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Detection of decarburising depth in Hadfield steels using a multi-

magnetic NDE method 

 

Abstract 

This paper reports the capability of different widely used electromagnetic nondestructive 

evaluation (NDE) methods to characterise the decarburising phenomena in Hadfield steels. As 

a result of austenitisation in an uncontrolled atmosphere, a thin layer of martensite phase forms 

at the Hadfield steel surface after quenching, which is attributed to decarburising. In this work, 

to produce various decarburising depths, four Hadfield steel samples were austenitised at 1050 

°C for 1, 2, 3 and, 4 hours in an air furnace and then quenched in water. The depth of the 

decarburised layers was characterized using hardness profile measurements, optical and 

scanning electron microscopy as well as X-ray diffraction analysis. The results confirmed the 

occurrence of decarburising and presence of a surface martensite layer of 35 to 110 µm 

depending on austenitisation time. The microstructural change at the surface affects the 

magnetic properties of the sample and enables electromagnetic NDE methods to detect the 

transformed layers, quantitatively. In the nondestructive characterisation step, the relationships 

between the austenitising time and the outputs from magnetic flux leakage (MFL), initial 

magnetisation curve (BH) and eddy current (EC) methods are reported. Comparing the results 

obtained from the three magnetic NDE methods, it can be concluded that MFL and EC (phase 

angle output) have the potential to quantify the surface microstructural changes occurring as a 

result of the decarburising process in Hadfield steels.  
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1. Introduction 

In the literature, it is reported that controlled heat treatment cycles including 

austenitising, quenching and tempering treatments are necessary to optimise the 

microstructural characteristics of modified Hadfield austenitic manganese steels [1]. Hadfield 

steels are usually austenitised above 1050 °C to dissolve carbides; then, quenching in water is 

done to obtain a uniform austenitic structure [2, 3]. However, in the absence of a vacuum 

furnace or an inert atmosphere, a high austenitising temperature often produces surface 

decarburisation and a reduction in local manganese content, leading to an increase in the 

martensite start (Ms) temperature. Thus, transformation of austenite to α-martensite at the 

surface layer can occur after quenching. In addition, a number of papers have reported that 

strain-induced transformation to martensite can also occur due to decarburisation or local 

segregation of manganese and therefore formation of a meta-stable austenite composition [2, 

4, 5, 6]. 

Gruzin et al. [6] have presented details of the austenite to martensite transformation in 

austenitic manganese steel. Their work can be summarised as follows:  As a result of 

decarburisation of the γ solid solution at high solutionising temperature, manganese diffuses 

into the carbides. In this situation, all the carbon is concentrated in the carbide phase with 

negligible carbon in solid solution. Thus, γ (1.25 wt% C) is converted to γ (0.05 - 0.15 wt%C) 

and eutectoid (α + (Fe, Mn)3C) mixture. Finally, ε- and α-martensite phases, are formed from 

decarburised austenite by the reaction of γ (0.05 - 0.15 wt%C) → ε + α (martensite). Thus, 

Hadfield steel should not be subjected to a heat-treating process in an uncontrolled or weakly 

oxidising atmosphere unless the decarburised layer is removed before use.  

According to the International Standard ISO 3887, the conventional methods to detect 

and quantify the occurrence of decarburisation are microstructural observation using 

metallography and plotting the hardness profile by micro-hardness measurements. In the last 
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decade, nondestructive evaluation (NDE) technologies have enabled inspection systems to 

characterise the microstructural changes at the surface of heat-treated steel parts. For example, 

detection of a carburised layer [7, 8], induction hardened depth [9, 10, 11] and nitrided layer 

[12] are some applications of NDE methods to determine the microstructural changes at the 

surface. Particularly, detection of the various microstructures that can form in decarburised 

layers has been studied. For instance, a high ferrite/low pearlite layer over a low ferrite/high 

pearlite layer in AISI 1045 has been characterised using the evaluation of relationship between 

EC impedance point and decarburizing depth [13]. In [14], The same microstructural change 

has been detected in AISI 1055 steel using MBN technique, where the position of the MBN 

peaks was used to estimate the thickness of the decarburised layer. In [15], a multi-frequency 

electromagnetic sensor was used to nondestructively evaluate a full ferrite layer on a full 

pearlitic microstructure in AISI 1080 steel, relating the inductance value to decarburised layer 

depth. The MBN coercivity was proposed in [16] as a new electromagnetic parameter to detect 

a full ferrite layer on the ferrite/pearlite microstructure in spring steel after acid pickling and 

sand blasting treatments. A ferrite layer on a martensite core in SAE 92V45 steel has also been 

determined using harmonic decomposition of EC signals in [17]. In [18], the capability of the 

MBN technique to detect a ferrite/pearlite layer on a tempered martensite has been reported for 

Ovako 677 steel. Finally, a decarburised ferrite layer on the normal rail steel microstructure of 

pearlite has been assessed quantitatively using a multi-frequency electromagnetic sensor in 

[19]. However, the formation of martensite phase as a decarburised layer on the austenitic 

matrix of Hadfield steel has not yet been evaluated using nondestructive techniques. 

