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Abstract
Initially developed in the framework of quantum stochastic calculus, the main equa-
tions of quantum stochastic filtering were later on derived as the limits of Markov
models of discrete measurements under appropriate scaling. In many branches of
modern physics it became popular to extend random walk modeling to the continuous
time randomwalk (CTRW)modeling, where the time between discrete events is taken
to be non-exponential. In the present paper we apply the CTRWmodeling to the con-
tinuous quantummeasurements yielding the new fractional in time evolution equations
of quantum filtering and thus new fractional equations of quantum mechanics of open
systems. The related quantum control problems and games turn out to be described by
the fractional Hamilton-Jacobi-Bellman (HJB) equations on Riemannian manifolds.
By-passing we provide a full derivation of the standard quantum filtering equations,
in a modified way as compared with existing texts, which (i) provides explicit rates of
convergence (that are not available via the tightness ofmartingales approach developed
previously) and (ii) allows for the direct applications of the basic results of CTRWs
to deduce the final fractional filtering equations.
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1 Introduction

Direct continuous observations are known to destroy quantum evolutions (so-called
quantum Zeno paradox), so that continuous quantum measurements have to be indi-
rect, and the results of the observation are assessed via quantum filtering. Initially
developed in the framework of quantum stochastic calculus by Belavkin in the 80s of
the last century in [6–8], see [12] for a readable modern account, the main equations of
quantum stochastic filtering, often referred to as the Belavkin equations, were later on
derived via more elementary approach, as the limit of standard discrete measurements
under appropriate scaling, see e.g. [9,10,39]. The scaling arises from the basic Marko-
vian assumption that the times between measurement are either fixed or exponentially
distributed, like in a standard random walk. Since such Markovian assumption has
no a priori justification, in many branches of modern physics it became popular to
extend random walk modeling to the continuous time random walk (CTRW) model-
ing, where the time between discrete events is taken to be non-exponential, usually
from the domain of attraction of a stable law. In the present paper we apply the CTRW
modeling to the continuous quantum measurements yielding the new fractional in
time evolution equations of quantum filtering in the scaling limit. The related quantum
control problems turn out to be described by the fractional Hamilton-Jacobi-Bellman
(HJB) equations on Riemannian manifolds (complex projective spaces in the case of
finite-dimensional quantummechanics) or the fractional Isaacs equation in the case of
competitive control. By-passing we provide a full derivation of the standard quantum
filtering equations (explaining from scratch all underlying quantum mechanical rules
used) in a slightly modified and simplified way yielding also new explicit rates of con-
vergence (which are not available via the tightness of martingales approach developed
previously) and tailored in a way that allows for the direct applications of the basic
results of CTRWs to deduce the final fractional filtering equations.

Several general comments on a wider context are in order.

(i) The fractional equations of quantum stochastic filtering derived here can be con-
sidered as an alternative formulation of fractional quantum mechanics, which is
different from the framework of fractional Schrödinger equations suggested in
[31] and extensively studied recently. This leads also to a different class of quan-
tum control problems, as those related to fractional Schrödinger formulation, as
discussed e.g. in [45].

(ii) The fractional versions of the classical stochastic filtering (see [2] for the basics)
has been actively studied recently, see e.g. [44].

(iii) The quantum mean-field games as developed by the author in [25] can now be
extended to the theory of fractional quantum mean-field games. The classical
versions of fractional mean-field games just started to appear in the literature,
see [13]. On the other hand, the application of classical stochastic filtering in the
study of mean-field games has also started to appear, see [42].

(iv) Fractional modeling and CTRW become very popular in almost all domains
of physics, as well as economics and finances, see e.g. [3,36,43,46] for some
representative references.
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130 V. Kolokoltsov

The contents of the paper is as follows. In Section 2 we recall the basic notions and
notations of finite-dimensional quantummechanics, and in Section 3 we introduce the
Markov chain of sequential indirect quantum measurements, which is the standard
starting point for dealing with continuous measurements. In Sections 4 and 5 we
derive the main quantum filtering equations in the cases of so-called counting and
diffusive observations. Aswas alreadymentioned, though the derivation of the filtering
equations from the approximating Markov chain is well known by now (see e.g. [38])
our approach is new and yields explicit rates of convergence. In Section 6 the limiting
equation is derived in a general case of mixed counting and diffusive observations
via a multichannel measuring device. This preparatory work allows us to derive our
main results, fractional equations of quantum filtering and control, in a more or less
straightforward way, by applying the established techniques of CTRW to the setting of
the Markov chains of sequential quantum measurements, as developed in Sections 4
- 6. This is done in Sections 7 and 8. In Section 9we briefly describe a slightly different
Markov chain approximation to continuous measurement that can be used to derive
filtering equations in certain cases of unbounded operators involved. In Appendices
A,B,C several (known) probabilistic techniques are presented in a concise form tailored
to our purposes. They are used in the main body of the paper.

Some basic notations to be used throughout the text are as follows.
For twoBanach spaces B and D equippedwith norms‖.‖B and‖.‖D respectively, let

us denote byL(D, B) the Banach space of bounded linear operators D → B equipped
with the usual operator norm ‖.‖D→B . We shall also write L(B) for L(B, B).

The scalar product of operators in a Hilbert space is given by the trace: (R, S) =
tr(RS).

For K = Rd or a convex closed subset of Rd we denote C(K ) the Banach space
of continuous bounded functions on K , equipped with the sup-norm and Ck(K ) the
Banach space of k times continuously differentiable functions on K (with the deriva-
tives at the boundary understood as the continuous extensions of the derivatives in the
inner points), with the norm being the sum of the sup-norms of the functions and all
their partial derivatives of order not exceeding k.

2 Notations for quantum states and tensor products

Recall that a general isolated quantum system is described by a Hilbert space H and
a self-adjoint operator H in it, the Hamiltonian. The pure states of the system are
unit vectors in H and the general mixed states are density matrices, that is, non-
negative operators in H with unit trace. Let us denote S(H) the set of all such mixed
states in H . To a pure state there corresponds a density matrix according to the rule
ψ → γ = ψ ⊗ ψ̄ , also denoted in Dirac’s notation as |ψ〉〈ψ |. This density matrix
is the one-dimensional orthogonal projector on the line generated by ψ . Pure states
evolve in time according to the rule ψ → e−i t Hψ and the mixed state according to
the rule γ → e−i t Hγ eit H .

If two systems living in spacesH0 andH1 are brought to interaction, the combined
system has the tensor product Hilbert spaceH0 ⊗H1 as the state space. Recall that, in
the coordinate description of tensor products, if H0 and H1 have orthonormal bases
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{e j } and { f j } respectively, the tensor product is the space with an orthonormal basis
{ek⊗ f j }. In particular, ifH0 andH1 have finite dimensions n and k, the spaceH0⊗H1

has the dimension nk. The operators A in H0 ⊗ H1 can be given by matrices Ai1i2
j1 j2

,
so that

A(ei1 ⊗ fi2) =
∑

j1, j2

A j1 j2
i1i2

e j1 ⊗ f j2 .

Or equivalently, if X ∈ H0 ⊗H1 has coordinates Xkj in the basis {ek ⊗ f j }, the vector
AX has the coordinates

∑
m,l A

k j
ml X

ml in this basis.
A product A ⊗ B of two operators A and B acting in H0 and H1 respectively is

defined by its action on tensor products as

(A ⊗ B)(e ⊗ f ) = Ae ⊗ B f .

In the coordinate description A ⊗ B has the matrix elements expressed as Ai1
j1
Bi2
j2
in

terms of the matrix elements of A and B.
An operator A inH0 has the natural lifting A ⊗ I (where I is the unit operator) to

H0 ⊗ H1. Similarly an operator B inH1 has the natural lifting I ⊗ B toH0 ⊗ H1.
The key notion of the theory of interacting systems is that of the partial trace. For

an operator A in H0 ⊗ H1 the partial trace with respect to the second system is the
operator tr p1A inH0 given by the matrix

(tr p1A)ij =
∑

k

Aik
jk . (2.1)

This partial trace is interpreted as the state of the first system given the state of the
coupled one. Therefore it can be looked at as the quantum analog of the notion of
marginal distribution of classical probability. Similarly, the partial trace with respect
to the first system is the operator tr p0A inH1 given by the matrix

(tr p0A)ij =
∑

k

Aki
k j .

Clearly,

tr(tr p0A) = tr(tr p1A) = tr(A).

In a two-dimensional Hilbert spaces C2 one usually chooses the standard basis
e0 = (1, 0), e1 = (0, 1), and represents the Hilbert product space H0 ⊗ C2 by the
natural decomposition

H0 ⊗ C2 = H00 ⊕ H01 = H0 ⊗ e0 ⊕ H0 ⊗ e1.
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Every operator A in this space has the block decomposition

A =
(
A0→0 A1→0
A0→1 A1→1

)
=

(
(Ai0

j0) (Ai0
j1)

(Ai1
j0) (Ai1

j1)

)
,

where the operators Ai→ j act from H0i to H0 j , i, j = 0, 1. The trace (2.1) gets the
expression

(tr p1A)ij = Ai0
j0 + Ai1

j1. (2.2)

In particular, we shall use the following block representations:

A ⊗ I =
(
A 0
0 A

)
, A ⊗ Ω =

(
A 0
0 0

)
,

C ⊗
(
0 0
1 0

)
=

(
0 0
C 0

)
, C ⊗

(
0 1
0 0

)
=

(
0 C
0 0

)
. (2.3)

More generally, if B = (Bi
j ) is a matrix in C2, then the matrix of I × B in H ⊗ C2

has the block decomposition

(
B0
0 I B0

1 I
B1
0 I B1

1 I

)
. (2.4)

To conclude this section, let us write down the simple small time asymptotic formula
for the evolutions e−i t H that we shall use repeatedly. Namely, up to the terms of order
higher than t2 in small t , we have

e−i t Hρeit H =
(
1 − i t H − 1

2
t2H2

)
ρ

(
1 + i t H − 1

2
t2H2

)

= ρ − i t[H , ρ] − 1

2
t2H2ρ − 1

2
t2ρH2 + t2HρH

= ρ − i t[H , ρ] + t2
(
HρH − 1

2
{H2, ρ}

)
. (2.5)

3 The starting point: Markov chains of sequential indirect
observations

Here we describe the Markov chains of sequential indirect observations (rather stan-
dard by now, at least after paper [1]) in discrete and continuous time recalling first
quickly the main notions related to quantum measurements.

Physical observables are given by self-adjoint operators A inH. If A has a discrete
spectrum (which is always the case in finite-dimensionalH, that we shall mostly work
with), then A has the spectral decomposition A = ∑

j λ j Pj , where Pj are orthogonal
projections on the eigenspaces of A corresponding to the eigenvalues λ j . According
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to the basic postulate of quantum measurement, measuring observable A in a state γ

(often referred to as the Stern-Gerlach experiment) can yield each of the eigenvalue
λ j with the probability

tr (γ Pj ) = tr (Pjγ Pj ), (3.1)

and, if the value λ j was obtained, the state of the system changes (instantaneously) to
the reduced state

Pjγ Pj/tr (γ Pj ).

