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Abstract
We construct a differential graded algebra (DGA) modelling certain A∞ algebras associated
with a finite group G with cyclic Sylow subgroups, namely H ∗BG and H∗�BG

∧
p. We use

our construction to investigate the singularity and cosingularity categories of these algebras.
We give a complete classification of the indecomposables in these categories, and describe
the Auslander–Reiten quiver. The theory applies to Brauer tree algebras in arbitrary charac-
teristic, and we end with an example in characteristic zero coming from the Hecke algebras
of symmetric groups.
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1 Introduction

Our purpose is to study the singularity categories of certain A∞ algebras over a field k. We
were led to these examples from the representation theory in characteristic p of finite groups
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with cyclic Sylow p-subgroups, but our earlier work [9], on which we build, showed these
examples were members of a more general family of examples: the general case illuminates
those we first considered, and the other examples also occur elsewhere.

In fact the examples occur in Koszul dual pairs A and B. The BGG correspondence
shows that it is illuminating to consider both members of the pair together: the classical
example occurs with A an exterior algebra and B the Koszul dual polynomial algebra. The
singularity category of A is equivalent to the cosingularity category of B, which by a theo-
rem of Serre is the bounded derived category of quasicoherent sheaves on Proj(B). Since A

is finite dimensional, its cosingularity category is trivial; since B is regular, its singularity
category is trivial. In this case both A and B are formal as k-algebras.

We consider here a family of the next simplest cases consisting of a non-formal A∞
k-algebra A, usually with homology

H∗(A) = k[τ ] ⊗ �(ξ)

where τ has even degree 2b and ξ has odd degree 2a − 1. The family of examples we
study is determined by a, b and two further parameters h, � ≥ 2 related by ah − b� = 1.
The parameter h is the length of the shortest non-trivial Massey product (when h = 2 the
homology ring is a little different to that above, since ξ2 = −τ �). We give a full description
ofA in Section 4. It is shown in [23] that the BGG correspondence extends to a more general
A∞ context, and it is again natural to consider the Koszul dual B. In fact B is of exactly the
same form as A but with different degrees, and the parameters h and � exchanged. In most
cases it again has homology of form

H∗(B) = �(t) ⊗ k[x]
where x is of even degree −2a and t is of odd degree −2b − 1. The parameter � is the
length of the shortest non-trivial Massey product (when � = 2 the homology is a little
different to that above, since t2 = −xh). We give a full description of B in Section 9. In this
case both A and B have singularity categories that are non-trivial and we are able to give a
complete description: they each have finitely many indecomposable objects and we describe
their Auslander–Reiten quivers. This behaviour is rather special. In general, even when the
singularity category of A has finitely many indecomposables, the singularity category of B

can have infinitely many. The behaviour of A and B is also quite different to the behaviour
of the formal algebras H∗(A) and H∗(B), whose singularity and cosingularity categories all
have infinitely many indecomposable objects.

Our first task is to describe a small and explicit DG algebra Q in the same quasi-
isomorphism class as A, with some good properties that make it suitable for both theoretical
and computational work. As a step towards Q, we first introduce an auxiliary DG algebra
R in Section 2, which embodies the algebra of an odd element all of whose Massey pow-
ers vanish: it is generated by elements ξ1, ξ2, . . ., and has homology H∗(R) = �(ξ). The
algebra Q can be viewed as a universal object for an algebra with an h-fold Massey power
of an element of odd degree which is an �th power of an element of even degree. It is gen-
erated by elements τ , ξ1, . . . , ξh−1, with τ and ξ1 representing elements τ , ξ in H∗Q ∼= A.
Explicit formulas for the relations and the action of the differential d are given in Section 3.
The element τ of Q is central, so Q may be regarded as an algebra over k[τ ]. Our principal
goal is to determine the structure of the singularity and cosingularity categories of A and B

(see Section 6 for definitions). Our main theorems classify the indecomposable objects in
these categories, see Theorems 9.3 and 15.3. The technical hypotheses for this theorem are
spelled out in Section 4, and we repeat them in condensed form here for convenience.
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Context 1.1 Let a, b, h and � be integers with h, � ≥ 2 and ah − b� = 1. Let A be
the A∞ algebra with a second (internal) Z-grading, such that m2 is the strictly associative
multiplication gives the ring structure of k[τ ] ⊗ �(ξ) if h ≥ 3 and k[τ, ξ ]/(ξ2 + τ �) if
h = 2, with |ξ | = (2a − 1, �) and |τ | = (2b, h). All mi are zero except for m2 and mh,
which is determined by mh(ξ, . . . , ξ) = (−1)h(h−1)/2 τ �.

Let B be the Koszul dual A∞ algebra with the roles of a and b replaced by −b and
−a, and the roles of h and � replaced by −� and −h. Thus the ring structure is given by
k[x] ⊗ �(t) if � ≥ 3 and k[x, t]/(t2 + xh) if � = 2, with |t | = (−2b − 1,−h) and
|x| = (−2a,−�). Allmi are zero exceptm2 andm�, which is determined bym�(t, . . . , t) =
(−1)�(�−1)/2 xh.

Theorem 1.2 Suppose that A and B are the Koszul dual A∞ algebras as in Context 1.1.
The equivalence of triangulated categories Db(A) � Db(B) induces equivalences

Dcsg(A) � Db(A[τ−1]) � Dsg(B).

The latter categories satisfy the Krull–Schmidt theorem, and have |b|(h − 1) isomorphism
classes of indecomposable objects, in [h/2] orbits of the shift functor �. The Auslander–
Reiten quiver is isomorphic to ZAh−1/T |b|, where T is the translation functor �−2a . This
is a cylinder of height h − 1 and circumference |b|. The functor � switches the two ends of
the cylinder.

We give explicit descriptions of the indecomposable objects, both as elements of
Dcsg(A) � Db(A[τ−1]) and as elements of Dsg(B). Reversing the roles of A and B, swap-
ping h and �, and replacing a by −b and b by −a gives us the structure of Dsg(A) �
Dcsg(B), with |a|(� − 1) isomorphism classes of indecomposable objects, coming in [�/2]
orbits of �. We also give an explicit description of the Auslander–Reiten quivers of
these categories, and explain their position in the Amiot’s classification of finite triangu-
lated categories. This leads to some explicit models such as Dsg(B) � Db(Ah−1)/T|b| in
Section 16.

Of course the simplicity of the A∞ structure is essential for explicit calculations, but key
structural features making a complete analysis possible are the τ -periodicity and the Tate
duality of Theorem 10.8. The key ingredient for Tate duality is the fact that finitely gener-
ated modules are automatically dualizable, which we proved in this case using a Hochschild
cohomology calculation.

We are especially interested in the following occurrence of the A∞ algebras A and B.
Let p be an odd prime, let G be a finite group with cyclic Sylow p-subgroups P of order
pn and inertial index q > 1, and let k be a field of characteristic p. Omitting notation
for coefficients in the field k, and writing �BG

∧
p for the loop space on the Bousfield–

Kan mod p completion of BG, we showed in [9] that the A∞ algebra structures on A =
H∗�BG

∧
p and B = H ∗BG gave an instance of Context 1.1 with a = q, b = q − 1,

h = pn − (pn − 1)/q, � = pn. Then the DG algebra Q describes a model for the DG
algebraC∗�BG

∧
p up to quasi-isomorphism, and by reversing the roles ofA andB we obtain

a model for C∗BG.

Theorem 1.3 Let h = pn − (pn − 1)/q, � = pn. Then the equivalence of triangulated
categories Db(C∗BG) � Db(C∗�BG

∧
p) induces equivalences

Dcsg(C∗�BG
∧
p) � Db(C∗�BG

∧
p)[τ−1] � Dsg(C

∗BG).
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The latter categories are finite Krull–Schmidt triangulated categories with (q − 1)(h − 1)
indecomposable objects in [h/2] orbits of the shift functor. It also induces equivalences

Dcsg(C
∗BG) � Db(C∗BG)[x−1] � Dsg(C∗�BG

∧
p).

The latter categories are finite Krull–Schmidt triangulated categories with q(pn − 1)
indecomposable objects in [pn/2] orbits of the shift functor.

Other examples of theA∞ algebrasA andB occur every time an algebra is described by a
Brauer tree of finite representation type. These occur throughout representation theory, both
in characteristic zero and in prime characteristic. For the sake of describing an example in
characteristic zero, we discuss the Hecke algebras of symmetric groups. Let H = H(n, q)

be the Hecke algebra of the symmetric group of degree n over a field k of characteristic zero,
where q is a primitive �th root of unity with n = � > 2. Then lettingA be the principal block
ofH and B be Ext∗H(k, k), we obtain an example with a = n−1, b = n−2, h = n−1 and
� = n. We spell out the consequences of our main theorem in this case, in Theorem 18.3.

2 The DG Hopf algebra R

We begin by looking at the DG Hopf algebra R over a field k. As a graded algebra over k,
R is free with odd degree generators ξ1, ξ2, ξ3, . . . , and the differential is given by

d(ξi) =
∑

j+k=i

ξj ξk (i � 1).

Thus d(ξ1) = 0, d(ξ2) = ξ21 , d(ξ3) = ξ1ξ2 + ξ2ξ1, and so on.

Remark 2.1 To motivate this, we factor out the differential ideal of R generated by ξi for
i � h + 1 and take the DG-subalgebra Rh generated by ξi for i � h − 1. The element
μh = d(ξh) lies in Rh and represents the h-fold Massey power of the homology class of
ξ1 up to sign. Thus a DGA map from θ : Rh → C in which θ(ξ1) = c shows that the
h-fold Massey power of [c] is defined and gives an element [θ(μh)] ∈ ±〈[c], · · · , [c]〉.
Accordingly, in R itself, all Massey powers of [ξ1] contain zero.

The antipode S onR is the anti-automorphism of algebras given on generators by S(ξi) =
−ξi . The comultiplication 	 : R → R ⊗ R is defined on generators by

	(ξi) = ξi ⊗ 1 + 1 ⊗ ξi .

Note that if ξ1 has degree 2a − 1 then ξi has degree 2ia − 1. So R is either connected
or coconnected, according to whether 2a − 1 is positive or negative. We shall assume that
a 
= 0, so that |ξ1| 
= −1, which implies that each graded piece is finite dimensional.

Lemma 2.2 In R we have d2 = 0.

Proof To show that d2 = 0, we note that dd(ξi) has two terms for each way of writing i

as a sum of three positive integers. They have opposite signs, because the elements ξi have
odd degree, so they cancel:

d2(ξi) =
∑

j+k=i

(d(ξj )ξk − ξj d(ξk)) =
∑

j+k+�=i

(ξj ξkξ� − ξj ξkξ�) = 0.
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Lemma 2.3 The map 	 : R → R ⊗ R is a map of DG algebras.

Proof As an algebra, R is free, so specifying the map on generators gives a well defined
map of algebras. We must check that it commutes with the differential. Since the ξj have
odd degree and are primitive, ξ2j and ξj ξk+ξkξj are also primitive. So d(ξi) = ∑

j+k=i ξj ξk

is also primitive, and hence d	(ξi) = 	d(ξi).

Proposition 2.4 The definitions above make R into a cocommutative DG Hopf algebra.

Proof Lemmas 2.2 and 2.3 show that R is a DG bialgebra. It is easy to check that the
antipode satisfies the identity S(x(1))x(2) = x(1)S(x(2)) = 0 in Sweedler notation, for ele-
ments of non-zero degree; this only needs checking on the generators, where it is clear.
Cocommutativity also only needs checking on generators.

Lemma 2.5 H∗R = �(ξ1).

