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ARTICLE INFO ABSTRACT
Keywords: Magnetic Resonance Imaging (MRI) technology has been increasingly used in neuroscience studies. Reproducibil-
Reproducibility ity of statistically significant findings generated by MRI-based studies, especially association studies (phenotype

Association studies

MRI (magnetic resonance imaging)
Sample size

Heterogeneity

vs. MRI metric) and task-induced brain activation, has been recently heavily debated. However, most currently
available reproducibility measures depend on thresholds for the test statistics and cannot be use to evaluate over-
all study reproducibility. It is also crucial to elucidate the relationship between overall study reproducibility and
sample size in an experimental design. In this study, we proposed a model-based reproducibility index to quantify
reproducibility which could be used in large-scale high-throughput MRI-based studies including both association
studies and task-induced brain activation. We performed the model-based reproducibility assessments for a few
association studies and task-induced brain activation by using several recent large sMRI/fMRI databases. For large
sample size association studies between brain structure/function features and some basic physiological pheno-
types (i.e. Sex, BMI), we demonstrated that the model-based reproducibility of these studies is more than 0.99.
For MID task activation, similar results could be observed. Furthermore, we proposed a model-based analytical
tool to evaluate minimal sample size for the purpose of achieving a desirable model-based reproducibility. Ad-
ditionally, we evaluated the model-based reproducibility of gray matter volume (GMV) changes for UK Biobank
(UKB) vs. Parkinson Progression Marker Initiative (PPMI) and UK Biobank (UKB) vs. Human Connectome Project
(HCP). We demonstrated that both sample size and study-specific experimental factors play important roles in
the model-based reproducibility assessments for different experiments. In summary, a systematic assessment of
reproducibility is fundamental and important in the current large-scale high-throughput MRI-based studies.
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1. Introduction

Magnetic Resonance Imaging (MRI) technology has been widely
used in neuroscience (Poldrack and Gorgolewski, 2014). It enables
us to conduct experiments on gray matter volume (GMV) changes
(structure MRI), task-free scanning (resting state fMRI) and task-based
studies (task fMRI) (Ashburner and Friston, 2000; Logothetis, 2008;
Snyder and Raichle, 2012). Reproducibility, or results reproducibility
(Goodman et al., 2016) for MRI-based studies especially association
studies (phenotype vs. MRI metric) and task-induced brain activation
has recently received a significant attention. Criticisms have been raised
to the phenomena that some MRI-based findings are only modestly re-
producible and that some results could be interpreted as inflated or spu-
rious (Nature Neuroscience Editorial, 2017; Bennett and Miller, 2010;
Botvinik-Nezer et al., 2020; Eklund et al., 2016). These debates were
mostly on the reproducibility of novel discoveries (i.e. findings with sta-
tistical significance). The reproducibility of the multi-model MRI data
and the reproducibility of novel discoveries were reported, including
the reproducibility of functional MRI (Bosnell et al., 2008; Chen et al.,
2017; Conti et al., 2019; Tegeler et al., 1999; Zou et al., 2005). However,
to our acknowledge, there is a lack of effective statistical model to as-
sess overall study reproducibility in MRI-based studies. A model-based
reproducibility assessment can provide us with an adequate confidence
in MRI-based research outcomes.

Model-based reproducibility assessment approach aims to evaluate
the level of directional concordance among different analysis results
(i.e. z-score). Accordingly, a mixture model based approach has been
proposed to conduct hypothesis testing on the reproducibility of mass
spectrometry studies (Lai et al., 2007). Recently, a Bayesian model-
ing approach has also been proposed to address the irreproducibility
of genome-wide association studies or transcriptome-wide association
studies (Zhao et al., 2020). For MRI-based studies, there is still a lack of
effective approach to systematic evaluate overall study reproducibility.

