

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/164769

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/164769
mailto:wrap@warwick.ac.uk

On the Optimality

of Pseudo-polynomial Algorithms for Integer Programming∗

Fedor V. Fomin†, Fahad Panolan‡, M. S. Ramanujan§ and Saket Saurabh¶

Abstract

In the classic Integer Programming Feasibility (IPF) problem, the objective is to decide
whether, for a given m × n matrix A and an m-vector b = (b1, . . . , bm), there is a non-negative
integer n-vector x such that Ax = b. Solving (IPF) is an important step in numerous algo-
rithms and it is important to obtain an understanding of the precise complexity of this problem
as a function of natural parameters of the input.

The classic pseudo-polynomial time algorithm of Papadimitriou [J. ACM 1981] for instances
of (IPF) with a constant number of constraints was only recently improved upon by Eisenbrand
and Weismantel [SODA 2018] and Jansen and Rohwedder [ITCS 2019]. Jansen and Rohwedder
designed an algorithm for (IPF) with running time O(m∆)m log(∆) log(∆ + ‖b‖∞) + O(mn).
Here, ∆ is an upper bound on the absolute values of the entries of A. We continue this line of
work and show that under the Exponential Time Hypothesis (ETH), the algorithm of Jansen

and Rohwedder is nearly optimal, by proving a lower bound of n
o(m

log m
) · ‖b‖

o(m)
∞ . We also

prove that assuming ETH, (IPF) cannot be solved in time f(m) · (n · ‖b‖∞)o(m
log m

) for any
computable function f .

This motivates us to pick up the line of research initiated by Cunningham and Geelen [IPCO
2007] who studied the complexity of solving (IPF) with non-negative matrices in which the
number of constraints may be unbounded, but the branch-width of the column-matroid cor-
responding to the constraint matrix is a constant. We prove a lower bound on the complexity
of solving (IPF) for such instances and obtain optimal results with respect to a closely related
parameter, path-width. Specifically, we prove matching upper and lower bounds for (IPF)
when the path-width of the corresponding column-matroid is a constant.

1 Introduction

In the classic Integer Programming problem, the input is anm×n integer matrix A, and anm-vector
b = (b1, . . . , bm). We consider the feasibility version of the problem, where the objective is to find a
non-negative integer n-vector x (if one exists) such that Ax = b. Solving this problem, denoted by
(IPF), is a fundamental step in numerous algorithms and it is important to obtain an understanding
of the precise complexity of this problem as a function of natural parameters of the input.

(IPF) is known to be NP-hard [1]. However, there are two classic algorithms due to Lenstra [16]
and Papadimitriou [20] solving (IPF) in polynomial or pseudo-polynomial time for two important
cases when the number of variables and the number of constraints are bounded. These algorithms
in some sense complement each other.

The algorithm of Lenstra shows that (IPF) is solvable in polynomial time when the number
of variables is bounded. Actually, the result of Lenstra is even stronger: (IPF) is fixed-parameter
tractable parameterized by the number of variables. However, the running time of Lenstra’s algo-
rithm is doubly exponential in n. Later, Kannan [14] provided an algorithm for (IPF) running in

∗A preliminary version of the paper appeared in the proceedings of 26th Annual European Symposium on
Algorithms (ESA) 2018. This work is supported by the European Research Council (ERC) via grant LOPPRE,
reference 819416, and the Norwegian Research Council via project MULTIVAL.

†Department of Informatics, University of Bergen, Norway. fomin@ii.uib.no
‡Department of Computer Science and Engineering, IIT Hyderabad, India. fahad@cse.iith.ac.in
§University of Warwick, United Kingdom. R.Maadapuzhi-Sridharan@warwick.ac.uk
¶The Institute of Mathematical Sciences HBNI, Chennai,India. saket@imsc.res.in

1

time nO(n). Deciding whether the running time nO(n) can be improved to 2O(n) is a long-standing
open question.

Our work is motivated by the complexity analysis of the complementary case when the number
of constraints is bounded. (IPF) is NP-hard already for m = 1 (the Knapsack problem) but
solvable in pseudo-polynomial time. In 1981, Papadimitriou [20] extended this result by showing
that (IPF) is solvable in pseudo-polynomial time on instances for which the number of constraints
m is a constant. The algorithm of Papadimitriou consists of two steps. The first step is com-
binatorial, showing that if the entries of A and b are from {0,±1, . . . ,±d}, and (IPF) has a so-
lution, then there is also a solution which is in {0, 1, . . . , n(md)2m+1}n. The second, algorithmic
step shows that if (IPF) has a solution with the maximum entry at most B, then the problem
is solvable in time O((nB)m+1). Thus the total running time of Papadimitriou’s algorithm is
O(n2m+2 · (md)(m+1)(2m+1)), where d is an upper bound on the absolute values of the entries of
A and b. There was no algorithmic progress on this problem until the very recent breakthrough of
Eisenbrand and Weismantel [6]. They proved the following result.

Proposition 1.1 (Theorem 2.2, Eisenbrand and Weismantel [6]). (IPF) with m × n matrix
A is solvable in time (m · ∆)O(m) · ‖b‖2

∞, where ∆ is an upper bound on the absolute values of the
entries of A.

Then, Jansen and Rohwedder improved Proposition 1.1 and gave a matching lower bound very
recently [12].

Proposition 1.2 (Jansen and Rohwedder [12]). (IPF) with m×n matrix A is solvable in time
O(m∆)m log(∆) log(∆ + ‖b‖∞) + O(mn), where ∆ is an upper bound on the absolute values of the
entries of A. Assuming the Strong Exponential Time Hypothesis (SETH), there is no algorithm for
(IPF) running in time nf(m)· O(m(∆ + ‖b‖∞))m−δ for any δ > 0, and any computable function f .

Notice that the exponent in the running time of the algorithm in Proposition 1.2 is improved
to m from O(m) in Proposition 1.1.

SETH is the hypothesis that CNF-SAT cannot be solved in time (2 − ǫ)nmO(1) on n-variable
m-clause formulas for any constant ǫ. ETH is the hypothesis that 3-SAT cannot be solved in time
2o(n) on n-variable formulas. Both ETH and SETH were first introduced in the work of Impagliazzo
and Paturi [10], which built upon earlier work of Impagliazzo, Paturi and Zane [11].

Notice that it is safe to remove duplicate columns in the input matrix of (IPF). Thus we can
easily get an upper bound of n ≤ (2∆ + 1)m. By using the proximity theorem of Eisenbrand
and Weismantel [6], one can show that given an instance (A, b) of (IPF), one can construct an
equivalent instance (A, b′) of (IPF) in polynomial time such that ||b′||∞ ≤ m∆ · (2m∆ + 1)m. In
this work we consider the case of (IPF) when both n and ‖b‖∞ are much smaller than the above
mentioned upper bounds.

One of the natural question that arises from Proposition 1.2 is whether the exponential depen-
dence of ‖b‖∞ can be improved significantly at the cost of super polynomial dependence on n. Our
first theorem provides a conditional lower bound indicating that any significant improvements are
unlikely.

Theorem 1.3. Unless the Exponential Time Hypothesis (ETH) fails, (IPF) with m× n matrix A

cannot be solved in time no(m
log m

) · ‖b‖
o(m)
∞ even when the constraint matrix A is non-negative and

each entry in any feasible solution is at most 2.

Let us note that since the bound in Theorem 1.3 holds for a non-negative matrix A, we can
always reduce (in polynomial time) the original instance of the problem to an equivalent instance
where the maximum value ∆ in the constraint matrix A does not exceed ‖b‖∞. Thus Theorem 1.3

also implies the conditional lower bound no(m
log m

) ·(∆ ·‖b‖∞)o(m). When m = O(n), our bound also

implies the lower bound (n · m)o(m
log m

) · (∆ · ‖b‖∞)o(m). We complement Theorem 1.3 by turning
our focus to the dependence of algorithms solving (IPF) on m alone, and obtaining the following
theorem.

Theorem 1.4. Unless the Exponential Time Hypothesis (ETH) fails, (IPF) with m× n matrix A

cannot be solved in time f(m)·(n·‖b‖∞)o(m
log m

) for any computable function f . The result holds even
when the constraint matrix A is non-negative and each entry in any feasible solution is at most 1.

2

The difference between our first two theorems is the following. Although Theorem 1.3 pro-
vides a better dependence on ‖b‖∞, Theorem 1.4 provides much more information on how the
complexity of the problem depends on m. Since several parameters are involved in this running
time estimation, a natural objective is to study the possible tradeoffs between them. For instance,
consider the O(m∆)m log(∆) log(∆ + ‖b‖∞) time algorithm (Proposition 1.2) for (IPF). A natural
follow up question is the following. Could it be that by allowing a significantly worse dependence
(a superpolynomial dependence) on n and ‖b‖∞ and an arbitrary dependence on m, one might be
able to improve the dependence on ∆ alone? Theorem 1.4 provides a strong argument against such
an eventuality. Indeed, since the lower bound of Theorem 1.4 holds even for non-negative matrices,
it rules out algorithms with running time f(m) · ∆o(m

log m
) · (n · ‖b‖∞)o(m

log m
). Therefore, obtaining

a subexponential dependence of ∆ on m even at the cost of a superpolynomial dependence of n
and ‖b‖∞ on m, and an arbitrarily bad dependence on m is as hard as obtaining a subexponential
algorithm for 3-SAT.

We now motivate our remaining results. We refer the reader to Figure 1 for a summary of our
main results. It is straightforward to see that when the matrix A happens to be non-negative, the
algorithm of Papadimitriou [20] runs in time O((n · ‖b‖∞)m+1). Due to Theorems 1.3 and 1.4,
the dynamic programming step of the algorithm of Papadimitriou for (IPF) when the maximum
entry in a solution as well as in the constraint matrix is bounded, is already close to optimal. Con-
sequently, any quest for “faster” algorithms for (IPF) must be built around the use of additional
structural properties of the matrix A. Cunningham and Geelen [1] introduced such an approach by
considering the branch decomposition of the matrix A. They were motivated by the fact that the
result of Papadimitriou can be interpreted as a result for matrices of constant rank and branch-
width is a parameter which is upper bounded by rank plus one. For a matrix A, the column-matroid
of A denotes the matroid whose elements are the columns of A and whose independent sets are
precisely the linearly independent sets of columns of A. We postpone the formal definitions of
branch decomposition and branch-width till the next section. For (IPF) with a non-negative ma-
trix A, Cunningham and Geelen showed that when the branch-width of the column-matroid of A
is constant, (IPF) is solvable in pseudo-polynomial time [1, 18].

Proposition 1.5 (Cunningham and Geelen [1]). (IPF) with a non-negative m× n matrix A
given together with a branch decomposition of its column matroid of width k, is solvable in time
O((‖b‖∞ + 1)2kmn+m2n).

We analyze the complexity of (IPF) parameterized by the branch-width of A by making use of
SETH and obtain the following lower bounds.

Theorem 1.6. Unless SETH fails, (IPF) with a non-negative m× n constraint matrix A cannot
be solved in time f(bw)(‖b‖∞ + 1)(1−ǫ)bw(mn)O(1) or f(‖b‖∞)(‖b‖∞ + 1)(1−ǫ)bw(mn)O(1), for any
computable function f . Here bw is the branchwidth of the column matroid of A.

In recent years, SETH has been used to obtain several tight conditional bounds on the running
time of algorithms for various optimization problems on graphs of bounded treewidth [17]. How-
ever, in order to be able to use SETH to prove lower bounds for (IPF) in combination with the
branch-width of matroids, we have to develop new ideas.

In fact, Theorem 1.6 follows from stronger lower bounds we prove using the path-width of A as
our parameter of interest instead of the branch-width. The parameter path-width is closely related
to the notion of trellis-width of a linear code, which is a parameter commonly used in coding theory
[9]. For a matrix A ∈ R

m×n, computing the path-width of the column matroid of A is equivalent to
computing the trellis-width of the linear code generated by A. Roughly speaking, the path-width
of the column matroid of A is at most k, if there is a permutation of the columns of A such that in
the matrix A′ obtained from A by applying this column-permutation, for every 1 ≤ i ≤ n− 1, the
dimension of the subspace of Rm obtained by taking the intersection of the subspace of Rm spanned
by the first i columns with the subspace of Rm spanned by the remaining columns, is at most k−1.

The value of the parameter path-width is always at least the value of branch-width and thus
Theorem 1.6 follows from the following theorems.

Theorem 1.7. Unless SETH fails, (IPF) with even a non-negative m × n constraint matrix A
cannot be solved in time f(k)(‖b‖∞ + 1)(1−ǫ)k(mn)O(1) for any computable function f and ǫ > 0,
where k is the path-width of the column matroid of A.

3

Upper Bounds Lower bounds

no n
o(m

log m
)

· ‖b‖o(m)
∞ time algorithm under ETH (Theorem 1.3)

(even for non-negative matrix A and solution entries bounded by 2)

(m · ∆)O(m) · ‖b‖O(1)
∞ [6, 12]

no nO(1) · O(m(∆ + ‖b‖∞))m−δ time algorithm for δ > 0 under SETH [12]

no (n · m)
o(m

log m
)
(∆ · ‖b‖∞)o(m) algorithm when m = O(n) under ETH

(consequence of Theorem 1.3)
(even for non-negative matrix A and solution entries bounded by 2)

no f(m) · (n · ‖b‖∞)
o(m

log m
)

under ETH (Theorem 1.4)
(even for non-negative matrix A and solution entries bounded by 1)

O((‖b‖∞ + 1)pw+1mn+m2n) no f(pw)(‖b‖∞ + 1)(1−ǫ)pw(mn)O(1) algorithm under SETH (Theorem 1.7)
(non-negative matrix A) (even for non-negative matrix A)

(Theorem 1.9)

no f(‖b‖∞)(‖b‖∞ + 1)(1−ǫ)pw(mn)O(1) algorithm under SETH (Theorem 1.8)
(even for non-negative matrix A)

O((‖b‖∞ + 1)2bwmn+m2n) no f(bw)(‖b‖∞ + 1)(1−ǫ)bw(mn)O(1)

(non-negative matrix A) [1] or

f(‖b‖∞)(‖b‖∞ + 1)(1−ǫ)bw(mn)O(1) algorithm
under SETH (Theorem 1.6)

(even for non-negative matrix A)

Figure 1: A summary of our lower bound results in comparison with the relevant known upper
bound results. Here, n and m are the number of variables and constraints respectively, pw and bw

denote the path-width and branch-width of the column matroid of A and ‖b‖∞ denotes a bound
on the largest absolute value in b while ∆ denotes a bound on the largest absolute value in A.

Theorem 1.8. Unless SETH fails, (IPF) with even a non-negative m × n constraint matrix A
cannot be solved in time f(‖b‖∞)(‖b‖∞ + 1)(1−ǫ)k(mn)O(1) for any computable function f and
ǫ > 0, where k is the path-width of the column matroid of A.

Although the proofs of both lower bounds have a similar structure, we believe that there are
sufficiently many differences in the proofs to warrant stating and proving them separately.

Note that although there is still a gap between the upper bound of Cunningham and Geelen
from Proposition 1.5 and the lower bound provided by Theorem 1.6, the lower bounds given in
Theorems 1.8 and 1.7 are asymptotically tight in the following sense. The proof of Cunningham and
Geelen in [1] actually implies the upper bound stated in Theorem 1.9. We provide a self-contained
proof in this paper for the reader’s convenience.

Theorem 1.9. (IPF) with non-negative m×n matrix A given together with a path decomposition
of its column matroid of width k is solvable in time O((‖b‖∞ + 1)k+1mn+m2n).

Then by Theorem 1.7, we cannot relax the (‖b‖∞ + 1)k factor in Theorem 1.9 even if we allow
in the running time an arbitrary function depending on k, while Theorem 1.8 shows a similar lower
bound in terms of ‖b‖∞ instead of k. Put together the results imply that no matter how much one
is allowed to compromise on either the path-width or the bound on ‖b‖∞, it is unlikely that the
algorithm of Theorem 1.9 can be improved.

The path-width of matrix A does not exceed its rank and thus the number of constraints in
(IPF). Hence, similar to Proposition 1.5, Theorem 1.9 generalizes the result of Papadimitriou when
restricted to non-negative matrices. Also we note that the assumption of non-negativity is unavoid-
able (without any further assumptions such as a bounded domain for the variables) in this setting
because (IPF) is NP-hard when the constraint matrix A is allowed to have negative values (in fact
even when restricted to {−1, 0, 1}) and the branchwidth of the column matroid of A is at most 3. A
close inspection of the instances constructed by Cunningham and Geelen [1] in their NP-hardness
reduction shows that the column matroids of the resulting constraint matrices are in fact direct
sums of circuits, implying that even their path-width is bounded by 3.

