task.

T h eorem  9. Define tree-indexed random variables (tu,u  G T) by tu =  s~^u. Then the tu 

satisfy the recursion

(3.15) ( q \£u “̂0 ûi
P 1 +  tuotui ’

where the random variables on the right hand side are independent.

Proof. This is simply a matter of making the appropriate substitutions in the eight pos

sible cases for the values of (£«, fu o , f u i ) '

(1, 1, 1), (1, 1, - 1), (1, - 1, - 1), ( - 1, - 1, - 1), ( - 1, - 1, 1), ( - 1, 1, 1), (1, - 1, 1), ( - 1, 1, - 1).

We make the calculation in two of the cases to illustrate the idea. For (1,1,1), we have 

T]u =  1 so that
1 = p i± à à  
tu q Ù + ¿7

87



which gives
Q tuo +  tui 
P 1 +  tuotui

For (—1, —1, —1) we have qu =  — 1 so that

 ̂ _ P /1 “h tuotul \_i
u ~ q [ tu0 +  tul j

_  P ¿«0 +  tul
q i + tUQtui

Indeed it is easily verified that we end up with a multiplicative factor of  ̂ whenever qu =  1 

and a factor of  ̂ whenever qu =  — 1. □

At this stage it is natural to make a summary - based on the results of Chapter 2 - 

of the results we know to be true for the RDE corresponding to (3.15). That is, for the 

RDE on [0, oo) given by

(3.16) * - 0 (
Xi +  X 2

1 +  X 1X 21

where £ takes value 1 with probability p and value —1 with probability q =  1 — p.

Theorem 10. Let Sx denote the point mass at x given by

SX(A) =
1

0

x e  A, 

otherwise.

The degenerate solution ¿0 is a solution to the RDE (3.16) for all values of p. In the 

case pq >  1/16, there exists a non-trivial solution whose distribution is that of t .̂ Let 

v be the probability measure p8i +  q8e . Then in the case pq <  1/16, u is in the basin 

of attraction of the degenerate solution while in the case pq > 1/16, v is in the basin of 

attraction of the non-trivial solution.
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Proof. We know that the distribution of ¿0 is a solution to the RDE (3.16). In the case 

pq <  1/16 we have p® =  l(£© =  1) almost surely. Hence «0 =  takes value 0 with 

probability q and value oc with probability p and therefore t® =  0 almost surely. On the 

other hand we know from Chapter 2 that when pq >  1/16, p® has a non-trivial distribu

tion. It follows that the same is true for s® and therefore t®.

Let t" =  Then, since p® —> p® almost surely, we have t® —> t® almost surely,

where the distribution of t® is just Tn{v) for a suitable choice of v. Since t® corresponds 

to knowing the family types down to level n of the tree, we may obtain it by inserting 

conditional probabilities in level n of the tree and then iterating to obtain t®. More pre

cisely, in level n of the tree we insert at each vertex the conditional probability of a type 

one given just the family type at that vertex. To make life easier, we can start one level 

below so that there are no family types on which to condition. Let w be a vertex in 

this level. Then the probability that £w =  1 without conditioning on any family types is 

P(£u; =  1) =  p. The associated odds ratio is then sw =   ̂ so that tw =  if £w =  — 1 and 

tw =  2 if tw =  1. Hence the distribution of tw is pdg +  qSz. Now, since i« —> t® almost 

surely, we have t® —> t® in distribution. It follows then that v is in the basin of attraction 

of the solution corresponding to the law of t®, which is trivial/non-trivial depending on 

whether pq <  1/16 or pq >  1/16. □

3.5 A study of the special case p — 1/2

The case p =  1/2, in which the “ (p)iu” term disappears, is relatively straightforward and 

we are able to give a complete classification of the behaviour of the RDE (3.16). In this
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case the RDE reads

(3.17) Xi +  Xi 
1 +  X 1X 2

The following theorem collects together all of the results we will obtain for the RDE.

Theorem 11. The RDE (3.17) has only two solutions, one being ¿{0}, the unit mass at 

0, and the other being ¿p j, the unit mass at 1. Of the two it is ¿{1} which is attracting, 

with basin of attraction all distributions on [0, 00) except i{o}-

To prove the theorem we need several intermediate results.

Lemma 15. Let c >  1 be a constant. Let X  be a random variable whose law is a solution 

of the RDE (3.17). Then F(X  G [l/c ,c ]) G {0 ,1 }.

Proof. Suppose that we start in some arbitrary level of the tree with independent copies 

of some random variable Y . Recall the notation Y^n\u) for a random variable with 

distribution Tn(u), obtained by applying the RDE n times to obtain the corresponding 

random variables n levels above where we started. Throughout this proof we will use the 

abbreviated notation Yn, Yf  to denote independent random variables with distribution 

Tn(i/), where we have suppressed the dependence on the arbitrary distribution v , so that, 

in particular, Y0 =  Y . Consider now the level sets of the function

x + y
1 +  xy

or, equivalently, the graph
x +  y
1 +  xy

whose equation is
c — x 
1 — cx
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Now,
x + y
1 + xy

> c

provided

y > c — x 
1 — cx

for x < 1/c and

y < c  — X  

1 — cx

for x  >  1/c. Formally, the regions satisfying these inequalities are given by

A =  {(x,y)  e  [0, oo)2 : x < l/c,y > ^ — — }, B =  {(x,y)  e  [0,o o )2 : x > l/c,y < j — — }.1 — cx 1 — cx

Let C  and D be the regions

C =  { (x,y)  e  [0,oo)2 : x < 1 /c ,2/ >  c }, D =  {(x,y)  E [0,oo)2 : x > c,y < 1 /c}.

Then we have

and hence

A U B C C U D

p (r n+1 >  c) =  P((yn, y; ) e a u b ) <  p ( ( r „ ,r n') e c u d ) =  2P(yn > c)P(yn' <  i /c ) .

We now obtain a similar estimate for P(Vrn+i < 1/c). Consider the graph

x +  y 1 
1 +  xy c ’
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whose equation is

In this case,

provided

for x < c and

for x > c. Now,

x
1 -  £C

x +  y 1
1 +  xy c

V <
x

1 +  Ĉ

y > i z f
1 -  £C

{(x , y) G [0, oo)2 : x < c, y < Q {(®, y) e  [0, oo)2 : x, y <  1 /c}

and
x.

{(x ,y )  G [0, oo)2 : x > c , y >  f — C {(x ,y )  G [0,oo)2 : x ,y  >  c}
1 +

Hence

p (yn+1 <  i /c )  <  p (r „  >  c)2 +  p (K  <  i / c ) 2.

Since Yn, have the same distribution, we can write the above as a system of inequalities 

for

We have

an =  P (y „ > c ) ,  bn =  P (y„ <  1/c).

®n+l — n̂+1 — b  bn,
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so that, by adding the sequences,

® n + 1 ^n +1  ^  (®n "b  ^ n ) •

Hence an +  bn —> 0 provided a0 +  fro < 1, that is, provided P(Y > c) +  P(Y < 1/c) <  1. 

Under these circumstances, it follows that

P(Y„ >  c) -  0, P(Yn < 1/c) 0.

Hence if the distribution of Y is a solution to the RDE and puts mass on [1/c, c] it must 

in fact be concentrated on [1/c ,c ]. The result now follows. □

Proof, (of first part of Theorem 11) Let X  be a random variable whose distribution is a 

solution to the RDE (3.17). Define a map p  : (1, oo) —> R by

p(c) =  P(X  G [1/c, c]).

Then, by the previous lemma, p  takes only values 0 and 1 and, furthermore, since

1 < c <  d =$■ [1/c, c] C [1 /d,d],

we have

1 <  c <  d =$> ip(c) <  <f(d),

so that p  is (weakly) increasing. It follows then that p  is either identically zero, identically 

one, or else it jumps from zero to one at some value c =  Co > 1. Now, if p =  0 then the 

distribution of X  is concentrated on [0,1/c) U (1/c, oo), which we can shrink to the point 

{0 } by making c arbitrarily large. We conclude that, in this case, the distribution of X  is 

¿{o}. If, on the other hand, p =  1 then we conclude that the distribution of X  is <5{i} since
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we can shrink the interval [1/c , c] to the point { 1}  by taking c to be arbitrarily close to 1. 

The final possibility is that jumps from 0 to 1 at c =  Co- It follows that the distribution 

of X  must be aS[cy +  b6{i /cp for non-negative constants a, b such that a +  b =  1. We need 

to check that this isn’t a solution to the RDE.

Applying the RDE (3.17) to the random variable with distribution ad^} +  M {i/Co}, we 

obtain a random variable with distribution

(a2 +  62)£{2co/(i+cg)} +  2a6<5{Co/2+i/2c0}-

For the distribution of X  to be a solution to the RDE we would have to have

(3.18)
2c0 _  I co

1 +  Co ] i

both of which force Co =  1 so that X  has distribution ¿p j as before. This completes the 

proof. □

Proof, (second part of Theorem 11) We assume that p 7̂  5{i} since this case is trivial. 

Under the assumption of the theorem we also have that p ^  ¿{0} and so we may deduce 

that there exists a constant Co > 1 such that p puts mass on the interval [ l /c 0,Co]. Now, 

by the previous lemma, as we iterate p, the iterates T ” (p) put more and more mass on 

this interval and hence T(p) will place even more mass on [l/co,Co]. It follows then that 

there exists a c\ <  Co such that T (p) puts mass on [l/ci,C i] (notice that we cannot have 

Ci =  Co because this would mean that p is concentrated on Co, 1/co which, as we saw, 

forces Co =  1). Applying the same argument, we deduce that there exists a C2 <  Ci such 

that T 2(p) puts mass on [ l /c 2, C2] and so on. In this way we obtain a decreasing sequence 

of real numbers (cn)„>0, bounded below by one, and with the property that T "(p ) puts
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mass on the interval [ l /c n, c„] for every n. Now, since c„ is decreasing and bounded below, 

it follows that the sequence has a limit, c. Suppose that c >  1. It would follow then that, 

in the limit as n —> oo, Tn(p) is concentrated on 1/c and c. We saw earlier that this is 

not a solution to the RDE (3.17) when c /  1. We must therefore have c =  1 so that, in 

the limit as n —► oo, Tn(p) puts all of its mass on the singleton {1 }. □

Rem ark 2. Notice that Theorem (11) generalises a result concerning the independence of 

individual and family types in the case p =  1/2. We know (since pq =  1/4 > 1/16/ that 

P0 is not almost surely zero. It follows then from Theorem (11) that, in the case p =  1/2, 

tu — 1 almost surely so that s$ =  1 almost surely and therefore p$ =  1/2 almost surely. 

Thus knowing the family types tell us nothing about the type at root in the special case 

p =  1/2. This is a generalisation of conditioning on only one family type. We have

(3.19) m = 1
p « »  =  1

{ 3 7 ^ ’ w -  1

so that, when p =  1/2,

p (&> =  i M  =  i / 2 a-s■

3.6 Some analysis of the RDE (3.16): the general

case p ^ 1/2

Recall the RDE (3.16):

*  =  <-/
X , + X 2
1 + 7

where £ takes value 1 with probability p and value —1 with probability q =  1 — p. We 

consider throughout solutions which are finite.
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Lem m a 16. Let X  be a non-negative random variable whose distribution is a non-trivial 

solution to the RDE (3.16). Write <j>{x) =  P ( X  >  x) +  P ( X  <  l/x) for the sum of the 

tails of the distribution of X  and let K  =  max(2, 2) >  i. Then, for some a,/3 > 0, (f> is 

bounded by an exponential function:

<j>(x) <  e~ax0

for all x > K .