In this study, we proposed a model-based reproducibility index
to quantify reproducibility for MRI-based association studies (pheno-
type vs. MRI metric) and task-induced brain activation. To evaluate
the performance of our proposed model-based reproducibility index in
MRI-based studies, we first present a comprehensive simulation study
which is designed based on UK Biobank structure MRI data (Alfaro-
Almagro et al., 2018; Sudlow et al., 2015). Then, we present model-
based reproducibility assessments of several GMV-related human phe-
notypes, brain task state activation and connectivity-phenotype studies
by using recent large sSMRI/fMRI databases. For each database, we fo-
cused on a few phenotypes or task types. Furthermore, with a desir-
able model-based reproducibility requirement, we present the related
sample size calculations for several MRI-based study scenarios. These
can be achieved with UK Biobank structure and resting-state functional
MRI data and IMAGEN task functional MRI data (Bossier et al., 2020;
Schumann et al., 2010b). Our model-based analytical tool to evaluate
minimal sample size could provide a useful guidance in the related fu-
ture study planning. Moreover, we demonstrate that the reproducibility
between two independent MRI databases can also be evaluated by using
our model-based reproducibility approach.

2. Materials and methods
2.1. Study participants

2.1.1. UK Biobank

UK Biobank (Alfaro-Almagro et al., 2018; Sudlow et al., 2015) is
a prospective epidemiological resource gathering extensive question-
naires, physical and cognitive measures and biological samples (includ-
ing genotype), in a cohort of 500,000 participants (Sudlow et al., 2015).
Participants which years of age between 40 and 69 at baseline recruit-
ment consent to access to their full health records from the UK National
Health Service, enabling researchers to relate phenotypic measures to
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long-term health outcomes. They also provided blood, urine and saliva
samples, which were stored in such a way as to allow many different
types of assay to be performed (for example, genetic, proteomic and
metabolomics analyzes). In 2014, UK Biobank began the process of invit-
ing back 100,000 of the original volunteers for brain, heart and body
imaging. The UK Biobank project received ethical approval from the Re-
search Ethics Committee within the terms of an Ethics and Governance
Framework. The initial release of 10,000 UK Biobank imaging and be-
havioral measures data was used in our manuscript and more details are
available online (Alfaro-Almagro et al., 2018).

2.1.2. IMAGEN

One thousand five hundred and six adolescents (mean age = 14.44 y
old; SD = 0.42; range = 12.88-16.44 y old) from the baseline assessment
of the IMAGEN (Bossier et al., 2020; Schumann et al., 2010b) sample
with complete data in fMRI and behavioral measurements were included
in the analyzes. Written informed consent and assent had been given by
both parents and participants. The study had been approved by the local
ethic committees. Detailed descriptions of this study have previously
been published (Schumann et al., 2010a).

2.1.3. PPMI

The Parkinson Progression Marker Initiative (PPMI) is a comprehen-
sive observational, international, multi-center study designed to identify
PD progression biomarkers both to improve understanding of disease
etiology and course and to provide crucial tools to enhance the like-
lihood of success of PD modifying therapeutic trials. The PPMI cohort
will comprise 400 recently diagnosed PD and 200 healthy subjects fol-
lowed longitudinally for clinical, imaging and biospecimen biomarker
assessment using standardized data acquisition protocols at twenty-one
clinical sites. All procedures were performed with prior approval from
ethical standards committees and with informed consent from all study
participants. The PPMI dataset that we could available include T1 struc-
tural MRI scans for 543 participants (n = 374 patients with PD, n = 169
healthy controls). To facilitate the comparison of overall reproducibil-
ity between different applications, we only used healthy controls in this
cohort (n = 136, age range 45-79 to match the UKB dataset age range).
For more details of this dataset, see the previous related publication
(Marek et al., 2011).

2.1.4. HCP

The WU-Minn HCP consortium (Van Essen et al., 2012) aims to char-
acterize human brain in a population of 1200 healthy adults and to en-
able detailed comparisons between brain circuits, behavior, and genetics
at the level of individual subjects. The HCP was reviewed and approved
by the Institutional Ethics Committee of Washington University in St.
Louis, Missouri. All participants signed written informed consent. Here,
we use the T1 data form this project and more details they were initially
reported (Van Essen et al., 2013).