4

1.1 Other related works and future research directions

In the conference version of the paper we asked whether the lower bound in Theorem 1.3 can
be improved and this is answered by Knop et al. [15]. They prove that unless the Exponential
Time Hypothesis (ETH) fails, (IPF) with m × n matrix A ∈ {0, 1}m×n cannot be solved in time
2o(m logm) · (n + ‖b‖∞)o(m). We also note that Ganian et al. [8] studied the parameterized com-
plexity of (IPF) when parameterized by various combinations of tw and ‖b‖∞, where tw is the
incident treewidth of the input matrix A. They gave a complete characterization of parameter-
ized complexity results for (IPF) with non-negative constraint matrix when parameterized by all
combinations of tw and ‖b‖∞. In particular, they showed that (IPF) with non-negative constraint
matrix is FPT when parameterized by tw and ‖b‖∞.

While our SETH-based lower bounds for (IPF) with non-negative constraint matrix are tight
for the path-width parameterization, there is a “(‖b‖∞ + 1)k to (‖b‖∞ + 1)2k” gap between lower
and upper bounds for branch-width parameterization. Closing this gap is the first natural question.

The proof of Theorem 1.5 given by Cunningham and Geelen consists of two parts. The first
part bounds the number of potential partial solutions corresponding to any edge of the branch
decomposition tree by (‖b‖∞ + 1)k. The second part is the dynamic programming over the branch
decomposition using the fact that the number of potential partial solutions is bounded. The bot-
tleneck in the algorithm of Cunningham and Geelen is the following subproblem. We are given two
vector sets A and B of partial solutions, each set of size at most (‖b‖∞ +1)k. We need to construct
a new vector set C of partial solutions, where the set C will have size at most (‖b‖∞ + 1)k and
each vector from C is the sum of a vector from A and a vector from B. Thus to construct the new
set of vectors, one has to go through all possible pairs of vectors from both sets A and B, which
takes time roughly (‖b‖∞ + 1)2k.

A tempting approach towards improving the running time of this particular step could be the
use of fast subset convolution or matrix multiplication tricks, which work very well for “join” opera-
tions in dynamic programming algorithms over tree and branch decompositions of graphs [4,5,22],
see also [3, Chapter 11]. Unfortunately, we have reason to suspect that these tricks may not help
for matrices: solving the above subproblem in time (‖b‖∞ + 1)(1−ǫ)2knO(1) for any ǫ > 0 would
imply that 3-SUM is solvable in time n2−ǫ, which is believed to be unlikely1. Indeed, consider an
equivalent version of 3-SUM, named 3-SUM′, which is defined as follows. Given 3 sets of integers
A,B and C each of cardinality n, and the objective is to check whether there exist a ∈ A, b ∈ B and
c ∈ C such that a+b = c. Then, 3-SUM is solvable in time n2−ǫ if and only if 3-SUM′ is as well (see
Theorem 3.1 in [7]). However, the problem 3-SUM′ is equivalent to the most time consuming step
in the algorithm of Theorem 1.5, where the integers in the input of 3-SUM′ can be thought of as
length-one vectors. While this observation does not rule out the existence of an algorithm solving
(IPF) with constraint matrices of branch-width k in time (‖b‖∞ + 1)(1−ǫ)2knO(1), it indicates that
any interesting improvement in the running time would require a completely different approach.

Organization of the paper. The rest of the paper is organized as follows. There are two main
technical parts to this paper. The first part (Section 3) is devoted to proving Theorem 1.3 and The-
orem 1.4 (our ETH based lower bounds) while the second part (Section 4) is devoted to proving The-
orem 1.7 and Theorem 1.8 (our SETH based lower bounds), and consequently, Theorem 1.6. For all
our reductions, we begin by giving an overview in order to help the reader (especially in the SETH
based reductions) navigate the technical details in the reductions. We then prove Theorem 1.8 in
Section 4.3 and Theorem 1.9 in Section 5 (completing the results for constant path-width).

2 Preliminaries

We assume that the reader is familiar with basic definitions from linear algebra, matroid theory
and graph theory.

Notations. We use Z≥0 and R to denote the sets of non negative integers and real numbers,
respectively. For a positive integer n and a non-negative integer m, we use [n] and [m,n] to denote
the sets {1, . . . , n} and {m,m+ 1, . . . , n}, respectively. For convenience, we say that [0] = ∅. For

1The 3-SUM problem asks whether a given set of n integers contains three elements that sum to zero.

5

any two vectors b, b′ ∈ R
m and i ∈ [m], we use b[i] to denote the ith coordinate of b and we write

b′ ≤ b, if b′[i] ≤ b[i] for all i ∈ [m]. We often use 0 to denote the zero-vector whose length will be
clear from the context. For a matrix A ∈ R

m×n, I ⊆ [m] and J ⊆ [n], A[I, J] denote the submatrix
of A obtained by the restriction of A to the rows indexed by I and columns indexed by J . For an
m× n matrix A and n-vector v, we can write Av =

∑n
i=1 Aiv[i], where Ai is the ith column of A.

Here we say that v[i] is a multiplier of column Ai. For convenience, in this paper, we consider 0
as an even number.

Branch-width of matroids. The notion of the branch-width of graphs, and implicitly of ma-
troids, was introduced by Robertson and Seymour in [21]. Let M = (U,F) be a matroid with
universe set U and family F of independent sets over U . We use rM to denote the rank function
of M . That is, for any S ⊆ U , rM (S) = maxS′⊆S,S′∈F |S′|. For X ⊆ U , the connectivity function
of M is defined as

λM (X) = rM (X) + rM (U \X) − rM (U) + 1

For a matrix A ∈ R
m×n, we use M(A) to denote the column-matroid of A. In this case the con-

nectivity function λM(A) has the following interpretation. For E = {1, . . . , n} and X ⊆ E, we define

S(A,X) = span(A|X) ∩ span(A|E \X),

where A|X is the set of columns of A restricted to X and span(A|X) is the subspace of Rm spanned
by the columns A|X . It is easy to see that the dimension of S(A,X) is equal to λM(A)(X) − 1.

A tree is cubic if its internal vertices all have degree 3. A branch decomposition of a matroid
M with universe set U is a cubic tree T and a mapping µ which maps elements of U to leaves of
T . Let e be an edge of T . Then the forest T − e consists of two connected components T1 and T2.
Thus every edge e of T corresponds to the partitioning of U into two sets Xe and U \Xe such that
µ(Xe) are the leaves of T1 and µ(U \Xe) are the leaves of T2. The width of an edge e is λM (Xe)
and the width of a branch decomposition (T, µ) is the maximum edge width, where the maximum
is taken over all edges of T . Finally, the branch-width of M is the minimum width taken over all
possible branch decompositions of M .

The path-width of a matroid is defined as follows. Recall that a caterpillar is a tree which is
obtained from a path by attaching leaves to some vertices of the path. Then the path-width of a
matroid is the minimum width of a branch decomposition (T, µ), where T is a cubic caterpillar. Let
us note that every mapping of elements of a matroid to the leaves of a cubic caterpillar corresponds
to an ordering of these elements. Jeong, Kim, and Oum [13] gave a constructive fixed-parameter
tractable algorithm to construct a path decomposition of width at most k for a column matroid of
a given matrix.

ETH and SETH. For q ≥ 3, let δq be the infimum of the set of constants c for which there exists an
algorithm solving q-SAT with n variables and m clauses in time 2cn ·mO(1). The Exponential-Time
Hypothesis (ETH) and Strong Exponential-Time Hypothesis (SETH) are then formally defined as
follows. ETH conjectures that δ3 > 0 and SETH that limq→∞ δq = 1.

3 ETH lower bounds on pseudopolynomial solvability of
(IPF)

In this section we prove Theorems 1.3 and 1.4.

3.1 Proof of Theorem 1.3

Theorem 1.3. Unless the Exponential Time Hypothesis (ETH) fails, (IPF) with m× n matrix A

cannot be solved in time no(m
log m

) · ‖b‖
o(m)
∞ even when the constraint matrix A is non-negative and

each entry in any feasible solution is at most 2.

Our proof is by a reduction from 3-CNF SAT to (IPF). There are exactly 2 variables in the
(IPF) instance for each variable (one for each literal) and clause. For each clause we define two con-
straints. For each variable in the 3-CNF formula, we have a constraint, which is a selection gadget.

6

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4 Y1 Z1 Y2 Z2 Y3 Z3

C1 1 0 1 0 1 0 0 0 1
1 1

C2 0 1 0 1 1 0 0 0 1
1 1

C3 0 0 0 1 0 1 0 1 1
1 1

x1 1 1
x2 1 1
x3 1 1
x4 1 1

Figure 2: An illustration of the matrix Aψ corresponding to the 3-CNF formula
ψ = (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x3) ∧ (x̄4 ∨ x̄2 ∨ x̄3). The unfilled cells have 0 as the entry.

We now proceed to the formal description of the reduction. From a 3-CNF formula ψ on n
variables and m clauses we create an equivalent (IPF) instance Aψx = bψ, x ≥ 0, where Aψ is a
non-negative integer (2m+n)×2(m+n) matrix and the largest entry in bψ is 3. Our reduction can
be easily seen to be a polynomial time reduction and we do not give an explicit analysis. Let ψ be
the input of 3-CNF SAT. Let X = {x1, . . . , xn} be the set of variables in ψ and C = {C1, . . . , Cm}
be the set of clauses in ψ. First we define the set of variables in the in the (IPF) instance. For
each xi ∈ X , we have two variables xi and xi in the (IPF) instance Aψx = bψ, x ≥ 0. For each
Ci ∈ C, we have two variables Yi and Zi.

Now we define the set of constraints of Aψx = bψ, x ≥ 0. For each Ci = x ∨ y ∨ z, we define
two constraints

x+ y + z + Yi = 3 and (1)

Yi + Zi = 2. (2)

For each i ∈ [n], xi + xi = 1 (3)

This completes the construction of (IPF) instance Aψx = bψ, x ≥ 0. See Figure 2 for an illustration.
We now argue that this reduction correctly maps satisfiable 3-CNF formulas to feasible instances
of (IPF) and vice versa.

Lemma 3.1. The formula ψ is satisfiable if and only if Aψx = bψ, x ≥ 0 is feasible.

Proof. Suppose that the formula ψ is satisfiable and let φ be a satisfying assignment of ψ. We
set values for the variables {xi, xi : i ∈ [n]} ∪ {Yi, Zi : i ∈ [m]} and prove that Aψx = bψ. For any
i ∈ [n], if φ(xi) = 1 we set xi = 1 and xi = 0. Otherwise, we set xi = 0 and xi = 1.

For every i ∈ [m], we define

Yi =





0 if the number of literals set to 1 in Ci by φ is 3,
1 if the number of literals set to 1 in Ci by φ is 2,
2 otherwise,

(4)

and

Zi = 2 − Yi =





2 if the number of literals set to 1 in Ci by φ is 3,
1 if the number of literals set to 1 in Ci by φ is 2,
0 otherwise.

(5)

We now proceed to prove that the above substitution of values to the variables is indeed a feasible
solution. Towards this, we need to show that (1), (2), and (3) are satisfied. First consider (1).
Let Ci = x ∨ y ∨ z. Since φ is a satisfying assignment, we have that 1 ≤ x + y + z ≤ 3. Thus,
by (4), we conclude that x + y + z + Yi = 3. Because of (4), (2) is satisfied. Since the values for
{xi, xi : i ∈ [n]} is derived from an assignment φ, (3) is satisfied.

For the converse direction of the statement of the lemma, suppose that there exists non-negative
values for the set of variables {xi, xi : i ∈ [n]} ∪ {Yi, Zi : i ∈ [m]}, such that (1), (2), and (3) are

7

satisfied. Now we need to show that ψ is satisfiable. Because of (3), we know that exactly one of
xi and xi is set to one and other is set to zero. Next, we define an assignment φ and prove that φ
is a satisfying assignment for ψ. For i ∈ [n] we define

φ(xi) =

{
1 if xi = 1,
0 if xi = 1.

We claim that φ satisfies all the clauses. Consider a clause Cj = x∨ y ∨ z where j ∈ [m]. Since
Yj +Zj = 2 (by (2)), we have that Yi ∈ {0, 1, 2}. Since Yi ∈ {0, 1, 2}, by (1), at least one of x, y or
z is set to one. This implies that φ satisfies Cj . This completes the proof of the lemma.

By (2) and (3), for any satisfying assignment φ, any variable w ∈ {xi, xi : i ∈ [n]}, and any
variable W ∈ {Yi, Zi : i ∈ [m]}, we have that φ(w) ≤ 1 and W ≤ 2. The following lemma completes
the proof of the theorem.

Lemma 3.2. If there is an algorithm for (IPF) running in time no(m
log m

)‖b‖
o(m)
∞ , then ETH fails.

Proof. By the Sparsification Lemma [11], we know that 3-CNF SAT on n′ variables and cn′ clauses,
where c is a constant, cannot be solved in time 2o(n′) time. Suppose there is an algorithm ALG for

(IPF) running in time no(m
log m

)‖b‖
o(m)
∞ . Then for a 3-CNF formula ψ with n′ variables and m′ = cn

clauses we create an instance Aψx = bψ, x ≥ 0 of (IPF) as discussed in this section, in polynomial
time, where Aψ is a matrix of dimension (2cn′ + n′) × (2(n′ + cn′)) and the largest entry in bψ is
3. Then by Lemma 3.1, we can run ALG to test whether ψ is satisfiable or not. This takes time

(2(cn′ + n′))
o(

2cn′+n′)

log(2cn′+n′)
)

· 3o(2cn′+n′) = 2o(n′),

hence refuting ETH.

3.2 Proof of Theorem 1.4

In this section we prove the following theorem.

Theorem 1.4. Unless the Exponential Time Hypothesis (ETH) fails, (IPF) with m× n matrix A

cannot be solved in time f(m)·(n·‖b‖∞)o(m
log m

) for any computable function f . The result holds even
when the constraint matrix A is non-negative and each entry in any feasible solution is at most 1.

Towards proving Theorem 1.4 we use the ETH based lower bound result of Marx [19] for Par-

titioned Subgraph Isomorphism. For two graphs G and H , a map φ : V (G) 7→ V (H) is called a
subgraph isomorphism fromG to H , if φ is injective and for any {u, v} ∈ E(G), {φ(u), φ(v)} ∈ E(H)
(see Figure 3 for an illustration).

Partitioned Subgraph Isomorphism

Input: Two graphs G,H , a bijection cG : V (G) 7→ [ℓ] and a function cH : V (H) 7→ [ℓ], where
ℓ = |V (G)|.
Question: Is there a subgraph isomorphism φ from G to H such that for any v ∈ V (G),
cG(v) = cH(φ(v))?

Lemma 3.3 (Corollary 6.3 [19]). If Partitioned Subgraph Isomorphism can be solved in time

f(G)no(k
log k

), where f is an arbitrary function, n = |V (H)| and k is the number of edges of the
smaller graph G, then ETH fails.

To prove Theorem 1.4 we give a polynomial time reduction from Partitioned Subgraph

Isomorphism to (IPF) such that for every instance (G,H, cG, cH) of Partitioned Subgraph

Isomorphism the reduction outputs an instance of (IPF) where the constraint matrix has dimen-
sion O(|E(G)|) × O(|E(H)|) and the largest value in the target vector is max{|E(H)|, |V (H)|}.

