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On the Optimality
of Pseudo-polynomial Algorithms for Integer Programming*

Fedor V. Fomin! Fahad Panolan! M. S. Ramanujan® and Saket Saurabh

Abstract

In the classic Integer Programming Feasibility (IPF) problem, the objective is to decide
whether, for a given m x n matrix A and an m-vector b = (b1, ..., bn), there is a non-negative
integer n-vector x such that Az = b. Solving (IPF) is an important step in numerous algo-
rithms and it is important to obtain an understanding of the precise complexity of this problem
as a function of natural parameters of the input.

The classic pseudo-polynomial time algorithm of Papadimitriou [J. ACM 1981] for instances
of (IPF) with a constant number of constraints was only recently improved upon by Eisenbrand
and Weismantel [SODA 2018] and Jansen and Rohwedder [ITCS 2019]. Jansen and Rohwedder
designed an algorithm for (IPF) with running time O(mA)™ log(A) log(A + ||b|| ) + O(mn).
Here, A is an upper bound on the absolute values of the entries of A. We continue this line of
work and show that under the Exponential Time Hypothesis (ETH), the algorithm of Jansen
and Rohwedder is nearly optimal, by proving a lower bound of n®(Gem) . ||b|\§ém). We also
prove that assuming ETH, (IPF) cannot be solved in time f(m) - (n - Hb||oo)0(1°ng) for any
computable function f.

This motivates us to pick up the line of research initiated by Cunningham and Geelen [IPCO
2007] who studied the complexity of solving (IPF) with non-negative matrices in which the
number of constraints may be unbounded, but the branch-width of the column-matroid cor-
responding to the constraint matrix is a constant. We prove a lower bound on the complexity
of solving (IPF) for such instances and obtain optimal results with respect to a closely related
parameter, path-width. Specifically, we prove matching upper and lower bounds for (IPF)
when the path-width of the corresponding column-matroid is a constant.

1 Introduction

In the classic Integer Programming problem, the input is an m xn integer matrix A, and an m-vector
b= (b1,...,bm). We consider the feasibility version of the problem, where the objective is to find a
non-negative integer n-vector x (if one exists) such that Az = b. Solving this problem, denoted by
(IPF), is a fundamental step in numerous algorithms and it is important to obtain an understanding
of the precise complexity of this problem as a function of natural parameters of the input.

(IPF) is known to be NP-hard [1]. However, there are two classic algorithms due to Lenstra [16]
and Papadimitriou [20] solving (IPF) in polynomial or pseudo-polynomial time for two important
cases when the number of variables and the number of constraints are bounded. These algorithms
in some sense complement each other.

The algorithm of Lenstra shows that (IPF) is solvable in polynomial time when the number
of variables is bounded. Actually, the result of Lenstra is even stronger: (IPF) is fized-parameter
tractable parameterized by the number of variables. However, the running time of Lenstra’s algo-
rithm is doubly exponential in n. Later, Kannan [14] provided an algorithm for (IPF) running in
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time n®(") . Deciding whether the running time n®(™ can be improved to 29 is a long-standing
open question.

Our work is motivated by the complexity analysis of the complementary case when the number
of constraints is bounded. (IPF) is NP-hard already for m = 1 (the KNAPSACK problem) but
solvable in pseudo-polynomial time. In 1981, Papadimitriou [20] extended this result by showing
that (IPF) is solvable in pseudo-polynomial time on instances for which the number of constraints
m is a constant. The algorithm of Papadimitriou consists of two steps. The first step is com-
binatorial, showing that if the entries of A and b are from {0,=£1,...,+d}, and (IPF) has a so-
lution, then there is also a solution which is in {0,1,...,n(md)*™ T}, The second, algorithmic
step shows that if (IPF) has a solution with the maximum entry at most B, then the problem
is solvable in time O((nB)™*!). Thus the total running time of Papadimitriou’s algorithm is
O(n?"+2 . (md)(m+HCEm+1)) where d is an upper bound on the absolute values of the entries of
A and b. There was no algorithmic progress on this problem until the very recent breakthrough of
Eisenbrand and Weismantel [6]. They proved the following result.

Proposition 1.1 (Theorem 2.2, Eisenbrand and Weismantel [6]). (IPF) with m x n matric
A is solvable in time (m - A)CU™) . ||b]|2,, where A is an upper bound on the absolute values of the
entries of A.

Then, Jansen and Rohwedder improved Proposition 1.1 and gave a matching lower bound very
recently [12].

Proposition 1.2 (Jansen and Rohwedder [12]). (IPF) with m xn matriz A is solvable in time
O(mA)™ log(A)log(A+||b]|leo) + O(mn), where A is an upper bound on the absolute values of the
entries of A. Assuming the Strong Exponential Time Hypothesis (SETH), there is no algorithm for
(IPF) running in time nd ™). O(m(A+ ||blle))™® for any 6 > 0, and any computable function f.

Notice that the exponent in the running time of the algorithm in Proposition 1.2 is improved
to m from O(m) in Proposition 1.1.

SETH is the hypothesis that CNF-SAT cannot be solved in time (2 — ¢)"m®®) on n-variable
m-clause formulas for any constant e. ETH is the hypothesis that 3-SAT cannot be solved in time
20(n) on p-variable formulas. Both ETH and SETH were first introduced in the work of Impagliazzo
and Paturi [10], which built upon earlier work of Impagliazzo, Paturi and Zane [11].

Notice that it is safe to remove duplicate columns in the input matrix of (IPF). Thus we can
easily get an upper bound of n < (2A + 1)™. By using the proximity theorem of Eisenbrand
and Weismantel [6], one can show that given an instance (A4,b) of (IPF), one can construct an
equivalent instance (A4,b) of (IPF) in polynomial time such that ||b'||cc < mA - (2mA +1)™. In
this work we consider the case of (IPF) when both n and ||b]|« are much smaller than the above
mentioned upper bounds.

One of the natural question that arises from Proposition 1.2 is whether the exponential depen-
dence of ||b]|s can be improved significantly at the cost of super polynomial dependence on n. Our
first theorem provides a conditional lower bound indicating that any significant improvements are
unlikely.

Theorem 1.3. Unless the Exponential Time Hypothesis (ETH) fails, (IPF) with m x n matriz A

cannot be solved in time n°(Tem) . ||b||‘;§’”) even when the constraint matriz A is non-negative and
each entry in any feasible solution is at most 2.

Let us note that since the bound in Theorem 1.3 holds for a non-negative matrix A, we can
always reduce (in polynomial time) the original instance of the problem to an equivalent instance
where the maximum value A in the constraint matrix A does not exceed ||b||so. Thus Theorem 1.3
also implies the conditional lower bound n®Tem) - (A-[|b]|s)°(™. When m = O(n), our bound also
implies the lower bound (n - m)°(em) - (A - [|b]|so)°™. We complement Theorem 1.3 by turning
our focus to the dependence of algorithms solving (IPF) on m alone, and obtaining the following
theorem.

Theorem 1.4. Unless the Exponential Time Hypothesis (ETH) fails, (IPF) with m x n matriz A
cannot be solved in time f(m)-(n-||bl|oe)° "7 for any computable function f. The result holds even
when the constraint matriz A is non-negative and each entry in any feasible solution is at most 1.




The difference between our first two theorems is the following. Although Theorem 1.3 pro-
vides a better dependence on ||b||s, Theorem 1.4 provides much more information on how the
complexity of the problem depends on m. Since several parameters are involved in this running
time estimation, a natural objective is to study the possible tradeoffs between them. For instance,
consider the O(mA)™ log(A)log(A + ||b||oc) time algorithm (Proposition 1.2) for (IPF). A natural
follow up question is the following. Could it be that by allowing a significantly worse dependence
(a superpolynomial dependence) on n and ||b]|» and an arbitrary dependence on m, one might be
able to improve the dependence on A alone? Theorem 1.4 provides a strong argument against such
an eventuality. Indeed, since the lower bound of Theorem 1.4 holds even for non-negative matrices,
it rules out algorithms with running time f(m) - A°Bem) . (n - ||b]|oo)° "™ ). Therefore, obtaining
a subexponential dependence of A on m even at the cost of a superpolynomial dependence of n
and ||b]|s on m, and an arbitrarily bad dependence on m is as hard as obtaining a subexponential
algorithm for 3-SAT.

We now motivate our remaining results. We refer the reader to Figure 1 for a summary of our
main results. It is straightforward to see that when the matrix A happens to be non-negative, the
algorithm of Papadimitriou [20] runs in time O((n - ||b]lo)™*!). Due to Theorems 1.3 and 1.4,
the dynamic programming step of the algorithm of Papadimitriou for (IPF) when the maximum
entry in a solution as well as in the constraint matrix is bounded, is already close to optimal. Con-
sequently, any quest for “faster” algorithms for (IPF) must be built around the use of additional
structural properties of the matrix A. Cunningham and Geelen [1] introduced such an approach by
considering the branch decomposition of the matrix A. They were motivated by the fact that the
result of Papadimitriou can be interpreted as a result for matrices of constant rank and branch-
width is a parameter which is upper bounded by rank plus one. For a matrix A, the column-matroid
of A denotes the matroid whose elements are the columns of A and whose independent sets are
precisely the linearly independent sets of columns of A. We postpone the formal definitions of
branch decomposition and branch-width till the next section. For (IPF) with a non-negative ma-
trix A, Cunningham and Geelen showed that when the branch-width of the column-matroid of A
is constant, (IPF) is solvable in pseudo-polynomial time [1,18].

Proposition 1.5 (Cunningham and Geelen [1]). (IPF) with a non-negative m X n matriz A
given together with a branch decomposition of its column matroid of width k, is solvable in time
O((||bl|so + 1)**mn + m?n).

We analyze the complexity of (IPF) parameterized by the branch-width of A by making use of
SETH and obtain the following lower bounds.

Theorem 1.6. Unless SETH fails, (IPF) with a non-negative m X n constraint matriz A cannot
be solved in time f(bw)(||bllso + 1)E=92(mn)°® or f([|b]loo)([|blloe + 1)E=92%(mn)O W) | for any
computable function f. Here bw is the branchwidth of the column matroid of A.

In recent years, SETH has been used to obtain several tight conditional bounds on the running
time of algorithms for various optimization problems on graphs of bounded treewidth [17]. How-
ever, in order to be able to use SETH to prove lower bounds for (IPF) in combination with the
branch-width of matroids, we have to develop new ideas.

In fact, Theorem 1.6 follows from stronger lower bounds we prove using the path-width of A as
our parameter of interest instead of the branch-width. The parameter path-width is closely related
to the notion of trellis-width of a linear code, which is a parameter commonly used in coding theory
[9]. For a matrix A € R™*" computing the path-width of the column matroid of A is equivalent to
computing the trellis-width of the linear code generated by A. Roughly speaking, the path-width
of the column matroid of A is at most k, if there is a permutation of the columns of A such that in
the matrix A’ obtained from A by applying this column-permutation, for every 1 < < n — 1, the
dimension of the subspace of R” obtained by taking the intersection of the subspace of R™ spanned
by the first ¢ columns with the subspace of R™ spanned by the remaining columuns, is at most k— 1.