In particular, if the state ρ was pure, γ = |ψ〉〈ψ |, then the probability to get λ j as
the result of the measurement becomes (ψ,Pjψ) and the reduced state also remains
pure and is given by the vector Pjψ . If the interaction with the apparatus was pre-
formed ’without reading the results’, the state ρ is said to be subject to a non-selective
measurement that changes γ to the state

∑
j PjρPj .

Indirect measurements of a chosen quantum system in the initial space H0, which
we shall often referred to as an atom, are organised in the following way. One couples
the atom with another quantum system, a measuring devise, specified by another
Hilbert space H. Namely the combined system lives in the tensor product Hilbert
spaceH0 ×H and its evolution is given by certain self-adjoint operator H inH0 ×H.
In the measuring device some fixed vector ϕ ∈ H is chosen, called the vacuum and
interpreted as the stationary state of the devise when no interaction is involved. The
corresponding density matrix will be denoted Ω = |ϕ〉〈ϕ|. Indirect measurements of
the states of the atomare performed bymeasuring the coupled systemvia an observable
of the second system and then projecting the resulting state to the atom via the partial
trace.

Namely, it is described by an operator R in H with the spectral decomposition
R = ∑

j λ j Pj and is performed in two steps: given a state γ inH0 ×H one performs
a measurement of R lifted as I ⊗ R toH0 × H yielding values λ j and new states

(I ⊗ Pj )γ (I ⊗ Pj )/tr (γ (I ⊗ Pj ))

with probabilities p j = tr (γ (I ⊗ Pj )), and then one projects these states to H0 via
the partial trace producing the states

tr p1[(I ⊗ Pj )γ (I ⊗ Pj )/tr (γ (I ⊗ Pj ))]. (3.2)

The discrete timeMarkov chain of successive indirect observations (or measurements)
evolves according to the following procedure specified by a triple: a self-adjoint oper-
ator H in H0 × H, a self-adjoint operator R in H and the vacuum vector Ω in H. (i)
Starting with an initial state ρ ofH0 one couples it with the device in its vacuum state
Ω producing the state γ = ρ ⊗ Ω inH0 ×H, (ii) During a fixed period of time t one
evolves the system according to the operator H producing the state γt = e−i t Hγ eit H

inH0 ×H, (iii) One performs the indirect measurement with the state γt yielding the
states
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ρ
j
t = tr p1

(I ⊗ Pj )γt (I ⊗ Pj )

p j (t)
= tr p1

(I ⊗ Pj )e−i t H (ρ ⊗ Ω)eit H (I ⊗ Pj )

p j (t)
(3.3)

with the probabilities

p j (t) = tr (γt (I ⊗ Pj )) = tr (e−i t H (ρ ⊗ Ω)eit H (I ⊗ Pj )).

(3.4)

Then the same repeats startingwith ρt as the initial state. Let us denoteUt the transition
operator of this Markov chain that acts on the set of continuous functions on S(H) as

Ut f (ρ) = E f (ρt ) =
∑

j

p j (t) f (ρ
j
t ). (3.5)

Similarly one can define the continuous time Markov chain of successive indirect
observations (or measurements) Oρ

t,λ and the corresponding Markov semigroup T λ
t

on C(H(S)) evolving according to the same rules, with only difference that the times
t between successive measurements are not fixed, but represent exponential random
variables τ with some fixed intensity λ: P(τ > t) = e−λt . The generator Lλ of this
Markov process is bounded in C(S(H)) and acts as

Lλ f (ρ) = (Uλ f − f )(ρ)

λ
= 1

λ

∑

j

p j (λ)( f (ρ j
λ) − f (ρ)). (3.6)

All “quantum content” of the theory is now captured in the explicit formula (3.3).
What follows will be the pure classical probability analysis of these Markov chains,
their scaling limits and control.

In this paper we shall work with the measuring devises of the simplest form liv-
ing in two-dimensional Hilbert spaces C2 or more generally the tensor products of
these spaces. Choosing the standard basis e0 = (1, 0), e1 = (0, 1), we shall use the
decomposition

H0 ⊗ C2 = H00 ⊕ H01 = H0 ⊗ e0 ⊕ H0 ⊗ e1,

and we shall choose the vacuum vector ϕ = e0, so that

Ω =
(
1 0
0 0

)
.

4 Belavkin equations for a counting observation

For simplicity we shall work exclusively with finite-dimensional Hilbert spacesH0 =
Cn , making occasionally some comments about more general case. The set of states
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S(Cn) is a compact convex set in the Euclidean space Rn2 , the space of complex
Hermitian n × n matrices.

Let us choose an arbitrary self-adjoint operator in H0 ⊗ C2 given by its matrix
representation

H =
(
A 0
0 B

)
+

(
0 −iC∗
iC 0

)
.

We are aiming at calculating the small time asymptotics of the Markov transition
operators defined by (3.3).

The main idea for obtaining sensible asymptotic limits suggests enhancing the
interaction part C of H by replacing it with the scaled version C/

√
t . Thus we choose

the Hamiltonian in the form

H =
(
A 0
0 B

)
+ 1√

t

(
0 −iC∗
iC 0

)
.

Remark 1 The idea of the scaling comes from the analysis of the so-called quantum
Zeno paradox. Its essence is a rather simple observation that if one performs repeated
measurements with reduction (3.1) and pass to the limit, as time between measure-
ments tends to zero, then the state effectively remains in the initial state all the time
irrespectively of the dynamics. This effect is also referred to as the watch dog effect.
Therefore the only way to get a sensible dynamics that takes into account both dynam-
ics and observation is to enhance the interaction part of the dynamics to make its effect
comparable with that of the repeated reduction (3.1). Thus one can suggest scaling
C as C/tα with some α > 0. As calculations show (one can repeat the calculations
below with an arbitrary α) only with α = 1/2 a sensible limit is obtained.

By the second equation in (2.3), we get

ρ ⊗ Ω =
(

ρ 0
0 0

)
,

[
H ,

(
ρ 0
0 0

)]
=

( [A, ρ] +iρC∗/
√
t

iCρ/
√
t 0

)

H

(
ρ 0
0 0

)
H =

(
AρA −i AρC∗/

√
t

iCρA/
√
t CρC∗/t

)
,

H2 =
(

A2 + C∗C/t −i(AC∗ + C∗B)/
√
t

i(CA + BC)/
√
t B2 + CC∗/t

)
,

{H2, ρ ⊗ Ω} =
( {A2 + C∗C/t, ρ} −iρ(AC∗ + C∗B)/

√
t

i(CA + BC)ρ/
√
t 0

)
,

where {C, D} = CD + DC denotes the anti-commutator. Using (2.5), and keeping
terms of order not exceeding t we get the approximation

e−i t H (ρ ⊗ Ω)eit H =
(

ρ − i t[A, ρ] − 1
2 t{C∗C, ρ} √

tρC∗√
tCρ tCρC∗

)
, (4.1)

which is the key formula for what follows.
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As it turns out, the limiting processes are of two types, depending on whether the
projectors P0 and P1 of the spectral decomposition of R are diagonal, that is

P0 =
(
1 0
0 0

)
, P1 =

(
0 0
0 1

)
, (4.2)

or otherwise. Let us start with the case of projectors (4.2).
We have

I ⊗ P0 =
(
I 0
0 0

)
, I ⊗ P1 =

(
0 0
0 I

)
,

and

(I ⊗ P0)e
−i t H

(
ρ 0
0 0

)
eit H (I ⊗ P0) = ρ − i t[A, ρ] − 1

2
t{C∗C, ρ},

(I ⊗ P1)e
−i t H

(
ρ 0
0 0

)
eit H (I ⊗ P1) = tCρC∗.

Hence the non-normalized new states are

ρ̃1 = ρ − i t[A, ρ] − 1

2
t{C∗C, ρ}, ρ̃2 = tCρC∗,

occurring with the probabilities

p1 = 1 − t tr(C∗Cρ), p2 = t tr(C∗Cρ).

Aiming at using Proposition 1 (ii) we are looking for the limit of the operator
(Uh − 1)/h for h → 0.

Denoting T = tr(C∗Cρ) we can write up to terms of order t that

Uh − 1

h
f (ρ) = 1

h
(1−hT )

[
f

(
ρ̃1

1−hT

)
− f (ρ)

]
+ 1

h
h T

[(
f

(
ρ̃2

hT

)
− f (ρ)

)]

≈ 1

h
(1 − hT )

[
f (ρ − ih[A, ρ] − 1

2
h{C∗C, ρ} + hρT ) − f (ρ)

]

+T

[
f

(
CρC∗

T

)
− f (ρ)

]
,

which equals approximately to

Lcount f (ρ) = −
(
f ′(ρ), i[A, ρ]+ 1

2
{C∗C, ρ}−ρT

)
+ T

[
f

(
CρC∗

T

)
− f (ρ)

]
.

(4.3)

Summarising by looking carefully at the small terms ignored, we can conclude the
following.
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Lemma 1 Under the setting considered,

∥∥∥∥
Uh − 1

h
f − Lcount f

∥∥∥∥ ≤ √
hκ‖ f ‖C2(S(H0))

(4.4)

for f ∈ C2(S(H0)), with Lcount given by (4.3) and a constant κ.

We can prove now our first result.

Theorem 1 LetH0 = Cn and A, C be n×n square matrices with A being Hermitian.
Then:
(i) The operator (4.3) generates a Feller process Oρ

t in S(H0) and the corresponding
Feller semigroup Tt in C(S(H0)) having the spaces C1(S(H0)) and C2(S(H0))

as invariant cores, and Ts are bounded in these spaces uniformly for s ∈ [0, t]
with any t > 0.

(ii) The scaled discrete semigroups (Uh)
[s/h] converge to the semigroup Ts , as h → 0,

so that the corresponding processes converge in distribution, with the following
rates of convergence:

‖(Uh)
[s/h] − Ts f ‖ ≤ √

hsκ(t)‖ f ‖C2(S(H0))
, (4.5)

where the constant κ(t) depends on the dimension n and the norms of A and C.
(iii) The scaled semigroups T λ

s converge to the semigroup Ts, as λ → 0, so that
the corresponding processes converge in distribution, with the following rates of
convergence:

‖T λ
s f − Ts f ‖ ≤ √

λsκ(t)‖ f ‖C2(S(H0))
. (4.6)

Proof (i) This is a consequence of Proposition 3. To make this conclusion one needs
to show property (11.3) with K = S(Cn) and

b(ρ) = −i[A, ρ] − 1

2
{C∗C, ρ} + tr(C∗Cρ)ρ.

