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Abstract

A key component in understanding the L-H transition is the behaviour and interactions

of Zonal Flows(ZF), Geodesic Acoustic Modes(GAM) and Drift-Waves. To that end, this

thesis explores the behaviour of GAMs and the interactions between ZF and drift-waves.

For investigating the ZFs and drift-wave interaction, a new spatial averaging technique is

developed and applied to the linearization of the modified Hasegawa-Wakatani model.

A global dispersion relation for drift-waves in the presence of zonal flows is obtained

[9]. Subsequently both the linear and non-linear behaviour of GAMs is investigated by

analysing data from a fluid simulation of the MAST(Mega Ampere Spherical Tokamak)

tokamak. Evidence of linear physics is obtained by investigating the spatial and temporal

modal structures of GAMs using continuous wavelet transforms and fast fourier transforms.

Non-linear physics is investigated using bicoherence analysis and it is shown that non-linear

coupling exists between GAM and low frequency modes. Additionally self-interaction of

GAMs is also observed and a poloidal dependence of this behaviour was recovered.
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Chapter 1

Introduction

One of the more prominent debates in the public consciousness in the 21st century

concerns anthropogenic climate change. The need to cut greenhouse gas emissions is

now evident, however, the path to achieving this goal has introduced a debate with a

larger scope. How do humans produce the energy needed for civilization in the future?

How much energy do we need to produce and particularly in what form will that energy

be needed? A potential answer to these questions is to use renewable energy sources.

There are many disparate solutions, wind power is particularly relevant in the U.K. where

offshore wind farms are now becoming a significant source of electricity and a means to

reduce greenhouse gas emissions[11]. The economies of scale have started to reduce the

cost of wind farms, however, without reliable electricity storage technology they still rely

on gas turbines to make up for any energy shortfall. A similar lack of consistent output

hampers uptake of solar power. The other two possible renewable sources available to

the U.K., tidal and wave power, are mired in environmental concerns that are separate to

emissions, such as marine life conservation. At the moment without significant electricity

storage advances in both technology and economics, pure renewables seem a difficult

proposition. Regardless, due to momentum both from the public and governments around

the world, renewables seem likely to be a large part of the energy mix in the future.

However to maintain(and possibly expand) current global energy usage, a solution that

provides a steady baseload of power would be highly desireable. To that end, nuclear

power is a low-emissions option.
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1.1 Present Power Generation

The main method of electricity production in the 20th century was based around burning

fossil fuels to release stored chemical energy and convert said energy to electricity via

generating steam and turning a turbine. The final conversion of this chemical energy

to electricity is fairly inefficient, the higher heating value efficiency of coal fired power

plants is ∼ 40%, and the stored chemical energy per volume is quite low in and of itself.

There are a few reasons why it has succeeded as a primary means of energy production.

One is that the fuel itself is relatively abundant(at least for now) and easy to transport,

handle and ultimately use. With this and the sheer advantage afforded by nearly a

century(perhaps 2) of research and development focused around this method meant

that it could not only be used for electricity generation but also, among many other

things, for transportation and heating. However, in the absence of any other sources

of abundant chemical energy that would also have low-emissions, it’s clear a new way

to generate energy must be found. One possibility is to exploit the energy available in

the environment, either from wind, solar, hydro-electric, tidal, geothermal, etc. In truth

however wind, solar and hydro are effectively all solar powered either directly or indirectly.

Tidal is dependent on the gravitational interplay between the Earth, Moon and Sun and

is relatively stable and predictable. Geothermal partially sources its energy from the

gravitational compression inherent in the structure of the Earth and from the decay of

various nuclei trapped in the interior of the planet. All of these are sustainable in the long

term and cause far less of an environmental impact than burning fossil fuels. However,

their ties to the environment are the source of their disadvantages as well, chiefly that

they are not very flexible, convenient or universal. By comparison the energy-density

of fossil fuels means that far less land is taken up by their use and the universality is

lent by the fact that, so long as one has a solid(relatively dry) platform and oxygen then

one can deploy the technology almost anywhere. The major disadvantages of fossil-fuels

being the lack of sustainability and emissions of greenhouse gases and other pollutants.

1.2 Nuclear Power

Fundamentally nuclear power is somewhat similar to chemical power in the sense that

they are both used by releasing stored energy in a given volume of material(fuel). The key

differences lie in how the energy is stored and how it is liberated. In chemical power the

energy is stored as binding energy of the bonds between atoms in a molecule. To liberate

this energy a chemical reaction between two molecules that is exothermic is needed,

2



producing more energy than is needed to instigate it, in other words, with products that

have a higher binding energy than the reactants,

Energy gained = binding energy of products - binding energy of reactants.

The method of energy liberation in nuclear power is only slightly different from a purely

qualitative description. Nuclear power also requires an exothermic reaction but depending

on the type of nuclear power one may not need two reactants and nuclear transmutation

itself may be an exothermic process. Given the difference in strength between the

electromagnetic force and strong nuclear force, it is unsurprising that the binding energy

in the bonds between nuclei is almost 103 higher than a given chemical bond in a molecule.

Therefore per unit mass, nuclear fuel has much more stored energy.

In nuclear fusion two or more reactants can combine(“fuse”) to create products which

have more binding energy than before. The spare energy, equal to the subsequent mass

deficit, is usually contained in the kinetic energy of the products or directly in photons

that may be produced. In nuclear fission the reactant can split and creates products

that have more binding energy than before. A common isotope of Uranium, 235U, is

used as fuel in nuclear reactors. Natural uranium needs to be enriched to increase the

concentration of 235U present. The level of this enrichment is tailored to suit the need.

For light water reactors this enrichment is rarely more than 3-5%[12]. The enrichment

is necessary because 235U is a fissile isotope of Uranium. An isotope of an element is

fissionable if it can undergo nuclear fission(either spontaneously or with external action).

Additionally an isotope of an element is fissile if it is fissionable and can sustain a chain

reaction. A chain reaction is defined as an externally induced nuclear fission reaction

which produces neutrons in sufficient quantity and energy as part of the products to

initiate more than 1 nuclear fission reaction in another nucleus in the fissile material.

This chain reaction is at the heart of applications utilizing nuclear fission. An example of

a reaction that occurs inside a fission reactor is:

235
92 U +1

0 n → 141
56 Ba +92

36 Kr + 31
0n + 173.288 MeV (1.1)

The extra 173.288 MeV corresponds to the excess energy released in the reaction, this

presents as the kinetic energy of the reaction products. The non-neutronic products can

undergo further fission reactions via spontaneous decay and produce yet more energy in

the form of excess kinetic energy of the decay products. The increase in kinetic energy

is equivalent to an increase in heat in the system and this heat can be extracted for

electricity generation. In order to ensure fission reactions continue the free neutrons must

be slowed down by a moderator, examples include graphite and ordinary water. Having
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slower neutrons increases the cross-section of the fission reaction and allows the chain

reaction to continue in the presence of low-enriched uranium. The number of slowed

neutrons in the system now exceed the initial number before the reaction. As a result of

this if the arrangement of the 235U atoms is optimal then the slowed(thermal) neutrons

can proceed to induce multiple fission reactions. In reality the average number of free

neutrons produced in a 235U fission reaction is 2.4[13]. Managing the resulting chain

reaction via control of available free neutrons is crucial, either via neutron absorbing

materials, which make up components known as control rods or simply managing the

geometry of the system to allow them to escape without reacting. The heat that is

generated can be directly extracted from the system via a coolant and used to generate

steam which then drives turbines and produces electricity.

Nuclear fusion by contrast would not be reliant on management of a runaway process

in order to generate power. In fusion there are different challenges, chief among which

is overcoming the Coulomb barrier, and the only way to do this is to increase the

speed at which the particles collide. While fission generally deals in solid fuel, the

speeds at which particles move in solids are too slow to initiate fusion. A way to

increase the average speed of the particles in a material is to increase the temperature.

There are several temperature thresholds which signify transition points going from:

solid→liquid→gas→plasma. Plasma is the single most common form of matter in the

universe since it makes up almost all of the visible matter in the universe. In a gas,

atoms or molecules are free to move in 3D space and are mostly neutral so collisions

between them are more or less inconsequential, mostly serving to bring the gas to an

equilibrium temperature. However when sufficient heat is added the atoms in a gas can

disassociate into ions and electrons. Two ions in the plasma will be positively charged

and will repel but if brought close enough to each other can fuse into another element. To

overcome the Coulomb barrier it is not enough to simply heat fuel material to a plasma

but heat it sufficiently to allow some fraction of the ions to fuse. As it turns out the

temperatures needed to achieve this reaction are so high that no material can withstand

prolonged exposure to the heated plasma, therefore a method is needed to prevent the

plasma from touching the walls of the reactor. Luckily the individual components of a

plasma are charged and therefore sensitive to electromagnetic fields. And so in a reactor,

shaped magnetic fields are necessary to contain the plasma. The last piece of the puzzle

is to heat the plasma further such that the fraction of ions that are fusing can produce

enough heat to allow the plasma to maintain its own temperature. If this were achieved

one could ideally run the reactor indefinitely so long as more fuel was provided and the

waste products(helium nuclei known as alpha particles) were removed. Unfortunately
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the reactor cannot run at a 100% efficiency and once all losses have been taken into

account, the energy-gain necessary, Q = energy produced
energy consumed turns out to be > 5, beyond this

energy gain the plasma is said to have ignited and the fusion reactions are self-sustaining.

It is also crucial to note that the thermal energy produced that keeps the plasma hot

is only a portion of the total produced energy. The rest of the energy, mostly in the

form of neutrons which do not interact with the magnetic field, is captured externally

and would eventually be used to heat water and drive turbines to produce electricity.

This not only goes to the national grid but also powers the systems that the reactor

is dependent on. These features allow fusion to retain all of the advantages of nuclear

fission whilst eliminating certain disadvantages. These include the lack of long-lived

radioactive waste, the walls of a fusion reactor are likely to be bombarded by neutrons

and made radioactive via transmutation(a process referred to as “activation”), however

the material has a short half-life, ∼10 years rather than 10000s years for waste from

fission reactions. Another is the fact that since fusion constantly requires external input,

either in the form of heat, fuelling and helium ash removal. Turn off the fuelling and the

reactor will stop within ∼ 1s and so dangerous reactor conditions, such as meltdowns,

are impossible. And another often overlooked advantage being that the majority of the

fuel needed for a fusion reactor to function is abundantly available in any water source

on Earth [14]. This eliminates any geopolitical frictions and/or conflicts that may arise

from the resource scarcity that is usually associated with almost all other fuel-based

methods of power generation. In specific comparison to nuclear fission, the potential

for proliferation of material that may be used in an offensive capacity is significantly

reduced(or possibly eliminated) when dealing with nuclear fusion.

Nuclear fusion reactors would also be portable in the sense that they could feasibly be

located anywhere on or off the planet, assuming sufficient volume was available to occupy,

this would likely not exceed the volume used by conventional fission reactors. Flexibility

is an aspect that fusion reactors are lacking in when compared to fossil fuels. However

given that battery technology has allowed, at least in small scales, for the possibility of

shifting away from fossil fuels in almost every sector of transportation(save aviation) the

electricity generated from fusion reactors could facilitate the obsolescence of fossil fuels

as a means of powering transportation.

This discussion hopefully highlights the usefulness of nuclear fusion as an energy source.

The feasibility of nuclear fusion to contribute to combating climate change is a discussion

that has been gaining more traction as fusion reactors become a more viable proposition.

As an example the idea of fusion reactors being used in geographic locations with low

renewable resources(wind, solar, etc.) to offset CO2 emissions has been investigated
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and found to be viable[15]. Given the advantages it is an avenue worth pursuing if not

for addressing climate change then for the energy demand that is likely to be needed

afterwards. After all, the Earth’s population is projected to hit 9 billion shortly after

2050[16]. With such an increase in energy demand a reliable high-density baseload is

going to be undeniably necessary. Conventional nuclear fission reactors could make up

the shortfall and provide low-emission electricity but the resources for these reactors are

finite and will also run out(estimates suggest ∼ 1000 years) not to mention the inherent

instability and lack of public and political will surrounding this particular method of

energy generation.

To understand the difficulties associated with nuclear fusion one has to understand the

physics of the medium in which fusion will happen – plasma.

1.3 Plasma Physics - Basic Parameters

A plasma is a partially or fully ionised gas. In this state the electrons and ions are unbound,

but since both components are electrically charged, they are subject to electromagnetic

fields, both external and self-generated. The electromagnetic force is so strong that

no significant violation of quasi-neutrality, ne = Zni, is allowed. Minor deviations are

allowed and the characteristic length-scale over which these deviations occur is known

as the Debye-length. The force between minor separation of charges can be given per

unit area as: F = qE = (nde)E = (nde)2/ε0, where d is the thicknesses of the sheets of

charges adjacent to each other. Equating the potential of such a charge configuration,

Fd with the one dimensional internal energy, dnkBT and solving for d gives:

d ≡ λD =

(
ε0kBT

ne2

) 1
2

(1.2)

This length signifies the limit of any given particle’s influence on the rest of the plasma.

Any deviation from neutrality at a scale larger than the Debye length will cause the

plasma to react to preserve quasi-neutrality. However any deviation below this scale can

persist and causes particles to respond via Coulomb forces. A qualitative description of

a characteristic test parameter for plasmas known as the “plasma parameter” can be

defined in terms of Debye length, chiefly if the Debye length of a given system of particles

is smaller than the average separation between the particles then the system is not a

plasma.

The plasma frequency is another characteristic parameter of a plasma. The frequency

can be extracted by considering that the induced electric field generates simple harmonic
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motion, since it is a attractive inverse-square law force. It can be derived by looking at

the motion of a single charged particle under the influence of this electric field in one

dimension:

∂2x

∂t2
= − q

m
E = − nq

2

mε0
x = −ω2

px (1.3)

ωp =

(
nq2

mε0

) 1
2

(1.4)

In magnetised plasmas another characteristic length scale emerges due to the dynamics

of the charges in the magnetic field. The equation of motion for a charged particle in a

magnetic field pointing in the z-direction and no background electric field is:

d~v

dt
=

q

m
(~v × ~B) (1.5)

= (ωcvy,−ωcvx, 0)T (1.6)

where: ωc =
qB

m
(1.7)

Taking the second derivative of the x and y components gives:

d2vx
dt2

= ωc
dvy
dt

= −ω2
cvx (1.8)

d2vy
dt2

= ωc
dvx
dt

= −ω2
cvy (1.9)

Solving for vx, vy and then for x, y gives:

x = −rL cosωct (1.10)

y = rL sinωct (1.11)

where: rL =
v⊥
ωc
, v⊥ =

√
v2
x + v2

y (1.12)

Finally given the fact that the charged particles in a plasma can contribute to background

electromagnetic fields, Maxwell’s equations need to be incorporated into any description

7



of plasma:

~∇× ~B = µ0j + ε0µ0
∂ ~E

∂t
where j is current density (1.13)

~∇× ~E = −∂
~B

∂t
(1.14)

~∇. ~B = 0 (1.15)

~∇. ~E =
ρ

ε0
where ρ is charge density (1.16)

1.4 Plasma Physics - Drifts and invariants

The motion of a charged particle can be affected by external forces and the motion can

be expressed as the motion of the guiding centre of the charged particle trajectory (ie.

the centre of gyration of the particle), this is since these drifts generally happen on a

much larger scale than the Larmor radius. For example, a parallel electric field(in the

direction of the magnetic field) would accelerate the particle along the direction of the

magnetic field. Similarly a parallel gradient in the magnetic field would accelerate the

particles towards regions of lower magnetic field strength (against the gradient). For all

other drifts (except for slowly time-varying varying electric field) a generalisation of the

drift velocity definition can be made:

vd =
~F × ~B

qB2
(1.17)

then simply substitute in the various forces:

~F = q ~E for ~E × ~B drift (1.18)

~F = −1

2
mv2
⊥
~∇B
B

for ~∇B drift (1.19)

~F =
mv2
‖

R
~̂R for curvature drift (1.20)
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For a slowly time-varying electric field the ~E × ~B drift velocity can be used:

vd =
~E(t)× ~B

B2
→ dvd

dt
=

d

dt

(
~E(t)× ~B

B2

)
→ ~Fp = −m d

dt

(
~E(t)× ~B

B2

)
(1.21)

Substituting ~Fp into Eq. (1.17): vp = − m

qB2

((d ~E/dt)× ~B)× ~B

B2
=

m

qB2

d ~E

dt
(1.22)

Since ions and electrons drift in the opposite direction due to polarization drift a

polarization current can be set up.

An adiabatic invariant of motion in this case is the magnetic moment:

µ =
1
2mv

2
⊥

B
→ dµ

dt
= 0 (1.23)

1.5 Plasma Physics - Kinetic description

For the sake of tractability the plasma can be described as a statistical system as opposed

to individual particles. Kinetic theory is such a description, one can use a single particle

distribution function in position ~q, canonical momentum ~P and time t and introduce

terms to provide effects of multi-particle interactions (collisions for example). This

distribution function f describes the probability of a particle at time t being at position ~q

and having a canonical momentum ~p. And given the principle of conservation of particles

in a given system it follows:

df

dt
=
∂f

∂t
+ ~̇q.~∇qf + ~̇p.~∇pf = 0 (1.24)

Reassigning ~q and ~p for ~x and m~v gives the Vlasov equation(note that q, the non-vector

notation, represents charge not position):

∂f

∂t
+ ~v.~∇xf +

q

m
( ~E + ~v × ~B).~∇vf = 0 (1.25)

where ~̇p = m~̇v = q( ~E + ~v × ~B) (1.26)

This neglects collisions but this can be rectified by introducing a term on the RHS to

give the Fokker-Planck equation:

∂f

∂t
+ ~v.~∇xf +

q

m
( ~E + ~v × ~B).~∇vf =

(
∂f

∂t

)
c

(1.27)
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The fields present in this equation are the average fields, whereas the effects of the

instantaneous fields are folded into the collision term as the contribution of many small

incident angle binary coloumb collisions. This term conserves particle number, momentum

and energy but does act as a source of entropy. From this term resistivity in the plasma

is realised as well as transfer of energy between particles(allowing thermal equilibriation).

Various averages and assumptions can be applied to the Fokker-Planck equation to obtain

a simplified(if restricted) equation that is more relevant to particular phenomena. For

example, the gyro-kinetic equation takes into account the effects of electromagnetic fields

that vary on a scale smaller than the Larmor radius by averaging their contributions over

the gyration of the particles(sometimes known as the Larmor orbit). Another property

of the kinetic description is that taking moments of the Fokker-Planck equation recovers

the fluid equations governing large scale physics of plasmas.