Let (G,H, cG, cH) be an instance of Partitioned Subgraph Isomorphism. Let k = |E(G)|
and n = |V (H)|. We construct an instance Ax = b of (IPF) from (G,H, cG, cH) in polynomial
time. Without loss of generality we assume that [n] = V (H) and that there are no isolated vertices

8

v1
<latexit sha1_base64=" Q0yHnVkpIkadNPLcxStxTGqXsLE=">AAAB63icbVA9Tw JBEJ3DL8Qv1NJmI5hYkTsatSPaWGLiCQlcyN4yBxv29 i67eySE8BtsLNTY+ofs/DcucIWCL5nk5b2ZzMwLU8G1 cd1vp7CxubW9U9wt7e0fHB6Vj0+edJIphj5LRKLaIdUo uETfcCOwnSqkcSiwFY7u5n5rjErzRD6aSYpBTAeSR5x RYyW/Ou551V654tbcBcg68XJSgRzNXvmr209YFqM0TFC tO56bmmBKleFM4KzUzTSmlI3oADuWShqjDqaLY2fkwi p9EiXKljRkof6emNJY60kc2s6YmqFe9ebif14nM9F1MO UyzQxKtlwUZYKYhMw/J32ukBkxsYQyxe2thA2poszYf Eo2BG/15XXi12s3NfehXmnc5mkU4QzO4RI8uIIG3EMT fGDA4Rle4c2Rzovz7nwsWwtOPnMKf+B8/gAtxo3L</la texit><latexit sha1_base64=" Q0yHnVkpIkadNPLcxStxTGqXsLE=">AAAB63icbVA9Tw JBEJ3DL8Qv1NJmI5hYkTsatSPaWGLiCQlcyN4yBxv29 i67eySE8BtsLNTY+ofs/DcucIWCL5nk5b2ZzMwLU8G1 cd1vp7CxubW9U9wt7e0fHB6Vj0+edJIphj5LRKLaIdUo uETfcCOwnSqkcSiwFY7u5n5rjErzRD6aSYpBTAeSR5x RYyW/Ou551V654tbcBcg68XJSgRzNXvmr209YFqM0TFC tO56bmmBKleFM4KzUzTSmlI3oADuWShqjDqaLY2fkwi p9EiXKljRkof6emNJY60kc2s6YmqFe9ebif14nM9F1MO UyzQxKtlwUZYKYhMw/J32ukBkxsYQyxe2thA2poszYf Eo2BG/15XXi12s3NfehXmnc5mkU4QzO4RI8uIIG3EMT fGDA4Rle4c2Rzovz7nwsWwtOPnMKf+B8/gAtxo3L</la texit><latexit sha1_base64=" Q0yHnVkpIkadNPLcxStxTGqXsLE=">AAAB63icbVA9Tw JBEJ3DL8Qv1NJmI5hYkTsatSPaWGLiCQlcyN4yBxv29 i67eySE8BtsLNTY+ofs/DcucIWCL5nk5b2ZzMwLU8G1 cd1vp7CxubW9U9wt7e0fHB6Vj0+edJIphj5LRKLaIdUo uETfcCOwnSqkcSiwFY7u5n5rjErzRD6aSYpBTAeSR5x RYyW/Ou551V654tbcBcg68XJSgRzNXvmr209YFqM0TFC tO56bmmBKleFM4KzUzTSmlI3oADuWShqjDqaLY2fkwi p9EiXKljRkof6emNJY60kc2s6YmqFe9ebif14nM9F1MO UyzQxKtlwUZYKYhMw/J32ukBkxsYQyxe2thA2poszYf Eo2BG/15XXi12s3NfehXmnc5mkU4QzO4RI8uIIG3EMT fGDA4Rle4c2Rzovz7nwsWwtOPnMKf+B8/gAtxo3L</la texit><latexit sha1_base64=" C39OhB+IczRcjLNINXH29e9lt8M=">AAAB2HicbZDNSg MxFIXv1L86Vq1rN8EiuCpTN+pOcOOygmML7VAymTtta CYzJHeEMvQFXLhRfDB3vo3pz0KtBwIf5yTk3hMXSloK gi+vtrW9s7tX3/cPGv7h0XGz8WTz0ggMRa5y04+5RSU1 hiRJYb8wyLNYYS+e3i3y3jMaK3P9SLMCo4yPtUyl4OS s7qjZCtrBUmwTOmtowVqj5ucwyUWZoSahuLWDTlBQVHF DUiic+8PSYsHFlI9x4FDzDG1ULcecs3PnJCzNjTua2N L9+aLimbWzLHY3M04T+zdbmP9lg5LS66iSuigJtVh9lJ aKUc4WO7NEGhSkZg64MNLNysSEGy7INeO7Djp/N96E8 LJ90w4eAqjDKZzBBXTgCm7hHroQgoAEXuDNm3iv3vuq qpq37uwEfsn7+Aap5IoM</latexit><latexit sha1_base64=" /sIlv3C/CT3yiOWGIRwzJom03OI=">AAAB4HicbZDNSg MxFIXv1L9aq1a3boKt4Kpk3Kg7wY3LCo4ttEPJpHfa0 ExmSDKFMvQZ3LhQ8anc+TamPwttPRD4OCch954ok8JY Sr+90tb2zu5eeb9yUD08Oq6dVJ9NmmuOAU9lqjsRMyiF wsAKK7GTaWRJJLEdje/neXuC2ohUPdlphmHChkrEgjP rrKAx6fuNfq1Om3Qhsgn+CuqwUqtf++oNUp4nqCyXzJi uTzMbFkxbwSXOKr3cYMb4mA2x61CxBE1YLIadkQvnDE icaneUJQv394uCJcZMk8jdTJgdmfVsbv6XdXMb34SFUF luUfHlR3EuiU3JfHMyEBq5lVMHjGvhZiV8xDTj1vVTc SX46ytvQnDVvG3SRwplOINzuAQfruEOHqAFAXAQ8AJv 8O4p79X7WLZV8la1ncIfeZ8/EYWMdw==</latexit><latexit sha1_base64=" /sIlv3C/CT3yiOWGIRwzJom03OI=">AAAB4HicbZDNSg MxFIXv1L9aq1a3boKt4Kpk3Kg7wY3LCo4ttEPJpHfa0 ExmSDKFMvQZ3LhQ8anc+TamPwttPRD4OCch954ok8JY Sr+90tb2zu5eeb9yUD08Oq6dVJ9NmmuOAU9lqjsRMyiF wsAKK7GTaWRJJLEdje/neXuC2ohUPdlphmHChkrEgjP rrKAx6fuNfq1Om3Qhsgn+CuqwUqtf++oNUp4nqCyXzJi uTzMbFkxbwSXOKr3cYMb4mA2x61CxBE1YLIadkQvnDE icaneUJQv394uCJcZMk8jdTJgdmfVsbv6XdXMb34SFUF luUfHlR3EuiU3JfHMyEBq5lVMHjGvhZiV8xDTj1vVTc SX46ytvQnDVvG3SRwplOINzuAQfruEOHqAFAXAQ8AJv 8O4p79X7WLZV8la1ncIfeZ8/EYWMdw==</latexit><latexit sha1_base64=" Rfxxp6AKxjTy+lHaUaUTg9ShRGM=">AAAB63icbVBNT8 JAEJ36ifiFevSyEUw8kdaLeiN68YiJFRJoyHaZwobtt tndkpCG3+DFgxqv/iFv/hsX6EHBl0zy8t5MZuaFqeDa uO63s7a+sbm1Xdop7+7tHxxWjo6fdJIphj5LRKLaIdUo uETfcCOwnSqkcSiwFY7uZn5rjErzRD6aSYpBTAeSR5x RYyW/Nu55tV6l6tbdOcgq8QpShQLNXuWr209YFqM0TFC tO56bmiCnynAmcFruZhpTykZ0gB1LJY1RB/n82Ck5t0 qfRImyJQ2Zq78nchprPYlD2xlTM9TL3kz8z+tkJroOci 7TzKBki0VRJohJyOxz0ucKmRETSyhT3N5K2JAqyozNp 2xD8JZfXiX+Zf2m7j641cZtkUYJTuEMLsCDK2jAPTTB BwYcnuEV3hzpvDjvzseidc0pZk7gD5zPHy0mjck=</la texit><latexit sha1_base64=" Q0yHnVkpIkadNPLcxStxTGqXsLE=">AAAB63icbVA9Tw JBEJ3DL8Qv1NJmI5hYkTsatSPaWGLiCQlcyN4yBxv29 i67eySE8BtsLNTY+ofs/DcucIWCL5nk5b2ZzMwLU8G1 cd1vp7CxubW9U9wt7e0fHB6Vj0+edJIphj5LRKLaIdUo uETfcCOwnSqkcSiwFY7u5n5rjErzRD6aSYpBTAeSR5x RYyW/Ou551V654tbcBcg68XJSgRzNXvmr209YFqM0TFC tO56bmmBKleFM4KzUzTSmlI3oADuWShqjDqaLY2fkwi p9EiXKljRkof6emNJY60kc2s6YmqFe9ebif14nM9F1MO UyzQxKtlwUZYKYhMw/J32ukBkxsYQyxe2thA2poszYf Eo2BG/15XXi12s3NfehXmnc5mkU4QzO4RI8uIIG3EMT fGDA4Rle4c2Rzovz7nwsWwtOPnMKf+B8/gAtxo3L</la texit><latexit sha1_base64=" Q0yHnVkpIkadNPLcxStxTGqXsLE=">AAAB63icbVA9Tw JBEJ3DL8Qv1NJmI5hYkTsatSPaWGLiCQlcyN4yBxv29 i67eySE8BtsLNTY+ofs/DcucIWCL5nk5b2ZzMwLU8G1 cd1vp7CxubW9U9wt7e0fHB6Vj0+edJIphj5LRKLaIdUo uETfcCOwnSqkcSiwFY7u5n5rjErzRD6aSYpBTAeSR5x RYyW/Ou551V654tbcBcg68XJSgRzNXvmr209YFqM0TFC tO56bmmBKleFM4KzUzTSmlI3oADuWShqjDqaLY2fkwi p9EiXKljRkof6emNJY60kc2s6YmqFe9ebif14nM9F1MO UyzQxKtlwUZYKYhMw/J32ukBkxsYQyxe2thA2poszYf Eo2BG/15XXi12s3NfehXmnc5mkU4QzO4RI8uIIG3EMT fGDA4Rle4c2Rzovz7nwsWwtOPnMKf+B8/gAtxo3L</la texit><latexit sha1_base64=" Q0yHnVkpIkadNPLcxStxTGqXsLE=">AAAB63icbVA9Tw JBEJ3DL8Qv1NJmI5hYkTsatSPaWGLiCQlcyN4yBxv29 i67eySE8BtsLNTY+ofs/DcucIWCL5nk5b2ZzMwLU8G1 cd1vp7CxubW9U9wt7e0fHB6Vj0+edJIphj5LRKLaIdUo uETfcCOwnSqkcSiwFY7u5n5rjErzRD6aSYpBTAeSR5x RYyW/Ou551V654tbcBcg68XJSgRzNXvmr209YFqM0TFC tO56bmmBKleFM4KzUzTSmlI3oADuWShqjDqaLY2fkwi p9EiXKljRkof6emNJY60kc2s6YmqFe9ebif14nM9F1MO UyzQxKtlwUZYKYhMw/J32ukBkxsYQyxe2thA2poszYf Eo2BG/15XXi12s3NfehXmnc5mkU4QzO4RI8uIIG3EMT fGDA4Rle4c2Rzovz7nwsWwtOPnMKf+B8/gAtxo3L</la texit><latexit sha1_base64=" Q0yHnVkpIkadNPLcxStxTGqXsLE=">AAAB63icbVA9Tw JBEJ3DL8Qv1NJmI5hYkTsatSPaWGLiCQlcyN4yBxv29 i67eySE8BtsLNTY+ofs/DcucIWCL5nk5b2ZzMwLU8G1 cd1vp7CxubW9U9wt7e0fHB6Vj0+edJIphj5LRKLaIdUo uETfcCOwnSqkcSiwFY7u5n5rjErzRD6aSYpBTAeSR5x RYyW/Ou551V654tbcBcg68XJSgRzNXvmr209YFqM0TFC tO56bmmBKleFM4KzUzTSmlI3oADuWShqjDqaLY2fkwi p9EiXKljRkof6emNJY60kc2s6YmqFe9ebif14nM9F1MO UyzQxKtlwUZYKYhMw/J32ukBkxsYQyxe2thA2poszYf Eo2BG/15XXi12s3NfehXmnc5mkU4QzO4RI8uIIG3EMT fGDA4Rle4c2Rzovz7nwsWwtOPnMKf+B8/gAtxo3L</la texit><latexit sha1_base64=" Q0yHnVkpIkadNPLcxStxTGqXsLE=">AAAB63icbVA9Tw JBEJ3DL8Qv1NJmI5hYkTsatSPaWGLiCQlcyN4yBxv29 i67eySE8BtsLNTY+ofs/DcucIWCL5nk5b2ZzMwLU8G1 cd1vp7CxubW9U9wt7e0fHB6Vj0+edJIphj5LRKLaIdUo uETfcCOwnSqkcSiwFY7u5n5rjErzRD6aSYpBTAeSR5x RYyW/Ou551V654tbcBcg68XJSgRzNXvmr209YFqM0TFC tO56bmmBKleFM4KzUzTSmlI3oADuWShqjDqaLY2fkwi p9EiXKljRkof6emNJY60kc2s6YmqFe9ebif14nM9F1MO UyzQxKtlwUZYKYhMw/J32ukBkxsYQyxe2thA2poszYf Eo2BG/15XXi12s3NfehXmnc5mkU4QzO4RI8uIIG3EMT fGDA4Rle4c2Rzovz7nwsWwtOPnMKf+B8/gAtxo3L</la texit><latexit sha1_base64=" C39OhB+IczRcjLNINXH29e9lt8M=">AAAB2HicbZDNSg MxFIXv1L86Vq1rN8EiuCpTN+pOcOOygmML7VAymTtta CYzJHeEMvQFXLhRfDB3vo3pz0KtBwIf5yTk3hMXSloK gi+vtrW9s7tX3/cPGv7h0XGz8WTz0ggMRa5y04+5RSU1 hiRJYb8wyLNYYS+e3i3y3jMaK3P9SLMCo4yPtUyl4OS s7qjZCtrBUmwTOmtowVqj5ucwyUWZoSahuLWDTlBQVHF DUiic+8PSYsHFlI9x4FDzDG1ULcecs3PnJCzNjTua2N L9+aLimbWzLHY3M04T+zdbmP9lg5LS66iSuigJtVh9lJ aKUc4WO7NEGhSkZg64MNLNysSEGy7INeO7Djp/N96E8 LJ90w4eAqjDKZzBBXTgCm7hHroQgoAEXuDNm3iv3vuq qpq37uwEfsn7+Aap5IoM</latexit><latexit sha1_base64=" /sIlv3C/CT3yiOWGIRwzJom03OI=">AAAB4HicbZDNSg MxFIXv1L9aq1a3boKt4Kpk3Kg7wY3LCo4ttEPJpHfa0 ExmSDKFMvQZ3LhQ8anc+TamPwttPRD4OCch954ok8JY Sr+90tb2zu5eeb9yUD08Oq6dVJ9NmmuOAU9lqjsRMyiF wsAKK7GTaWRJJLEdje/neXuC2ohUPdlphmHChkrEgjP rrKAx6fuNfq1Om3Qhsgn+CuqwUqtf++oNUp4nqCyXzJi uTzMbFkxbwSXOKr3cYMb4mA2x61CxBE1YLIadkQvnDE icaneUJQv394uCJcZMk8jdTJgdmfVsbv6XdXMb34SFUF luUfHlR3EuiU3JfHMyEBq5lVMHjGvhZiV8xDTj1vVTc SX46ytvQnDVvG3SRwplOINzuAQfruEOHqAFAXAQ8AJv 8O4p79X7WLZV8la1ncIfeZ8/EYWMdw==</latexit><latexit sha1_base64=" /sIlv3C/CT3yiOWGIRwzJom03OI=">AAAB4HicbZDNSg MxFIXv1L9aq1a3boKt4Kpk3Kg7wY3LCo4ttEPJpHfa0 ExmSDKFMvQZ3LhQ8anc+TamPwttPRD4OCch954ok8JY Sr+90tb2zu5eeb9yUD08Oq6dVJ9NmmuOAU9lqjsRMyiF wsAKK7GTaWRJJLEdje/neXuC2ohUPdlphmHChkrEgjP rrKAx6fuNfq1Om3Qhsgn+CuqwUqtf++oNUp4nqCyXzJi uTzMbFkxbwSXOKr3cYMb4mA2x61CxBE1YLIadkQvnDE icaneUJQv394uCJcZMk8jdTJgdmfVsbv6XdXMb34SFUF luUfHlR3EuiU3JfHMyEBq5lVMHjGvhZiV8xDTj1vVTc SX46ytvQnDVvG3SRwplOINzuAQfruEOHqAFAXAQ8AJv 8O4p79X7WLZV8la1ncIfeZ8/EYWMdw==</latexit><latexit sha1_base64=" Rfxxp6AKxjTy+lHaUaUTg9ShRGM=">AAAB63icbVBNT8 JAEJ36ifiFevSyEUw8kdaLeiN68YiJFRJoyHaZwobtt tndkpCG3+DFgxqv/iFv/hsX6EHBl0zy8t5MZuaFqeDa uO63s7a+sbm1Xdop7+7tHxxWjo6fdJIphj5LRKLaIdUo uETfcCOwnSqkcSiwFY7uZn5rjErzRD6aSYpBTAeSR5x RYyW/Nu55tV6l6tbdOcgq8QpShQLNXuWr209YFqM0TFC tO56bmiCnynAmcFruZhpTykZ0gB1LJY1RB/n82Ck5t0 qfRImyJQ2Zq78nchprPYlD2xlTM9TL3kz8z+tkJroOci 7TzKBki0VRJohJyOxz0ucKmRETSyhT3N5K2JAqyozNp 2xD8JZfXiX+Zf2m7j641cZtkUYJTuEMLsCDK2jAPTTB BwYcnuEV3hzpvDjvzseidc0pZk7gD5zPHy0mjck=</la texit><latexit sha1_base64=" Q0yHnVkpIkadNPLcxStxTGqXsLE=">AAAB63icbVA9Tw JBEJ3DL8Qv1NJmI5hYkTsatSPaWGLiCQlcyN4yBxv29 i67eySE8BtsLNTY+ofs/DcucIWCL5nk5b2ZzMwLU8G1 cd1vp7CxubW9U9wt7e0fHB6Vj0+edJIphj5LRKLaIdUo uETfcCOwnSqkcSiwFY7u5n5rjErzRD6aSYpBTAeSR5x RYyW/Ou551V654tbcBcg68XJSgRzNXvmr209YFqM0TFC tO56bmmBKleFM4KzUzTSmlI3oADuWShqjDqaLY2fkwi p9EiXKljRkof6emNJY60kc2s6YmqFe9ebif14nM9F1MO UyzQxKtlwUZYKYhMw/J32ukBkxsYQyxe2thA2poszYf Eo2BG/15XXi12s3NfehXmnc5mkU4QzO4RI8uIIG3EMT fGDA4Rle4c2Rzovz7nwsWwtOPnMKf+B8/gAtxo3L</la texit><latexit sha1_base64=" Q0yHnVkpIkadNPLcxStxTGqXsLE=">AAAB63icbVA9Tw JBEJ3DL8Qv1NJmI5hYkTsatSPaWGLiCQlcyN4yBxv29 i67eySE8BtsLNTY+ofs/DcucIWCL5nk5b2ZzMwLU8G1 cd1vp7CxubW9U9wt7e0fHB6Vj0+edJIphj5LRKLaIdUo uETfcCOwnSqkcSiwFY7u5n5rjErzRD6aSYpBTAeSR5x RYyW/Ou551V654tbcBcg68XJSgRzNXvmr209YFqM0TFC tO56bmmBKleFM4KzUzTSmlI3oADuWShqjDqaLY2fkwi p9EiXKljRkof6emNJY60kc2s6YmqFe9ebif14nM9F1MO UyzQxKtlwUZYKYhMw/J32ukBkxsYQyxe2thA2poszYf Eo2BG/15XXi12s3NfehXmnc5mkU4QzO4RI8uIIG3EMT fGDA4Rle4c2Rzovz7nwsWwtOPnMKf+B8/gAtxo3L</la texit><latexit sha1_base64=" Q0yHnVkpIkadNPLcxStxTGqXsLE=">AAAB63icbVA9Tw JBEJ3DL8Qv1NJmI5hYkTsatSPaWGLiCQlcyN4yBxv29 i67eySE8BtsLNTY+ofs/DcucIWCL5nk5b2ZzMwLU8G1 cd1vp7CxubW9U9wt7e0fHB6Vj0+edJIphj5LRKLaIdUo uETfcCOwnSqkcSiwFY7u5n5rjErzRD6aSYpBTAeSR5x RYyW/Ou551V654tbcBcg68XJSgRzNXvmr209YFqM0TFC tO56bmmBKleFM4KzUzTSmlI3oADuWShqjDqaLY2fkwi p9EiXKljRkof6emNJY60kc2s6YmqFe9ebif14nM9F1MO UyzQxKtlwUZYKYhMw/J32ukBkxsYQyxe2thA2poszYf Eo2BG/15XXi12s3NfehXmnc5mkU4QzO4RI8uIIG3EMT fGDA4Rle4c2Rzovz7nwsWwtOPnMKf+B8/gAtxo3L</la texit><latexit sha1_base64=" Q0yHnVkpIkadNPLcxStxTGqXsLE=">AAAB63icbVA9Tw JBEJ3DL8Qv1NJmI5hYkTsatSPaWGLiCQlcyN4yBxv29 i67eySE8BtsLNTY+ofs/DcucIWCL5nk5b2ZzMwLU8G1 cd1vp7CxubW9U9wt7e0fHB6Vj0+edJIphj5LRKLaIdUo uETfcCOwnSqkcSiwFY7u5n5rjErzRD6aSYpBTAeSR5x RYyW/Ou551V654tbcBcg68XJSgRzNXvmr209YFqM0TFC tO56bmmBKleFM4KzUzTSmlI3oADuWShqjDqaLY2fkwi p9EiXKljRkof6emNJY60kc2s6YmqFe9ebif14nM9F1MO UyzQxKtlwUZYKYhMw/J32ukBkxsYQyxe2thA2poszYf Eo2BG/15XXi12s3NfehXmnc5mkU4QzO4RI8uIIG3EMT fGDA4Rle4c2Rzovz7nwsWwtOPnMKf+B8/gAtxo3L</la texit><latexit sha1_base64=" Q0yHnVkpIkadNPLcxStxTGqXsLE=">AAAB63icbVA9Tw JBEJ3DL8Qv1NJmI5hYkTsatSPaWGLiCQlcyN4yBxv29 i67eySE8BtsLNTY+ofs/DcucIWCL5nk5b2ZzMwLU8G1 cd1vp7CxubW9U9wt7e0fHB6Vj0+edJIphj5LRKLaIdUo uETfcCOwnSqkcSiwFY7u5n5rjErzRD6aSYpBTAeSR5x RYyW/Ou551V654tbcBcg68XJSgRzNXvmr209YFqM0TFC tO56bmmBKleFM4KzUzTSmlI3oADuWShqjDqaLY2fkwi p9EiXKljRkof6emNJY60kc2s6YmqFe9ebif14nM9F1MO UyzQxKtlwUZYKYhMw/J32ukBkxsYQyxe2thA2poszYf Eo2BG/15XXi12s3NfehXmnc5mkU4QzO4RI8uIIG3EMT fGDA4Rle4c2Rzovz7nwsWwtOPnMKf+B8/gAtxo3L</la texit>