Proof Define a linear map δ : R → R sending a monomial of the form ξ1ξif to ξi+1f , and
sending all other monomials to zero. Then we have

δd(ξ1ξif ) = δ(−ξ1(ξ1ξi−1 + · · · + ξi−1ξ1)f + ξ1ξidf )

= −(ξ2ξi−1 + · · · + ξiξ1)f + ξi+1df

dδ(ξ1ξif ) = d(ξi+1f ) = (ξ1ξi + · · · + ξiξ1)f − ξi+1df

(δd + dδ)(ξ1ξif ) = ξ1ξif,

while for j > 1 we have

dδ(ξjf ) = d(0) = 0

δd(ξjf ) = δ((ξ1ξj−1 + · · · + ξj−1ξ1)f − ξj df ) = ξjf

(dδ + δd)(ξjf ) = ξjf .

Thus δd + dδ is the identity on all monomials apart from 1 and ξ1, on which it vanishes. So
δ defines a homotopy from the identity map of R to the projection onto the linear span of 1
and ξ1. It follows that H∗R = �(ξ1).

Definition 2.6 The weight of a monomial in R is the sum of the subscripts (and zero for
constants). The height of a monomial in R is the number of generators ξi that have to
be multiplied to give the monomial (we might call it degree, if that didn’t already have a
different meaning). Multiplication in R adds weights, and adds heights. If f (ξ1, . . . , ξn) is
an element of R, we write fi,j (ξ1, . . . , ξn) for the sum of the terms of f with weight i and
height j . Thus f = ∑

i,j fi,j .

The differential d preserves weight, and increases height by one, so that d(fi,j ) =
(df )i,j+1. Thus if df = 0 then each d(fi,j ) = 0.

3 The DG Hopf AlgebraQ

In this section, we let h and � be integers ≥ 2 and describe the DG Hopf algebra Q = Qh,�.
In terms of the previous section, the idea is that Qh,� is obtained from Rh by adjoining an
�th root to the element −μh. Thus a DGA map θ : Qh,� → C shows that the h-fold Massey
power of c = θ(ξ1) is defined and contains an �th power of the adjoined variable.
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The generators for Q are ξ1, . . . , ξh−1 in odd degree and τ in even degree. The relations
and differential are as follows:

τξi = ξiτ 1 ≤ i ≤ h − 1

d(τ) = 0

∑

j+k=i

ξj ξk =

⎧
⎪⎨

⎪⎩

d(ξi) 1 ≤ i ≤ h − 1

−τ � i = h

0 h + 1 ≤ i ≤ 2h − 2.

The antipode is the algebra anti-automorphism given by S(ξi) = −ξi , S(τ) = −τ , and the
comultiplication is given by

	(ξi) = ξi ⊗ 1 + 1 ⊗ ξi, 	(τ) = τ ⊗ 1 + 1 ⊗ τ .

We write |ξ1| = 2a−1, and we assume that a 
= 0. The relations imply that |ξi | = 2ia−1
and |τ �| = 2ah − 2. So writing 2b for |τ | we have 2b� = 2ah − 2, or equivalently

ah − b� = 1.

In particular, a and b are coprime, as are h and �.
As well as this homological grading, we give Q a second, internal grading by setting

|ξi | = (2ia − 1, i�), |τ | = (2b, h).

It is easy to check that the relations, differential, and Hopf structure above respect this
second grading.

Example 3.1 If h = 2, the algebra Q is generated by ξ1 and τ with relations

d(τ) = 0 τξ1 = ξ1τ

d(ξ1) = 0 ξ21 = −τ �

In this case the differential is zero, and Q is just the graded algebra k[τ, ξ1]/(ξ21 + τ �).

Example 3.2 If h = 3, the algebra Q is generated by ξ1, ξ2 and τ with relations

d(τ) = 0 τξi = ξiτ 1 � i � 2

d(ξ1) = 0 ξ1ξ2 + ξ2ξ1 = −τ �

d(ξ2) = ξ21 ‘ ξ22 = 0.

Example 3.3 If h = 4, the algebra Q is generated by ξ1, ξ2, ξ3 and τ with relations

d(τ) = 0 τξi = ξiτ 1 � i � 3

d(ξ1) = 0 ξ1ξ3 + ξ22 + ξ3ξ1 = −τ �

d(ξ2) = ξ21 ξ2ξ3 + ξ3ξ2 = 0

d(ξ3) = ξ1ξ2 + ξ2ξ1 ξ23 = 0.

Lemma 3.4 In the algebra Q, every element has a unique expression of the form

f (ξ1, . . . , ξh−2) + ξh−1g(ξ1, . . . , ξh−2)

with coefficients in k[τ ].
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Proof The algebra relations (ignoring the differential) can be rewritten in the form

ξiξh−1 = ξh−1φi(ξ1, . . . , ξh−2),

with 1 ≤ i ≤ h − 1 (note that φh−1 = 0). Thus all occurrences of ξh−1 may be moved to
the beginning, and ξ2h−1 = 0. There are no relations among ξ1, . . . , ξh−2.

Definition 3.5 We shall refer to a monomial in ξ1, . . . , ξh−2, or ξh−1 times such a mono-
mial, as a standard monomial in the variables ξ1, . . . , ξh−1. The lemma shows that the
standard monomials form a basis for Q as a free module over k[τ ].

Lemma 3.6 In the algebra Q, we have d2 = 0.

Proof The differential is given by

d(f + ξh−1g) = (df + (ξ1ξh−2 + · · · + ξh−2ξ1)g) − ξh−1dg.

On the free subalgebra generated by ξ1, . . . , ξh−2, the differential is the same as in the
algebra R above, and so by Lemma 2.2 we have d2 = 0 on this subalgebra. Thus we have

d2(f + ξh−1g) = d(df + (ξ1ξh−2 + · · · + ξh−2ξ1)g − ξh−1dg)

= d2f + (ξ1ξh−2 + · · · + ξh−2ξ1)dg − (ξ1ξh−2 + · · · + ξh−2ξ1)dg

= 0.

Lemma 3.7 The map 	 : Q → Q ⊗ Q is a map of DG algebras.

Proof As in Lemma 2.3, for each i > 0,
∑

j+k=i ξj ξk is primitive, so both the relations and
the elements d(ξi) are primitive. Hence 	 takes relations to relations, and d	 = 	d .

Proposition 3.8 The definitions above make Q into a cocommutative DG Hopf algebra.

Proof The proof of this is similar to the proof of Proposition 2.4, but using Lemmas 3.6
and 3.7 in place of Lemmas 2.2 and 2.3.

4 The A∞ Algebras A and B

In this section we introduce an A∞ algebra A which is quasi-isomorphic to the DG algebra
Q of the last section. We then describe the Koszul dual B of A. These are the A∞ algebras
discussed in our previous paper [9].

Let h and � be positive integers with h ≥ 3, and let k be a field. We are interested in the
following A∞ algebra A = Ah,�. The differential m1 is zero, m2 is the strictly associative
multiplication giving A the ring structure of k[τ ] ⊗ �(ξ), where |ξ | = (2a − 1, �) and
|τ | = (2b, h), with ah − b� = 1. We have

mh(ξ, . . . , ξ) = (−1)h(h−1)/2 τ �, (4.1)

which implies
mh(τ

j1ξ, . . . , τ jhξ) = (−1)h(h−1)/2 τ �+j1+···+jh

for all j1, . . . , jh � 0. All mi for i > 2 on all other i-tuples of monomials give zero. We
allow the elements τ and ξ to be either in positive or in negative degree, and we grade



D. Benson, J. Greenlees

everything homologically. The relation (4.1) may be interpreted as saying that the Massey
product of h copies of ξ is equal to −τ �, the sign being the standard one relating Massey
products with A∞ structure; see [38, Theorem 3.1], [15, Theorem 3.2].

We extend the definition to h = 2 by letting A be the formal A∞ algebra k[τ, ξ ]/(ξ2 +
τ �), with |ξ | = (2a − 1, �), |τ | = (2b, 2), 2a − b� = 1, a 
= 0, and with all mi apart from
m2 equal to zero.

We next show that the DG algebra Q (forgetting the Hopf structure) is quasi-isomorphic
to A as an A∞-algebra. In other words, A ∼= H∗(Q), with the A∞ structure given by
Kadeishvili’s theorem [28].

Theorem 4.2 There is a quasi-isomorphism from the DG algebra Q to the A∞ algebra A,
sending τ to τ and ξ1 to ξ .

Proof First, we show that H∗Q is isomorphic to A as an algebra over k[τ ]. The proof is
similar to the proof of Lemma 2.5, but working over k[τ ] instead of k. Namely, we define
a linear map δ : Q → Q sending a monomial of the form ξ1ξif to ξi+1f for 1 � i �
h − 2, and all other standard monomials (see Definition 3.5) to zero. Thus δ(f + ξh−1g) =
δ(f ). The same computation as in Lemma 2.5 shows that δd + dδ is the identity on all
monomials except those in k[τ ] + ξ1k[τ ], where it is zero. Thus δ defines a homotopy from
the identity map ofQ to the projection onto k[τ ]+ξ1k[τ ]. It follows thatH∗Q is isomorphic
to A as a ring, with τ and ξ1 corresponding to τ and ξ . The maps mi on H∗Q are easy to
calculate using the elements ξi , and give zero for i > 2 except in the case of mh, where
it gives mh(ξ, . . . , ξ) = (−1)h(h−1)/2τ �. Using Kadeishvili’s theorem [28] completes the
proof.

Corollary 4.3 We have H∗(Q) ∼=
{

k[τ ] ⊗ �(ξ) h > 2

k[τ, ξ ]/(ξ2 + τ �) h = 2.

Let B be the A∞ algebra whose algebra structure is k[x] ⊗ �(t) with |x| = (−2a, −�),
|t | = (−2b − 1,−h),

m�(x
j1 t, . . . , xj� t) = (−1)�(�−1)/2 xh+j1+···+j� ,

and all mi with i > 2 are zero on all other monomials. In the exceptional case where � = 2,
we define B to be the formal A∞ algebra k[x, t]/(t2 + xh). It was shown in [9] that A and
B are Koszul dual. Thus A is quasi-isomorphic to EndDb(B)(k) and B is quasi-isomorphic
to EndDb(A)(k). Here, EndDb(B)(k) denotes the A∞ endomorphism ring whose homology is

H∗EndDb(B)(k) ∼= EndDb(B)(k),

and so on.

5 Hochschild Cohomology

We will recall the definition of the Hochschild cohomology of an A∞-algebra and then
calculate it for the A∞ algebras A and B described in the previous section. The point of this
is that nilpotent elements in (for example) HH ∗(A) control certain uniform processes of
construction in the category of A-modules: we will make essential use of this in our proof
of Theorem 9.7.
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The bar resolution B(a) = ⊕
n≥0 a

⊗(n+2) of an A∞ algebra a is described in Section 3
of Getzler and Jones [20], see also Definition 12.6 of Stasheff [42]. The action of the
differential on a⊗(n+2) in bar notation is

d(x ⊗ [a1| . . . |an] ⊗ y) =
n∑

j=0

±mj+1(x, a1, . . . , aj ) ⊗ [aj+1| . . . |an] ⊗ y

+
∑

0�i+j�n

±x ⊗ [a1| . . . |ai |mj(ai+1, . . . , ai+j )|ai+j+1| . . . |an] ⊗ y

+
n∑

j=0

±x ⊗ [a1| . . . |an−j ] ⊗ mj+1(an−j+1, . . . , an, y),

where the signs are determined by the usual sign conventions. It is explained in Section 3.6
of Keller [32] how to compute the signs by looking at the reduced tensor coalgebra of
the suspension. Taking a-a-bimodule homomorphisms to a bimodule M , we obtain the
differential on Hochschild cochains

Homa,a(a
⊗(n+2),M) ∼= Homk(a

⊗n,M)

as follows:

(df )[a1| . . . |an] = d(f [a1| . . . |an]) +
∑

0�i+j�n

±f [a1| . . . |ai |mj (ai+1, . . . , ai+j )|ai+j+1| . . . |an],

see also Section 1 of Roitzheim and Whitehouse [41]. The cohomology of this complex is
HH ∗(a, M). If M = a, we write HH ∗(a) for HH ∗(a, a).