1.6 Plasma Physics - Fluid Descriptions

A fluid description of the plasma is useful in that it further reduces the number of variables

needed for description of the plasma. The Fokker-Planck equation evolves one quantity

which is a function of 7 variables, f(~x,~v, t). Taking moments of the Fokker-Planck

equation yields three fluid properties that describe the plasma and they are recovered as

such:

n =

∫
f(~x,~v ′, t)d~v ′ (1.28)

~v =
1

n

∫
~v ′f(~x,~v ′, t)d~v ′ (1.29)

~~P = m

∫
(~v ′ − ~v)(~v ′ − ~v)f(~x,~v ′, t)d~v ′ (1.30)

These properties are now dependent on only 4 variables, n(~x, t), ~v(~x, t) and
~~P (~x, t). The

properties are number density(can be turned into mass density, charge density by adding

pre-factors), fluid velocity(can be turned into current density by adding pre-factors) and

pressure, which is presents as a tensor but can be given as a scalar when the distribution

function is isotropic. It is then defined as:

p =
1

3
m

∫
(~v ′ − ~v)2f(~x,~v, t) (1.31)
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The density, velocity and pressure definitions are known as the 0th, 1st and 2nd moments

of the distribution function respectively. Taking the 0th moment of the Fokker-Planck

equation gives:

∂n

∂t
+

∫
~v ′.(~∇~xf)d~v ′ +

1

m

∫
~F .(~∇~v′f)d~v ′ =

∫ (
∂f

∂t

)
c

d~v ′ (1.32)

∂n

∂t
+ ~∇~x .

∫
~v ′fd~v ′ +

1

m

∫
f ~F .d~S = 0 (1.33)

∂n

∂t
+ ~∇~x .(n~v) = 0 (1.34)

The collision term on the RHS goes to zero assuming that particle number doesn’t change

due to collisions and the contribution from the Lorentz force ~F goes to zero by using

integration by parts and the divergence theorem to show that in the limit ~v →∞, the

distribution function f → 0 faster than |~S| ∝ v2 →∞. The final equation is the familiar

continuity equation. A similar procedure can be used to obtain the momentum equation

by taking the 1st moment of the Fokker-Planck equation and multiplying by mass m:

m
∂

∂t
(n~v) +m

∫
~v ′~v ′.(~∇~xf)d~v ′ +

∫
~v ′ ~F .(~∇~v′f)d~v′ = m

∫
~v ′
(
∂f

∂t

)
c

d~v ′ (1.35)

m
∂

∂t
(n~v) +m~∇~x.

∫
~v ′~v ′fd~v ′ +

∫
~v ′f ~F .d~S −

∫
~v ′f(~∇~v′ . ~F )d~v ′

−
∫
f ~F (~∇~v′ .~v) ′d~v ′ = ~R

(1.36)

m
∂

∂t
(n~v) +m~∇~x.

∫
((~v ′ − ~v) + ~v)((~v ′ − ~v) + ~v)fd~v ′ − n~F = ~R (1.37)

m
∂

∂t
(n~v) + ~∇~x.

~~P +m~∇~x.(n~v~v)− n~F = ~R (1.38)

To note the mixed term from the expansion of ((~v ′ − ~v) + ~v)((~v ′ − ~v) + ~v) disappears

when averaged over ~v ′ since O(~v ′ − ~v) represents thermal fluctuations which average to

0. Expanding all terms in the momentum equation by using the product rule gives:

mn
∂~v

∂t
+m~v

∂n

∂t
+mn(~v.~∇~x)~v +m~v(~∇~x .(n~v)) + ~∇~x .

~~P − n~F = ~R (1.39)

mn

(
∂v

∂t
+ (~v.~∇~x)~v

)
= −~∇~x .

~~P + n~F + ~R (1.40)

As can be seen, each nth moment of the Fokker-Planck equation requires a (n + 1)th

moment. This necessitates some simplification to close the set. An approximation that

can close this set is that of adiabatic behaviour. This leads to the MHD model which
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can be evaluated by changing notation slightly by converting mn→ ρ, qn→ ρc, qn~v → ~j

and treating
~~P as a scalar p = 1

3Tr(
~~P ):

∂ρ

∂t
= −~∇~x .(ρ~v) (1.41)

ρ

(
∂~v

∂t
+ (~v.~∇~x)~v

)
= −~∇~x p+ (ρc ~E +~j × ~B) + ~R (1.42)

d

dt
(pρ−γ) = 0→ using continuity equation→ dp

dt
= −γp(~∇~x .~v) (1.43)

~j =
~∇~x × ~B

µ0
(1.44)

∂ ~B

∂t
= −~∇~x × ~E (1.45)

~E + ~v × ~B = η~j = ~R/qn where η is resistivity (1.46)

Resistivity is defined via Ohm’s Law and a new scalar is introduced, η. Neglecting res-

istivity and any other effects of particle interaction leads to Ideal MHD. The assumptions

that lead to the MHD model are relatively mild, however more radical assumptions can

also be made to close the set of equations, such as zero electron mass or in the case of

the Braginskii two-fluid description[17], subsonic flows in the plasma.

The need for a closure of the set of equations is still necessary in this case since the

Braginskii description does not treat pressure as a scalar. The result is a need for an

assumptive definition of the pressure tensor(
~~P ) and the vector heat flux(~q). The actual

calculation of these variables is more involved and beyond the scope of this thesis but in

brief it involves accounting for the collisional term in the Fokker-Planck equation. Even

through further assumptions yield an expression, this includes empirical pre-factors for

some terms. The approach for deriving the new set of equations involves splitting the

different variables into those for individual species. Furthermore another assumption

is that the plasma distribution can be defined as a perturbed Maxwellian, f = f0 + f1,

where f0 is a Maxwellian distribution:

f0 =
nα

(2πTα/mα)1.5
exp

(
−mα

2Tα
(~v ′ − ~v)2

)
(1.47)

The Fokker-Planck equation can then be expanded to yield a new set of equations. The

continuity equation is largely unchanged but is now expressed separately for each species:

∂nα
∂t

= −~∇~x.(nα~vα) (1.48)
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The momentum equation is changed to split the pressure tensor into a scalar pressure p

and the “strain” tensor:

~~Πij = m

∫ (
(~v ′ − ~v)i(~v

′ − ~v)j −
(~v ′ − ~v)2

3
~~Iij

)
f(~x,~v, t)d~v ′ (1.49)

, which is related to the pressure tensor as:
~~Pαij = pα

~~Iij +
~~Παij .

nαmα
d~vα
dt

= −~∇~xpα −
∂

∂xj

~~Παij + nα ~Fα + ~Rα (1.50)

The new energy conservation equation, which replaces the ideal gas law interpretation, is:

where: Tα =
1

nα

∫
mα

3
(~v ′ − ~vα)2fαd~v

′ (1.51)

3

2
nα

d

dt
(Tα) = −pα~∇.~vα −

~~Πα : ~∇~vα − ~∇.~qα +Qα (1.52)

The quantity ~qα is the heat flux associated with a given species of particles, the quantity

Qα indicates heat exchange between the species α and other species. Further extensions

of MHD can be found in Tokamaks, J. Wesson[18]
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1.7 Fusion Power

Examining the energetics of a fusion reactor more closely, the total energy inside a plasma

can be defined as W = 3nTV , where kB is set to 1, n is the average plasma number

density, T is the average plasma temperature and V is the plasma volume. The rate

of energy loss in the system can be described as Ploss = W/τ , where the confinement

time τ = W/Pheating. One can then split the heating power of the plasma into externally

supplied heat and internal heating due to charged particles produced in the fusion

reactions, Pheating = Pext + Pch. The heating power from the charged particles is defined

as Pch = 1
4n

2〈σv〉εαV , here σ is the cross-section associated with the two particle species

being used as fuel(as seen in Fig. 1.1) and εch is the energy released in said given fusion

reaction. Now examining required external heating power:

Pheating =

(
3nT

τ
− 1

4
n2〈σv〉εch

)
< 0 (1.53)

The inequality indicates the necessary condition for self-sustenance of the plasma energy

solely through charged particles produced by fusion, rearranging gives:

nτ >
12T

εch〈σv〉
(1.54)

This condition known as the Lawson criterion however still has a temperature dependence

on the L.H.S., given that 〈σv〉 ∝ T 2 one can multiply both sides by T to make the L.H.S.

nTτ which is known as the triple product. In order to obtain an ignition condition one

simply has to pick a relevant fusion reaction. In a reactor the main objective is to increase

the temperature of the plasma sufficiently to allow the particle velocities to overcome

Coulomb repulsion, to that end it is desireable to pick two fusion reactants that have

low mass and low charge. Fortunately elements(and their isotopes) that satisfy these

2 requirements also yield products which have a much higher binding energy than the

reactants. This would indicate that hydrogen nuclei(protons) might be the most suitable

however as it turns out the balance between needing low mass for high temperatures and

high mass, low charge for overcoming Coulomb repulsion dictates that isotopes(versions

of hydrogen with extra neutrons) of hydrogen are preferable. There are two main isotopes

that are worth considering in the context of fusion, deuterium(1 extra neutron) and

tritium(2 extra neutrons). The primary fusion reaction that would take place with these

two isotopes as fuel would be:
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Figure 1.1: A few examples of cross-section profiles for different species pairings considered
for fusion.[3]
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2
1D +3

1 T →4
2 He+1

0 n (1.55)

This reaction produces 17.6 MeV[3] of excess(kinetic) energy, 4
2He takes 3.5 MeV of

energy and the 1
0n takes 14.1 MeV of energy. In a plasma only the 4

2He particle is going

to provide heating to the plasma as it is the only product that is charged. The neutrons

stream out and their energy must be captured in another fashion. The εch now becomes

εα = 3.5MeV which is the heating power from the alpha particles. The condition relating

to the triple product now becomes:

nTτ > 3× 1021m−3keV s (1.56)

One can pick any combination of n, T and τ that is desired and check for feasibility

of self-sustenance. An example could be , n = 1020m−3, T = 10keV and τ = 3s.

Increasing density and temperature and reducing confinement time can also satisfy this

limit although by definition a much shorter confinement time would lead a reactor design

away from steady-state and into pulsed state as is the case for ICF concepts(inertial

confinement fusion). This ignition condition however simply sets the condition for

theoretical break-even, the number can be lowered by (re-circulating the energy from the

neutrons into either heating or operating the machine) or can be increased by requiring

meaningful electrical output to the grid. Regardless, for feasibly operating in the range of

the temperatures and densities mentioned above, one cannot simply contain the plasma

using conventional materials. There are no materials that can withstand the temperatures

and therefore another method of confinement must be sought.

1.8 Magnetic Confinement Fusion (MCF)

One solution is to confine the plasma using magnetic fields. Plasma particles gyrate

around magnetic field lines and can therefore be effectively guided away from the walls

of the reactor. Tokamaks are devices that make use of such magnetic fields and are, at

the moment, the most promising avenue for achieving a ignition-capable fusion reactor.

In a tokamak a doughnut-shaped vacuum vessel is where the plasma resides during

operation. The shape and structure of certain major components can be seen in Fig

1.2. The geometrical labelling of a typical tokamak is given in Fig. 1.3, where R0 and a

are major and minor radius respectively. The toroidal fields coils generate a magnetic

field that forms field lines along the toroidal direction of the tokamak. The particles can

freely move along these field lines but cannot easily cross them. The primary transformer
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Figure 1.2: A schematic of a tokamak.[4]

circuit at the centre of the machine induces a current in the plasma which follows the

same direction as the toroidal field lines. Though the plasma is quasi-neutral, the ions

are heavier than the electrons and are thus travel at slower speeds, this mismatch of

charge movement produces a plasma current. This current in turn generates its own

poloidal field and this combines with the toroidal field to twist the field lines into helical

trajectories. As a result the particles can travel both inwards, in major radius, towards

the central column and outwards, towards the edge of the device. The toroidal field gets

weaker as you travel outwards, in major radius, and so it is advantageous to shape the

toroidal field coils so that they produce field lines that keep the particles close to the

central column for longer. Therefore even though for a circular cross-section tokamak the

toroidal field coils would be circular, for most tokamaks they are shaped like the letter

“D” as shown in Fig. 1.2. The extra poloidal field coils outside the toroidal field coils are

mostly just used for shaping the plasma further. The heating of the plasma is dependent

on the temperature regime that is required. For the initial ionisation of the gas injected

into the vacuum vessel, Ohmic heating from resistance to the plasma current induced

17



Figure 1.3: Labelling of a typical tokamak geometry.[5]

by the primary transformer circuit is used. As the temperature of the plasma increases

the resistance of the plasma drops and Ohmic heating is now no longer viable. For

further heating there are multiple options which can be used in combination or isolation.

These are NBI(Neutral-Beam-Injection), ICRH(Ion-Cyclotron-Resonance-Heating) and

ECRH(Electron-Cyclotron-Resonance-Heating). NBI is where the fuel(deuterium-tritium

or just deuterium) is ionised outside the vacuum vessel and accelerated using electric

fields and then neutralised as it is injected into the plasma. It is always travelling at a

faster speed than the average thermal speed of the plasma and as it is re-ionised and

the plasma thermalises, the average temperature in the system increases. The other

two methods use a similar modification of the distribution function of the plasma to

change the temperature but instead of introducing new particles, they instead modify

the speed of existing ions and electrons and then allow the plasma to thermalise to

a new equilibrium. The mechanism for these indirect heating schemes is known as

Landau-damping which is a form of collision-less dissipation of plasma waves(induced by

external EM waves) by individual plasma particles(that have a speed that is near or at

the transverse speed of the induced plasma wave). Electron cyclotron current drive is

also used in some situations not to heat the plasma but to increase the plasma current.

This can improve certain limits on tokamak operation and/or reduces the burden on the

primary transformer circuit.

With good confinement and in the absence of any instabilities the particles might cause,

the alpha particles do indeed deposit their energy into the plasma but exhausting them is

a challenging problem. As of right now the method involves exhausting some of the bulk

plasma(which will contain some of the “ash”) at the edge and then re-injecting fresh fuel

to facilitate a slow flush of the helium “ash” out of the system. This issue of impurity

build-up is especially relevant in the design of future reactors that are likely to operate

in the so-called H-mode(high-confinement mode). As opposed to the more accessible
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L-mode, the H-mode is more difficult to induce and depending on the dimensions of

the tokamak can improve confinement time by a factor of 2 or more. This is done by

establishing internal transport barriers which inhibit radial transport of energy. Whilst

this is desireable, it also stops impurities escaping the core plasma. The part of the

plasma that is most affected by this exhausting mechanism resides in an area of the

vacuum vessel known as the scrape-off layer(SOL). The plasma in this area has field lines

which do not close but are instead shaped to terminate in a region of the tokamak known

as the divertor. The divertor experiences high heat-flux comparable to a re-entering

space craft(∼ 10MWm−2 [19]) and the design of a capable divertor is one of the main

issues that needs to be addressed for a commercial reactor.

In terms of operational constraints of a conventional tokamak, there are various limits. The

triple product mentioned earlier requires a set combination of density(n), temperature(T )

and confinement time(τ). The confinement time is largely dependent on the geometry

and magnetic configuration of any given device and is usually empirically derived using

scaling relations or extrapolations of relevant data. The beta limit is largely dictated

by the magnetic field strength(in the toroidal direction). There is another constraint

known as the Greenwald limit[20] which limits the maximum density inside the device

and is dependent on the plasma current magnitude. If the geometry of the magnetic

fields(and consequently the vacuum vessel) is changed so that the ratio between major

and minor radius(known as the aspect ratio) decreases then the scaling laws can be

strongly modified. The confinement time scaling for a small aspect ratio tokamak has a

high dependence on toroidal field, BT [21][22], meaning good confinement can be achieved

with moderate fields. These so called spherical tokamaks(due to their more compact

toroidal shape) are of interest for future reactor designs, this is demonstrated by the

commissioning of a design study in the UK for STEP(Spherical Tokamak for Energy

Production)[23].

1.9 Spherical Tokamak

This change in aspect ratio introduces both advantages and disadvantages. One of the

advantages it introduces is that since the particles have to travel a greater length (and

therefore spend more time) on the high field side they are generally better confined. This

is since the local magnetic field pressure is high enough that more plasma pressure can

be incorporated without the β(the ratio between the plasma pressure and the magnetic

field pressure) exceeding any limits. This leads to higher average β across the device and

therefore better performance overall. This can be further augmented by employing a high
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safety factor(q) which increase the number of poloidal rotations a field line undergoes

before a full toroidal rotation is completed. A disadvantage in terms of engineering which

could also be seen as an advantage is the compactness of the reactor design. The more

compact it is the fewer materials are needed and the smaller the reactor’s footprint. But

the compactness means that there is less room for toroidal field coils and/or a central

solenoid for the primary transformer circuit. And even if a central solenoid and toroidal

field coils can be designed to fit the restricted space, the protection for these components

from the plasma(in the case of disruptions and/or instabilities) or from neutron radiation

is also a challenge. For reference Table 1.1 shows a comparison of specifications between

MAST(Mega-Ampere-Spherical-Tokamak) and JET(Joint European Torus) both of which

are located at CCFE(Culham Centre for Fusion Research):

JET MAST

Major Radius(R) 2.96m 0.85m
Minor Radius(r) 1.25m 0.65m
Aspect Ratio(A) 2.368 1.3

Toroidal Magnetic Field(BT ) 3.45T 0.5T
Plasma Current(Ip) 4.8MA 1MA

Table 1.1: Comparison of specifications of MAST and JET.[1][2]

1.10 Transport

Given the nature of confinement in tokamaks, gradients in density and temperature are

introduced. These gradients in turn drive fluxes of particles and heat outwards(in minor

radius). The purpose of transport theory is to calculate these fluxes. Treating the plasma

as an ordinary fluid allows one to recover classical diffusive processes. The key difference

in the case of plasma is that the time and length scales are relative to plasma properties.

The particle and heat fluxes, ~Γ and ~q respectively, can be expressed as:

~Γ = −D~∇⊥nα (1.57)

~q = −nχ~∇⊥Tα (1.58)

where α = e, i depending on whether the species of interest is electrons or ion. The

scaling on the diffusion coefficient D follows as:

D ∼ ν(δx)2 (1.59)
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The collision frequency, ν varies for different collision types, but is generally much less

than the cyclotron frequency for the relevant particle species in a magnetized plasma:

νei � Ωe (1.60)

νii � Ωi (1.61)

For clarity, the convention in this case is that ναβ signifies the frequency of collisions

between species causing α to be scattered by β. It is appropriate to think of the frequency

of collisions as being the frequency with which the particle trajectory changes significantly

as a result of an average aggregate of multiple small-angle deflections due to Coulomb

interactions. It is also useful to consider collision times, these scale as ταβ ∼ ν−1
αβ .