Proof. We extend the idea of the proof of Lemma 15. Let Y,Yn,Y£ be defined as there 

but in relation to the RDE (3.17). Suppose further that Y has the same distribution as 

X  so that the same is true for Yn, for every n. The idea is to iterate copies of the 

solution in order to understand its behaviour. Consider the equation

K ( ^ L )  =  c, 
v 1 +  xy

where c >  K, or, equivalently,
-& -  x 

V ~  TZT^'
1 K

By the same argument as that of Lemma 15 but with c replaced by

P(T„+i >  c) <  2P(En > c/K)F(Y; < K/c)

and

P(F„+1 <  1/c) <  P(T„ > cK )2 +  P (K  < 1/cK)2.

Now, for simplicity, assume that q > p (we will consider the case p > q in a moment). 

Let K n denote the random variable that takes value K  with probability p and value l/K  

with probability q, independently of Yn, and of each other for different n. We think of Kn
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as being the noise associated with Yn. Then we have

P(yn+1 >c\Kn =  K)P{Kn =  K ) <  2pP{Yn >  c/K)P{Y/ <  K/c),

P (Yn+l > c\Kn =  l/K)P{Kn =  l/K) <  2qP(Yn > cK)P(Y, <  1/cK),

and

P(y»+1 <  l/c| =  /tT)P(/t:„ =  AT) < pP(Yn > cK)2 +  pP(Y; < 1/cK)2,

P(Y„+1 <  l/c\Kn =  l/K)P(Kn =  l/K) < qP(Yn > c/K)2 +  qP(Y/ < K/c)2. 

Adding these probabilities gives

P(Yn+1 >  c)+P(Yn+1 <  l/c) < 2pP(Yn > c/K)P(Yn < K/c)+2qF(Yn > cK)F(Yn < 1/cK)

+pF(Yn >  cK)2 +  pF{Yn < 1/cK)2 

+qP{Yn > c/K)2 +  qP(Yn < K/c)2.

Remembering that Yn has the same distribution as X , we can write

0(c) <  2pP(Yn > c/K)F(Yn < K/c) +  2qP(Yn > cK)F(Yn < 1/cK)

+pP(Yn > cK)2 +  pP(Yn < 1/cK)2 

+qF(Yn > c/K)2 +  qF(Yn <  K/c)2.

Writing everything in terms of 0 we have

0(c) <  pcp(cK)2 +  2{q -  p)P(Y„ > cK)F(Yn < 1/cK)
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+qHc/K)2 -  2(q -  p)P(Yn >  c/K)P(Yn < K/c).

It follows now, since q > p, c, K  > 1 and c/K >  1, that

(3.20) 0(c) <  pcf){cK)2 +  qcf)(c/K)2.

It is easily seen that if p > q then the same is true but with p and q interchanged:

(3.21) 0(c) <  qcp(cK)2 +  pcf)(c/K)2.

Now, let f m =  (¡)(Km) so that (fm)m>l is a decreasing sequence. Then, using (3.20),

0(/f” ) < v<KKm+' f  + = v i ln  + q f l- 1

£ p f l -1 + q f l -1 = f l - v

The same is clearly true if we use (3.21). Inductively,

fm < f f2m

but it may be the case that f\ =  1 in which case this bound is useless. We have already 

seen that the distribution of X  isn’t concentrated on the two points {0 } and {oo } (we 

have assumed in particular that it is not 5{0}) and hence there exists an L >  1 such that 

<fi(KL) <  1. We can write f m in terms of f L in this case:

f < f2m-LJm — J i  i
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where now / ¿ c l .  We write x  =  K m to obtain

<f>(x) <  f i
2 l o g ( * ) / lo g ( J f ) - i ,  Iog(2) / lo g ( / f ) x 2

=  f l =  e

which holds for all m >  1, that is, for log a:/ log K  >  1 or x >  K, where a,/3 > 0 are 

constants. □

Lem m a 17. Any solution to the RDE (3.16) has finite mean.

Proof. We make use of the previous lemma. Let X  be a random variable whose distribu

tion is a solution to the RDE (3.16). Then

poo pK poo
E[X] =  /  P (X  >  X)d\ =  F(X > X)dX +  /  F(X > X)dX 

Jo Jo Jk

pK p o o

< /  d X +  /
Jo Jk

dX+ I e~aXBdX

(by the previous lemma)

FJk
=  K +  I e~aX0dX<oo ,

since a,/3 >  0 . □

In the next section we will combine this with a result about linear RDEs to deduce 

an important fact about the RDE (3.16) in the case pq <  1/16.

3.6.1 Linear approach to the non-linear RDE (3.16): basin of 

attraction of <5{0}

One obvious approach to tackling our more complicated non-linear RDE is to examine 

the linear part of the RDE in the numerator. More precisely, we claim the following.
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Lem m a 18. Consider the linear RDE

(3.22) Y =  ( ^ ( Y i + Y 2),
V

where £ (as usual) takes value 1 with probability p and value — 1 with probability q = 

1 — p. Let Yt(n\u) denote the iterates of a distribution u under (3.22) and x j n\i/) the 

corresponding iterates under (3.16). Suppose that Xf*  ̂ =  Tti0). Then X'f11 (u) < Y^n\u) 

for all n >  1.

Proof. Define maps /  and g by

f (x ,  y ) =  J +  V , g(x,y) =  x  +  y.
1 +  xy

Then f (x,  y) <  g(x, y) for all x, y >  0. Let / "  denote the n-fold composition of /  

with itself and similarly for gn and set / °  =  g° =  c, for c some non-negative constant 

(where to form the composition we consider the mappings f*,g* : K2 —> R 2 given by 

f*(x,v)  =  ( f {x ,y) , f (x ,y) ) ,g*(x ,y)  =  (g{x,y),g(x,y))  and then set f n(x,y ) to be the 

x-coordinate of (f*)n(x, y) and similarly for gn). We have f 1 < g] . Suppose that this 

inequality holds for n =  TV >  1. That is, suppose f N(x,y) < gN(x,y ) for all x, y >  0. 

Then, for any x, y >  0,

f N+1(x,y) =  f ( f N(x,y)) < g { f N{x,y)) < g(gN{x,y )) =  gN+1(x, y).

Hence f n(x,y) < gn(x,y)  for all x,y  >  0 and for all n >  1. The result now follows 

because for any point at which we evaluate x\n\v), Y^n\u), we can apply the above with 

f °  =  X f\ v ) ,g °  — V)(0)(y) , both evaluated at the point in question. □

T heorem  12. Let pq <  1/16. Then the RDE (3.16) has the trivial distribution ¿{o} as 

unique solution. Furthermore, this solution is attracting, with basin of attraction contain
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ing all distributions of finite mean.

Proof. We begin with the case pq < 1/16. Define a mapping U by setting U (u )  to be the 

distribution of

( - ) < «  +  n ) ,
P

where Y\, Y2 are independent with distribution u, independent of f. Then we claim that 

Un (v) converges weakly to <5{0} provided pq <  1/16 and u has finite mean.

Consider the recursive tree process associated with (3.22), that is,

Yu =  {.-)^(Yu0 +  y„i), u e T .
P

We now consider E[Tur] and iterate. We have

EK] = [p(p)r + 9(^)r]E[(V,„ + n , ) 1  < 21p (g- Y  + 

for r e  [0,1], Let

t m = 2  \pfy+<i(\n

Then

T (l /2 )  =  4 v ^ < l

if pq < 1/16. The significance of the value of 1/2 is that it is the unique point in [0,1] 

which minimises T:

T\r) =  2 [p (i f l o g  q-  +  , ( £  Y log H] =  o 
p  p  q q

if and only if r =  1/2 so that

inf T (r) -  T ( l /2 )  =  \Jpq.
r€[0,l]

101



Now, by iterating E[V^2], we conclude that, when pq < 1/16, Yu converges to zero in L1/2, 

provided our initial input random variables are in L1/2. That is, Un(v) tends to a point 

mass at zero provided v € L1/2. Since L1 C L1̂ 2, it now follows that Un(u) converges 

weakly to ¿{0}-

The critical case pq =  1/16, (in which T (l /2 )  =  1 and E[V^2] < E[V^q]) is far more 

delicate and follows from Theorem 1.5 of [38]. We will say more about this when we give 

a precise description of the basin of attraction of 5{0} under linear RDEs. Combining the 

cases pq <  1/16 and pq =  1/16, by the bounding argument (Lemma 18), it now follows 

that, when pq <  1/16, the basin of attraction of the trivial solution 5{o} under the RDE

(3.16) contains all those distributions with finite mean (finite 1/2 mean in fact). It also 

follows that any noil-trivial solution to the RDE (3.16) must have infinite mean, else the 

linear bound established converges in distribution to the trivial solution, forcing the same 

to be true for the RDE (3.16). But we have already proved that any solution to the RDE

(3.16) must have finite mean (Lemma 17). It follows that, in the case pq <  1/16, ¿{0} is

the only solution to the RDE (3.16). □

3.7 More about linear RDEs

Recall from the introduction that by “linear” we mean RDEs of the form

N

x  =  j 2 ^ x i-
i= 1

For the theory we present, the & need not be independent. We state below a theorem 

which brings together the main results concerning the existence and uniqueness of solu

tions to linear RDEs. We assume that N <  oo is non-random for the sake of simplicity. 

See, for example, [1] and [38] for a more general treatment.
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T h eorem  13. (abridged from [1], [38]) Suppose that f t >  0 for 1 < i < N and that 

S i l i  has finite k th moment for some k > 1. Let

t(*) =  E [ £ i f  ].
t=l

Suppose that t(0) > 1 and that infie [0,i] t(x) <  1. Then the RDE

N

x  = 53 6X,
¿=i

has an invariant distribution X  with P (A  =  0) <  1. If t( 1) =  1 and t'( 1) <  0 then the 

same conclusion holds and this solution is unique up to a multiplicative constant in its 

argument. If, in addition, t'(T) <  0, then E[A] <  oo.

As a simple illustrative example, this theorem can be used to deduce facts about the 

linear RDE (3.4) for An. We sketch the details below. Recall that

A„ = y ( t , + a

where

In our case,

Ao _  1
2 ^/Uipq'p

( - ) W2.

t(x) =  2(p(
V/16pq \  p?)*  +  <?( 1\A6pq

= 2Mr / + ^
We have then t(l) =  1 and

so that t'( 1) <  0 provided pq >  1/16. We conclude from the theorem above that the
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RDE (3.4) has a non-trivial solution when pq >  1/16 (when pq =  1/16 we have ¿(1) =  1 

and i '( l )  =  0), which has finite mean when pq > 1/16. This agrees with the uniform 

integrability result of Chapter 2: we know that when pq >  1/16, A„ is uniformly integrable 

and therefore A^ has unit expectation. The above calculation tells us that when pq > 1 /1 6  

there are only two solutions to the RDE - the trivial solution and the non-trivial one 

covered by the theorem; the non-trivial distribution must correspond to the distribution 

of Aoo and so it must have finite mean when pq >  1/16. Notice that this type of calculation 

is very similar to the rth mean calculations carried out both in this chapter and in Chapter 

1. It should come as no surprise then that the function t is also related to the rate function 

I from Chapter 1, illustrating the connection between the ideas.

T heorem  14. (Liu, [38]) Suppose that has finite k th moment for some k > 1

and that t(a ) =  1 and t'(a) <  0 for some a € (0,1). For a distribution v on [0, oo), if

(3.23)
lim ^oo xav(x , oo) =  0,
i • xa v(x,oo) n
f im i —oo - 1(>V j -  =  0 ,

t'(a) < 0 

t'(a) =  0

then Tn(u) converges to ¿{op Furthermore, if the above limits are infinite or take a non

zero finite value then u is not in the basin of attraction of ¿{0}.

It follows almost immediately from the theorem that distributions of finite mean are 

in the basin of attraction of ¿{op for if a distribution v has mean m <  oo, then

u(x, oo) <  — , 
x

x > 0 ,

by Markov’s inequality. Hence

xau(x, oo) <  mxa \
xav(x , oo) 

loga;
mxa 1 
loga;
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both of which tend to 0 as x —» oo since a <  1. The following lemma shows how Theorem 

14 can be applied to obtain a full description of the basin of attraction of ¿{0} under the 

linear RDE. For the linear RDE (3.22), the map t is given by

(3.24) t(x) =  2 (P (| )' +  « (| ) ') -

Notice that this is the same as the map T introduced in the proof of Theorem 12.

