
warwick.ac.uk/lib-publications 

Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 

Persistent WRAP URL: 
http://wrap.warwick.ac.uk/164724                           

How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 

Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  

Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 

Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 

Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.



Physics-Informed Neural Network Modeling of
Soliton Pulses in Optical Communication Systems

Joshua Uduagbomen
School of Engineering
University of Warwick

Coventry, United Kingdom
Joshua.Uduagbomen@warwick.ac.uk

Subhash Lakshminarayana
School of Engineering
University of Warwick

Coventry, United Kingdom
Subhash.Lakshminarayana@warwick.ac.uk

Mark S. Leeson
School of Engineering
University of Warwick

Coventry, United Kingdom
Mark.Leeson@warwick.ac.uk

Tianhua Xu
School of Engineering
University of Warwick

Coventry, United Kingdom
Tianhua.Xu@warwick.ac.uk

Abstract—The nonlinear Schrödinger equation which models
the pulse propagation in an optical fiber is solved using a physics-
informed neural network for the case of soliton propagation.
The prediction accuracy, measured against the exact solution
(computed using the Runge-Kutta method), is found to be 2.223×
10−3.
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physics-informed neural network

I. INTRODUCTION

For the transmission of very large amount of data over
long distances and wide bandwidths with low latency, op-
tical communications presently stand out and remains un-
challenged as the key enabling technology and backbone of
global modern telecommunications networks. Based on this
context, the modeling of optical fibers is of high significance
to evaluate the performance of long-haul wideband optical
communication systems and networks, since it is extremely
expensive and intractable to study such large-scale optical
systems or networks in lab and field experiments. However,
the simulation of the mix of dispersion and fiber nonlinearities,
which was generally implemented using split-step Fourier
method (SSFM), can result in a demanding computational
procedure, especially when long transmission distances and
wide bandwidths are considered [1], [2]. Meanwhile, neural
networks (NNs) can be used to investigate the performance of
an optical fiber communications system, and to realize this,
we require numerical simulations in the forward propagation
of optical pulses. Recent applications have seen deep learning
being employed in optical communications for data fitting
when given the SSFM generated input and output pulse pairs
for training. However, much more can be achieved with NNs
in nonlinear optics than just estimating the results from SSFM,
which in itself has its own drawbacks [3]. The nonlinear
Schrödinger equation (NLSE) can be solved directly using
NNs evading the complexity of numerical methods.

II. PRINCIPLE OF PINNS

First we define a differential equation ut+N [u] = 0, where
u, ut and N denote the solution, the derivative of the solution
with respect to t and the nonlinear function respectively. Our
objective is to solve the equation, and we adopt the PINN
approach [4] where the solution and the nonlinear terms are
approximated as the output of the NN as shown in Fig 1. To

this end, we define a model f := ut + N [u] and learn the
shared parameters between the NNs, u(t, x) and f(t, x) by
minimizing the mean squared error loss

MSE =
1

Nu

Nu∑
i=1

|u(tui, xu
i)− ui|2 + 1

Nf

Nf∑
i=1

|f(tf i, xf
i)|2,

(1)

where {tui, xu
i, ui}Nu

i=1 is the training data on u and {tf i, xf
i}

are the collocation points for f(t, x). The objective of the
first loss term is to satisfy the network u and the second
loss term is the physics-based regularisation term. This term
is minimised to ensure the solution provided by the NN solves
the underlying differential equations.

In the fibre-optics domain, the complex envelope of the op-
tical field A(z, τ), can be represented in its rectangular form as
A(z, τ) = u(z, τ)+iv(z, τ) [5], and the normalized NLSE can
be written as Az +

i
2Aττ − i|A|2A = 0. This can be split into

its real and imaginary parts as f(u) : uz − 1
2vττ + (u2 + v2)v

and g(v) : vz +
1
2uττ + (u2 + v2)u respectively. Where τ , z,

g and f is the time, normalized distance, the function govern-
ing v(z, τ) and the function governing u(z, τ) respectively.
Resolving this satisfies the relation NLSE(u, v) = f(u) +
ig(v) = 0. A hyperbolic tangent activation function and a five-
layer deep neural network with 100 neurons per layer has been
used to represent the function A(z, τ). To constrain the NLSE,
20,000 discrete points have been sampled and these have been
set as input along with 50 points of the initial pulse which are
used to ensure that the initial pulse function approaches zero.

III. RESULTS AND DISCUSSION

The peregrine soliton is the solution of the normalized
NLSE given by [6]

i
∂A

∂z
+

1

2

∂2A

∂2τ
+ |A|2A = 0 (2)

Its evolution has been investigated here using PINNs and the
simulation results show the dynamical evolution of the pulse
envelope under the impact of both chromatic dispersion and
fiber nonlinearity. In Fig. 2, Fig. 3 and Fig. 4, the predicted
solutions using PINN (green solid line) are compared with the
exact solutions (purple dashed-line) obtained by solving the
NLSE using the Runge-Kutta method with evolution starting
from the initial pulse, 2sech(t). We have used this to verify



Fig. 1. The architecture of the PINN scheme showing the input layer, the hidden layer and the output layer. As part of the neural network, PINN encodes
the governing equations [5].

the accuracy of the algorithm and the prediction error was
measured as 2.223×10−3. In Fig. 4, a strongly localized peak
can be seen in the temporal profile and from the simulation
results, two distinct phases can be observed. The first phase
involves the rapid evolution of the pulse to approach a profile
of an ultrashort compressed pulse followed by the return phase
of broadening towards the initial state.

Fig. 2. Temporal profile showing the optical field at z = 0.18, a relatively
short distance after z = 0

Fig. 3. Temporal profile showing the optical field when z = 1.06. Here the
return phase of the pulse evolution after the point of maximum compression
is captured

IV. CONCLUSION

A prediction accuracy of 2.223 × 10−3 was achieved after
numerical simulations and this shows that PINNs are capable
of accurately capturing and predicting the pulse propagation in

Fig. 4. Temporal profile showing the point of maximum compression during
pulse evolution and the optical field when z = 0.79

an optical fiber and will ultimately be able to characterize other
physical effects and model pulse propagation in wideband
optical fiber communication systems.
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