We filter B(a) by number of bars, Fi B(a) = ⊕
n≤i a

⊗(n+2). This gives a filtration on
Hochschild cochains, for which Fi is formed by the cochains which vanish on Fi B(a).
With this filtration, F0 is the whole complex and

⋂
i Fi = 0. This leads to a spectral

sequence in which the differentials dn are given by the terms involving ±mn+1. Thus the
E1 page is the Hochschild complex of H∗a with coefficients in H∗M , and the E2 page is
HH ∗(H∗a, H∗M). So the spectral sequence takes the form

HH ∗(H∗a, H∗M) ⇒ HH ∗(a, M). (5.1)

We are numbering everything homologically, so the Hochschild degrees in HH ∗H∗a are
negative, and the spectral sequence lives in the second and third quadrants.

Applying lim← with respect to i to the exact sequences 0 → Fi → F0 → F0/Fi → 0, we

get

0 =
⋂

i

Fi → F0 → lim← F0/Fi → lim←
1Fi → 0.

So the spectral sequence is conditionally convergent, and is strongly convergent if and
only if lim←

1Fi = 0, which is equivalent to lim←
1Ei = 0 in the spectral sequence, see for

example Theorem 7.1 of Boardman [10]. In particular, if each graded piece of Er is finite
dimensional for some r , then the spectral sequence (5.1) is strongly convergent.

Theorem 5.2 Given a map of exact couples (D,E) → (D′, E′), where both spectral
sequences are conditionally convergent and live in the (homologically indexed) left half
plane, if the map Er → E′ r is an isomorphism for some r then D → D′ is an isomorphism
of filtered graded groups.
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Proof This follows from Theorem 7.2 of Boardman [10], since the hypotheses imply that
E∞ → E′ ∞ and lim←

1Ei → lim←
1E′ i are isomorphisms. See also Theorem B.7 of Greenlees

and May [22].

We need to know that A,B and Q have the same Hochschild cohomology. Since our
equivalences are slightly indirect we need somemachinery to see the isomorphism preserves
structure. Keller’s article [29] recalls the definition of B∞-algebras.

Proposition 5.3 There are isomorphisms in the homotopy category ofB∞ algebras between
the Hochschild complexes of Q, A and B.

Proof For the algebras Q and A, we apply the main theorem in Section 3.2 of [29] to
the quasi-isomorphism Q → A of Theorem 4.2 to obtain an equivalence of Hochschild
complexes in the homotopy category of B∞ algebras.

Let C be the cobar construction on Q. This is an augmented DG coalgebra, which is
finite dimensional in each degree. As in Section 2 of Keller [36], this is the Koszul–Moore
dual of Q. Its graded k-linear dual C∗ is “the” Koszul dual of Q, and is quasi-isomorphic to
B. Using the fact that C is finite dimensional in each degree, the Hochschild complex for C

is isomorphic to that for C∗ as a B∞ algebra. Applying Theorem 3.3 of [36], the Hochschild
complexes of Q and C are equivalent in the homotopy category of B∞ algebras.

Certainly an isomorphism in the homotopy category of B∞ algebras induces an
isomorphism of cohomology rings.

Corollary 5.4 We have HH ∗Q ∼= HH ∗A ∼= HH ∗B.

Theorem 5.5 Suppose that h > 2 and � > 2. In the spectral sequenceHH ∗H∗B ⇒ HH ∗B
the E2 page is given by

HH ∗H∗B ∼= H∗A ⊗ H∗B ∼= k[x, τ ] ⊗ �(t, ξ)

where |x| = (0,−2a, −�), |t | = (0,−2b − 1,−h), |ξ | = (−1, 2a, �), and |τ | = (−1, 2b +
1, h). The only non-zero differential is d�−1, and this is given by d�−1(ξ) = ±hxh−1τ �,
d�−1(t) = ±�xhτ �−1. There are no ungrading problems in the spectral sequence.

Proof The element t on theE2 page corresponds to the cochain t̃ : [ ] �→ t in the Hochschild
complex (here, [ ] is the unique basis element in the bar complex of length zero). Applying
the formula for the differential, we have (again using the bar notation)

(dt̃)[ t, . . . , t︸ ︷︷ ︸
�−1

] = m�(t̃[ ], t, . . . , t) + m�(t, t̃[ ], . . . , t) + · · · + m�(t, t, . . . , t̃[ ])

= �m�(t, . . . , t) = �xh.

Using this, and the rather simple form of the A∞ structure on B, it is not hard to see that
dt̃ = ±�xhτ �−1 since the two cochains take the same value on all elements of the bar
resolution.
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The element ξ on the E2 page corresponds to the cochain ξ̃ : [xi] �→ ixi−1, [txi] �→
itxi−1. Then applying the formula for the differential, we have

(dξ̃ )[ t, . . . , t︸ ︷︷ ︸
�

] = ξ̃ (m�(t, . . . , t)) = ξ̃ (xh) = hxh−1.

Using this, again we find that dξ̃ = ±hxh−1τ � since both cochains take the same value on
all elements of the bar resolution.

Examining the locations of these terms in the filtration of the bar complex giving rise to
the spectral sequence, we deduce that these correspond to the differential d�−1 taking t to
±�xhτ �−1 and ξ to ±hxh−1τ �.

Next, we show that the possible values of n for which dn is non-zero are very restricted.
The possible tridegrees (u, v,w) at the E2-term lie in three parallel planes. Take N =
(�−2, �, −2a) as normal direction and consider the dot products N ·(u, v,w) = (�−2)u+
�v − 2aw. We have N · |x| = 0, N · |t | = 2 − �, N · |ξ | = 2 − �, and N · |τ | = 0. So the
only possible values of N · (u, v,w) on the E2 page are 0, 2 − �, and 4 − 2�. Furthermore,
the elements with N · (u, v,w) = 4 − 2� are multiples of tξ .

The differential dn decreases u by n, increases v by n − 1, and leaves w unchanged. It
therefore increases N · (u, v,w) by 2n−�. Since n ≥ 2, we first deduce that all differentials
are zero on elements withN ·(u, v, w) = 0, and hence on the polynomial generators x and τ .
Next, we deduce that the smallest value of n for which dn 
= 0 is when (2n−�)+(2−�) = 0,
so n = � − 1. We computed above the value of d�−1 on the exterior generators t and ξ .
Finally, since h and � are coprime, d�−1 is injective on elements with N ·(u, v, w) = 4−2�,
and so there is no room for further differentials.

For the ungrading problem, we note that moving down one place in the filtration replaces
(u, v, w) by (u−1, v+1, w) and so the dot product with N increases by N ·(−1, 1, 0) = 2,
while w is unchanged. The relations hxh−1τ � = 0 and �xhτ �−1 = 0 therefore have no
ungrading problems, and hold inHH ∗B. The relations ξ2 = 0 and t2 = 0 have no ungrading
problems, because there are no candidates with the correct value of w and with larger dot
product with N .

Theorem 5.6 There are three cases for HH ∗Q ∼= HH ∗A ∼= HH ∗B, according to the
characteristic of the field k.

(i) If p | h then HH ∗B ∼= k[x, τ ]/(xhτ �−1) ⊗ �(ξ).
(ii) If p | � then HH ∗B ∼= k[x, τ ]/(xh−1τ �) ⊗ �(t).
(iii) If p � h and p � � then HH ∗B ∼= (k[x, τ ] ⊗ �(u))/(xh−1τ �, xhτ �−1, xh−1τ �−1u).

Here, we have |x| = (−2a,−�), |t | = (−2b − 1, −h), |ξ | = (2a − 1, �), |τ | = (2b, h), and
|u| = (−1, 0).

Proof If h > 2 and � > 2 then this follows from Theorem 5.5, after checking that there are
no ungrading problems. The element u in case (iii) represents ± axξ ± btτ in E∞ (recall
that ah − b� = 1). If h = 2 then B is the formal A∞ algebra k[x, t]/(t2 + xh), and we can
use the method of Buchweitz and Roberts [14] to compute HH ∗B. If � = 2 then we can use
the same method on HH ∗A.

Corollary 5.7 We have xhτ� = 0 in HH ∗Q ∼= HH ∗A ∼= HH ∗B.
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Proof This follows from Theorem 5.6: in all three cases we have xhτ� = 0. Note that
if h > 2 and � > 2 then we see directly that the differential d�−1 in Theorem 5.5 takes
±aξ ± bt (with appropriate signs) to xhτ�.

6 The Derived Category

Suppose first that a is a DG algebra. We write D(a) for the derived category of a. This
is the triangulated category having as objects the left DG a-modules, and as arrows the
homotopy classes of morphisms of DGmodules, with the quasi-isomorphisms inverted. The
shift functor is the suspension � defined by (�M)n = Mn−1, so the triangles take the form
X → Y → Z → �X.

In the case where H∗a is a Noetherian graded ring, we write Db(a) for the thick subcate-
gory of D(a) whose objects are the a-modules X such that H∗X is finitely generated as an
H∗a-module. We regard this as the analogue of the bounded derived category in this context;
an extended discussion motivating this can be found in Greenlees and Stevenson [23].

Definition 6.1 An a-module is homotopically projective if the functor Homa(X,−) pre-
serves quasi-isomorphisms, see for example Section 8.1 of Keller [30]. It is shown in
Theorem 8.1.1 of [30] that given any moduleX there exists a homotopically projective mod-
ule X′ and a surjective quasi-isomorphism X′ → X. We call this a homotopically projective
resolution of X.

Homomorphisms in D(a) may be described as follows. Given DG a-modules X and Y ,
choose a homotopically projective module X′ and a quasi-isomorphism X′ → X. Then

HomD(a)(X, Y ) ∼= H∗(Homa(X
′, Y )).

It can be seen that X′ → X is a fibrant replacement with respect to the projective model
structure (see Hovey [27]) on a-modules, and D(a) is the corresponding homotopy category.

Next, we describe the derived category of an A∞ algebra. Suppose that a is an A∞
algebra. In this case, the modules do not form an abelian category, because of the defini-
tion of morphism of A∞ modules. This time, the derived category D(a) is the triangulated
category having as objects the left A∞ modules over a, and as arrows the homotopy
classes of A∞ morphisms. Unlike in the DG context, A∞ quasi-isomorphisms automati-
cally have A∞ inverses. This is again a triangulated category, with triangles of the form
X → Y → Z → �X. For details, see Keller [31, 32]. As before, in the case where H∗a
is Noetherian, we write Db(a) for the thick subcategory whose objects are the modules with
finitely generated homology.

In the case where a is a DG algebra regarded as an A∞ algebra with mi = 0 for i > 2,
the two definitions agree up to canonical equivalences of triangulated categories. If X and
Y are DG a-modules, the homotopy classes of morphisms of A∞ modules from X to Y are
canonically isomorphic to the homotopy classes of morphisms of DG modules from X′ to
Y , where X′ is a homotopically projective resolution of X. A suitable set of details can be
found in Théorème 2.2.2.2 and Sections 2.4 and 4.1 of the thesis of Lefèvre-Hasegawa [37].
See also Theorem 4.5 of Keller [34].

In the case of the DG algebra Q of Section 3 and the A∞ algebra A of Section 4, we
have the following.

Proposition 6.2 The bounded derived category Db(Q) is equivalent to Db(A).
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Proof A quasi-isomorphim of A∞ algebras induces an equivalence of derived categories,
see for example [37], Section 4.1.3. So it follows from Theorem 4.2 that Db(Q) is equivalent
to Db(A).