v2
<latexit sha1_base64=" AMvQT79HLbt3RomMkE7Tb9RcuNI=">AAAB63icbVA9Tw JBEJ3DL8Qv1NJmI5hYkYNG7Yg2lph4QgIXsrfswYa9v cvuHAm58BtsLNTY+ofs/DcucIWCL5nk5b2ZzMwLEikM uu63U9jY3NreKe6W9vYPDo/KxydPJk414x6LZaw7ATVc CsU9FCh5J9GcRoHk7WB8N/fbE66NiNUjThPuR3SoRCg YRSt51Um/Ue2XK27NXYCsk3pOKpCj1S9/9QYxSyOukEl qTLfuJuhnVKNgks9KvdTwhLIxHfKupYpG3PjZ4tgZub DKgISxtqWQLNTfExmNjJlGge2MKI7MqjcX//O6KYbXfi ZUkiJXbLkoTCXBmMw/JwOhOUM5tYQyLeythI2opgxtP iUbQn315XXiNWo3NfehUWne5mkU4QzO4RLqcAVNuIcW eMBAwDO8wpujnBfn3flYthacfOYU/sD5/AEvSo3M</la texit><latexit sha1_base64=" AMvQT79HLbt3RomMkE7Tb9RcuNI=">AAAB63icbVA9Tw JBEJ3DL8Qv1NJmI5hYkYNG7Yg2lph4QgIXsrfswYa9v cvuHAm58BtsLNTY+ofs/DcucIWCL5nk5b2ZzMwLEikM uu63U9jY3NreKe6W9vYPDo/KxydPJk414x6LZaw7ATVc CsU9FCh5J9GcRoHk7WB8N/fbE66NiNUjThPuR3SoRCg YRSt51Um/Ue2XK27NXYCsk3pOKpCj1S9/9QYxSyOukEl qTLfuJuhnVKNgks9KvdTwhLIxHfKupYpG3PjZ4tgZub DKgISxtqWQLNTfExmNjJlGge2MKI7MqjcX//O6KYbXfi ZUkiJXbLkoTCXBmMw/JwOhOUM5tYQyLeythI2opgxtP iUbQn315XXiNWo3NfehUWne5mkU4QzO4RLqcAVNuIcW eMBAwDO8wpujnBfn3flYthacfOYU/sD5/AEvSo3M</la texit><latexit sha1_base64=" AMvQT79HLbt3RomMkE7Tb9RcuNI=">AAAB63icbVA9Tw JBEJ3DL8Qv1NJmI5hYkYNG7Yg2lph4QgIXsrfswYa9v cvuHAm58BtsLNTY+ofs/DcucIWCL5nk5b2ZzMwLEikM uu63U9jY3NreKe6W9vYPDo/KxydPJk414x6LZaw7ATVc CsU9FCh5J9GcRoHk7WB8N/fbE66NiNUjThPuR3SoRCg YRSt51Um/Ue2XK27NXYCsk3pOKpCj1S9/9QYxSyOukEl qTLfuJuhnVKNgks9KvdTwhLIxHfKupYpG3PjZ4tgZub DKgISxtqWQLNTfExmNjJlGge2MKI7MqjcX//O6KYbXfi ZUkiJXbLkoTCXBmMw/JwOhOUM5tYQyLeythI2opgxtP iUbQn315XXiNWo3NfehUWne5mkU4QzO4RLqcAVNuIcW eMBAwDO8wpujnBfn3flYthacfOYU/sD5/AEvSo3M</la texit>

v3
<latexit sha1_base64="5LG7YBJNRZYOD3/sEfy1Ao aTLgQ=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hYkQMLtSPaWGLiKQlcyN6yBxv29i67cyTkwm+wsVBj6x+y89+ 4wBUKvmSSl/dmMjMvSKQw6LrfTmFtfWNzq7hd2tnd2z8oHx49mjjVjHsslrFuB9RwKRT3UKDk7URzGgWSPwWj25 n/NObaiFg94CThfkQHSoSCUbSSVx33Lqq9csWtuXOQVVLPSQVytHrlr24/ZmnEFTJJjenU3QT9jGoUTPJpqZsa nlA2ogPesVTRiBs/mx87JWdW6ZMw1rYUkrn6eyKjkTGTKLCdEcWhWfZm4n9eJ8Xwys+ESlLkii0WhakkGJPZ56Q vNGcoJ5ZQpoW9lbAh1ZShzadkQ6gvv7xKvEbtuubeNyrNmzyNIpzAKZxDHS6hCXfQAg8YCHiGV3hzlPPivDsfi9 aCk88cwx84nz8wzo3N</latexit><latexit sha1_base64="5LG7YBJNRZYOD3/sEfy1Ao aTLgQ=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hYkQMLtSPaWGLiKQlcyN6yBxv29i67cyTkwm+wsVBj6x+y89+ 4wBUKvmSSl/dmMjMvSKQw6LrfTmFtfWNzq7hd2tnd2z8oHx49mjjVjHsslrFuB9RwKRT3UKDk7URzGgWSPwWj25 n/NObaiFg94CThfkQHSoSCUbSSVx33Lqq9csWtuXOQVVLPSQVytHrlr24/ZmnEFTJJjenU3QT9jGoUTPJpqZsa nlA2ogPesVTRiBs/mx87JWdW6ZMw1rYUkrn6eyKjkTGTKLCdEcWhWfZm4n9eJ8Xwys+ESlLkii0WhakkGJPZ56Q vNGcoJ5ZQpoW9lbAh1ZShzadkQ6gvv7xKvEbtuubeNyrNmzyNIpzAKZxDHS6hCXfQAg8YCHiGV3hzlPPivDsfi9 aCk88cwx84nz8wzo3N</latexit><latexit sha1_base64="5LG7YBJNRZYOD3/sEfy1Ao aTLgQ=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5hYkQMLtSPaWGLiKQlcyN6yBxv29i67cyTkwm+wsVBj6x+y89+ 4wBUKvmSSl/dmMjMvSKQw6LrfTmFtfWNzq7hd2tnd2z8oHx49mjjVjHsslrFuB9RwKRT3UKDk7URzGgWSPwWj25 n/NObaiFg94CThfkQHSoSCUbSSVx33Lqq9csWtuXOQVVLPSQVytHrlr24/ZmnEFTJJjenU3QT9jGoUTPJpqZsa nlA2ogPesVTRiBs/mx87JWdW6ZMw1rYUkrn6eyKjkTGTKLCdEcWhWfZm4n9eJ8Xwys+ESlLkii0WhakkGJPZ56Q vNGcoJ5ZQpoW9lbAh1ZShzadkQ6gvv7xKvEbtuubeNyrNmzyNIpzAKZxDHS6hCXfQAg8YCHiGV3hzlPPivDsfi9 aCk88cwx84nz8wzo3N</latexit>

v4
<latexit sha1_base64=" dfTBzmmLfe+AjnUCXQ+KJDRy24Q=">AAAB63icbVBNS8 NAEJ3Ur1q/qh69LLaCp5IWQb0VvXisYLTQhrLZbtqlm 03YnRRK6G/w4kHFq3/Im//GbZuDtj4YeLw3w8y8IJHC oOt+O4W19Y3NreJ2aWd3b/+gfHj0aOJUM+6xWMa6HVDD pVDcQ4GStxPNaRRI/hSMbmf+05hrI2L1gJOE+xEdKBE KRtFKXnXcu6j2yhW35s5BVkk9JxXI0eqVv7r9mKURV8g kNaZTdxP0M6pRMMmnpW5qeELZiA54x1JFI278bH7slJ xZpU/CWNtSSObq74mMRsZMosB2RhSHZtmbif95nRTDKz 8TKkmRK7ZYFKaSYExmn5O+0JyhnFhCmRb2VsKGVFOGN p+SDaG+/PIq8Rq165p736g0b/I0inACp3AOdbiEJtxB CzxgIOAZXuHNUc6L8+58LFoLTj5zDH/gfP4AMlKNzg== </latexit><latexit sha1_base64=" dfTBzmmLfe+AjnUCXQ+KJDRy24Q=">AAAB63icbVBNS8 NAEJ3Ur1q/qh69LLaCp5IWQb0VvXisYLTQhrLZbtqlm 03YnRRK6G/w4kHFq3/Im//GbZuDtj4YeLw3w8y8IJHC oOt+O4W19Y3NreJ2aWd3b/+gfHj0aOJUM+6xWMa6HVDD pVDcQ4GStxPNaRRI/hSMbmf+05hrI2L1gJOE+xEdKBE KRtFKXnXcu6j2yhW35s5BVkk9JxXI0eqVv7r9mKURV8g kNaZTdxP0M6pRMMmnpW5qeELZiA54x1JFI278bH7slJ xZpU/CWNtSSObq74mMRsZMosB2RhSHZtmbif95nRTDKz 8TKkmRK7ZYFKaSYExmn5O+0JyhnFhCmRb2VsKGVFOGN p+SDaG+/PIq8Rq165p736g0b/I0inACp3AOdbiEJtxB CzxgIOAZXuHNUc6L8+58LFoLTj5zDH/gfP4AMlKNzg== </latexit><latexit sha1_base64=" dfTBzmmLfe+AjnUCXQ+KJDRy24Q=">AAAB63icbVBNS8 NAEJ3Ur1q/qh69LLaCp5IWQb0VvXisYLTQhrLZbtqlm 03YnRRK6G/w4kHFq3/Im//GbZuDtj4YeLw3w8y8IJHC oOt+O4W19Y3NreJ2aWd3b/+gfHj0aOJUM+6xWMa6HVDD pVDcQ4GStxPNaRRI/hSMbmf+05hrI2L1gJOE+xEdKBE KRtFKXnXcu6j2yhW35s5BVkk9JxXI0eqVv7r9mKURV8g kNaZTdxP0M6pRMMmnpW5qeELZiA54x1JFI278bH7slJ xZpU/CWNtSSObq74mMRsZMosB2RhSHZtmbif95nRTDKz 8TKkmRK7ZYFKaSYExmn5O+0JyhnFhCmRb2VsKGVFOGN p+SDaG+/PIq8Rq165p736g0b/I0inACp3AOdbiEJtxB CzxgIOAZXuHNUc6L8+58LFoLTj5zDH/gfP4AMlKNzg== </latexit>

H G

Figure 3: An illustration of an instance of Partitioned Subgraph Isomorphism.

in G. Hence, the number of vertices in G is at most 2k. Let m = |E(H)|. For each e ∈ E(H)
we assign a unique integer from [m]. Let α : E(H) 7→ [m] be the bijection which represents the
assignment mentioned above. For any i, j ∈ [ℓ], we use EH(i, j) as a shorthand for the set of edges
of H between c−1

H (i) and c−1
H (j). Finally, for ease of presentation we let {v1, . . . , vℓ} = V (G) and

cG(vi) = i for all i ∈ [ℓ], where ℓ = |V (G)|.
For illustrative purposes, before proceeding to the formal construction, we give an informal

description of the (IPF) instance we obtain from a specific instance of Partitioned Subgraph

Isomorphism. Let H and G be the graphs in Figure 3 and consider the graph Ĥ obtained from
H as depicted in Figure 4.

For every color i ∈ [ℓ] we have a column in Ĥ and for every pair of distinct colors i, j ∈ [ℓ]
such that {vi, vj} ∈ E(G), we have a copy of c−1

H (i) in Column i and Row i and a copy of c−1
H (i) in

Column i and Row j. Thus, Column i comprises at most ℓ copies of the vertices of H whose image
under cH is i and Row i comprises a copy of c−1

H (i) and additionally, a copy of every vertex u of
H such that vcH(u) is adjacent to vi in G. That is, the color of u is “adjacent” to the color i in G.

For a vertex u ∈ V (H), we refer to the unique copy of u in the ith row as the ith copy of u in Ĥ.
For every edge e = {a, b} ∈ E(H) where cH(a) = i, cH(b) = j, and {vi, vj} ∈ E(G), we have two

copies of e in Ĥ. The first copy of e has as its endpoints, the ith copy of a and the ith copy of b and
the second copy of e has as its endpoints, the jth copy of a and the jth copy of b. We now rephrase
the Partitioned Subgraph Isomorphism problem (informally) as a problem of finding a certain

type of subgraph in Ĥ , which in turn will point us in the direction of our (IPF) instance in a natural
way. The rephrased problem statement is the following. Given G, H , cH , cG, and the resulting
auxiliary graph Ĥ , find a set of 2|E(H)| edges in Ĥ such that the following properties hold.