Looking now at particle diffusion across the magnetic field in the framework of a random-

walk process, it is assumed that all internal plasma parameters that may lead to a

diffusion of the guiding centre motion have length-scales of variation that are longer than

the Larmor radius. Now considering a gradient in plasma density n in the x-direction, a

flux of particles across the magnetic field(in the z-direction) due to electron-ion collisions

can be estimated: Γx ∼ −D⊥(∂n/∂x), where D⊥ ∼ (νeiρ
2/2).

Analysis of heat diffusion across the magnetic field involves considering a temperature

gradient in the x-direction but uniform plasma density. The flux of heat is dominated by

ion-ion collision and can be estimated as q = −niχ(∂T )/(∂x) where χi ∼ (ρ2
i νii). Heat

conduction in the direction parallel to the magnetic field happens much faster(by a factor

(Ωτ)2) but is not heavily involved in heat loss from the tokamak.

Considering particle and heat losses separately in a realistic spherical tokamak like MAST

will yield quantities which will give an indication of expected confinement performance

under the assumptions of classical diffusion. Taking the fluxes defined above to be

through the surface area of a torus, 4π2rR, with a minor radius r and major radius

R. A rough estimate for particle confinement time is then τΓ = 4π2rR/D⊥ ∼ 120s for

MAST-like tokamak. This is not consistent with the observed confinement time in MAST.

Re-examining this confinement time by now and looking at the heat diffusion through

the tokamak gives a different value: τq = 4π2rR/χi ∼ 1s this is also too large a value.

Modifying this heat transport coefficient by considering the effect of particles trapped

in the weak-field region of the tokamak in so-called ”banana orbits” yields a value for

χi that is enhanced by a factor of
√

2ε(B/Bp)
2. Here ε = r/R is the inverse aspect

ratio and Bp is the poloidal magnetic field. For a MAST-like tokamak this amounts to

an enhancement by a factor of ∼ 25 which would decrease the new confinement time

down to τq ∼ 0.04s ≡ 40ms which is much closer to the observed confinement time

21



in MAST. Further modifications to the particle diffusion coefficient must be made to

account for anomalous radial transport arising from electrostatic fluctuations which lead

to outward propagating turbulent eddies. The definition of this Bohm diffusion coefficient

is part-empirically defined as: DBohm
e = T/(16eB), for MAST-like conditions(B = 0.5T

and Te = 1keV ) this gives a value of DBohm
e ∼ 125m2/s which leads to a thousand-fold

decrease of the classical particle diffusion confinement time: τΓ ∼ 0.1s ∼ 100ms which is

now in much better agreement with both τq and the experimentally observed confinement

time ranging from τexp = 10− 50ms.

The electrostatic fluctuations that cause this anomalous diffusion can be examined using

the Hasegawa-Wakatani equations. The formal description of this model is that it is

derived from the two-fluid Braginskii[17] equations with a non-adiabatic electron response

due to electron-ion collisions along the direction of magnetic field. The resulting two

coupled equations give the non-linear time-evolution of the vorticity(defined as ∇2
⊥φ) and

plasma density(n which is the same for both electrons and ions due to quasi-neutrality.)

This simplified model gives insight into drift-wave-turbulence and zonal flows and is

useful for painting a qualitative picture of a localized region plasma(which is still large

enough for fluid model assumptions to apply). The model assumes cold ions (Ti = 0)

and uniform electron temperature across the scale of the region being considered(Te 6= 0,

~∇.Te = 0). Parallel ion velocity is also neglected here and quasi-neutrality is assumed. The

normalization scales will be discussed further on. To start with, consider the perpendicular

ion momentum equation(ion momentum equation projected in the direction perpendicular

to the magnetic field):

min

(
∂

∂t
+ ~vi.~∇⊥

)
~vi = nqi

(
−~∇⊥φ+ ~v × ~B

)
(1.62)

Setting the L.H.S. to 0 and taking the curl with ~B and rearranging gives:

~vE =
−~∇φ× ~B

B2
(1.63)

This is the lowest order velocity and crucially is identical for both ions and electrons

since ~E × ~B drift is independent of charge or mass. Note that collisions are ignored in

this case. Substituting this velocity back into the perpendicular ion momentum equation

gives:

d

dt
(~vE) =

qi
mi

(
−~∇⊥φ+ ~v × ~B

)
(1.64)
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Taking the curl with ~B and rearranging obtains the ion polarization drift, ~vip:

d

dt

(
~vE × ~B

)
=

qi
mi

(
−~∇⊥φ× ~B −B2~v

)
(1.65)

~v⊥,i = ~vE +
mi

qiB2

d

dt

(
~∇⊥φ

)
= ~vE + ~vip (1.66)

Now examining the perpendicular electron momentum equation:

men

(
∂

∂t
+ ~ve.~∇⊥

)
~v = nqe

(
−~∇φ+ ~v × ~B

)
− Te~∇⊥n (1.67)

Again setting the L.H.S. to 0 and taking the curl with ~B and rearranging gives:

~v⊥,e = ~vE −
Te
nqe

~∇⊥n× ~B

B2
= ~vE + ~ved (1.68)

Here, ved is the electron diamagnetic drift. The calculation of this is simply to emphasize

that the diamagnetic drift includes a ~∇⊥n in its definition which will be useful later.

Moving on to the parallel electron momentum equation, examined with the same procedure

as before(with collision included via a current term):

0 = −nqe~∇‖φ− Te~∇‖n− qenη ~J‖ (1.69)

~J‖ = − Te
qeη

[
~∇‖n
n

+
qe~∇‖φ
Te

]
(1.70)

To begin construction of the Hasegawa-Wakatani equations it is useful now to turn to

the electron and ion continuity equations as defined by Braginskii, after simplification

the electron continuity equation becomes:

∂n

∂t
+ (~vE .~∇⊥)n+

1

qe
~∇‖. ~J‖ = 0 (1.71)

For ions the continuity equation becomes:

∂n

∂t
+ (~vE .~∇⊥)n+ n(~∇⊥.~vip) = 0 (1.72)
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Due to quasi-neutrality one can now equate both equations and obtain an expression for

the time-evolution of the vorticity(∇2
⊥φ):

n(~∇⊥.~vip) =
1

qe
~∇‖. ~J‖ (1.73)

d

dt
(∇2
⊥φ) =

−qiB2

qemin
~∇‖. ~J‖ =

B2

min
~∇‖. ~J‖ = −

B2Te~∇‖
minqeη

.

[
~∇‖n
n

+
qe~∇‖φ
Te

]
(1.74)

Now it is useful to define some normalization parameters:

eφ

Te
→ φ,

eφ1

Te
→ φ1,

n

n0
→ n,

n1

n0
→ n1, n = n0 + n1, φ = φ0 + φ1 (1.75)

ωcit→ t,
x

ρs
→ x,

y

ρs
→ y, ρs =

1

ωci

√
Te
mi
, ρ2

s =
miTe
e2B2

, ωci =
eB

mi
(1.76)

Re-configuring Eq. (1.71) and redefining (~vE .~∇⊥)f = (1/B0){φ, f}(where {φ, f} =

(∂φ/∂x)(∂f/∂y)− (∂f/∂x)(∂φ/∂y)) and defining ∇2
‖ = −k2

z gives:

ωcin0
∂n1/n0

∂t
+

n0Te
eB0ρ2

s

{
eφ

Te
,
n0 + n1

n0

}
= −Tek

2
z

e2η

[
n1

n0
− eφ1

Te

]
(1.77)

Noting that:
Te

ρ2
seB0

= ωci, and normalizing (1.78)

∂n1

∂t
= α(φ1 − n1)− κ∂φ

∂y
− {φ, n1} (1.79)

α =
Tek

2
z

n0e2ηωci
, κ = − 1

n0

∂n0

∂x
(1.80)

The equation (1.79) is the first of the Hasegawa-Wakatani equations[24], the second

concerns the time-evolution of the vorticity, applying the normalization to Eq. (1.74)

yields:

ωciTe
ρ2
se

∂∇2
⊥φ

∂t
+

T 2
e

e2ρ4
s

{φ,∇2
⊥φ} = −B

2Tek
2
z

mineη

[
n1

n0
− eφ1

Te

]
(1.81)

∂∇2
⊥φ

∂t
= α(φ1 − n1)− {φ,∇2

⊥φ} (1.82)
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This is now the second Hasegawa-Wakatani equation. Now noting that φ0 = 0 and

suppressing the ∼ on n1 as well as adding dissipative terms leads to:

∂∇2
⊥φ

∂t
= α(φ− n)− {φ,∇2

⊥φ} −D∇4(∇2
⊥φ) (1.83)

∂n

∂t
= α(φ− n)− κ∂φ

∂y
− {φ, n} −D∇4n (1.84)

For the purposes of utilizing these equations for tokamak physics it is useful to subtract

the poloidally averaged value of the perturbations in the α term since the poloidal flows

do not contribute to resistance in the direction of the magnetic field, and so now:

α(φ− n)→ α(φ1 − n1) where φ1 = φ− 〈φ〉y and n1 = n− 〈n〉y
A straightforward linearization of the equations is possible and yields a dispersion

relation that is dependent on the parallel resistivity; the inverse scale length of the density

gradient and the inverse scale length of the perturbations themselves(the wavenumber)

in the poloidal direction:

φ1 = φ = |φ| exp (i(kxx+ kyy − ωt)) (1.85)

n1 = n = |n| exp (i(kxx+ kyy − ωt)) (1.86)

∂ζ

∂t
= α(φ1 − n1)− {φ, ζ} (1.87)

where ζ = ∇2
⊥φ = −(k2

x + k2
y)φ = −k2φ (1.88)

iωk2φ = α(φ− n)−
((((((((((((((((

(−kxky(−k2
yφ

2)−−kxky(−k2
yφ)) (1.89)

∂n

∂t
= α(φ1 − n1)− κ∂φ

∂y
− {φ, n} (1.90)

− iωn = α(φ− n)− κikyφ−
((((((((((((
(−kxkyφn−−kxkyφn) (1.91)

n =

(
α− κiky
α− iω

)
φ assuming k2

x � k2
y then k2 = k2

y (1.92)

ik2
yωφ = αφ− α(α− κiky)

α− iω
φ (1.93)

ω =
−iα(k2

y + 1)±
√
−α2(k2

y + 1) + 4iακk3
y

2k2
y

(1.94)

This solution is a useful starting point but it is not quite complete. Crucially it ignores

the contribution that may or may not exist as a result of poloidal zonal flows(ky = 0,

kx 6= 0). Zonal flows are important features in both realistic tokamaks as well as simplistic

models such as the Hasegawa-Wakatani equations. Considering not just the effects of
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these zonal flows on turbulence but also the effects of the toroidal geometry itself on the

zonal flows(generation of Geodesic Acoustic Modes) is central to this thesis.

1.11 Thesis outline

To this end the structure of the main body of the thesis consists of 3 chapters. Each

chapter focuses on a slightly different aspect of the Zonal Flow-GAM(Geodesic Acoustic

Mode)-Drift-Wave interaction. The first chapter is concerned with accounting for any

contribution from the zonal flows on the drift waves as described in the Hasegawa-

Wakatani model. The approach taken is similar to linearization but employs a technique

to spatially average over the zonal flows in the system and subsequently analyse their

impact on the drift-wave dispersion relation. The second chapter examines GAMs

generated in the CENTORI simulation and validates their structure in the simulation as

well as looking for distinct features that may be parallel to observations from experiments.

The work in this chapter focuses mostly on linear GAM features. The third chapter is

effectively an extension/expansion of the second chapter in so far as it investigates the

non-linear and self interacting nature of GAMs in CENTORI.
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Chapter 2

Drift-Wave instability in the

presence of Zonal Flows

2.1 Introduction

Transport and its impact on radial transport is of fundamental importance for the

confinement properties of tokamaks. In particular radial turbulent transport(in minor

radius) is important to understand. In this case heat and particles are being lost from

the containment system to the open-field Scrape-Off layer (SOL) which subsequently

channels the plasma to the divertor. The loss of particles in general is concerning but

can be compensated by appropriate fuelling. By contrast the loss of fast particles(high-

temperature plasma) is more pressing. The heat carried away from the core of the

tokamak by these particles is more difficult to efficiently replace without increasing the

required energy output of the fusion process. Furthermore an increased heat flux on the

divertor has its own challenges such as thermal management and impact on the materials

in the divertor region. Therefore understanding this radial turbulent transport and

subsequently controlling it would yield tangible improvements in plasma quality and heat

content inside the tokamak. This turbulent transport is driven by micro-scale turbulence,

as remarked in section 1.10). These are driven by density and temperature gradients

perpendicular to the magnetic field. Drift-waves are generated by the density gradients

and propagate perpendicularly to both the magnetic field and the direction of the density

gradient. For example if the magnetic field vector was aligned with the z-axis and the

density gradient was in the -x-axis (the density increases inwards towards the core) then

the drift-wave would propagate in the positive y-direction. Due to quasi-neutrality, the

density gradient is in both ion and electron density, however the response to the gradient
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is pre-dominantly via electrons, and any coupling to electro-static potential is achieved

through a non-adiabatic electron response. The mode then becomes unstable at a scale

on the order of the hybrid gryo-radius ρs =
√
miTe/eB. When the drift-waves grow to

large amplitudes, their nonlinear self-interaction leads to drift-wave turbulence [25].

The micro-scale turbulent eddies can self-organise into zonal flows (ZF)[26][27]. In a

tokamak these manifest as modes with long poloidal wavelengths (short way around the

tokamak) a small finite radial wavelengths. Toroidal dynamics are relatively slow in

comparison and therefore are not usually considered in the analysis of these phenomena

(both for zonal flows and drift-waves). Zonal Flows are potentially very powerful in

the ways that they can impact the onset/development of turbulence which drives radial

particle and heat transport. Firstly, zonal flows can nonlinearly change the stability

threshold for unstable modes arising from ITG (Ion Temperature Gradient) and resistive

instabilities [28][29]. Secondly, turbulent eddies that are travelling radially outwards

can be stretched and impeded as the zonal flows have a finite radial wavelength, this

leads to a reduction of the turbulence level via dissipation of this modes before they

can exit to the SOL[30]. Due to these effects, control of zonal flows provides a useful

method for managing the turbulent transport in a tokamak. Specifically such an effect

is currently observed and utilised in the L-H transition from a low confinement mode

(L-mode) to a high confinement mode (H-mode), which is associated with a steeper

density and pressure profile at the plasma edge. This transition is based on zonal flows

suppressing turbulence[31].

The primary pathway for growth of zonal flows is non-linear, via momentum transfer of

self-interacting turbulent structures which leads to shearing of small scale turbulence and

the transfer of its energy to large scale sheared flows. One non-linear pathway is for a

4-wave interaction of drift-waves which can drive zonal flows via modulational instability

[32][33][34]. Another method is via the Kelvin-Helmholtz instability of coherent radial

structures known as radial streamers which via the instability decay to perpendicularly

oriented zonal flows [35]. By contrast the decay of zonal flows can be caused by both

linear and nonlinear processes. One linear method of decay is if zonal flows couple

to compressible poloidal modes known as Geodesic Acoustic Modes (explored in more

detail in Chapters 3 and 4). A field aligned component of these GAMs is Landau

damped and due to the coupling, the zonal flows can also lose energy via this avenue. A

nonlinear method of decay can be the tertiary Kelvin-Helmholtz instability of small scale

fluctuations in ITG and resistive drift-wave turbulence [28][35].

This chapter will mainly focus on exploring another method of linear decay of zonal

flows, chiefly via a Landau-damping-like interaction with drift-waves. This has been
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explored in part previously using this motivation[28]. There is a subtle difference in

the context in which this interaction is investigated in this chapter, mainly drift-wave

instability in the presence of zonal flows rather than zonal flow stability. In the previous

work by Numata et al.[28] they start with the Hasegawa-Wakatani model and linearise

around an equilibrium that includes a zonal flows. They then check the growth rates

for the zonal flows and the growth rates for the drift-waves. Furthermore the values for

certain physical parameters (mainly the parallel electron resistivity) in the linearised

Hasegawa-Wakatani model are taken at far extremes (∼ 0). These are not justified

in the region of interest for ZF-Drift-wave interactions, since they would imply low

collisionality, which is more commonly found in the core at high temperatures. There

is some exploration of realistic values, however these are limited to empirical results

from a simulation without corroborating analytical predictions. The work presented

in this chapter aims to obtain more general analytic predictions for the behaviour of

the drift-wave instability in the presence of zonal flows and does so by building on and

complementing the work presented in Numata et al.[28].

The method of investigating the drift-wave instability presented in this chapter yields a

dispersion relation that is independent of any given shear profile and is dependent only

on the zonal flow amplitude and the spatial scale in the radial direction (similar to a

radial wavelength). The dispersion relation obtained is global since it is not dependent

on the radial coordinate and the poloidal and toroidal coordinates are not involved in

either the drift-wave description or the profile of the zonal flow. During the process of

linearisation, Landau-like terms appear which present a resonant condition where the

phase speed of drift-wave packet matches the advection speed of the zonal flow. This

presents potential singularities which must be dealt with and the final expression is not

easily analytically solvable and so is solved numerically. The results from this process

are then compared to simulations of the same Modified Hasegawa-Wakatani model used

in Numata et al.[28]. The main focus of comparison is in the near-resonant cases where

drift-wave phase speed and zonal flow advection speed are close in value and investigate

the departure of the frequencies and growth rates from the standard case (derived in the

Thesis Introduction).
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2.2 Methodology

2.2.1 Model Equations

The model used for the following analysis is the Modified Hasegawa-Wakatani model.

The details of this model can be found in the Transport section of the Thesis Introduction.