Remark 6.3 Although the A∞ algebras Q, A and B carry an internal grading to make
them bigraded, we do not require that the objects in the derived category carry an internal
grading respected by the morphisms. Nonetheless, we shall make use of internal gradings in
identifying Auslander–Reiten triangles in Dsg(B) in Section 14. As we shall see, the reason
this works is that the duality established in Section 10 respects grading for objects that admit
one.

7 A Spectral Sequence

In this section, we give a brief reminder of the construction and convergence properties of
the spectral sequence for computing Homs in the derived category D(a) of an A∞ algebra a:

Ext∗∗
H∗a(H∗X,H∗Y ) ⇒ HomD(a)(X, Y ). (7.1)

We shall make use of this in Section 12 to compute some endomorphism rings, as a prelim-
inary to applying Auslander–Reiten theory. The construction is taken from Adams [1], and
a discussion of convergence may be found in Boardman [10].

Let a be an A∞ algebra. If X is an A-module, then taking homology gives isomorphisms

HomD(a)(A,X) ∼= HomH∗a(H∗a, H∗X) ∼= H∗X.

Choosing a set of generators of H∗X, we obtain a morphism F0 → X, where F0 is a direct
sum of shifts of a, with the property that H∗F0 → H∗X is surjective. Setting X0 = X, we
complete to a triangle

F0
k−→ X0

i−→ X1
j−→ �F0

in D(a), and the map i : X0 → X1 is zero in homology. Repeating this construction, we
obtain a sequence of triangles

where the maps marked j involve a degree shift. This has the property that the resulting
sequence

· · · (jk)∗−−−→ �−2H∗F2
(jk)∗−−−→ �−1H∗F1

(jk)∗−−−→ H∗F0
k∗−→ H∗X → 0

is a free resolution of H∗X as an H∗a-module.

Lemma 7.2 We have lim→
i

Xi � 0.

Proof Any map �ja → lim→
i

Xi factors through some Xi , and then the composite

�ja → Xi → Xi+1
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is zero. Thus H∗ lim→
i

Xi = 0 and so lim→
i

Xi � 0.

If Y is another a-module, then taking Homs in D(a) from the above resolution of X to Y ,
we obtain a diagram of long exact sequences

The direct sum of all these long exact sequences is an exact couple

The spectral sequence of this exact couple has as its E1 term

HomD(a)(F∗, Y ) ∼= Homa(H∗F∗, H∗Y ).

The differential is the composite

HomD(a)(Fj , Y )
(jk)∗−−−→ HomD(a)(Fj+1, Y ),

and so we have
E2 ∼= Ext∗∗

H∗a(H∗X,H∗Y ),

and the abutment of the spectral sequence is HomD(a)(X, Y ). Thus we have a filtration

Fj HomD(a)(X, Y ) = Image of
(
HomD(a)(Xj , Y ) → HomD(a)(X, Y )

)
,

and
Fj HomD(a)(X, Y )n/Fj+1 HomD(a)(X, Y )n ∼= E∞

j,n−j .

In this filtration, F0 is the whole thing, and by Lemma 7.2 we have
⋂

j

Fj HomD(a)(X, Y ) = lim←
j

Hom(Xj , Y ) = HomD(a)(lim→
j

Xj , Y ) = 0.

As in the spectral sequence for Hochschild cohomology described in Section 5, the spec-
tral sequence is conditionally convergent, and strongly convergent if and only if lim→

i

Fi = 0,

which is equivalent to lim→
i

Ei = 0. In particular, if each graded piece of Ei is finite

dimensional, the the spectral sequence is strongly convergent.

8 Inverting τ

The advantage of the explicit modelQ is that the element τ is represented by a central cycle,
so it is elementary to invert it.

Definition 8.1 We write K for the graded field k[τ, τ−1], and we define
Q[τ−1] = K ⊗k[τ ] Q,
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as a DG algebra over K . If X is a DG Q-module, we write

X[τ−1] = K ⊗k[τ ] X

as a DG Q[τ−1]-module.

Lemma 8.2 If X and Y are objects in Db(Q) then

HomDb(Q[τ−1])(X[τ−1], Y [τ−1]) = K ⊗k[τ ] HomDb(Q)(X, Y ),

which we write as HomDb(Q)(X, Y )[τ−1].

Proof This follows from the fact that τ is central in Q with dτ = 0, together with the fact
that H∗(X) is finitely generated over H∗(Q).

Similarly, we write A[τ−1] for K ⊗k[τ ] A as an A∞-algebra, and we have a quasi-
isomorphism Q[τ−1] � A[τ−1] coming from Theorem 4.2. If X is an A-module, we write
X[τ−1] = K ⊗k[τ−1] X as an A[τ−1]-module.

Proposition 8.3 We have an equivalence of bounded derived categories

Db(Q[τ−1]) � Db(A[τ−1]).
If X and Y are objects in Db(A) then

HomDb(A[τ−1])(X[τ−1], Y [τ−1]) = K ⊗k[τ ] HomDb(A)(X, Y ) = HomDb(A)(X, Y )[τ−1].

Proof This follows from Proposition 6.2 and Lemma 8.2.

9 Koszul Duality and Singularity Categories

We recapitulate the development of [23] in our more concrete setting.

Definition 9.1 Let a be an augmented A∞ algebra with Noetherian homology.

(i) The singularity category Dsg(a) is the quotient of Db(a) by Thick(a).
(ii) The cosingularity category Dcsg(a) is the quotient of Db(a) by Thick(k).

Lemma 9.2 Suppose that a is an A∞ algebra such that H∗a is local with residue field k. If
M is an a-module such that H∗M has finite length, then M is in Thick(k).

Proof A copy of k of lowest degree in H∗M lifts to a map k → M . Completing to a triangle
k → M → N , the length of H∗N is one less than the length of H∗M . So by induction on
length of H∗M , it follows that M is in Thick(k).

For the A∞ algebras Q and A introduced in Sections 3 and 4 and the A∞ algebras
Q[τ−1] and A[τ−1] described in Section 8 we have the following calculation.

Theorem 9.3 We have equivalences of triangulated categories

Dcsg(Q) � Db(Q[τ−1]) � Db(A[τ−1]) � Dcsg(A).
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Proof By Propositions 6.2 and 8.3, we have compatible equivalences Db(Q) � Db(A) and
Db(Q[τ−1]) � Db(A[τ−1]). Since K is flat over k[τ ], we have a functor

K ⊗k[τ ] −: Db(Q) → Db(Q[τ−1]).
Using Lemma 9.2, it kills exactly Thick(k), and therefore induces an equivalence
Dcsg(Q) → Db(Q[τ−1]). Similarly,

K ⊗k[τ ] −: Db(A) → Db(A[τ−1])
kills exactly Thick(k), and therefore induces an equivalence Dcsg(A) → Db(A[τ−1]).

Theorem 9.4 The functor HomA(k,−) induces a triangulated equivalence of derived
categories

Db(A)
∼−→ Db(B),

that sends A to k and k to B. It induces triangulated equivalences

Dsg(A)
∼−→ Dcsg(B), Dcsg(A)

∼−→ Dsg(B).

Proof This follows from Greenlees and Stevenson [23, Theorem 9.1]. We need to show that
If A and B come as part of a symmetric Gorenstein context so that the hypotheses of the
theorem are satisfied. If A and B come from groups, this is explicit [23, Example 10.6].
However, even in that case the following proof is more elementary.

Since A and B are Koszul dual to each other, they are both dc-complete. It remains to
show that A has a strongly Gorenstein normalisation in the sense of [23, Definition 6.3]
since then by [23, Proposition 6.4] we have a symmetric Gorenstein context as required
in the hypothesis of [23, Theorem 9.1]. We claim that the composite k[τ ] → Q → A

is a strongly Gorenstein normalisation. It is obvious that k[τ ] is regular and Gorenstein.
Since H∗(A) = k[τ ] ⊗ �(ξ) we see that A is small over k[τ ] so that k[τ ] → A is reg-
ular. Indeed A � k[τ ] ⊕ �2bk[τ ] as k[τ ]-modules, and hence we have an equivalence
Homk[τ ](A, k[τ ]) � �−2bA so that k[τ ] → A is relatively Gorenstein. Thus k[τ ] → A is
a strongly Gorenstein normalisation as required. Finally, we note that the normalisation of
A is polynomial, as is the Koszul dual one of B. This shows the bounded derived categories
in the sense of [23] agree with the concrete definition of objects with finitely generated
homology as we have used here.

Corollary 9.5 We have an equivalence of categories Dsg(B) � Db(A[τ−1]), taking k to
EndDsg(B)(k) ∼= A[τ−1].

Proof This follows from Theorems 9.3 and 9.4.

Thus we can regard the central element τ of A as a periodicity operator on Dsg(B) of
degree 2b, namely a natural isomorphism from the identity to �2b. In Section 13, we shall
see explicitly how to interpret this element in terms of resolutions.

Corollary 9.6 If X and Y are objects in Db(B) then

HomDsg(B)(X, Y ) ∼= HomDb(B)(X, Y )[τ−1].
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Proof This follows from Proposition 8.3 using the equivalence of categories given in
Corollary 9.5.

The A∞ algebras A[τ−1] and Q[τ−1] are regular, in the following sense.

Theorem 9.7 Every object in Db(A[τ−1]) is in Thick(A[τ−1]).

Proof Consider the element x ∈ B. For any B-module M with H∗M finitely generated, the
fibre F of x : M → �−2aM has the property that H∗F has finite length. So by Lemma 9.2,
F is in Thick(k). Now under the equivalence Db(B) � Db(A), the image of k is A. So
regarding x as an element of HH ∗B ∼= HH ∗A, we have an action of x on Db(A), and for
any A-module N in Db(A), the fibre of x : N → �−2aN is in Thick(A). So we have a

triangle F → N
x−→ �−2aN with F in Thick(A). Inverting τ , we have such a triangle in

Db(A[τ−1]) with F in Thick(A[τ−1]). Now by Corollary 5.7, we have xhτ� = 0 in HH ∗A.
Since τ is an isomorphism in Db(A[τ−1]), it follows that xh acts as zero on Db(A[τ−1]).
Therefore the fibre of xh : N → �−2ahN is N ⊕ �−2ah−1N . It is also in Thick(F ), and
therefore in Thick(A[τ−1]). Hence so is N .

Corollary 9.8 Every object in Db(Q[τ−1]) is in Thick(Q[τ−1]).

Proof This follows from Theorem 9.7, using the fact that the equivalence Db(A[τ−1]) �
Db(Q[τ−1]) of Theorem 9.3 sends A[τ−1] to Q[τ−1].

Corollary 9.9 If X and Y are objects in Db(Q[τ−1]) then we have natural equivalences
(i) HomDb(Q[τ−1])(X, Y ) � HomDb(Q[τ−1])(X,Q[τ−1]) ⊗Q[τ−1] Y ,
(ii) HomDb(Q[τ−1])(HomDb(Q[τ−1])(X,Q[τ−1]),Q[τ−1]) � X.

Proof These hold for X = Q[τ−1], and hence for every object in Thick(Q[τ−1]), which by
Corollary 9.8 is every object in Db(Q[τ−1]).

10 Duality forQ[τ−1]-modules

Let Q[τ−1] be the algebra described in Section 8. In this section, we prove a form of Tate
duality for the bounded derived category of Q[τ−1]-modules, see Theorem 10.6. This com-
bine the dualities HomK(−, K) (Brown–Comenetz duality) and HomQ[τ−1](−, Q[τ−1])
(Spanier–Whitehead duality). The proof makes essential use of Corollary 9.9.

Definition 10.1 We write Q[τ−1]∗ for the dual of Q with respect to K , Homk[τ ](Q,K).
Left and right multiplication make Q[τ−1]∗ into a Q-bimodule, and simultaneously a K-
module with compatible actions of τ , and hence a Q[τ−1]-bimodule. Note that

Q[τ−1]∗ = Homk[τ ](Q,K) ∼= Homk[τ ](Q, HomK(K,K))

∼= HomK(K ⊗k[τ ] Q, K) = HomK(Q[τ−1], K),

so we can equally well regard Q[τ−1]∗ as HomK(Q[τ−1], K).