The value of the parameter path-width is always at least the value of branch-width and thus
Theorem 1.6 follows from the following theorems.

Theorem 1.7. Unless SETH fails, (IPF) with even a non-negative m X n constraint matric A
cannot be solved in time f(k)(||b]|oo + 1) 9% (mn)N) for any computable function f and e > 0,
where k is the path-width of the column matroid of A.



Upper Bounds Lower bounds

m
no n*Toem) . 16]]2{™) time algorithm under ETH (Theorem 1.3)
(even for non-negative matrix A and solution entries bounded by 2)

o) | N .
(m - A IO [6,12] non O(m(A + ||b]]so)) time algorithm for § > 0 under SETH [12] |

no (n - m)o(long)(A |1B]l00) 2™ algorithm when m = O(n) under ETH |

(consequence of Theorem 1.3)
(even for non-negative matrix A and solution entries bounded by 2)

no f(m) - (n- Hb||oo)o( g m) under ETH (Theorem 1.4)
(even for non-negative matrix A and solution entries bounded by 1)

O((IIblloe + 1) mn + m2n) no f(pw)(||bllce + 1)~ (mn)®D algorithm under SETH (Theorem 1.7)
(non-negative matrix A) (even for non-negative matrix A)
(Theorem 1.9)
10 f(||bllee)([|b]lce + 1) E~P (mn)©®) algorithm under SETH (Theorem 1.8)
even for non-negative matrix A)

O(([[bllo + 1)**mn +m?n) no f (bw) (|[blloc + 1)~ (mn)
(non-negative matrix A) [1] or
FUIBlse) (IBll oo + D)= (mn) ™) algorithm
under SETH (Theorem 1.6)
(even for non-negative matrix A)

Figure 1: A summary of our lower bound results in comparison with the relevant known upper
bound results. Here, n and m are the number of variables and constraints respectively, pw and bw
denote the path-width and branch-width of the column matroid of A and ||b||s denotes a bound
on the largest absolute value in b while A denotes a bound on the largest absolute value in A.

Theorem 1.8. Unless SETH fails, (IPF) with even a non-negative m X n constraint matric A
cannot be solved in time f(||blloo)([|blloe + 1)A=%(mn)®M) for any computable function f and
€ > 0, where k is the path-width of the column matroid of A.

Although the proofs of both lower bounds have a similar structure, we believe that there are
sufficiently many differences in the proofs to warrant stating and proving them separately.

Note that although there is still a gap between the upper bound of Cunningham and Geelen
from Proposition 1.5 and the lower bound provided by Theorem 1.6, the lower bounds given in
Theorems 1.8 and 1.7 are asymptotically tight in the following sense. The proof of Cunningham and
Geelen in [1] actually implies the upper bound stated in Theorem 1.9. We provide a self-contained
proof in this paper for the reader’s convenience.

Theorem 1.9. (IPF) with non-negative m X n matriz A given together with a path decomposition
of its column matroid of width k is solvable in time O((||b]|oo + 1)*1mn + m?2n).

Then by Theorem 1.7, we cannot relax the (||b||s + 1)* factor in Theorem 1.9 even if we allow
in the running time an arbitrary function depending on k, while Theorem 1.8 shows a similar lower
bound in terms of ||b|| instead of k. Put together the results imply that no matter how much one
is allowed to compromise on either the path-width or the bound on ||b||c, it is unlikely that the
algorithm of Theorem 1.9 can be improved.

The path-width of matrix A does not exceed its rank and thus the number of constraints in
(IPF). Hence, similar to Proposition 1.5, Theorem 1.9 generalizes the result of Papadimitriou when
restricted to non-negative matrices. Also we note that the assumption of non-negativity is unavoid-
able (without any further assumptions such as a bounded domain for the variables) in this setting
because (IPF) is NP-hard when the constraint matrix A is allowed to have negative values (in fact
even when restricted to {—1,0, 1}) and the branchwidth of the column matroid of A is at most 3. A
close inspection of the instances constructed by Cunningham and Geelen [1] in their NP-hardness
reduction shows that the column matroids of the resulting constraint matrices are in fact direct
sums of circuits, implying that even their path-width is bounded by 3.



1.1 Other related works and future research directions

In the conference version of the paper we asked whether the lower bound in Theorem 1.3 can
be improved and this is answered by Knop et al. [15]. They prove that unless the Exponential
Time Hypothesis (ETH) fails, (IPF) with m x n matrix A € {0,1}™*" cannot be solved in time
20(mlogm) . (i 4 ||b]|o0)°™. We also note that Ganian et al. [8] studied the parameterized com-
plexity of (IPF) when parameterized by various combinations of tw and [|b||, where tw is the
incident treewidth of the input matrix A. They gave a complete characterization of parameter-
ized complexity results for (IPF) with non-negative constraint matrix when parameterized by all
combinations of tw and ||b||«. In particular, they showed that (IPF) with non-negative constraint
matrix is FPT when parameterized by tw and ||b]| .

While our SETH-based lower bounds for (IPF) with non-negative constraint matrix are tight
for the path-width parameterization, there is a “(||b]|oo + 1)* to (|[b]|oc + 1)?*” gap between lower
and upper bounds for branch-width parameterization. Closing this gap is the first natural question.

The proof of Theorem 1.5 given by Cunningham and Geelen consists of two parts. The first
part bounds the number of potential partial solutions corresponding to any edge of the branch
decomposition tree by (||b]|o +1)¥. The second part is the dynamic programming over the branch
decomposition using the fact that the number of potential partial solutions is bounded. The bot-
tleneck in the algorithm of Cunningham and Geelen is the following subproblem. We are given two
vector sets A and B of partial solutions, each set of size at most (||b||c +1)*. We need to construct
a new vector set C of partial solutions, where the set C' will have size at most (||b]|oo + 1)* and
each vector from C' is the sum of a vector from A and a vector from B. Thus to construct the new
set of vectors, one has to go through all possible pairs of vectors from both sets A and B, which
takes time roughly (||b]|oo + 1)2.

A tempting approach towards improving the running time of this particular step could be the
use of fast subset convolution or matriz multiplication tricks, which work very well for “join” opera-
tions in dynamic programming algorithms over tree and branch decompositions of graphs [4,5,22],
see also [3, Chapter 11]. Unfortunately, we have reason to suspect that these tricks may not help
for matrices: solving the above subproblem in time (||b|/so + 1)1~92n°M) for any ¢ > 0 would
imply that 3-SUM is solvable in time n?~¢, which is believed to be unlikely'. Indeed, consider an
equivalent version of 3-SUM, named 3-SUM’, which is defined as follows. Given 3 sets of integers
A, B and C each of cardinality n, and the objective is to check whether there exist a € A, b € B and
c € C such that a+b = c. Then, 3-SUM is solvable in time n?~¢ if and only if 3-SUM’ is as well (see
Theorem 3.1 in [7]). However, the problem 3-SUM’ is equivalent to the most time consuming step
in the algorithm of Theorem 1.5, where the integers in the input of 3-SUM’ can be thought of as
length-one vectors. While this observation does not rule out the existence of an algorithm solving
(IPF) with constraint matrices of branch-width k in time (||b|oo + 1)1=92%2,0(M) it indicates that
any interesting improvement in the running time would require a completely different approach.

Organization of the paper. The rest of the paper is organized as follows. There are two main
technical parts to this paper. The first part (Section 3) is devoted to proving Theorem 1.3 and The-
orem 1.4 (our ETH based lower bounds) while the second part (Section 4) is devoted to proving The-
orem 1.7 and Theorem 1.8 (our SETH based lower bounds), and consequently, Theorem 1.6. For all
our reductions, we begin by giving an overview in order to help the reader (especially in the SETH
based reductions) navigate the technical details in the reductions. We then prove Theorem 1.8 in
Section 4.3 and Theorem 1.9 in Section 5 (completing the results for constant path-width).

2 Preliminaries

We assume that the reader is familiar with basic definitions from linear algebra, matroid theory
and graph theory.

Notations. We use Z., and R to denote the sets of non negative integers and real numbers,
respectively. For a positive integer n and a non-negative integer m, we use [n] and [m, n] to denote
the sets {1,...,n} and {m,m+1,...,n}, respectively. For convenience, we say that [0] = (). For

IThe 3-SUM problem asks whether a given set of n integers contains three elements that sum to zero.



any two vectors b, b’ € R™ and i € [m], we use b[i] to denote the i*" coordinate of b and we write
b <b,if b'[i] < bi] for all i € [m]. We often use 0 to denote the zero-vector whose length will be
clear from the context. For a matrix A € R™*™ I C [m] and J C [n], A[I, J] denote the submatrix
of A obtained by the restriction of A to the rows indexed by I and columns indexed by J. For an
m x n matrix A and n-vector v, we can write Av = >_i" | A;v[i], where A; is the i*" column of A.
Here we say that v[i] is a multiplier of column A;. For convenience, in this paper, we consider 0
as an even number.

Branch-width of matroids. The notion of the branch-width of graphs, and implicitly of ma-
troids, was introduced by Robertson and Seymour in [21]. Let M = (U,F) be a matroid with
universe set U and family F of independent sets over U. We use rj; to denote the rank function
of M. That is, for any S C U, ry(S) = maxgcs,ser|S'|. For X C U, the connectivity function
of M is defined as

)\M(X) = ’I"M(X) —|—’I"M(U\X) —TM(U) +1

For a matrix A € R™*", we use M (A) to denote the column-matroid of A. In this case the con-
nectivity function Aps(4) has the following interpretation. For ' = {1,...,n} and X C E, we define

S(A, X) = span(4]|X) Nspan(4|E \ X),

where A|X is the set of columns of A restricted to X and span(A|X) is the subspace of R™ spanned
by the columns A|X. It is easy to see that the dimension of S(A, X) is equal to Aps(4)(X) — 1.

A tree is cubic if its internal vertices all have degree 3. A branch decomposition of a matroid
M with universe set U is a cubic tree T" and a mapping g which maps elements of U to leaves of
T. Let e be an edge of T'. Then the forest T' — e consists of two connected components 77 and T5.
Thus every edge e of T' corresponds to the partitioning of U into two sets X, and U \ X, such that
w(X.) are the leaves of T and u(U \ X.) are the leaves of Th. The width of an edge e is Apr(Xe)
and the width of a branch decomposition (7', i) is the maximum edge width, where the maximum
is taken over all edges of T'. Finally, the branch-width of M is the minimum width taken over all
possible branch decompositions of M.

The path-width of a matroid is defined as follows. Recall that a caterpillar is a tree which is
obtained from a path by attaching leaves to some vertices of the path. Then the path-width of a
matroid is the minimum width of a branch decomposition (7', u), where T is a cubic caterpillar. Let
us note that every mapping of elements of a matroid to the leaves of a cubic caterpillar corresponds
to an ordering of these elements. Jeong, Kim, and Oum [13] gave a constructive fixed-parameter
tractable algorithm to construct a path decomposition of width at most k for a column matroid of
a given matrix.