• (Selection) For every {vi, vj} ∈ E(G), we pick a unique edge in Ĥ with one endpoint in (Row
i, Column i) and the other endpoint in (Row i, Column j) and we pick a unique edge with
one endpoint in (Row j, Column j) and the other endpoint in (Row j, Column i).

• (Consistency 1) All the edges we pick from Row i of Ĥ share a common endpoint at the
position (Row i, Column i).

• (Consistency 2) For any edge e = {a, b} ∈ E(H) such that cH(a) = i, cH(b) = j, if the copy of
e in Row i is selected in our solution then our solution contains the copy of e in Row j as well.

It is straightforward to see that a set of edges of Ĥ which satisfy the stated properties imply
a solution to our Partitioned Subgraph Isomorphism instance in an obvious way. In order to
obtain our (IPF) instance, we create a variable for every edge in Ĥ (or 2 for every edge in E(H))
and encode the properties stated above in the form of constraints. We now formally define the
(IPF) instance output by our reduction.

9

H

u1

u2

u3

u4

u5

u1

u1

u1

u2

u2

u2

u2

u3

u3

u3

u3

u4

u4

u5

u5

u5

u6

u6

u6

u6

Ĥ

Figure 4: An illustration of the auxiliary graph Ĥ capturing the representation of the vertices and
some edges of H .

The set of variables x of the (IPF) instance is

{x({a, b}, cH(a), cH(b)) : {a, b} ∈ E(H)} .

Notice that for any edge {a, b} ∈ E(H), there exist an associated pair of variables, namely
x({a, b}, cH(a), cH(b)) and x({a, b}, cH(b), cH(a)). Thus the dimension of x is upper bounded by
2|E(H)| = 2m. Recall that {v1, . . . , vℓ} = V (G) and cG(vi) = i for all i ∈ [ℓ], where ℓ = |V (G)|.
For each vi ∈ V (G) we define 2dG(vi) − 1 many constraints as explained below. Let r = dG(vi)
and NG(vi) = {vj1 , . . . , vjr

}. The constraints for vi ∈ V (G) are the following. For all q ∈ [r],

∑

e∈EH(i,jq)

x(e, i, jq) = 1 (6)

The constraints of the form above enforce the (Selection) property described in our informal
summary.

For all q ∈ [r − 1],

∑

{a,b}∈EH(i,jq)

a∈c−1
H

(i)

a · x({a, b}, i, jq) +
∑

{a,b′}∈EH(i,jq+1)

a∈c−1
H

(i)

(n− a) · x({a, b′}, i, jq+1) = n (7)

The constraints of the form above together enforce the (Consistency 1) property described in our
informal summary.

For each {vi, vj} ∈ E(G) with i < j, we define the following constraint in the (IPF) instance.

∑

{a,b}∈EH(i,j)

a∈c−1
H

(i)

α({a, b}) · x({a, b}, i, j) +
∑

{a,b}∈EH(i,j)

b∈c−1
H

(j)

(m− α({a, b})) · x({a, b}, j, i) = m (8)

The constraints of the form above together enforce the (Consistency 2) property described in our
informal summary.

This completes the construction of the (IPF) instance Ax = b, x ≥ 0. Notice that the construc-
tion of instance Ax = b, x ≥ 0 can be done in polynomial time. Clearly, the number of rows in
A is |E(G)| +

∑
v∈V (G) 2dG(v) − 1 ≤ 5k and number of columns in A is 2m. Now we prove the

correctness of the reduction.

Lemma 3.4. (G,H, cG, cH) is a Yes instance of Partitioned Subgraph Isomorphism if and
only if Ax = b, x ≥ 0 is feasible. Moreover, if Ax = b, x ≥ 0 is feasible, then for any solution x∗,
each entry of x∗ belongs to {0, 1}.

10

Proof. Suppose (G,H, cG, cH) is a Yes instance of Partitioned Subgraph Isomorphism. Let
φ : V (G) 7→ V (H) be a solution to (G,H, cG, cH). Now we define a solution x∗ ∈ {0, 1}2m to the in-
stance Ax = b, x ≥ 0 of (IPF). We know that for each edge {vi, vj} ∈ E(G), {φ(vi), φ(vj)} ∈ E(H).
For each edge {vi, vj} ∈ E(G), we set x∗({φ(vi), φ(vj)}, i, j) = x∗({φ(vi), φ(vj)}, j, i) = 1. For ev-
ery other variable, we set its value to 0. Now we prove that Ax∗ = b.

Towards that first consider (6). Fix a vertex vi ∈ V (G) and vjq
∈ NG(vi). Since {vi, vjq

} ∈
E(G), x∗({φ(vi), φ(vjq

)}, i, jq) = 1. Moreover, since G is a simple graph, for any edge e ∈
EH(i, jq) \ {{φ(vi), φ(vjq

)}}, x∗(e, i, jq) = 0. This implies that (6) is satisfied by x∗. Next we
consider (7). Fix a vertex vi ∈ V (G). Let NG(vi) = {vj1 , . . . , vjr

}. Also, fix q ∈ [r − 1]. We know
that {vi, vjq

}, {vi, vjq+1 } ∈ E(G). By the definition of x∗, we have that x∗(e, i, jq) = 1 if and only
if e = {φ(vi), φ(vjq

)} and x∗(e′, i, jq+1) = 1 if and only if e′ = {φ(vi), φ(vjq+1)}. Thus we have that

∑

{a,b}∈EH(i,jq)

a∈c−1
H

(i)

a · x({a, b}, i, jq) +
∑

{a,b′}∈EH(i,jq+1)

a∈c−1
H

(i)

(n− a) · x({a, b′}, i, jq+1)

= φ(vi) + (n− φ(vi)) = n

That is, x∗ satisfies (7). Now we consider (8). Fix an edge {vi, vj} ∈ E(G) where i < j. Again by
the definition of x∗, we have that x∗(e, i, j) = 1 if and only if e = {φ(vi), φ(vj)} and x∗(e, j, i) = 1
if and only if e = {φ(vi), φ(vj)}. This implies that (8) is satisfied by x∗. Therefore Ax = b, x ≥ 0
is feasible.

Now we prove the converse direction of the lemma. Suppose that Ax = b, x ≥ 0 is feasible and
let x′ ∈ Z

2m
≥0 be a solution.

Claim 3.5. Let i, j ∈ [ℓ] such that i 6= j and {vi, vj} ∈ E(G). Then there exists exactly one
edge e ∈ EH(i, j) such that x′(e, i, j) = x′(e, j, i) = 1. Moreover, for any e′ ∈ EH(i, j) \ {e},
x′(e′, i, j) = x′(e′, j, i) = 0.

Proof. By (6), we have that there exists exactly one edge e1 ∈ EH(i, j) such that x′(e1, i, j) = 1
and for all other edges h ∈ EH(i, j) \ {e1}, x′(h, i, j) = 0. Again by (6), we have that there exists
exactly one edge e2 ∈ EH(i, j) such that x′(e2, j, i) = 1 and for all other edges h ∈ EH(i, j) \ {e2},
x′(h, j, i) = 0. By (8), we have that e1 = e2. This completes the proof of the claim.

Now we define an injection φ : V (G) 7→ V (H) and prove that indeed φ is a subgraph isomorphism
from G to H . For any i, j ∈ [ℓ] with i 6= j and {vi, vj} ∈ E(G) consider the edge e = {a, b} ∈
EH(i, j) such that x′({a, b}, i, j) = x′({a, b}, j, i) = 1 (by Claim 3.5, there exists exactly one such
edge in EH(i, j)). Let a ∈ c−1

H (i) and b ∈ c−1
H (j). Now we set φ(vi) = a and φ(vj) = b. We claim

that φ is well defined. Fix a vertex vi ∈ V (G). Let r = dG(vi) and NG(vi) = {vj1 , . . . , vjr
}. By

Claim 3.5, we know that for any q ∈ [r], there exists exactly one edge {aq, bq} ∈ EH(i, j) such that
x′({aq, bq}, i, jq) = x′({aq, bq}, jq, i) = 1. Here, aq ∈ c−1

H (i) and bq ∈ c−1
H (jq). To prove that φ is well

defined, it is enough to prove that a1 = a2 = . . . = ar = φ(vi). By (7), we have that for any q ∈ [r−
1], aq = aq+1. Also since x′({aq, bq}, i, jq) = x′({aq, bq}, jq, i) = 1 for all q ∈ [r], we have that a1 =
a2 = . . . = ar = φ(vi). From the construction of φ, we have that for any i, j ∈ [ℓ], i 6= j, φ(vi) ∈
c−1
H (i) and φ(vj) ∈ c−1

H (j). Moreover, c−1
H (i) ∩ c−1

H (j) = ∅. This implies that φ is an injective map.
Now we prove that φ is an isomorphism fromG to H . Since φ(vi) ∈ c−1

H (i) for all i ∈ [ℓ], to prove
that φ is an isomorphism, it is enough to prove that for any edge {vi, vj} ∈ V (G), {φ(vi), φ(vj)} ∈
E(H). Fix an edge {vi, vj} ∈ V (G) with i < j. By Claim 3.5, there exists exactly one edge {a, b} ∈
EH(i, j) such that x′({a, b}, i, j) = x′({a, b}, j, i) = 1, where a ∈ c−1

H (i) and b ∈ c−1
H (j). From the

definition of φ, we have that φ(vi) = a and φ(vj) = b. That is, {φ(vi), φ(vj)} = {a, b} ∈ E(H).
By Claim 3.5, we conclude that if Ax = b, x ≥ 0 is feasible, then for any solution x∗, each entry

of x∗ belongs to {0, 1}. This completes the proof of the lemma.

Proof of Theorem 1.4. Let (G,H, cG, cH) be an instance of Partitioned Subgraph Isomor-

phism. Let Ax = b, x ≥ 0 be the instance of (IPF) constructed from (G,H, cG, cH) as mentioned
above. We know that the construction of Ax = b, x ≥ 0 takes time polynomial in n, where
n = |V (H)|. Also, we know that the number of rows and columns in A is ≤ 5|E(G)| and 2|E(H)|,
respectively. Moreover, the maximum entry in b is max{|V (H)|, |E(H)|}.

11

Suppose there is an algorithm A for (IPF), running in time f(m′)(n′ · d′)
o
(

m′

log m′

)
on instances

where the constraint matrix is non-negative and is of dimension m′ × n′, and the maximum entry
in the target vector is d′. Then, by running A on Ax = b, x ≥ 0 and applying Lemma 3.4, we solve

Partitioned Subgraph Isomorphism in time f(G)no(
k

log k). Thus by Lemma 3.3, ETH fails.
This completes the proof of the theorem.

4 Path-width parameterization: SETH bounds

In this section we prove Theorems 1.7 and 1.8.

4.1 Overview of our reductions

We prove Theorems 1.7 and 1.8 by giving reductions from CNF-SAT. At this point, one might be
tempted to start the reduction from k-CNF SAT as seen in [2]. However, the fact that in our case
we also need to control the path-width of the reduced instance poses serious technical difficulties if
one were to take this route. Therefore, we take a different route and reduce from CNF-SAT which
allows us to construct appropriate gadgets for propagation of consistency in our instance while
simultaneously controlling the path-width. Moreover, the parameters in the reduced instances are
required to obey certain strict conditions. For example, the reduction we give to prove Theorem 1.7
must output an instance of (IPF), where the path-width of the column matroid M(A) of the con-
straint matrix A is a constant. Similarly, in the reduction used to prove Theorem 1.8, we need to
construct an instance of (IPF) where the largest entry in the target vector is upper bounded by a
constant. These stringent requirements on the parameters make the SETH-based reductions quite
challenging. However, reductions under SETH can take super polynomial time—they can even
take 2(1−ǫ)n time for some ǫ > 0, where n is the number of variables in the instance of CNF-SAT.
This freedom to avail exponential time in SETH-based reductions is used crucially in the proofs of
Theorems 1.7 and 1.8.

Now we give an overview of the reduction used to prove Theorem 1.7. Let ψ be an instance of
CNF-SAT with n variables and m clauses. Given ψ and a fixed constant c ≥ 2, we construct an
instance A(ψ,c)x = b(ψ,c), x ≥ 0 of (IPF) satisfying certain properties. Since for every c ≥ 2, we
have a different A(ψ,c) and b(ψ,c), this can be viewed as a family of instances of (IPF). In particular
our main technical lemma is the following.

Lemma 4.1. Let ψ be an instance of CNF-SAT with n variables and m clauses. Let c ≥ 2 be
a fixed integer. Then, in time O(m22

n
c), we can construct an instance A(ψ,c)x = b(ψ,c), x ≥ 0, of

(IPF) with the following properties.

(a.) ψ is satisfiable if and only if A(ψ,c)x = b(ψ,c), x ≥ 0 is feasible.

(b.) The matrix A(ψ,c) is non-negative and has dimension O(m) × O(m2
n
c).

(c.) The path-width of the column matroid of A(ψ,c) is at most c+ 4.

(d.) The largest entry in b(ψ,c) is at most 2⌈ n
c

⌉ − 1.

Once we have Lemma 4.1, the proof of Theorem 1.7 follows from the following observation: if we
have an algorithm A solving (IPF) in time f(k)(‖b‖∞+1)(1−ǫ)k(mn)a for some ǫ, a > 0, then we can
use this algorithm to refute SETH, where k is the path-width of the column matroid of the input
matrix. In particular, given an instance ψ of CNF-SAT, we choose an appropriate c depending
only on ǫ and a, construct an instance A(ψ,c)x = b(ψ,c), x ≥ 0, of (IPF), and run A on it. Our careful
choice of c will imply a faster algorithm for CNF-SAT, refuting SETH. More formally, we choose

c to be an integer such that (1− ǫ)+ 4(1−ǫ)
c

+ a
c
< 1. Then the total running time to test whether ψ

is satisfiable, is the time require to construct A(ψ,c)x = b(ψ,c), x ≥ 0 plus the time required by A to
solve the constructed instance of (IPF). That is, the time required to test whether ψ is satisfiable is

O(m22
n
c) + f(c+ 4)2

n
c

(1−ǫ)(c+4)2
a·n

c mO(1) = 2

(
(1−ǫ)+

4(1−ǫ)
c

+ a
c

)
n
mO(1) = 2ǫ

′nmO(1),

12




1 1
1 1

1 1
. . .

1 1




(a) A matrix B for which path-width of its
column matroid is 1




B1

B2

. . .

Bm−1

Bm




(b) A pictorial representation of the matrix A(ψ,c).
Here, the different shadings of Bi correspond to
different parts of the matrix Bi for any i ∈ [m].

Figure 5: Comparison of A(ψ,c) with a low path-width matrix.

where ǫ′ < 1 is a constant depending on the choice of c. It is important to note that the utility of
the reduction described in Lemma 4.1 is extremely sensitive to the value of the numerical param-
eters involved. In particular, even when the path-width blows up slightly, say up to δc, or when
the largest entry in b(ψ,c) blows up slightly, say up to 2δ

n
c , for some δ > 1, then the calculation

above will not give us the desired refutation of SETH. Thus, the challenging part of the reduction
described in Lemma 4.1 is making it work under these strict restrictions on the relevant parameters.

As stated in Lemma 4.1, in our reduction, we need to obtain a constraint matrix with small
path-width. An important first step towards this is understanding what a matrix of small path-
width looks like. We first give an intuitive description of the structure of such matrices. Let
A be a m × n matrix of small path-width and let M(A) be the column matroid of A. For any
i ∈ {1, . . . , n− 1}, recall that A|{1, . . . i} is the set of columns (or vectors) in A whose index is at
most i (that is, the first i columns) and A|{i + 1, . . . n} is the set of columns with index strictly
greater than i. The path-width of M(A) is at most

max
i

dim〈span(A|{1, . . . , i}) ∩ span(A|{i+ 1, . . . , n})〉 + 1.

Hence, in order to obtain a bound on the pathwidth, it is sufficient to bound dim〈span(A|{1, . . . , i})∩
span(A|{i + 1, . . . , n})〉 for every i ∈ [n]. Consider for example, the matrix B given in Figure 5a.
The path-width of M(B) is clearly at most 1. In our reduced instance, the constructed constraint
matrix A(ψ,c) will be an appropriate extension of B. That is A(ψ,c) will have the “same form” as B
but with each 1 replaced by a submatrix of order O(c) × n′ for some n′. See Fig. 5b for a pictorial
representation of A(ψ,c).

The construction used in Lemma 4.1 takes as input an instance ψ of CNF-SAT with n variables
and a fixed integer c ≥ 2, and outputs an instance A(ψ,c)x = b(ψ,c), x ≥ 0, of (IPF), that satisfies all
four properties of the lemma. Let X denote the set of variables in the input CNF-formula ψ = C1 ∧
C2 ∧ . . .∧Cm. For the purposes of the present discussion we assume that c divides n. We partition
the variable set X into c blocks X0, . . . , Xc−1, each of size n

c
. Let Xi, i ∈ {0, . . . , c− 1}, denote the

set of assignments of variables corresponding to Xi. Set ℓ = n
c

and L = 2ℓ. Clearly, the size of Xi is
upper bounded by 2

n
c = 2ℓ = L. We denote the assignments in Xi by φ0(Xi), φ1(Xi), . . . , φL−1(Xi).