It is straightforward to see that the solutions to the ODE ρ̇ = b(ρ) preserve the
affine set of Hermitian matrices with unit trace. So the key point is the preservation
of positivity. It turns out that a stronger version of (11.3) holds, namely that d(ρ +
hb(ρ), K ) = 0 for any ρ from the boundary of K and all sufficiently small h. By
the compactness of a unit ball in Cn , this claim follows from the following one. If
ρ belongs to the boundary of K , that is, there exists a nonempty set V (ρ) of unit
vectors such that ρv = 0 for v ∈ V (ρ), then (v, (ρ + hb(ρ))v) ≥ 0 for any unit
vector v and all h ≤ h(v) with some h(v) > 0 (because, by compactness, then
minv h(v) > 0). But this property is obvious for v /∈ V (ρ). On the other hand
(v, b(ρ)v) = 0 for v ∈ V (ρ) implying that (v, (ρ + hb(ρ))v) = 0 for all h > 0
and all v ∈ V (ρ).

(ii) This is a consequence of (i), Proposition 1 (ii) and the observation that (10.5) holds
here with the triple of spaces C2(S(H0)) ⊂ C1(S(H0)) ⊂ C(S(H0)).
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(iii) This is a consequence of (i), formula (3.6) and Proposition 1 (i), with B =
C(S(H0)), D = C2(S(H0)). ��

Remark 2 This result extends almost automatically to the case of an arbitrary sepa-
rable Hilbert space H0 and arbitrary bounded operators H ,C , with the derivatives
understood in the Fréchet sense. The only point where the finite-dimensional setting
was used was in proving statement (i) using compactness of a unit ball in Cn and the
Brezis theorem. In infinite-dimensional case one can use the compactness of a unit ball
in a Hilbert space in the weak topology and the Banach-space version of the Brezis
theorem, as presented in [32] and [30].

As is seen directly via Ito’s formula, the Feller process Oρ
t generated by (4.3) can

be described as solving the jump type SDE

dρ =
(

−i[A, ρ] − 1

2
{C∗C, ρ} + tr(CρC∗)ρ

)
dt +

(
CρC∗

tr(CρC∗)
− ρ

)
dNt ,

(4.7)

with the counting process Nt with the position dependent intensity tr(C∗Cρ), so that
the compensated process Nt − ∫ t

0 tr(C
∗Cρs) ds is a martingale. Equation (4.7) is

the Belavkin quantum filtering SDE corresponding to the counting type observation
(because the driving process Nt is a counting process). Representation via the generator
is an equivalent way of specifying the process of continuous quantum observation and
filtering.

Remark 3 Equation (4.7) is slightly nonstandard as the driving noise Nt is itself posi-
tion dependent. However there is a natural way to rewrite it in terms of an independent
driving noise. Namely, with a standard Poisson random measure process N (dx dt) on
R+ × R+ (with Lebesgue measure as intensity) one can rewrite equation (4.7) in the
following equivalent form:

dρ =
(

−i[A, ρ] − 1

2
{C∗C, ρ} + tr(CρC∗)ρ

)
dt

+
(

CρC∗

tr(CρC∗)
− ρ

)
1(tr(C∗Cρ) ≤ x)N (dx dt), (4.8)

see details of this construction in [38]. Alternatively, one can make sense of (4.7) in
terms of the general theory of weak SDEs from [20].

Remark 4 The meaning of the term ’counting observation’ (as well as ’diffusive type’
of the next section) becomesmore concrete in amore advanced treatment of the process
of quantum measurement, see e.g. [12].

5 Belavkin equations for a diffusive observation

Let us turn to the second case of choosing orthogonal projectors P0, P1, when they
differ from the diagonal choice (4.2).
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General couple of two orthogonal projectors in C2 is easily seen to be of the form

P0 =
(

cos2 φ sin φ cosφeiψ

sin φ cosφeiψ sin2 φ

)
,

P1 =
(

sin2 φ − sin φ cosφeiψ

− sin φ cosφeiψ cos2 φ

)
.

The phase terms with ψ does not make much difference, so we choose further
ψ = 0. Moreover, to avoid diagonal case we assume φ �= πk/2, k ∈ N .

By (2.4),

I × P0 =
(

cos2 φ I sin φ cosφ I
sin φ cosφ I sin2 φ I

)
,

I × P1 =
(

sin2 φ I − sin φ cosφ I
− sin φ cosφ I cos2 φ I

)
.

Hence, for arbitrary matrices a, b, c, d, we have

(I × P0)

(
a b
c d

)
=

(
cos2 φ a + sin φ cosφ c cos2 φ b + sin φ cosφ d
sin φ cosφ a + sin2 φ c sin φ cosφ b + sin2 φ d

)

and

(I × P0)

(
a b
c d

)
(I × P0) =

(
cos2 φ ωφ sin φ cosφ ωφ

sin φ cosφ ωφ sin2 φ ωφ

)

with

ωφ = ωφ(a, b, c, d) = cos2 φ a + sin φ cosφ(b + c) + sin2 φ d.

Since P1 is obtained from P0 by changing φ to φ + π/2, it follows that

(I × P1)

(
a b
c d

)
(I × P1) =

(
sin2 φ ω̃φ − sin φ cosφ ω̃φ

− sin φ cosφ ω̃φ cos2 φ ω̃φ

)

with

ω̃φ = ωφ+π/2 = sin2 φ a − sin φ cosφ(b + c) + cos2 φ d.

By (2.2) we get

tr p1[(I × P0)

(
a b
c d

)
(I × P0)]

= ωφ = cos2 φ a + sin φ cosφ(b + c) + sin2 φ d,
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tr p1[(I × P1)

(
a b
c d

)
(I × P1)]

= ω̃φ = sin2 φ a − sin φ cosφ(b + c) + cos2 φ d.

Toget new stateswe have to take a, b, c, d from (4.1).Hence for the non-normalized
states we get the approximate formulas (up to terms of order t):

ρ̃1 = cos2 φ(ρ − i t[A, ρ] − 1

2
t{C∗C, ρ})

+√
t sin φ cosφ(ρC∗ + Cρ) + t sin2 φ CρC∗,

ρ̃2 = sin2 φ(ρ − i t[A, ρ] − 1

2
t{C∗C, ρ})

−√
t sin φ cosφ(ρC∗ + Cρ) + t cos2 φ CρC∗.

These states occur with the probabilities

p1 = cos2 φ(1 − tT ) + √
t sin φ cosφ tr(ρC∗ + Cρ) + tT sin2 φ,

p2 = sin2 φ(1 − tT ) − √
t sin φ cosφ tr(ρC∗ + Cρ) + tT cos2 φ.

For arbitrary numbers a, b, c, one can write up to terms of order t , that

1

a + b
√
t + ct

= 1

a

1

1 + (b/a)
√
t + (c/a)t

= 1

a
(1 − (b/a)

√
t − (c/a)t + (b/a)2t).

Consequently, with this order of approximation,

1

p1
= 1

cos2 φ
(1 − tan φ

√
t tr(ρC∗ + Cρ) − T (tan2 φ − 1)t

+ tan2 φ [tr(ρC∗ + Cρ)]2t),
1

p2
= 1

sin2 φ
(1 + cot φ

√
t tr(ρC∗ + Cρ) − T (cot2 φ − 1)t

+ cot2 φ [tr(ρC∗ + Cρ)]2t),

and therefore the normalized states are given by the formulas

ρ1 = ρ̃1

p1
= [ρ − i t[A, ρ] − 1

2
t{C∗C, ρ} + √

t tan φ(ρC∗ + Cρ) + t tan2 φ CρC∗]
×(1 − tan φ

√
t tr(ρC∗ + Cρ) − T (tan2 φ − 1)t + tan2 φ [tr(ρC∗ + Cρ)]2t)

= ρ + √
t tan φ(ρC∗ + Cρ − Ωρ) + t B1

with

Ω = tr(ρC∗ + Cρ)
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and

B1 = −i[A, ρ]− 1

2
{C∗C, ρ} + Tρ+tan2 φ(CρC∗ − (ρC∗ + Cρ)Ω − Tρ + Ω2ρ),

and

ρ2 = ρ̃2

p2
= [ρ − i t[A, ρ] − 1

2
t{C∗C, ρ} − √

t cot φ(ρC∗ + Cρ) + t cot2 φ CρC∗]
×(1 + cot φ

√
t tr(ρC∗ + Cρ) − T (cot2 φ − 1)t + cot2 φ [tr(ρC∗ + Cρ)]2t)

= ρ − √
t cot φ(ρC∗ + Cρ − Ωρ) + t B2

with

B2=−i[A, ρ] − 1

2
{C∗C, ρ} + Tρ+cot2 φ(CρC∗ − (ρC∗ + Cρ)Ω−Tρ + Ω2ρ).

The terms of order t in p j give contributions of lower order, so that to the main
order in small h we have

Uh − 1

h
f (ρ)

= 1

h
p1 [ f (ρ1) − f (ρ)] + 1

h
p1 [ f (ρ2) − f (ρ)] .

= 1

h
(cos2 φ + √

h sin φ cosφΩ)
[
( f ′(ρ),

√
h tan φ(ρC∗ + Cρ − Ωρ) + t B1)

+1

2
tan2 φ[(ρC∗ + Cρ − Ωρ) f ′′(ρ)(ρC∗ + Cρ − Ωρ)]h]

+1

h
(sin2 φ − √

h sin φ cosφΩ)
[
( f ′(ρ),−√

h cot φ(ρC∗ + Cρ − Ωρ) + t B2)

+1

2
cot2 φ[(ρC∗ + Cρ − Ωρ) f ′′(ρ)(ρC∗ + Cρ − Ωρ)]h]

,

where, for a matrix A,

[A f ′′(ρ)A] =
∑

i jkl

Ai j
∂2 f

∂ρi j∂ρkl
Akl .

The terms of order h−1/2 cancel and we get in the main term

Uh − 1

h
f (ρ) ≈ 1

2
[(ρC∗ + Cρ − Ωρ) f ′′(ρ)(ρC∗ + Cρ − Ωρ)]

+( f ′(ρ),Ω(ρC∗ + Cρ − Ωρ) + cos2 φB1 + sin2 φB2) ≈ Ldi f f (ρ)
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with

Ldi f f (ρ) = 1

2
[(ρC∗ + Cρ − Ωρ) f ′′(ρ)(ρC∗ + Cρ − Ωρ)]

+
(
f ′(ρ),−i[A, ρ] − 1

2
{C∗C, ρ} + CρC∗

)
, (5.1)

which is remarkably independent of φ! Thus, taking into account the terms that were
ignored within the approximation, we obtained the following counterpart of Lemma 1:

Lemma 2 Under the setting considered, and for any φ �= πk/2, k ∈ Z,

∥∥∥∥
Uh − 1

h
f − Ldi f f

∥∥∥∥ ≤ √
hκ‖ f ‖C3(S(H0))

(5.2)

for f ∈ C3(S(H0)), with Ldi f given by (5.1).