ETH and SETH. For ¢ > 3, let §, be the infimum of the set of constants ¢ for which there exists an
algorithm solving ¢-SAT with n variables and m clauses in time 2" -m®M) . The Ezponential-Time
Hypothesis (ETH) and Strong Ezponential-Time Hypothesis (SETH) are then formally defined as
follows. ETH conjectures that d3 > 0 and SETH that lim, , 64 = 1.

3 ETH lower bounds on pseudopolynomial solvability of
(IPF)

In this section we prove Theorems 1.3 and 1.4.

3.1 Proof of Theorem 1.3

Theorem 1.3. Unless the Exponential Time Hypothesis (ETH) fails, (IPF) with m x n matriz A

cannot be solved in time n°(Tem) . ||b||‘;§’”) even when the constraint matriz A is non-negative and
each entry in any feasible solution is at most 2.

Our proof is by a reduction from 3-CNF SAT to (IPF). There are exactly 2 variables in the
(IPF) instance for each variable (one for each literal) and clause. For each clause we define two con-
straints. For each variable in the 3-CNF formula, we have a constraint, which is a selection gadget.



Ty T1 T2 T2 T3 XT3 T4 Ta Y1 Ly Yo Zo Y3 I3

1 1
Co|0 |1 |0 |1 1 |10 (0 |O 1
1 1
C;{0 |0 (0|1 |O |1 |0 |1 1
1 1
I 1 1
X9 1 1
I3 1 1
Xrq 1 1

Figure 2: An illustration of the matrix A, corresponding to the 3-CNF formula
Y= (1 VaaVa3)A(ZT1 VT2V ax3)A(ZsV Tz V T3). The unfilled cells have 0 as the entry.

We now proceed to the formal description of the reduction. From a 3-CNF formula ¢ on n
variables and m clauses we create an equivalent (IPF) instance Ayx = by, > 0, where Ay is a
non-negative integer (2m+n) x 2(m+n) matrix and the largest entry in by, is 3. Our reduction can
be easily seen to be a polynomial time reduction and we do not give an explicit analysis. Let ¥ be
the input of 3-CNF SAT. Let X = {z1,...,z,} be the set of variables in ¢y and C = {C1,...,Cp}
be the set of clauses in ¢. First we define the set of variables in the in the (IPF) instance. For
each z; € X, we have two variables z; and 7; in the (IPF) instance Ayx = by, > 0. For each
C; € C, we have two variables Y; and Z;.

Now we define the set of constraints of Ayax = by,x > 0. For each C; = V y V z, we define
two constraints

r+y+z+Y; = 3 and (1)
Y+ Zi = 2. (2)
For each i € [n], i +7T; =1 (3)

This completes the construction of (IPF) instance Ayx = by, > 0. See Figure 2 for an illustration.
We now argue that this reduction correctly maps satisfiable 3-CNF formulas to feasible instances
of (IPF) and vice versa.

Lemma 3.1. The formula v is satisfiable if and only if Ayx = by, x > 0 is feasible.

Proof. Suppose that the formula v is satisfiable and let ¢ be a satisfying assignment of ¢. We
set values for the variables {x;,7;: ¢ € [n]} U{Y;, Z;: i € [m]} and prove that Ayz = by. For any
i € [n], if p(x;) =1 we set &; = 1 and T; = 0. Otherwise, we set x; = 0 and T; = 1.

For every i € [m], we define

0 if the number of literals set to 1 in C; by ¢ is 3,
Y; =< 1 if the number of literals set to 1 in C; by ¢ is 2, (4)
2 otherwise,

and
2 if the number of literals set to 1 in C; by ¢ is 3,

Z; =2-Y; =< 1 if the number of literals set to 1 in C; by ¢ is 2, (5)
0 otherwise.

We now proceed to prove that the above substitution of values to the variables is indeed a feasible
solution. Towards this, we need to show that (1), (2), and (3) are satisfied. First consider (1).
Let C; = x VyV z. Since ¢ is a satisfying assignment, we have that 1 < = +y + z < 3. Thus,
by (4), we conclude that = +y + z +Y; = 3. Because of (4), (2) is satisfied. Since the values for
{24, T;: 1 € [n]} is derived from an assignment ¢, (3) is satisfied.

For the converse direction of the statement of the lemma, suppose that there exists non-negative
values for the set of variables {z;,T;: i € [n|} U{Y;, Z;: i € [m]}, such that (1), (2), and (3) are



satisfied. Now we need to show that 1 is satisfiable. Because of (3), we know that exactly one of
x; and T; is set to one and other is set to zero. Next, we define an assignment ¢ and prove that ¢
is a satisfying assignment for ). For ¢ € [n] we define

o) = { 0 if7=1.

We claim that ¢ satisfies all the clauses. Consider a clause C; = 2V yV z where j € [m]. Since
Y;+ Z; =2 (by (2)), we have that Y; € {0,1,2}. Since Y; € {0, 1,2}, by (1), at least one of z,y or
z is set to one. This implies that ¢ satisfies C;. This completes the proof of the lemma. O O

By (2) and (3), for any satisfying assignment ¢, any variable w € {z;,Z;: ¢ € [n]}, and any
variable W € {Y;, Z;: i € [m]}, we have that ¢(w) < 1 and W < 2. The following lemma completes
the proof of the theorem.

Lemma 3.2. If there is an algorithm for (IPF) running in time n"<$>||b||‘;§m), then ETH fails.

Proof. By the Sparsification Lemma [11], we know that 3-CNF SAT on n’ variables and ¢n’ clauses,
where c is a constant, cannot be solved in time 2°(n") time. Suppose there is an algorithm ALG for
(IPF) running in time n°(5em) Hngém). Then for a 3-CNF formula ¢ with n’ variables and m’ = cn
clauses we create an instance Ayx = by, x > 0 of (IPF) as discussed in this section, in polynomial
time, where A, is a matrix of dimension (2¢n’ 4+ n') x (2(n/ + ¢n’)) and the largest entry in by, is
3. Then by Lemma 3.1, we can run ALG to test whether 1 is satisfiable or not. This takes time

2cen’n’)

(2(CTL/ + n/))o(m) . 30(2cn'+n') _ 20(7’/)

)

hence refuting ETH. O O

3.2 Proof of Theorem 1.4

In this section we prove the following theorem.

Theorem 1.4. Unless the Exponential Time Hypothesis (ETH) fails, (IPF) with m x n matriz A
cannot be solved in time f(m)-(n-||bl|oe)° %) for any computable function f. The result holds even
when the constraint matriz A is non-negative and each entry in any feasible solution is at most 1.

Towards proving Theorem 1.4 we use the ETH based lower bound result of Marx [19] for PAR-
TITIONED SUBGRAPH ISOMORPHISM. For two graphs G and H, a map ¢: V(G) — V(H) is called a
subgraph isomorphism from G to H, if ¢ is injective and for any {u,v} € E(G), {¢(u), #(v)} € E(H)
(see Figure 3 for an illustration).

PARTITIONED SUBGRAPH ISOMORPHISM

Input: Two graphs G, H, a bijection c¢g: V(G) — [{] and a function cgy: V(H) — [¢], where
L=1V(G).

Question: Is there a subgraph isomorphism ¢ from G to H such that for any v € V(G),
ca(v) = cu(¢(v))?

Lemma 3.3 (Corollary 6.3 [19]). If PARTITIONED SUBGRAPH ISOMORPHISM can be solved in time
f(G)no(b_gk), where f is an arbitrary function, n = |V(H)| and k is the number of edges of the
smaller graph G, then ETH fails.

To prove Theorem 1.4 we give a polynomial time reduction from PARTITIONED SUBGRAPH
IsoMORPHISM to (IPF) such that for every instance (G, H,cq,cp) of PARTITIONED SUBGRAPH
ISOMORPHISM the reduction outputs an instance of (IPF) where the constraint matrix has dimen-
sion O(|E(G)|) x O(|E(H)|) and the largest value in the target vector is max{|E(H)|, |V (H)|}.

Let (G, H,cq, ci) be an instance of PARTITIONED SUBGRAPH ISOMORPHISM. Let k = |E(G)|
and n = |V(H)|. We construct an instance Az = b of (IPF) from (G, H,cq,cp) in polynomial
time. Without loss of generality we assume that [n] = V(H) and that there are no isolated vertices
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Figure 3: An illustration of an instance of PARTITIONED SUBGRAPH ISOMORPHISM.

in G. Hence, the number of vertices in G is at most 2k. Let m = |E(H)|. For each e € E(H)
we assign a unique integer from [m]. Let a: E(H) — [m] be the bijection which represents the
assignment mentioned above. For any 7, j € [¢], we use Ex(i,j) as a shorthand for the set of edges
of H between cj;' (i) and c;'(j). Finally, for ease of presentation we let {vy,..., v} = V(G) and
ca(v;) =1 for all ¢ € [¢], where £ = |V(G)].

For illustrative purposes, before proceeding to the formal construction, we give an informal
description of the (IPF) instance we obtain from a specific instance of PARTITIONED SUBGRAPH
IsomORPHISM. Let H and G be the graphs in Figure 3 and consider the graph H obtained from
H as depicted in Figure 4. R

For every color ¢ € [(] we have a column in H and for every pair of distinct colors i,j € [{]
such that {v;,v;} € E(G), we have a copy of ¢ (i) in Column i and Row i and a copy of ¢! (i) in
Column ¢ and Row j. Thus, Column ¢ comprises at most £ copies of the vertices of H whose image
under cy is ¢ and Row ¢ comprises a copy of 01_11 (1) and additionally, a copy of every vertex u of
H such that v, () is adjacent to v; in G. That is, the color of u is “adjacent” to the color i in G.

For a vertex u € V(H), we refer to the unique copy of u in the i*" row as the i*" copy of u in H.
For every edge e = {a,b} € E(H) where cy(a) =i, ca(b) = j, and {v;,v;} € E(G), we have two
copies of e in H. The first copy of e has as its endpoints, the i*" copy of a and the i** copy of b and
the second copy of e has as its endpoints, the j*" copy of a and the j** copy of b. We now rephrase
the PARTITIONED SUBGRAPH ISOMORPHISM problem (informally) as a problem of finding a certain
type of subgraph in H , which in turn will point us in the direction of our (IPF) instance in a natural
way. The rephrased problem statement is the following. Given G, H, cp, cg, and the resulting
auxiliary graph H, find a set of 2|E(H)| edges in H such that the following properties hold.

o (Selection) For every {v;,v;} € E(G), we pick a unique edge in H with one endpoint in (Row
i, Column %) and the other endpoint in (Row ¢, Column j) and we pick a unique edge with
one endpoint in (Row j, Column j) and the other endpoint in (Row j, Column 7).

e (Consistency 1) All the edges we pick from Row i of H share a common endpoint at the
position (Row ¢, Column 3).

o (Consistency 2) For any edge e = {a,b} € E(H) such that cy(a) =i, cg(b) = j, if the copy of
e in Row 7 is selected in our solution then our solution contains the copy of e in Row j as well.