Lem m a 19. Let t be as given in (3.24). Then for pq <  1/16, there exists an a €E (0,1) 

such that t(a) =  1 and t'(a) <  0 .

Proof. We know from the proof of Theorem (12) that t'(x) =  0 if and only if x =  1/2 

and that ¿(1/2) =  4y/pq. Hence when pq — 1/16, ¿(1/2) =  1 and ¿'(1/2) =  0. Now, when 

pq <  1/16, the minimum of t moves downwards and hence we have ¿(1/ 2) <  1^ (0) =  2, 

so that there is an ex € (0,1 /2) with ¿(ck) =  1. Recall that

f 'M  =  2(Pd r - ? ( - r )  i ° g - ,p q p

which is easily seen to be less than 0 for x G (0,1/2). □

Hence we are able to apply Theorem (14) to the linear RDE (3.22) to obtain a complete 

description of the basin of attraction of the trivial solution (5{0}- This applies equally to the 

non-linear RDE (3.16): by the bounding arguments, the basin of attraction of the trivial 

solution under the RDE (3.16) also contains of all of the distributions in the corresponding 

basin of attraction under the linear RDE (3.22). As a final remark, notice that the linear 

RDE (3.22) may be obtained from the RDE for A® by setting 6 =  q. It is therefore 

possible to study the RDE (3.22) via the RDE for A®, whose behaviour we understand to 

some extent from Chapter 2. This further illustrates the connection between linear RDEs 

and martingales alluded to earlier.
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3.8 A stable class for the RDE (3.16): the case >

1/16

We understand the RDE (3.16) fairly well in the case pq <  1/16. In the case pq > 1/16 

we know that there exists a non-trivial solution but know very little about it thus far. In 

what follows we identify a class of random variables that is stable under the distributional 

equation corresponding to the RDE (3.16).

To begin with we need to spell out precisely what we mean by “stable” in this con

text. Let C be a class of random variables and f (xi , . . . , xn) a real-valued function of n 

real variables. Then we say that the class C is stable under the distributional equation

X  =  f ( X l, . . . ,Xn)

if, for independent, identically distributed random variables Xi , . . . ,Xn, each with law 

p E C, the law of the random variable

X  =  f ( X u ...,Xn)

also belongs to C.

We return briefly to the simple case p — 1/2 for motivation. In this case, the RDE 

reads

(3.25)
l +  X i^ a ’
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Suppose that X\,X2 are concentrated on two points x,l/x,  where x > 0. Suppose further 

that E[Xj] =  E[X2] =  1. Then X 1, X 2 have distribution

x +  1 +
xSi

x

X + 1

The random variable X,  given by (3.25), can take three possible values:

X\ - X 2 =  x =$• X  =
2x

1 +  x2 ’

X x =  x , X 2  =  -  ( o r  X l  =  - , X 2 =  x ) = > X =
x x  2

X i  = X2 =  -  =* X = - ^ - r
X 1 + 3

2x
1 +  x.2 •

1 +  x2 
2x ’

Notice that the first and third of these possibilities are the same and that the second is 

their reciprocal. The corresponding distribution for X  is therefore

2x
1 +  x2& x 2 +  l

(s+1)2
+

1 + X1

2x
2x

( 1 + x ) 2

and it is easily seen that E[X] =  1. We conclude, therefore, that, in the case p =  1/2, 

the class of distributions with unit expectation that are concentrated on reciprocal non

negative finite points is stable under our RDE.

In the general setting of the RDE (3.16), if the law of X\,X2 is concentrated on re

ciprocal points x, ja for some x >  0, then the law of X  turns out to be concentrated on 

the four points
q 2x p 2x q 1 +  x2 p 1 +  x2
p 1 +  x2 ’ q 1 +  x2 ’ p 2x ’ q 2x
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Notice that although the corresponding distribution isn’t concentrated on two reciprocal 

points (as in the case p =  1/ 2), the first possible value is the reciprocal of the fourth 

and the same is true for the second and third values. This suggests that a “continuous” 

analogue of such distributions may be stable in the general setting. A continuous analogue 

can be formulated in terms of Radon-Nikodym derivatives as follows. For a discrete 

random variable X  concentrated on points x, (x > 0), and having unit expectation, we 

have
P (X  =  x) 1
P (X  =  i )  ~  x

and hence a continuous analogue is a random variable X  on (0, oo), whose law px  satisfies

dp x  
duj_

X

D efinition 1 . We write Q for the class of such random variables. That is,

0  =  { X e A l F ( O , o o ) : ^ - ( s )  =  - } ,
O U i  s

X

where ÀLF(0 , oo) random variables taking values in (0, oo).

Rem ark 3. Notice that

j  tdpx =  J  dpi / x  =  1.
Hence random variables in Ç have unit expectation which is consistent with the discrete 

case.

For later work it will be useful to characterise random variables belonging to Q in 

terms of expectation. We assume that (0, oo) is equipped with the Borel cr-algebra. Let 

/  be a bounded measurable function on (0, oo) and X  £ Ç. Then we have

J  f(t)dpx = J  f(t)/tdpi/x = J  tf(l/t)dpx
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or, equivalently, E[/(X)] = E[X f(l/X)\,  with the expectations being meaningful by 

virtue of /  being bounded. Observe also that if it is the case that

J  f(t)dnx = J  tf(l/t)dfiX

for every bounded measurable function / ,  then X  G Q, since the class of bounded mea

surable functions contains the indicators of the Borel sets on (0, oo). Hence X  E  Q if and 

only if E[f(X)]  =  E[Xf(l/X)\ for every bounded measurable function / .

T h eorem  15. Random variables in Q are stable under the RDE (3.16). More precisely, 

given independent X\,X^ e  Q, the random variable X  given by (3.16) belongs to Q.

Proof. We start by proving that if X, Y  € Q are independent then X Y  € Q. Our first 

observation is that if X, Y  are independent then XYf (\/XY)  and f ( X Y )  are integrable 

for bounded measurable / .  Hence by the expectation property established for random 

variables belonging to Q,

E[XYf( l/XY)}  =  EE[X^f(X/Y)\Y]  =  E[Yf(X/Y)}

=  EE[Yyf (XY)\X]  =  E lf(XY)}.

We now prove that for X, Y  as before,

X  +  Y 
1 +  X Y eg.

Clearly ) is integrable and it follows that f+^y / ( )  is integrable because

X(u)  +  y »
l  + X{u)Y{u)

< X ( lo) +  Y(uj)

for every u> and X  +  Y  is integrable. We have then
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)\Y) +  EE[y

=  E [ f ( - - +- Y )]. u y l +  X Y Ji

The result now follows since € Q. □

3.9 The density approach

Before presenting some conjectural results concerning the RDE (3.16) we look briefly at 

the properties that the pdf of a solution to the RDE (3.16) would have to have. It is 

stressed that we have not and will not prove that a solution has a density relative to 

Lebesgue measure. What follows are some results listing the properties of the density of 

a solution under the assumption that the solution admits a density. Of course we have 

already seen that when pq <  1/16 the only solution is ¿{0j and so this approach is tailored 

to the case pq >  1/16.

Lem m a 20. Let X  be a continuous random variable on [0, oo) with density f x . Let 

Y be a discrete random variable taking positive values y\ and y2 with probabilities a, ¡3 

respectively. Then the random variable X Y  has density g given by
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Proof. We have

P (X r  < x\Y =  Vl)F(Y =  yi) =  aF(VlX  < x) =  aF(X < - )  =  a f n f x (t)dty i Jo

and similarly

P ( X Y  < x\Y =  y2)F(Y  =  y2 ) =  0F(y2X  < x) =  0F(X  < - )  =  /? i *2
2/2 7o

Adding gives

P(AW < x) =  a r l f x (t)dt +  /3 [ V2fx(t)dt.
Jo Jo

Substituting u =  yit in the first integral and u =  y2t in the second gives

P ( X Y < x ) =  f  { - / * ( “ )
Jo y\ y 1 2/2 2/2

□

P rop osition  10 . Suppose that a solution to the RDE (3.16) has density g relative to 

Lebesgue measure. Then g satisfies the integral equation

g(y)g(q y - y x
pxy -  q )l

1 -  y2 
(WL _  1)2 g(y)g{p y - q x  1 - y 2

qxy-pt'i3? -  i )2I dy.

Proof. Let X,  Y be independent random variables on [0 , 00) having density g. Let fx .Y  

be the joint density of X, V.  Let V = X, W  =  so that if lower case letters represent 

values taken by the corresponding upper case random variables, then x =  v and y =

Define

J =
/ dx d& \

dv dv

dx dy
\ dw dw )
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Then, by the change of variables formula, we have

v — w
fv,w(v,w) =  f x p iy , ---------~)\detJ\vw — 1

For us,

and hence

J =
l I Wf- i  \

(vw—l)2

n i-t> 
y  (vw— l )2 J

f w H =  r  f x A v , ± j L ) \ '
J o vw — l [vw

-\dv.
(vw — l )2 '

Now X , Y  are assumed to be independent with common density g and hence this becomes

r ° °  v — w 1 — u2
f w H =  g(v)g{------ ^ )| -  V \dv.

J o v w —l (vw -  l )2

The result now follows by applying the previous lemma with y\ — ^,a =  p, j/2 =  ,̂/3 =  

q. □

Notice that we have already remarked that the density g would also have to satisfy 

the functional equation

(3.26) , \ 0 ( i )
9(*) =  “ J - -x°

It turns out that there is a neat way of obtaining densities satisfying this functional 

relationship. Let g\(t) be a positive function defined on [0,1], Define

9i{t) = t3
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on [1, oo). Then we claim that the density g given by

g{t) =  <
¿ € [ 0 , 1];

t e  [l, oo)

satisfies the functional relationship (3.26), where, if necessary, we scale gi(t) so that

=  1.

As an example, if we take g\{t) =  A > 0, then g2(0  — g\(l/t)/t3 — A /f3, so that, in order 

to be a density, we must have

H f o d t + r ^ d t ) = 1 ,

that is, we must have A =  2/3. Now, the density g defined by

t e  [0, 1];

t E [1, oo)

satisfies (3.26). Notice that it is clear that if g(t) is a density then so too is since

since we have already seen that stable random variables have unit expectation.

3.10 Summary of results and conjectures

We conclude this chapter by summarising what we know to be true for the RDE (3.16) 

and then making some conjectures.
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3.10.1 The case p q  <  1/16

We have proven that the trivial solution <5{0} is the unique solution to the RDE (3.16) 

in this case and we have established that its basin of attraction contains all finite mean 

distributions. We then extended this via the theory given in [38].

3.10.2 The case p q  >  1/16

The trivial distribution <5{0} is still a solution in this case but we know that ¿0 is also 

a solution and that it is non-trivial when pq >  1/16. In particular we have seen that 

in the special case p =  1/2, there are precisely two solutions, the other being <5{i}. We 

conjecture that in the general case pq >  1/16 there are always two solutions with the 

non-trivial one being the distribution of i®. We have also identified distributions in the 

basin of attraction of the non-trivial solution (Theorem 12) and conjecture that it is in 

fact far larger, encompassing essentially all distributions on [0, 00), in keeping with the 

fact that this is so in the case p =  1/ 2.
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Chapter 4

Endogeny

4.1 Introduction

In this chapter we introduce the important concept of endogeny for a tree-indexed solu

tion to an RDE. We then study a particular example (the “noisy veto voter model” ) by 

applying a recent result of Warren in [44] concerning necessary and sufficient conditions 

for endogeny in the context of the binary tree and extend this result to arbitrary branch

ing factor. We conclude the chapter by transforming the noisy veto voter RDE into an 

RDE which is of interest in its own right. This new RDE forms the basis of the work of 

Chapter 5.