Unlike the jump-type limiting processes analysed in the previous section, where
a straightforward pure analytic proof of the well-posedness of the process generated
by L is available, here an approach using SDEs is handy. Ito’s formula shows that a
process generated by (5.1) can arise from solving the following Ito’s SDE:

dρ =
(

−i[A, ρ] − 1

2
{C∗C, ρ} + CρC∗

)
dt

+ (
ρC∗ + Cρ − tr (ρC∗ + Cρ)ρ

)
dWt , (5.3)

where Wt is a standard one-dimensional Wiener process. This SDE is the Belavkin
quantum filtering SDE for normalized states corresponding to the diffusive type obser-
vation.

Theorem 2 LetH0 = Cn and A, C be n×n square matrices with A being Hermitian.
Then:

(i) The operator (5.1) generates a Feller process Oρ
t in S(H0) and the corresponding

Feller semigroup Tt in C(S(H0)) having the spaces C2(S(H0)) and C3(S(H0))

as invariant cores, and Ts are bounded in these spaces uniformly for s ∈ [0, t]
with any t > 0. This process is given by the solutions to SDE (5.3), which is well
posed as a diffusion equation in S(H0).

(ii) The scaled discrete semigroups (Uh)
[s/h] converge to the semigroup Ts, as h → 0,

so that the corresponding processes converge in distribution, with the following
rates of convergence:

‖(Uh)
[s/h] − Ts f ‖ ≤ √

hsκ(t)‖ f ‖C3(S(H0))
, (5.4)

where the constant κ(t) depends on the norms of A and C.
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(iii) The scaled semigroups T λ
s converge to the semigroup Ts, as λ → 0, so that

the corresponding processes converge in distribution, with the following rates of
convergence:

‖T λ
s f − Ts f ‖ ≤ √

λsκ(t)‖ f ‖C3(S(H0))
. (5.5)

Proof Parts (ii) and (iii) are obtained by the same arguments as in the proof of The-
orem 1. One only has to mention that estimate (10.3) needed to apply Proposition 1
follows from the standard fact of the theory of diffusion that E((Xt (x) − x)2) ≤ Ct
for any diffusion Xt (x) with bounded smooth coefficients. So we need only to prove
(i). All claims follow if one can construct a diffusion in S(H0) solving (5.3), because
in S(H0) all coefficients are bounded, and then both the uniqueness of solution and
the required smoothness of solutions with respect to initial data follow automatically
from the smoothness of the coefficients by the standard tools of Ito’s SDEs. The main
difficulty here lies in proving that solutions to (5.3) preserve the set of positive matri-
ces. But the fact that SDE (5.3) is well-posed in S(H0) is a well known fact, see e.g.
Section 3.4.1 in monograph [5]. Thus one can complete a proof of Theorem 2 by
referring to this result. However, a proof of [5] is indirect, and the fact is really crucial.
Therefore, for completeness we sketch below a different direct proof that the solutions
to (5.3) preserve the set of positive matrices. In this approach we shall consider the
coefficients of the equation (5.3) to be given as they are only for nonnegative ρ of
unit trace and continued smoothly to all Hermitian ρ in such a way that these coef-
ficients vanish outside some neighborhood of this set. The modified equations (5.3)
have globally bounded smooth coefficients and hence have unique well defined global
solutions. Thus we really only need to show the preservation of positivity.

Our method is based on the Stratonovich integral. Recall that the Stratonovich
differential ◦dX is lined with Ito’s differential by the formula Z ◦ dX = Z dX +
(1/2)dZ dX . Hence denoting

B(ρ) = ρC∗ + Cρ − tr (ρC∗ + Cρ)ρ,

equation (5.3) rewrites in Stratonovich form as

dρ =
(

−i[A, ρ] − 1

2
{C∗C, ρ} + CρC∗

)
dt + B(ρ) ◦ dWt − 1

2
dB(ρ) dWt

=
(

−i[A, ρ] − 1

2
{C∗C, ρ} + CρC∗

)
dt + B(ρ) ◦ dWt

−1

2
[B(ρ)C∗ + CB(ρ) − tr (ρC∗ + Cρ)B(ρ) − tr (B(ρ)C∗ + CB(ρ))ρ]dt .

Using the fundamental result of the Stratonovich integral, stating that solutions to
Stratonovich SDEs can be obtained as the limits of the solutions to the ODEs obtained
by approximating thewhite noisewith smooth functions,we can state that the solutions
to this Stratonovich equation preserve positivity of matrices, if the equations

ρ̇ = −i[A, ρ] − 1

2
{C∗C, ρ} + CρC∗ + B(ρ)φt
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− 1

2
[B(ρ)C∗ + CB(ρ) − tr (ρC∗ + Cρ)B(ρ) − tr (B(ρ)C∗ + CB(ρ))ρ]

(5.6)

preserve the set of positive matrices for any continuous function φt . But this follows
by the Brezis Theorem 6. To see this we substitute the expression for B(ρ) in the first
three places of the last square bracket yielding the equation

ρ̇ = −i[A, ρ] − 1

2
{C∗C, ρ} + B(ρ)φt

−1

2
[ρ(C∗)2 + C2ρ + (tr (ρC∗ + Cρ))2ρ − tr (B(ρ)C∗ + CB(ρ))ρ] (5.7)

(the key point is that the ’nasty’ term CρC∗ cancels). It is seen that Theorem 6
applies, because whenever (v, ρv) = 0, the r.h.s. ωt (ρ) of equation (5.7) satisfies
(v, ωt (ρ)v) = 0 for any function φt . The details of the argument are the same as in
the proof of Theorem 1. ��
Remark 5 Yet another way to prove the preservation of positivity can be carried out
via the theory of boundary points. Namely, from Proposition 6.4.1 in [21] it follows
that for any unit vector v the matrix ρ of rank n − 1 such that (v, ρv) = 0 belongs
to the inaccessible boundary point for the domain (v, ρv) > 0. Hence for a dense
countable set of unit vectors {v j } we can conclude that (v j , ρtv j ) > 0 for all j and t
almost surely. Consequently (v, ρtv) ≥ 0 for all v and t almost surely.

Remark 6 The methods developed can be used to extend this result to infinite dimen-
sional H0. However, unlike the situation with counting observations, explained in
Remark 2, there is some subtlety here in working with SDEs in the space of trace class
operators, which we are not going to discuss in this paper.

A remarkable property of the SDEs (4.7) and (5.3) is that they preserve the pure
states. Namely if the initial state ρ was pure, ρ = ψ ⊗ ψ̄ , then it remains pure for all
times. Namely, one can check by a direct application of Ito’s formula that if φ satisfies
the SDE

dφ = −[i(A − 〈Re C〉φ Im C)

+1

2
(C − 〈Re C〉φ)∗(C − 〈Re C〉φ)]φ dt + (C − 〈Re C〉φ)φ dWt , (5.8)

then ρ = ψ ⊗ ψ̄ satisfies equation (5.3). Equation (5.8) is the Belavkin quantum
filtering equation for pure states. It looks much simpler for the most important case of
self-adjoint C :

dφ = −[i A + 1

2
(C − 〈C〉φ)2]φ dt + (C − 〈C〉φ)φ dWt . (5.9)

Another key observation is that there exists an equivalent linear version of (5.3).
Namely assume that ξ solves the following Belavkin quantum filtering SDE for non-
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normalized states:

dξ = (−i[A, ξ ] − 1

2
{C∗C, ξ} + CξC∗) dt + (ξC∗ + Cξ) dYt , (5.10)

where Yt is a Brownian motion under a certain measure. Applying Ito’s formula to
ρ = ξ/tr ξ one finds that ρ satisfies (5.3) with the process W satisfying the equation

dWt = dYt − tr (ξC∗ + Cξ) dt . (5.11)

It follows from the famous Girsanov formula that if Yt was a Wiener process, then
Wt would be also a Wiener process under some different but equivalent measure with
respect to one defining Yt . Hence a solution ξt to the linear equation (5.10) with some
Brownian motion Yt yields the solution ρ = ξ/tr ξ to (5.3) with some other Brownian
motion Wt .

6 Observations via different channels

Let us now extend the theory to the case of several channels of observation. Namely,
we take

H = H0 ⊗ C2 ⊗ · · · ⊗ C2, (K multipliers C2), (6.1)

and the atom (system with Hilbert space H0) is supposed to interact with each of the
K measuring devices with the state spaceC2. Each of the devises is equipped with the
standard basis (e j0 , e

j
1)with e

j
0 chosen as a vacuum vector, that is as its stationary state,

with the corresponding density matrix beingΩ j = |e j0〉〈e j0 |. The Hamiltonian is given
by the sum H = H0 + ∑K

k=1 Hk , where H0 = A ⊗ I⊗k describes the free dynamics
of the atom, and Hj connects the atom with the j th device. The same scaling 1/

√
t

applies to the interaction parts.
Thus H is specified by k + 1 operators A,C1, · · · ,CK in H0, so that Hj are give

by the formulas:

H0(h ⊗ e1i1 ⊗ · · · ⊗ eKiK ) = Ah ⊗ e1i1 ⊗ · · · ⊗ eKiK ,

Hj (h ⊗ e1i1 ⊗ · · · ⊗ eKiK )|
e ji j

=e j1
= − i√

t
C∗

j h ⊗ e1i1 ⊗ · · · ⊗ eKiK )|
e ji j

=e j0
, j > 0,

Hj (h ⊗ e1i1 ⊗ · · · ⊗ eKiK )|
e ji j

=e j0
= i√

t
C j (h ⊗ e1i1 ⊗ · · · ⊗ eKiK )|

e ji j
=e j1

, j > 0.