2.2. MRI acquisition

2.2.1. UK Biobank

Details of the image acquisition in UK Biobank are also available on-
line (Alfaro-Almagro et al., 2018). Magnetic resonance imaging (MRI)
was performed using a Siemens Skyra 3T running VD13ASP4 (Siemens
Healthcare, Erlangen, Germany) with a Siemens 32-channel RF receive
head coil. The T1 structural protocol is acquired at 1 mm isotropic reso-
lution using a three-dimensional (3D) MPRAGE acquisition, with inver-
sion and repetition times optimized for maximal contrast. The superior-
inferior field-of-view is large (256 mm), at little cost, in order to include
reasonable amounts of neck/mouth, as those areas will be of interest to
some researchers (for example, in the study of sleep apnea).

Resting-state fMRI use the same acquisition parameters, with 2.4-
mm spatial resolution and TR = 0.735 s, with multiband acceleration
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factor. A ’single band’ reference image (without the multiband exci-
tation, exciting each slice independently) is acquired that has higher
tissue-type image contrast; this is used as the target for motion correc-
tion and alignment. For both databases, the raw data are corrected for
motion and distortion and high-pass filtered to remove temporal drift.

2.2.2. IMAGEN

Structural MRI and fMRI data were acquired at eight IMAGEN assess-
ment sites with 3-T MRI scanners of different manufacturers (Siemens,
Philips, General Electric, and Bruker). The scanning variables were spe-
cially chosen to be compatible with all scanners. The same scanning
protocol was used in all cites. In brief, high-resolution T1-weighted 3D
structural images were acquired for anatomical localization and coreg-
istration with the functional time series. BOLD functional images were
acquired with a gradient echo, echo planar imaging sequence. 300 vol
were acquired for each participant, and each volume consisted of 40
slices aligned to the anterior commission/posterior commission line
(2.4 mm slice thickness and 1 mm gap). The echo time was optimized
(echo time = 30 ms; repetition time = 2200 ms) to provide reliable
imaging of subcortical areas. (More details for different task see Supple-
mentary Material)

2.2.3. PPMI

In this research, we use the MRI data acquired by the PPMI study, in
which a T1-weighted, 3D sequence (i.e., MPRAGE) is acquired for each
subject using 3T SIEMENS MAGNETOM TrioTim syngo scanners. This
gives us 374 PD and 169 NC scans. The T1-weighted images were ac-
quired for 176 sagittal slices, with the following parameters: repetition
time (TR) = 2300 ms, echo time (TE) = 2.98 ms, flip angle = 9°, and

voxel size =1 x 1 x 1 mm3.

2.2.4. HCP

The Human Connectome Project (HCP) provides a unique, open
source, large-scale collection of about 1200 human head T1 image
datasets and we employed 413 healthy subjects which have no clear
family related (age-range: 22-36 years) in our study. All HCP imag-
ing data were acquired on a Siemens Skyra 3T scanner with a cus-
tomized SC72 gradient insert. Tlw 3D MPRAGE were acquired with
TR = 2400 ms, TE = 2.14 ms, TI = 1000 ms, flip angle = 8 deg,
FOV = 224 x 224, 0.7 mm isotropic voxel, bandwidth = 210 Hz/px,
iPAT = 2, Acquisition time = 7:40 (min:sec).

2.3. MRI preprocessing

The rs-fMRI data are preprocessed using standard volume-based
fMRI pipeline. For each subject, the preprocessing steps include: motion
correction (FSL mcflirt), despiking motion artifacts using Brain Wavelet
Toolbox (Patel et al., 2014), registering to 3 x 3 x 3 mm? standard space
by first aligning the functional image to the individual T1 structure im-
age using boundary based registration (Greve and Fischl, 2009) and then
to standard space using FSL'’s linear and non-linear registration tool (FSL
flirt and fnirt), regressing out nuisance covariates including Friston-24
parameters, white matter signal, cerebrospinal fluid signal, band-pass
filtering (0.01-0.1 Hz) using AFNI (3dTproject) and spatial smoothing
by a 3D Gaussian kernel (FWHM = 6 mm). All the images are manu-
ally checked to ensure successful preprocessing and insure the mean FD
Power not greater than 0.5. After above preprocessing, a large sample
size imaging and behavioral measures data which contain 8273 subjects
have been used in this study.