D. Benson, J. Greenlees

Similarly, if X is any K-vector space (i.e., graded K-module), we write X∗ for
HomK(X,K). In particular, if X is a left Q[τ−1]-module then X∗ is a right Q[τ−1]-module
and if X is a right Q[τ−1]-module then X∗ is a left Q[τ−1]-module.

Proposition 10.2 There is a quasi-isomorphism of Q[τ−1]-bimodules Q[τ−1] →
�|ξ1|Q[τ−1]∗

Remark 10.3 For brevity, we have recorded the shift as |ξ1| = 2a − 1, however in the
presence of the τ -periodicity, this is only well defined modulo 2b. It is more helpful to say
that the shift in Tate duality is one less than the Gorenstein shift (2a − 2b in this case) of A

as in [24, Proposition 4.1].
We should also keep track of the internal degrees, and write

Q[τ−1] ∼−→ �2a−1,�Q[τ−1]∗.

Proof The standard monomials of Definition 3.5 form a K-basis for Q[τ−1]. We construct
a K-module homomorphism Q[τ−1] → �|ξ1|Q[τ−1]∗ as follows. It takes all standard
monomials to zero except 1 and ξ1. It takes 1 to the element of Q[τ−1]∗ taking value 1
on ξ1 and value zero on all other standard monomials, and it takes ξ1 to the element of
Q[τ−1]∗ taking value 1 on 1 and value zero on all other standard monomials. It is easy
to check that this is a map of Q[τ−1]-bimodules, and using Corollary 4.3 that is a quasi-
isomorphism.

Proposition 10.4 If X is a left Q[τ−1]-module and Y is a right Q[τ−1]-module, then there
is a natural isomorphism of K-vector spaces

HomQ[τ−1](X, HomK(Y,K)) ∼= HomK(Y ⊗Q[τ−1] X, K).

If Y is a Q[τ−1]-bimodule, this is an isomorphism of left Q[τ−1]-modules.

Proof This is standard.

Corollary 10.5 If X is homotopically projective then we have a quasi-isomorphism

HomQ[τ−1](X,Q[τ−1]) � �|ξ1|HomK(X,K).

Proof Using Propositions 10.2 and 10.4, and the fact that X is homotopically projective,
we have

HomQ[τ−1](X,Q[τ−1]) � HomQ[τ−1](X,�|ξ1|Q[τ−1]∗)
∼= �|ξ1|HomQ[τ−1](X, HomK(Q[τ−1],K))

∼= �|ξ1|HomK(Q[τ−1] ⊗Q[τ−1] X, K)

∼= �|ξ1|HomK(X,K).
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Theorem 10.6 Let X and Y be objects in Db(Q[τ−1]). Then there is a functorial duality of
graded K-modules

HomDb(Q[τ−1])(X, Y )∗ ∼= HomDb(Q[τ−1])(Y,�−|ξ1|X).

Proof We may replace X and Y by homotopically projective resolutions and work with
Q[τ−1]-module homomorphisms. Combining Corollary 9.9 (ii) with Corollary 10.5, we
have

HomQ[τ−1](X,Q[τ−1])∗ � �−|ξ1|X.

Hence using Proposition 10.4 and Corollary 9.9 (i), we have

HomQ[τ−1](X, Y )∗ = HomK(HomQ[τ−1](X, Y ),K)

� HomK(HomQ[τ−1](X,Q[τ−1]) ⊗Q[τ−1] Y,K)

∼= HomQ[τ−1](Y, HomK(HomQ[τ−1](X,Q[τ−1]), K))

� HomQ[τ−1](Y,�−|ξ1|X).

Corollary 10.7 Let X and Y be objects in Db(A[τ−1]). Then there is a functorial duality of
graded K-modules

HomDb(A[τ−1])(X, Y )∗ ∼= HomDb(A[τ−1])(Y,�1−2aX).

If X and Y carry an internal grading, the shift is �1−2a,−�.

Proof This follows from Theorem 10.6, using the equivalence of categories described in
Proposition 8.3.

Theorem 10.8 Let X and Y be objects in Dsg(B). Then there is a functorial duality of
graded K-modules

HomDsg(B)(X, Y )∗ ∼= HomDsg(B)(Y,�1−2aX).

If X and Y carry an internal grading, the shift is �1−2a,−�.

Proof This follows from Corollary 10.7 using the equivalence of categories given in
Corollary 9.5.

11 A Tour of the TwoWorlds

Our aim is to understand the singularity category of B, and in particular to construct inde-
composable objects. In this interlude we give a topological account of the strategy before
returning to give an elementary implementation in algebra. The section can be entirely
ignored by those with a strong algebraic compass.

Bearing in mind that B itself is trivial in the singularity category, it is natural to start with
X1 = k and then construct objects from that. Since HomDsg(B)(k, k) = A[τ−1] it is natural
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to focus on ξ , which supplies a map �2a−1k → k, with mapping cone X2 with cells in
degree 0 and 2a. We then attempt to iterate this construction by forming

Xs = k ∪ξ e2ak ∪ξ · · · ∪ξ e
2(s−1)a
k .

In fact Xs exists if and only if the (s −1)-fold Massey product 〈ξ, ξ, · · · , ξ 〉 exists and con-
tains zero. In our case the indeterminacy is always zero. We may thus construct X1, . . . , Xh,
but not Xh+1 since the h-fold Massey product is nonzero. One may also check inductively
that these complexes are unique up to equivalence. Our main result will show that up to
suspension this does give all indecomposables.

The counterparts Ys = HomB(k,Xs) in A-modules will have a cell structure

Ys = A ∪ξ e2aA ∪ξ · · · ∪ξ e
2(s−1)a
A .

Under the derived equivalence between finitely generated B-modules and A-modules,
small B-modules (i.e., modules in Thick(B)) correspond to A-modules with finite dimen-
sional homology, and vice versa. Thus a B-module N is small if and only if [k, N ]B∗ is finite
dimensional. Similarly, N corresponds to a small A-module if and only if H∗(N) is finite
dimensional.

Exchanging the roles of A and B, we may construct A-modules

Vs = k ∪t e2bk ∪t · · · ∪t e
2(s−1)b
k .

for s = 1, 2, . . . , � but not V�+1 since the �-fold Massey product is nonzero. These
correspond to the small B-modules

Ws = B ∪t e2bB ∪t · · · ∪t e
2(s−1)b
B .

Our actual method will take full advantage of the explicit and easily described models,
and give concrete representatives for the objects Ws .

Remark 11.1 For the graded rings H∗(A) with h > 2 and H∗(B) with � > 2 (i.e., the
formal case where the algebras are polynomial tensor exterior and all products mi are zero
for i > 2) the singularity and cosingularity categories are well understood, for example
through the theory of maximal Cohen–Macaulay modules. See for example Proposition 2.6
of Ene and Popescu [17], which discusses modules over the ungraded completion, but the
modules over the graded ring are very similar. In that case the objects Xs, Ys, Vs, Ws exist
for all s � 0 and the terms in each sequence are inequivalent. By contrast with our case, the
singularity and cosingularity categories for H∗(A) and H∗(B) each contain infinitely many
indecomposable objects.

12 The B-modulesWi in Thick(B)

Following the pattern set out in Section 11 we will construct explicit small B-modules (i.e.,
modules in Thick(B)) W1,W2, . . . , W�, starting with W1 = B, and we will do so in a
bigraded fashion. Background on modules over A∞-algebras may be found in [34].

Consider the map t : �−2b−1,−hB → B = W1. Complete this to a triangle in Db(B),

�−2b−1,−hB
t−→ W1 → W2.

Then using the long exact sequence in homology, as a module over H∗B = k[x] ⊗ �(t) we
have

H∗W2 = k[x].u2 ⊕ k[x].v2,
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where k[x] = H∗B/(t), |u2| = (0, 0) and |v2| = (−4b − 1,−2h). The A∞ structure is
given by

m3(t, t, u2) = v2

m�−1(t, . . . , t, v2) = (−1)(�−2)(�−1)/2xhu2.

The element v2 defines a map �−4b−1B → W2, which we complete to a triangle

�−4b−1,−2hB
v2−→ W2 → W3.

We have
H∗W3 = k[x].u3 ⊕ k[x].v3,

with |u3| = (0, 0), |v3| = (−6b − 1,−3h). The A∞ structure is given by

m4(t, t, t, u3) = v3

m�−2(t, . . . , t, v3) = (−1)(�−4)(�−1)/2xhu3.

Continuing this way, we construct objects Wi in Db(B) (1 � s � �), finitely built from B,
with

H∗Wi = k[x].ui ⊕ k[x].vi,

with |ui | = (0, 0), |vi | = (−2ib − 1,−ih), and

mi+1(t, . . . , t︸ ︷︷ ︸
i copies

, ui) = vi

m�−i+1( t, . . . , t︸ ︷︷ ︸
� − i copies

, vi) = (−1)(�−2i+2)(�−1)/2xhui .

and vi defines a triangle

�−2ib−1,−ihB
vi→ Wi → Wi+1.

The second to last stage of this process is a module W�−1 with

m�(t, . . . , t, u�−1) = v�−1

tv�−1 = m2(t, v�−1) = (−1)�(�−1)/2xhu�−1.

Then something different happens. The map �−2(�−1)b−1,−(�−1)hB → W�−1 still defines a
triangle

�−2(�−1)b−1,−(�−1)hB → W�−1 → W�,

but the long exact sequence in homology now gives H∗W�
∼= k[x]/(xh), and the process

cannot be continued any further. The composite B = W1 → W2 → · · · → W� shows
that W� is equivalent to the quotient of B by the ideal (xh, t). What we have seen is the
following.

Theorem 12.1 The B-module k[x]/(xh) = B/(xh, t) is in the subcategory Thick(B) of
Db(B). It is built from � shifts of copies of B.

13 Indecomposable objects in Dsg(B)

In this section, we discuss the indecomposable objects which we eventually wish to show
form a complete list in Dsg(B). They come with an internal grading, which we keep track
of. The ideal in B generated by xh and t is a bigraded A∞ ideal, and the quotient

B̄ = B/(xh, t) ∼= k[x]/(xh)
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is a formal A∞ algebra with |x| = (−2a,−�). In other words, the only non-zero operation
mi on the quotient is the multiplication m2. We begin with a discussion of B̄-modules. The
indecomposable modules are the shifts of the quotients M̄i = k[x]/(xi) for 1 � i � h of
B̄. For i < j we have short exact sequences of B̄-modules

0 → �−2ia,−i�M̄j−i → M̄j → M̄i → 0. (13.1)

We also have almost split sequences of B̄-modules

0 → �−2a,−�M̄1 → M̄2 → M̄1 → 0

0 → �−2a,−�M̄2 → �−2a,−�M̄1 ⊕ M̄3 → M̄2 → 0

· · ·
0 → �−2a,−�M̄h−1 → �−2a,−�M̄h−2 ⊕ M̄h → M̄h−1 → 0.

This comes from the theory of almost split sequences for the Nakayama algebra k[x]/(xh),
see for example Proposition 4.12 of Auslander and Reiten [6].

Pulling back the k[x]/(xh)-module M̄i (1 � i � h) to B, we obtain a B-module Mi

and a map B → Mi . In particular, M1 is the field object, with H∗M1 ∼= k. We shall write
k for the B-module M1. By Theorem 12.1, Mh is in the subcategory Thick(B) of Db(B),
and therefore vanishes in Dsg(B). We write Xi for the fibre of B → Mi . Applying H∗
to the triangle Xi → B → Mi , we see that H∗Xi is the ideal generated by t and xi in
H∗B = k[x] ⊗ �(t). In Dsg(B), we have �Xi � Mi and Xh � 0.