(6.2)

At a starting time of an interaction the devices are supposed to be set to their vacuum
states, so that a state ρ on H0 = Cn lifts to H as

ρH = ρ ⊗ Ω1 ⊗ · · · ⊗ ΩK .
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The observation procedure can be specified by choosing two orthogonal projectors
P j
0 and P j

1 in the space C2 of each device (that is in each channel of observation)

arising from some observables with the spectral decompositions
∑

l λl P
j
l . This choice

yields the totality of 2K orthogonal projectors in H,

I ⊗ P1
i1 ⊗ · · · ⊗ PK

iK ,

so that the possible new non-normalized states after each step of interaction and mea-
surement are

ρ̃
i1···iK
t = tr p1···K [(I ⊗ P1

i1 ⊗ · · · ⊗ PK
iK )e−i t HρHeit H (I ⊗ P1

i1 ⊗ · · · ⊗ PK
iK )],

(6.3)

where

γt = e−i t HρHeit H = e−i t H (ρ ⊗ Ω1 ⊗ · · · ⊗ ΩK )eit H , (6.4)

and tr p1···K is the partial trace with respect to all spaces, but forH0. These states may
occur with the probabilities

pi1···iK (t) = tr [γt (I ⊗ Pi1 ⊗ · · · ⊗ PiK )] = trρ̃i1···iK
t . (6.5)

Therefore the multichannel extension of the discrete timeMarkov chain of successive
indirect observations given by (3.3) and (3.4) is given by 2K possible transitions of ρ

to the states

ρ
i1···iK
t = 1

pi1···iK
tr p1···K [(I ⊗ Pi1 ⊗ · · · ⊗ PiK )γt (I ⊗ Pi1 ⊗ · · · ⊗ PiK )], (6.6)

where γt and the probabilities pi1···iK are given by (6.4) and (6.5). The transition
operator of this Markov chain writes down as

Ut f (ρ) = E f (ρt ) =
∑

i1···iK
pi1···iK (t) f (ρi1···iK

t ). (6.7)

The operators in H are best described in terms of blocks. Namely, writing H =
⊕Hi1···iK , withHi1···iK generated byH0⊗ei1 ⊗· · ·⊗eiK , we can represent an operator

L inH by 4K operators L j1··· jK
i1···iK inH, so that

L(hi1···iK ⊗ ei1 ⊗ · · · ⊗ eiK ) =
∑

j1··· jK
L j1··· jK
i1···iK hi1···iK ⊗ e j1 ⊗ · · · ⊗ e jK .
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The composition and partial trace in this notations are expressed by the following
formulas:

(L1L2)
j1··· jK
i1···iK =

∑

m1···mK

(L1)
j1··· jK
m1···mK (L2)

m1···mK
j1··· jK , (6.8)

tr p1···KL =
∑

j1··· jK
L j1··· jK
j1··· jK . (6.9)

For simplicity let us perform detailed calculations for K = 2 (they are quite similar in
the general case). Thus H = Cn ⊗ C2 ⊗ C2 and H = H0 + H1 + H2. Let us denote
the bases of the two devices {ek} and { fk} respectively. Formulas (6.2) rewrite in a
simpler way as

H0(h ⊗ ek ⊗ f j ) = Ah ⊗ ek ⊗ f j ,

H1(h ⊗ e1 ⊗ f j ) = −iC∗
1h ⊗ e0 ⊗ f j/

√
t,

H1(h ⊗ e0 ⊗ f j ) = iC1h ⊗ e1 ⊗ f j
√
t,

H2(h ⊗ e j ⊗ f1) = −iC∗
2h ⊗ e j ⊗ f0/

√
t,

H2(h ⊗ e j ⊗ f0) = iC2h ⊗ e j ⊗ f1/
√
t,

With the chosen vacuum vectors e0 = (1, 0) in the first device and f0 = (1, 0) in
the second device, a state ρ on H0 = Cn lifts to H as

ρH = ρ ⊗ |e0〉〈e0| ⊗ | f0〉〈 f0|.

The operators L in H are described by 16 operators Llm
jk in H. To shorten the

formulas, let us perform calculations without scaling C j (without the factor 1/
√
t)

and will restore the scaling at the end. In term of the blocks we can write:

(ρH)ml
jk = δm0 δl0δ

0
j δ

0
kρ.

(H1)
ml
jk = iδlkδ

m
j̄
(C1δ

0
j − C∗

1δ
1
j ), (H2)

ml
jk = iδmj δl

k̄
(C2δ

0
k − C∗

2δ
1
k ),

where we have introduced the following notations: for i being 0 or 1 we denote ī as
being 1 and 0 respectively.

By (6.8) it follows that

[H1, ρH]ml
jk = i

∑
δlqδ

m
p̄ (C1δ

0
p − C∗

1δ
1
p) δ

p
0 δ

q
0 δ0j δ

0
kρ

−i
∑

δm0 δl0δ
0
pδ

0
qρ δ

q
k δ

p
j̄
(C1δ

0
j − C∗

1δ
1
j )

= iδ0k δ
l
0(δ

0
j δ

m
1 C1ρ + δ1j δ

m
0 ρC∗

1 ) = iδ0k δ
l
0δ

m
j̄
(δ0j C1ρ + δ1jρC

∗
1 ).
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Next

(H2
1 )ml

jk =
∑

(H1)
ml
pq(H1)

pq
jk

= −
∑

δlqδ
m
p̄ (C1δ

0
p − C∗

1δ
1
p)δ

q
k δ

p
j̄
(C1δ

0
j − C∗

1δ
1
j )

= −δlkδ
m
j (C1δ

1
j − C∗

1δ
0
j )(C1δ

0
j − C∗

1δ
1
j )

= δlkδ
m
j (δ1jC1C

∗
1 + δ0j C

∗
1C1),

(H2
2 )ml

jk =
∑

(H2)
ml
pq(H2)

pq
jk = −δmp δlq̄(C2δ

0
q − C∗

2δ
1
q)δ

p
j δ

q
k̄
(C2δ

0
k − C∗

2δ
1
k )

= −δmj δlk(C2δ
1
k − C∗

2δ
0
k )(C2δ

0
k − C∗

2δ
1
k )

= δmj δlk(δ
1
kC2C

∗
2 + δ0kC

∗
2C2),

(H1H2)
ml
jk =

∑
(H1)

ml
pq(H2)

pq
jk

= −
∑

δlqδ
m
p̄ (C1δ

0
p − C∗

1δ
1
p)δ

p
j δ

q
k̄
(C2δ

0
k − C∗

2δ
1
k )

= −δl
k̄
δm
j̄
(C1δ

0
j − C∗

1δ
1
j )(C2δ

0
k − C∗

2δ
1
k ),

(H2H1)
ml
jk =

∑
(H2)

ml
pq(H1)

pq
jk

= −δmp δlq̄(C2δ
0
q − C∗

2δ
1
q)δ

q
k δ

p
j̄
(C1δ

0
j − C∗

1δ
1
j )

= −δl
k̄
δm
j̄
(C2δ

0
k − C∗

2δ
1
k )(C1δ

0
j − C∗

1δ
1
j ),

and

(H1ρHH1)
ml
jk = (H1ρH)ml

pq(H1)
pq
jk = −δ0qδ

l
0δ

m
p̄ δ0pC1ρ δ

q
k δ

p
j̄
(C1δ

0
j − C∗

1δ
1
j )

= δ0k δ
l
0δ

1
j δ

m
1 C1ρC

∗
1 ,

(H2ρHH2)
ml
jk = (H2ρH)ml

pq(H2)
pq
jk = −δm0 δ0pδ

l
q̄δ

0
qC2ρ δ

p
j δ

q
k̄
(C2δ

0
k − C∗

2δ
1
k )

= δ1k δ
l
1δ

0
j δ

m
0 C2ρC

∗
2 ,

(H1ρHH2)
ml
jk = (H1ρH)ml

pq(H2)
pq
jk = −δ0qδ

l
0δ

m
p̄ δ0pC1ρ δ

p
j δ

q
k̄
(C2δ

0
k − C∗

2δ
1
k )

= δ10δ
m
1 δ0j δ

1
kC1ρC

∗
2 ,

(H2ρHH1)
ml
jk = (H2ρH)ml

pq(H1)
pq
jk = −δm0 δ0pδ

l
q̄δ

0
qC2ρ δ

q
k δ

p
j̄
(C1δ

0
j − C∗

1δ
1
j )

= δ11δ
m
0 δ1j δ

0
kC2ρC

∗
1 .

Therefore

(H1 + H2)ρH(H1 + H2)
ml
jk = δ0k δ

l
0δ

1
j δ

m
1 C1ρC

∗
1 + δ1k δ

l
1δ

0
j δ

m
0 C2ρC

∗
2

+δ10δ
m
1 δ0j δ

1
kC1ρC

∗
2 + δ11δ

m
0 δ1j δ

0
kC2ρC

∗
1 .

Next,

{H2
1 , ρH}ml

jk = (H2
1 )ml

pq(ρH)
pq
jk + (ρH)ml

pq(H
2
1 )

pq
jk
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= δlqδ
m
p (δ1pC1C

∗
1 + δ0pC

∗
1C1) δ

p
0 δ

q
0 δ0j δ

0
kρ

+δm0 δl0δ
0
pδ

0
qρ δ

q
k δ

p
j (δ

1
jC1C

∗
1 + δ0j C

∗
1C1)

= δm0 δl0δ
0
j δ

0
k {C∗

1C1, ρ},
{H2

2 , ρH}ml
jk = (H2

2 )ml
pq(ρH)

pq
jk + (ρH)ml

pq(H
2
2 )

pq
jk

= δmp δlq(δ
1
qC2C

∗
2 + δ0qC

∗
2C2) δ

p
0 δ

q
0 δ0j δ

0
kρ

+δm0 δl0δ
0
pδ

0
qρ δ

p
j δ

q
k (δ1kC2C

∗
2 + δ0kC

∗
2C2)

= δm0 δl0δ
0
j δ

0
k {C∗

2C2, ρ},

and

{H1H2, ρH}ml
jk = (H1H2)

ml
pq(ρH)

pq
jk + (ρH)ml

pq(H1H2)
pq
jk

= −δlq̄δ
m
p̄ (C1δ

0
p − C∗

1δ
1
p)(C2δ

0
q − C∗

2δ
1
q)δ

p
0 δ

q
0 δ0j δ

0
kρ

−δm0 δl0δ
0
pδ

0
qρδ

q
k̄
δ
p
j̄
(C1δ

0
j − C∗

1δ
1
j )(C2δ

0
k − C∗

2δ
1
k )

= −δl1δ
m
1 δ0j δ

0
kC1C2ρ − δl0δ

m
0 δ1j δ

1
kρC

∗
1C

∗
2 ,

{H2H1, ρH}ml
jk = (H2H1)

ml
pq(ρH)

pq
jk + (ρH)ml

pq(H2H1)
pq
jk

−δlq̄δ
m
p̄ (C2δ

0
p − C∗

2δ
1
q)(C1δ

0
p − C∗

1δ
1
q)δ

p
0 δ

q
0 δ0j δ

0
kρ

−δm0 δl0δ
0
pδ

0
qρδ

q
k̄
δ
p
j̄
(C2δ

0
k − C∗

2δ
1
k )(C1δ

0
j − C∗

1δ
1
j )

= −δl1δ
m
1 δ0j δ

0
kC2C1ρ − δl0δ

m
0 δ1j δ

1
kρC

∗
2C

∗
1 .