T1 data were preprocessed with the voxel-based morphometry
(VBM) by using the VBMS8 toolbox based on the Statistical Parametric
Mapping package (SPM). Firstly, all structural MRI data were manu-
ally corrected and divided into gray matters, white matters and cere-
brospinal fluid. Secondly, the gray matter images were aligned to a
nonlinear deformation field and normalized to Montreal Neurological
Institute (MNI) space by using the templates which were created by
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DARTEL tool. Finally, the normalized images were all smoothed with
a full-width at half-maximum (FWHM) 6-mm Gaussian kernel for fur-
ther analysis. After above procedures, the gray matter images (voxel
size: 3 X 3 x 3 mm?) were obtained for 9850 subjects.

Task-fMRI data were analyzed with SPM. Spatial preprocessing in-
cluded slice time correction to adjust for time differences caused by
multi-slice imaging acquisition, realignment to the first volume in line,
nonlinearly warping to the Montreal Neurological Institute space [based
on a custom echo planar imaging template (53 x 63 X 46 mm? voxels)
created out of an average of the mean images of 400 adolescents], re-
sampling at a resolution of 3 x 3 x 3 mm?, and smoothing with an
isotropic Gaussian kernel of 5-mm FWHM.

2.4. Statistical analyzes

2.4.1. Functional connectivity association study

Based on the automated anatomical labeling (AAL2) atlas, there are
120 brain regions. Each resting-state functional magnetic resonance im-
age (rs-fMRI) included 54,885 voxels (Rolls et al., 2015). For each pair
of brain regions, the time series were extracted, and the Pearson correla-
tion was calculated for each subject to provide the measure of functional
connectivity (FC), followed by Fisher’s z-transformation. The general
linear model was used to test the association between the region-wise
FC links and a human phenotype or behavior. The effects of age, sex
and head motion (mean frame-wise displacement) were regressed out.

2.4.2. Voxel-wise association study

We used the general linear model to define the association between
a specific human phenotype or behavior and each intracerebral voxel’s
gray matter volume, which was included in the automated anatomical
labeling (AAL2) atlas (total 54,885 voxels). The effects of age, sex and
total intracerebral volume (TIV) were regressed out.

2.4.3. Task fMRI activation

At the first level of analysis, changes in the BOLD response for each
subject were assessed by linear combinations at the individual subject
level for each experimental condition (e.g. reward anticipation high gain
of Monetary Incentive Delay (MID) task), and each trial was convolved
with the hemodynamic response function to form regressors that ac-
count for potential noise variance (e.g., head movement) associated with
the processing of a specific task. Estimated movement parameters were
added to the design matrix in the form of 18 additional columns (three
translations, three rotations, three quadratic and three cubic transla-
tions, and three translations each with a shift of +1 repetition time).
To identify brain activation specific to the task, we contrasted the brain
activation patterns between the task status and the control status.

For the MID anticipation phase we contrasted brain activation during
‘anticipation of high win [here signaled by a circle] vs anticipation of
no-win [here signaled by a triangle]’; For the emotional faces task (EFT)
we contrasted brain activation during ‘viewing Angry Face vs viewing
Control [circles]’; For the stop signal task (SST) we contrasted brain
activation during ‘successful stop vs successful go’.

2.4.4. Normal distribution quantile-based transformation

z-scores from a normal distribution quantile transformation were
used for the analysis (Lai et al., 2007). First, based on an appropriate
analysis (functional connectivity association study, voxel-wise associ-
ation study or task fMRI activation), we acquired a list of one-sided P-
values. For each P-value P, the corresponding z-score z can be calculated
as follows:

z=¢"'1-P)

where ¢~!(-) is the inverse function of the standard normal cumulative
distribution function.
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Mixture model reproducibility index (M?RI)
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Fig. 1. Anillustration of M*RI. ¢; ; is the normal probability distribution function and z;; is the proportion of features consistent with component / in the first analysis

and component j in the second analysis.