The exact sequence (13.1) of B̄-modules gives rise to triangles in Db(B)

�−2ia,−i�Xj−i → Xj → Xi → �1−2ia,−i�Xj−i .

In particular, taking j = h, we obtain the following, critical in linking odd and even
suspensions.

Proposition 13.2 There is an equivalence Xi � �1−2ia,−i�Xh−i in Dsg(B).

Similarly, the almost split sequences of B̄-modules give rise to triangles in Db(B)

�−2a,−�X1 → X2 → X1 → �1−2a,−�X1

�−2a,−�X2 → �−2a,−�X1 ⊕ X3 → X2 → �1−2a,−�X2

· · · (13.3)

�−2a,−�Xh−1 → �−2a,−�Xh−2 ⊕ Xh → Xh−1 → �1−2a,−�Xh−1.

Bearing in mind that Xh is zero in Dsg(B), the last of these becomes

�−2a,−�Xh−1 → �−2a,−�Xh−2 → Xh−1 → �1−2a,−�Xh−1.

We shall eventually see that these are almost split triangles in Dsg(B).
Next, we compute the spectral sequence (7.1)

Ext∗,∗
H∗B(H∗Xi,H∗Xj) ⇒ HomDb(B)(Xi,Xj ). (13.4)
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We first assume that � > 2, and later describe the modifications necessary for the case
� = 2. Resolving H∗Xi as a module over H∗B, we obtain the sequence

· · ·
(

t xi

0 −t

)

−−−−→ �−4b−2,−2hH∗B ⊕ �−2ia−2b−1,−h−i�H∗B
(

t xi

0 −t

)

−−−−→ �−2b−1,−hH∗B ⊕ �−2ia,−i�H∗B
(t,xi )−−−→ H∗Xi → 0.

Thus H∗Xi is a maximal Cohen–Macaulay H∗B-module corresponding to the following
matrix factorisation of the relation t2 = 0.(

t xi

0 −t

)(
t xi

0 −t

)
= t2

(
1 0
0 1

)

If Xi and Xj are B-modules of this form, we take homomorphisms from the resolution
of H∗Xi to H∗Xj to obtain

· · ·
(

t 0
xi −t

)

←−−−−− �4b+2,2hH∗Xj ⊕ �2ia+2b+1,h+i�H∗Xj

(
t 0
xi −t

)

←−−−−− �2b+1,hH∗Xj ⊕ �2ia,i�H∗Xj ← 0.

The differential sends
(

t
0

) →
(

0
txi

) (
xj

0

)
→

(
txj

xi+j

) (
0
t

) → (
0
0

) (
0
xj

)
→

(
0

−txj

)
.

13.0.1 (i) The Case j � i :

The kernel is generated by
(
0
t

)
and

xj−i
(

t
0

) +
(

0
xj

)
=

(
txj−i

xj

)
.

The image contains t times these and xi times these.
We write α for the element of the kernel represented by the first of these elements

(
0
t

)
,

and β for the element represented by the second
(

txj−i

xj

)
. Thus as a module over H∗B, the

degree zero homology of the above complex is HomH∗B(H∗Xi, H∗Xj), and is generated by
α and β with relation xjα = tβ. Recalling thatH∗(A) = HomDb(B)(X1, X1), the periodicity
element of degree (−1, 2b+1, h) in the above resolution represents the element τ ∈ H2bA,
so we shall call it τ by abuse of notation. As a module over H∗B[τ ] we have

Ext∗,∗
H∗B(H∗Xi, H∗Xj) = 〈α, β〉/(tα, xjα − tβ, tτβ, xiτβ)

with α in degree (0, 2ja − 2b − 1, j� − h) and β in degree (0, 0, 0).

13.0.2 (ii) The Case i � j :

The kernel is generated by
(
0
t

)
and
(

t
0

) + xi−j
(

0
xj

)
= ( t

xi

)
.

The image contains t times these, and xj times these.
We again write α for the element of the kernel represented by the first of these

(
0
t

)
and

β for the element represented by the second
( t

xi

)
. This time,

Ext∗,∗
H∗B(H∗Xi, H∗Xj) = 〈α, β〉/(tα, xiα − tβ, tτβ, xj τβ)
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with α in degree (0, 2ia − 2b − 1, i� − h) and β in degree (0, 0, 0).

13.0.3 (iii) The Case i = j

The cases i = j in (i) and (ii) coincide, but there is one extra piece of structure to deter-
mine, namely the ring structure. This is determined by the statements that β is the identity
endomorphism of Xi , and α is the endomorphism sending xi to t and t to zero. So the extra
relations are α2 = 0 and β = 1. Thus xiα = t , so t is a redundant generator, and the
presentation becomes

Ext∗,∗
H∗B(H∗Xi,H∗Xi) ∼= k[x, τ, α]/(α2, xiτ ). (13.5)

For the computations above, we assumed that � > 2. We now explain the modifications

necessary for the case � = 2. In this case, the matrix in the resolution of H∗Xi is
(

t xi

xh−i −t

)
.

This corresponds to the following matrix factorisation of the relation t2 + xh = 0.
(

t xi

xh−i −t

)(
t xi

xh−i −t

)
= (t2 + xh)

(
1 0
0 1

)
.

Taking homomorphisms into H∗Xj , the matrix for the differential is the transpose,(
t xh−i

xi −t

)
. The differential sends

(
t
0

) →
(

−xh

txi

) (
xj

0

)
→

(
txj

xi+j

) (
0
t

) →
(

txh−i

xh

) (
0
xj

)
→

(
xh+j−i

−txj

)
.

There are more cases this time, but we content ourselves with computing Ext∗,∗
H∗B(Xi, Xj ) in

the case i = j ≤ h/2, which is all we need. In this case, the kernel is generated by the ele-
ment α representing

( −xh−i

t

)
and β representing

( t
xi

)
. Again β is the identity endomorphism

of Xi and α is the endomorphism sending xi to t and t to −xh−i , so α2 is multiplication by
−xh−2i . This time the presentation becomes

Ext∗,∗
H∗B(H∗Xi, H∗Xi) ∼= k[x, τ, α]/(α2 + xh−2i , xiτ ). (13.6)

Theorem 13.7 If 2i ≤ h, we have

EndDb(B)(Xi) ∼= k[x, τ, α]/(α2 + λxh−2iτ �−2, xiτ )

with |x| = (−2a, −�), |τ | = (2b, h), |α| = (2ia − 2b − 1, i� − h), and λ some scalar in k.

Proof First assume that � > 2. We have to show that there are no non-zero differentials in
the spectral sequence

Ext∗,∗
H∗B(H∗Xi, H∗Xi) ⇒ EndDb(B)(Xi)

(see Section 7) whose E2 page is given by Eq. 13.5, and we then have to address the ungrad-
ing problem for the E∞ term. This is easier if we take into account the internal degrees,
which have to be preserved by the differentials. So elements in the spectral sequence are
triply graded, with |x| = (0,−2a,−�), |τ | = (−1, 2b+1, h), |α| = (0, 2ia−2b−1, i�−h).
As in the proof of Theorem 5.5, the possible tridegrees (u, v, w) at the E2-term are
very restricted. This time they lie in two parallel planes. We use the same normal vector
N = (� − 2, �,−2a), and consider the dot products N · (u, v,w) = (� − 2)u + �v − 2aw.
We note that N · |x| = 0, N · |τ | = 0 and N · |α| = 2 − �. Hence N · |xiτ j | = 0 and
N · |xiτ jα| = 2 − �, and these are the only possible values of N · (u, v, w) for degrees of
elements at E2.
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The differential dn decreases u by n, increases v by n − 1, and leaves w unchanged. It
therefore increases N · (u, v, w) by 2n − �. Since n � 2, we deduce that either dn = 0 or
(2n− �)+ (2− �) = 0, so n = �− 1. In the latter case, d�−1 sends x and τ to zero, and α to
an element of degree (−� + 1, 2ia − 2b + � − 3, i� − h). There is only one such monomial
in x and τ , namely xh−iτ �−1. The assumption that 2i � h implies that this is zero, since
xiτ = 0.

For the ungrading problem, since α2 has even degree it cannot involve αxi1τ i2 . If α2 has
the same bidegree as xi1τ i2 then equating bidegree and solving, we find that i1 = h − 2i,
i2 = � − 2. So we have that α2 is a multiple of xh−2iτ �−2.

The element xiτ has degree (−1, 2b−1−2ia, h−i�). There are no non-zero monomials
in E∞ with this internal degree, so xiτ ungrades to zero.

Finally, in the case � = 2, B and Xi are formal, and the E2 page (13.6) of the spectral
sequence computes EndDb(B)(Xi) with no non-zero differentials or ungrading problems.

Remark 13.8 If � > 2 and i � h/3 then the element xh−2iτ �−2 is zero, so the value of λ

only matters when h/3 < i � h/2. Using the models we produce in Section 16, it turns
out that λ = 1 always holds, as we saw above in the case � = 2. We shall not need this
information in what follows.

Theorem 13.9 We have

EndDsg(B)(Xi) ∼=
{

K[x, α]/(α2 + λxh−2iτ �−2, xi) 2i � h

K[x, α]/(α2 + λx2i−hτ �−2, xh−i ) 2i � h

(recall K = k[τ, τ−1]). This has finite length over K , and in particular, it is an Artinian
local graded ring. The (homological) degree zero part is k[x|b|τ |a|]; note that x|b|τ |a| is
nilpotent, and often zero. As a module over EndDsg(B)(Xi), HomDsg(B)(Xi,Xj ) has finite
length. The Krull–Schmidt theorem holds for finite direct sums of shifts of the objects Xi .

Proof By Corollary 9.6 we have EndDsg(B)(Xi) ∼= EndDb(B)(Xi)[τ−1], so if 2i � h it fol-
lows from Theorem 13.7 that this is isomorphic to K[x, α]/(α2 + λx2h−iτ �−2, xi). The
structure for 2i � h then follows from the isomorphism Xi

∼= �1−2iaXh−i given in
Proposition 13.2.

Next we compute the homological degree zero part. The degree of α is 2ia − 2b − 1,
which is odd, while the degrees of x and τ are even. If xj τm has degree zero then ja = mb.
Since a and b are coprime, this implies that j is divisible by b, m is divisible by a, and the
element is a power of x|b|τ |a| (note that ah− b� = 1, and h and � are positive, a and b have
the same sign).

The E2 page of the spectral sequence (13.4) is finitely generated over k[τ ], and therefore
HomDsg(B)(Xi, Xj ) = HomDb(B)(Xi,Xj )[τ−1] has finite length over K .

The final statement about the Krull–Schmidt theorem follows from the fact that the
endomorphism rings of the Xi are local rings.

Corollary 13.10 The socle of the homological degree 2a − 1 part of EndDsg(B)(Xi), as a
module over the degree zero part, is spanned by the element αxi−1τ in degree (2a − 1, �).
None of the other monomials of homological degree 2a − 1 has internal degree �.
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Proof Using Theorem 13.9, the monomials of homological degree 2a − 1 in EndDsg(B)(Xi)

are the elements αxi−1−j |b|τ 1−j |a| in degree (2a − 1, � + j (�|b| − h|a|)) = (2a − 1, � ±
j).

Corollary 13.11 The socles of the homological degree 2a − 1 parts of EndDsg(B)(Xi) for
1 ≤ i ≤ h are represented by the triangles (13.3) coming from the almost split sequences of
B̄-modules.

Proof The connecting homomorphism for the triangle (13.3) forXi is a non-zero element of
degree (2a − 1, �) in EndDsg(B)(Xi). By Corollary 13.10, it is therefore a non-zero multiple
of αxi−1τ .

Remark 13.12 The images in Db(A) of the objects Xi of Db(B) are, up to shifts, the
analogues of the modules Wi described in Section 12.