4.2 The notion of endogeny

Recall the notion of a recursive distributional equation (RDE) from Chapter 3. There, 

we considered RDEs of the form

(4-1) X  =  g(£i, X i;i =  1 ,...,N ),
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where N  may be random or infinite. Recall also the associated recursive tree process (or 

RTP) in which we think of X  as being a value associated with a vertex in a Galton-Watson 

tree, determined by the values X, associated with its daughter vertices and some noise £ 

associated with the parent. Since N may be infinite it is convenient to embed the random 

tree with offspring distribution N inside a tree with infinite branching factor. Let Too 

denote the infinite tree with infinite branching factor. Then each vertex u £ gives rise 

to an infinite number of daughter vertices, the first Nu of which are “alive” , the remaining 

being “dead” , where Nu is an independent copy of N. By considering the collection of 

live vertices we obtain an embedding of the random tree in the infinite tree. Recall from 

Chapter 3 that Y =  (Yu;u £ Too) is a “tree-indexed” solution to the RDE (4.1) if

1. for every n, the random variables {Yu\\u\ =  n) are independent and identically 

distributed, having as distribution a fixed point of the induced map T;

2. for every u £ Too,^« =  g(€u,^utC =  1 , Nu), where (£u, Nu) has the distribution 

v (see precise setup of RDEs in Chapter 3), independently as u varies;

3. for every n, the random variables (Yu; |it| =  n) and (£u, Nu\ \u\ < n — 1) are inde

pendent.

Notice that these conditions determine the joint law of Y . This means that a tree-indexed 

solution is also stationary in the strong sense, that is, a tree-indexed solution is translation 

invariant with respect to the root (if we consider the collection Yv =  (Yu]u £ (Too),,), 

where (r^ j^  is the sub-tree rooted at v, then Y v has the same distribution as Y  for any 

v £ Too). In this setting it is natural to wonder whether the “solution at root” Y% depends 

only on the initial data. This leads to the idea of “endogeny” , a concept introduced in [1] 

that will play an important role in this chapter and the next.

D efinition 2. We say that a tree-indexed solution Y to the RDE (4-1) is endogenous 

if Y) is measurable with respect to cx(£u, Nu] u £ Too). Writing T for the random tree
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with offspring distribution N , this is equivalent to Y) being measurable with respect to 

v{£u,Nu]u G T). See [lj.

Informally speaking, endogeny means that there is no additional randomness in the 

system, “located at the boundary” . In this sense our concerns are somewhat different from 

before. In Chapter 3 we were interested in identifying solutions to RDEs and making 

statements about uniqueness and basins of attraction and so on. In this chapter and 

the next we will be interested in whether the corresponding tree-indexed solutions are 

endogenous. For the example we study in this chapter the existence of a solution is rather 

trivial and it is the issue of endogeny that is of interest. We may at times use equivalent 

definitions of endogeny according to context. The following lemma justifies this.

Lem m a 21. Let Y =  (Yu;u G Too) be a tree-indexed solution to the RDE (4-1)- Then 

the following are equivalent:

1. Yq> is measurable with respect to cr(£u, Nu; u 6 Too);

2. Yu is measurable with respect to a(fv, Nv;v G Too) for any u G Too/

3. Yu is measurable with respect to cr(Çv, Nv-,v G (Too)«) for any u G Too.

Proof. Clearly both (2) and (3) imply (1). We deduce that (1) implies (3) from the fact 

that Y is strongly stationary (i.e. we think of u as being the root). Finally, it follows 

that (3) implies (2) from the fact that a(Çv,Nv;v G ( r oo)u) Ç cr(Çv,N v;v  G Too) for any 

u G r«,. □

Rem ark 4. Notice that if a tree-indexed solution is endogenous then the property “(Yu\ |«| = 

n) is independent of (£u, Nu\ |n| < n — 1) for every n ” is automatic: for every u G Too, Yu 

is measurable with respect to cr(fv, Nv;v G (Too^) and hence is independent of the and 

Nu in levels n — 1 and above.
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4.3 A simple example

We discuss briefly an example taken from [1]. With notation as in Chapter 3, suppose we 

are working on A =  {0 ,1 }. Define T  : V(A)  —♦ V(A)  by

(4.2) T(fx) =  Bern(l/2)

for all p. Thus Bern(|) is the unique fixed point of T. Now suppose that N =  2 so that 

we are working on the binary tree and that the £u have Bern(|) distribution. Set

g(a,x i ,x 2) =  a.

This induces the map T  given in (4.2). In the associated tree-indexed solution, each X u 

has the Bern(|) distribution and it is easily seen that Yg =  £0 so that endogeny holds.

Consider now the von Neumann random bit extractor. This is a function g* : {(), I }00 —» 

{0 ,1 } which, when applied to a Bern(p) sequence (0 < p < 1), produces a Bern(|) 

sequence. Set

g(a,xi ,x2, ■••)
a, xi =  x2 =  ...;

g*(xi,x2, ...) otherwise.

Take N =  00 so that we are working on the infinite tree and let the £u have the Bern(^) 

distribution. Then the induced T  is given by (4.2). For the associated tree-indexed 

solution in which the X u have the Bern(|) distribution, the £„ are never used and so Yg 

is in fact independent of u(^u,N u-,u E T), causing endogeny to fail. This shows that, in 

general, we cannot tell whether or not endogeny holds by looking at the induced map T 

alone, even when the solution is unique.
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4.4 Noisy veto voter model

Consider the RDE on { — 1, 1} given by

(4.3) X  =  t ( X 1A X 2),

where £ takes value 1 with probability p and value —1 with probability q =  1 — p. We 

wish to investigate endogeny for a tree-indexed solution.

The (Yu;u € T) must satisfy the recursion

where £u is an independent copy of £.

We will show that there exists an invariant measure for the RDE (4.3) and investigate 

a criterion for endogeny established by Warren in [44]. Finally, by conditioning in the 

right way, we will re-write the RDE as one in which the noise is incorporated into the 

underlying branching structure. The study of this RDE will be the subject of Chapter 5.

4.4.1 Existence of an invariant measure for (4.3)

Let /r be a probability measure on { — 1, 1} so that /¿(l) denotes the probability of 1. 

Consider (4.3). There are two ways in which we can have Y  =  1: if Y\ A Y2 =  1 then 

we need £ =  1, whereas if Y\ A Y2 =  — 1, we require £ =  — 1. Hence in order for p to be 

invariant, we need

(4.4) Yu — £u(Eu0 A Yui), u e T ,

M l) =  M l )2 +  9(1 -  M 1)2) = (p -  ç)m( l )2 +  9
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so that p (l)  satisfies the quadratic

(4.5) ( p - q ) p ( l ) 2 - M l )  +  <7 =  0.

Lem m a 22. There exists a unique invariant measure on { — 1,1} for the RDE (4-3).

Proof. We have seen that the probability measure p. is invariant for (4.3) provided it 

satisfies equation (4.5). Let

F( x) =  (p — q)x2 — x +  q.

q < 0 so that F  has at least one root in (0,1).

p - q  +  4 q - 2 ( p  +  q) _  q - p  
4 4 '

Hence F ( l /2 )  <  0 if p >  1/2, F ( l /2 )  =  0 if p =  1/2 and F (l /2 )  > 0 if p <  1/2. It now 

follows from this, and the fact that F  is continuous on [0,1] with F(0) =  q, F ( 1) =  —q, 

that if p <  1/2 then F has a root in (1/2,1) and cannot have one in [0,1/2]; that if 

p =  1/2 then 1/2 is the unique root (so that p(l) =  1/2 is the invariant measure); and 

that if p > 1/2 then F  has a root in [0,1/2) and cannot have one in [1/2,1]. □

4.5 A criterion for endogeny

In this section we state a generalisation of a result of Warren in [44], giving necessary 

and sufficient conditions for endogeny of a tree-indexed solution to an RDE. Consider the 

recursion

Xu cf)(̂ xUQ, X u\, -Xu(d—i)) £u) > w g r^,

Then F(0) =  q > 0 and F (l)  =  p — 1 =  — 

We claim that this is unique. We have

F(l/2) =  q- = ^ - 1-  +  q =
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where the X u take values in a finite space S, the “noise” terms £u take values in a space 

E,Td is the deterministic d-ary tree and where 0 is symmetric in its first d— 1 arguments.

We suppose that the fu are independent with common law v and that there exists a 

measure p which is invariant for the above recursion (i.e. // is a solution of the associated 

RDE). Let uq =  0 ,u i,u 2, ... be an infinite line of descent. For n <  0, define X n =  X u_n.

Then, under the invariant measure p, the law of the sequence (X „ ;n  <  0), which, by the 

symmetry of 0 does not depend on the choice of sequence of vertices chosen, is that of a 

stationary Markov chain. Let P2 be the transition matrix of a Markov chain on S2, given

by

P 2((x i , x '1) , A x A ' ) =  /  /  l ( ^ ( x i , x 2, . . . , x d,z) e  A,<t)(x\,X2 , . . . ,xd,z)  € A')du(z)dp(x2)...dp(x, 
J s je

Let P~ be the restriction of P2 to non-diagonal terms and p the largest eigenvalue of 

the matrix corresponding to P ~. Write Ho for all L2 random variables measurable with 

respect to Xu and /C for the L2 random variables measurable with respect to (£„; u € T^).

Theorem 16. (Generalisation of Theorem 1, [ff]) The tree-indexed solution to the RDE 

associated with

f,u =  0(£uO> £ul> •••> 4u(d—1)> £u)t

corresponding to the invariant measure p, is endogenous if and only if dp < 1. In the 

critical case dp =  1 endogeny holds provided P~ is irreducible and Ho PI /Cx =  {0}.

The theorem above is a simple technical generalisation of Warren’s result. The addi

tional criteria given for endogeny in the critical case are analogous to the conditions under 

which a Galton-Watson branching process with mean one becomes extinct. See [44] for 

further discussion and the technical reasons behind these conditions.

We now apply the theorem to the noisy veto voter model on the binary tree. In this
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setting, the map <f> is given by

HZu > *«0, -̂Cil) £u(Xu0 A x ul)

and the corresponding condition for endogeny is “2p <  1” .

Lemma 23. For the noisy veto voter RDE on the binary tree, P~ is given by

p -  _  (  ^(!)P F{l)q 

v p ( l ) ?  M 1 )P

Proof. With (¡) as given, consider the transition from (—1,1) to (—1,1). Under the equa

tion

(4.6) x — z(x  0 A x i),

the pair (—l,x i )  maps to z (—1 A Xi) =  —z and we therefore require z — 1. Under (4.6), 

and with z =  1, the pair (1, Xi) maps to 1 A x L =  x\. Hence we need X\ =  1. Combining, 

(—1,1) maps to (—1,1) provided X\ =  z =  1, whose probability is /u(l)p. Consider now 

the transition from (—1,1) to (1, —1). As before, (—l,x i )  maps to z (—1 A Xi) =  — z so 

that we require z =  —1. Now, with 2 =  —1, (l,Z i) maps to —(1 A x i) =  —X\ and hence 

we also require X\ =  1. Combining, we require x\ — 1 and z =  — 1, whose probability is 

p ( l )q. It is easily seen that the probability of moving from (1, —1) to (—1,1) is the same 

as that of moving from (—1,1) to (1 ,-1 )  and similarly that the probability of moving 

from (1, —1) to (1, —1) is the same as that of moving from (—1,1) to (—1,1). □

Theorem 17. The solution to the RDE (f.3) is endogenous if and only if p >  1/2.
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Proof. Notice that

1 Mi)p M1)« { Mi)
v Mi)q Mi)p y V 1 J y Ml)P + Ml)9 J v ^  )

so that (}) is a positive eigenvector of P~ with corresponding eigenvalue //,(1). It follows 

by Perron-Probenius theory that p( 1) is the maximal eigenvalue p. The criterion for 

endogeny from the theorem in the non-critical case is therefore 2p(l) <  1 or /i(l)  <  1/2, 

which corresponds to the case p >  1/2 (see the earlier analysis). For the critical case 

p (l) =  p =  1/2, observe firstly that P~ is clearly irreducible. For the second criterion, let 

X  e  Ho n X ± . Then X  =  / ( X 0) for some L2 function /  and E [XY] =  0 for all Y E 1C. 