To construct the matrix A(ψ,c), we view each of these assignments as a different assignment for
each clause. In other words we have separate sets of variables in the constraints corresponding to
different pairs (Cr , Xi), where Cr is a clause and Xi is a block in the partition of X . That is for
each clause Cr and block Xi, we have variables {yCr,i,a a ∈ [0, 2L− 1] }. In other words for each
Cr and assignment φa(Xi), a ∈ [0, L − 1], we have two variables yCr,i,2a and yCr,i,2a+1. For any
clause Cr, i ∈ [0, c− 1] and a ∈ [0, 2L− 1], assigning value 1 to yC,i,a corresponds to choosing an
assignment φ⌊ a

2 ⌋(Xi) for Xi. In our reduction we will create the following set of constraints.

13

∑

i∈[c],a∈[0,2L−1] such that
a is even and

φ⌊ a
2

⌋(Xi) satisfies C

yC,i,a = 1 for all C ∈ C (9)

∑

a∈[0,2L−1]

yC,i,a = 1 for all C ∈ C and i ∈ [0, c− 1] (10)

Equation (9) takes care of satisfiability of clauses, while Equation (10) allows us to pick only
one assignment from {φ0(Xi), φ1(Xi), . . . , φL−1(Xi)} per clause C and block Xi. Note that this
implies that we will choose an assignment in Xi for each clause Cr. That way we might choose m
assignments from Xi corresponding to m different clauses. However, for the backward direction of
the proof, it is important that we choose the same assignment from Xi for each clause. This will
ensure that we have selected an assignment to the variables in Xi. Towards this we will have a
third set of constraints as follows. For all r ∈ [m− 1] and i ∈ [0, c− 1]

∑

a∈[0,2L−1]

(
⌊
a

2
⌋ · yCr,i,a

)
+

(
(L− 1 − ⌊

a

2
⌋)yCr+1,i,a

)
= L− 1 (11)

Equation (11) enforce consistencies of assignments of blocks across clauses in a sequential man-
ner. That is, for any block Xi, we make sure that the two variables set to 1 corresponding to
(Cr, Xi) and (Cr+1, Xi) are consistent for any r ∈ {1, . . . ,m − 1}, as opposed to checking the
consistency for every pair (Cr , Xi) and (Cr′ , Xi) for r 6= r′. Thus in some sense these consistencies
propagate. Furthermore, the idea of making consistency in a sequential manner also allows us to
bound the path-width of column matroid of A(ψ,c) by c+ 4.

The proof technique for Theorem 1.8 is similar to that for Theorem 1.7. This is achieved by
modifying the matrix A(ψ,c) constructed in the reduction described for Lemma 4.1. The largest

entry in A(ψ,c) is 2
n
c −1 (see Equation (11)). So each of these values can be represented by a binary

string of length at most ℓ = n
c
. We remove each row, say row indexed by γ, with entries greater

than 1 and replace it with n
c

rows, γ1, . . . , γℓ. Where, for any j, if the value A(ψ,c)[γ, j] = W

then A(ψ,c)[γk, j] = ηk, where ηk is the kth bit in the ℓ-sized binary representation of W . This
modification reduces the largest entry in A(ψ,c) to 1 and increases the path-width from constant
to approximately n. Finally, we set all the entries in b(ψ,c) to be 1. This concludes the overview
of our reductions and we now proceed to a detailed exposition.

4.2 Proof of Theorem 1.7

In this section we provide a Proof of Theorem 1.7, which states that unless SETH fails, (IPF) with
non-negative matrix A cannot be solved in time f(k)(‖b‖∞ + 1)(1−ǫ)k(mn)O(1) for any function f
and ǫ > 0, where d = max{b[1], . . . , b[m]} and k is the path-width of the column matroid of A.

Towards the proof of Theorem 1.7, we first present the proof of our main technical lemma
(Lemma 4.1), which we restate here for the sake of completeness.

Lemma 4.1 Let ψ be an instance of CNF-SAT with n variables and m clauses. Let c ≥ 2 be a
fixed integer. Then, in time O(m22

n
c), we can construct an instance A(ψ,c)x = b(ψ,c), x ≥ 0, of

(IPF) with the following properties.

(a.) ψ is satisfiable if and only if A(ψ,c)x = b(ψ,c), x ≥ 0 is feasible.

(b.) The matrix A(ψ,c) is non-negative and has dimension O(m) × O(m2
n
c).

(c.) The path-width of the column matroid of A(ψ,c) is at most c+ 4.

(d.) The largest entry in b(ψ,c) is at most 2⌈ n
c

⌉ − 1.

Let ψ = C1 ∧C2 ∧ . . .∧Cm be an instance of CNF-SAT with variable set X = {x1, x2, . . . , xn}
and let c ≥ 2 be a fixed constant given in the statement of Lemma 4.1. We construct the instance
A(ψ,c)x = b(ψ,c), x ≥ 0 of (IPF) as follows.

14

Construction. Let C = {C1, . . . , Cm}. Without loss of generality, we assume that n is divisible
by c, otherwise we add at most c dummy variables to X such that |X | is divisible by c. We divide
X into c blocks X0, X1, . . . , Xc−1. That is Xi = {x i·n

c
+1, x i·n

c
+2, . . . , x (i+1)·n

c

} for each i ∈ [0, c−1].

Let ℓ = n
c

and L = 2ℓ. For each block Xi, there are exactly 2ℓ assignments. We denote these
assignments by φ0(Xi), φ1(Xi), . . . , φL−1(Xi).

Now, we create m · c · 2ℓ+1 variables; they are named yC,i,a, where C ∈ C, i ∈ [0, c − 1] and
a ∈ [0, 2L−1] = [0, 2ℓ+1 −1]. In other words, for a clause C, a block Xi and an assignment φa(Xi),
we create two variables; they are yC,i,2a and yC,i,2a+1. Then, we create the (IPF) constraints given
by Equations (9), (10), and (11).

This completes the construction of (IPF) instance. Let A(ψ,c)y = b(ψ,c) be the (IPF) instance
defined using Equations (9), (10), and (11). The purpose of Equation (9) is to ensure satisfiability
of all the clauses. Because of Equation (10), for each clause C and for each block Xi, we select only
one assignment. Notice, that, so far it is allowed to choose many assignments from a block Xi, for
different clauses. To ensure the consistency of assignments in each block across clauses, we added
a system of constraints (Equation (11)). Equation (11) ensures the consistency of assignments in
the adjacent clauses (in the order C1, . . . , Cm). Thus, the consistency of assignments propagates
in a sequential manner. Notice that number constraints defined by Equations (9), (10), and (11)
are m, m · c and (m − 1) · c, respectively. The number of variables is m · c · 2ℓ+1. Also notice
that all the coefficients in Equations (9), (10) and (11) are non-negative. This implies that A(ψ,c)

is non-negative and has dimension O(m) × O(m2
n
c). Thus, the property (b.) of Lemma 4.1 is

satisfied. The largest entry in b(ψ,c) is L−1 = 2⌈ n
c

⌉ −1 (see Equation (11)) and hence the property
(d.) of Lemma 4.1 is satisfied. Now we prove property (a.) of Lemma 4.1.

“From here on, we use A instead of A(ψ,c) and b instead of b(ψ,c) for clarity.”

Lemma 4.2. Formula ψ is satisfiable if and only if there exists y∗ ∈ Z
n′

≥0
such that Ay∗ = b, where

n′ = m · c · 2ℓ+1 is the number of columns in A.

Proof. Let Y = {yC,i,a | C ∈ C, i ∈ [0, c − 1], a ∈ [0, 2L − 1]}. Suppose ψ is satisfiable. We need
to show that there is an assignment of non-negative integer values to the variables in Y such that
Equations (9), (10) and (11) are satisfied. Let φ be a satisfying assignment of ψ. Then, there exist
a0, a1, . . . , ac−1 ∈ [0, L − 1] such that φ is the union of φa0 (X0), φa1 (X1), . . . , φac−1 (Xc−1). Any
clause C ∈ C is satisfied by at least one of the assignments φa0 (X0), φa1 (X1), . . . , φac−1 (Xc−1). For
each C, we fix an arbitrary i ∈ [0, c − 1] such that the assignment φai

(Xi) satisfies clause C. Let
α be a function which fixes these assignments for each clause. That is, α : C → [0, c− 1] such that
the assignment φaα(C)

(Xα(C)) satisfies the clause C for every C ∈ C. Now we assign values to Y
and prove that these assignment satisfy Equations (9), (10) and (11).

yC,i,a =





1, if α(C) = i and a is even and ⌊a2 ⌋ = ai
1, if α(C) 6= i and a is odd and ⌊a2 ⌋ = ai
0, otherwise.

(12)

Notice that, by Equation (12), for any fixed C ∈ C, exactly c variables from {yC,i,a | i ∈ [0, c−1], a ∈
[2ℓ+1]} are set to 1. They are yC,α(C),2aα(C)

and the variables in the set YC = {yC,i,2ai+1 | i 6= α(C)}.
This implies that in Equation (9), only yC,α(C),2aα(C)

is set to 1, and hence Equation (9) is satisfied.
Now consider Equation (10) for any fixed C ∈ C and i ∈ [0, c− 1]. By equation (12), exactly one
variable from {yC,i,a | a ∈ [0, 2L−1]} is set to 1, and hence Equation (10) is satisfied. Now consider
Equation (11) for fixed r ∈ [m− 1] and i ∈ [0, c− 1]. By Equation (12), exactly one variable from
each set {yCr,i,a | a ∈ [0, 2L− 1]} and {yCr+1,i,a | a ∈ [0, 2L− 1]} are set to 1; they are one variable
each from {yCr,i,2ai

, yCr,i,2ai+1} and {yCr+1,i,2ai
, yCr+1,i,2ai+1}. So we get the following when we

substitute values for Y in Equation (11).

∑

a∈[0,2L−1]

(
⌊
a

2
⌋ · yCr,i,a

)
+

(
(L − 1 − ⌊

a

2
⌋) · yCr+1,i,a

)
= ai + L− 1 − ai = L− 1

Hence, Equation (11) is satisfied by the assignments given in Equation (12).
Now we need to prove the converse direction. Suppose there are non-negative integer assign-

ments to Y such that Equations (9), (10) and (11) are satisfied. Now we need to show that ψ is

15

satisfiable. Because of Equation (10) all the variables in Y are set to 0 or 1. We will extract a
satisfying assignment from the values assigned to variables in Y . Towards that, first we prove the
following claim.

Claim 4.3. Let yC1,i,a = 1 for some i ∈ [0, c − 1] and a ∈ [0, 2L − 1]. Then, for any C′ ∈ C,
exactly one among {yC′,i,2⌊ a

2 ⌋, yC′,i,2⌊ a
2 ⌋+1} is set to 1.

Proof. Towards the proof, we first show that if yCr,i,a = 1 for some r ∈ [m − 1], then exactly one
among {yCr+1,i,2⌊ a

2 ⌋, yCr+1,i,2⌊ a
2 ⌋+1} is set to 1. By Equation (10) and the fact that yCr,i,a = 1, we

get that
∑

a′∈[0,2L−1]

(
⌊
a′

2
⌋ · yCr,i,a′

)
= ⌊

a

2
⌋. (13)

Equations (11) and (13) imply that

∑

a′∈[0,2L−1]

(
(L− 1 − ⌊

a′

2
⌋) · yCr+1,i,a′

)
= L− 1 − ⌊

a

2
⌋. (14)

By Equations (10) and (14), we get that exactly one among {yCr+1,i,2⌊ a
2 ⌋, yCr+1,i,2⌊ a

2 ⌋+1} is
set to 1. Thus, by applying the above arguments for i = 1, 2, . . . ,m − 1, we get that for any
C′ ∈ C \ {C1}, exactly one among {yC′,i,2⌊ a

2 ⌋, yC′,i,2⌊ a
2 ⌋+1} is set to 1.

Suppose C′ = C1. Then, by Equation (10) and the assumption that yC1,i,a = 1, exactly one
among {yC1,i,2⌊ a

2 ⌋, yC1,i,2⌊ a
2 ⌋+1} is set to 1.

Now we define a satisfying assignment for ψ. Towards that we give assignments to all blocks
X0, . . . , Xc−1, such that the union of these assignments satisfies ψ. Fix any block Xi. By Equa-
tion (10), exactly one among {yC1,i,a | a ∈ [0, 2L − 1]} is set to 1. Let ai ∈ [0, 2L − 1] such that
yC1,i,ai

= 1. Then we choose the assignment φ⌊
ai
2 ⌋(Xi) for Xi. Let φ be the assignment of X

which is the union of ψ⌊
a1
2 ⌋(X1), ψ⌊

a2
2 ⌋(X2),. . . ,ψ

⌊
ac−1

2 ⌋
(Xc−1). By Equation (9) and Claim 4.3, φ

satisfies all the clauses in C and hence ψ is satisfiable.

Now we need to prove property (c.) of Lemma 4.1. That is the path-width of A is at most
c+ 4. Towards that we need to understand the structure of matrix A. We decompose the matrix
A into m disjoint submatrices B1, . . . Bm which cover all the non-zero entries in the matrix A.
First we define some notation and fix the column indices of A corresponding to the variables in
the constraints. Let Y denote the set {yC,i,a | C ∈ C, i ∈ [0, c − 1], a ∈ [0, 2L − 1]} of variables in
the constraints defined by Equations (9), (10) and (11). These variables can be partitioned into⊎
C∈C YC , where YC = {yC,i,a | i ∈ [0, c − 1], a ∈ [0, 2L − 1]}. Further for each C ∈ C, YC can be

partitioned into
⋃
i∈[0,c−1] YC,i, where YC,i = {yC,i,a | a ∈ [0, 2L− 1]}. The set of columns indexed

by [r · c2̇ℓ+1] \ [(r− 1) · c · 2ℓ+1], for any r ∈ [m], corresponds to the set of variables in YCr
. Among

the set of columns corresponding to YC , the first 2ℓ+1 columns corresponds to the variables in YC,1,
second 2ℓ+1 columns corresponds to the variables in YC,2, and so on. Among the set of columns
corresponds to YC,i for any C ∈ C and i ∈ [0, c−1], the first two columns corresponds to the variable
yC,i,0 and yC,i,1, and second two columns corresponds to the variables yC,i,2 and yC,i,3, and so on.

Now we move to the description of Bj , j ∈ [m]. The matrix Bj will cover the coefficients of
YCj

in Equations (9), (10) and (11). In other words Bj covers the non-zero entries in the columns
corresponding to YCj

, i.e, in the columns of A indexed by [j ·c·2ℓ+1]\[(j−1)·c·2ℓ+1]. Now we explain
these submatrices. Each matrix Bj has c · 2ℓ+1 columns; each of them corresponds to a variable in
YCj

. Each row in A corresponds to a constraint in the system of equations defined by Equations (9),

(10) and (11). So we use notations f̂(C1), . . . f̂(Cm) to represents the constraints defined by
Equations (9). Similarly we use notations {s(C, i) | C ∈ C, i ∈ [0, c− 1]} and {t(C, i) | C ∈ C, i ∈
[0, c− 1]} to represents the constraints defined by Equations (10) and (11), respectively.

Matrix B1. The matrix B1 is of dimension (2c + 1) × (c · 2ℓ+1). In the first row of B1, we have

coefficients of YC1 from f̂(C1). For j ∈ [c], the rows indexed by j + 1 and c+ j + 1 are defined as
follows. In the (j+1)st row of B1, we have coefficients of YC1 from s(C1, j) while in the (c+j+1)st

16

row of B1, we have coefficients of YC1 from t(C1, j). That is the entries of B1 are as follows, where
i ∈ [0, c− 1] and a ∈ [0, L− 1].

B1[1, i · 2ℓ+1 + 2a+ 1] =

{
1 if φa(Xi) satisfies C1,
0 otherwise.

(15)

B1[1, i · 2ℓ+1 + 2a+ 2] = 0, and (16)

B1[2 + i, i · 2ℓ+1 + 2a+ 1] = B1[2 + i, i · 2ℓ+1 + 2a+ 2] = 1, (17)

B1[c+ 2 + i, i · 2ℓ+1 + 2a+ 1] = B1[c+ 2 + i, i · 2ℓ+1 + 2a+ 2] = a, (18)

Here, Equations (15) and (16), follow from Equation (9). Equations (17) and (18) follow from
Equation (10) and (11), respectively. All other entries in B1 are zeros. That is, for all i, i′ ∈ [0, c−1]
and g ∈ [2ℓ+1] such that i 6= i′,

B1[2 + i, i′ · 2ℓ+1 + g] = B1[c+ 2 + i, i′ · 2ℓ+1 + g] = 0, (19)

This completes the definition of B1. By its role in the reduction, the matrix B1 is partitioned
into three parts. The first row is called the evaluation part of B1. The part composed of rows
indexed by 2, 3, . . . , c + 1 is called the selection part and the part composed of the last c rows is
called the successor matching part (See Figure 6c).