Write Yi = HomB(k,Xi) for the image ofXi in Db(A). Then Yi is a free k[τ ]-module on
two generators, ui of degree 2a −1 and vi in degree −2(i −1)a. The action of ξ is given by

mi+1(ξ, . . . , ξ︸ ︷︷ ︸
i copies

, ui) = vi,

mh−i+1( ξ, . . . , ξ︸ ︷︷ ︸
h − i copies

, vi) = (−1)(h−2i+2)(h−1)/2τ �ui

and the remaining mj vanish.

14 Auslander–Reiten triangles

For background on Auslander–Reiten triangles in triangulated categories, see Happel [25,
26]. We shall construct them in the category Dsg(B) and use them to classify the inde-
composables. Although we make use of the internal grading to identify these triangles, the
grading does not interfere with their existence and use for classification.

Suppose that X is an indecomposable, internally gradable object in Dsg(B) with local
endomorphism ring EndDsg(B)(X). A map from another, not necessarily internally gradable
object Y to X has a right inverse (i.e., induces an isomorphism from a direct summand of Y

to X) if and only if the induced map HomDsg(B)(X, Y ) → EndDsg(B)(X) is surjective.
Using Theorem 10.8, the dual HomDsg(B)(X,�1−2aX) has a simple socle as a module

over EndDsg(B)(X), and the socle is a map from X to �1−2a,−�X. For the objects Xi , this
socle is identified in Corollary 13.10. Choose a non-zero morphism αX : X → �1−2a,−�X

in this socle. This has the property that a map Y → X has a right inverse if and only if the

composite Y → X
αX−→ �1−2aX is non-zero.

Complete to a triangle

�−2a,−�X → Z → X
αX−→ �1−2a,−�X
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in Db(A[τ−1]). This then has the following lifting property. If a map Y → X does not have
a right inverse, then it lifts to a map Y → Z.

Similarly, if �−2aX → Y does not have a left inverse, then it extends to a map Z → Y .

These are the defining properties of an Auslander–Reiten triangle, sometimes also called an
almost split triangle.

Theorem 14.1 The Auslander–Reiten triangles in Dsg(B) for the objects Xi are the
triangles (13.3), and the Auslander–Reiten translate is �−2a,−�.

Proof This follows from Corollary 13.11.

If Z′ is a direct summand of Z then the composite Z′ → Z → X is called an irreducible
morphism if it has the property that it is not an isomorphism, but for any factorisation Z′ →
U → X, either Z′ → U has a left inverse or U → X has a right inverse. This property is
symmetric, so that if Z′ is a direct summand of Z then the composite �−2aX → Z → Z′
is also an irreducible morphism.

The Auslander–Reiten quiver is the quiver (directed graph) whose vertices correspond to
the isomorphism classes of indecomposable objects and whose directed edges correspond
to the irreducible morphisms. This comes with a translation �−2a with the property that
there is an arrow from Z to X if and only if there is an arrow from �−2aX to Z.

For the objects �jXi , the Auslander–Reiten quiver has the following form.

This wraps round to form a cylinder, since �2bXi is isomorphic to Xi via τ . Since a

and b are coprime, the circumference of the cylinder is b. The height is h − 1, and Xh−1 ∼=
�2a−1X1 is in the bottom row. This gives a total of b(h−1) isomorphism classes of objects.
In the usual language of translation quivers, we therefore have the following.
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Theorem 14.2 The objects�jXi in Dsg(B) form a connected component of the Auslander–
Reiten quiver, isomorphic to ZAh−1/T |b|, where T is the translation functor.

For example, if a = 6, h = 6, b = 5, � = 7, we get the following quiver isomorphic to
ZA5/T 5.

Here, the left and right ends are identified along the dotted lines to form a cylinder of
height 5 and circumference 5, for a total of 25 isomorphism classes of objects. Note that in
this example we have Xi � �10Xi for each i, and also for the middle row X3 � �5X3.
In general, �b acts as a reflection on the quiver, about the horizontal line going through
the middle. There are [h/2] orbits of the shift functor. If h is odd, they all have length 2|b|,
while if h is even there is just one of them with length |b|, namely the middle one, and the
rest have length 2|b|.

15 Classification of Indecomposables

The goal of this section is to show that every indecomposable object in Dsg(B) is isomorphic
to some �jXi , so that the Auslander–Reiten quiver is that given in Theorem 14.2.

The following proposition plays a role analogous to that of the Harada–Sai lemma in the
representation theory of finite dimensional algebras, see for example Lemma 4.14.1 of [7].

Proposition 15.1 The composite of any h composable irreducible morphisms between the
objects �jXi is equal to zero.

Proof For each i and j , the sum of the composites �j−2aXi → �jXi+1 → �jXi

and �j−2aXi → �j−2aXi−1 → �jXi is the composite of two adjacent maps in an
Auslander–Reiten triangle, and therefore equal to zero. Using these relations, any com-
posite of h composable irreducible morphisms can be rewritten as a composite involving
�j−2aX1 → �jX2 → �jX1, which is zero. In other words, we can deform any path of
length h so that it hits the top edge of the cylinder, without moving the ends of the path.

Proposition 15.2 If X is any non-zero object in Dsg(B) then for some n ∈ Z there is a
non-zero morphism �nX1 → X.

Proof By Corollary 9.6, the image of X1 = k under the equivalence Dsg(B) � Db(A[τ−1])
is A[τ−1]. So if Y is the image of X in Db(A[τ−1]) then

HomDsg(B)(X1, X) ∼= HomDb(A[τ−1])(A[τ−1], Y ) ∼= H∗Y .
if there is no non-zero morphism from any �nX1 to X then H∗Y = 0, so Y is quasi-
isomorphic to zero in Db(A[τ−1]) and hence X is quasi-isomorphic to zero in Dsg(B).
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Theorem 15.3 Every indecomposable object in Dsg(B) is isomorphic to some �jXi with
1 � i < h, 0 � j < |b|.

Proof First we note that the set of �jXi with 1 � i < h and 0 � j < b is the set of vertices
in the Auslander–Reiten quiver described in Section 14.

Let X be an indecomposable object. Then by Proposition 15.2 there is a non-zero mor-
phism�nX1 → X for some n ∈ Z. SinceX is indecomposable, if this has a left inverse then
it is an isomorphism, and we are done. Otherwise, it factors as �nX1 → �n+2aX2 → X. If
�n+2aX2 → X has a left inverse, again we are done. Otherwise, we obtain a factorisation

�nX1 → �n+2aX2 → �n+2aX1 ⊕ �n+4aX3 → X.

Since the composite �nX1 → �n+2aX2 → �n+2aX1 is zero, it follows that the com-
posite �nX1 → �n+2aX2 → �n+4aX3 → X is non-zero. If �n+4aX3 → X is not an
isomorphism, then at the next stage, we obtain a statement that a sum of two composites is
non-zero, so at least one of them has to be non-zero. Continuing this way, we obtain either
an isomorphism �jXi → X for some i, j , or a factorisation through a composite of at least
h irreducible morphisms between the objects Xi . In the latter case, by Proposition 15.1, it
follows that �nX1 → X is the zero map, contradicting the way it was chosen.

Corollary 15.4 The Auslander–Reiten quiver of Dsg(B) is isomorphic to ZAh−1/T |b|.

Proof This follows from Theorems 14.2 and 15.3.

Corollary 15.5 The Krull–Schmidt theorem holds in Dsg(B).

Proof This follows from the last statement of Theorem 13.9 together with Theorem 15.3.

Remark 15.6 In Remark 11.1 we noted that for the formal graded rings H∗(B) the objects
Xs exist for all s ≥ 1 and are inequivalent. The singularity category retains the τ -
periodicity, since Dsg(H∗(B)) � Dcsg(H∗(A)) � Db(H∗(A)[1/τ ]), but now (in the absence
of Proposition 13.2) the Auslander–Reiten quiver consists of two semi-infinite cylinders of
circumference |b|, one containing the even suspensions of the Xi and one containing the
odd suspensions of the Xi .

16 Models for Dsg(B)

In this section we exhibit some more familiar looking categories that are equivalent as
triangulated categories to Dsg(B).

Theorem 15.3 gives us a presentation for the category Dsg(B) in terms of the mesh cate-
gory of the quiver. The definition of the mesh category k(�) of a translation quiver � comes
from Riedtmann [40] (see also Bongartz and Gabriel [12]), and can be found in Section I.5.6
on pages 54–55 of Happel [26].

In the case of the Auslander-Reiten quiver ZAh−1/T |b| of Corollary 15.4, the genera-
tors for the morphisms in the mesh category are the irreducible morphisms between the
�jXi . The mesh relations come from the Auslander–Reiten triangles, and say that for each
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i and j , the sum of the composites �j−2aXi → �jXi+1 → �jXi and �j−2aXi →
�j−2aXi−1 → �jXi is equal to zero. At the boundaries, i = 1 and i = h − 1, only one
of these composites makes sense, and the corresponding relation says that this composite is
equal to zero.

The classification of Krull–Schmidt triangulated categories with finitely many iso-
morphism classes of indecomposables is described in Section 6 of Amiot [3], see also
Chapter 2 of Amiot [4] and the paper of Xiao and Zhu [43]. Let � be the translation
quiver ZAh−1/T |b|. Then it is shown in Theorem 6.5 of [3] that given a triangulated cat-
egory T with Auslander–Reiten quiver �, we have an equivalence of k-linear categories
between the full subcategory ind (T) of indecomposables in T and the mesh category k(�).
This induces an equivalence between T and the additive closure of k(�). Applying this to
Dsg(B), we obtain a k-linear equivalence k(ZAh−1/T |b|) → ind Dsg(B), the full subcate-
gory of indecomposables, which then extends to an equivalence from the additive closure
of k(ZAh−1/T |b|) to Dsg(B).

There is another triangulated category with the same Auslander–Reiten quiver. Let
Db(kAh−1) be the bounded derived category of modules for the quiver Ah−1 over k. The
Auslander–Reiten quiver of Db(kAh−1) is the quiverZAh−1. The translation T of this quiver
lifts to the translation T of Db(kAh−1). It is shown in Keller [33] that the orbit category
Db(kAh−1)/T|b|, whose Hom sets are by definition

⊕

n∈Z
HomDb(kAh−1)

(X, Tn|b|(Y )),

is a triangulated category in such a way that the canonical functor

Db(kAh−1) → Db(kAh−1)/T|b|

is a triangle functor. The Auslander–Reiten quiver of the orbit category Db(kAh−1)/T|b| is
isomorphic to ZAh−1/T |b|. So Theorem 6.5 of [3] shows that there is a k-linear equivalence

Dsg(B) � Db(kAh−1)/T|b|

inducing the isomorphism of Auslander–Reiten quivers. We would like to know that this
is an equivalence of triangulated categories. This proves to be more delicate, but another
theorem of Amiot comes to our rescue.

Theorem 16.1 There is a triangulated equivalence Dsg(B) � Db(kAh−1)/T|b|.

Proof We would like to apply Amiot [3, Theorem 7.2]. This states that given a finite tri-
angulated category T which is connected, algebraic, and standard, there exists a Dynkin
diagram � of type A, D or E, and a self-equivalence � of Db(k�), such that T is triangle
equivalent to Keller’s orbit category Db(k�)/�. To apply the theorem, we need to check the
conditions.

To say that T is connected means that the Auslander–Reiten quiver is connected, so we
have already established that Dsg(B) is connected. To say that T is standard means that it
is equivalent to a mesh category as a k-linear category, so we have also already established
that Dsg(B) is standard.