It is straightforward to see that a set of edges of H which satisfy the stated properties imply
a solution to our PARTITIONED SUBGRAPH ISOMORPHISM instance in an obvious way. In order to
obtain our (IPF) instance, we create a variable for every edge in H (or 2 for every edge in E(H))
and encode the properties stated above in the form of constraints. We now formally define the
(IPF) instance output by our reduction.
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Figure 4: An illustration of the auxiliary graph H capturing the representation of the vertices and
some edges of H.

The set of variables = of the (IPF) instance is

{z({a,b},cu(a),cuy(b)): {a,b} € E(H)}.

Notice that for any edge {a,b} € E(H), there exist an associated pair of variables, namely
x({a,b}, cu(a),cy (b)) and z({a,b},cu(b),cr(a)). Thus the dimension of x is upper bounded by
2|E(H)| = 2m. Recall that {vi,...,v,} = V(G) and cg(v;) =i for all i € [¢], where ¢ = |V(G)].
For each v; € V(G) we define 2dg(v;) — 1 many constraints as explained below. Let r = dg(v;)
and Ng(v;) = {vj,,...,v;.}. The constraints for v; € V(G) are the following. For all ¢ € [r],

Z m(e,i,jq) =1 (6)

e€EH (i,5q)

The constraints of the form above enforce the (Selection) property described in our informal
summary.
For all ¢ € [r — 1],

Z a-x({a,b},i,jq) + Z (TL—CL) 'Z‘({&,b/},i,j(ﬁ_l) =n (7)
{a,b}eEn(1,5q) {a,b'}eEu(i,jq+1)
aEc;I1 (i) a€c;11 (@)

The constraints of the form above together enforce the (Counsistency 1) property described in our
informal summary.
For each {v;,v;} € E(G) with ¢ < j, we define the following constraint in the (IPF) instance.

Z oc({a,b}) x({avb}ala.])+ Z (m_a({aab})) Z‘({&,b},],l) =m (8)
{avb}eEH(iuj) {a»b}EEH(iuj)
a€c;11 (2) bec;ll (4)

The constraints of the form above together enforce the (Consistency 2) property described in our
informal summary.

This completes the construction of the (IPF) instance Ax = b,z > 0. Notice that the construc-
tion of instance Az = b,z > 0 can be done in polynomial time. Clearly, the number of rows in
Ais |[E(G)| + Xpev(e) 2da(v) — 1 < 5k and number of columns in A is 2m. Now we prove the
correctness of the reduction.

Lemma 3.4. (G, H,cq,cy) is a YES instance of PARTITIONED SUBGRAPH ISOMORPHISM if and
only if Ax = b,x > 0 is feasible. Moreover, if Ax = b,x > 0 is feasible, then for any solution x*,
each entry of =* belongs to {0,1}.
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Proof. Suppose (G, H,cq,cn) is a YES instance of PARTITIONED SUBGRAPH ISOMORPHISM. Let
¢: V(G) — V(H) be a solution to (G, H, cg,cy). Now we define a solution z* € {0,1}?™ to the in-
stance Az = b,z > 0 of (IPF). We know that for each edge {v;,v;} € E(G), {¢(v;), ¢(v;)} € E(H).
For each edge {v;,v;} € E(G), we set *({p(vi), d(v;)},14,7) = a*({d(vs), ¢(vj)}, 4,1) = 1. For ev-
ery other variable, we set its value to 0. Now we prove that Ax* = b.

Towards that first consider (6). Fix a vertex v; € V(G) and v;, € Ng(v;). Since {v;,v;,} €
E(G), z*({¢(vi), ¢(vj,)},4,74) = 1. Moreover, since G is a simple graph, for any edge e €
Ex(i,jq) \ {{o(vi), 6(vj,)}}, x*(e,i,jq) = 0. This implies that (6) is satisfied by z*. Next we
consider (7). Fix a vertex v; € V(G). Let Ng(v;) = {vj,,...,v;,.}. Also, fix g € [r — 1]. We know
that {v;,vj, },{vi,vj,., } € E(G). By the definition of 2*, we have that 2*(e, i, j,) = 1 if and only
if e = {¢(vi), ¢(vy,)} and z*(e’,4, jg41) = 1 if and only if ¢’ = {¢(v;), ¢(vj,,,)}. Thus we have that

Z a'x({aﬂb}vivjq)"_ Z (TL—CL) 'x({aab/}aiaqurl)
{a,b}€En (i,5q) {a,b'}eEn (i,jq+1)
acey (i) accy' ()

= ¢(vi) + (n— o(vi)) =n

That is, 2* satisfies (7). Now we consider (8). Fix an edge {v;,v;} € E(G) where i < j. Again by
the definition of z*, we have that 2*(e, ¢, j) = 1 if and only if e = {¢(v;), ¢(v;)} and z*(e, j,i) =1
if and only if e = {¢(v;), #(v;)}. This implies that (8) is satisfied by z*. Therefore Az = b,z > 0
is feasible.

Now we prove the converse direction of the lemma. Suppose that Az = b, x > 0 is feasible and
let 2’ € Z%7 be a solution.

Claim 3.5. Let i,j € [{] such that i # j and {v;,v;} € E(G). Then there exists exactly one
edge e € Ey(i,j) such that 2'(e,i,5) = a'(e,j,i) = 1. Moreover, for any € € Eg(i,j) \ {e},
ey, 5) = 2'(¢, j,i) = 0.

Proof. By (6), we have that there exists exactly one edge e; € Eg(i,j) such that 2'(e1,4,5) = 1
and for all other edges h € Eg(i,j) \ {e1}, #’(h,i,7) = 0. Again by (6), we have that there exists
exactly one edge es € Eg (4, j) such that 2'(eq, j,4) = 1 and for all other edges h € Eg(i,5) \ {ez2},
z'(h,j,7) = 0. By (8), we have that e; = ey. This completes the proof of the claim. O O

Now we define an injection ¢: V(G) — V(H) and prove that indeed ¢ is a subgraph isomorphism
from G to H. For any ¢,j € [¢] with i # j and {v;,v;} € E(G) consider the edge e = {a,b} €
Ey(i,7) such that «'({a,b},7,7) = 2’({a, b}, 7,4) = 1 (by Claim 3.5, there exists exactly one such
edge in Eg(i,j)). Let a € ¢ (i) and b € ¢ (j). Now we set ¢(v;) = a and ¢(vj) = b. We claim
that ¢ is well defined. Fix a vertex v; € V(G). Let r = dg(v;) and Ng(v;) = {vj,,...,v;.}. By
Claim 3.5, we know that for any ¢ € [r], there exists exactly one edge {aq,b,} € En(i,7) such that
2’ ({ag,bg},isdq) = @' ({ag, by}, 4gr 1) = 1. Here, a, € ¢ (i) and by € ci;' (jiy). To prove that ¢ is well

defined, it is enough to prove that a; = az = ... = a, = ¢(v;). By (7), we have that for any ¢ € [r—
1], ag = aq+1. Also since z'({aq, bq}, 1, 5q) = @' ({aq, be}, jq, 1) = 1 for all ¢ € [r], we have that aq =
ag = ... = a, = ¢(v;). From the construction of ¢, we have that for any i,j € [¢], i # j, ¢(v;) €

¢ (i) and ¢(v;) € ¢ (j). Moreover, ¢ (i) N ci;' (§) = 0. This implies that ¢ is an injective map.
Now we prove that ¢ is an isomorphism from G to H. Since ¢(v;) € cj;' (i) for all i € [£], to prove
that ¢ is an isomorphism, it is enough to prove that for any edge {v;,v;} € V(GQ), {¢(vi), d(v;)} €
E(H). Fix an edge {v;,v;} € V(G) with ¢ < j. By Claim 3.5, there exists exactly one edge {a,b} €
Ey(i, ) such that z'({a,b},4,j) = 2'({a, b}, 4,i) = 1, where a € c¢j;*(i) and b € c;'(j). From the
definition of ¢, we have that ¢(v;) = a and ¢(v;) = b. That is, {¢(v;), ¢(v;)} = {a,b} € E(H).
By Claim 3.5, we conclude that if Ax = b, x > 0 is feasible, then for any solution x*, each entry
of 2* belongs to {0,1}. This completes the proof of the lemma. O O

Proof of Theorem 1.4. Let (G, H,cq,cy) be an instance of PARTITIONED SUBGRAPH ISOMOR-
PHISM. Let Az = b,z > 0 be the instance of (IPF) constructed from (G, H, cg,cy) as mentioned
above. We know that the construction of Ax = b,z > 0 takes time polynomial in n, where
n = |V (H)|. Also, we know that the number of rows and columns in A is < 5|E(G)| and 2|E(H)|,
respectively. Moreover, the maximum entry in b is max{|V(H)|, |E(H)|}.
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Suppose there is an algorithm A for (IPF), running in time f(m’)(n’ - d’)o(log ) on instances
where the constraint matrix is non-negative and is of dimension m’ x n’, and the maximum entry
in the target vector is d’. Then, by running A on Az = b,z > 0 and applying Lemma 3.4, we solve
PARTITIONED SUBGRAPH ISOMORPHISM in time f(G)no(ﬁ). Thus by Lemma 3.3, ETH fails.
This completes the proof of the theorem. O O

4 Path-width parameterization: SETH bounds

In this section we prove Theorems 1.7 and 1.8.

4.1 Overview of our reductions

We prove Theorems 1.7 and 1.8 by giving reductions from CNF-SAT. At this point, one might be
tempted to start the reduction from k-CNF SAT as seen in [2]. However, the fact that in our case
we also need to control the path-width of the reduced instance poses serious technical difficulties if
one were to take this route. Therefore, we take a different route and reduce from CNF-SAT which
allows us to construct appropriate gadgets for propagation of consistency in our instance while
simultaneously controlling the path-width. Moreover, the parameters in the reduced instances are
required to obey certain strict conditions. For example, the reduction we give to prove Theorem 1.7
must output an instance of (IPF), where the path-width of the column matroid M (A) of the con-
straint matrix A is a constant. Similarly, in the reduction used to prove Theorem 1.8, we need to
construct an instance of (IPF) where the largest entry in the target vector is upper bounded by a
constant. These stringent requirements on the parameters make the SETH-based reductions quite
challenging. However, reductions under SETH can take super polynomial time—they can even
take 2179 time for some € > 0, where n is the number of variables in the instance of CNF-SAT.
This freedom to avail exponential time in SETH-based reductions is used crucially in the proofs of
Theorems 1.7 and 1.8.

Now we give an overview of the reduction used to prove Theorem 1.7. Let 1) be an instance of
CNF-SAT with n variables and m clauses. Given 1 and a fixed constant ¢ > 2, we construct an
instance Ay ¢)r = by ),z > 0 of (IPF) satisfying certain properties. Since for every ¢ > 2, we
have a different Ay .y and by, ), this can be viewed as a family of instances of (IPF). In particular
our main technical lemma is the following.