Taking Y  =  1 E 1C, we deduce that E[X] =  0. Since X 0 takes only values —1 and 1, we 

can write

X  =  o1(Xq =  l) +  6 l(X 0 =  - l )

for constants a and b. In the case p =  1/2 we must have that a +  b =  0 (of course if either 

a =  0 or b — 0 then there is nothing to prove so we assume that a ^  0) so that we can 

re-write X , without loss of generality, as

X  =  1(X 0 =  1) -  1 (X 0 =  -1 ) .

Now, let Y  =  1(£0 =  1) G 1C. Then

E[XY] =  E [l(£0 -  1)(1 (X 0 =  1) -  1(X 0 =  -1 ))]

=  E[2.1(& =  1)(1(X0 =  X 1 =  1) -  1)]

=  2 ((l /2 )3 — 1) =  —1/4,

123



which contradicts the assumption. It follows that Ho H 1C1- =  {0 }. □

4.5.1 An equivalent problem on {0,1}

Consider the RDE on {0 ,1 } given by

(4.7)
*1*2 , £ =  1

1 — X 1X 2 £ =  0

where £ takes value 1 with probability p and value 0 with probability q =  1 — p. It 

is easily seen that there exists an invariant measure p for (4.7) and that it is precisely 

the invariant measure for (4.3) but with “ — 1” re-labelled as “0” . We have derived a 

condition for endogeny for (4.3) (which therefore holds for (4.7) too) but would like to 

gain an understanding of what the solutions actually look like. We claim that studying 

the RDE (4.7) is the same as studying the RDE (4.3).

The endogenous case p >  1/2

Let

£"+1 = E [X u\ U ,  M < n]

and

Eu =  E[Xu|£„;v G Tu\.

Then the sequence (£ " ) „  is a bounded martingale and £ "  —> Eu almost surely for any 

u e T .  In the endogenous case p >  1/2, X u is measurable with respect to a(£v;v € Tu) 

and hence Eu =  X u. We have then a martingale sequence E" which converges to the 

endogenous solution.

We can say a bit more about this martingale sequence. The recursion corresponding
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to (4.7) is

X u =
& =  1 

Zu =  0
(4.8)

which we can re-write as

Xuq X u i ,

1 X uqX u\

X u — £uXuoXu\ +  (1 — £u)(l  — X uqXu\).

It is easily seen that the E” satisfy essentially the same recursion:

K  = SuK^Kr1 +  (1 -  &)(1  -  K v'K i1)

with =  /x( 1) for any u G T. The boundary condition E® =  u{ 1) comes from the fact 

that if we consider the first n levels of the tree and then start iterating one level below 

the boundary then the conditional expectation is just the expectation of X u since there 

is nothing on which to condition.

The non-endogenous case p <  1/2

Consider the recursion (4.8). Suppose now that we distinguish the vertices u € T such 

that £u =  0 (think of them as being coloured red for example) and then remove the part 

of the tree descended from such vertices. In this way, each vertex now has either 0 or 2 

offspring, the probability of the latter being p. The mean number of offspring is hence 2p 

so that in the non-endogenous case p <  1/2 the process dies out almost surely. We can 

therefore start at the boundary of the tree and iterate back up to the root. Notice that 

this applies equally to p =  1/2, the critical value for endogeny. We think of the collection 

of red marks as being a random tree embedded within the binary tree. We see that,
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conditional on £0 =  0, (4.8) becomes (since £u =  1 for the remaining non-red vertices)

* 0 = 1 -  n  *«*
red vertices u

or, for a general vertex u,

X ,
Du

= i - n ^
i=i

where Du denotes an independent copy of the total number of red vertices. This can be 

interpreted in terms of yet another tree, this time with branching factor equal to the total 

number of red vertices in the original tree. The RDE corresponding to this recursion is 

of interest in its own right and will be studied in detail in Chapter 5.

We conclude this section by looking more closely at the total number of red vertices 

D. We obtain an RDE which its distribution satisfies and then derive a formula for its 

generating function. It turns out (Chapter 5) that analysis of the RDE

D

(4.9) X  =  l - l [ X i
1=1

relies heavily on properties of the generating function of D.

The random variable D corresponds to the number of red vertices in the above con

struction. Recall that a vertex u is marked red if =  0. Thus we can think of D as being 

the total number of deaths in a Galton-Watson branching process in which each vertex 

has (independently) either 0 or 2 daughters, the probability of the former being q and the 

latter p =  1 — q. In Chapter 3 we saw an RDE for the total offspring distribution of a 

Galton-Watson process. In the course of the proof of the next theorem we write down a 

similar RDE for the total number of deaths.
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Theorem 18. Consider a Galton-Watson process in which each vertex has either 0 off

spring (with probability q) or 2 offspring (with probability p =  1 — q). Ttien the total 

number of deaths D has generating function G given, when p <  1/2, by

G(s)
1 -  f f l -  Apqs 

2P

Proof. Suppose that we are in the more general setting of a Galton-Watson process with 

offspring distribution M . Then D satisfies

M
D =  A  +  1(M  =  0),

¿=1

where the indicator is present so that, in the case where there are no births, the number 

of deaths is recorded as one, namely that of the root. As in the statement of the theorem, 

G is the generating function of D. Let H be the generating function of M. Then we have

so that

e js ZJi +....+O m + 1(M -0)|W  -  m ] =  < S,

G (s)m,

m — 0 

m >  1

E[E[sDi+ --+Dm+1(m=0)|M -  m]] =  sP(M  =  0) +  G (s)mP(M  = m)
m> 1

=  sF(M =  0) +  H{G(s)) -  P (M  =  0).

Hence

G(s) =  H(G(s)) +  P (M  =  0)(s -  1),
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where for the example we are considering,

H(s) =  q +  ps2.

We have then

pG(s)2 — G(s) + sq =  0. 

Solving, we find that for p <  1/2,

G(s)
1 -  y/l —

2p

□

Rem ark 5. Notice that when p > 1/2 i/iere is positive probability that the process never 

becomes extinct and hence a total count is not possible. Notice also that G(0) =  0, i.e. 

the probability that there are no deaths is 0. When we analyse the RDE (4-9) in Chapter 

5 this will be an integral assumption.
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Chapter 5

An RDE on the unit interval

In this chapter we study the RDE derived from the noisy veto voter model of Chapter 4. 

We give a completely general treatment by considering it as an RDE in its own right.

5.1 Introduction

Let N be a random variable, with probability generating function H , taking values in 

Z + =  {0,1, ...;oo}. It is assumed throughout that H(0) =  0 (i.e. that N is almost surely 

positive). Write ID) for the set of distributions on [0,1]. Recall the following RDE from 

the study of the noisy veto voter model in Chapter 4:

N

(5.i)
i = 1

As we have remarked before in relation to the study of RDEs, a convenient generalisation 

is the so-called “tree-indexed” problem, in which we think of the as being marks as

sociated with a Galton-Watson branching process. Recall also from Chapter 4 the notion 

of endogeny in the context of tree-indexed solutions; a tree-indexed solution is said to be 

endogenous if it is measurable with respect to the underlying noise.
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As in Chapter 4, it is convenient to work on an infinite tree with infinite branching factor 

and regard the random tree with offspring distribution N as being embedded within it. 

We now elucidate this further for our current purposes. An initial ancestor (in level zero), 

which we denote 0, gives rise to a countably infinite number of daughter vertices (which 

form the members of the first generation), each of which gives rise to an infinite number 

of daughters (which form the members of the second generation), and so on. As usual we 

write uj, j  =  0 ,1 ,2 ,..., for the daughters of a vertex u. We write T  for the collection of all 

relatives of the root (i.e. T  =  (J))°=0(Z+)n) an(  ̂ think of it as being partitioned by depth, 

that is, as being composed of levels or generations, in the way described. Associated to 

each vertex u € T  is an independent copy Nu of N, telling us the (random) number of 

offspring produced by u. In this way we think of some vertices as being “alive” (relative to 

0) and others as being “dead” : each vertex u has infinitely many daughters ul, u2, ... 6 T, 

with the vertices ul,u2, ...,uNu being alive and {uj : j  > Nu} dead. We can now write 

our RDE (5.1) as a recursion on the vertices of T  and iterate:

Nu

(5.2) A:u =  l - J j A ui, u e T .
¿=1

The advantage of the embedding now becomes clear: we can talk about the RDE at 

any vertex in the infinite tree (which is mathematically convenient) and yet, because the 

product only runs over the live vertices relative to u, the random tree with branching 

factor N is encoded into the RDE as “noise” .

5.2 The discrete and conditional probability solutions

Lem m a 24. There exists a unique probability measure on {0 ,1 } which is invariant for 

the RDE (5.1).
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Proof. Let X  be a random variable whose distribution is invariant for (5.1). Let a  =  

P(A  =  1). We have then P (X  =  0) =  1 — a  and

P (X j  = 1; i  = 1 , i V) = ^ P ( X j  =  1 - , i = 1 ,...,n\N = n)¥(N =  n)
n

= ^ V P ( i V  = n) = E [ a N],
n

Now, X  =  0 if and only if A , =  1 for i =  1, N  and N >  1. Hence a necessary and 

sufficient condition for invariance is

1 — a =  E[aw] =  H{a).

Now, let

K(x)  :=  H(x) +  x — 1.

Since H is a generating function and H(0) =  0, we have K {0) =  —1 < 0 and K(l)  =  1 > 0 

so that K  is guaranteed to have a zero in (0,1). Notice that this is unique since the 

mapping x * H(x ) +  x is strictly increasing. □

We can now deduce that there exists a tree-indexed solution on { 0 ,1}T to the RDE

(5.1) by virtue of Lemma 6 of [1]. Alternatively this can be argued via the Kolmogorov 

Extension Theorem.

Theorem 19. Let S — (Su\u G T) be a tree-indexed solution on { 0 ,1 }T to our RDE

(5.1) , which we will henceforth refer to as the “discrete solution” (i.e. the Su have the 

invariant distribution on { 0 ,1}). Let Cu =  P(S'U =  l|Af„;v € T). Then C =  (Cu',u € T) 

is also a tree-indexed solution to the RDE (5.1).

Proof. To verify the relationship between the random variables, we have, writing jV =
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(Nu; u e  T ) to ease the notation,

CU = E[1(SU = 1)\N] = E[SU\N]

Nu
= E [ i - n ^ i i v ]

¿=1

Nu
=  1 - E l H  Sui\N]

i—1 
Nu

= i - n M
t=i

Nu
= i ~ n

i= l

by conditional independence. To verify stationarity, let

Cnu =  P ( a  =  H  <  n).

Then the sequence (C'")„>i is a uniformly integrable martingale and so converges almost 

surely to a limit which must be Cu. Now, we can write (7" as

Cu =  1 -  rica =  1 -  ñ(! -  IÍ( ( !  -  ( ^ ) /(Nu)) - ) )  -  a  a.s.,
t= l  i= l  j= 1

where the exponent f (N u) is a function of Nu and p 1 =  E[5U]. Now, (C ";u  € T ) is 

stationary since each C." is an explicit function of Nu, which is itself stationary. Since 

Cu is the (almost sure) limit of a sequence of stationary random variables, it follows that 

C  =  (Cu; u 6 T ) is stationary. Notice that the conditional probabilities solution C is 

automatically endogenous since Cu is a(Nv;v  € T u)-measurable for every u € T  and 

hence (Cu; |u| =  n) is independent of (iVu; \u\ < n — 1) by Lemma 21 of Chapter 4. The
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independence of the collection (Cu; |u| =  n) follows from the fact that the (5U; |u| =  n) 

are independent. □

Rem ark 6. Notice that if S is endogenous then C =  S almost surely so that if S and C 

do not coincide then S cannot be endogenous.