In our recent investigations on Hadfield steels, the ability of the EC method for 

characterising carbide/pearlite precipitation on austenitic grain boundaries as a result of 

inappropriate applied heat treatment [20] and the amount of work-hardening of the Hadfield 

steel subjected to hammering treatment [21] have been reported. In the present paper, the 
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capabilities of three magnetic NDE methods, including magnetic flux leakage (MFL), initial 

magnetisation (BH) curves and EC for determining the decarburising depth of Hadfield steels 

have been studied. These methods are widely used for microstructural characterisation and 

have been considered as they are based on similar electromagnetic phenomena. 

 

2. Experimental Procedure 

To create different decarburising depths in Hadfield steel, five samples with dimensions 

of 100 mm × 20 mm × 4mm were prepared. Four samples were austenitised at 1050 °C in an 

air furnace for 1, 2, 3 and 4 hours followed by water quenching and one was left as-received 

without any decarburised layer (austenitising time of 0 in the air furnace). For the as-received 

sample, to ensure that a decarburised layer does not form on the surface, but the same bulk 

microstructure was achieved it was separately austenitised in an argon atmosphere furnace at 

1050 °C followed by water quenching at ambient temperature. Microstructural changes in the 

bulk and at the surface of the decarburised samples were studied using optical (Motic 

BA310MET) and scanning electron microscopes (SEM VP 1450) as well as X-ray diffraction 

diffractometer (X'Pert Philips). Besides plotting the hardness profiles of the samples using the 

Vickers indenter on a Bohler micro-hardness tester (25 g load for 10 seconds), the decarburised 

depths were also measured from the optical and SEM images. 

To non-destructively characterise the microstructure of a given steel sample, based on 

the results of the MFL, BH and EC methods, the experimental setups, shown in the schematic 

block diagram of Fig. 1, were used. The excitation part in the MFL and MHL (used to generate 

the BH curves) subsystems is similar and so, the tested location and the magnetisation state of 

material are identical for these methods. 

In order to magnetise the steel samples in the MFL and MHL (BH) subsystems, two 

1500-turn coils connected in-series were used, each wound on one arm of a U-shape core. A 
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triangular signal was made using a LabVIEW program. The signal was then amplified using a 

current amplifier with a specified frequency and amplitude to excite the magnetising coils. The 

two-stage bi-polar amplifier used in this research has been originally designed in our laboratory 

and is completely linear. Our measurements confirmed that the excitation current of the 

magnetising coils was directly proportional to the output waveform of the Advantech PCI-

1720U-AE D/A conversion card installed on a desktop computer with the Windows 10 

operating system. The amplifier could provide 1A current, which was sufficient to magnetically 

saturate our steel samples. According to the measurements, discussed in the following sections, 

Bmax values for all the samples are less than 0.7 T. 

A Hall-effect sensor (HW-108C) at 0.5 mm above the sample was used to gauge the 

surface field for the MFL subsystem. Other than magnetising coils, two in-series coils with 

1000 turns of copper wire (0.1 mm diameter) on the same U-shape core, were used to measure 

the magnetic field induced into the steel samples. Hall-effect sensor and sensing coils outputs 

were sampled with a sampling rate of 500 samples/s and the precision of 12 bits using an 

Advantech PCI-1714UL-BE A/D conversion card installed on the same computer. The 

measured voltage (from the sensing coils) induced into the steel samples (emf) was then scaled 

and time-integrated using a MATLAB program in order to provide the B-field.  