2.4.5. Definition of model-based reproducibility index

We firstly consider a nine-component normal-mixture model for the
joint distribution of paired z-scores [z(V, z®] (see above for z-score
calculation).

=) = X B ity 2], 22

where ¢, > is the normal probability distribution function with mean
u and variance o2. We use the first component (index 0) to represent
the null (no change/correlation) feature component. Then, y;, = v, =0
and ag = rg = 1. The second and third components (indices 1 and
2) are used to represent negative changes/correlations and positive
changes/correlations. Their corresponding parameters (means and vari-
ances) will be estimated from the paired z-scores with the following con-
straints: u;,v; <0 and u,,v, 2 0. x;; is the proportion for component i
in the first study and component ; in the second study, and Y, 7;; = 1.

This model was termed partial concordance/discordance (PCD)
model and more details for PCD model could be available in Supple-
mentary Material (Lai et al., 2007, 2009, 2014, 2017). Then, we define
a model-based reproducibility index based on model parameters, mix-
ture model reproducibility index (M?RI) (The illustration of M?RI see
Fig. 1):
M2RI = "1 + 7

1 =7y

In a recent study (Zhao et al., 2020), two Bayesian models: curved
exponential family normal prior model (CEFN) and meta-analysis prior
model (META), have been proposed for a similar purpose. In these two
models, r,,,, and = were the proportions of null and reproducible sig-
nals, respectively. Accordingly, we may define the related model-based
reproducibility indices:

CEFNRI/JMETARI = — R
1- Tnull

2.4.6. Confidence intervals of M?RI

The confidence intervals (CIs) of M2RI can be obtained by bootstrap-
ping paired z-scores (Efron and Tibshirani, 1997; Mclachlan, 1987). For
our newly developed model-based reproducibility index M?RI, a theoret-
ical confidence interval will also be highly useful in practice. Therefore,
we have derived the asymptotic theoretical Cls for M?RI based on our
proposed mixture model (see Supplementary Material for details).

2.5. Simulations

We conducted a comprehensive simulation study to show the per-
formance of our newly proposed model-based reproducibility index. Our
simulations were designed based on the gray matter volume (GMV) data
in the UK Biobank. Two-sample comparison is a general analysis sce-
nario in practice, and the reproducibility of a large-scale two-sample
study is important. Therefore, we partitioned the whole data randomly
into four subsets which have the same sample size (referred to as Data

1A, Data 1B, Data 2A and Data 2B, each subset includes 1/4 sample of
the whole data). In our simulations, 1 and 2 represent virtually the case
group and the control group, respectively. A and B represent virtually
different experiments. Before the analysis, as a widely considered prac-
tical approach, we firstly checked that the covariates such as sex, age,
total intracerebral volume (TIV) were statistically similar (two-sample
t-test for age and TIV, chi-square test for sex, P > 0.05) between Data
1A vs. 2A as well as Data 1B vs. 2B. Then we also checked that to-
tal GMV (i.e. dependent variable) was statistically similar (two-sample
t-test, P > 0.05) between Data 1A vs. 2A as well as Data 1B vs. 2B. Oth-
erwise, we repeated the random data partition until one passed these
similarity requirements. For each feature, there was statistically no dif-
ferences in distribution between Data 1A vs. 2A nor Data 1B vs. 2B.
Then, to generate upward or downward changes, a specified proportion
of voxels in a cluster were randomly chosen and 0.0285-0.0855 stan-
dard deviations of brain-wise GMV (corresponding to approximately 1-3
effect sizes in z-scores) were randomly added to (or subtracted from) the
chosen voxels of each subject in Data 1A and Data 1B. This procedure
was repeated 1000 times. For each repetition, we obtained two lists of
z-scores: one by voxel-wisely comparing Data 1A vs. Data 2A and the
other Data 1B vs. Data 2B. z-scores were calculated based on the tradi-
tional two-sample t-test. A pair of z-scores were obtained for each voxel.
The reproducibility between two lists of z-scores was assessed by our
proposed model-based reproducibility index. The following three simu-
lation scenarios were considered.