To say that T is algebraic means that there is a Frobenius category E such that T is triangle
equivalent to the stable category E, see Keller [35, Section 3.6]. By Proposition 8.3 and
Corollary 9.5 we have Db(Q[τ−1]) � Db(A[τ−1]) � Dsg(B), and Db(Q[τ−1]) is algebraic
by [35, Lemma 3.3 and Theorem 3.9]. It follows that Dsg(B) is algebraic.
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We have therefore checked the conditions for applying the theorem of Amiot. Since the
Auslander–Reiten quiver of Dsg(B) is ZAh−1/T |b|, we have � = Ah−1 and � = T|b|, and
the theorem now follows.

There is another category that looks very similar, and we apply similar techniques to
make the comparison. We write B̄ for the formal A∞ algebra k[x]/(xh) where |x| = −2a.
Thus there is an obvious map B → B̄ sending x to x and t to zero. We consider the
bounded derived category Db(B̄) and its quotient, the singularity category Dsg(B̄) formed
by quotienting out all objects finitely built from the ring. We have objects M̄i = k[x]/(xi) in
this category for 1 ≤ i ≤ h, and M̄h is zero. The analogue of Corollary 10.7 in this situation
says that HomDsg(B̄)(X, Y ) is the graded vector space dual of HomDsg(B̄)(Y,�1−2aX), and
hence we have Auslander–Reiten triangles

�−2aM̄i → �−2aM̄i−1 ⊕ M̄i+1 → M̄i → �1−2aM̄i .

However, in contrast to the situation for Dsg(B), the periodicity is given by

M̄i
∼= �2�bM̄i ,

since �2M̄i
∼= �2haM̄i , and 2ha − 2 = 2�b. The Auslander–Reiten quiver again consists

of the �jM̄i . It is in the form of a cylinder, and again the height of the cylinder is h − 1,
but the circumference is �|b| instead of |b|. The generators and relations for this category
are given in the same way as that of Dsg(B) in terms of the irreducible morphisms and the
Auslander–Reiten triangles.

Theorem 16.2 There is a triangulated equivalence Dsg(B̄) � Db(kAh−1)/T�|b|.

Proof This is proved in the same way as Theorem 16.1, using Amiot [3, Theorem 7.2].

The functor Dsg(B̄) → Dsg(B) sends M̄i to �Xi and irreducible morphisms to irre-
ducible morphisms. It wraps the Auslander–Reiten quiver of Dsg(B̄) around that of Dsg(B)

exactly � times. Thus it corresponds to the functor on orbit categories

Db(kAh−1)/T�|b| → Db(kAh−1)/T|b|.

There is another way to achieve this wrapping around. Namely, instead of consider-
ing differential Z-graded modules for B̄, we consider differential Z/2|b|-graded modules.
Let us write Db(B̄,Z/2|b|) for this bounded derived category Dsg(B̄,Z/2b) for the
corresponding singularity category.

Theorem 16.3 There is a triangulated equivalence Dsg(B̄,Z/2|b|) � Db(kAh−1)/T|b|.
There is an equivalence of categories Dsg(B̄,Z/2|b|) → Db(B) making the following
diagram commute.

Proof Again, this follows by applying Amiot [3, Theorem 7.2].
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We put all these equivalences together in the following theorem.

Theorem 16.4 We have equivalences of triangulated categories

Db(kAh−1)/T|b| � Dsg(B̄,Z/2|b|) � Dsg(B) � Dcsg(A) � Db(A[τ−1]) � Db(Q[τ−1]).
Each of these is a finite Krull–Schmidt category with |b|(h − 1) isomorphism classes of
indecomposable objects, in [h/2] orbits of the shift functor. The Auslander–Reiten quiver is
ZAh−1/T |b|.

17 H∗BG and H∗�BG
∧
p

In this section, we apply our main results to the A∞ algebras H ∗BG and H∗�BG
∧
p for G

a finite group with cyclic Sylow p-subgroups. It is shown in [9] that these give an instance
of Context 1.1.

We are interested in the following occurrences of the A∞ algebra A of Section 4. Let p

be an odd prime and k a field of characteristic p. Let G be a finite group with cyclic Sylow
subgroup P of order pn and inertial index q = |NG(P ):CG(P )| > 1. Let C∗BG be the
cochains on the classifying space BG with coefficients in k, and C∗�BG

∧
p be the chains on

the p-completed loop space of BG, again with coefficients in k.
The A∞ algebra structures on H ∗BG and on H∗�BG

∧
p coming from the DG algebras

C∗BG and C∗�BG
∧
p are described in [9]. They are Koszul dual, and we can apply the

results of this paper either with A = H ∗BG, B = H∗�BG
∧
p, or with A = H∗�BG

∧
p and

B = H ∗BG.
In the case of A = H∗�BG

∧
p , we have a = q, b = q − 1, h = pn − (pn − 1)/q and

� = pn, and we must assume that q > 1. In the case of A = H ∗BG (homologically graded
in negative degrees), the roles are reversed and we have a = −(q − 1), b = −q, h = pn,
and � = pn − (pn − 1)/q.

Proof of Theorem 1.3 By Proposition 6.2, the bounded derived categories of the DGA
algebras C∗BG and C∗�BG

∧
p are equivalent to those of the A∞ algebras H ∗BG and

H∗�BG
∧
p. The equivalences of categories follow by applying Theorem 9.4 to the A∞

algebras H ∗BG and H∗�BG
∧
p . The classification of the indecomposable objects in these

categories follow from Theorem 16.4.

18 Brauer Trees and Hecke Algebras

In this section, we describe what our main theorem tells us about Brauer tree algebras. In
general, a Brauer tree algebra is described by a planar embedding of a tree with e edges
corresponding to the simple modules. The vertices are assigned multiplicities, which are
all equal to one with the possible exception of a single vertex of multiplicity λ > 1; oth-
erwise we set λ = 1. This parameter λ is called the exceptional multiplicity, even when it
equals one. These data are sufficient to describe the algebra up to Morita equivalence, and
an algorithm for computing projective resolutions was described by Green [21]. Brauer tree
algebras were first introduced in order to describe blocks of defect one in the representa-
tion theory of finite groups by Brauer [13], and the analysis was extended to all blocks of
cyclic defect by Dade [16]. A nice treatment in this context may be found in the book of
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Alperin [2]. They also appear in many other contexts in representation theory, and we shall
give an example of this in characteristic zero below.

We say that a simple module is a leaf module if it corresponds to an edge one end of
which has valency one and multiplicity one. The leaf modules are all syzygies of each other,
so they have isomorphic Ext algebras.

Theorem 18.1 LetA be a Brauer tree algebra with e > 1 edges and exceptional multiplicity
λ, and let M be a simple leaf module for A. Then the A∞ algebra Ext∗A(M, M) is the
algebra B described in Section 4, with parameters a = e, b = e − 1, � = λe + 1 and
h = � − λ = λ(e − 1) + 1, giving an instance of Context 1.1.

The singularity category of Ext∗A(M,M) has finite representation type, with λ(e − 1)2

isomorphism classes of indecomposable objects, in [(λ(e − 1) + 1)/2] orbits of the shift
functor �. The Auslander–Reiten quiver is isomorphic to ZAλ(e−1)/T e−1, where T is the
translation functor �−2e.

The cosingularity category of Ext∗A(M,M) has finite representation type, with λe2 iso-
morphism classes of indecomposable objects, in [(λe + 1)/2] orbits of the shift functor �.
The Auslander–Reiten quiver is isomorphic to ZAλe/T e, where T is the translation functor
�−2(e−1).

Proof It was shown by Gabriel and Riedtmann [18] that all Brauer tree algebras with
e edges and exceptional multiplicity λ are stably equivalent (indeed, even more is true:
Rickard [39] showed that these are all derived equivalent, but we don’t need to go that far).
In particular, they are all stably equivalent to the Brauer star algebra which has e vertices
of valency one and multiplicity one, surrounding the one remaining vertex in the middle,
which has multiplicity λ. The Brauer star algebras have exactly the same presentation as
the algebras in Section 2 of [9], except for the change of characteristic. In more detail,
the projective indecomposables are uniserial, and the radical filtration is isomorphic to its
associated graded. Some readers may find it helpful to refer to the paper Bogdanic [11]
which recalls details of Brauer tree algebras and shows that the stable grading comes from
a grading of the Brauer tree algebras themselves.

Under such a stable equivalence, the leaf modules correspond to simple modules or first
syzygies of simple modules, for the corresponding Brauer star algebra. It follows that we
may compute the A∞ structure on these Ext algebras using exactly the same computation
as in [9] and the result is as stated in the theorem.

Theorem 1.2 now describes the singularity and cosingularity categories.

Remark 18.2 In the remaining case e = 1, a Brauer tree algebra is Morita equivalent to a
truncated polynomial algebra, so the A∞ structure on the Ext ring of the simple module is
just like that of a cyclic p-group.

As an example, letH = H(n, q) be the Hecke algebra of the symmetric group of degree
n over a field k of characteristic zero, where q is a primitive �th root of unity with � �
2. This has generators T1, . . . , Tn−1 satisfying braid relations together with the relations
(Ti + 1)(Ti − q) = 0. The cohomology H ∗(H, k) = Ext∗H(k, k) was computed by Benson,
Erdmann and Mikaelian [8].

In the case where n = � > 2, H ∗(H, k) has the form k[x] ⊗ �(t) where |x| = −2n + 2
and |t | = −2n + 3. This corresponds to the fact that in this case the principal block of H
is a Brauer tree algebra for a tree which is a straight line with n vertices, n − 1 edges, and
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λ = 1, with the trivial module k at one end as a leaf module. In particular, we can apply
Theorem 18.1 in this context. So the Massey product of n copies of t is equal to −xn−1, and
writing a = n−1, b = n−2, � = n, h = n−1, we have Ext∗H(k, k) = B as an A∞ algebra.

Theorem 18.3 Let H = H(n, q) be the Hecke algebra of the symmetric group of degree
n over a field k of characteristic zero, where q is a primitive �th root of unity. In the case
n = � > 2, the singularity category of the A∞ algebra Ext∗H(k, k) has finite representation
type, with (n−2)2 isomorphism classes of indecomposables, in [(n−1)/2] orbits of the shift
functor. The Auslander–Reiten quiver is a cylinder of height n− 2 and circumference n− 2.

The cosingularity category of the A∞ algebra Ext∗H(k, k) also has finite representation
type, with (n − 1)2 isomorphism classes of indecomposables, in [n/2] orbits of the shift
functor. The Auslander–Reiten quiver is a cylinder of height n− 1 and circumference n− 1.

Other examples of Hecke algebras described by Brauer trees may be found in Geck [19],
Ariki [5].
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40. Riedtmann, C.: Algebren, darstellungsköcher, Ueberlagerungen und zurück. Comment. Math. Helvetici

55, 199–224 (1980)
41. Roitzheim, C., Whitehouse, S.: Uniqueness of a∞-structures and Hochschild cohomology. Algebr.

Geom. Topol. 11, 107–143 (2011)
42. Stasheff, J.D.: H -spaces from a Homotopy Point of View Lecture Notes in Mathematics, vol. 161.

Springe, New York (1970)
43. Xiao, J., Zhu, B.: Relations for the Grothendieck groups of triangulated categories. J. Algebra 257, 37–50

(2002)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.


	The Singularity and Cosingularity...
	Abstract
	Introduction
	The DG Hopf algebra R
	The DG Hopf algebra Q
	The Ainfin; algebras A and B
	Hochschild Cohomology
	The Derived Category
	A Spectral Sequence
	Inverting 
	Koszul Duality and Singularity Categories
	Duality for Q[-1]-modules
	A Tour of the Two Worlds
	The B-modules Wi in Thick(B)
	Indecomposable objects in Dsg(B)
	(i) The Case j i:
	(ii) The Case ij:
	(iii) The Case i=j


	Auslander–Reiten triangles
	Classification of Indecomposables
	Models for Dsg(B)
	H*BG and H*BGp
	Brauer Trees and Hecke Algebras
	References