In addition to the B-field, the magnetic field strength (H-field) was also required to plot 

the B-H curve. The magnetising waveform, available from the LabVIEW program, could be 

considered as the H-field after some scaling, since the magnetic field strength was perfectly 

proportional to the exciting current, as mentioned above. It should also be noted that although 

all magnetic parameters (including H-field) were accurately measured using our measurement 

system, the exact values were not important as their relative values are enough for 

characterising the decarburisation behaviour. Using both B-field and H-field, it is possible to 

plot the B-H curve and compute the Bmax. 
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One coaxial excitation coil and one pickup coil, each with a length of 30 mm, were 

applied in the EC subsystem in order to respectively magnetise the steel samples and to measure 

the induced voltage in them. The excitation and pickup coils had respectively 200 and 400 turns 

of fine copper wire. A sinusoidal signal generated using a laboratory function generator with 

the frequency range of 1-100 kHz was fed to the excitation coil after an appropriate current 

amplification and when the sample was demagnetised. Since any residual field can affect the 

results significantly, demagnetisation between measurements is mandatory. This process is 

done by applying a sinusoidal voltage with a reducing amplitude to the excitation coils. The 

measured induced voltage, which was the output of the pickup coil, was then given to another 

analog port of the Advantech PCI-1714UL-BE A/D conversion card. A MATLAB program 

finally computed the root mean square (RMS) of the induced voltage of the pickup coil, 

normalised impedance (Z/Z0) and the phase angle (ϕ) of the excitation coil in the presence of 

the steel sample under test. 

   

3. Results and Discussion 

The recommended ISO 3887 method for measuring the decarburised depth is 

determining the micro-hardness profile on a cross section of the steel sample after polishing. 

Therefore, in the present work, the relationship between the microstructure in the decarburised 

zone and micro-hardness value has been evaluated. According to ISO 3887, the depth of 

decarburisation is considered as the distance between the surface of the sample and the point 

at which the hardness is at the level where the performance would be unaffected by a reduction 

in hardness, which is equivalent to the bulk hardness for the Hadfield steels. Fig. 2 presents the 

hardness profiles of the four steel samples, subjected to different austenitising times. Contrary 

to what is expected in the decarburisation process for conventional carbon steels where 

hardness decreases in the decarburised region, in all the Hadfield steel samples, an increase in 
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the hardness is observed towards the surface from the material core and in the core the hardness 

has a constant value. The thickness of decarburised layers has been determined by considering 

a depth where hardness becomes constant and equal to the bulk hardness. Fig. 2 indicates the 

heat-treating process in the absence of an inert atmosphere increases the hardness of the surface 

by at least 300 HV compared to the bulk (for the sample austenitised for 1 hour), which is 

attributed to the surface microstructural changes as a result of the decarburisation process. An 

increase in the austenitising time increases the hardness in the surface region (from 590 to 900 

HV) and increases the hardening depth (from 35 to 110 µm) for the samples. This is expected 

to be due to the amount and depth of the hard martensite phase formed at the surface. It should 

be noted that a gradual decreasing trend in micro-hardness values indicates the existence of a 

martensite-austenite mixture in the decarburised layer where the amount of austenite phase 

increases with depth. 

Fig. 3 shows optical images of the cross sectioned Hadfield steel sample showing the 

surface subjected to different durations of austenitising treatment. A single austenite phase, 

with large grain size, is seen for the as-received sample at the surface. However, it is observed 

that the surface microstructures of the heat-treated samples (in the air furnace) are different. 

For all the heat treated samples, close to the surface a thin layer with a clear boundary to the 

austenite grains is seen. For the samples austenitised for longer durations, significant increases 

in the decarburised layer thickness are observed, which in turn confirms the relationships of 

austenitising time and decarburising phenomena. As it can be seen, the present observations 

are in good agreement with the reported results in micro-hardness investigations. 

To support the micro-hardness and optical microscopic observations, SEM 

examinations were also carried out to explore the phase characteristics formed in the surface 

layer. The SEM images, showing the microstructures of the core and decarburised layer of the 

section austenitised for 4 hours, are shown in Fig. 4. A relatively clear boundary between the 
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martensite and austenite phases at about 110 μm (measured by an image processing software) 

below the surface is seen in Fig. 4a. Single austenite phase is observed in the core 

microstructure of the decarburised sample (Fig. 4b). It can also be seen that martensite phase 

has been formed at the surface of the sample (Fig. 4c). At higher magnifications (Figs. 4d and 

4e) the needle structure of martensite is observed. 

To evaluate the phases formed in the decarburised layer, XRD analysis was performed. 

The results of XRD are presented in Fig. 5.  It can be clearly seen, in the as-received sample, 

five peaks corresponding to 2θ angles of 43.47°, 50.67°, 74.67°, 90.67°, and 95.94° appear 

respectively for the (111), (200), (220), (311), and (222) planes of the austenitic phase. 