Matrices Br for 1 < r < m. The matrix Br is of dimension (3c+ 1) × (c · 2ℓ+1). The first c rows
are defined by Equation (11). For j ∈ [c], in ith row, we have coefficients of YCr

from t(Cr−1, i).

In the (c+ 1)st row of Br, we have coefficients of YCr
from f̂(Cr). For i ∈ [c], the rows indexed by

c+ 1 + i and 2c+ 1 + i are defined as follows. In the (c + 1 + i)th row of Br, we have coefficients
of YCr

from s(Cr, i) while in the (2c+ 1 + i)th row of Br, we have coefficients of YCr
from t(Cr , i).

This completes the definition of Br. By its role in the reduction, the matrix Br is partitioned in
to four parts. The part composed of the first c rows is called the predecessor matching part. The
part composed of the row indexed by c+ 1 is called the evaluation part of B1. The part composed
of rows indexed by c+ 2, c+ 3, . . . , 2c+ 1 is called the selection part and the part composed of the
last c rows is called the successor matching part (For illustration see Fig. 6b). That is the entries
of B1 are as follows, where i ∈ [0, c− 1] and a ∈ [0, L− 1].

The predecessor matching part is defined by

Br[i + 1, i · 2ℓ+1 + 2a+ 1] = Br[i+ 1, i · 2ℓ+1 + 2a+ 2] = L− 1 − a. (20)

The evaluation part is defined by

Br[c+ 1, i · 2ℓ+1 + 2a+ 2] = 0, (21)

and

Br[c+ 1, i · 2ℓ+1 + 2a+ 1] =

{
1, if φa(Xi) satisfies Cr,
0, otherwise.

(22)

The selection part for Br is defined as

Br[c+ 2 + i, i · 2ℓ+1 + 2a+ 1] = Br[c+ 2 + i, i · 2ℓ+1 + 2a+ 2] = 1, (23)

The successor matching part for Br is defined as

Br[2c+ 2 + i, i · 2ℓ+1 + 2a+ 1] = Br[2c+ 2 + i, i · 2ℓ+1 + 2a+ 2] = j, (24)

All other entries in Br, which are not listed above, are zero. That is, for all i, i′ ∈ [0, c− 1] and
g ∈ [2ℓ+1] such that i 6= i′,

Br[i+ 1, i′ · 2ℓ+1 + g] = 0, (25)

Br[c+ 2 + i, i′ · 2ℓ+1 + g] = 0, and (26)

Br[2c+ 2 + i, i′ · 2ℓ+1 + g] = 0. (27)

For an example, see Figure 7.

17




evaluation part

selection part

successor matching part




(a) Parts of B1.




predecessor matching part

evaluation part

selection part

successor matching part




(b) Parts of Br for 1 < r < m.




predecessor matching part

evaluation part

selection part




(c) Parts of Bm.

Figure 6: Parts of Br.




0 0 1 1 2 2 3 3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 2 2 3 3
1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
3 3 2 2 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 3 3 2 2 1 1 0 0







0 0 1 1 2 2 3 3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 2 2 3 3
1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1




Figure 7: Let n = 4, c = 2, ℓ = 2 and Cr = x1 ∨x2 ∨x4. The assignments are φ0(X0) = {x1 = x2 =
0}, φ1(X0) = {x1 = 0, x2 = 1}, φ2(X0) = {x1 = 1, x2 = 0}, φ3(X0) = {x1 = x2 = 1}, φ0(X1) =
{x3 = x4 = 0}, φ1(X1) = {x3 = 0, x4 = 1}, φ2(X1) = {x3 = 1, x4 = 0}, φ3(X1) = {x3 = x4 = 1}.
The entries defined according to φ1(X0) and φ3(X1) are colored red and blue respectively. If
1 < r < m, then the matrix on the left represents Br and if r = 1, then Br can be obtained by
deleting the yellow colored portion from the top matrix. The matrix on the right represents Bm.

Matrices Bm. The matrix Bm is of dimension (2c+ 1) × (c · 2ℓ+1). For j ∈ [c], in ithe row, we have
coefficients of YCm

from t(Cm−1, i). In the (c + 1)st row of Br, we have coefficients of YCm
from

f̂(Cm). In the (c + 1 + i)th row of Bm, we have coefficients of Yr from s(Cm, i). That is, Bm is
obtained by deleting the successor matching part from the construction of Br above. The entries
of Bm are as follows, where i ∈ [0, c− 1] and a ∈ [0, L− 1].

Bm[i+ 1, i · 2ℓ+1 + 2a+ 1] = Bm[i + 1, i · 2ℓ+1 + 2a+ 2] = L− 1 − a,

Bm[c+ 1, i · 2ℓ+1 + 2a+ 2] = 0, and

Bm[c+ 1, i · 2ℓ+1 + 2a+ 2] =

{
1, if φa(Xi) satisfies Cm,
0, otherwise.

Bm[c+ 2 + i, i · 2ℓ+1 + 2a+ 1] = Bm[c+ 2 + i, i · 2ℓ+1 + 2a+ 2] = 1, (28)

All other entries in Bm are zeros. That is, for all i, i′ ∈ [0, c− 1] and g ∈ [2ℓ+1] such that i 6= i′,

Bm[1 + i, i′ · 2ℓ+1 + g] = 0 (29)

Bm[c+ 2 + i, i′ · 2ℓ+1 + g] = 0, (30)

Bm[2c+ 2 + i, i′ · 2ℓ+1 + g] = 0. (31)

Matrix A. Now we explain how the matrix A is formed from B1, . . . , Bm. The matrices B1, . . . , Bm
are disjoint submatrices of A and they cover all non zero entries of A. Informally, the submatrices
B1, . . . , Bm form a chain such that the rows corresponding to the successor matching part of Br will
be the same as the rows in the predecessor matching part of Br+1 (because of Equation (11). A pic-
torial representation of A can be found in Fig. 5b. Formally, let I1 = [2c+1] and Im = [(m−1)(2c+
1)+(c+1)]\ [(m−1)(2c+1)−c]. For every 1 < r < m, let Ir = [r(2c+1)]\ [(r−1)(2c+1)−c], and

18

for r ∈ [m], let Jr = [r ·c ·2ℓ+1]\ [(r−1) ·c ·2ℓ+1]. Now for each r ∈ [m], the matrix A[Ir , Jr] := Br.
All other entries of A not belonging to any of the submatrices A[Ir , Jr] are zero.

Towards upper bounding the path-width of A, we start with some notation. We partition the
set of columns of A into m parts J1, . . . , Jm (we have already defined these sets) with one part per
clause. For each r ∈ [m], Jr is the set of columns associated with YCr

. We further divide Jr into
c equal parts, one per variable set YCr ,i. These parts are

Pr,i = {(r − 1)c · 2ℓ+1 + i · 2ℓ+1 + 1, . . . , (r − 1)c · 2ℓ+1 + (i+ 1) · 2ℓ+1}, i ∈ [0, c− 1].

In other words, Pr,i is the set of columns corresponding to YCr,i and |Pr,i| = 2ℓ+1. We also put
n′ = m · c · 2ℓ+1 to be the number of columns in A.

Lemma 4.4. The path-width of the column matroid of A is at most c+ 4

Proof. Recall that n′ = m · c · 2ℓ+1 is the number of columns in A and m′ be the number of rows in
A. To prove that the path-width of A is at most c+4, it is sufficient to show that for all j ∈ [n′ −1],

dim〈span(A|{1, . . . , j}) ∩ span(A|{j + 1, . . . , n′})〉 ≤ c+ 3. (32)

The idea for proving Equation (32) is based on the following observation. For V ′ = A|{1, . . . , j}
and V ′′ = A|{j + 1, . . . , n′}, let

I = {q ∈ [m′] | there exists v′ ∈ V ′ and v′′ ∈ V ′′ such that v′[q] 6= v′′[q] 6= 0}.

Then the dimension of span(V ′)∩span(V ′′) is at most |I|. Thus to prove (32), for each j ∈ [n′ −1],
we construct the corresponding set I and show that its cardinality is at most c+ 3.

We proceed with the details. Let v1, v2, . . . , vn′ be the column vectors of A. Let j ∈ [n′ −1]. Let
V1 = {v1, . . . , vj} and V2 = {vj+1, . . . , vn′}. We need to show that dim〈span(V1)∩span(V2)〉 ≤ c+3.
Let

I ′ = {q ∈ [m′] | there exists v ∈ V1 and v′ ∈ V2 such that v[q] 6= 0 6= v′[q]}.

We know that [n′] is partitioned into parts Pr′,i′ , r
′ ∈ [m], i′ ∈ [0, c− 1].

Fix r ∈ [m] and i ∈ [0, c− 1] such that j ∈ Pr,i.

Let j = (r − 1)c · 2ℓ+1 + i · 2ℓ+1 + g, where g ∈ [2ℓ+1]. Let q1 = max{0, (r − 1)(2c + 1) − c},
q2 = r(2c + 1), j1 = (r − 1) · c · 2ℓ+1, and j2 = r · c · 2ℓ+1 Then [q2] \ [q1] = Ir and [j2] \ [j1] = Jr
(recall the definition of sets Ir and Jr).

By the decomposition of matrix A, for every q > q2 and for every vector v ∈ V1, we have v[q] = 0.
Also, for every q ≤ q1 and for any v ∈ V2, we have that v[q] = 0. This implies that I ′ ⊆ [q2] \ [q1] =
Ir. Now we partition Ir into 4 parts: R1, R, S, and R2, These parts are defined as follows.

R1 =

{
∅, if r = 1,
{(r − 2)(2c+ 1) + i′ | i′ ∈ [0, c− 1]}, otherwise,

R = {(r − 1)(2c+ 1) + 1}, (33)

S = {(r − 1)(2c+ 1) + 2 + i′ | i′ ∈ [0, c− 1]]}

R2 =

{
∅, if r = m,
{(r − 1)(2c+ 1) + c+ 2 + i′ | i′ ∈ [0, c− 1]}, otherwise

Claim 4.5. For each r′ ∈ [m], q /∈ Ir′ and j′′ ∈ Jr′ , vj′′ [q] = 0.

Proof. The non-zero entries in A are covered by the disjoint sub-matrices A[Ir′ , Jr′] = Br′ , r′ ∈ [m].
Hence the claim follows.

Claim 4.6. |I ′ ∩R1| ≤ c− (i− 1).

19

Proof. When r = 1, R1 = ∅ and the claim trivially follows. Let r > 1, and let q ∈ R1 be such
that q < (r − 2)(2c + 1) + i. Then q = (r − 2)(2c + 1) + 1 + i′ for some 0 ≤ i′ < i. Notice that
q /∈ Ir′ for every r′ > r. By Claim 4.5, for every v ∈

⋃
r′>r Jr′ , v[q] = 0. Now consider the vector

vj′′ ∈ V2 \(
⋃
r′>r J

′
r). Notice that j′′ > j and j′′ ∈ Jr. Let j′′ = j+a = (r−1)c·2ℓ+1 +i·2ℓ+1 +g+a

for some a ∈ [rc2ℓ+1 − j]. From the decomposition of A, vj′′ [q] = Br[i
′ + 1, i · 2ℓ+1 + g + a] = 0,

by (25). Thus for every q ∈ R, q < (r − 2)(2c+ 1) + i and v ∈ V2, v[q] = 0.
This implies that

|I ′ ∩R1| ≤ |{q ≥ (r − 2)(2c+ 1) + i} ∩R1| ≤ c− (i− 1).

Claim 4.7. |I ′ ∩R2| ≤ i.

Proof. When r = m, R2 = ∅ and the claim trivially holds. So, now let r < m and consider any
q ∈ R2∩{q′ > (r−1)(2c+1)+c+2+i}. Let i′ > i such that q = (r−1)(2c+1)+c+2+i′. Notice that
q /∈ Ir′ for any r′ < r. Hence, by Claim 4.5, for any v ∈

⋃
r′<r Jr′ , v[q] = 0. Now consider any vector

vj′′ ∈ V1 \(
⋃
r′<r J

′
r). Notice that j′′ ≤ j and j′′ ∈ Jr. Let j′′ = (r−1)c ·2ℓ+1 +i′′ ·2ℓ+1 +a for some

a ∈ [2ℓ+1] and i′′ ≤ i < i′. From the decomposition of A, vj′′ [q] = Br[2c+ 2 + i′, i′′ · 2ℓ+1 + a] = 0,
by (27). Hence we have shown that for any q ∈ R, q > (r − 2)(2c + 1) + c + 2 + i and v ∈ V1,
v[q] = 0. This implies that

|I ′ ∩R2| ≤ |{q ≤ (r − 1)(2c+ 1) + c+ 2 + i} ∩R1| ≤ i.

Claim 4.8. |I ′ ∩ S| ≤ 1.

Proof. Consider any q ∈ S. Let i′ ∈ [0, c − 1] such that q = (r − 1)(2c + 1) + 2 + i′. Notice that
q /∈ Ir′ for any r′ < r, and hence, by Claim 4.5, for any v ∈

⋃
r′<r Jr′ , v[q] = 0. Also notice that

q /∈ Ir′ for any r′ > r, and hence, by Claim 4.5, for any v ∈
⋃
r′>r+1 Jr′ , v[q] = 0. So the only

potential j′′ for which vj′′ [q] 6= 0, are from Jr.
We claim that if q ∈ I ′ ∩ S, then q = (r − 1)(2c + 1) + 2 + i. Suppose q ∈ I ′ ∩ S and

q < (r − 1)(2c+ 1) + 2 + i. Let q = (r − 1)(2c+ 1) + 2 + i′, where 0 ≤ i′ < i. Then by the decom-
position of A, for any j′′ > j, vj′′ [q] = Br[c+ 2 + i′, j′′ − (r − 1)c2ℓ+1] = Br[c+ 2 + i′, i12ℓ+1 + a],
where c − 1 ≥ i1 ≥ i and a ∈ [2ℓ+1]. Thus by (26), vj′′ [q] = Br[c + 2 + i′, i12ℓ+1 + a] = 0. This
contradicts the assumption that q ∈ I ′ ∩ S.

Suppose q ∈ I ′ ∩S and q > (r− 1)(2c+ 1) + c+ 2 + i. Let q = (r− 1)(2c+ 1) + c+ 2 + i′, where
i < i′ < c. Then by the decomposition of A, for any j′′ ≤ j, vj′′ [q] = Br[c+2+i′, j′′−(r−1)c2ℓ+1] =
Br[c+2+i′, i12ℓ+1+a], where 0 ≤ i1 ≤ i, a ∈ [2ℓ+1]. Thus by (26), vj′′ [q] = Br[c+2+i′, i12ℓ+1+a] =
0. This contradicts the assumption that i ∈ I ′ ∩ S. This implies that |I ′ ∩ S| ≤ 1. This completes
the proof of the claim.

Therefore, we have

|I ′| = |I ′ ∩ Ir| (Because I ′ ⊆ Ir)

= |I ′ ∩R1| + |I ′ ∩R| + |I ′ ∩ S| + |I ′ ∩R2| (By (33))

≤ c− (i− 1) + 1 + 1 + i (By Claims 4.6,4.7 and 4.8)

= c+ 3

This completes the proof of the lemma.

Proof of Theorem 1.7. We prove the theorem by assuming a fast algorithm for (IPF) and use
it to give a fast algorithm for CNF-SAT, refuting SETH. Let ψ be an instance of CNF-SAT

with n1 variables and m1 clauses. We choose a sufficiently large constant c such that (1 −

ǫ) + 4(1−ǫ)
c

+ a
c
< 1 holds. We use the reduction mentioned in Lemma 4.1 and construct an

instance A(ψ,c)x = b(ψ,c), x ≥ 0, of (IPF) which has a solution if and only if ψ is satisfiable.

The reduction takes time O(m2
12

n1
c). Let ℓ = ⌈n1

c
⌉. The constraint matrix A(ψ,c) has dimension

20

((m1 − 1)(2c + 1) + 1 + c) × (m1 · c · 2ℓ+1) and the largest entry in vector b(ψ,c) does not exceed

2ℓ − 1. The path-width of M(A(ψ,c)) is at most c+ 4.
Assuming that any instance of (IPF) with a non-negative constraint matrix of path-width k is

solvable in time f(k)(‖b‖∞ + 1)(1−ǫ)k(mn)a, where d is the maximum value in an entry of b and
ǫ, a > 0 are constants, we have that A(ψ,c)x = b(ψ,c), x ≥ 0, is solvable in time

f(c+ 4) · 2ℓ·(1−ǫ)(c+4) · 2ℓ·a ·m
O(1)
1 = 2

n1
c

(1−ǫ)(c+4) · 2
n1·a

c ·m
O(1)
1 = 2

n1

(
(1−ǫ)+

4(1−ǫ)
c

+ a
c

)
·m

O(1)
1 .