(a) Complete reproducible with a moderate proportion of changes. Ac-
cording to our random data partition, there were statistically no differ-
ences between Data 1A vs. 2A nor Data 1B vs. 2B. We modified the 100%
of null (no change) to 80% null, 10% upward changes and 10% down-
ward changes as follows. We randomly selected two clusters of voxels,
each with 10% of the total voxels. To simulate 10% upward changes,
for each voxel in the first cluster of voxels, we randomly added to each
subject’s GMV a value equivalent to 1-3 effect sizes in z-scores in Data
1A and repeated this in Data 1B so that there were 10% reproducible
upward changes. For each voxel in the second cluster of voxels, we ran-
domly subtracted from each subject’s GMV a value equivalent to 1-3
effect sizes in z-score in Data 1A and repeated this in Data 1B so that
there were 10% reproducible downward changes.

(b) Partial reproducible. We randomly selected four clusters of voxels.
There were 15% of the total voxels in each of the first two clusters, and
the upward changes and downward changes were simulated according
to the description in (a). There were 5% of the total voxels in each of
the next two clusters. For each voxel in the third cluster, we randomly
added to each subject’s GMV a value equivalent to 1-3 effect sizes in
z-scores in Data 1A (but not in Data 1B). Then, we had 5% discordant
changes (up vs. null). For each voxel in the fourth cluster, we similarly
subtracted from each subject’s GMV in Data 1A (but not in Data 1B) so
that we had 5% discordant changes (down vs. null).

(c) Complete reproducible with a high proportion of changes. Considering
that the number of consistent significant results from different studies
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Table 1

The performance of model-based reproducibility index in three sim-
ulation analysis scenarios, For each simulation analysis scenario, the
true reproducibility is shown in the table. The simulation and evalu-
ation were repeated 1000 times to obtain the median, the lower and
upper-quartiles (Q1-Q3) for assessed reproducibility. (For more details,
please see section Model-based Reproducibility Index Recovers the True Re-
producibility Accurately in the Simulation Study).

Model-based Reproducibility Index Assessed Model-based Reproducibility

Simulation (a) 100% reproducibility = Median (Q1-Q3)
M?RI 0.9150 (0.7378-0.9950)

CEFNRI 0.9951 (0.9932-0.9961)
METARI 0.9879 (0.9506-0.9933)
Simulation (b) 75% reproducibility Median (Q1-Q3)

M?RI 0.7688 (0.6850-0.8488)
CEFNRI 0.9875 (0.9549-0.9948)
METARI 0.8255 (0.6911-0.9092)
Simulation (c)100% reproducibility Median (Q1-Q3)

M?RI 0.9597 (0.8731-0.9986)
CEFNRI 0.9980 (0.9973-0.9983)
METARI 0.9939 (0.9734-0.9966)

can vary, we randomly selected two clusters of voxels, each with 20%
of the total voxels. The reproducible upward changes (the first cluster)
and downward changes (the second cluster) were simulated similarly
according to the description in (a).

3. Results

3.1. Model-based reproducibility index recovers the true reproducibility
accurately in the simulation study

The simulation results are summarized in Table 1. Based on the
scenario (a) as complete reproducible with a moderate proportion of
changes, the median M?RI, CEFNRI or METARI was 0.915, 0.995 or
0.988, respectively. Furthermore, the related lower- and upper-quartiles
(Q1-Q3) was 0.738-0.995, 0.993-0.996 or 0.951-0.993, respectively. It
was reasonable to conclude that the assessed model-based reproducibil-
ity could be up to the true reproducibility which is 100%. Based on
the scenario (b) as a partial reproducibility (75%), the median M2RI,
CEFNRI or METARI was 0.769, 0.988 or 0.826 when the related lower-
and upper-quartiles (Q1-Q3) was 0.685-0.849, 0.955-0.995 or 0.691-
0.909, respectively. Based on the scenario (c) as complete reproducible
with a high proportion of changes, the median M?RI, CEFNRI or METARI
reached 0.960, 0.998 or 0.994 with the lower- and upper-quartiles (Q1-
Q3) 0.873-0.999, 0.997-0.998 or 0.973-0.997, respectively. It was also
reasonable to conclude that the assessed model-based reproducibility
could be up to the true reproducibility which is 100%.