However, the XRD graphs from the surface of the decarburised samples confirm the formation 

of martensite phase due to the appearance of (110), (200), (211), and (220) planes of martensite 

at 2θ = 44.67°, 65.02°, 82.33°, and 98.94°. For the sample with the austenitising time of 1 hour, 

the peaks of austenite phase were not removed completely, while the martensite ones are clearly 

present. This means that at the surface of the sample (with a penetration depth of less than 

about 20 microns, measured by XRD), the microstructure contains austenite (in a low content) 

and martensite. With an increasing depth of decarburised layer, the intensity of the martensite 

peaks increased and the austenite peaks were completely eliminated. Indeed, the loss of 

manganese and carbon from solid solution at the surface during heat treatment in an air 

atmosphere [4, 6] results in a thin layer of martensite at the surface of the Hadfield steel, if an 

inert atmosphere is not available. 

In Fig. 6a, the MFL induced voltage has been plotted with respect to the decarburising 

depths resulting from different austenitising times of 0, 1, 2, 3 and 4 hours. As it is clearly 

observed, all the induced voltage plots perfectly follow the triangular waveform used to excite 

the samples. As expected, the amplitude of the induced voltage has a reverse relationship with 

the depth of decarburisation. This can also be seen in Fig. 6b, where the MFL Vp-p is plotted 
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with respect to the decarburising depth. This is because at the longer durations of the 

austenitisation treatment, more decarburising occurs and there is more paramagnetic austenite 

to ferromagnetic martensite transformation in the surface region. Therefore, in the presence of 

a martensite layer, the magnetic flux lines are concentrated at the surface and less leakage 

occurs from the surface. This also causes the Hall sensor to sense less flux near the surface. 

Accordingly, growth in the decarburised martensite layer at the surface reduces the MFL output 

dramatically. 

In Fig. 7a, the magnetic flux density has been plotted with respect to the magnetic field 

strength for different decarburising depths of 0, 35, 55, 65 and 110 µm. As it can be seen, due 

to the paramagnetic nature of Hadfield steel, the hysteresis effect is not observed.  There is no 

clear distinction between the B-H curves for different samples in this figure. In Fig. 7b, the 

maximum measured value of B (Bmax) for the applied H is plotted with respect to the 

decarburising depth, where it can be seen that there is a relationship between Bmax and the 

decarburising depth. However, this relationship is not as clear as seen in Fig. 6b, especially for 

the decarburising depths of 35, 55 and 65 µm. The low performance of the B-H results is 

attributed to the fact that Bmax measured in the B-H method is more affected by the volumetric 

properties of the austenite phase than the thin layer of martensite at the surface, since for the 

excitation frequency of 0.1 Hz the penetrating depth is much larger than thickness of the 

decarburized layer.  

In the graphs shown in Fig. 8 the RMS voltage, normalised impedance and phase angle 

of the eddy current induced into the samples are plotted with respect to the decarburising depth. 

As it is seen, all the parameters have a clear direct relationship with the decarburising depth. 

Therefore, they also can be used to estimate the amount of decarburising and associated 

austenite to martensite transformation at the surface of the samples. The improved performance 

of the EC method to identify the surface microstructures in comparison with the BH method is 
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attributed to the fact that the EC method works at higher frequencies in which the skin effect 

is dominant. Indeed, according to the equation for the penetration depth [22], at the operating 

frequency of 40 kHz, the skin depth for all our Hadfield steel samples is slightly more than 

120µm, if a decarburised martensite layer is present (relative permeability and electrical 

conductivity values in skin depth equation were considered for surface martensitic 

microstructure; µr=75 and σ=0.41×107 Ω_1 m_1).  

Indeed, the penetration depth formula gives just an approximate value as, for example, 

the specific sensor geometry is not considered, and the depth is where the magnetic field 

reduces to exp (-1) ≈ 0.37 of its initial value, therefore the material below this depth also affects 

the signal albeit with less effect. Therefore, when implementing the eddy current method, the 

exact frequency that gives the best resolution for the surface layers being measured must be 

chosen experimentally. In our case, we have swept the frequency range from 15 to 50 kHz to 

find the frequency in which the eddy current method has the best performance. The frequency 

of 40 kHz was chosen according to this experimental study. 

The calculated skin depth for a fully martensitic layer with 40 kHz measurement 

frequency is almost equal to the maximum decarburised depth measured for these samples, and 

hence the contribution of the decarburised layer to the inductance is much higher than that of 

the austenitic phase and the sensitivity of the method is maximum near the operating frequency 

of 40 kHz. However, the eddy current method is quite a robust technique and the experimental 

trials showed that any frequency between 38 to 42 kHz could be considered as a suitable 

penetration frequency. 