To briefly reiterate, the Hasegawa-Wakatani equations are derived from the standard

two-fluid Bragiinski equations (again details can be found in the Thesis Introduction)

with a non-adiabatic electron response. The model is well suited to examining drift-wave

turbulence and zonal flows in a localized region of the tokamak. The model equations

are as follows:

∂ζ

∂t
= α(ϕ1 − n1)− {ϕ, ζ} (2.1)

∂n

∂t
= α(ϕ1 − n1)− κ∂ϕ

∂y
− {ϕ, n}. (2.2)

Here ζ = ∂2ϕ/∂x2 + ∂2ϕ/∂y2 is the vorticity and n is the density of the plasma. The

directions of x and y correspond to the radial and poloidal direction in a localized region

at the edge of the tokamak plasma. The constant κ is defined as the value of the gradient

of the background density, ∂ lnn0/∂t. This term partially couples the two equations

however it mostly acts as a driving term for temporal density variations. This energy

can be dissipated via diffusion terms but due to their small contributions over the spatial

and time scales of interest, they are neglected here but are included in the simulation for

numerical stability. The coupling of interest here is α(ϕ1−n1) which fully couples the two

equations. The constant, α includes the parallel resistive dynamics due to ion-electron

collisions and is defined as α = Tek
2
z/(n0e

2ηωci), where η is the electron resistivity. The

Poisson brackets are defined as:

{ϕ, f} = (∂ϕ/∂x)(∂f/∂y)− (∂f/∂x)(∂ϕ/∂y). (2.3)

For linearisation, a radially varying background electrostatic potential (ϕ0(x)) is included,

this will act as the zonal flow profile. With ϕ = ϕ0 +ϕ1 = ϕ0(x) + ϕ̂ exp(i(kyy−ωt)) and

n = n1 = n̂ exp(i(kyy − ωt)). In this context, φ0 is associated with the background flow

and phi1 & n1 are the representations of drift-wave perturbations in the form of plane

waves in the poloidal direction . Furthermore V = ∂ϕ0/∂x is the velocity profile of the

background flow. Firstly, the new definition of ζ such that it’s conducive to linearising
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Eq. (2.1):

ζ =
dV

dx
+
∂2ϕ1

∂x2
− k2

yϕ1 = ζ0 + ζ1

ζ0 =
dV

dx
ζ1 =

d2ϕ1

dx2
− k2

yϕ1

Substituting this description into Eq. (2.1) and rearranging leads to:

− iωζ1 + ikyV ζ1 − iky
d2V

dx2
ϕ1 = α(ϕ1 − n1) (2.4)

This can be substituted into Eq. (2.2) as well as the definition for n1. Re-labelling

ϕ̂ exp(i(kyy − ωt)) as ϕ1, leads to:

− iωn1 + ikyV n1 = α(ϕ1 − n1)− ikyκϕ1 (2.5)

rearranging Eq. (2.5) yields:

n1 =
iα+ kyκ

ω − kyV + iα
ϕ1, (2.6)

this can now be substituted into Eq. (2.4) to eliminate n1 and produce:[
d2

dx2
− k2

y +
ky

ω − kyV
∂2V

∂x2
− iα

ω − kyV + iα

(
1− κky

ω − kyV

)]
ϕ1 = 0 (2.7)

Up to this point the derivation is fairly similar to the derivation in Numata et al. [28]

(near the end of section IV. Stability of Zonal Flow). From here a different approach is

taken to derive a global dispersion relation.

Firstly a definition of the zonal flow velocity profile is needed, the particular profile

chosen is, V (x) = V0 sin(kZFx). A unique property of this profile is that:

d2V (x)

dx2
= −V0k

2
ZF sin(kZFx) = −k2

ZFV (x)

Additionally, with an appropriately chosen kZF , multiple zonal flows can be fit into a slab

of arbitrary width L (provided the length-scale satisfies the applicability of the MHW
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model). Substituting this profile into Eq. (2.7) gives:[
d2

dx2
− k2

y +
−kyV0k

2
ZF sin(kZFx)

ω − kyV0 sin(kZFx)

− iα

ω − kyV0 sin(kZFx) + iα

(
1− κky

ω − kyV0 sin(kZFx)

)]
ϕ1 = 0

(2.8)

From here there are multiple avenues to explore, Numata et al. for example explores the

extremal limits of α. Setting α = 0 reduces Eq. (2.8) to a form similar to Rayleigh’s

equation for a neutral fluid. This exposes an important feature in this dispersion relation

as a result of Rayleigh’s inflection point theorem. This requires that for the growth rate of

the drift-wave perturbation to be finite that d2V/dx2(xi) = 0 at x = xi —for this profile,

−k2
ZFV (xi) = 0. Equivalently setting α =∞ gives a requirement of −k2

ZFV (xi) + κ = 0.

The corresponding method of obtaining a dispersion relation for these limits is to multiply

Eq. (2.8) by the complex conjugate of the potential, ϕ∗1 and integrating over the whole

volume. This is unsuitable for for our case since if α is finite, then it introduces new

resonance conditions that cannot be handled by this approach.

2.2.2 Global Dispersion Relation

Instead of the approach in Numata et al. a different route is explored, looking at the

implications of intermediate values of α where Eq. (2.8) cannot be simplified and many

resonances exist. Given the periodicity of the velocity profile in the radial direction and

the kx = 0 definition of the chosen drift-wave perturbation, a limited spatial average in

the radial direction should be sufficient to capture the effects of the velocity profile. The

extent of the region chosen is between x− l and x+ l, where l = nπ/kZF where n ∈ Z
and n� 1. Therefore the total extent is always more than 2π/kZF which consists of a

full radial period of the velocity profile (where it ranges from −V0 and V0). The general

expression describing the spatial average of an arbitrary function is :

〈f〉 =
1

2l

∫ x+l

x−l
f(v(ξ))dξ =

1

2l

∫ x+l

x−l

[∫ ∞
∞

f(χ)δ(χ− v(ξ))dχ

]
dξ (2.9)

Here ξ is the dummy variable for the real-space coordinate and χ is the dummy variable

for the velocity-space coordinate. The averaged function, f is any function/expression

that is dependent on the velocity profile v(ξ) = χ. Changing the order of integration and
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defining a new function F0(χ) gives:

〈f〉 =

∫ ∞
−∞

f(χ)

[
1

2l

∫ x+l

x−l
δ(χ− v(ξ))dξ

]
dχ (2.10)

F0(χ) =
1

2l

∫ x+l

x−l
δ(χ− v(ξ))dξ =

1

2l

∑
|ξ−x|<l

∣∣∣∣dχdξ
∣∣∣∣−1

χ=v(ξ)

(2.11)

〈f〉 =

∫ ∞
−∞

f(χ)F0(χ)dχ (2.12)

Converting Eq. (2.11) to be an integral over velocity(χ)-space:

F0(χ) =
1

2l

∫ ∞
−∞

δ(χ− v(ξ))

∣∣∣∣dχdξ
∣∣∣∣−1

dχ (2.13)

Normally the evaluation of Eq. (2.11) in real-space leads to a sum of the inverted

derivatives of χ at the different locations in real-space where the δ-function is satisfied.

However given that the chosen velocity profile varies between −V0 and V0, switching

to velocity-space gives only one possible location where the resonant conditions being

considered are satisfied and therefore giving a tractable result. In addition to the limited

variability and periodicity of the chosen velocity profile there is also the unique property

that its spatial derivative can be defined as a function of itself. If for now the constant

V0 is neglected in this example (since it can always be transferred outside integrals) and

v(ξ) = sin(kZF ξ) then:∣∣∣∣dχdξ
∣∣∣∣−1

=
1

kZF

1

cos(kZF ξ)
=

1

kZF

1√
1− sin2(kZF ξ)

=
1

kZF

1√
1− χ2

(2.14)

Now evaluating Eq. (2.13) results in (note the reference to χ on the RHS is allowed due

to the δ-function fixing the definition χ = v(ξ)):

F0(χ) =
1

2lkZF

1√
1− χ2

(2.15)

This expression is immensely useful for simplifying(relatively) the procedure for applying

the spatial averaging to Eq. (2.8). To illustrate the general procedure, an example of the

averaging technique applied to a term in Eq. (2.8) is presented.

T =

〈
−k2

ZFkyV0 sin(kZFx)

ω − kyV0 sin(kZFx)

〉
=
−k2

ZF

2l

∫ x+l

x−l

sin(kZF ξ)

ω∗ − sin(kZF ξ)
dξ, (2.16)
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where ω∗ = ω/(kyV0). Changing to velocity-space gives:

T = −k2
ZF

∫ χ(x+l)

χ(x−1)

χF0(χ)

ω∗ − χ
dχ = k2

ZF

∫ χ(x+l)

χ(x−l)

g(χ)

χ− ω∗
dχ (2.17)

ω* 

R 

Im 

Re r 
T1

T2

T3

Figure 2.1: Example of integration contour used in the averaging technique, labels for
the terms in Eq. (2.18) are also included.

The denominator in the integral requires careful treatment as different limits give

distinct results. Therefore the term is split into three parts:

T = T1 + T2 + T3 = k2
ZF

∫ χ(x+l)

χ(x−l)

g(χ)

χ− ω∗
dχ+ k2

ZF

∫
r

g(χ)

χ− ω∗
dχ+ k2

ZF

∫
R

g(χ)

χ− ω∗
dχ

(2.18)

In this case, T1 deals with the non-resonant case where ω∗ is far from χ, T2 looks at the

resonant case and T3 completes the contour illustrated in Fig. 2.1. Starting with the

evaluation of T1, changing to real-space and rearranging:

T1 =
−k2

ZF

2lω∗

∫ x+l

x−l

χ

1− χ/ω∗
dξ (2.19)

T1 =
−k2

ZF

2lω∗

∫ x+l

x−l
χ

(
1 +

( χ
ω∗

)
+
( χ
ω∗

)2
+ ...

)
dξ (2.20)

Note that with (χ/ω∗) taken as a small parameter a Maclaurin expansion is used.
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Absorbing the extra χ in the integral into the expansion and keeping only terms the first

term that will yield a non-zero result gives:

T1 =
−k2

ZF

2lω∗

∫ x+l

x−l

(
χ2

ω∗

)
dξ =

−k2
ZF

2lω∗2

∫ x+l

x−l
χ2dξ (2.21)

T1 =
−k2

ZF

2lω∗2

∫ x+l

x−l
sin2(kZF ξ)dξ =

−k2
ZF

2lω∗2

[
ξ

2
− sin(2kZF ξ)

4kZF

]x+l

x−l
(2.22)

T1 =
−k2

ZF

2ω∗2
(2.23)

Evaluating the remaining pieces of the contour integrals T2, T3 gives:

T2 = k2
ZF

∫
r

g(χ)

χ− ω∗
dχ = iπk2

ZF g(ω∗) = iπk2
ZFω

∗F0(ω∗) (2.24)

T3 = k2
ZF

∫
R

g(χ)

χ− ω∗
dχ =

iπkZF
2l

(2.25)

Even when the resonant condition isn’t met there are still poles at χ = −1 and χ = 1

and the possibility of needing to use branch cuts was considered but the residue at these

poles evaluates to 0 so any contribution is not included. Combining all of the parts:

T = T1 + T2 + T3 =
−k2

ZF

2ω∗2
+
iπkZF

2l
+ iπk2

ZFω
∗F0(ω∗) (2.26)

This averaging technique is applied to every term in Eq. (2.8) and the resulting dispersion

relation is: [
−k2

x − k2
y + i

kZFπ

2l
−
k2
ZF

2ω∗2
+ k2

ZFω
∗πiF0(ω∗)

− γ

ω∗ + γ
− γ

2(ω∗ + γ)3
+ πiγF0(ω∗ + γ)

+
γ∗

ω∗
+

γ∗

2ω∗3
− πiγ∗F0(ω∗)

− γ∗

ω∗ + γ
− γ∗

2(ω∗ + γ)3
+ πiγ∗F0(ω∗ + γ)

]
ϕ1 = 0.

(2.27)

There are a few convenient labels introduced, γ = iα/kyV0 and γ∗ = κ/V0. Now the

x-dependence is gone but a contribution from the ZF velocity profile and its characteristic

inverse length-scale, kZF , is retained. Second order terms in V0 are included as they

can contribute at sensible values of α, κ and with V0 � 0. The averaging window, l,

is also present in the result and terms associated with it may have their contribution

reduced if l is increased to large values. But given that F0 spans the entire range of

values of velocity inside the {(x− l), (x+ l)} interval, the averaging in the velocity-space
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and real-space should be consistent with each other and should be independent of l.

Note also that in averaging Eq. (2.8), the second derivative with respect to x has been

replaced with −k2
x. This radial wavenumber, kx, is assumed to be small with kx � ky and

kx � kZF . The motivation for this choice comes from the linear drift-wave solution to

the Hasegawa-Wakatani equations which yield a stable propagating drift-wave at kx = 0

and finite ky if zonal flow contributions are excluded. A similar justification is used when

looking at vertically stratified ocean waves with a rigid cap condition [36], where provided

the length scale of the x direction is much greater than the length scale associated with

the zonal-flow-drift-wave interaction dynamics then −k2
x is the result of evaluating the

d2/dx2 term in Eq. (2.8) with kx � 1.

There are some limitations to consider for this method. Mostly these concern the velocity

profile of the background flow. A velocity profile that is either not periodic or has no

clear value for the characteristic length scale for variation, l, will not be well suited for

this method. Similarly any velocity profile whose formulation’s derivative cannot be

expressed as a function of the formulation itself, is again not well suited.

The complex contour derived terms should dominate for resonant conditions, where the

drift-wave phase speed matches the given condition. Solving Eq. (2.27) is a non-trivial

task and cannot easily be done via straight-forward analysis. A more fruitful approach is

to solve the equation numerical via any number of root-finding algorithms that are widely

available. Here, it is solved using the fsolve(...) function in MATLAB. Before using said

function it is useful to rearrange Eq. (2.27) to eliminate any possible divergences. Fig.

2.2a the result of solving Eq. (2.27), in particular the growth rates with respect to the

mode number of the perturbations, ms. This mode number is defined as: ms = kyL/2π

where L is the slab length. Fig. 2.2b shows an exploration of the α − κ space for the

maximum growth-rate. It is evident that κ is a dominant drive of drift-wave instability,

which is consistent with the additional energy that is introduced by the term containing

κ in the MHW model.

2.2.3 Numerical Analysis

To verify the newly obtained dispersion relation, data from a numerical simulation is

used. The simulation solves the MHW model in 2D slab geometry with doubly-periodic

boundary conditions. The slab lengths are normalized to the hybrid Larmor radius,

Lx = Ly = L = 40ρs and the time-steps are ∆t = 0.01ω−1
ci , with ωci = eB/mi. Arakawa’s

method [37] is used to solve the Poisson brackets and a third-order Karniadakis imple-

mentation [38] is used for the time evolution. The dissipative terms, such as D∇4n , are
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Figure 2.2: 2.2a The growth rate(imaginary component of ω) versus the perturbation
mode number. The parameters are: α = 0.5, κ = 1.0 and kZF = 0.4π and V0 = 0.1. 2.2b
A scan across α− κ space with the z-axis showing the maximum growth rate. The red
dot shows the α = 0.5 and κ = 1.0 location.

added back in to aid numerical stability, and are defined as D = 10−4.

The initial conditions are chosen to specifically look for drift-wave and zonal flow interac-

tions, to that end the plasma number density is set as n(x, y, 0) = 0.01 cos(kxx+ kyy),

and kx = 0.01ky. The simulation tracks the electrostatic potential but solves the MHW

model which describes the time-evolution of the vorticity ∇2ϕ. Therefore an initial

condition for the vorticity needs to be defined, but derived from the initial condition for

ϕ:

ζ(x, y, 0) = kZFV0 cos(kZFx)− (k2
x + k2

y)(0.01V0) cos(kxx+ kyy) (2.28)

The V0 constant comes from the inclusion of a background flow in the initial condition of

ϕ. The (0.01V0) term comes from the perturbed potential ϕ1 having an amplitude 0.01

times smaller than the amplitude of ϕ0. In addition to the number density, n and the

electrostatic potential, ϕ, various energies are tracked:

EZF =
1

2

∫
(∇〈ϕ〉)2dV (2.29)

ET =
1

2

∫
(∇(ϕ− 〈ϕ〉))2dV (2.30)

EKin = EZF + ET (2.31)
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Figure 2.3: Plots showing the time-evolution of scalar potential. The time-steps are in
units of ω−1

ci . The initial perturbation’s ky is set to 0.3π, or a mode number ms = 6.

The energies are split into zonal flow energy, EZF , the energy of the turbulence, ET

and the kinetic energy, EKin. Figure 2.3 illustrates the result of a simulation run. The

parameters are set as α = 0.5, κ = 1.0, kZF = 0.4π and V0 = 1. The initial drift-wave

perturbation is not clearly visible in Fig. 2.3a but it is of the form visible in Fig. 2.3d

(ms = 6 corresponding to 6 peaks). The perturbation grows rapidly and is clearly

dominant by the end of the time-span. Figure 2.4 shows this transition in the context of
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system energetics.

Figure 2.4: An energy plot of the simulation run shown in Fig. 2.3. The A-D labelled
points show the energies at various stages and the transition from zonal flow to drift-wave
dominance is clear. The energies are normalised to the same constant, which is chosen
for convenience.

2.3 Discussion

To start with, the results of the simulation are compared to the prediction from the

solution to Eq. (2.27). Figures 2.3 and 2.4 show the initial phases of a simulation run

with parameters set to values typical of those seen in tokamak plasmas. Fig. 2.4 in

particular shows evidence of zonal flow - drift-wave interaction in the fact that it shows a

decay of zonal flow energy on the same time-scale as the growth of the drift-wave energy.

This excludes the possibility that the drift-wave growth is due to pure linear instability

as in that case the zonal flow energy would have remained stable during drift-wave energy

growth.

Figure 2.5 shows the frequencies and growth rates of the drift-waves, these are plotted

for the cases of linear drift-wave instability, zonal flow-drift wave interaction and the

measured results from the simulation. Figures 2.5a and 2.5b shows the case where

conditions are far from resonance. As V0 (the zonal flow velocity profile amplitude)

increases, there is a gradual departure for large mode numbers, ms, this can be seen in

Figs. 2.5c and 2.5d.
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Figure 2.5: Figures showing the frequencies and growth rates of the drift-waves against
their mode number, ms at different values of V0 with identical conditions to Fig. 2.4.
The curves correspond to predictions from the linear stability theory, the solution to Eq.
(2.27) and the measure values from the simulation. The y-axis units are ω∗ = ω/kyV0,
these apply to the linear result as well to allow comparison between results.

When V0 is large enough such that −V0/V0 range includes the drift-wave phase velocity,

then contributions from resonant terms in Eq. (2.27) start to impact the dispersion

relation, as can be seen in Figs. 2.5e and 2.5f. The zonal flow-drift wave interaction result
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deviates considerably from the linear instability case. At points the frequency and growth

rates can differ by a factor 2-4. The departure of the simulation case from the predicted

cases may be due to the resonant energy transfer from ZF to drift-wave happening

very quickly and nonlinear interactions taking over almost immediately. The fact that

the results show deviations from linear instability in resonant conditions demonstrates

the sensitivity of the drift-wave growth to non-adiabatic electron response. This α

contribution is included in the Landau-like terms in Eq. (2.27). These are not the only

Landau-like terms in the equation however, therefore there is no sole resonance that

affects the drift-wave growth.
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Figure 2.6: The main plot shows the energy of the system with constants set to α = 0.5,
κ = 1.0, V0 = 1.0, kZF = 0.4π and with a drift-wave perturbation mode number ms = 2.
Panel A shows the initial transition and inversion of dominant states, Panel B shows
full dominance of the drift-wave mode and suppression of the zonal flow, with Panel C
showing the return to zonal flow dominance.
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Figure 2.7: An energy plot showing the results from a simulation run similar to Fig. 2.6,
but with V0 = 0.01 to illustrate a lack of zonal flow suppression as a result of energy
exchange.