Thus,

{(H1 + H2)
2, ρH}ml

jk = {H2
1 + H2

2 + H1H2 + H2H1, ρH}ml
jk

= δm0 δl0δ
0
j δ

0
k {C∗

1C1 + C∗
2C2, ρ}

−δl1δ
m
1 δ0j δ

0
k {C1,C2}ρ − δl0δ

m
0 δ1j δ

1
kρ{C∗

1 ,C
∗
2 }.

Thus all parts of (2.5) are collected.
Let us turn to (6.3). From the calculations with a single channel we know that one

has to distinguish diagonal and non-diagonal projectors P j
k . Let us start with the case,

when in both devises the projectors are diagonal, that is

P1
0 = P2

0 =
(
1 0
0 0

)
, P1

1 = P2
1 =

(
0 0
0 1

)
.

Let us calculate

(I ⊗ P1
j ⊗ P2

k )L(I ⊗ P1
j ⊗ P2

k )

for arbitrary L.
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We have

(I ⊗ P1
i ⊗ P2

r )
∑

h jk ⊗ e j ⊗ fk = hir ,

(I ⊗ P1
i ⊗ P2

r )ml
jk = δijδ

r
kδ

m
i δ1r .

So

((I ⊗ P1
i ⊗ P2

r )L)ml
jk = (I ⊗ P1

i ⊗ P2
r )ml

pqLpq
jk = δipδ

r
qδ

m
i δ1rLpq

jk = δmi δ1rLir
jk

and

((I ⊗ P1
i ⊗ P2

r )L(I ⊗ P1
i ⊗ P2

r ))ml
jk = ((I ⊗ P1

i ⊗ P2
r )L)ml

pq(I ⊗ P1
i ⊗ P2

r )
pq
jk

= δmi δ1rLir
pqδ

i
jδ

r
kδ

p
i δ

q
r = δmi δ1r δ

i
jδ

r
kLir

ir .

Thus

tr p12((I ⊗ P1
i ⊗ P2

r )L(I ⊗ P1
i ⊗ P2

r )) = Lir
ir ,

and

ρ̃ir = (e−i t Hρeit H )irir , pir = tr(e−i t Hρeit H )irir .

Thus we have

[H1 + H2, ρH] jkjk = 0,

(H1 + H2)ρH(H1 + H2)
jk
jk = δ0k δ

1
jC1ρC

∗
1 + δ1k δ

0
j C2ρC

∗
2 ,

{H2
1 + H2

2 + H1H2 + H2H1, ρH} jkjk = δ0j δ
0
k {C∗

1C1 + C∗
2C2, ρ}.

Restoring scaling C → C/
√
t yields approximately

(e−i t HρHeit H )
jk
jk = (ρH − i t[H , ρH] + t2(HρHH − 1

2
{H2, ρH})) jkjk

= δ0j δ
0
k (ρ − i t[A, ρ]) + t

[
δ0k δ

1
jC1ρC

∗
1

+δ1k δ
0
j C2ρC

∗
2 − 1

2
δ0j δ

0
k {C∗

1C1 + C∗
2C2, ρ}

]

and thus

ρ̃ jk = δ0j δ
0
k (ρ − i t[A, ρ]) + t[δ0k δ1jC1ρC

∗
1 + δ1k δ

0
j C2ρC

∗
2

−1

2
δ0j δ

0
k {C∗

1C1 + C∗
2C2, ρ}],

p jk = δ0j δ
0
k + t[δ0k δ1j tr(C1ρC

∗
1 ) + δ1k δ

0
j tr(C2ρC

∗
2 ) − δ0j δ

0
k tr((C

∗
1C1 + C∗

2C2)ρ)].
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Thus p11 = 0,

ρ00 = ρ̃00

p00
= (ρ − i t[A, ρ] − 1

2
t{C∗

1C1 + C∗
2C2, ρ})(1 + t tr((C∗

1C1 + C∗
2C2)ρ)),

= ρ − i t[A, ρ] − 1

2
t{C∗

1C1 + C∗
2C2, ρ} + t tr((C∗

1C1 + C∗
2C2)ρ)ρ,

ρ10 = ρ̃10

p10
= C1ρC∗

1

tr(C1ρC∗
1 )

, ρ01 = ρ̃01

p01
= C2ρC∗

2

tr(C2ρC∗
2 )

.

Thus we get, up to terms of order h in small h, that

Uh − 1

h
f (ρ)

= 1

h

∑

jk

p jk
[
f (ρ jk) − f (ρ)

]

= 1

h
p00[ f (ρ − ih[A, ρ] − 1

2
h{C∗

1C1 + C∗
2C2, ρ}

+h tr((C∗
1C1 + C∗

2C2)ρ)ρ) − f (ρ)]
+1

h
p10

[
f

(
C1ρC∗

1

tr(C1ρC∗
1 )

)
− f (ρ)

]
+ 1

h
p01

[
f

(
C2ρC∗

2

tr(C2ρC∗
2 )

)
− f (ρ)

]

=
(
f ′(ρ),−1

2
{C∗

1C1, ρ} + tr(C1ρC
∗
1 )ρ − 1

2
{C∗

2C2, ρ} + tr(C2ρC
∗
2 )ρ

)

+tr(C1ρC
∗
1 )

[
f

(
C1ρC∗

1

tr(C1ρC∗
1 )

)
− f (ρ)

]

+tr(C2ρC
∗
2 )

[
f

(
C2ρC∗

2

tr(C2ρC∗
2 )

)
− f (ρ)

]
.

Summarising and extending to arbitrary number of channels k we can conclude
that we proved the following extension of Lemma 1.

Lemma 3 Under the setting considered,

‖Uh − 1

h
f − Lcount f ‖ ≤ √

hκ‖ f ‖C2(S(H0))
(6.10)

for f ∈ C2(S(H0)), with Lcount given by

Lcount f (ρ) = −i[A, ρ] dt +
K∑

j=1

(
f ′(ρ),−1

2
{C∗

j C j , ρ} + tr(C jρC
∗
j )ρ

)

+
K∑

j=1

tr (C jρC
∗
j )

[
f

(
C jρC∗

j

tr(C jρC∗
j )

)
− f (ρ)

]
. (6.11)
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As a consequence we get the following direct extension of Theorem 1.

Theorem 3 Let H0 = Cn and A,C1, · · · ,CK be operators in H0 with A being Her-
mitian. Let the projectors defining the measurements be chosen to be diagonal in each
channel:

P j
0 =

(
1 0
0 0

)
, P j

1 =
(
0 0
0 1

)
(6.12)

for all j = 1, · · · , K.
Then all statements of Theorem 1 hold for the operator (6.11) and Markov semi-

groups described by the transition operator (6.7). In particular, estimates (4.5) and
(4.6) hold.

Remark 7 As explained in Remark 2 this result extends automatically to the case of
arbitrary separable Hilbert space H and bounded operators A,C1, · · · , CK in it.

As in the case of a single channel, the process generated by (6.11) can be described
by the solutions to the SDE of jump type, which takes now the form

dρ = −i[A, ρ] dt +
∑

j

(
−1

2
{C∗

j C j , ρ} + tr(C jρC
∗
j )ρ

)
dt

+
∑

j

(
C jρC∗

j

tr(C jρC∗
j )

− ρ

)
dN j

t , (6.13)

with the counting processes N j
t are independent and have the position dependent inten-

sities tr(C∗
j C jρ). Equation (6.13) is theBelavkin quantumfiltering SDE corresponding

to the counting type observation via several channels.
As suggested by Theorem 2, exploiting non diagonal pairs of projectors P j

0 , P j
1

should lead to the limiting generator of diffusive type. In fact, performing similar
calculations (which we omit) one arrives at the following general result.

Theorem 4 Let H0 = Cn and A,C1, · · · ,CK be operators in H0 with A being Her-
mitian. Let the projectors defining the measurements are chosen to be diagonal, that
is of type (6.12), for a subset I ⊂ {1, · · · , K } of the set of channels. And for j /∈ I
these channels are chosen as non-diagonal, that is of the form

P j
0 =

(
cos2 φ j sin φ j cosφ j

sin φ j cosφ j sin2 φ

)
, P j

1 =
(

sin2 φ j − sin φ j cosφ j

− sin φ j cosφ j cos2 φ j

)
,

(6.14)

with φ j �= kπ/2, k ∈ N. Then the limiting generator for the semigroup with the
transition operator (6.7) gets the expression

Lmix f (ρ) =
∑

j∈I

(
f ′(ρ),−1

2
{C∗

j C j , ρ} + tr(C jρC
∗
j )ρ

)
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+
∑

j∈I
tr (C jρC

∗
j )

[
f

(
C jρC∗

j

tr(C jρC∗
j )

)
− f (ρ)

]

+1

2

∑

j /∈I
[(ρC∗

j + C jρ − tr(ρC∗
j

+C jρ)ρ) f ′′(ρ)(ρC∗
j + C jρ − tr(ρC∗

j + C jρ)ρ)]
+

∑

j /∈I

(
f ′(ρ),−1

2
{C∗

j C j , ρ} + C jρC
∗
j

)
− ( f ′(ρ), i[A, ρ]).

(6.15)

This operator generates a Feller process Oρ
t in S(H0) and the corresponding Feller

semigroup Tt in C(S(H0)) such that claims (ii) and (iii) of Theorem 2 hold. The
Markov process generated by (6.15) can be given by the solutions of the following
SDEs in S(H0):

dρ = −i[A, ρ] dt +
∑

j∈I

(
−1

2
{C∗

j C j , ρ} + tr(C jρC
∗
j )ρ

)
dt

+
∑

j∈I

(
C jρC∗

j

tr(C jρC∗
j )

− ρ

)
dN j

t

+
∑

j /∈I

(
−1

2
{C∗

j C j , ρ} + C jρC
∗
j

)
dt

+
∑

j /∈I

(
ρC∗

j + C jρ − tr (ρC∗
j + C jρ)ρ

)
dW j

t , (6.16)

where Wj are independent Wiener processes and Ni
t independent jump process of

intensity tr(C jρC∗
j ).

Proof In the pure diffusive case, that is with empty I , the proof is exactly the same as
in Theorem 2. For the general case one only has to show that operator Lmix generates
a Feller process in S(H0) preserving the sets of smooth functions (other arguments
are again the same). Two proofs for proving this fact can be suggested. (i) One starts
with generator L̃mix obtained from (6.15) by ignoring the jump part. This is a well-
defined diffusion operator and by the same methods as in Theorem 2 one shows that it
generates a Feller processes in S(H0). But the jump part of (6.15) is a bounded operator
preserving positivity and smoothness. Hence it can be dealt with straightforwardly
via the perturbation theory. (ii) Each of the two parts of (6.15), related to I and its
complement, generates a well-defined Feller process in S(H0) preserving smoothness
(of arbitrary order in fact). Hence one can derive that the sum of these operators
generates a well-defined Feller process in S(H0) via the Lie-Trotter formula, namely
from Theorem 5.3.1 of [21]. ��
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Remark 8 The Markov chain of multichannel measurement that we are using is a bit
different from the one used in [38], wheremeasurement is based on a single operator R
in the device (no different channels), and counting and diffusive parts of the generator
arise from different projectors linked to different eigenspaces of this operator. As was
already mentioned the method of [38] did not provide the rates of convergence.