Lemma 4.1. Let ¢ be an instance of CNF-SAT with n variables and m clauses. Let ¢ > 2 be
a fized integer. Then, in time O(m?2%<), we can construct an instance A,y = b(yp,e), > 0, of
(IPF) with the following properties.

a.) v is satisfiable if and only if Ay oy = biy. o), > 0 is feasible.
(¥,0) (¥,0)
(b.) The matriz Ay, is non-negative and has dimension O(m) x O(m2%).
c.) The path-width of the column matroid of Ay o) s at most ¢ + 4.
(¢,0)
(d.) The largest entry in by, is at most 21¢1 —1.

Once we have Lemma 4.1, the proof of Theorem 1.7 follows from the following observation: if we
have an algorithm A solving (IPF) in time f (k) (||b]|oo+1)*~9* (mn)® for some €, a > 0, then we can
use this algorithm to refute SETH, where k is the path-width of the column matroid of the input
matrix. In particular, given an instance ¥ of CNF-SAT, we choose an appropriate ¢ depending
only on € and a, construct an instance Ay o) = b(y, ),z > 0, of (IPF), and run A on it. Our careful
choice of ¢ will imply a faster algorithm for CNF-SAT, refuting SETH. More formally, we choose
¢ to be an integer such that (1 —¢)+ @ + 2 < 1. Then the total running time to test whether 1
is satisfiable, is the time require to construct Ay, oy& = b(y ¢y, ¢ > 0 plus the time required by A to

solve the constructed instance of (IPF). That is, the time required to test whether v is satisfiable is

O(m22%) + (e + 422022 ,00) _ o(A=9+HE24+8)n,,00) _ 9é'npp00),

12



By

By

—_ =
— =

(b) A pictorial representation of the matrix Ay .
(a) A matrix B for which path-width of its Here, the different shadings of B; correspond to
column matroid is 1 different parts of the matrix B; for any ¢ € [m].

Figure 5: Comparison of Ay ) with a low path-width matrix.

where ¢’ < 1 is a constant depending on the choice of ¢. It is important to note that the utility of
the reduction described in Lemma 4.1 is extremely sensitive to the value of the numerical param-
eters involved. In particular, even when the path-width blows up slightly, say up to d¢, or when
the largest entry in by .y blows up slightly, say up to 20% | for some & > 1, then the calculation
above will not give us the desired refutation of SETH. Thus, the challenging part of the reduction
described in Lemma 4.1 is making it work under these strict restrictions on the relevant parameters.

As stated in Lemma 4.1, in our reduction, we need to obtain a constraint matrix with small
path-width. An important first step towards this is understanding what a matrix of small path-
width looks like. We first give an intuitive description of the structure of such matrices. Let
A be a m x n matrix of small path-width and let M(A) be the column matroid of A. For any
i€{l,...,n— 1}, recall that A|{1,...7} is the set of columns (or vectors) in A whose index is at
most 4 (that is, the first ¢ columns) and A|{i + 1,...n} is the set of columns with index strictly
greater than ¢. The path-width of M(A) is at most

max dim(span(A|[{1,...,i}) Nspan(A|{i + 1,...,n})) + 1.

Hence, in order to obtain a bound on the pathwidth, it is sufficient to bound dim(span(A|[{1,...,i})N
span(Al{i + 1,...,n})) for every i € [n]. Consider for example, the matrix B given in Figure 5a.
The path-width of M (B) is clearly at most 1. In our reduced instance, the constructed constraint
matrix Ay o) will be an appropriate extension of B. That is A, ) will have the “same form” as B
but with each 1 replaced by a submatrix of order O(c) x n’ for some n’. See Fig. 5b for a pictorial
representation of Ay ).

The construction used in Lemma 4.1 takes as input an instance ) of CNF-SAT with n variables
and a fixed integer ¢ > 2, and outputs an instance Ay o) = by, ey, ¢ > 0, of (IPF), that satisfies all
four properties of the lemma. Let X denote the set of variables in the input CNF-formula ¢ = C1 A
CyN...ANC,,. For the purposes of the present discussion we assume that ¢ divides n. We partition
the variable set X into ¢ blocks Xy, ..., X. 1, each of size Z. Let A}, i € {0,...,c— 1}, denote the
set of assignments of variables corresponding to X;. Set £ = % and L = 2¢. Clearly, the size of X; is
upper bounded by 2¢ = 2¢ = L. We denote the assignments in X; by ¢o(X;), ¢1(X;), ..., or_1(X;).
To construct the matrix A, ), we view each of these assignments as a different assignment for
each clause. In other words we have separate sets of variables in the constraints corresponding to
different pairs (C.., X;), where C,. is a clause and X; is a block in the partition of X. That is for
each clause C, and block X;, we have variables {yc, i« a@ € [0,2L — 1] }. In other words for each
C, and assignment ¢,(X;), a € [0, L — 1], we have two variables yc, ;24 and yc, i2q+1. For any
clause C, i € [0,c— 1] and a € [0,2L — 1], assigning value 1 to y¢,; . corresponds to choosing an
assignment ¢ g | (X;) for X;. In our reduction we will create the following set of constraints.
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> yoia = 1 forallCecC ()

i€lc],ac(0,2L—1] such that
o is even and
$1g(Xi) satisfies ¢

Z YCia = 1 forall C € C and i € [0,¢ — 1] (10)
a€l0,2L—1]

Equation (9) takes care of satisfiability of clauses, while Equation (10) allows us to pick only
one assignment from {¢o(X;), ¢1(X;),...,¢r—1(X;)} per clause C and block X;. Note that this
implies that we will choose an assignment in &; for each clause C,.. That way we might choose m
assignments from A&; corresponding to m different clauses. However, for the backward direction of
the proof, it is important that we choose the same assignment from X; for each clause. This will
ensure that we have selected an assignment to the variables in X;. Towards this we will have a
third set of constraints as follows. For all » € [m — 1] and i € [0, ¢ — 1]

> (15) voria) + (L =1 15Dy, s0a) =L -1 (11)

a€[0,20—1]

Equation (11) enforce consistencies of assignments of blocks across clauses in a sequential man-
ner. That is, for any block X;, we make sure that the two variables set to 1 corresponding to
(Cy, X;) and (Cri1,X;) are consistent for any » € {1,...,m — 1}, as opposed to checking the
consistency for every pair (C, X;) and (Cys, X;) for r # 7’. Thus in some sense these consistencies
propagate. Furthermore, the idea of making consistency in a sequential manner also allows us to
bound the path-width of column matroid of Ay ¢y by ¢ + 4.

The proof technique for Theorem 1.8 is similar to that for Theorem 1.7. This is achieved by
modifying the matrix A, ) constructed in the reduction described for Lemma 4.1. The largest
entry in Ay o is 2% —1 (see Equation (11)). So each of these values can be represented by a binary
string of length at most £ = 2. We remove each row, say row indexed by v, with entries greater
than 1 and replace it with % rows, v1,...,7. Where, for any j, if the value Ay o)[v,j] = W
then Ay o) [k, J] = nk, where 1 is the k" bit in the (-sized binary representation of W. This
modification reduces the largest entry in Ay ) to 1 and increases the path-width from constant
to approximately n. Finally, we set all the entries in by ) to be 1. This concludes the overview

of our reductions and we now proceed to a detailed exposition.

4.2 Proof of Theorem 1.7

In this section we provide a Proof of Theorem 1.7, which states that unless SETH fails, (IPF) with
non-negative matrix A cannot be solved in time f(k)([|b]loc + 1)*=9%(mn)°® for any function f
and € > 0, where d = max{b[1],...,b[m]} and k is the path-width of the column matroid of A.

Towards the proof of Theorem 1.7, we first present the proof of our main technical lemma
(Lemma 4.1), which we restate here for the sake of completeness.

Lemma 4.1 Let ¢ be an instance of CNF-SAT with n variables and m clauses. Let ¢ > 2 be a
fized integer. Then, in time O(m?2%), we can construct an instance A,y = by, > 0, of
(IPF) with the following properties.

a.) v is satisfiable if and only if Ay @ = by o), > 0 is feasible.

(¥,¢) (¥,¢)
(b.) The matriz Ay ) is non-negative and has dimension O(m) x O(m2%).
(c.) The path-width of the column matroid of Ay ) is at most ¢ + 4.

(d.) The largest entry in bey ) is at most 2lel — 1.

Let ¢p = C1 ACy A ... ACy, be an instance of CNF-SAT with variable set X = {x1,22,...,2,}
and let ¢ > 2 be a fixed constant given in the statement of Lemma 4.1. We construct the instance
A,y = b(y,c), z > 0 of (IPF) as follows.
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Construction. Let C = {Cy,...,C,,}. Without loss of generality, we assume that n is divisible
by ¢, otherwise we add at most ¢ dummy variables to X such that | X| is divisible by c¢. We divide
X into ¢ blocks Xo, X1,..., X, 1. Thatis X; = {#in |, Tin_o,...,Ta+nn } for each i € [0,c—1].

Let £ = Z and L = 2¢. For each block X;, there are exactly 2¢ assignments. We denote these
assignments by ¢o(X;), ¢1(Xy), ..., dr—1(Xi).

Now, we create m - ¢ - 27! variables; they are named YC.i,a, where C € C, i € [0,¢ — 1] and
a €[0,2L—1] = [0,2¢"1 —1]. In other words, for a clause C, a block X; and an assignment ¢ (X;),
we create two variables; they are yc ;2 and yc i,2q+1. Then, we create the (IPF) constraints given
by Equations (9), (10), and (11).

This completes the construction of (IPF) instance. Let A(y )y = by, be the (IPF) instance
defined using Equations (9), (10), and (11). The purpose of Equation (9) is to ensure satisfiability
of all the clauses. Because of Equation (10), for each clause C' and for each block X;, we select only
one assignment. Notice, that, so far it is allowed to choose many assignments from a block X;, for
different clauses. To ensure the consistency of assignments in each block across clauses, we added
a system of constraints (Equation (11)). Equation (11) ensures the consistency of assignments in
the adjacent clauses (in the order Cy,...,C,,). Thus, the consistency of assignments propagates
in a sequential manner. Notice that number constraints defined by Equations (9), (10), and (11)
are m, m - c and (m — 1) - ¢, respectively. The number of variables is m - ¢ - 2¢¥1. Also notice
that all the coefficients in Equations (9), (10) and (11) are non-negative. This implies that Ay .
is non-negative and has dimension O(m) x O(m2<). Thus, the property (b.) of Lemma 4.1 is
satisfied. The largest entry in by ¢y is L—1 = 2121 -1 (see Equation (11)) and hence the property
(d.) of Lemma 4.1 is satisfied. Now we prove property (a.) of Lemma 4.1.

“From here on, we use A instead of Ay ) and b instead of by, .y for clarity.”

Lemma 4.2. Formula 1) is satisfiable if and only if there exists y* € 7" such that Ay* = b, where

>0
n' =m-c 2 is the number of columns in A.