Here the constant f(c+4) is subsumed by the term m
O(1)
1 . Hence the total running time for testing

whether ψ is satisfiable or not, is,

O(m2
12

n1
c) + 2

n1

(
(1−ǫ)+

4(1−ǫ)
c

+ a
c

)
m

O(1)
1 = 2

n1

(
(1−ǫ)+

4(1−ǫ)
c

+ a
c

)
m

O(1)
1 = 2ǫ

′·n1m
O(1)
1 ,

where ǫ′ = (1 − ǫ) + 4(1−ǫ)
c

+ a
c
< 1. This completes the proof of Theorem 1.7.

4.3 Proof of Theorem 1.8

In this section we prove Theorem 1.8: (IPF) with non-negative matrix A cannot be solved in time
f(‖b‖∞)(‖b‖∞ + 1)(1−ǫ)k(mn)O(1) for any function f and ǫ > 0, unless SETH fails, where k is the
path-width of the column matroid of A. Here, we do not give a complete proof, but we give an
adaptation of the proof of Theorem 1.7.

In Section 3.2, we gave a reduction from CNF-SAT to (IPF). However in this reduction the
values in the constraint matrix A(ψ,c) and target vector b(ψ,c) can be as large as 2⌈ n

c
⌉ −1, where n is

the number of variables in the CNF-formula ψ and c is a constant. Let m be the number of clauses
in ψ. In this section we briefly explain how to get rid of these large values, at the cost of making
large, but still bounded path-width. From a CNF-formula ψ, we construct a matrix A = A(ψ,c) as
described in Section 3.2. The only rows in A which contain values strictly greater than 1 (values
other than 0 or 1) are the ones corresponding to the constraints defined by Equation (11). In
other words, the values greater than 1 are in the rows in yellow/green colored portion in Figure 5b.
Recall that ℓ = ⌈n

c
⌉ and the largest value in A is 2ℓ − 1. Any number less than or equal to 2ℓ − 1

can be represented by a binary string of length ℓ = n
c
. Now we rewrite the Equation (11), by ℓ

new equations. For each j ∈ [ℓ] and N ∈ N, let bj(N) represent the jth bit in the ℓ-bit binary
representation of N . Then for all r ∈ [m−1], i ∈ [0, c−1] and j ∈ [ℓ], we have a system of constraints

∑

a∈[0,2L−1]

(
bj

(
⌊
a

2
⌋
)

· yCr,i,a

)
+

(
bj(L− 1 − ⌊

a

2
⌋) · yCr+1,i,a

)
= 1 (34)

In other words, let P = {(r−1)(2c+1)+c+1+i | r ∈ [m−2], i ∈ [0, c−1]}. The rows ofA contain-
ing values larger than one are indexed by P . Now we construct a new matrix A′ from A by replacing
each row of A whose index is in the set P with ℓ rows and for any value A[i, j], i ∈ P we write its
ℓ-bit binary representation in the column corresponding to j and the newly added ℓ rows of A′.
That is, for any γ ∈ P , we replace the row γ with ℓ rows, γ1, . . . , γℓ. Where, for any j, if the value
A[γ, j] = W then A′[γk, j] = ηk, where ηk is the kth bit in the ℓ-sized binary representation of W .

Let m′ be the number of rows in A′. Now the target vector b′ is defined as b′[i] = 1 for all
i ∈ [m′]. This completes the construction of the reduced (IPF) instance A′x = b′. The correctness
proof of this reduction is using arguments similar to those used for the correctness of Lemma 4.2.

Lemma 4.9. The path-width of the column matroid of A′ is at most (c+ 1)n
c

+ 3.

Proof. We sketch the proof, which is similar to the proof of Lemma 4.4. We define I ′
r and J ′

r for
any r ∈ [m] like Ir and Jr in Section 3.2. In fact, the rows in I ′

r are the rows obtained from Ir in the
process explained above to construct A′ from A. We need to show that dim〈span(A′|{1, . . . , j}) ∩
span(A′|{j + 1, . . . , n′})〉 ≤ (c+ 1)n

c
+ 2 for all j ∈ [n′ − 1], where n′ is the number of columns in

A′. The proof proceeds by bounding the number of indices I such that for any q ∈ I there exist
vectors v ∈ A′|{1, . . . , j} and u ∈ A′|{j + 1, . . . , n′} with v[q] 6= 0 6= u[q]. By arguments similar to
the ones used in the proof of Lemma 4.4, we can show that for any j ∈ [n′ − 1], the corresponding
set I ′ of indices is a subset of I ′

r for some r ∈ [m]. Recall the partition of Ir into R1, R, S and R2

21

in Lemma 4.4. We partition I ′
r into parts Q1,W,U and Q2. Notice that R1, R2 ⊆ P , where P is

the set of rows which covers all values strictly greater than 1. The set Q1 and Q2 are obtained
from R1 and R2, respectively, by the process mentioned above to construct A′ from A. That is,
each row in Ri, i ∈ {1, 2} is replaced by ℓ rows in Qi. Rows in W corresponds to rows in R and U
corresponds to the rows in W . This allows us to bound the following terms for some i ∈ [0, c− 1]:

|I ′ ∩Q1| ≤ (c− (i − 1))ℓ = (c− (i− 1))ℓ,

|I ′ ∩Q2| ≤ i · ℓ,

|I ′ ∩ U | ≤ 1, and

|I ′ ∩W | ≤ 1.

By using the fact that I ′ ⊆ I ′
r and the above system of inequalities, we can show that

dim〈span(A′|{1, . . . , j}) ∩ span(A′|{j + 1, . . . , n′})〉 ≤ (c+ 1)⌈
n

c
⌉ + 2.

This completes the proof sketch of the lemma.

Now the proof of the theorem follows from Lemma 4.9 and the correctness of the reduction (it
is similar to the arguments in the proof of Theorem 1.7).

5 Proof of Theorem 1.9

In this section, we sketch how the proof of Cunningham and Geelen [1] of Theorem 1.5, can be
adapted to prove Theorem 1.9. Recall that a path decomposition of width k can be obtained in
f(k) ·nO(1) time for some function f by making use of the algorithm by Jeong et al. [13]. However,
we do not know if such a path decomposition can be constructed in time O((‖b‖∞ + 1)k+1)nO(1),
so the assumption that a path decomposition is given is essential.

Roughly speaking, the only difference in the proof is that when parameterized by the branch-
width, the most time-consuming operation is the “merge” operation, when we have to construct a
new set of partial solutions with at most (‖b‖∞ + 1)k vectors from two already computed sets of
sizes (‖b‖∞ + 1)k each. Thus to construct a new set of vectors, one has to go through all possible
pairs of vectors from both sets, which takes time roughly (‖b‖∞ + 1)2k. For path-width parame-
terization, the new partial solution set is constructed from two sets, but this time one set contains
at most (‖b‖∞ + 1)k vectors while the second contains at most ‖b‖∞ + 1 vectors. This allows us
to construct the new set in time roughly (‖b‖∞ + 1)k+1.

Recall that for X ⊆ [n], we define S(A,X) = span(A|X) ∩ span(A|E \X), where E = [n]. The
key lemma in the proof of Theorem 1.5 is the following.

Lemma 5.1 ([1]). Let A ∈ {0, 1, . . . , ‖b‖∞}m×n and X ⊆ [n] such that λM(A)(X) = k. Then the

number of vectors in S(A,X) ∩ {0, . . . , ‖b‖∞}m is at most (‖b‖∞ + 1)k−1.

To prove Theorem 1.9, without loss of generality, we assume that the columns of A are ordered
in such a way that for every j ∈ [n− 1],

dim〈span(A|{1, . . . , i}) ∩ span(A|{i+ 1, . . . , n})〉 ≤ k − 1.

Let A′ = [A, b]. That is A′ is obtained by appending the column-vector b to the end of A. Then
for each i ∈ [n],

dim〈span(A′|{1, . . . , i}) ∩ span(A′|{i+ 1, . . . , n+ 1})〉 ≤ k. (35)

Now we use dynamic programming to check whether the following conditions are satisfied. For
X ⊆ [n+ 1], let B(X) be the set of all vectors b′ ∈ Z

m
≥0

such that

(1) 0 ≤ b′ ≤ b,

(2) there exists z ∈ Z
|X|
≥0 such that (A′|X)z = b′, and

22

(3) b′ ∈ S(A′, X).

Then (IPF) has a solution if and only if b ∈ B([n]). Initially the algorithm computes for all
i ∈ [n], B({i}) and by Lemma 5.1, we have that |B({i})| ≤ ‖b‖∞ + 1. In fact B({i}) ⊆ {a ·
v | v is the ith column vector of A′ and a ∈ [‖b‖∞+1]}. Then for each j ∈ {2, . . . , n} the algorithm
computes B([j]) in increasing order of j and outputs Yes if and only if b ∈ B([n]). That is, B([j]) is
computed from the already computed sets B([j−1]) and B({j}). Notice that b′ ∈ B([j]) if and only if

(a) there exist b1 ∈ B({1, . . . , j − 1}) and b2 ∈ B({j}) such that b′ = b1 + b2,

(b) b′ ≤ b and

(c) b′ ∈ S(A′, [j]).

So the algorithm enumerates vectors b′ satisfying condition (a), and each such vector b′ is included
in B([j]), if b′ satisfy conditions (b) and (c). Since by (35) and Lemma 5.1, |B([j−1])| ≤ (‖b‖∞+1)k

and |B({j})| ≤ ‖b‖∞ + 1, the number of vectors satisfying condition (a) is (‖b‖∞ + 1)k, and hence
the exponential factor of the required running time follows. This provides the bound on the claimed
exponential dependence in the running time of the algorithm. The bound on the polynomial com-
ponent of the running time follows from exactly the same arguments as in [1].

6 Conclusion

We would like to mention that our proofs of Theorems 1.7 and 1.8 imply lowerbounds in terms
of the dual path-width of the constraint matrix A. The dual graph G of a matrix A is defined
as follows. For each row i of A there is a vertex vi in G. There is an edge between vi and vj
if and only if the corresponding rows overlap (i.e., there is an index r such that A[i, r] 6= 0 and
A[j, r] 6= 0). The dual pathwidth of A is the path-width of the graph G. We observe that the
proofs of Theorems 1.7 and 1.8 imply the following results.

• Unless SETH fails, (IPF) with even a non-negative m × n constraint matrix A cannot be
solved in time f(k)(‖b‖∞ + 1)(1−ǫ)k(mn)O(1) or f(‖b‖∞)(‖b‖∞ + 1)(1−ǫ)k(mn)O(1) for any
computable function f and ǫ > 0, where k is the dual path-width of A.

Towards the proof of the above result we observe that the dual path-width of the matrix A
constructed in the proof of Lemma 4.1 is at most c+2. That is, we construct a path-decomposition
of the dual graph of A as follows. Notice that the rows 1, . . . , 2c + 1 of A cover all the non-zero
entries of the submatrix B1. Let σ1 be the sequence S1,1, . . . , S1,c of subsets of {1, . . . , 2c + 1},
where S1,1, . . . , S1,c are defined as follows. For each j ∈ [c],

S1,j = {1} ∪ {1 + j} ∪ {{c+ 2, . . . , c+ 1 + j}

For each 1 < r < m, let pr be the number such that the rows pr + 1, pr + 2, . . . , pr + 3c + 1
of A cover all the non-zero entries of the sub-matrix Br. Let σr be the sequence Sr,1, . . . , Sr,c of
subsets of {pr + 1, . . . , pr + 3c+ 1}, where Sr,1, . . . , Sr,c are defined as follows. For each j ∈ [c],

Sr,j = {pr + j, . . . , pr + c} ∪ {pr + c+ 1} ∪ {pr + c+ 1 + j} ∪ {{pr + 2c+ 2, . . . , pr + 2c+ 1 + j}

Let pm be the number such that the rows pm + 1, pm + 2, . . . , pm + 2c + 1 of A cover all
the non-zero entries of the sub-matrix Bm. Let σm be the sequence Sm,1, . . . , Sm,c of subsets of
{pm + 1, . . . , pm + 2c+ 1}, where Sm,1, . . . , Sm,c are defined as follows. For each j ∈ [c],

Sm,j = {pm + j, . . . , pm + c} ∪ {pm + c+ 1} ∪ {pm + c+ 1 + j}

Then, σ1, σ2, . . . , σm is a path-decompostion of the dual graph of A where each subset is of size at
most c+ 3. Therefore, the dual path-width of A is at most c+ 2. Similarly one can prove that the
dual path-width of the matrix A′ constructed in Section 4.3 is at most (c+1)n

c
+1. Then by following

arguments similar to that of proofs of Theorems 1.7 and 1.8, one can prove the required result.

23

References

[1] W. H. Cunningham and J. Geelen, On integer programming and the branch-width of the constraint
matrix, in Proceedings of the 12th International Conference on Integer Programming and Combina-
torial Optimization (IPCO), vol. 4513 of Lecture Notes in Comput. Sci., Springer, 2007, pp. 158–166.

[2] M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof, Y. Okamoto, R. Paturi,

S. Saurabh, and M. Wahlström, On problems as hard as CNF-SAT, in Proceedings of the 27th
IEEE Conference on Computational Complexity (CCC), IEEE, 2012, pp. 74–84.

[3] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,

and S. Saurabh, Parameterized Algorithms, Springer, 2015.

[4] M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M. M. van Rooij, and J. O. Wo-

jtaszczyk, Solving connectivity problems parameterized by treewidth in single exponential time, in
Proceedings of the 52nd Annual Symposium on Foundations of Computer Science (FOCS), IEEE,
2011, pp. 150–159.

[5] F. Dorn, Dynamic programming and fast matrix multiplication, in Proceedings of the 14th Annual
European Symposium on Algorithms (ESA), vol. 4168 of Lecture Notes in Comput. Sci., Springer,
Berlin, 2006, pp. 280–291.

[6] F. Eisenbrand and R. Weismantel, Proximity results and faster algorithms for integer program-
ming using the steinitz lemma, in Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), SIAM, 2018, pp. 808–816.

[7] A. Gajentaan and M. H. Overmars, On a class of o(n2) problems in computational geometry,
Comput. Geom., 5 (1995), pp. 165–185.

[8] R. Ganian, S. Ordyniak, and M. S. Ramanujan, Going beyond primal treewidth for (M)ILP, in
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San
Francisco, California, USA, S. P. Singh and S. Markovitch, eds., AAAI Press, 2017, pp. 815–821.

[9] G. B. Horn and F. R. Kschischang, On the intractability of permuting a block code to minimize
trellis complexity, IEEE Trans. Information Theory, 42 (1996), pp. 2042–2048.

[10] R. Impagliazzo and R. Paturi, On the complexity of k-SAT, J. Computer and System Sciences, 62
(2001), pp. 367–375.

[11] R. Impagliazzo, R. Paturi, and F. Zane, Which problems have strongly exponential complexity, J.
Computer and System Sciences, 63 (2001), pp. 512–530.

[12] K. Jansen and L. Rohwedder, On integer programming and convolution, in 10th Innovations in
Theoretical Computer Science Conference, ITCS 2019, January 10-12, 2019, San Diego, California,
USA, vol. 124 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019, pp. 43:1–43:17.

[13] J. Jeong, E. J. Kim, and S. Oum, Constructive algorithm for path-width of matroids, in Proceedings
of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, 2016, pp. 1695–
1704.

[14] R. Kannan, Minkowski’s convex body theorem and integer programming, Mathematics of operations
research, 12 (1987), pp. 415–440.

[15] D. Knop, M. Pilipczuk, and M. Wrochna, Tight complexity lower bounds for integer linear pro-
gramming with few constraints, in 36th International Symposium on Theoretical Aspects of Computer
Science, STACS 2019, March 13-16, 2019, Berlin, Germany, vol. 126 of LIPIcs, Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2019, pp. 44:1–44:15.

[16] H. W. Lenstra Jr, Integer programming with a fixed number of variables, Mathematics of operations
research, 8 (1983), pp. 538–548.

[17] D. Lokshtanov, D. Marx, and S. Saurabh, Known algorithms on graphs on bounded treewidth are
probably optimal, in Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), SIAM, 2011, pp. 777–789.

[18] S. Margulies, J. Ma, and I. V. Hicks, The Cunningham-Geelen method in practice: Branch-
decompositions and integer programming, INFORMS J. Comput., 25 (2013), pp. 599–610.

[19] D. Marx, Can you beat treewidth?, Theory of Computing, 6 (2010), pp. 85–112.

[20] C. H. Papadimitriou, On the complexity of integer programming, J. ACM, 28 (1981), pp. 765–768.

[21] N. Robertson and P. D. Seymour, Graph minors. X. Obstructions to tree-decomposition, J. Com-
binatorial Theory Ser. B, 52 (1991), pp. 153–190.

[22] J. M. M. van Rooij, H. L. Bodlaender, and P. Rossmanith, Dynamic programming on tree
decompositions using generalised fast subset convolution, in Proceedings of the 17th Annual European
Symposium on Algorithms (ESA), vol. 5757 of Lecture Notes in Comput. Sci., Springer, 2009, pp. 566–
577.

24