The energy dynamics of drift-waves and zonal flows are now examined closely over

the course of the simulation, two cases which satisfy resonant conditions are investigated.

Firstly, a case where α = 0.5 and ms = 2 are chosen with other parameters identical to

the previous simulation run showcased in Figs. 2.3 and 2.4. The drift-wave perturbation

mode number, ms = 2, is chosen to showcase a simple example of drift-wave zonal flow

interaction. The presentation is identical in format to Fig. 2.4 with the letter labels

corresponding to accompanying snapshots in time. Prior to point A in Fig. 2.6 the zonal

flow energy decays on approximately the same time scale as the drift-wave growth. By

comparison, when this scenario is repeated away from resonance, V0 = 0.01, the zonal

flow does not decay at all and the drift-wave grows in a linear fashion. Therefore, further

evidence that non-adiabatic electron response is contributing to zonal flow and drift-wave

energy exchange at resonance. Also of note is that by point C the zonal flow dominates

again, this is expected as that is the natural tendency of the MHW system. Figure 2.8

illustrates a similar scenario but with α = 0.2, here the drift-wave grows faster than Fig.

2.6. This broadly agrees with Fig. 2.2b which shows that for the same ms, the growth

rate increases as α is decreased (in this case from 0.5 to 0.2).

The topic of zonal flow decay is now investigated, even though the main concern of this

chapter is to explore drift-wave instability, it is still useful to check the behaviour of
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zonal flow decay. This is to verify that the behaviour is consistent with the behaviour

seen for drift-wave growth and if so this provides further evidence to suggest an energy

exchange between the two phenomena. The measure of the decay rates of zonal flows is

1.0/τ , here τ is the time taken for the zonal flow energy to decay (to the first minimum).

The data for the drift-wave growth from the simulation in Fig. 2.5f and the decay of

the zonal flow energy in Fig. 2.9 are in good agreement both in terms of peak locations

and overall structure. If the initial perturbation mode number is set ms > 6 then the

energy exchange and so the zonal flow decay is muted and the decay does not occur

until nonlinear interactions of the drift-waves generate modes with mode numbers of

ms = 4−6. Depending on the initial conditions, particularly the value κ which introduces

energy into the system via a radial density gradient, this generation of optimal drift-waves

can take a significant amount of time.
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Figure 2.8: A similar figure to Fig. 2.6 but with α = 0.2. This shows faster dynamics in
all respects including drift-wave growth and subsequent zonal flow dominance later in
the simulation.
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Figure 2.9: Figure showing the zonal flow decay rates with α = 0.5 consistent with all
simulation data from Figures 2.6 and earlier.

2.3.1 Further analysis at V0 = 1.0

Due to the fast evolution of mode structures in the case of running the simulation with

V0 = 1.0, obtaining accurate data for the frequency and growth rate of the prescribed ky

modes is not straightforward. Instead more data is obtained by running the simulation

for longer and starting with a perturbation with a significantly reduced amplitude. The

perturbation amplitude is now set to 10−12 instead of 0.01. This slows the dynamics of

the system and allows the perturbations to stay in the linear regime for much longer. In

turn, this allows for more confidence in any derived frequencies and growth rates of the

perturbations. Furthermore the extraction of these frequencies and growth rates is now

approached differently. Considering the phase q(t) of the perturbation, expressed as:

ϕ(t, y) = exp (iq(t) + ikyy) (2.32)

Then looking at the ratio of ϕ(t+ dt) and ϕ(t) and using a Maclaurin series, returns:

ϕ(t+ dt)

ϕ(t)
= exp (iq(t+ dt)− iq(t)) ∼ 1 + idt

dq

dt
(2.33)

Where through re-arrangement ω can be obtained since ω = dq/dt with frequency being

the real part and growth rate being the imaginary part. The plots in Figure 2.10 are in

the same format as Figs. 2.5e and 2.5f but with more accurate values for the frequencies

and growth rates of the various modes from the simulation.
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Figure 2.10: Figures showing the frequencies and growth rates of the drift-waves against
their mode number, ms.

To obtain more accurate values for the frequencies and growth rates, the simulation

was run with a much smaller amplitude for the initial drift-wave-like perturbation, from

10−2 to 10−12. In essence, this slows the dynamics of the drift-wave growth sufficiently

that several oscillations of the mode can exist before the growth to the maximum

amplitude (after which, as before, there is a decay and zonal flow becomes dominant

again). For most mode numbers this works well and allows upwards of ∼ 10 coherent

oscillations that exhibit linear growth. However, at mode numbers ms > 6, there is a

complication in the sense that those modes do not grow linearly or become the dominant

mode. As mentioned before when discussing Fig. 2.9, there is still a zonal flow decay and

re-emergence (albeit more slowly than with lower modes), but the dominant drift-wave

mode is not the mode that is initiated at the start of the simulation but ms = 4− 6. The

technique to obtain ω from the change in phase, q described earlier is still applied to the

data and still yields values that are less erratic than in Figs. 2.5e and 2.5f.

2.4 Conclusion

This chapter explored a possible mechanism of drift-wave and zonal flow interaction. A

spatial averaging technique was used in calculating the drift-wave dispersion relation in

order to account for a background velocity profile. This exposed a number of resonant

terms which, when the relevant conditions were satisfied, modified the classic linear

dispersion relation obtained from the MHW (Modified Hasegawa-Wakatani) model. The

resulting equation was solved numerically and the results were compared to and verified

with data from a simulation of MHW. Various distinct initial conditions were used to

probe the nature of the drift-wave/zonal flow interaction and clear evidence was found
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indicating energy exchange between the two phenomena in the initial phase of drift-wave

growth. The prediction that the energy exchange would be dependent on the drift-wave

mode number, ms, was also verified. After analysis of more accurate data for the most

resonant case (V0 = 1.0) it is clear that though, there is clear deviation of the frequencies

and growth rates from the standard linear relation, there is also a deviation from the

predicted rates obtained from utilizing spatial averaging. It seems there are more effects

at play that are not accounted for by the spatial averaging approach. Nevertheless,

the results from this chapter do provide information about one aspect of the potential

drift-wave/GAM (Geodesic Acoustic Modes)/zonal flow interaction in a simplified model

setting. The next chapter will investigate in more detail the properties of GAMs, primarily

focusing on the linear properties in a different more holistic simulation which simulates

an entire spherical tokamak (CENTORI).
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Chapter 3

Linear GAM Properties

3.1 Introduction

One of the emerging areas of interest in plasma physics this century has been the Geodesic

Acoustic Mode(GAM). This mode was hypothesised by Winsor in 1968[39], to explain

certain observations in both tokamaks[40] and computer simulations. In particular an

advantageous property of this mode is that it oscillates with an observable frequency,

this can be used to infer the sound speed in the plasma and acts as a proxy for the

electron and ion temperatures. A better understanding of the behaviour of GAMs both

linearly and non-linearly could lead to a non-invasive method of detecting the electron

and ion temperature in the plasma. Another benefit to understanding GAMs would

be a possible use of its shear flow in controlling the level of edge turbulence. To start

with an analytical description of the most basic version of GAM is presented following

the derivation in Winsor’s paper[39]. Following this a brief introduction to CENTORI

is given along with an overview of the basic physics of the simulation. Finally results

and subsequent analysis of a CENTORI run are presented and the linear properties of

the signals produced are investigated. This chapter should serve as a stepping stone to

Chapter 4 where the non-linear properties of GAMs are investigated more deeply.

3.2 Geodesic Acoustic Mode

The basic concept for GAMs is that if an initial density fluctuation were to excite an

electric field perturbation in a tokamak, then this would cause a perpendicular plasma

flow which would lead to a density accumulation. This accumulation would generate a

current that would act to reverse the electric field perturbation, which would lead to
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an overshoot and an identical density fluctuation occurring 180◦ away from the original

fluctuation. This typically appears as an up-down asymmetry in density in tokamaks, for

example over-dense plasma at θ = 90◦ and under-dense at θ = 270◦. This is classified

by the fundamental poloidal mode number m=1. Crucially this mode can only occur in

any magnetic confinement device with geodesic curvature, ie. tokamaks or stellarators,

and hence the “Geodesic” part of the name. The term “Acoustic” comes from the fact

that the wave-speed of GAMs scales with the sound speed in the plasma (the sound

speed in question would be cs ∼
√
Te/mi). Winsor starts with a perturbed standard

MHD system whilst neglecting the time variation of the magnetic field, ~B. All of the

equilibrium and perturbed quantities are defined as, p is equilibrium pressure and p1 is

the perturbed pressure.

ρ
∂ ~v1

∂t
=

1

c
( ~J1 × ~B)− ~∇ρ1 (3.1)

∂ρ1

∂t
+ ~∇.(ρ~v1) = 0 (3.2)

~∇φ1 =
1

c
(~v1 × ~B) (3.3)

~∇. ~J1 = 0 (3.4)

ρ−γ
∂p1

∂t
− γpρ−γ−1∂ρ1

∂t
+ ~v1.~∇(pρ−γ) = 0 (3.5)

ψ labels the magnetic surfaces and is defined as: ~B.~∇ψ = 0. Additionally p = (ne +

ni)kBT = 2ρkBT/mi, (mi � me) and ρ = ρ(ψ) and p = p(ψ). The perturbation velocity

is defined as:

~v1 =

(
v1ψ

~∇ψ
|~∇ψ|2

+ v1s

~B × ~∇ψ
B2

+ v1b

~B

B2

)
exp(−iωt) (3.6)

The definitions for the individual velocity components are recovered by taking different

components of the model equations:

~∇ψ component of Eq. (A.3) gives: v1s =
~v1.( ~B × ~∇ψ)

|~∇ψ|2
(3.7)

( ~B × ~∇ψ) component of Eq. (A.3) gives: v1ψ = 0 (3.8)

Since p = p(ψ) and ρ = ρ(ψ) then Eq. (A.5) reduces down to p1 = (γp/ρ)ρ1. The J1ψ

term can be obtained by taking the ( ~B× ~∇ψ) of Eq. (A.1). Using the divergence theorem

on the volume integral of Eq. (A.4) to turn it into a surface integral; substituting in J1ψ
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and rearranging gives:

v1s =
−iγp
ωρ2

∫
( ~B × ~∇ψ).~∇ρ1

B2
J dS

/∫
|~∇ψ|2

B2
J dS (3.9)

Here
∫
J dS is the surface integral with J being the Jacobian for a given coordinate

system. Taking the ~B component of Eq. (A.1) recovers:

v1b = − iγp
ωρ2

~B.~∇ρ1 (3.10)

The new definition of ~v1 is:

~v1 =

[
−iγp
ωρ2

[∫
( ~B × ~∇ψ).~∇ρ1

B2
J dS

/∫
|~∇ψ|2

B2
J dS

]
~B × ~∇ψ
B2

+− iγp

ωρ2
~B.~∇ρ1

~B

B2

]
exp (−iωt)

(3.11)

Multiplying both sides by ρ; substituting the new ρ~v1 into Eq. (A.2) and rearranging

and integrating both sides with respect to time (between 0 and ∞) yields:

ρ1 =
−γp
ω2ρ

~∇.

[[∫
( ~B × ~∇ψ).~∇ρ1

B2
J dS

/∫
|~∇ψ|2

B2
J dS

]
~B × ~∇ψ
B2

+ ~B.~∇ρ1

~B

B2

]
(3.12)

Now multiplying both sides by ρ∗1J dS and integrating; using integration by parts on the

L.H.S. and re-arranging yields:

ω2

∫
|ρ1|2J dS =

γp

ρ


∣∣∣∣∣
∫
ρ1

( ~B × ~∇ψ).~∇(B2)

B4
J dS

∣∣∣∣∣
2/∫

|~∇ψ|2

B2
J dS


+

∫
| ~B.~∇ρ1|2

B2
J dS

} (3.13)
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Figure 3.1: Knorr’s model [6]

Up to this point the mathematical description of GAM has been in general magnetic

coordinates. From this point forward the Knorr coordinate system is used. Now choosing

Knorr’s coordinate system as an example, it is possible to proceed in calculating the

dispersion relation. Knorr’s coordinate system is illustrated in Fig. 3.1, it consists of

a radial, poloidal and toroidal directions to form an orthogonal system that describes

a circular cross-section torus. For the surface integral the following definition for this

coordinate system is used:

J dS = r
(

1 +
r

R
cos θ

)
dθdz (3.14)

, where r is the radial direction along the minor radius, θ is the poloidal angle, z is in

the toroidal direction and R is the major radius. For modes independent of z, applying

this coordinate system gives:

ω2

∫ 2π

0
|ρ1|2dθ =

γp

ρr2(1 + f2)

[
2r2

∣∣∣∣∫ 2π

0
ρ1

(
sin(θ) +

r

2R
sin(2θ)

)
dθ

∣∣∣∣2/πR2

(
1 +

3r2

2R2

)

+f2

∫ 2π

0

∣∣∣∣∂ρ1

∂θ

∣∣∣∣2 dθ
]

(3.15)

Now if ρ1 ∝ sin θ then:

ω2 =
2γp

ρR2

(
1 +

i2

8π2

)
= ω2

s

(
2 +

1

q2

)
(3.16)
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This describes the frequency of the GAM but the modal structure is fairly simple to

describe. As described previously, the up-down asymmetry in the fluctuating electron

density leads to an m = 1 mode structure. This equation only holds for symmetric

concentric circular plasmas with long radial wavelengths of the GAMs and no background

flows in a single-fluid MHD description. Additionally, this is the accepted definition for

GAM frequency in the absence of additional terms that can be introduced to include the

effects of plasma rotation in the tokamak for example. A more detailed derivation of this

result can be found in Appendix A.

3.3 CENTORI

In order to investigate the behaviour of GAMs(Geodesic Acoustic Mode) in MAST

a simulation named CENTORI was primarily used. CENTORI(Culham Emulator of

Numerical TORI[7]) is a two-fluid electromagnetic turbulence code that was developed in

an effort to model, among other things, turbulent transport, resistive diffusion timescales

and MHD instabilities. It does this by solving the two-fluid Bragiinski[17] description

of the plasma whilst co-evolving an equilibrium which is calculated using the modified

Grad-Shafranov equation[41][42]. It is written in FORTRAN-95 and utilises MPI(Message

Passing Interface) for parallelism. The coordinate system is slightly different to most

used for fusion plasma analysis since the code is trying to capture full device geometry

related effects. Therefore the coordinate system consists of R which is the major radius

of the tokamak, Z which is the vertical displacement from a chosen central point and ζ is

the toroidal angle. The direction for the toroidal angle is chosen such that the (R,Z, ζ)

system generates a right-handed coordinate system. In addition, another more natural

coordinate system is utilised. This would be the (ρ, θ, ζ) coordinate system, this is in

general a non-orthogonal system. The plasma quantities are then evolved and tracked in

both coordinate systems and the user can choose which one is more appropriate for their

particular use-case. Here, ρ(R,Z) is a normalised version of the poloidal flux function

(ψ), θ is the poloidal angle and ζ is identical to before. The direction of travel along the

poloidal and toroidal axes is again such that the coordinate system is right-handed. This

coordinate system is illustrated in Fig. 3.2. The plasma quantities that are evolved are:

ni, ion number density; ~A, vector potential; ~vi, the ion velocity; Ti, the ion temperature

and Te, the electron temperature. The electron number density ne is also tracked via

quasi-neutrality, which ties it to ni. In addition there are more physical quantities

which are evolved, however they are generally considered secondary. These secondary
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Figure 3.2: A breakdown of the coordinate systems used by CENTORI[7]

quantities are: pi = neTi and pe = neTe, ion and electron pressure respectively; ~J , the

current density; ~B, the magnetic field; ve, the electron velocity; φ, the scalar potential;

~E, the electric field. All of the tracked quantities are normalised before being used

in any equations. The code favours using initial values as the basis for normalisation

over equilibrium values. For example ~vi and ~ve are normalised using an initial Alfvén

speed, va =
√
B0/4πmin̄e, where B0 is the vacuum toroidal field on axis, n̄e is a volume

averaged electron number density. The quantities are evolved using two-fluid equations.

The ion momentum balance used is:

ρm

(
∂~vi
∂t

+ ~W × ~vi

)
= −∇pi −

ρm
2
∇~vi2 + ene ~E +

ene
c

(~vi × ~B)

−eneη ~J − ρmχv(∇× ~W ) + ~Sv

(3.17)

Here ρm = mine = ρi due to quasi-neutrality, η is resistivity, ~W = ∇× ~vi is the vorticity,

χv is velocity diffusion, ~Sv is external force. The electron momentum equation is modified

in comparison to the ion momentum equation by ignoring inertial terms (effectively

assuming zero electron mass):

~0 = −∇pe − ene ~E −
ene
c

(~ve × ~B) + eneη ~J (3.18)
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The energy evolution is defined as:

3

2
ni

(
∂

∂t
+ ~vi.∇

)
Ti + pi∇.~vi = −∇.~qi + Si (3.19)

3

2
ne

(
∂

∂t
+ ~vi.∇

)
Te + pe∇. ~ve = −∇.~qe + Se (3.20)

Again, qi and qe are the heat fluxes for the ions and electrons respectively and Si and

Se are external heating sources for ions and electrons. The heat fluxes are derived

from neoclassical thermal diffusivity terms (χe and χi), which are themselves dependent

on empirically derived neoclassical diffusivity coefficients (KNC,e and KNC,i). These

coefficients add the effects of toroidal curvature to the classical thermal diffusivity.