Proof. Let Y = {ycia | C € C,i € [0,c—1],a € [0,2L — 1]}. Suppose 1 is satisfiable. We need
to show that there is an assignment of non-negative integer values to the variables in Y such that
Equations (9), (10) and (11) are satisfied. Let ¢ be a satisfying assignment of ©). Then, there exist
ag, i, . ..,ac.-1 € [0,L — 1] such that ¢ is the union of ¢4, (Xo), Pa; (X1)s- -, Pa._ (Xc—1). Any
clause C' € C is satisfied by at least one of the assignments ¢q,(X0), ¢a, (X1),- - ¢a._, (Xe—1). For
each C, we fix an arbitrary ¢ € [0,¢ — 1] such that the assignment ¢, (X;) satisfies clause C. Let
a be a function which fixes these assignments for each clause. That is, a: C — [0, ¢ — 1] such that
the assignment ¢q,, ., (Xa(c)) satisfies the clause C' for every C' € C. Now we assign values to Y’
and prove that these assignment satisfy Equations (9), (10) and (11).

1, if a(C) =i and ais even and [§] = a;
yoia =19 1, if a(C)#iandaisoddand 5] =a; (12)
0, otherwise.

Notice that, by Equation (12), for any fixed C' € C, exactly ¢ variables from {yc ;o | i € [0,c—1],a €
[2¢+1]} are set to 1. They are YC.a(C) 200 ¢, a0d the variables in the set Yo = {yc,i,2a,41 [ i # a(C)}.
This implies that in Equation (9), only y¢,a(c¢),24., (o 18 set to 1, and hence Equation (9) is satisfied.
Now consider Equation (10) for any fixed C' € C and i € [0,c — 1]. By equation (12), exactly one
variable from {yc i« | @ € [0,2L —1]} is set to 1, and hence Equation (10) is satisfied. Now consider
Equation (11) for fixed r € [m — 1] and ¢ € [0, ¢ — 1]. By Equation (12), exactly one variable from
each set {yc, i, | @ € [0,20 — 1]} and {yc, .50 | @ € [0,2L — 1]} are set to 1; they are one variable
each from {yc, i 2a:, Y, i2ai+1} a0d {YC, 110,20, YO, i1,i,20:41}- S0 we get the following when we
substitute values for Y in Equation (11).

GG[O,;L—U (LgJ -yCM‘,a) + ((L —1- \_%J) -yC7,+1,i7a) —a+L—-1—a;=L—1

Hence, Equation (11) is satisfied by the assignments given in Equation (12).
Now we need to prove the converse direction. Suppose there are non-negative integer assign-
ments to Y such that Equations (9), (10) and (11) are satisfied. Now we need to show that ¢ is
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satisfiable. Because of Equation (10) all the variables in Y are set to 0 or 1. We will extract a
satisfying assignment from the values assigned to variables in Y. Towards that, first we prove the
following claim.

Claim 4.3. Let yo,ia = 1 for some i € [0,¢ — 1] and a € [0,2L — 1]. Then, for any C' € C,
ezactly one among {yc/’i,QL%J,ycl’i,QL%JH} is set to 1.

Proof. Towards the proof, we first show that if yc, ; , = 1 for some r € [m — 1], then exactly one
among {yc, .21 4], YC, 4,02\« |+1} is set to 1. By Equation (10) and the fact that yc, ;.. = 1, we

get that )
> (15 o) = 15 (13)

a’€[0,20—1]

Equations (11) and (13) imply that

> (115D v ) =L -1- 151 (1)

a’€[0,2L—1]

By Equations (10) and (14), we get that exactly one among {yCTH,i,ZL%JayCr+1,i,2L%J+1} is
set to 1. Thus, by applying the above arguments for ¢ = 1,2,...,m — 1, we get that for any
C’ € C\ {C4}, exactly one among {ycl’i,QL%J,ycl7i)2L%J+1} is set to 1.

Suppose C' = C;. Then, by Equation (10) and the assumption that yc, ;.. = 1, exactly one
among {ycth%J,ycth%Hl} is set to 1. O O

Now we define a satisfying assignment for ¢). Towards that we give assignments to all blocks
Xo,...,Xc—1, such that the union of these assignments satisfies ). Fix any block X;. By Equa-
tion (10), exactly one among {yc, i | @ € [0,2L — 1]} is set to 1. Let a; € [0,2L — 1] such that
YCi,i,a; = 1. Then we choose the assignment ¢L%J (X;) for X;. Let ¢ be the assignment of X
which is the union of ¥ a1 | (X1), 9|22 |(X2),. .. 7¢L%T—1J (Xc—1). By Equation (9) and Claim 4.3, ¢
satisfies all the clauses in C and hence v is satisfiable. | O

Now we need to prove property (c.) of Lemma 4.1. That is the path-width of A is at most
¢+ 4. Towards that we need to understand the structure of matrix A. We decompose the matrix
A into m disjoint submatrices By, ... B, which cover all the non-zero entries in the matrix A.
First we define some notation and fix the column indices of A corresponding to the variables in
the constraints. Let Y denote the set {yc o | C € C,i € [0,¢ — 1],a € [0,2L — 1]} of variables in
the constraints defined by Equations (9), (10) and (11). These variables can be partitioned into
Weee Yo, where Yo = {ycia | i € [0,c —1],a € [0,2L — 1]}. Further for each C' € C, Yo can be
partitioned into U, ¢o .1 Yc,i, where Yoii = {yc,ia | a € [0,2L —1]}. The set of columns indexed
by [r- 2T\ [(r — 1) c- 2%, for any r € [m], corresponds to the set of variables in Y, . Among
the set of columns corresponding to Y, the first 2¢+1 columns corresponds to the variables in Y¢ 1,
second 2¢t1 columns corresponds to the variables in Yc 2, and so on. Among the set of columns
corresponds to Y¢; for any C' € C and i € [0, c—1], the first two columns corresponds to the variable
yc,i,0 and Yo 4.1, and second two columns corresponds to the variables yc ;2 and yc 4,3, and so on.

Now we move to the description of Bj, j € [m]. The matrix B; will cover the coefficients of
Yc, in Equations (9), (10) and (11). In other words B; covers the non-zero entries in the columns
corresponding to Y, i.e, in the columns of A indexed by [5-¢-2¢T1]\[(j—1)-¢-2¢T1]. Now we explain
these submatrices. Each matrix B; has c- 2641 columns; each of them corresponds to a variable in
Yc,. Eachrow in A corresponds to a constraint in the system of equations defined by Equations (9),

~

(10) and (11). So we use notations f(Ci),...f(Cp) to represents the constraints defined by
Equations (9). Similarly we use notations {s(C,i) | C € C,i € [0,¢—1]} and {¢t(C,i) | C €C,i €
[0,c — 1]} to represents the constraints defined by Equations (10) and (11), respectively.

Matriz By. The matrix By is of dimension (2¢ + 1) x (c - 2*1). In the first row of B;, we have

coefficients of Yo, from f(C1). For j € [¢], the rows indexed by j + 1 and ¢+ j + 1 are defined as
follows. In the (j+1)% row of By, we have coefficients of Y¢, from s(C1, j) while in the (c+j+1)%
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row of By, we have coefficients of Y, from ¢(C4,j). That is the entries of By are as follows, where
i€[0,c—1]and a € [0,L —1].

Bi[l,i- 2 420+ 1) = { (1) fﬁgﬁiﬁe 'SamSﬁeS s (15)
By[l,i-2"" 420+ 2] =0, and (16)
Bi2+4,i-2 420+ 1) = By[24+4,i- 2T + 20+ 2] = 1, (17)
Bile+24i,i-2"" 4+ 2a 4+ 1] = Bife + 2 +4,i - 271 + 20 + 2] = q, (18)

Here, Equations (15) and (16), follow from Equation (9). Equations (17) and (18) follow from
Equation (10) and (11), respectively. All other entries in By are zeros. That is, for all ¢,i" € [0, c—1]
and g € [2°71] such that i # 4,

Bi2+i,i' -2 + gl = Bile + 2+ 4,0 - 2 4 g] = 0, (19)

This completes the definition of B;. By its role in the reduction, the matrix B; is partitioned
into three parts. The first row is called the evaluation part of B;. The part composed of rows
indexed by 2,3,...,c+ 1 is called the selection part and the part composed of the last ¢ rows is
called the successor matching part (See Figure 6¢).

Matrices B, for 1 <r < m. The matrix B, is of dimension (3¢ 4 1) x (c-2¢*!). The first ¢ rows
are defined by Equation (11). For j € [c], in i'" row, we have coefficients of Yo, from #(C,_1,17).
In the (c+1)%* row of B,., we have coefficients of Y¢, from f(CT). For i € [c], the rows indexed by
c+1+iand 2c+1+i are defined as follows. In the (c + 1+ i)*" row of B,., we have coefficients
of Y¢, from s(C,,i) while in the (2c + 1+ )" row of B,., we have coefficients of Y¢, from ¢(C,, ).
This completes the definition of B,. By its role in the reduction, the matrix B, is partitioned in
to four parts. The part composed of the first ¢ rows is called the predecessor matching part. The
part composed of the row indexed by ¢+ 1 is called the evaluation part of B;. The part composed
of rows indexed by ¢+ 2,c+3,...,2c+ 1 is called the selection part and the part composed of the
last ¢ rows is called the successor matching part (For illustration see Fig. 6b). That is the entries
of By are as follows, where i € [0,¢ — 1] and a € [0, L — 1].
The predecessor matching part is defined by

Bli+1,i-2"' +2a4+1]=B[i+1,i- 2" +2a+2] =L -1 —a. (20)

The evaluation part is defined by

Bylc+1,i-2" +2a+2] =0, (21)
and
Bile+1,i-24 + 20+ 1] = { (1) ftﬁgr(jgs)e.saﬁb‘ﬁes Cr, (22)
The selection part for B, is defined as
Bile+2+i,i-2" 4 2a+ 1) = B+ 2+4,i- 27 420+ 2] = 1, (23)
The successor matching part for B, is defined as
B2+ 24i,i- 2TV 420+ 1) = B.[2c + 2 +i,i- 2571 4 20 + 2] = j, (24)

All other entries in B,., which are not listed above, are zero. That is, for all 4,7’ € [0,c¢— 1] and
g € [2°71] such that i # ¥/,

B,li+1,i" -2 + g =0, (25)
Brle+2+i,i -2 4+ g] =0, and (26)
B[2¢c+ 24,4 -2 4 g] = 0. (27)

For an example, see Figure 7.
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predecessor matching part

evaluation part evaluation part

predecessor matching part

evaluation part

successor matching part successor matching part

(a) Parts of Bs. (b) Parts of B, for 1 < r < m. (c) Parts of Bi,.

Figure 6: Parts of B,.

Figure 7: Let n = 4,¢ =2, =2 and C, = 21 VT3 V4. The assignments are ¢o(Xo) = {1 =22 =
0}, ¢1(Xo) = {z1 = 0,22 = 1}, ¢02(Xo) = {z1 = 1,22 = 0}, ¢3(Xo) = {x1 = 22 = 1}, do(X1) =
{23 = 24 = 0}, 1 (X1) = {23 = 0,24 = 1}, 02(X1) = {23 = 1,24 = 0}, 93(X1) = {23 = 24 = 1}.
The entries defined according to ¢1(Xo) and ¢3(X;) are colored red and blue respectively. If
1 < r < m, then the matrix on the left represents B, and if »r = 1, then B, can be obtained by
deleting the yellow colored portion from the top matrix. The matrix on the right represents B,,.