According to the plots in Figs. 6b, 7b and 8, almost all the magnetic parameters from 

the three MFL, BH and EC subsystems have a clear relationship with the decarburisation depth. 

Indeed, according to Fig. 7b, Bmax is the only magnetic parameter that does not have a one-

to-one relationship with the decarburisation depth; i.e., if Bmax is used to estimate the 
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decarburisation depth, an ambiguity is inevitable when it is between 0.656 and 0.658 (T). In 

Fig. 9, the parameters normalised to the as-received sample have been plotted and the relevant 

ease by which the signals distinguish between the samples can be visually shown. 

Normalisation helps compare the outputs of the different methods and select the best one (the 

one that distinguishes the samples from each other more clearly). Despite the clear relationship 

between each of the magnetic parameters and the decarburisation depth, the plot in Fig. 9 shows 

that amongst all, the EC phase angle and MFL output show more obvious trends than the other 

parameters. Hence, it seems that these parameters are best suited to nondestructively estimate 

the decarburising depth. Besides, as can be clearly seen, since the MFL points have a more 

linear relationship with decarburising depth, the regression line is fitted with a higher R-square 

measure, in comparison with the EC phase angle. 

  

4. Conclusions 

In the present paper the ability of three widely used electromagnetic NDE methods (MFL, BH 

and EC) to characterise the decarburisation depth in Hadfield steels is studied. The main results 

are as follows: 

1. As a result of the heat-treating process applied to the Hadfield steels in an air furnace, 

decarburisation phenomena occurred, which results in the formation of a thin martensite 

layer at the surface of the steel sample. Formation of this ferromagnetic phase on the 

paramagnetic Hadfield steels enables the magnetic nondestructive inspection systems 

to determine the surface microstructural changes. The results of XRD and SEM 

evaluations confirmed the occurrence of the austenite to martensite transformation in 

the decarburised layers. An increase in austenitising time from 1 to 4 hours, increases 

the surface hardness (from 590 to 900 HV) and decarburising depth (from 35 to 110 

µm).  
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2. In nondestructive evaluation of the decarburising depth, it was found that: (i) MFL is 

the preferred method to detect the occurrence of decarburisation and to determine the 

decarburising depth, quantitatively. The results from the MFL method to determine the 

decarburising depth represent a similar accuracy to the micro-hardness test (The 

correlation coefficient of linear relationship between the MFL outputs and the values 

of decarburizing depths obtained from micro-hardness method is about 0.98). (ii) BH 

measurement system is not sensitive enough to distinguish the samples with different 

decarburised layers from each other. This is because the Bmax is more influenced by 

the magnetic properties of the bulk which is paramagnetic in Hadfield steels; (iii) the 

phase angle from the EC measurement system shows a semi-linear variation (R2=0.89) 

for the different decarburising depths. Therefore, although the MFL method is advised, 

the phase angle of EC also can be used as a good technique to characterise the 

decarburising depth. 
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Figure Captions 

Fig. 1. Block diagram of the proposed measurement setup. 

Fig. 2. Hardness profiles of the samples austenitised for 1, 2, 3 and 4 hours (the decarburised 

depths were obtained as 35, 55, 65 and 110 µm, respectively). 

Fig. 3. Optical images of the steel surface during a) 0, b) 1, c) 2, d) 3 and e) 4 hours 

austenitising treatment in the air furnace (the cross sections of the samples were etched with 

Vilella’s reagent (2 g picric acid and 5 mL HCl in 100 mL ethyl alcohol).  

Fig. 4. a) SEM micrograph of a cross section of the Hadfield steel subjected to austenitisation 

time of 4 hours; b) austenitic phase of core and c-e) martensitic phase of decarburised layer. 

Fig. 5. X-ray diffraction patterns of the as-received samples and the ones austenitised for 

different periods of time extracted from less than 20 micrometers below the surface. 

Fig. 6. a) Induced MFL voltage vs. time for different austenitising time and b) MFL Vp-p vs. 

decarburisation depth. 
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Fig. 7. a) Magnetic flux density (B) vs. magnetic field strength (H) for different 

decarburisation depths and b) the maximum of B vs. decarburisation depth. 

Fig. 8. The eddy current results, a) RMS voltage, b) normalised impedance and c) phase 

angle, all vs. decarburisation depth. 

Fig. 9. The normalised parameters from the three MFL, BH and EC subsystems by the as-

received sample with respect to the decarburisation depth. 
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Fig. 4 
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Fig 5. 
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Fig 6. 
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Fig 7. 
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Fig 8. 
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Fig 9. 
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Fig 10. 

 

 