5.3 The moment equation and uniqueness of solu

tions

Much of the work of this chapter relies heavily on the analysis of the following equation.

T h eorem  20. Any solution to the RDE (5.1) must have moments (m „)„>0 satisfying the 

equation

n — 1

(5-3) H(mn) -  (—1 )nmn =  £ ( ? ) ( - l)kmk,
k=0

where mh+ï/n < mn+1 <  mn and mo — 1.

Proof. Let X  be a random variable whose distribution is invariant for the RDE (5.1) and 

write mk =  E [X fe]. Applying the RDE (5.1) once to (1 — X )n we have

N

E[(l -  X ) n] =  E [ ]J X?] =  H(mn).
1=1

On the other hand, by expanding (1 — X ) n we obtain

E[(l -  V ) ” ] =  E [ £ ( J ) ( —1)‘ X ‘ ]
k=0

fc=0

133



so that

H(mn) =  ^ ( 2 ) ( - 1) W
k= 0

The condition mn+1 <  mn follows from the fact that the distribution is on [0,1]. The other 

condition follows from the monotonicity of Lp norms: (E X " )1/” <  (EX ) ^  ̂ ^

5.3.1 Example: the binary tree

As an example, if the random variable N had generating function H(x) =  x  (i.e. N =  2), 

then the moment equation tells us that the first moment mx of an invariant distribution 

for the RDE (5.1) satisfies

m \+m  i — l =  0

so that mi =  (-y/5 -  l) /2 . For the second moment m2 we have

— m2 — (2 — \/5) =  0

so that m2 =  mi or m\ and so on. In fact the two possible moment sequences turn out 

to be m0 =  l ,m „  =  ( \ /5 - l ) /2  for n >  1 or m0 =  l,m i =  (\ /5 - l ) /2 ,m n =  m? for n >  2.

We now state the main result of this chapter.

T h eorem  21. Let S =  (Su;u € T ) and C =  (Cu;u € T ) be, respectively, the discrete 

solution and corresponding conditional probability solution to the RDE (5.1). Let p — 

E[SU] =  E[CU]. Then

1. S is endogenous if and only if H'(pl) <  1;

2. C is the unique endogenous solution;

3. The only invariant distributions for the RDE (5.1) are those of Sq and Cq.
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The proof of the theorem relies on several lemmas. For part (1) we use a generalisation 

of a result of Warren [44] (given in Chapter 4) by first truncating N, and then take limits. 

For parts (2) and (3) we advance our own arguments by making use of the moment 

equation (5.3). The proof of parts (2) and (3) in the case H '(¿z1) <  1 is straightforward 

and given below.

Proof, (of parts (2) and (3) of Theorem 21 in the case // '( /z 1) <  1)

Let (m„)„>o be the moments of an invariant distribution. The moment equation (5.3) 

says that mi is a root of the equation

H{x) +  r =  1.

Since H is increasing this has unique solution x =  /z1 (and therefore any invariant distri

bution will have first moment /z1). For n =  2 :he moment equation says that m2 is a root 

of

(5.4) H(x) — x =  1 — 2m\.

Let m , denote the minimum of the function H(x) -  x. Then H'(m,) =  1 and, since 

# V )  <  1, we have /z1 < m*. Now, /z1 is a root of (5.4) since the discrete solution on 

{0 ,1 } satisfies the recursion and hence its moments must satisfy the moment equation. 

The other possible root m2 is to the right of m, and so greater than /z1 and hence cannot be 

a moment. Hence we must have mi =  m2 =  /z1. We conclude that, under the conditions of 

the theorem, any solution Z  to the RDE (5.1) must satisfy E[Z] =  E [Z2] or, equivalently, 

E[Z(1 -  Z)] =  0 so that Z(1 — Z) =  0 almost surely and thus Z is concentrated on 

{0 ,1 }. □

135



5.3.2 Bounded branching factor

Lem m a 25. Define Nn =  min(n, N) and denote its generating function by Hn. Then 

N n is bounded and

1. N n —> N almost surely;

2. Hn{s) > H(s) for all s 6 [0,1];

3. Hn —> H uniformly on [0,1];

4■ H'n —> H' uniformly on compact subsets of [0,1).

Proof. The first part of the lemma is easily seen by writing

N'1 =  N l(jv<„) +  nl(N>n).

For the second part, note that Nn < N and therefore sNn > sN for s € [0,1]. We have 

then

Hn{s) =  EsNn > E s N =  H{s), s e  [0,1].

For the third property, we have

E [ | 5 ^ - ^ | ] < E [ l (N>n)| s " -^ | ]

<  E [l(JV>n) sup|sn -  s^l]
n

< E(N > n) x const.,

where the constant does not depend on n. Hence

E[|s^n -  s*!] -+ 0
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uniformly. For the uniform convergence of H'n notice that we can differentiate a power 

series term-by-term to obtain another power series which converges inside the radius of 

convergence of the original. We have then

-  N sn~1\] <  E f lp v ^ ln s " -1 -  TVs^“ 1!].

Now note that for s in a compact subset of [0,1) we have s <  1 — e for some e > 0. Hence

|ns""1 -  N sn~1\ < n( 1 -  e)n_1 -+ 0

as n —> oo, giving the desired uniform convergence. □

Lem m a 26. Assume that H'(pl) >  1. Let C " =  P(5U =  l\N£-,u € T ) denote the 

conditional probabilities solution for N n. Let p„ =  E [(C ")fe] denote the corresponding k 

th moment and let pk =  E[Cfc]. Let p2n m denote the root of the (modified) equation for 

the second moment

(5.5) Hn( x ) - x =

to the left of the minimum of Hn(x) — x (i.e. the lesser of the two possible roots). Then 

Tn Tk for k =  1, 2 and p2n m — p2.

Proof. For the case k =  1 consider the graphs of the functions Hn(x) +  x and H(x) +  x. 

We have Hn(x ) >  H(x ) for all x >  0 and for all n > 1 so that p\ is bounded above by 

p1 for every n. Furthermore, since Hn increases to H pointwise on [0, 1], it follows that 

the p\ are increasing. The pln must therefore have a limit, which we will denote p. H is 

continuous and so H(p],) —>• H(p) and, furthermore, since Hn —* H uniformly on compact
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subsets of [0,1), we have //„ ( //* )  —> Hence

1 =  H @ )  +  /x,

so that /x is a root of //(:r ) +  a; =  1. We must therefore have /x — /x1 since this equation 

has only one root.

For the case k =  2 we consider the graphs of Hn(x) — x and H(x) — x. Let /x* be 

the minimum of Hn(x) — x and /x* the minimum of H(x) — x. We first show that /x* —> /x*, 

then that /x2 —> /x2 and finally that /x2 m —» /x2 as min(n, m) —» oo.

Notice first that H'n converges to H' uniformly on compact subsets of [0,1) by Lemma 25, 

so the result follows if we can show that the sequence (/x*) is bounded away from 1. But 

Hln —> /x1 and /x* < /x* so the conclusion follows.

To show that /a2 —> /x2 we argue that /x2 is the only limit point of the sequence (/x2)„>i. 

Notice that, since —> /x1 and /x2 satisfies

Hnitfi) ~  /4  =  1 ~ 2 /4

the only possible limit points of the sequence (/x2)n>! are ¡jl1 and /x2. But /x2 <  /x* —» 

/x* <  /x1, so that in fact the only possible limit point is /x2; the /x2 are bounded and must 

therefore converge to /x2.

We conclude the proof by showing that /x2 is the only limit point of the sequence (/x2 m). 

Notice that because we have assumed that //'(/x  *) >  1, the equation H(x) — x =  1 — 2/x1 

has two roots and, since /x^, both converge to /x1 and Hn converges uniformly to H, it
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therefore follows that the equation Hn(x)—x — 1—/x* —/x* also has two roots for sufficiently 

large m,n. Now, since p}m, filn —» /x1 as min(n, m) —» oo and /x2 TO satisfies (5.5), the only 

possible limit points of the sequence (/x^m)m,n> 1 are A*1 and /x:2■ But /x2 < /x* < /x1 when 

H'{px) >  1 and /x2 m < /x* so that if /x2 m converges, we have lim/x2 m <  lim/u* =  /x* < /x1. 

Hence /x2 is in fact the only limit point. □

Rem ark 7. Notice that the method of the proof can be extended to prove that /x£ —► /xfc 

for any k. For k odd, we consider the graphs of Hn(x) +  x, H(x) +  x and for k even the 

graphs of Hn(x) — x, H(x) —x. For every k > 2 we can apply the argument involving limit 

points to deduce the desired convergence; for k odd this is particularly straightforward as 

there is only one limit point, corresponding to the equation H(x) +  x =  constant having 

only one root.

P rop osition  11. C„ converges to Cu in L2 when FF(p}) >  1.

Proof. Let m > n. Define Em,n =  E[(C™ — C ")2]. Expanding, we obtain

E m , n  = k 'm  + Ahj 2rmn,

where rm<n — EfC^C"]. On the other hand, by applying the RDE (3.2) once, we obtain

X V "  N ™

^ -i[ (n c a -n c s )* i
i= l  t= l

N? K
=  X U A )  +  f t .0 4 )  -  2E (H  C ”  n

t= l  t= l

Since m > n we can bound A?m)„ above and below by truncating after m and n terms 

respectively:

Hm{p2m) +  Hn(p2n) -  2Hm(rmin) < Em<n < Hm(p2m) +  Hn(f i )  ~  2tf„(rm,„).
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Using the upper bound we have

2 //n(rmj„) <  Hm{nm) +  Hn([in) Em,n — -^m(Ahn) +  Hn{fj,n) nm /rn +  2rmn.

The moment equation (5.3) tells us that — //^ =  1 — 2 and that / / „ ( ax2 ) — ¡J?n =

1 — 2 ^ .  Hence

2 Hn(rmn) <  1 — 2fim +  /xm +  1 — 2 nn +  — iim — //„ +  2rmn̂

so that, on simplifying,

Hn(Xm,n) Un,ra Âm Ahr

Recall that, in the case H'{nl) >  1, the equation Hn(x) — x =  1 — — /x* has two

roots, the lesser of which we denoted Let be the other (larger) root. Then

/4,m <  rm,n < lAi,m for a11 m >n and hence lim infm̂ oo rm,n > V? since n2nm -► /i2 by the 

previous lemma.

On the other hand, Holder’s inequality tells us that rmi„ <  and so it follows

that lim su p ,^ ^  rm>n < fi2 since 2 —* /i2 by the previous lemma. Hence rm „ —► /r2 

as n —► oo and

E m ,n  y Ur n  A^m T  A 2 Tm n  —  Â  T  A* 2 ¡1 — 0 ,
m,n—* oo

showing that (C ") is Cauchy in L2. It now follows, by the completeness of L2, that 

C " converges. Since C " is cr(Ar)-measurable, the limit L of the C" must also be cr(N)-
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measurable. To verify that this is the conditional probability solution, notice that

Nn

l ( E ) C %  =  ( l - l [ C ? ) l ( E )
i=1 

Nq

= ( i - n c n i ( B ) ,
i—1

where E =  {Nq, <  n}. As n —> oo, the probability of E tends to 1; furthermore, since 

the C ” converge in L2, they do so in probability. There exists, therefore, a subsequence 

which converges almost surely so that, in the limit,

n 9

Lq =  1 ~Y \L i a.s.
¿=1

Thus L is an endogenous solution to the RDE. It follows that L must be the conditional 

probability solution C. □

T h eorem  22. Consider the RDE

NS
(5.6) X u =

1=1

Then, by Lemma 24, there exists an invariant probability measure on {0 ,1 } for (5.6). Let 

p}n denote the probability of a 1 under this invariant measure. Then the corresponding 

tree-indexed solution is endogenous if and only if H'n{p}n) <  1.