Matrices B,,. The matrix B,, is of dimension (2¢+ 1) x (c¢-2¢*1). For j € [c], in i*"® row, we have
coefficients of Y, from ¢(Cp,—1,7). In the (c + 1)% row of B,., we have coefficients of Y¢,, from
f(Cm). In the (¢ + 1 + i) row of B,,, we have coefficients of Y,. from s(C,,,i). That is, B,, is
obtained by deleting the successor matching part from the construction of B, above. The entries
of By, are as follows, where i € [0,¢ — 1] and a € [0, L — 1].

Bpli+1,i-2" 4+ 2a +1] = Bp[i +1,i- 2" 4+ 20+ 2] = L — 1 —a,
Bple+1,i-2"1 + 204 2] =0, and

1, if ¢o(X;) satisfies C,y,

’ . e+1 frng
Brle+1,2-277 4+ 20 + 2] { 0, otherwise.

Bule+2+i,i- 2 4+ 2a+1] = Bpc+2+4,5- 2 420+ 2] = 1, (28)

All other entries in B,, are zeros. That is, for all 4,i’ € [0,c— 1] and g € [2¢+1] such that i # i/,

B[l +i,i -2 4 g]=0 (29)
Bple4+2+1,i -2 4 g =0, (30)
Bp[2c+24i,i -2 4 g] = 0. (31)
Matriz A. Now we explain how the matrix A is formed from By, ..., B,,. The matrices By, ..., B,
are disjoint submatrices of A and they cover all non zero entries of A. Informally, the submatrices
By, ..., B,, form a chain such that the rows corresponding to the successor matching part of B, will

be the same as the rows in the predecessor matching part of B,11 (because of Equation (11). A pic-
torial representation of A can be found in Fig. 5b. Formally, let Iy = [2¢+1] and I,,, = [(m—1)(2¢+
14 (c+1)]\[(m—1)(2¢+1)—¢]. Forevery 1 <r < m,let I, = [r(2c¢+1)]\[(r—1)(2¢+1) —¢|, and
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for r € [m], let J, = [r-c- 271\ [(r —1)-c-2T!]. Now for each r € [m], the matrix A[I,, J,] := B,.
All other entries of A not belonging to any of the submatrices A[I,., J,.] are zero.

Towards upper bounding the path-width of A, we start with some notation. We partition the
set of columns of A into m parts Ji, ..., J,, (we have already defined these sets) with one part per
clause. For each r € [m], J, is the set of columns associated with Y¢,.. We further divide J, into
¢ equal parts, one per variable set Y, ;. These parts are

Poi={(r—1Dc-2 i 2% 41 (r—1ec- 2+ (i+1)-271}, i€ [0,¢—1].

In other words, P.; is the set of columns corresponding to Yg, ; and |P, ;| = 2(+1 We also put
n' =m-c- 21 to be the number of columns in A.

Lemma 4.4. The path-width of the column matroid of A is at most ¢+ 4

Proof. Recall that n’ = m -c-2¢*! is the number of columns in A and m’ be the number of rows in
A. To prove that the path-width of A is at most c+4, it is sufficient to show that for all j € [n' —1],

dim(span(A|{1,...,j}) Nspan(A|{j + 1,...,n'})) < ¢+ 3. (32)

The idea for proving Equation (32) is based on the following observation. For V' = A[{1,...,j}
and V' = A|{j+1,...,n'}, let

I ={q € [m’] | there exists v € V' and v" € V" such that v'[q] # v"[q] # 0}.

Then the dimension of span(V’)Nspan(V") is at most |I|. Thus to prove (32), for each j € [n' —1],
we construct the corresponding set I and show that its cardinality is at most ¢ + 3.
We proceed with the details. Let vy, va, ..., v, be the column vectors of A. Let j € [n’—1]. Let
Vi ={v1,...,v;} and Vo = {v;41,...,vn }. We need to show that dim(span(V;)Nspan(V2)) < c¢+3.
Let
I' = {q € [m/] | there exists v € V; and v’ € V; such that v[g] # 0 # v'[q]}.

We know that [n'] is partitioned into parts P ;, 7" € [m],i’ € [0,c — 1].
Fix r € [m] and ¢ € [0,¢ — 1] such that j € P, ;.

Let j = (r—1)c- 21 +i. 241 4 g where g € 27!, Let ¢; = max{0,(r — 1)(2c + 1) — ¢},
@ =12+ 1), 41 = (r—1)- ¢ 2%, and jo = r- ¢ 21 Then [g2] \ [p1] = I and [ja] \ [1] = J
(recall the definition of sets I, and J;).

By the decomposition of matrix A, for every ¢ > ¢o and for every vector v € Vi, we have v[g] = 0.
Also, for every ¢ < ¢ and for any v € V5, we have that v[g] = 0. This implies that I’ C [g2] \ [¢1] =
I.. Now we partition I, into 4 parts: R1, R, S, and Ro, These parts are defined as follows.

0, if r=1,
o= { {(r—=2)(2c+1)+1i | €[0,c—1]}, otherwise,
R = {(r—1)(2c+1)+1}, (33)
S = {r—=1)Q2c+1)+2+i | €0,c—1]]}

R — 0, if r =m,
2 {(r—=1)2c+1)+c+2+17d|i €[0,c—1]}, otherwise
Claim 4.5. For each r' € (m],q ¢ I,» and j" € Jr,vjn[q] = 0.

Proof. The non-zero entries in A are covered by the disjoint sub-matrices A[I,+, J,v] = By, ' € [m].
Hence the claim follows. O O

Claim 4.6. |[I'NRy| <c—(i—1).
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Proof. When r = 1, Ry = () and the claim trivially follows. Let r > 1, and let ¢ € R; be such
that ¢ < (r —2)(2¢+ 1) +i. Then ¢ = (r — 2)(2c+ 1) + 1 4 ¢’ for some 0 < ¢’ < i. Notice that
q ¢ I,» for every ' > r. By Claim 4.5, for every v € |,/ Ji, v[q] = 0. Now consider the vector
vjr € Vo\ (U=, J;). Notice that j” > jand j” € J,. Let j” = j+a = (r—1)c- 2" 4i-2"M 4 g+a
for some a € [rc2"! — j]. From the decomposition of A, v;#[q] = B,[i’ + 1,i-2"1 + g +a] =0,
by (25). Thus for every ¢ € R, ¢ < (r —2)(2¢+ 1) +i and v € Vs, v]g] = 0.

This implies that

I'NRy| <|{qg>(r—2)2c+1)+i}NRy| <c—(i—1).
O O
Claim 4.7. |I' N Ry| < i.

Proof. When 7 = m, Ry = () and the claim trivially holds. So, now let » < m and consider any
q € Ron{q’ > (r—1)(2¢+1)+c+2+i}. Let i’ > i such that ¢ = (r—1)(2¢+1)+c+2+14". Notice that
q ¢ I, for any r" < r. Hence, by Claim 4.5, for any v € UJ,._,. J/, v[g] = 0. Now consider any vector
vjr € Vi\(U, <, J}). Notice that j” < j and j” € J,. Let j” = (r—1)c-271 44”21 + g for some
a € 2] and i” < i < i’. From the decomposition of A, v»[q] = B,[2c+2+i,i" - 2" +a] = 0,
by (27). Hence we have shown that for any ¢ € R, ¢ > (r —2)(2c¢+ 1)+ c+2+4i and v € V],
v[g] = 0. This implies that

I'NRo| <{g<(r—1)2c+1)+c+2+i}NRy| <.
O O
Claim 4.8. [I'NS| < 1.

Proof. Consider any g € S. Let i’ € [0,c — 1] such that ¢ = (r — 1)(2¢ + 1) + 2 + /. Notice that
q ¢ I+ for any r" < r, and hence, by Claim 4.5, for any v € U, ., i/, v[g] = 0. Also notice that
q ¢ I for any ' > r, and hence, by Claim 4.5, for any v € | Jrr, v[g] = 0. So the only
potential j” for which vj~[q] # 0, are from J,.

We claim that if ¢ € I' N S, then ¢ = (r — 1)(2¢+ 1) + 2 + 4. Suppose ¢ € I’ NS and
g<(r—1)2c+1)+2+1i Let ¢ = (r—1)(2¢+1) + 2+, where 0 < ¢’ < i. Then by the decom-
position of A, for any j” > j, vjr[q] = Brle +2+14,5" — (r — 1)e2"Y = B, [e+ 2 +i,i12L + 4],
where ¢ — 1 >4y > i and a € [2°F]. Thus by (26), v;#[g] = B[c+ 2 +4',i12"! + a] = 0. This
contradicts the assumption that ¢ € I' N S.

Suppose g € I'NS and ¢ > (r—1)(2c+1)+c+2+i. Let = (r—1)(2c+1)+c+2+7i, where
i < i’ < c. Then by the decomposition of A, for any j” < j, vj»[q] = By[c+2+1i/, j" —(r—1)c2¢+1] =
By [c+2+i,i12  +a], where 0 < i1 < i, a € [2°T!]. Thus by (26), v~ [q] = B,[c+2+i',i12  +a] =
0. This contradicts the assumption that ¢ € I’ N S. This implies that |I’ N.S| < 1. This completes
the proof of the claim. O O

r’'>r+1

Therefore, we have

|\I'l = |I'nI| (Because I' C I,.)
= |[I'NRy|+|I'NR|+|I'0 S|+ |I' N Ry (By (33))
< ¢c—(@—-1)4+1+1+74 (By Claims 4.6,4.7 and 4.8)
= c+3
This completes the proof of the lemma. O O

Proof of Theorem 1.7. We prove the theorem by assuming a fast algorithm for (IPF) and use
it to give a fast algorithm for CNF-SAT, refuting SETH. Let ¢ be an instance of CNF-SAT

with nq variables and mj clauses. We choose a sufficiently large constant ¢ such that (1 —

€) + 4(1—6_6) + % < 1 holds. We use the reduction mentioned in Lemma 4.1 and construct an

instance Ay )r = by, > 0, of (IPF) which has a solution if and only if ¢ is satisfiable.
The reduction takes time O(m%2n_c1). Let £ = [%]. The constraint matrix A, ) has dimension
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((m1—1)(2c+ 1)+ 1+¢) x (my - c-2°71) and the largest entry in vector by ) does not exceed
2 — 1. The path-width of M(A,)) is at most ¢ + 4.