When I is empty, Lmix turns to Ldi f describing the multichannel observations of
diffusive type.

7 Fractional quantum stochastic filtering

Now everything is ready for our main result: the derivation of the fractional equations
of quantum stochastic filtering. As was shown above the standard Belavkin equations
of quantum filtering can be obtained as the scaled limits of the sequences of discrete
observations. The main assumption for each of the approximating processes was that
the time between successive measurement is either constant (discrete Markov chain
approximation) or is exponentially distributed (continuous timeMarkov chain approx-
imation). Of course there is no a priori reasons for these assumptions. And in fact in
several domains of physics it turned out to bemore appropriate tomodel times between
successive events by random variables from the domains of attraction of a stable law,
that is via CTRW.

Our next result is a direct consequence of Theorem 4 and Proposition 5.

Theorem 5 Under the assumptions of Theorem 4 let the Markov chain (6.6) is mod-
ified in such a way that the laws of transitions ρ → ρ

i1···iK
t remain unchanged, by

the time between transitions is taken as scaled random variable from the domain of
attraction of a β-stable law, that is as T h

i = h1/βTi from Proposition 5. Then the
corresponding generalized CTRW processes (12.3) built from the transition operator
(6.7) converge to the process Oρ

σt obtained from the process Oρ
t of Theorem 4 via

subordination by the inverse stable process σt = max{y : Sy ≤ t}. Moreover, the
functions ft (x) = E(Tσt f )(x) satisfy the fractional Caputo-Djerbashian equation
(12.5) with the generator L = Lmix given by (6.15).

As noted at the end of Appendix C, the fractional derivative Dβ
0+� is a particular

case of a class of mixed fractional derivatives (12.5). Therefore, under appropriately
organised scaled times between the acts of measurements the limiting evolution will
satisfy a more general fractional equation

D(ν)
0+� ft (x) = Lmix ft (x), f0(x) = f (x), (7.1)

with Dν given by (12.8).
When only one type of observation channels is used, equation (7.1) simplifies to

the case, when either Lcount or Ldi f are places instead of Lmix .
Equations (7.1) (and their particular cases with fractional derivative Dβ of order

β) represent the fractional analogs of the process of quantum stochastic filtering.
These equations can be also considered as the new equations of fractional quantum
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mechanics. They are different from the fractional Schrödinger equations suggested in
[31] and extensively studied recently.

Equations (7.1) describe the process of continuous quantum control and filtering
on the level of the evolution of averages. On the ’micro-level’ of SDEs (6.16) these
equations correspond to stopping the solutions of these SDEs at a random time σt
given by the inverse of a Lévy subordinator.

8 Fractional quantum control and games

The theory of quantum filtering reduces the analysis of quantum dynamic control and
games to the controlled version of evolutions (6.16). The simplest situation concerns
the case when the homodyne device is fixed, that is the operatorsC j and the projectors

P j
i are fixed, and the players can control the individual Hamiltonian H0 of the atom,

say, by applying appropriate electric or magnetic fields to the atom. Thus equations
(6.16) becomemodifiedby allowing H0 to dependononeor several control parameters.
The so-called separation principle states (see [11]) that the effective control of an
observed quantum system (that can be based in principle on the whole history of the
interaction of the atom and optical devices) can be reduced to theMarkovian feedback
control of the quantumfiltering equation, with the feedback at eachmoment depending
only on the current (filtered) state of the atom.

In the present case of CTRWmodeling of the process of measurements the problem
of control becomes the problem of control of scaled CTRW. The theory of such control
was built in the series of papers [27–29]. The main result is that in the scaling limit the
cost functions is a solution of the fractional Hamilton-Jacobi equation. In the present
context and in game-theoretic setting it implies the following. Let us consider the con-
trolled version of the process Oρ

σt from Theorem 5, where the individual Hamiltonian
is now H̃0 = H0 + uH1

0 + vH2
0 and it depends on control parameters u, v of two

players from compact setsU and V respectively. Suppose that it is possible to choose
new u, v directly after each act of measurement, and thus a control strategy is the
sequence (u1, v1), (u2, v2), · · · ) of controls applied after each act of measurement,
with each (u j , v j ) applied after j th act of measurement and depending on the history
of the process until that time. The case of a pure control (not a game) corresponds to
the choice V = 0 and is thus automatically included. Assume that players I and I I
play a standard dynamic zero-sum game with a finite time horizon T meaning that the
objective of I is to maximize the payoff

P(t; u(.), v(.)) = E
[∫ T

t
tr (Jρs) ds + tr (FρT )

]
, (8.1)

where J and F are some operators expressing the current and the terminal costs of
the game (they may depend on u and v, but we exclude this case just for simplicity)
and W is the collection of all noises involved in (6.16) (both diffusive and Poisson).
Then under the scaling limit of Theorem 5 the optimal cost function
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St (ρ) = max
u(.)

min
v(.)

P(t; u(.), v(.)) = min
v(.)

max
u(.)

P(t; u(.), v(.)) (8.2)

will satisfy the following fractional HJB-Isaacs equation of the CTRW modeling of
quantum games:

Dν
0+�St (ρ) = max

u
( f ′(ρ), i[ρ, uH1

0 ])
+min

v
( f ′(ρ), i[ρ, vH2

0 ]) + tr (Jρt ) + Lmix St (ρ). (8.3)

In [27] this equation was derived heuristically, in the general framework of controlled
CTRW by the dynamic programming approach. As usual in optimal control theory, to
justify the derivation one has to show the well-posedness of the limiting HJB equation
and then to prove the verification theorem, a classical reference is [15]. For some cases
of CTRWs this was performed in [29].

In the present fractional quantum case this problem will be considered elsewhere.
The additional complexity of this equation is related to the fact that the state space
is a rather nontrivial set of positive matrices with the unit trace. One can reduce the
complexity by looking at the dynamics of pure states only. But the set of pure states is
not a Euclidean space, but a manifold. In the finite-dimensional setting this manifold
is the complex projective space CPn .

Let us mention that in the non-fractional case, that is with the usual derivative ∂/∂t
instead of Dν

0+� in (8.3), the well-posedness of (the analogs of) equation (8.3) was
proved in [18], for a special model of pumping a laser with a counting measurement,
with some particular solutions calculated explicitly, and in [24], for a special arrange-
ments of diffusive measuring devises that ensured that the diffusive part of operator
Ldi f was nondegenerate and therefore the optimal control problem was reduced to the
drift control of the diffusions on a Riemannian manifold CPn .

9 Other Markov approximations and unbounded generators

Wecommented above on the possible extension to infinite-dimensional Hilbert spaces.
However, for all approximations the assumption of boundedness of all operators
involved seemed to be essential in the derivationgiven, at least of the couplingoperators
C j (unboundedness of A can be possibly treated via the interaction representation).
However, the quantum filtering equations are used also in the standard setting of
quantum mechanics. The mostly studied case is that of the standard Hamiltonian
H = −Δ + V (x) in L2(Rd) and the coupling operators being either position (multi-
plication by x) or momentum operators. Different Markov chain approximations may
be used to derive the filtering equation in this case.

A powerful approach was suggested by Belavkin in [9]: to use the von Neumann
model of unsharpmeasurement. In thismodel the effect ofmeasurement for the product
state φ(x) f (y) of an atom and a measuring device, a pointer, is given by the shift

U : φ(x) f (y) �→ φ(x) f (y − ax).
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Here both φ and f are from L2(Rd), and f > 0 describes the stationary state of a
pointer (the analog of the vacuum state in our modeling above). Projecting on the state
of an atom this yields the transition

G(y) : φ(x) �→ φy(x) = φ(x) f (y − ax)/ f (y), (9.1)

depending on the observed position y of the pointer. Assuming the evolution of the
atomduring time t between themoments ofmeasurements to begivenby aHamiltonian
A, the transition of a Markov chain of sequential measurements become

φ �→ φt,y(x) = (e−i Atφ)(x) f (y − ax)/ f (y). (9.2)

After an appropriate scaling from this Markov chain one derives the diffusive filtering
SDE (5.9) with C = x (the multiplication operator), that is directly the filtering equa-
tion for pure states, see detail in Appendix to [10]. The model can be extended to more
general situations, but seems to be linked with a specific von Neumann instantaneous
interaction. For the well-posedness of these kind of diffusive SDEs we can refer to
[14,17] and references therein.

The derivation of the fractional version of this equation, as well as the fractional
control of Section 8 can be performed in this setting in the same way as above.
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10 Appendix A. Convergence of semigroups

Here we collect the results on the convergence of Markov semigroups and CTRW,
which form the the theoretical basis for our derivations of the filtering equations.

It is well known that the convergence of the generators on the core of the limiting
generator implies the convergence of semigroups. We shall use a version of this result
with the rates, namely the following result, given in Theorem 8.1.1 of [21].

Proposition 1 Let Ft = etL be a strongly continuous semigroup in a Banach space
B with a norm ‖.‖B, generate by an operator L, having a core D, which is itself
a Banach space with a norm ‖.‖D ≥ ‖.‖B so that L ∈ L(D, B). Let Ft be also
a bounded semigroup in D such that ‖Ft‖D→D ≤ CD(T ) with a constant CD(T )

uniformly for t ∈ [0, T ].