There is also a contribution to the heat fluxes from terms associated with Rechester-

Rosenbluth contribution [43], which damps radial fluctuations in electron temperature,

the contribution is not included in the derivation of the ion heat fluxes. There is also a

mass continuity equation which is only accounted for the ions owing to quasi-neutrality

and the current being divergence free:

∂ρi
∂t

+∇.(ρi~vi) = Sn −min̄evA∇.Γ∗W + δn − vi‖(ρi − 〈ρi〉) (3.21)

Here, Sn is external particle source; δn is a diffusive term and ∇.Γ∗W represents the

effect of Ware Pinch. The Ware pinch is a phenomena which occurs in tokamak plasmas

that are operated with a low safety factor, q < 3. It is a result of trapped particles

in banana orbits that are affected by the toroidal electric field. This causes the orbit

to be displaced from the mid-plane and combined with the ~∇B and curvature drifts

experienced by the trapped particles, causes the particles to drift radially inwards at

a velocity of vρ = −Eζ/Bθ. The flux therefore varies as, Γ ∼ ε0.5nEζ/Bθ[44], where

ε = r/R is the inverse aspect ratio and ε0.5 is the trapped particle fraction.
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Finally there are Maxwell’s equations, Faraday’s Law, Gauss’s Law of Magnetism

and Ampere’s Law:

1

c

∂ ~A

∂t
= − ~E −∇φ (3.22)

∇. ~B = 0 (3.23)

~J =
c

4π
∇× ~B (3.24)

Gauss’s Law is guaranteed to be true if the magnetic field is defined as the curl of the

vector potential ( ~B = ∇× ~A) as is the case in CENTORI. These are the analytical forms

of the equations that are solved in CENTORI but the actual code solves normalized

versions of these equations. These are further re-formulated so as to suit the requirements

of simulating the system in a discretized manner. There is also Ohm’s Law:

~E = − ~vi ×
~B

c
+
~J × ~B

enec
+ η ~J − ∇pe

ene
(3.25)

η = resistivity (3.26)

The terms on the RHS are due to contributions from motion, Hall effect, resistance and

pressure gradient in that order.

3.4 CENTORI results

Before exploring any potential non-linear dynamics of GAMs in Chapter 4, data on

the linear dynamics was acquired. CENTORI runs were executed with a MAST-like

configuration. The simulation constructs, using GRASS(GRAd-Shafranov Solver), an

equilibrium from the magnetic coil positions and the coil currents specified in an input

file. This equilibrium is then used to construct a coordinate system (ψ, θ, ζ). The

grid resolution of the simulation is as follows: Nψ = 129, Nθ = 65, Nζ = 33. The

smaller value for ζ is due to the fact that the parallel length scales are significantly longer

than the two perpendicular scales. The time-step is set to 5× 10−10s, the equilibrium

is re-evaluated every 500 time-steps and the code outputs physical quantities at an

interval of 2.5× 10−6s(every 5000 time-steps). A full run is 5× 10−3s. Even allowing for

1× 10−3s to 2× 10−3s to let the simulation stabilize from the input configuration, the

full timespan should be enough to allow approximately 30 oscillations of GAM. This is

with fGAM ≈ 10kHz for a typical MAST discharge with edge temperature ∼ 0.1keV [45].

Given the GAMs low poloidal mode number and relatively small radial wave number[10],
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the grid resolution should be enough to capture not only GAMs but also significantly

smaller structures that may influence the GAM behaviour. The reference magnetic field

strength is 0.5T, the plasma current is set to 1 × 106A. The starting electron number

density is 5× 1019per m3, the initial electron temperature is set to 1.5keV and the initial

ion temperature is set to 2.0keV. The initial profile for the electron number density is

defined as: ne(ρ, θ, ζ) = ne0 exp(−αneρ), the coefficient αne is user-defined, 1.6 in the case

of this simulation. The initial profiles for the initial ion and electron temperatures follow

the same form with different coefficients, αti and αte, that are user-defined, 3.0 for both

for this simulation. The Alfven speed is ∼ 1.35× 108cms−1 and the Alfven time-scale is

∼ 4× 10−7s. Typical sound speed at the outer edge of the plasma is ∼ 107cms−1 and

sound time-scale is ∼ 5× 10−6s.

3.4.1 Continuous wavelet transform (CWT)

To understand the temporal, spatial and frequency domain structure of GAMs, some

form of transform is required. Usually this involves taking the Fourier transform of a

2D time-space data, this reveals frequency and spatial wavenumber domain structure.

However to show the time-evolution of the frequency domain structure a time-series must

be windowed such that the windows overlap. Fourier transforms are then performed over

these overlapping windows and thus some structure is recovered. The issue is that the

quality of Fourier transform depends heavily on the length of the data and the stationarity

of the signal being decomposed. Given the average length of pulse(∼ O(0.1s)) in MAST

and the period of a GAM oscillation(∼ O(0.1ms)), analysing MAST data using Fourier

transforms is viable but the time-span for the simulation presented here is 5ms of which

1.25ms is usable. Continuous wavelet transforms by contrast fit a series of time and

frequency localized wavelets and are thus more tolerant to non-stationary signals in data

with a limited time-span. The general definition of the continuous wavelet transform

(CWT) is:

X(s, b) =
1√
s

∫ ∞
−∞

x(t)φ∗
(
t− b
s

)
dt [46] (3.27)

Here, x(t) is the time series signal, φ∗(t) is the complex conjugate of the so-called mother

wavelet. This mother wavelet is the comparable to the sine function in a Fourier transform

and the variables s and b are analogous to the frequencies used to localise a Fourier

component. However, in this case the two variables correspond to the width and offset of
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the wavelet (with the width being closer to the frequency scaling in a Fourier transform).

The pure φ∗(t) is the mother wavelet and the variables (s and b) are used to generate

so-called daughter wavelets which decrease in amplitude as the scale, s, increases. The

particular choice of the mother wavelet is fundamental to the quality and relevancy of

the transformed data. For the case of GAMs it is useful to prioritise frequency resolution

as opposed to time-resolution (but without completely disregarding the time-resolution).

To this end, a wavelet in MATLAB known as the ‘bump’ wavelet is used for the CWT[8],

an example of this is shown in Fig. 3.3a. This wavelet provides an increased frequency

resolution but diminished time resolution when compared with the widely-used Morlet

wavelet[47] as shown in Fig. 3.3.

(a) (b)

Figure 3.3: (a) Plot of the structure of the ‘bump’ wavelet from the MATLAB
documentation.[8] (b) The frequency-time domain structure of the ‘bump’ wavelet.
[8]

The frequency-domain definition of is:

φ(sω) = exp

(
1− 1

1− (sω−µ)2

σ2

)
I[(µ−σ)/s,(µ+σ)/s] (3.28)

A large number of the parameters present in this definition are not exposed when using

the ‘bump’ wavelet in MATLAB. In any case, s is the scale number which spans between a

minimum scale s0 = 2∆t (∆t is the time-step of the original time-series) and a maximum

scale dependent on the signal properties. The values of µ and σ determine the structure of

the mother wavelet and are 5 and 0.6 respectively by default. The term I[(µ−σ)/s,(µ+σ)/s]

represents an indicator function between (µ − σ)/s ≤ ω ≤ (µ + σ)/s. To ensure not

too much frequency resolution is sacrificed, a calculation is performed to determine the

smallest frequency range between (µ− σ)/s and (µ+ σ)/s. For this the definition of the
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scales, s, used for the ‘bump’ wavelet is needed:

s = s0(2((Sc)ds)), (3.29)

NbSc = integer

(
log2(Ntdt

s0
)

ds

)
(3.30)

NbSc is the total number of scales, Sc is any integer from 0 to NbSc − 1, ds = 0.1

and Nt is the number of temporal data points in the original time-series. The smallest

frequency range is calculated by choosing the largest s which occurs at Sc = NbSc− 1.

The frequency resolution is thus calculated to be ∼ 1.1kHz for a 1.25ms duration signal.

Therefore any results presented in this chapter with frequencies separated by > 1.1kHz

should be resolvable and valid.

3.4.2 Fluctuating Electron Density (ne1)

(a) (b)

Figure 3.4: (a): CWT of the fluctuating electron density, ne1, showing frequency as a
function of normalised ψ averaged over 3.75-5ms of the run at a fixed poloidal position
of θ = 90◦. The red line signifies the expected profile of the GAM frequency if it were
present across the entire radial extent. (b): CWT showing frequency as a function of
time in a fixed radial location, ψ = 0.92, and a fixed poloidal location, θ = 90◦, between
17kHz and 47kHz. The red line represents the expected profile of the GAM frequency at
this particular location across the time-span calculated based on Eq. (3.31).

Firstly the result for the fluctuating electron density(ne1) are presented. Figure 3.4a

shows a spectrogram showing frequency against radius with two peaks at normalized ψ

of ∼ 0.8 and ∼ 0.92 at frequencies of ∼ 30kHz and ∼ 23kHz respectively. These peaks
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extend radially towards each others peak as is evidenced by the faint power signature

in Fig. 3.4b at ∼ 30kHz. The red line represents the expected GAM profile across the

radial extent as calculated using the formula:

fGAM =
1

2πR

√
2 +

1

q2

√
Te
mi

=
cs

2πR0

√
2 +

1

q2
(3.31)

Here, R is the local major radius, q is the local safety factor, Te is the local electron

temperature, mi is the ion mass and cs is the sound speed. As major radius increases

and electron temperature decreases, local safety factor increases towards the edge of the

tokamak, the expected GAM frequency decreases as can be seen in the red line in Figure

3.4a. This expected GAM profile has an overall higher frequency than the one quoted for

a typical MAST discharge(f ≈ 10kHz). This is consistent with temperatures at the edge

being 3-4 times hotter in the simulation compared to typical MAST discharges. Two

peaks appear close to the expected GAM profile with the outermost one being the more

prominent of the two.

The deviations from the expected GAM dispersion relation(∼ 11kHz expected vs. ∼
36kHz) may be due a variety of effects, including a different safety factor profile. For

example the local GAM dispersion relation is calculated using Eq. (A.6) which is the

formula for a circular cross-section large aspect-ratio tokamak. The effect of elongation, κ,

and triangulation, δ, may be significant enough to explain the deviation. These are defined

as: κ = (Zmax − Zmin)/2a and δ = (Rgeo −RZmax)/a. For MAST in this simulation the

elongation is κ = 1.80 and the triangularity is δ = 0.40. A revised definition of GAM

frequency is given in Sorokina et al.[48] as:

fGAM =
cs

2πR

√
2

(κ2 + 1)

(
2 +

(κ2 + 1)

2q2
− 3

2

3κ2 + 1

κ2 + 1
ε2 +

5κ2 − 1

2(κ2 + 1)
εδ +

17κ2

16(κ2 + 1)
δ2

)
(3.32)

Here ωs = cs/R0 is the sound frequency, ε = r/R = 0.752 is the inverse aspect ratio.

Substituting in the relevant values for these parameters (with q = 3.4) leads to a frequency

f = 15.1kHz for the location presented in Fig. 3.4b. This is still not accurate per Fig.

3.4b but shows that the effects of plasma shaping can have a significant effect on the

GAM frequency and brings the predicted GAM frequency much closer to the 23kHz

signal.

More modifications can be made to account for properties such as toroidal Mach number

(plasma velocity as a multiple of the speed of sound in the plasma). One such treatment
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yields:

fGAM =
cs

2πR

1

2

√√√√2 +
1

q2
+ 4M2 +

{(
2 +

1

q2
+ 4M2

)2

+
2M4

q2

}1/2

[49] (3.33)

This modification increases the GAM frequency with higher toroidal Mach number, M .

However, the toroidal Mach number at the measured radial locations is too low, M < 0.1,

to have a significant impact on the predicted GAM frequency.

Looking at the time-trace for a portion of this run as shown in Figure 3.4b, it’s clear

that the GAM signal is not constant and shows a low frequency modulation. Having

said that however it is present for a sufficient amount of time for multiple oscillations to

be observed. This is illustrated in Figure 3.5a, where observing the oscillations between

4-4.8ms it’s clear that there are multiple oscillations present. The number of oscillations

observed in Figure 3.5a is consistent with the peak in Fig. 3.4b being at ∼ 23kHz.
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Figure 3.5: (a): Filtered time trace showing the fluctuating electron density, ne1, for
frequencies between 17kHz - 47kHz at radial location of 0.92 and a poloidal angle of
90◦. (b): Power spectrum of the fluctuating electron density, ne1, across the 3.75-5ms
time-span in a fixed radial position, 0.92, and poloidal angle, 90◦.

As demonstrated in Figure 3.5b, there are indeed peaks in the power spectrum at

both higher and lower frequencies to the main peak. However, the peaks are orders of

magnitude lower than they appear since this is a log-log plot. An area of interest is the

peak directly adjacent to the main peak at 23kHz, the peak in power here may be due

to the 30kHz signal that appears at a normalized radial position of 0.8. This is not to

say that the 30kHz isn’t GAM but that it is not consistent with GAM frequency at this
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radial location.

(a) (b)

Figure 3.6: (a): Fourier transform of fluctuating electron density, ne1, showing frequency
vs. poloidal mode number at a fixed radial location, 0.92. (b): Fourier transform of
fluctuating electron density, ne1, showing frequency vs. radial mode number at a fixed
poloidal angle, 90◦.

To confirm the presence of GAM it is essential to establish the spatial mode structure

of the observed signal. This is illustrated in Figures 3.6a and 3.6b, for poloidal and radial

mode structure respectively. Both figures are generated using a discrete 2D FFT(Fast

Fourier Transform)[50]. Figure 3.6a, shows peaks at mode numbers -1 and 1 with a

frequency of 23kHz, this is localised in poloidal mode number, which indicates GAM.

There is also a faint peak at a frequency of 30kHz with m = ±1. Figure 3.6b, by contrast

shows two peaks, however the peak at 30kHz is weaker and since this plot considers

the whole radial extent it may be a marker for the peak present in Figure 3.4a at the

radial location 0.8. The symmetric nature of the 23kHz mode in Figure 3.6a indicates

a standing wave in the poloidal direction. This is verified by Figure 3.7a where, using

the horizontal guide lines(constant time values), it’s clear that there is no definitive

direction of travel for the signal in either direction. There is a slight gradient indicating

a movement of the density towards the in-board side of the tokamak but this could be

attributed to the expected over-density of particles towards the in-board side as a result

of the shape of the magnetic field. This is especially prevalent in spherical tokamaks

where the aspect ratio is minimised in order to improve confinement by keeping the

particles in the high-field region of the tokamak(the in-board side) for the maximum

amount of time. The equivalent time-trace for the radial direction shows a motion in the

outward radial direction. There is no clear radial wave-number as evidenced by Figure
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3.6b. The two frequencies present in Figure 3.6b can be clearly seen in different radial

locations, backing up the radial profile spectrogram in Figure 3.4a. It is to be noted

that the amplitudes of the Fourier transforms does not match the continuous wavelet

transforms. This is expected and the scaling between the fluctuating electron density

and fluctuating scalar potential is still preserved in both transforms.

(a) (b)

Figure 3.7: (a): Time-space plot of fluctuating electron density, ne1, vs. poloidal angle.
The poloidal angles are such that 0◦ is the out-board mid-plane and 90◦ is the point in
the tokamak with the highest Z-axis value per Figure 3.2. The radial location is 0.92
(b): Time-space plot of fluctuating electron density, ne1, vs. normalised ψ at a poloidal
angle 90◦.
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3.4.3 Total Scalar Potential (φ)

Figure 3.8: CWT of total scalar potential, φ, data showing frequency versus time in a
fixed radial location, 0.92, and a fixed poloidal location, 90◦, between 17kHz and 47kHz.
The red line represents the expected profile of the GAM frequency at this particular
location across the time-span.

Before looking at the fluctuating scalar potential, data for the total scalar potential, φ, is

analysed. This is to ensure that any modes (particularly m=0) that might be suppressed

by the subtraction of averages from the total scalar potential are recorded. The radial

profile is not presented here as the radial point at 0.92 is used for all analysis of this data

so as to be consistent with the choices made for the fluctuating electron density. The two

signals with frequencies of 23kHz and 30kHz are clearly present in Fig. 3.8 but they are

not dominant simultaneously. Of the two signals the 23kHz has the highest peak power

but not by an order of magnitude. The power spectrum shown in Fig. 3.9b is distinct

from Fig. 3.5b and shows that for the total scalar potential the two signals at 23kHz and

30kHz are much closer in power. Whilst this may not be obvious from Fig. 3.8, where

the 23kHz has a higher peak power, the 30kHz persists for a longer time and the power

spectrum is integrated across the entire time-span, 3.75-5ms. Figures 3.10a and 3.10b

show the spatial mode structure of the data. There is clear evidence that the both major

frequencies have an m=0 structure and a radial mode number that is ∼ 0. This indicates

that both frequencies are GAMs (which has a varying local predicted frequency).
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Figure 3.9: (a): Filtered time trace showing the total scalar potential, φ, for frequencies
between 17kHz - 47kHz at radial location of 0.92 and a poloidal angle of 90◦. (b): Power
spectrum of the total scalar potential, φ, across the 3.75-5ms time-span in a fixed radial
position, 0.92, and poloidal angle, 90◦.

Figures 3.11a and 3.11b show further evidence of an m=0 mode structure. The

normalisation applied here and for Fig. 3.9a is eφ/ 〈Te〉, where the electron charge, e = 1

for a deuterium plasma and 〈Te〉 is the flux-surface average of the electron temperature.

There is minimal radial structure in Fig. 3.11b, at the edge there is a slight sign of

movement radially outwards. This may be a relic of the underlying φ1 imprinting structure

on the otherwise fairly homogeneous total scalar potential.
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(a) (b)

Figure 3.10: (a): Fourier transform of total scalar potential, φ, showing frequency vs.
poloidal mode number at a fixed radial location, 0.92. (b): Fourier transform of total
scalar potential, φ, showing frequency vs. radial mode number at a fixed poloidal angle,
90◦.

(a) (b)

Figure 3.11: (a): Time-space plot of total scalar potential, eφ/ 〈Te〉, vs. poloidal angle.
The poloidal angles are such that 0◦ is the out-board mid-plane and 90◦ is the point in
the tokamak with the highest Z-axis value per Figure 3.2. The radial location is 0.92.
(b): Time-space plot of total scalar potential, eφ/ 〈Te〉, vs. normalised ψ at a poloidal
angle 90◦.
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3.4.4 Fluctuating Scalar Potential (φ1)

The fluctuating scalar potential, φ1, is defined in the CENTORI output as φ1 = φ− 〈φ〉,
where the 〈φ〉 is the flux-surface average of φ. This results in a subtraction of any data

pertaining to the m = 0 mode observed previously for the total scalar potential, φ.

Analysis of φ1 is undertaken to investigate the possibility of the fluctuating electron

density structure presenting itself in this data. A clear match for an m = 1, n = 0

mode is present here. The frequency is consistent with the predicted GAM frequency

and the time trace shown in Figure 3.12 is clearly matched with the equivalent electron

density(ne1) in Figure 3.4b.

Figure 3.12: CWT showing frequency versus time in a fixed radial location, 0.92. and
a fixed poloidal location, 90◦, between 17kHz and 47kHz. The red line represents the
expected profile of the GAM frequency at this particular location across the time-span.
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Figure 3.13: (a): Filtered time trace showing the fluctuating scalar potential, φ1, for
frequencies between 17kHz - 47kHz at a radial location, 0.92 and a poloidal angle of 90◦.
(b): Power spectrum of fluctuating scalar potential, φ1, across the 3.75-5ms time-span in
a fixed radial position, 0.92, and poloidal angle, 90◦.