Assuming that any instance of (IPF) with a non-negative constraint matrix of path-width & is
solvable in time f(k)([|bl|oc + 1)*~9%(mn)®, where d is the maximum value in an entry of b and
€,a > 0 are constants, we have that Ay )T = by, ),z > 0, is solvable in time

n n-a 4(1—¢) | a
Fle+4) - 2009t gta 1 00) _ 9Bl (1=q(etd) 9™kt |, 00) _ gm (-9 +Hzte) | 00)

(

Here the constant f(c+4) is subsumed by the term m? U Hence the total running time for testing

whether 1 is satisfiable or not, is,

n 41-9) , a A1) | o /
O(m?27+) + 2n1((1—€)+—c +z)m?(l) _ 2m((1—e)+T+;)m§9(1) py '”lm?(l)

)

where ¢ = (1 —¢) + A0-9 4 2 < 1. This completes the proof of Theorem 1.7. O

c

4.3 Proof of Theorem 1.8

In this section we prove Theorem 1.8: (IPF) with non-negative matrix A cannot be solved in time
FUIBlo0) ([b]l 0o + 1)E=9%(1mn) M) for any function f and e > 0, unless SETH fails, where & is the
path-width of the column matroid of A. Here, we do not give a complete proof, but we give an
adaptation of the proof of Theorem 1.7.

In Section 3.2, we gave a reduction from CNF-SAT to (IPF). However in this reduction the
values in the constraint matrix Ay ) and target vector by ) can be as large as 2l¢1—1, where n is
the number of variables in the CNF-formula v and c is a constant. Let m be the number of clauses
in 7. In this section we briefly explain how to get rid of these large values, at the cost of making
large, but still bounded path-width. From a CNF-formula 9, we construct a matrix A = Ay ) as
described in Section 3.2. The only rows in A which contain values strictly greater than 1 (values
other than 0 or 1) are the ones corresponding to the constraints defined by Equation (11). In
other words, the values greater than 1 are in the rows in yellow/green colored portion in Figure 5b.
Recall that £ = [2] and the largest value in A is 2¢ — 1. Any number less than or equal to 2¢ — 1
can be represented by a binary string of length ¢ = %. Now we rewrite the Equation (11), by £
new equations. For each j € [{] and N € N, let b;(N) represent the j'* bit in the ¢-bit binary
representation of N. Then for allr € [m—1],i € [0,c—1] and j € [¢], we have a system of constraints

> (0 (15)) weria) + (i E=1= 15D voria) = 1 (34)

a€[0,2L—1]

In other words, let P = {(r—1)(2¢+1)+c+1+i| r € [m—2],i € [0,c—1]}. The rows of A contain-
ing values larger than one are indexed by P. Now we construct a new matrix A’ from A by replacing
each row of A whose index is in the set P with ¢ rows and for any value Ali, j],i € P we write its
£-bit binary representation in the column corresponding to j and the newly added ¢ rows of A’.
That is, for any v € P, we replace the row v with ¢ rows, 71,...,7,. Where, for any j, if the value
Aly,j] = W then A'[y, j] = ni, where 7, is the k** bit in the /-sized binary representation of .

Let m’ be the number of rows in A’. Now the target vector b’ is defined as b'[i] = 1 for all
i € [m/]. This completes the construction of the reduced (IPF) instance A’z = b’. The correctness
proof of this reduction is using arguments similar to those used for the correctness of Lemma 4.2.

Lemma 4.9. The path-width of the column matroid of A" is at most (c +1)2 4 3.

Proof. We sketch the proof, which is similar to the proof of Lemma 4.4. We define I and J/ for
any r € [m] like I, and J, in Section 3.2. In fact, the rows in I/ are the rows obtained from I, in the
process explained above to construct A’ from A. We need to show that dim(span(A’|{1,...,j})N
span(A'[{j +1,...,n'})) < (c+1)% +2 for all j € [n' — 1], where n’ is the number of columns in
A’. The proof proceeds by bounding the number of indices I such that for any ¢ € I there exist
vectors v € A'|{1,...,j} and uw € A'|{j + 1,...,n'} with v[g] # 0 # u[g]. By arguments similar to
the ones used in the proof of Lemma 4.4, we can show that for any j € [n’ — 1], the corresponding
set I’ of indices is a subset of I]. for some r € [m]. Recall the partition of I, into Ry, R, S and Ry
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in Lemma 4.4. We partition I/ into parts @1, W,U and Q2. Notice that Ry, R C P, where P is
the set of rows which covers all values strictly greater than 1. The set @)1 and Q)2 are obtained
from R; and Rs, respectively, by the process mentioned above to construct A’ from A. That is,
each row in R;,7 € {1, 2} is replaced by ¢ rows in ;. Rows in W corresponds to rows in R and U
corresponds to the rows in W. This allows us to bound the following terms for some i € [0, ¢ — 1]:

I'N@il < (e=(i—1))=(c—(i-1),
|I/0Q2| < i-d,

II'NU| < 1, and

['nw|] < 1.

By using the fact that I’ C I and the above system of inequalities, we can show that
. . n
dim(span(A’[{1,...,5}) Nspan(A'[{j + 1,...,n'})) < (c+ 1)(21 +2.

This completes the proof sketch of the lemma. O

Now the proof of the theorem follows from Lemma 4.9 and the correctness of the reduction (it
is similar to the arguments in the proof of Theorem 1.7).

5 Proof of Theorem 1.9

In this section, we sketch how the proof of Cunningham and Geelen [1] of Theorem 1.5, can be
adapted to prove Theorem 1.9. Recall that a path decomposition of width k£ can be obtained in
f(E)-n® time for some function f by making use of the algorithm by Jeong et al. [13]. However,
we do not know if such a path decomposition can be constructed in time O((||b|oc + 1)*¥+1)n®®),
so the assumption that a path decomposition is given is essential.

Roughly speaking, the only difference in the proof is that when parameterized by the branch-
width, the most time-consuming operation is the “merge” operation, when we have to construct a
new set of partial solutions with at most (||b||oc + 1)* vectors from two already computed sets of
sizes (||b]|oo + 1)* each. Thus to construct a new set of vectors, one has to go through all possible
pairs of vectors from both sets, which takes time roughly (||b|ls + 1)?*. For path-width parame-
terization, the new partial solution set is constructed from two sets, but this time one set contains
at most (]|b]|oo + 1)* vectors while the second contains at most ||b||oc + 1 vectors. This allows us
to construct the new set in time roughly (||b]|oo + 1)*+1.

Recall that for X C [n], we define S(A, X) = span(A4|X) Nspan(A|E \ X), where E = [n]. The
key lemma in the proof of Theorem 1.5 is the following.

Lemma 5.1 ( [1]). Let A€ {0,1,...,[|blloc}™ ™ and X C [n] such that Ay;(a)(X) = k. Then the
number of vectors in S(A, X)N{0,...,||blle}™ is at most (||b]loc + 1)*7L.

To prove Theorem 1.9, without loss of generality, we assume that the columns of A are ordered
in such a way that for every j € [n — 1],

dim(span(A4|{1,...,i}) Nspan(A|{i +1,...,n})) < k — 1.

Let A" =[A,b]. That is A’ is obtained by appending the column-vector b to the end of A. Then
for each i € [n],

dim(span(A’|{1,...,i}) Nspan(A'|{i +1,...,n+1})) < k. (35)

Now we use dynamic programming to check whether the following conditions are satisfied. For
X C [n+1], let B(X) be the set of all vectors b’ € ZZ} such that

(1) 0= <b,

(2) there exists z € Z‘;gl such that (A'|X)z =¥, and
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(3) b € S(A', X).

Then (IPF) has a solution if and only if b € B([n]). Initially the algorithm computes for all
i € [n], B({#}) and by Lemma 5.1, we have that [B({i})| < ||b|loc + 1. In fact B({i}) C {a-
v | v is the i*" column vector of A’ and a € [||b||oc+1]}. Then for each j € {2,...,n} the algorithm
computes B([j]) in increasing order of j and outputs YES if and only if b € B([n]). That is, B([j]) is
computed from the already computed sets B([j—1]) and B({j}). Notice that b’ € B([j]) if and only if

(a) there exist by € B({1,...,7 — 1}) and bs € B({j}) such that b’ = by + bs,
(b) ¥ < b and
(c) b € S(A[1]).

So the algorithm enumerates vectors b satisfying condition (a), and each such vector b’ is included
in B([4]), if b’ satisfy conditions (b) and (c). Since by (35) and Lemma 5.1, |[B([j—1])| < (||b]|oc +1)*
and [B({7})| < ||bllec + 1, the number of vectors satisfying condition (a) is (||b]|oc + 1)*, and hence
the exponential factor of the required running time follows. This provides the bound on the claimed
exponential dependence in the running time of the algorithm. The bound on the polynomial com-
ponent of the running time follows from exactly the same arguments as in [1].

6 Conclusion

We would like to mention that our proofs of Theorems 1.7 and 1.8 imply lowerbounds in terms
of the dual path-width of the constraint matrix A. The dual graph G of a matrix A is defined
as follows. For each row i of A there is a vertex v; in G. There is an edge between v; and v;
if and only if the corresponding rows overlap (i.e., there is an index r such that A[i,r] # 0 and
Alj,7] # 0). The dual pathwidth of A is the path-width of the graph G. We observe that the
proofs of Theorems 1.7 and 1.8 imply the following results.

e Unless SETH fails, (IPF) with even a non-negative m x mn constraint matrix A cannot be
solved in time f(k)(|[b]loc + 1)A=%(mn)°® or £([[b]loo) ([[blloe + 1)A=%(mn)°M) for any
computable function f and € > 0, where k is the dual path-width of A.

Towards the proof of the above result we observe that the dual path-width of the matrix A
constructed in the proof of Lemma 4.1 is at most ¢+ 2. That is, we construct a path-decomposition
of the dual graph of A as follows. Notice that the rows 1,...,2¢+ 1 of A cover all the non-zero
entries of the submatrix By. Let o1 be the sequence Sy 1,...,S1, of subsets of {1,...,2¢c+ 1},
where S11,...,51, are defined as follows. For each j € [¢],

S, ={1}u{l+j}u{{c+2,....,c+1+j}

For each 1 < r < m, let p, be the number such that the rows p, + 1,p, +2,...,p, + 3c+ 1
of A cover all the non-zero entries of the sub-matrix B,. Let o, be the sequence S, 1,...,S, . of
subsets of {p, +1,...,p, +3c+ 1}, where S, 1,..., S, are defined as follows. For each j € [c],

Sri=Apr+74,-...or +ctU{pr+ec+1}U{p, +c+ 1+ U{{pr+2c+2,...,pr +2c+ 1+ j}

Let p,, be the number such that the rows p,, + 1, pm + 2,...,0m + 2¢ + 1 of A cover all
the non-zero entries of the sub-matrix B,,. Let o, be the sequence Sy, 1,...,Sm,. of subsets of
{pm +1,...,pm +2c+ 1}, where Sy, 1,...,Sm, are defined as follows. For each j € [c],

Sm.j = APm 4G P+ Uipm + ¢+ 13U {pm + e+ 147}

Then, 01,09, ...,0,, is a path-decompostion of the dual graph of A where each subset is of size at
most ¢+ 3. Therefore, the dual path-width of A is at most ¢+ 2. Similarly one can prove that the
dual path-width of the matrix A’ constructed in Section 4.3 is at most (c+1)%+1. Then by following
arguments similar to that of proofs of Theorems 1.7 and 1.8, one can prove the required result.
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