123

http://creativecommons.org/licenses/by/4.0/


158 V. Kolokoltsov

(i) Let Fh
t , h > 0, be a family of strongly continuous contraction semigroups in a

Banach space B with bounded generators Lh such that

‖Lh f − L f ‖B ≤ εh‖ f ‖D
for all f ∈ D and some εh such that εh → 0 as h → 0. Then the semigroups Fh

t
converge strongly to the semigroup Ft , as h → 0, and

‖Fh
t f − Ft f ‖B ≤ tεhCD(T )‖L‖D→B . (10.1)

(ii) Let Uh be a family of contractions in B such that

∥∥∥∥

(
Uh − 1

h
− L

)
f

∥∥∥∥
B

≤ εh‖ f ‖D, (10.2)

and
∥∥∥∥

(
Fh − 1

h
− L

)
f

∥∥∥∥
B

≤ κh‖ f ‖D, (10.3)

with εh → 0 and κh → 0, as h → 0. Then the scaled discrete semigroups
(Uh)

[t/h] converge to the semigroup Ft and moreover

sup
s≤t

‖(Uh)
[s/h] − Fs f ‖B ≤ (κh + εh)t‖ f ‖B . (10.4)

Additional condition (10.3) makes working with discrete approximation a bit more
subtle, than with the continuous chain approximations. Effectively to get (10.3) one
needs a deeper regularity. Namely one should have another core D̃ such that D ⊂
D̃ ⊂ B with L ∈ L(D, D̃) ∩ L(D̃, B). In this case it is easy to see that

∥∥∥∥

(
Fh − 1

h
− L

)
f

∥∥∥∥
B

≤ h‖L‖D,D̃‖L‖D̃,B‖ f ‖D . (10.5)

11 Appendix B. Deterministic motions with random jumps

Let us look at the Cauchy problem

∂ ft
∂t

= (∇ ft , b(x)) + L ft (x), f0(x) given, (11.1)

with the simplest jump-type operator

L f (x) =
J∑

j=1

f (Y j (x) − x),
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where x ∈ Rd , ∇ f = ∂ f /∂x and b,Y j : Rd → Rd are given bounded smooth
functions. It is more or less obvious that the resolving operators of the Cauchy problem
(11.1) form a semigroup of contractions in the space C(Rd) preserving the spaces of
smooth functions. Let us make a precise statement. The simplest way to see it is via
the ’interaction representation’. Namely, let Xt (x) denote the solution to the Cauchy
problem Ẋt (x) = b(Xt (x)), X0(x) = x , and let us change the unknown function f in
(11.1) to φ via the equation f (x) = φ(Xt (x)). Direct substitution shows that φ solves
the Cauchy problem

∂φt

∂t
= Ltφt (x) =

J∑

j=1

φ((Xt (Y j (X−t (x)))) − x), φ0 = f0. (11.2)

Since Lt is a bounded operator, this Cauchy problem can be solved by the convergence
series over the powers of Lt . This leads to the following result.

Proposition 2 Let b,Y j ∈ C2(Rd), j = 1, · · · , J . Then the resolving operators Rt

of the Cauchy problem (11.1) form a semigroups of contractions in C(Rd) such that
the spaces C1(Rd) and C2(Rd) are invariant and Rt form semigroups of operators in
these spaces that are uniformly bounded for ∈ [0, T ] with any T .

We need an extension of this result for the subsets of Rd . The main tool is the
following classical theoremofBrezis,whichwe formulate in its simplest form referring
to proofs, extensions and history to [40].

Theorem 6 Let b(x) : K → Rd be a Lipschitz continuous function, where K is a
convex closed subset of Rd , such that

lim
h→0+

d(y + hb(x), K )

h
= 0 (11.3)

for any x ∈ K, where d(z, K ) denotes the distance between a point z and the set K .
Then K is flow invariant. More precisely, for any x ∈ K there exists a unique solution
Xt (x) of the equation Ẋt (x) = b(Xt (x)) with the initial condition x that belongs to
K for all t .

As a direct consequence we get the following extension of Proposition 2.

Proposition 3 Let K be a convex compact subset of Rd and b : K → Rd , Y j :
K → K be twice continuously differentiable functions. Let b satisfy the assumptions
of Theorem 6. Then the resolving operators Rt of the Cauchy problem (11.1) form
a semigroups of contractions in C(K ) such that the spaces C1(K ) and C2(K ) are
invariant and Rt are uniformly bounded operators in these spaces for ∈ [0, T ] with
any T .

12 Appendix C. Position dependent CTRW

Here we recall the basic result on the convergence of continuous time random walks
(CTRW).
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Suppose T h
1 , T h

2 , · · · is a sequence of i.i.d. random variables in R+ such that the
distribution of each T h

i is given by a probabilitymeasureμh
time(dt) onR+, that depend

on a positive (scaling) parameter h. Let

Nh
t = max

{
n :

n∑

i=1

T h
i ≤ t

}
. (12.1)

Suppose Xh
1 , X

h
2 , · · · is a sequence of i.i.d. random variables in Rd , such that the

distribution of each Xh
i is given by a probability measure μh

space(dt), that depends on
h. The standard (scaled) continuous time random walk (CTRW) is a random process
given by the random sum

Nh
t∑

j=1

Xh
i .

In position dependent CTRW the jumps Xh
i are not independent, but each Xh

i
depends on the position of the process before this jump. The natural general formula-
tion can be given in terms of discrete Markov chains as follows. LetUh be a transition
operator of a discrete timeMarkov chain Oh

n (x) inRd depending on a positive param-
eter h, so that

Uh f (x) = EOh
1 (x) =

∫
f (y)μh(x, dy), (12.2)

with some family of stochastic kernels μh(x, dy) such that Uh is a bounded operator
either in the space C(K ) with a compact convex subset K of Rd or in the space
C∞(Rd) of continuous functions vanishing at infinity. For our purposes we need only
the operators of the type

Uh f (x) = EOh
1 (x) =

J∑

j=1

f (Y h
j (x))p

h
j (x),

with a family of continuous maps Y h
j : Rd → Rd and the probability laws

{ph1 (x), · · · , phJ (x)}.
Suppose T h

1 , T h
2 , · · · is a sequence of random variables introduced above, and

independent of Oh
n (x). The process

Oh
Nh
t
(x) (12.3)

is a generalized scaled (position dependent) continuous time random walk (CTRW)
arising from Uh and μh

time.
The CTRWwere introduced in [37]. They found numerous applications in physics.

The scaling limits of these CTRWwere analysed by many authors, see e.g. [26,33,34].
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The scaling limit for the position dependent CTRW was developed in [19]. Formally
in [19] it was developed not in full generality, but for the case of the spacial process
Oh
n (x) converging to a stable process. However, the arguments of [19]were completely

general and did not depend on this assumption. The only point used was that Oh
n (x)

converge in the sense of Proposition 1 (ii). For completeness let us formulate the result
[19] in a slightly modified version that we need in this paper and present a short proof
with essentially simplified arguments from [19] (see also Chapter 8 in [21]).

As an auxiliary result we need the standard functional limit theorem for the random-
walk-approximation of stable laws, see e.g. [16] and [34] and references therein for
various proofs.

Proposition 4 Let a positive random variable T belong to the domain of attraction of
a β-stable law, β ∈ (0, 1), in the sense that

P(T > m) ∼ 1

βmβ
(12.4)

(the sign ∼ means here that the ratio tends to 1, as m → ∞). Let Ti be a sequence of
i.i.d. random variables from the domain of attraction of a β-stable law and let

Φh
t =

[t/h]∑

i=1

h1/αTi

be a scaled random walk based on Ti , h > 0, and St a β-stable Lévy subordinator,
that is a Lévy process in R+ generated by the stable generator

Lβ(x) =
∫

f (x + y) − f (x)

y1+β
dy

(which up to amultiplier represents the fractional derivative dβ/d(−x)β ). ThenΦh
t →

St in distribution, as h → 0.

The next result is from [19], though modified and simplified.

Proposition 5 Let the randomvariables T h
i = h1/βTi ,where i.i.d. randomvariables Ti

belong to the domainof attractionof aβ-stable law, St be aβ-stableLévy suboridinator
and

σy = max{t : St ≤ y}

be its inverse process. Let a family of contractions (12.2) satisfy (10.2) with an operator
L generating a Feller process Ft . Then

EUs
h |s=[Nh

t /h] → EFσt , h → 0,

strongly as contraction operators in C(K ) or C∞(Rd).
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Remark 9 This proposition directly implies the following statement about the pro-
cesses: the subordinated Markov chains (12.3), that is the scaled CTRW, converge in
distribution to the process generated by L and subordinated by the inverse of the Lévy
β-subordinator.

Proof By the density arguments it is sufficient to show that

‖EU [s/h]
h |s=Nh

t
f − EFσt f ‖ → 0

for functions f from the domain of L . We have

‖EU [s/h]
h |s=Nh

t
f − EFσt f ‖ ≤ I + I I ,

with

I = ‖EU [s/h]
h |s=Nh

t
f − EFNh

t
f ‖, I I = ‖EFNh

t
f − EFσt f ‖.

To estimate I we write

I =
∫ ∞

0
(U [s/h]

h f − Fs f )μ
h
t (ds)

=
∫ K

0
(U [s/h]

h f − Fs f )μ
h
y(ds) +

∫ ∞

K
(U [s/h]

h f − Fs f )μ
h
t (ds),

whereμh
t is the distribution of N

h
t . Choosing K large enough we can make the second

integral arbitrary small uniformly in h. And then by (10.4) we can make the first
integral arbitrary small by choosing small enough h (and uniformly in t from compact
sets). It remains II. Integrating by parts we get the following:

I I = ‖EeNh
t L f − Eeσt L f ‖

=
∥∥∥∥
∫ ∞

0

∂

∂s
(esL f )(P(σt ≤ s) − P(Nh

t ≤ s)) ds

∥∥∥∥

=
∥∥∥∥
∫ ∞

0
LesL f (P(Ss > t) − P(Φh

s > t)) ds

∥∥∥∥ .

By (4), P(Φh
s > t) → P(Ss > t) as h → 0. Therefore I I → 0 by the dominated

convergence, as h → 0. ��

Remark 10 From this proof it is seen how to get some explicit rates of convergence.
We are not going to give details.

It is well known, see e.g. [41] and detailed presentations inmonographs [23,35], that
the subordinated limiting evolution described by the operators EFσt solves fractional
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in time differential equations. Namely, under the conditions of Proposition 5, the
function ft (x) = E(Fσt f )(x) satisfies the equation

Dβ
0+� ft (x) = L f (x), f0(x) = f (x), (12.5)

where Dβ
0+� is the Caputo-Djerbashian derivative of order β acting on the variable t ,

and the operator L acts on the variable x .
Recall that a Lévy subordinator is a process generated by the operator

Lν f (x) =
∫ ∞

0
f (x + y) − f (x))ν(dy), (12.6)

where ν is a one-sided Lévy measure, that is, it satisfies the condition∫
min(1, y)ν(dy) < ∞. Proposition 5 is based on the central limit for stable laws

stating the convergence Φh
t → St of random walks approximations to a stable Lévy

subordinator. If scaled random walks Φh
t are designed in such a way that they approx-

imate an arbitrary Lévy subordinator, that is, Φh
t → St with St generated by (12.6),

then similar arguments show that

EUs
h |s=[Nh

t /h] → EFσt , h → 0,

where

σy = max{t : St ≤ y}, Nh
y = max{t : Φh

t ≤ y}.

In this case the functions ft (x) = E(Fσt f )(x) satisfy the equation

D(ν)
0+� ft (x) = Lt f (x), f0(x) = f (x), (12.7)

see e.g. [19,22], where D(ν)
0+� is the generalisedCaputo-typemixed fractional derivative

defined by the equation

D(ν)
0+� ft =

∫ t

0
( ft−s − ft )ν(ds) + ( f0 − ft )

∫ ∞

t
ν(ds). (12.8)

The derivative Dβ
0+� in (12.5) corresponds to ν(dy) = y−1−βdy.
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