Proof. Recall Theorem 16 from Chapter 4 and the associated setup. Let N* =  ess sup Nn < 

oo be a deterministic bound for Nn. We can then think of the random tree with branching 

factor N n as being embedded in an N*-ary tree. Each vertex has N* daughter vertices, 

with a uniformly chosen random subset of size Nn being “alive” (the remaining being
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dead” ). In this context our RDE reads

x  =  i -  i i  X u.
live u

We now need to compute the transition probabilities required for Theorem 16. Consider 

first the transition from (0,1) to (1,0). The first coordinate automatically maps to 1 and 

the second maps to 0 provided all of the inputs not on the distinguished line of descent are 

equal to 1. The conditional probability of the vertex on the distinguished line of descent 

being alive is Nn/N* since there are N* vertices, of which Nn are alive. The probability 

of the remaining Nn — 1 vertices each taking value 1 is ( / i * )^ “ 1 and so the probability 

of moving from (0,1) to (1,0), conditional on Nn, is just

l (N n >  1)
1 \N n - 1N”

N*

Taking expectation, the required probability is

E[1(7V" > 1) ( K )
l \ N n- 1Nn,

N*
E[l(Nn >  l ) ^ " ^ ) ^ " - 1] 

N~*
H’M )

N*

The probability of moving from (1,0) to (0,1) is the same as that from (0,1) to (1,0) by 

symmetry. Hence P~ is given by

l  o H'M
p ~  =  N*

n\  N* u

whose largest eigenvalue p is . By Theorem 16, the criterion for endogeny is

N*p <  1, i.e. H'n(p}n) < 1, provided that, in the critical case H'n(p}n) =  1, we verify 

the stated non-degeneracy conditions.
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It is easily seen that P~ is irreducible. For the other criterion, let X  E  Ho fl /C  ̂ so 

that X  =  / ( X 0) for some L2 function /  and E[XT] =  0 for all Y E JC. Taking Y =  1, we 

obtain E[X] =  0. Writing X  in the form

X  — al(y\"0 =  1) +  61(X0 =  0), 

where a, b are constants, we obtain

X  =  a l (X 9 =  l ) - - ^ T l ( X 9 =  0).-f /X«Vh

For convenience we will scale by taking a =  1 (we assume that 1 ^ 0 ) :

X  =  l{Xq> =  1) — — ¡-1(X0 =  0). 
 ̂ Mn

Now, take Y — l(iV0 =  1) E  /C. Then

E[AT] =  E[l(iV0 =  1 ){1 (X 0 =  1) -  =  0)}]
-L

Ml=  E[1 (JV0 =  l ) { l ( X i  =  0) -  =  !)>]
1 Mn

=  p(iv =  i ) [ i - ^ -  (/x")2 i
1 — Mn

=  * ....2/' " P (iV =  1).
1 -M n

Now, by the strict convexity of Hn, we have

Hn{ 1/2) <  +  =  ! / 2

so that Hn( 1/2) +  1/2 < 1 and therefore /i* >  1/2. Hence 1 — 2 <  0 and E[AT] < 0.
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This contradicts the assumption that X  € Hq D AA. □

Proof, (of remainder of Theorem 21) We begin by proving part (1) of the theorem. We 

have already proved that if H'(/r1) <  1 then the distribution of S coincides with that of C. 

Since C is endogenous it follows that S is also endogenous. For the reverse implication, 

we prove that ) >  1 implies S is not endogenous.

By Theorem 22 we know that the RDE (5.6) has two invariant distributions if and only 

if H'n(nln) >  1. Furthermore we know that C„ converges to Cu in L2 when > 1

and hence /rj; —-» ¡f2 ^  /r1 so that S and C have different second moments. It now follows 

that S is not endogenous since if S does not have the same distribution as C it cannot 

be endogenous.

It remains to prove parts (2) and (3) of Theorem 21 in the case > 1. We ar

gue that any solution X  that doesn’t have the singular distribution on {0, 1} must be 

the conditional probabilities solution. Our strategy is to show (via the moment equation 

(5.3)) that the moments of X  are equal to those of C. We have already shown that the first 

moment of any stationary distribution for the RDE (5.1) is /A  For the second moment, 

we consider the moment equation (5.3) with n =  2. The equation H(x) — x  =  1 — 2mi has 

two possible roots. Since S is not endogenous (by part (1) of the theorem), the second 

moment of C cannot be /A  Hence by assumption the second moment of X  must be equal 

to the second moment of C. The third moment of X  is a root of

H(x) +  x =  1 — 3/i1 +  3 nrff.

Again, this has at most one root and this has to be the third moment of C. Similarly, the
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fourth moment is a root of

H(x) — x — 1 — 4/r1 +  6m,2 — 4m% .

Notice that because H'(p}) >  1 we must have p} to the right of m*, the minimum of the 

function H(x) — x. Since the equation H(x) — x =  1 — 2pi has roots p1 and the second 

moment of C , with H'(px) >  1, it follows that the second moment of C is to the left of 

m*. The fourth moment must also therefore be to the left of m* and for this reason we 

can discount the greater of the two possible roots. The other root (the lesser of the two) 

must be the fourth moment of C . We can now extend these arguments to cover all odd 

and even n and conclude that the moments of X  in the case H'(px) >  1 are equal to those 

of C. Since [0,1] is bounded, this sequence of moments determines a unique distribution 

which is therefore that of C. [15] □

5.4 Basins of attraction

In the preceding section we showed that the endogenous solution corresponding to a 

bounded approximation of N converges in distribution to the endogenous solution corre

sponding to N . Now we consider the “basin of attraction” of the endogenous solution. 

That is, we ask for what initial distributions does the corresponding “solution at root” 

Xq, converge (in some sense) to the endogenous solution.

D efinition 3. Let q be the law of the endogenous solution. Suppose that we insert in

dependent, identically distributed random variables with law u at level n of the tree and 

apply the RDE to obtain the corresponding solution X™(v) (with law Tn~\u\v)) at vertex 

u. Then we define the basin of attraction B of the endogenous solution to be

B =  {u € B :T n(u) -►weak* q},
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which is, of course, equivalent to the set of distributions v for which X™(v) converges in 

law to the endogenous solution Cu.

5.4.1 The unstable case H \p } )  >  1

Lem m a 27. Suppose that v has mean p1 and that / / ' ( p 1) >  1. Then

1. u e  B;

2. X*{y)  — Cu, the endogenous solution, for any u satisfying (1) other than the 

singular measure on {0 ,1 }.

Proof. Let Ek =  E [X "(^ )2], where k =  n — |it|, and let rk =  E [CuXlf(v)\. Then

m x » - C * ? \  =  Ek - 2 n  +  p .

Ek =  E[(l -  2 j j  +  [ [  X ” M 2)]
t= l  t=l

=  1 - 2  H(pl) +  H{Ek- X).

This is a recursion for Ek with at most two fixed points (recall that the equation H (x)—x =  

const, has at most two roots). Recalling the moment equation (5.3), these are easily seen 

to be pl,p2, the first and second moments of the endogenous solution. We have assumed 

that v is not the singular distribution and so its second moment (i.e. E0) must be strictly 

less that p1. Now, under the assumption that u is not the singular solution, pl ,p2 lie ei

ther side of the minimum p* of H{x) — x =  2H(p1) — l and H'(p*) =  1 so that H'(p2) < 1. 

Hence p2 is stable and it now follows that Ek converges to p2.
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The recursion for rk is essentially the same as that for Ek:

¡J2 - r k =  H(p2) -  H(rk^i).

This has /z2 as a fixed point and, since

ro =  E [CuX u{v)\ <  y / E \ cM ^ W } <  v W  =

we are in the same situation as with Ek. That is, we start to the left of /z1 and, because 

H'(p2) <  1, we conclude that /z2 is stable (i.e. the other potential fixed point of the 

recursion for rk isn’t) and it now follows that rk converges to /z2 under the assumptions 

of the lemma. Hence

E [ ( X »  -  Cu)2] = Ek -  2rk +  p2 -  0.

□

T h eorem  23. Let 5(m) denote the singular distribution on {0 ,1 } with mean m. Then

B =  {u € O : J  xdn(x) =  /z1 and u ^  ¿(/z1)}.

That is, B is precisely the set of distributions on [0,1] with the correct mean (except the 

singular distribution with mean p1).

Proof. We have already shown that

{ i / e D : =  /z1 and v ^  ¿(/z1)} C B.
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By the definition of B, v € B if for any bounded continuous function /  on [0,1],

J  fdT^u -  J  fd/i,

and now, since the identity is bounded on [0,1], we conclude that

E X »  -  ECU,

so that to v e  B only if the mean of Tn(u) converges to /i1. From the moment equation 

(5.3), the mean of X™{v) is obtained by iterating

it—» 1 — H(t)

n times, starting with the mean of u. This mapping has unique fixed point fj} and, since 

> 1, it is not attracting. It follows that the only way we can have convergence in 

mean is if we start with the correct mean, that is, if u has mean p 1. Hence

B C [u G D : J  xdv(x) =  fxx and v ^  ¿(/u1)}.

□

5.4.2 The stable case <  1

P rop osition  12. Let H (//1) be the basin of attraction of /i1 under the iterative map for 

the first moment, it-»  1 — H(t). Then

B — {v  G D : f  xdu(x) E B(p1)}.
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Consider once again E[(X*(v) -  Cu)2]. Let m9k =  EX” (v)e, where k = n -  |u|. Then

ml = E(1 — 2 f i  X:M + f j  x:,(uf)
i—1 1=1

=  l - 2 H ( m 1k_1) +  H(ml_1).

Recalling that r*, =  E[CttX£(i/)], we have

Nu Nu

r*=E|(l-IIC«>(1-IIA5M)]
t= l t= l

Nu Nu

=  E|!1- -  n V " M + ¡]c „ x ;,M ) }
¿=1 ¿=1

=  1 ~ H (n1) -  H +  H{rk-\).

We now turn our attention to analysing the dynamics of mk and rk ■ We will concentrate 

on the equation for mk as the equation for rk is essentially the same. By assumption, m\ 

converges to /i1 and so we may approximate mk, for k > ke (say), by /i1 ±  e, for some 

small 6 > 0.

Lem m a 28. The dynamical system Ik defined by the recursion

lk =  1 -  2H(n1 +  e) +  H(lk-i) , k e =  m2kc,

is a lower bound for rnk for all k > k(, where k, is a positive integer such that

ml — /i11 < e, k > ke.

Proof. We have lkt <  m2k(. Suppose that the statement is true for some K  > ke, that is,
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suppose that Ik <  m2K. We have, since H is increasing, that

1 - 2 H(pl +  e) <  1 - 2 H(mlK),

and that H{lK) <  H(m2K), so that lK+1 <  m^-+1. By induction, this holds for any 

k > kt. □

Lem m a 29. Let f  be a continuous, strictly increasing function on an interval [a, b] C [0,1] 

with f(a) > a, f(b) > b and such that there exists y € (a, b) with f(y)  <  y. Suppose that 

f  has fixed points p, q £ (a,b) with p q. Let g(8) be a positive, increasing continuous 

function in 8 >  0 with the property that g(8) converges to zero as 8 tends to zero. Then, 

for sufficiently small 8, the map f  — g has fixed points ps, qs e  (a, b) and ps, qs converge 

to p, q respectively as 8 tends to zero.

Proof. We have then three distinguished points a, y , b such that

/(a )  >  a ,/(y )  <  y,f{b) > b.