3.2. Model-based reproducibility assessments for large-scale MRI-based
studies

To investigate the reproducibility of large-scale MRI-based analysis
in the data collected for studying human phenotypes/behaviors and task
state activations, as well as the brain structure and function, we split
each study cohort into two subsets (referred to as Group 1 and Group 2
based on the order of subject number) with (approximately) the same
sample sizes. As the sample limitations and missing observations, dif-
ferent sample sizes were used to test different aspects of model-based
reproducibility.

For the resting-state functional connectivity (RSFC) data, the sam-
ple sizes of the two subsets were 4136 and 4137 for analyzing sex as
phenotype vs. RSFC; the sample sizes of the two subsets were 4131 and
4131 for analyzing body mass index (BMI) as phenotype vs. RSFC (as
there were missing BMI observations). A general linear model was con-
structed with sex phenotype as the response in each subset, with age
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Table 2

Model-based reproducibility assessment of four analysis scenarios, For each
MRI-based analysis scenario, the assessed model-based reproducibility is
shown in the table. We obtained 95% confidence intervals (CIs) based on
bootstrapping the paired z-scores for M?RI. The asymptotic theoretical 95%
CIs for M?RI was also presented. (For more details, please see section Model-

based Reproducibility Assessments for Large-scale MRI-based Studies).

Model-based Reproducibility Index

Assessed Model-based Reproducibility

Sex as phenotype vs. RSFC

M?RI (95% CIs)

M?RI (asymptotic theoretical 95% CIs)
CEFNRI

METARI

BMI as phenotype vs. RSFC

M?RI (95% CIs)

M?RI (asymptotic theoretical 95% CIs)
CEFNRI

METARI

Sex as phenotype vs. GMV

M?RI (95% CIs)

M?RI (asymptotic theoretical 95% CIs)
CEFNRI

METARI

Activation in MID task

M?RI (95% CIs)

M?RI (asymptotic theoretical 95% Cls)
CEFNRI

METARI

0.9999996 (0.9999993-0.9999998)
0.9999996 (0.9807-1)

0.9993

0.9992

0.9999934 (0.9999904-0.9999955)
0.9999934 (0.9782-1)

0.9986

0.9984

0.99999995 (0.99999993-0.99999997)
0.99999995 (0.9955-1)

0.9996

0.9995

0.99999991 (0.99999989-0.99999994)
0.99999991 (0.9968-1)

0.9997

0.9997

and mean FD adjusted as covariates (hereafter referred to as Sex as phe-
notype vs. RSFC and BMI as phenotype vs. RSFC; see Fig. 2¢,d for the
paired z-scores). For the GMV data, the sample sizes of the two subsets
were 4925 and 4925, respectively. A general linear model was also con-
structed with sex phenotype as the response in each subset, with age and
TIV adjusted as covariates (hereafter referred to as Sex as phenotype vs.
GMV; see Fig. 2a for the paired z-scores). For the task-related activation
data, the sample sizes of the two subsets were 772 and 772, respectively.
Student’s t-test was used to evaluate the activation of the monetary in-
centive delay (MID) task, one of the most common tasks in fMRI stud-
ies (this activity is hereafter referred to as Activation in the MID task;
see Fig. 2b for the paired z-scores). For each paired z-scores, an over-
all diagonal pattern can be clearly observed. Different paired z-scores
variation patterns can also be observed for different analysis scenarios,
which implies different mixtures of no-change related (null) z-scores
and upward/downward-change related (non-null) z-scores. Evaluation
of Gaussian mixture model assumption is available in Supplementary
Material.

Model-based reproducibility index was used to evaluate the repro-
ducibility based on the paired z-scores in Fig. 2. The results are shown in
Table 2. We bootstrapped the paired z-score to construct the related 95%
confidence intervals