(a) (b)

Figure 3.14: (a): Fourier transform of fluctuating scalar potential, φ1, showing frequency
vs. poloidal mode number at a fixed radial location, 0.92. (b): Fourier transform of
fluctuating scalar potential, φ1, showing frequency vs. radial mode number at a fixed
poloidal angle, 90◦.
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(a) (b)

Figure 3.15: (a): Time-space plot of fluctuating scalar potential, φ1, vs. poloidal angle.
The poloidal angles are such that 0◦ is the out-board mid-plane and 90◦ is the point in
the tokamak with the highest Z-axis value per Figure 3.2. The radial location is 0.92.
(b): Time-space plot of fluctuating scalar potential, φ1, vs. normalised ψ at a poloidal
angle 90◦.

The scales for φ1 in these plots are comparable to those used for the ne1, however they

are consistently slightly lower than that of the electron density. The overall structure of

the mode observed for the fluctuating scalar potential is also near-identical to the mode

observed for the electron density. This presents a challenge in comparing the potential and

the electron density since the definition for the fluctuating electron density is also based

on subtracting the flux-surface average from the total electron density. The remaining

analysis of the data for the fluctuating scalar potential matches the fluctuating electron

density within a factor 1-3 depending on whether power or amplitudes are compared.
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(a) (b)

Figure 3.16: (a): CWT of the fluctuating electron density, ne1, showing normalised ψ
versus frequency averaged over 3.75-5ms of the run at a fixed poloidal position of θ = 0◦.
The red line signifies the expected profile of the GAM frequency if it were present across
the entire radial extent. (b): CWT showing frequency versus time in a fixed radial
location, 0.92, and a fixed poloidal location, 0◦, between 17kHz and 47kHz. The red line
represents the expected profile of the GAM frequency at this particular location across
the time-span.

3.4.5 Outboard Mid-Plane Fluctuating Electron Density (ne1)

Driven by many reports of GAM-like oscillations observed at the θ = 0◦, the analysis is

extended to the outboard mid-plane data, it is clear that there are several differences

when compared to the 90◦ poloidal angle data. This is to be expected, as the m = 1

modes of frequencies 23kHz and 30kHz reduce in power as the poloidal angle approaches

0, weaker modes at different frequencies will appear more comparable to the 23kHz and

30kHz signals in power and amplitude. There is now an additional mode at ∼ 0.7 at

∼ 50kHz as well as ∼ 30kHz. All of the major modes, with the exception of the mode at

0.7 and 30kHz, fit well with the predicted GAM radial profile— this can be seen more

clearly in Fig. 3.16b. It should be noted however that the amplitude and the power are

severely reduced in this location, with the power being reduced by an order magnitude

and the amplitude(seen in Fig. 3.18b) being reduced by a factor of ∼ 4-5. Furthermore

the power spectrum is also distinct from Fig. 3.5b in this location. The peak at 30kHz is

now closer in value to the main peak at 23kHz as are other peaks on the higher frequency

side of the main peak. There also seems to be more power in the low-frequency region

but this does not exceed the power of the main peak. Figures 3.18a and 3.18b (which

take into account the full radial extent) show that the reduced energy is now localised

further inwards towards the core and if the power spectrum, Fig. 3.17b, were observed

at ∼ 0.5 then the 30kHz peak would dominate.
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Figure 3.17: (a): Filtered time trace showing the fluctuating electron density, ne1, for
frequencies between 17kHz - 47kHz at radial location of 0.92 and a poloidal angle of
0◦. (b): Power spectrum of the fluctuating electron density, ne1, across the 3.75-5ms
time-span in a fixed radial position, 0.92, and poloidal angle, 0◦.

(a) (b)

Figure 3.18: (a): Fourier transform of fluctuating electron density, ne1, showing frequency
vs. radial mode number at a fixed poloidal angle, 0◦. (b): Time-space plot of fluctuating
electron density, ne1, vs. normalised ψ at a poloidal angle 0◦.
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3.4.6 Outboard Mid-Plane Scalar Potential (φ)
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(a) (b)

Figure 3.19: (a): Filtered time trace showing the fluctuating scalar potential, φ1, for
frequencies between 17kHz - 47kHz at radial location of 0.92 and a poloidal angle of 0◦.
(b): Time-space plot of fluctuating scalar potential, φ1, vs. normalised ψ at a poloidal
angle 0◦.

To confirm the m=0 structure of the modes observed for the total scalar potential, the

outboard mid-plane data for this quantity is also analysed. The power and amplitudes

in both Figs. 3.19a and 3.19b are unchanged from those recorded at a poloidal angle of

90◦. The structure of the power spectrum and the time-space plot for the radial extent

at the mid-plane also show no significant changes to the previously recorded data. This

confirms the m=0 mode structure for the signals observed in the total scalar potential.

3.5 Summary

The work in this chapter offers an introduction into the analysis of GAM. A derivation

of the GAM frequency is shown following the seminal Winsor paper[39]. This serves as a

starting point to introduce data from a simulation, CENTORI[7], and the subsequent

analysis. The analysis shows the presence of a clear m = 1 mode with a frequency of

23kHz in the vicinity of the predicted GAM frequency for the fluctuating electron density,

ne1. A mode with the same frequency of 23kHz is found to have an m=0 structure in the

analysis of the total scalar potential, φ, indicating geometric coupling. The expected GAM

frequency is calculated using a simplistic local dispersion relation that neglects shaping

and plasma velocity effects. True comparison between the amplitudes and the powers of
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ne1 is φ is difficult since one is a fluctuating quantity and the other is a total quantity.

However both quantities can be compared with respect to spatial and frequency structure.

Due to the subtraction of the flux-surface average when determining the fluctuating

scalar potential, φ1, it is impossible to recover any m=0 modes, therefore comparison

between φ and ne1 is preferred. The outboard mid-plane data is also investigated and

found to be consistent with predictions of an m = 1 mode for the electron density, and

an m = 0 mode for the total scalar potential.

The next step is to investigate the non-linear and/or self-interacting nature of GAMs,

which will use the results derived from the data analysis presented in this chapter as a

starting point.
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Chapter 4

Non-Linear GAM Properties

4.1 Introduction

With the linear physics associated with GAMs verified for CENTORI in the previous

chapter, the non-linear physics of GAMs will be investigated in this chapter. In particular,

the self-interaction of the GAM mode which has been observed experimentally[51] to

generate a mode with double the frequency. Any self-interaction may point to another

avenue of energy transfer from GAM to higher frequencies (and/or higher harmonics).

The identification of GAM self-interaction in data from CENTORI would also act

as a validation to theoretical results as well, such as those shown in Sasaki et al.[52].

Additionally any interaction of the GAM mode with lower frequency modes could indicate

LFZF-GAM (Low Frequency Zonal Flow - Geodesic Acoustic Mode) coupling which would

generate a triplet of (LFZF, GAM, Turbulence). In addition, any three-wave non-linear

coupling which could mediate the energy from GAMs and LFZFs(Low Frequency Zonal

Flows) back to turbulent scale are of interest as well[53].

To investigate this type of coupling, bicoherence analysis is applied to the same data

from CENTORI as used in Chapter 3. This type of analysis is well established and

details on its applicability in analysing non-linear wave coupling can be found in Kim et

al.[54]. Work relating to the analysis of plasma turbulence (space plasma) in particular

can be found in Dudok de Wit 2003[55]. A series of papers by Ritz et al. show the use

of bicoherence analysis to investigate tokamak turbulence, its association with energy

cascade and its onset in transitioning flow[56][57][58].
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4.2 Methodology

Bicoherence analysis involves observing the phase-matching of two modes per specific

resonant conditions. These resonant conditions are defined as:

f3 = f1 + f2 (4.1)

The frequencies, f1 and f2, correspond to the two waves in question and f3 is the frequency

of the wave that is generated as a result of the coupling between f1 and f2. This technique

has been used previously in a plasma physics context, for example: Balikhin et al.[59] on

magnetospheric data to investigate the role of non-linear coupling in generating turbulent

fluctuations; Dudok de Wit et al. [60] which also looks at magnetospheric data but

approaches the bicoherence analysis as a wavelet transform description instead of Fourier;

Dos Santos Lima et al.[61] which looks at broadband turbulence generation in tokamak

plasmas due to low-frequency magnetohydrodynamic modes. Before fully defining the

bicoherence equation, a definition for the bispectrum equation is necessary. Let x(t)

be a stationary time-dependent signal then the continuous wavelet transform can be

labelled as X(f) with the definition given in Eq. (3.27) with a ≡ f and b being the time

coordinate needed for the averaging in the bispectrum (given the averaging, the time

argument is neglected when referring to X(f)). The bispectrum is defined as:

B2
S(f1, f2) = |〈X∗(f1)X∗(f2)X(f3)〉|2 (4.2)

The X∗(...) is the complex conjugate of the transform, the 〈...〉 indicates the averaging

over time. Ordinarily this would be an average over an ensemble of windowed Fourier

transforms. However, with CWTs there is an in-built time-resolution since it uses wavelets

that are localised in both the frequency and time domain. The bicoherence is then a

normalized version of the bispectrum. There are a few methods of normalization, the

method presented here can be found in Hajj et al.[62]:

B2
C(f1, f2) =

B2
S〈

|X(f1)X(f2)|2
〉〈
|X∗(f1 + f2)|2

〉 =
|〈X∗(f1)X∗(f2)X(f3)〉|2〈
|X(f1)X(f2)|2

〉〈
|X(f3)|2

〉 (4.3)

The result of Eq. (4.3) varies 0 and 1 and the value now provides measure of the amount

of non-linear coupling between modes with frequencies f1 and f2. It is worth noting

however that this value does not recover any information regarding the direction of energy

transfer. Nevertheless there is some insight to be gained by confirming whether there is
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any self-interaction of any stationary modes or whether there are any other frequencies

that are coupled with higher frequencies.

A different technique needed for analysing non-stationary interactions is cross-bicoherence.

The non-stationary nature of the interactions can be spatial and/or temporal, with each

type requiring special treatment. If the interaction is spatially non-stationary then two

time series are needed with each coming from a sutiably separated spatial location,

these can be written as: x1(t) and x2(t). The temporally non-stationary case (ie.

intermittent/pulsed interactions) must also have two time series but from the same

spatial location. The differences between the two time series is a time shift of one of the

signals, δt, such that the two signals can be written as: x1(t) and x1(t− δt). In either

the spatial or temporal case the two time series generate two distinct CWTs and for

illustrative purposes they are labelled as: X(f) and Y (f). With these two CWTs the

cross-bicoherence can be defined as[62]:

B2
C(f1, f2) =

|〈X∗(f1)X∗(f2)X(f3)Y (f1)Y (f2)Y ∗(f3)〉|2〈
|X∗(f1)X∗(f2)X(f3)|2

〉〈
|Y (f1)Y (f2)Y ∗(f3)|2

〉 (4.4)

The spatial and temporal shifts must be chosen carefully to ensure a sufficient window in

which the waves of interest are coherent enough to interact non-linearly.

4.3 Results

The results presented here are based on data from the same simulations as reported in

Chapter 3. Firstly, power spectra are presented to highlight key features and frequencies

of interest. Next the results of the bicoherence analysis are presented, either unfiltered or

filtered.
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Figure 4.1: (a) Power spectrum of the fluctuating electron density, ne1. The power
spectrum is averaged over the time-span of 3.75-5ms at a radial location of 0.92 and
poloidal angle of 0◦. The red circles are aligned with the two main frequencies of interest,
23kHz and 30kHz. The cyan circles are aligned with the interaction frequencies of 46kHz,
53kHz and 60kHz. (b) Shows an unfiltered time trace of the fluctuating electron density,
ne1, at a radial location of 0.92 and a poloidal angle of 0◦.

4.3.1 Outboard Mid-Plane Fluctuating Electron Density (ne1)

Firstly, Fig. 4.1 shows the power spectrum for ne1 data taken at the outboard mid-plane

and shows the dominant peak at a frequency of 23kHz and a secondary peak at 30kHz.

The outboard mid-plane was chosen so as to minimise the power in GAM and allow other

interactions to become more visible. Weak turbulent fluctuations in particular should be

more prevalent at the outboard mid-plane as the magnetic field is at its weakest and thus

the plasma is most vulnerable to unstable interchange modes which lead to turbulence.

In accordance with the two dominant peaks in Fig. 4.1, there are three red guidelines

overlain on the bicoherence plot shown in Fig. 4.2. These guidelines act as markers for

three possible interactions: (23kHz + 23kHz = 46kHz), (23kHz + 30kHz = 53kHz) and

(30kHz + 30kHz = 60kHz). Two of these represent self-interaction whilst the remaining

presents an interaction between two GAM-like modes. Note that since bicoherence

analysis does not provide the direction of energy transfer in a non-linear interaction, the

three interactions can be more appropriately considered as triplets where any frequency

can transfer the power from the other/s.
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Figure 4.2: Bicoherence of the fluctuating electron density, ne1, at a radial location of
0.92 and poloidal angle of 0◦. There is a time shift of 0.047ms ∼ TGAM , where TGAM is
the approximate time period of the 23kHz mode. This plot is unfiltered therefore the
bicoherence values range from 0-1.

An example of this bicoherence is shown in Fig. 4.2, where the plot is unfiltered.

The time shift of TGAM ∼ 0.047ms is chosen so as to allow the GAM to remain coherent

between the two shifted time coordinates for long enough to interact with other modes.

The figure shows a high level of coupling between the GAM mode at 23kHz and lower

frequency modes which may be LFZFs (low-frequency zonal-flows). This region of

interaction is occurs around f1 = 23kHz and f2 = 10− 15kHz. The resulting f3 would

then be ∼ 33− 38kHz. There is a small peak in the power spectrum around the values

for f3 but much weaker structures for the f1 = 10− 15kHz region. Furthermore there

are clear indications of interactions near/on the three guidelines, which would result

in non-linear interactions affecting the power at the frequencies, f3, represented by the

guidelines with f3 = 46, 53, 60kHz.
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Figure 4.3: Bicoherence of the fluctuating electron density, ne1, at a radial location of
0.92 and poloidal angle of 0◦. There is a time shift of 0.047ms ∼ TGAM , where TGAM is
the approximate time period of the 23kHz mode. This plot is filtered to exclude values
below 0.5.

Figure 4.3 shows the results of filtering the data from Fig. 4.2 to exclude values

<= 0.5. The filtering eliminates weak coherence found at higher frequencies on both

axes and exposes the fact that the majority of the strong coherence exists at lower

frequencies in the region of 10 − 30kHz. Figure 4.4 shows bicoherence with a filter

applied to exclude values below 0.75 resulting in further localisation to low frequency

interactions. For the case of self-interaction of the 23kHz and 30kHz modes one would

expect peaks on the diagonal (eg. f1 = f2 = 23kHz and f1 = f2 = 23kHz) but there

are only weak peaks with large spreads in frequency-space in the 0.75 filtered plot. The

higher coherence peaks exist instead between the 23kHz mode and lower frequency modes

10-15kHz and to a lesser extent between 30kHz and the same lower frequency modes.

Another highly localised peak appears at f1 ≈ 30kHz and f2 ≈ 23kHz on the f3 = 53kHz

guideline, this can be seen more clearly in Fig. 4.2. There is one peak on a diagonal,

at f1 = f2 ≈ 26-27kHz with f3 = 53kHz, however there is little indication in the power

spectrum of any significant power at these frequencies. This may be due to the fact that

CWTs have poorer frequency resolution compared to Fourier transforms. What may

be contributing to this apparent self-interaction is interaction between different peaks

within the main GAM peak at 23kHz which cannot be resolved in the power spectrum as

it is based on data from CWTs.
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Figure 4.4: Bicoherence of the fluctuating electron density, ne1, at a radial location of
0.92 and poloidal angle of 0◦. There is a time shift of 0.047ms ∼ TGAM , where TGAM is
the approximate time period of the 23kHz mode. This plot is filtered to exclude values
below 0.75.
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Figure 4.5: Power spectrum of the fluctuating electron density, ne1. The power spectrum
is averaged over the time-span of 3.75-5ms at a radial location of 0.92 and poloidal angle
of 90◦. The red circles are aligned with the two main frequencies of interest, 23kHz and
30kHz. The cyan circles are aligned with the interaction frequencies of 46kHz, 53kHz
and 60kHz.
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4.3.2 Fluctuating Electron Density (ne1), θ = 90◦

This section examines the same fluctuating electron density at θ = 90◦. Note that though

the relative increase in magnetic field strength at this poloidal angle for a spherical

tokamak with high triangularity may exceed the expected increase in magnetic field

strength of a circular cross-section, large aspect-ratio tokamak. This is because the radial

location of the θ = 90◦ location may be closer to the central solenoid than the magnetic

axis of the tokamak. Hence the reduction in turbulence may be larger than expected.

The power spectrum in Fig. 4.5 shows significant deviation from Fig. 4.1. Mainly the

absolute and relative power of the 23kHz mode is increased at this poloidal location (in

line with an m = 1 structure). The relative suppression in power of modes of lower or

higher frequencies than 23kHz should also suppress coupling of other modes to 23kHz.

This can indeed be observed in Figs. 4.6 and 4.7, where there few if any interactions

between higher frequencies (f1 > 30kHz and f2 > 30kHz). There are still interactions

involving lower frequency modes however these too are less numerous than at θ = 0◦.

Crucially there is now a clear peak at f1 = f2 ≈ 23kHz at least for Fig. 4.6 which is

unfiltered, though the peak is still present in Fig. 4.7, but somewhat more localised in

frequency-space. There is again a peak at f1 ≈ 23kHz and f2 ≈ 15kHz which results in

f3 ≈ 38kHz. A small peak in power can be observed at this f3 in Fig. 4.5, where again it

is important to emphasise that bicoherence does not recover any data concerning the

direction of energy transfer.
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Figure 4.6: Bicoherence of the fluctuating electron density, ne1, at a radial location of
0.92 and poloidal angle of 90◦. There is a time shift of 0.047ms ∼ TGAM , where TGAM is
the approximate time period of the 23kHz mode. This plot is unfiltered therefore the
bicoherence values range from 0-1.

Figure 4.7: Bicoherence of the fluctuating electron density, ne1, at a radial location of
0.92 and poloidal angle of 90◦. There is a time shift of 0.047ms ∼ TGAM , where TGAM is
the approximate time period of the 23kHz mode. This plot is filtered to exclude values
below 0.75.
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4.3.3 Outboard Mid-Plane Total Scalar Potential (φ)
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Figure 4.8: Power spectrum of the total scalar potential, φ. The power spectrum is
averaged over the time-span of 3.75-5ms at a radial location of 0.92 and poloidal angle of
0◦.