Since g is continuous, we can make /(a )  -  g(8),f(y)  -  g(8),f(b) -  g(8) arbitrarily close 

to f {a ) , f (y ) , f (b )  by choosing 8 to be sufficiently small. Hence, for sufficiently small <5, 

we have

/(a )  -  g{8) > a, f(y)  -  g(8) < y, f(b) -  g(8) > b,

and therefore the map /  — g(8) must still have two fixed points, one “close” to p, which 

we denote ps and the other “close” to q, which we denote q$. Now, it is easily seen that, 

as 8 tends to zero, the sequence ps is increasing, bounded above by p so that it has a 

limit. This limit is a fixed point of /  (since g converges to zero) and therefore must be p. 

Similarly, as 8 tends to zero, the sequence qs is decreasing, bounded below by q and its 

limit is also a fixed point which has to be q. □
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Lem m a 30. Let

f e(x) =  1 -  2H(pl +  e) +  H(x), x G [0,1].

Then, for sufficiently small e >  0, f e has two fixed points. 

Proof. By the strict convexity of H we have

, , ( x  + y\ .  H(x) + H(y)
“ I o > ^ o • x , y e  [0,1]

so that
„ ,1 >  . H(0) +  H(1) 1
W (2> < -------- 2-------- =  2

and hence H( 1/2) +  1/2 < 1. It now follows that p} >  1/2 so that H(pl) =  1 -  pl < 1/2. 

This means that /o(0) =  1 — 2H(p1) > 0 and /o (l)  =  2(1 — H(p1)) =  2p1 > 1. Hence 

/o must have two fixed points, one of which we know is p 1. Since H'(pl) < 1, this other 

point must be greater that p ]. We can now apply the previous claim to the fixed points. 

In the critical case H'(px) =  1, the graph of / 0 “touches” the identity at p1. It follows, 

since f t is /o moved downwards by an amount depending on e, that f t will intersect the 

identity in two places, one either side of p x. □

The above claim tells us that f t has a fixed point close to p l, which we will denote 

pl{e) and another one close to the other fixed point p of / 0, which we will denote p(e). Of 

course in the critical case H'{pl) =  1, both p1(e) and p(e) are “close” to p1.

Lem m a 31. lk converges to p1(e).

Proof. We have Ik — fe~kt(h<) and so we need only verify that lkf is in the basin of 

attraction of p1(e) and that p1(e) is stable. We know that

f t{pl + e )  < p l + e
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since l - H ( p l+e) <  1 — H{p}) =  /x1 and so it must be the case that /xx+e € (/x1(e),p(e)). It 

now follows that lkc < p(e) since lkt < m1̂ < p} +e. In the strictly stable case // '( /x 1) < 1, 

the stability of /xx(e) follows from the fact that p1(e) converges to /x1 as e tends to zero (by 

the previous lemma) and therefore /xx(e) can be made arbitrarily close to /x1 by choosing 

e to be sufficiently small. This means that for sufficiently small e, H'(pl(e)) < 1 by the 

continuity of H'. In the critical case H'(/x1) =  1, we have /x^e) <  /x1 < p(e), so that 

//'( /xx(e)) <  1. In either case it now follows that ft~ kt(lke) converges to /xx(e). □

Proof, (of Proposition 13) The preceding lemmas tell us that

liminfm^ > lim lk — /xx(e).
k — > o o  k — H X

Letting e tend to zero, we obtain

lim inf mk > V ■
k—>oo

The fact that m\ < ml for every k gives us the corresponding inequality for the lim sup:

lim sup ml <  lim m\ =  /x1
k—*oo

We conclude that m| converges to /x1.

Now,

E [(X "(i/) -  Cu)\2 =  m \ -  2rk +  /x2,

so that E[(X"(iz) — Cu)2] —> 0, remembering that in the stable case the singular solution

152



{ ¡ ' 6 ® :  J xdv(x) G B {p})) C B,

and the necessity for convergence in mean ensures that we have the reverse inclusion. 

This completes the proof. □

5.5 Outside the basin of attraction

In this section we examine what happens if we iterate distributions with mean outside 

the basin of attraction of the endogenous solution under the map for the mean F : t i—► 

1 -  H{t).

D efinition 4. We say that a map f  has an n-cycle p if f n(p) =  p, where f n denotes the 

n-fold composition of f  with itself.

It is easily seen that F  can have only one and two cycles. This is because the iterated 

map F 2 : t t—► 1 — H{\ — H{t)) is increasing in t and hence can have only one cycles; this 

corresponds to F  having one or two cycles. Notice that the fixed points (or one cycles) 

of F2 come in pairs: if p is a fixed point of F2 then so too is 1 — H{p).

In what follows we distinguish two cases in terms of stability. In the stable case we 

show that the basin of attraction of the endogenous solution under T2 is those distribu

tions with the correct mean. In the unstable case we show that the basin of attraction 

is those distributions having mean in the basin of attraction of a fixed point of F2. In 

both cases this is entirely analogous to the results we obtained earlier for the basin of 

attraction of the endogenous solution under T. Throughout what follows we will write

and endogenous solution coincide (i.e. p1 =  pc2). We have now shown that
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B2 for the basin of attraction of the endogenous solution under T 2:

B2 =  {u e B : T2n{v) ^ weak* c;}.

We will also write for a fixed point of F 2 and p}_ for its “complimentary” fixed point 

(recall that they come in pairs):

H i  = 1 -  H{\ -  H (n \ .)) ,  n l  =  l -  H f a l ) .

5.5.1 The unstable case H'(n\)H '{nl_) > 1

Lemma 32. Suppose that H'(p\)H'(p}_) >  1. Then

B2 =  {is E  D : J  xdu(x) =  p}+ and u ±

Proof. We have

mL =  1 -  2ff(l -  H (ri)) +  H ( 1  -  2J/(/xp +

The map M  given by

t ^  1 -  2 / / ( l  -  F/(/x^)) +  H {  1 -  2 H ( p } + )  + H {t))

has fixed point //),_ and, since H'(p}+)H'(p}_) >  1, it must have another fixed point p since, 

by the strict convexity of H, if were the only fixed point then M  would be tangential 

to the identity at p}+ (i.e. we would have ) =  1). Now, since v is assumed

not to be the singular distribution, its second moment ml must be strictly less than p\. 

Now, H is strictly increasing and so it follows that H'(p) < 1 and hence m\k converges
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to p < n\ under the stated assumption. The recursion for rk is the same as that for ml 

(see previous section) and so we can deduce that r2k also converges to p. Hence

E[(XU2»  -  a ) 2] =  m22k -  2r2k +  p ^ 0 .

Recall from the proof of Theorem 23 that the necessity for convergence in mean gives the 

reverse inclusion. □

5.5.2 The stable case H \ i i \ ) H '  ( f t )  <  1

Proposition 13. Suppose that m\k converges to p f. Then m\k also converges to p\. 

The recursion for m\k is

nri\k =  1 — 2H{1 — # ( m2(fc-i))) +  H (l — 2H(m^k_^) +  H (»^(fc-i)))-

We follow the strategy we used earlier of establishing a lower bound and arguing that this 

lower bound converges to

Lemma 33. Define a sequence Lk by

Lk =  1 -  2H(l -  H(p\ -  c)) +  H( 1 -  2H{p\) +  H(Lk-{)) , Lkt =  m2̂ , 

where kt is a positive integer such that

\m\k — p\| < e, k > kt.

Then Lk bounds m2k below for all k > kt .
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Proof. Define a map Tc by

Te(x) =  1 -  277(1 -  x) +  H(c -  2x).

Then we claim that Tc is increasing for x > c — 1. This is easily seen by differentiating 

with respect to x and using the convexity of H. We now prove that m\k is bounded below 

by lk for all k > ke, where lk is given by

fe =  1 -  277(1 -  H(n\ -  e)) +  ¿7(1 -  2 H ( n \  -  e) +  H ( l k - i ) ) ,  K  =  ™\ki.

Now, we have >  lke■ Suppose that the statement is true for some arbitrary K  >  kt, 

that is, rri2K >  Ik - Since H(m2K) > H(Ik ), we can use the result above for the map Tc 

with x =  H(m\K) and c =  1 +  H{m\K) (the condition “x > c — 1” is satisfied because 

H{m\K) > H(m\K)), to conclude that m^K+i) — Ik+i - Hence m?2k >  Ik for any k > kt 

by induction. To complete the proof we now show that Ik >  Lk for every k > ke. We have 

lke >  Lke. If Ik >  Lk for some arbitrary K > ke, then it holds that Ik +i >  Lk+i since H 

is increasing. Again, by induction, the result holds for any k > kt. □

Proof, (of Proposition 13) The argument is now essentially the same as it was for the 

un-iterated map in the stable case. Define a map gt : [0, x] —> K by

gt(x) =  1 -  27/(1 -  H[p\ -  e)) +  ¿7(1 -  2H{ji\) +  /7 (x)),

where x  is the unique point in [0,1] satisfying the equation H (x )  =  2H ( g \ ) .  The reason 

for defining gt on this interval is to ensure that is well-defined. Now, we know that g0 has 

fixed point and, as before, we have #o(0) >  0, goix) = 2g\ > x. It follows that go has
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two fixed points, with the gradient of go at these fixed points either greater than or less 

than 1 (as before if the gradient were 1 then g0 would be tangential to the identity and 

there would be only one fixed point). If we have stability in that H'(p\)H'{p}_) <  1, then 

for the other fixed point p we must have g'0(p) >  1 so that p >  p }. Since gt is obtained 

from go by moving down the graph of g0 by a constant depending on e, it now follows from 

Lemma 29 that gt will always have two fixed points (in the critical case go touches the 

identity and so ge will intersect the identity either side of p}+\ we will denote these points 

p-\(e) and p(e) respectively). Again, by Lemma 29, it is easily seen that p\{e) converges 

to p}+ as e tends to zero.

Now, we have Lk =  ge(Lk-i)  =  gk~kt(Lke), with Lki — m\ki < p}+ +  e, where g" is 

the n-fold composition of gt with itself. Suppose now that is strictly stable so that 

g'0(p}+) =  H'(p\)H'( 1 — H(p,l+)) < 1 and hence, for sufficiently small e (remember p\{e) 

converges to and so we can make the two arbitrarily close by choosing e to be suf

ficiently small), g't(pl (t)) =  1 — H(p\_(e))) <  1 by the continuity of H', so

that p+(e) is stable for sufficiently small e. This means that p\(t) has a (non-trivial) 

basin of attraction. Since /r+(e) and p\ +  e both converge to p\ as e tends to 0, we can 

make them arbitrarily close by choosing e to be sufficiently small. It follows then that 

p\ 4- e is in the basin of attraction of p}+(e) for sufficiently small e. Since Lki < p\ +  e, 

it also follows that Lk( is also in the basin of attraction of p\{e) for sufficiently small 

e. We conclude that Lk converges to p.\{e) in the strictly stable case. In the so-called 

“critical case” H'(p}+)H '(gy) =  1, since go is tangent to the identity at p}+, it follows that 

mlk <  p\ for all k and hence Lkc < p\ < p(e). By virtue of the fact that //+(e) <  p\, 

we have H'(pl+(e)) <  1 and it now follows that Lk converges to /¿+(e). To finish off the
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proof, we establish the relevant inequality for the lim inf:

lim inf mlk
k — H X

Letting e tend to 0, we obtain

liminfmlfc >  lim ^i(e) =  a\.

The corresponding inequality for the lim sup follows from the fact that m\k < m\k for 

every k. We have proved that if m\k converges to then so too does m\k. □

5.6 Further work

In this chapter we have made a thorough study of the RDE (5.1) under the assumption 

that the random variable N is almost surely positive. The main reason for making this 

assumption was that it made much of the analysis involved in the proofs more straight

forward than would otherwise have been the case. It would be interesting, however, to 

work through the proofs without this assumption to see whether it really is necessary 

or merely convenient. In relation to the original noisy veto voter model from which this 

RDE was derived, it would be interesting to extend the problem from the binary tree to 

a deterministic tree with different branching factor or even to a random tree.
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