Bicoherence analysis is also applied to data from the scalar potential. Figure 4.8 shows

the power spectrum at the mid-plane and has obvious differences to the power spectra for

the fluctuating electron density. Chiefly, the 23kHz and 30kHz peaks are almost identical

in power and power range is ∼ 3 orders of magnitude larger than for the equivalent

spectrum for ne1 (shown in Fig. 4.1). Interestingly however the bicoherence in Fig. 4.9

shows no significant self-interaction of the 30kHz mode. There is a highly localised peak

near the f3 = 46kHz guideline which matches f1 ≈ 30kHz and f2 ≈ 16kHz. The two

triplets, (23, 23, 46kHz) and (30, 16, 46kHz) both contain the 46kHz mode and therefore

this mode may act as an intermediary between the interaction of 23 and 30kHz but this

would be via a quadruplet-like interaction which cannot be recovered from this particular

bicoherence analysis. There is a peak at f1 ≈ 23kHz and f2 ≈ 16kHz but this may not

couple to 30kHz as the total is f1 + f2 = 39kHz and this frequency only appears weakly

in Fig. 4.8. Also there is no peak at f1 ≈ 30kHz and f2 ≈ 9kHz, which would then be

more indicative of some coupling between 23kHz and 30kHz. There is also another highly

localised peak near f1 = f2 ≈ 23kHz which is near a similar peak in Fig. 4.7.
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Figure 4.9: Bicoherence of the total scalar potential, φ, at a radial location of 0.92 and
poloidal angle of 0◦. There is a time shift of 0.047ms ∼ TGAM , where TGAM is the
approximate time period of the 23kHz mode. This plot is filtered to exclude values below
0.75.

4.4 Summary

The results presented in this chapter showcase evidence of non-linear coupling in data

from CENTORI. For the case of fluctuating electron density, ne1, the analysis shows a

sensitivity to poloidal location of the time series being investigated. At the mid-plane

there is evidence of interaction between LFZF(Low Frequency Zonal Flows) and GAM

(Geodesic Acoustic Mode). The lack of strong self-interaction at this poloidal angle is

to be expected as the relative power in GAM is reduced, allowing it to couple to other

frequencies. At θ = 90◦ there is clearer evidence of strong self-interaction of the GAM

mode with a frequency of 23kHz. With regards to the total scalar potential, φ, there

are many differences compared to ne1. Mainly of interest are two separate interactions

of the 23kHz and 30kHz modes with a 46kHz mode which may indicate a quadruplet

interaction, but this cannot be recovered through bicoherence analysis and is beyond

the scope of this chapter. Nevertheless there is evidence of non-linear self-interaction of

the 23kHz mode in scalar potential as well. These results show non-linear interactions

involving GAMs in CENTORI and verify that the requisite background physics is present

in CENTORI’s physics model.
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Chapter 5

Conclusion

The work presented in this thesis focuses on Zonal Flow-Drift Wave interaction and

GAM(Geodesic Acoustic Mode) behaviour in CENTORI simulation data for a MAST

plasma. These areas of interest were chosen so as to contribute to the understanding of

ZF-GAM-Drift-Wave interactions which is key to understanding the L-H transition.

Firstly, the Zonal Flow-Drift-Wave interaction was investigated in the context of zonal

flow modifying the growth of drift-waves in the modified Hasegawa-Wakatani (MHW)

model. The standard linearization process for the MHW was changed to include a

contribution from a background velocity profile. A spatial averaging technique was

needed to account for the radial variability of the background velocity profile. This

revealed the existence of resonances which manifested as poles in velocity space and

yielded modifications to the growth rate of the drift-waves. A simulation solving MHW

in a slab-model was used to investigate these modifications. Though, the data did not

match the specific predictions from the modified dispersion relation well it did confirm

not only a modification of the drift-wave growth due to a background velocity profile

but also showed that there was energy exchange between the drift-wave and zonal flow

depending on the drift-wave mode number, ms.

Next, an introduction to GAMs is provided and a derivation closely following Winsor’s

treatment is presented[39]. The linear properties of GAMs are examined using data

obtained from MAST simulations using CENTORI. The spatio-temporal modal struc-

tures of GAMs were recovered using CWTs (continuous wavelet transform for temporal

structure) and FFTs (fast fourier transform for spatial structures). An m = 1 mode in

fluctuating electron density with a frequency of 23kHz was found as well as a m = 0

scalar potential mode with the same frequency, indicating geometric coupling. The m = 1

mode structure is validated by observing the outboard mid-plane for the fluctuating
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electron density. The outboard mid-plane

Finally, the non-linear properties of GAMs are investigated using bicoherence analysis. A

non-linear coupling between GAM and low-frequency zonal flows is recovered particularly

at the outboard mid-plane for the fluctuating electron density ne1. At θ = 90◦ however,

there is clear evidence of non-linear self-interaction of the 23kHz GAM mode and far

fewer interactions with lower frequency modes. The same analysis performed on total

scalar potential ,φ, data also shows evidence of non-linear self-interaction of the 23kHz

mode.
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Appendix A

GAM derivation

The derivation presented in this appendix closely follows the derivation given in Winsor et

al.[39] and provides more detail than offered in Chapter 3. Starting with an electrostatic

hydrodynamic model neglecting the time variation of ~B:

ρ
∂ ~v1

∂t
=

1

c
( ~J1 × ~B)− ~∇ρ1 (A.1)

∂ρ1

∂t
+ ~∇.(ρ~v1) = 0 (A.2)

~∇φ1 =
1

c
(~v1 × ~B) (A.3)

~∇. ~J1 = 0 (A.4)

ρ−γ
∂ρ1

∂t
− γpρ−γ−1∂ρ1

∂t
+ ~v1.~∇(pρ−γ) = 0 (A.5)

ψ labels the magnetic surfaces and is defined as: ~B.~∇ψ = 0. Additionally p = (ne +

ni)kBT = 2ρkBT/mi, (mi � me) and ρ = ρ(ψ) and p = p(ψ). Starting the linearization

process with a definition for the perturbation velocity:

~v1 =

(
v1ψ

~∇ψ
|~∇ψ|2

+ v1s

~B × ~∇ψ
B2

+ v1b

~B

B2

)
exp(−iωt) (A.6)
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Taking the component of (A.3) along ~B results in 0, therefore φ1 = φ1(ψ). Taking the

component of (A.3) along ~∇ψ:

~∇ψ.~∇φ1 =
1

c
~∇ψ.(~v1 × ~B)

~∇ψ.~∇ψdφ1

dψ
=

1

c
~v1.( ~B × ~∇ψ)

dφ1

dψ
|~∇ψ|2 =

1

c
~v1.( ~B × ~∇ψ)

c
dφ1

dψ
=

~v1.( ~B × ~∇ψ)

|~∇ψ|2
= v1s

Taking the component of (A.3) along ( ~B × ~∇ψ) also results in 0, which means v1ψ = 0.

Then since p = p(ψ), ρ = ρ(ψ) → ~∇(pρ−γ) = C~∇ψ, where C is a constant, this turns

the third term on the L.H.S. of (A.5) into:

~v1.~∇(pρ−γ) = v1s
( ~B × ~∇ψ).C ~∇ψ

B2
+ v1b

~B.C~∇ψ
B2

= 0

This reduces (A.5) to:

ρ−γ
∂p1

∂t
− γpρ−γ−1∂ρ1

∂t
= 0

∂p1

∂t
=

γp

ρ

∂ρ1

∂t

p1 =
γp

ρ
ρ1

Using the divergence theorem turns (A.4) into:∫
J1ψJ dS = 0.

Taking the component of (A.1) along ~B × ~∇ψ:

ρ( ~B × ~∇ψ).(−iω ~v1) =
1

c
( ~B × ~∇ψ).( ~J1 × ~B)− ( ~B × ~∇ψ).~∇p1

R.H.S 1st term:

1

c
( ~B × ~∇ψ).( ~J1 × ~B) =

1

c
(( ~B. ~J)( ~B.~∇ψ)−B2J1ψ) = −1

c
B2J1ψ
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R.H.S 2nd term:

−γp
ρ

( ~B × ~∇ψ).~∇ρ1

L.H.S :

−ρiωv1s
( ~B × ~∇ψ).( ~B × ~∇ψ)

B2
= −ρiωv1s

B2|~∇ψ|2 − 0

B2
= −ρiωv1s|~∇ψ|2

Divide through by B2 then multiply by J dS and integrate:

−
∫
ρiωv1s

|~∇ψ|2

B2
J dS = −

∫
J1ψJ dS −

γp

ρ

∫
( ~B × ~∇ψ).~∇.ρ1

B2
J dS

v1s = v1s(ψ)

v1s =
−iγp
ωρ2

∫
( ~B × ~∇ψ).~∇ρ1

B2
J dS

/∫
|~∇ψ|2

B2
J dS

Taking the component of (A.1) along ~B:

ρ ~B
∂ ~v1

∂t
=

1

c
~B.( ~J1 × ~B)− ~B. ~∇p1

−ρiω ~B.~v1 = −γp
ρ
~B.~∇ρ1

~B.~v1 = v1b

v1b =
−iγp
ωρ2

~B.~∇ρ1

Next observe (A.2):

∂ρ1

∂t
+ ~∇.ρ~v1 = 0

One can absorb the ρ into ~v1 to eliminate the ψ dependence in the pre-factors:

ρ~v1 =

[
−iγp
ωρ

[ ∫
( ~B × ~∇ψ).~∇ρ1

B2
J dS

/∫ |~∇ψ|2
B2
J dS

]
( ~B × ~∇ψ)

B2

+
−iγp
ωρ

~B.~∇ρ1

~B

B2

]
exp(−iωt)
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The term in the outer-most square-brackets is referred to as (*), substituting it into (A.2)

and rearranging ~∇.ρ~v1 to R.H.S and integrating with respect to t:

ρ1 =

∫ ∞
0
−~∇.ρ~v1 dt = − 1

iω
~∇.(∗)

=
−γp
ω2ρ

~∇.
[[ ∫

( ~B × ~∇ψ).~∇ρ1

B2
J dS

/∫
|~∇ψ|2

B2
J dS

]
( ~B × ~∇ψ)

B2
+ ~B.~∇ρ1

~B

B2

]
Multiplying by ρ∗1J dS and integrating gives a L.H.S of:∫

|ρ1|2J dS

The 1st term on the R.H.S turns into:

−γp
ω2ρ

ρ∗1~∇.
([∫

( ~B × ~∇ψ).~∇ρ1

B2
J dS

/∫
|~∇ψ|2

B2
J dS

] ∫
( ~B × ~∇ψ)

B2
J dS

)
Using integration by parts:

=
−γp
ω2ρ

∫ 2π

0

[
ρ∗1

[
...

]
[ ~B × ~∇ψ]ξ

B2
J
]2π

0

dζ − −γp
ω2ρ

∫ [
...

] ~B × ~∇ψ
B2

~∇ρ∗1J dS

The 1st term goes to zero and the 2nd term becomes:

γp

ω2ρ

[∣∣∣∣ ∫ ( ~B × ~∇ψ).~∇ρ1

B2
J dS

∣∣∣∣2/∫
|~∇ψ|2

B2
J dS

]
The remaining term of the modification becomes:

−γp
ω2ρ

∫
ρ∗1~∇.

(
~B.~∇ρ1

~B

B2

)
J dS =

−γp
ω2ρ

∫ 2π

0

[
ρ∗1( ~B.~∇ρ1)

[ ~B]ξ
B2
J
]2π

0

dζ

−−γp
ω2ρ

∫
~B.~∇ρ1

~B

B2
.~∇ρ∗1J dS

=
γp

ω2ρ

∫
| ~B.~∇ρ1|2

B2
J dS

Putting it all together and multiplying by ω2:

ω2

∫
|ρ1|2J dS =

γp

ρ

[∣∣∣∣ ∫ B2( ~B × ~∇ψ).~∇ρ1

B4
J dS

∣∣∣∣2/∫
|~∇ψ|2

B2
J dS +

∫
| ~B.~∇ρ1|2

B2
J dS

]
(A.7)
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Looking at the numerator of the first term in the square brackets:∫
B2( ~B × ~∇ψ).~∇ρ1

B4
J dS

=

∫
ρ1
~∇.
(
B2( ~B × ~∇ψ)

B4

)
J dS

=

∫
ρ1

[
B2~∇.

( ~B × ~∇ψ
B4

)
+
~B × ~∇ψ
B4

.~∇(B2)

]
J dS

=

∫
ρ1

[
( ~B × ~∇ψ).~∇(B2)

B4

]
J dS

(The last step is because the first term in the square brackets in the penultimate equation

can be rearranged via a vector calculus identity(~∇.( ~A× ~B) = ~A.(~∇× ~B) + ~B.(~∇× ~A))

to have ~∇ψ.(~∇× ~B) = 4π
c
~J1ψ which when integrated goes to 0). This turns (A.7) into:

ω2

∫
|ρ1|2J dS =

γp

ρ

[∣∣∣∣ ∫ ρ1
( ~B × ~∇ψ).~∇B2

B4
J dS

∣∣∣∣2/∫
|~∇ψ|2

B2
J dS +

∫
| ~B.~∇ρ1|2

B2
J dS

]
(A.8)

This matches the result in the paper. This is a general result that is agnostic when it

comes to coordinate systems. The main elements to address when defining a specific

coordinate system are the definition of ~∇ and the J , which is the Jacobian. An example

of extracting a result for a given coordinate system is to start with (A.8) and change to

a coordinate system with metric:

dl2 = dr2 + r2dθ2 +

[
1 +

r

R
cos θ

]2

dz2

g =

1 0 0

0 r2 0

0 0
(
1 + r

R cos θ
)2


det(g) = r2
(

1 +
r

R
cos θ

)2

J =
√
det(g) = r

(
1 +

r

R
cos θ

)
J dS = r

(
1 +

r

R
cos θ

)
dθdz

This is Knorr’s model(cite Knorr), where r is the radial direction along the minor radius,

θ is the poloidal angle and z is in the toroidal direction. This is demonstrated in Fig.
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Figure A.1: Knorr’s model[6]

A.1. For modes independent of z then L.H.S becomes:

ω2

∫ 2π

0
|ρ1|2r

(
1 +

r

R
cos θ

)
dθ ρ1 = ρ1(r, θ), ψ = r

The numerator of the first term on the R.H.S of (A.8) becomes:

~B × ~∇ψ = ~B × ~∇r ~B =
B0

1 + r
R cos θ

[~ez + f(r)~eθ]

~B × ~∇r = det


~er ~eθ ~ez

0 B0f
1+ r

R
cos θ

B0
1+ r

R
cos θ

1 0 0

 =
B0

1 + r
R cos θ

 0

1

−f


where f =

ri(r)

2π(R2 − r2)
1
2

where
i(r)

2π
= rotational transform

( ~B × ~∇r).~∇B2 = ( ~B × ~∇r).


∂B2

∂r
∂B2

∂θ

0

 note that: B2 =
B2

0

(1 + r
R cos θ)2

(1 + f2)

=
B0

1 + r
R cos θ

∂B2

∂θ
=

B0

1 + r
R cos θ

B2
0(1 + f2)

(
2r

R
sin θ

)(
1 +

r

R
cos θ

)−3

→
∣∣∣∣∫ 2π

0

ρ1

B4
( ~B × ~∇r).~∇B2J dS

∣∣∣∣2 =
4r4

B2
0R

2(1 + f2)2

∣∣∣∣∫ 2π

0
ρ1

(
sin(θ) +

r

2R
sin(2θ)

)
dθ

∣∣∣∣2

90



The denominator if the 1st term on R.H.S of (A.8) becomes:

∫ 2π

0

1

B2
r[1 +

r

R
cos θ]dθ = r

∫ 2π

0

(
1 + r

R cos(θ)
)2

B2
0(1 + f2)

(
1 +

r

R
cos(θ)

)
dθ

=
r

B2
0(1 + f2)

∫ 2π

0

(
1 +

r

R
cos (θ)

)3
dθ =

1

B2
0(1 + f2)

(
2πr

(
1 +

3

2

r2

R2

))
The second term on the R.H.S of (A.8) becomes:∫ 2π

0

| ~B.~∇ρ1|2

B2
r
(

1 +
r

R
cos θ

)
dθ =

∫ 2π

0

1

B2

∣∣∣∣ B0

1 + r
R cos θ

f
∂ρ1

∂θ

∣∣∣∣2 r (1 +
r

R
cos θ

)
dθ

=
f2

1 + f2

∫ 2π

0

∣∣∣∣∂ρ1

∂θ

∣∣∣∣2 r (1 +
r

R
cos θ

)
dθ

Combining it all to complete the transform(without full simplification):

ω2

∫ 2π

0
|ρ1|2r

(
1 +

r

R
cos(θ)

)
dθ

=
γp

ρ

[
2r3

R2(1 + f2)

∣∣∣∣∫ 2π

0
ρ1

(
sin(θ) +

r

2R
sin(2θ)

)
dθ

∣∣∣∣2/π

(
1 +

3r2

2R2

)
+

f2

1 + f2

∫ 2π

0

∣∣∣∣∂ρ1

∂θ

∣∣∣∣2 r (1 +
r

R
cos(θ)

)
dθ

] (A.9)

Now there is a slight complication in the derivation as presented in Winsor’s original

paper. At some point Winsor takes the of r � R and assumes ρ1 = sin (θ). It is unclear

however when this limit and assumption are applied. If the r � R limit is applied after

Eq. A.9, then the following result is obtained:

ω2

∫ 2π

0
|ρ1|2dθ

=
γp

ρr2(1 + f2)

[
2r2

∣∣∣∣∫ 2π

0
ρ1

(
sin(θ) +

r

2R
sin(2θ)

)
dθ

∣∣∣∣2/πR2

(
1 +

3r2

2R2

)
+ f2

∫ 2π

0

∣∣∣∣∂ρ1

∂θ

∣∣∣∣2 dθ]
(A.10)
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and if ρ1 = sin(θ) then:

ω2π =
γp

ρr2(1 + f2)

[
2r2π2

/
πR2 + f2π

]
→ ω2 =

2γp

ρR2

[
1 +

R2f2

2r2(1 + f2)

]
f2 =

r2i2

4π2(R2 − r2)
≈ r2i2

4π2R2
then (1 + f2) ≈ 1

R2f2

2r2
=

i2

8π2

ω2 =
2γp

ρR2

(
1 +

i2

8π2

)
= ω2

s

(
2 +

1

q2

)
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