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ABSTRACT:  
Recently, technologies such as artificial neural networks (ANNs) and asynchronous amplitude 
histograms (AAHs) are widely employed in the optical performance monitoring (OPM). In this paper, 
the number of layers and the optimization of the neural networks are investigated to complete a series of 
monitoring tasks in optical communication systems with a large range of chromatic dispersion (CD) and 
optical signal-to-noise ratio (OSNR). It is shown that the monitoring accuracy has been significantly 
improved with such implementations. Numerical simulations, which have been conducted for six 
different modulation formats, demonstrate a good monitoring performance, with an average OSNR 
monitoring error of 0.1064 dB (99.49% monitoring accuracy) for the OSNR range of 10-40 dB and an 
average CD monitoring error of 3.3324 ps/nm (99.45% monitoring accuracy) for the CD range of 170-
1870 ps/nm, respectively. Furthermore, the CD monitoring and the modulation format identification 
(MFI) have also been investigated for the system with a large range of dispersion. An average CD error 
of 16.6832 ps/nm (99.45% monitoring accuracy) and a 100% MFI accuracy have been achieved for all 
six modulation formats. This scheme is also verified experimentally with OSNR errors of 0.41 dB and 
CD errors of 15.21 ps/nm, respectively. The identification accuracy of the three modulation formats in 
the experimental system is also 100%. 
Keywords: optical performance monitoring (OPM); optical signal-to-noise ratio (OSNR); chromatic 
dispersion (CD); neural network; asynchronous amplitude histogram 

1. Introduction 

With the rapid development towards high capacity, transparency and flexibility, future fiber-optic 
networks pose stronger requirements for the network reliability, and at the same time increase the 
complexity of the network management [1]. Optical performance monitoring (OPM) achieves the 
estimation and the acquisition of different physical parameters from transmitted signals and various 
components of optical networks. OPM is indispensable in ensuring the robust operation of optical 
networks and plays a key role in enhancing the flexibility and the efficiency of overall networks [2-4]. 
Conventional network performance monitoring and management in the electrical domain can no longer 
meet the requirements of next-generation dynamic heterogeneous optical networks [5-8]. In recent years, 
artificial neural networks (ANNs) have been applied for monitoring channel impairments and it has been 
shown that ANN is a powerful tool for the OPM [9-18]. Among these reports, the technique based on 
asynchronous amplitude histograms (AAHs) and ANNs, proposed by T. S. R. Shen and F. N. Khan, 
behaved simple and cost-effective [9,10]. Compared to other methods, this approach, employing AAHs 
as the NN input, can be applied to different modulation formats in coherent- and direct-detection 
communication systems, and does not require any manual feature extraction. However, in these reported 
works, the ranges of monitored parameters were quite small, and the monitoring accuracy had to be 
further improved. In this work, the simultaneous monitoring of chromatic dispersion (CD) and Optical 
signal-to-noise ratio (OSNR) with a larger monitoring range is achieved through multi-layer NNs, and 
the range of CD that can be monitored by this method is also studied. By changing the number of layers, 
optimizer, activation function and the number of bins, the monitoring error of neural network can be 
significantly reduced. The final calculated CD and OSNR monitoring errors using the above network 
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structure are much smaller than those reported in the literature, and the network also has a larger 
parameter monitoring range. Furthermore, the influence of the number of NN layers on the training time 
is studied using Google Colab. It is shown that the optimised multi-layer NN structure provides a higher 
monitoring accuracy while does not cost longer training time. In the end, experimental tests with two 
modulation formats have been carried out to verify the feasibility of the proposed method. This paper is 
organized as follows. In Section 2, numerical simulations of simultaneous monitoring on OSNR and CD 
have been performed in a transparent fiber-optic network with six different modulation formats, 
including return-to-zero on-off keying (RZ-OOK), non-return-to-zero (NRZ) OOK, chirped return-to-
zero (CRZ) OOK, differential phase-shift keying (DPSK), differential quadrature phase-shift keying 
(DQPSK) and 16-ary quadrature amplitude modulation (16QAM), for the OSNR range of 10-40 dB and 
the CD range of 170-1870 ps/nm, respectively. Our results show that the average OSNR and CD 
monitoring errors are 0.1064 dB (99.49% monitoring accuracy) and 3.3324 ps/nm (99.45% monitoring 
accuracy), respectively, in the 10 Gbps fiber-optic network without the information of the modulation 
format. In Section 3, numerical simulations of CD monitoring have been carried out for the same six 
modulation formats with a larger CD range of 1870-5270 ps/nm, where an average CD monitoring error 
of 16.6832 ps/nm (99.45% monitoring accuracy) is achieved. In Section 4, numerical simulations of the 
modulation format identification (MFI) have been implemented, again for the same six modulation 
formats, and an estimation accuracy of 100% has been achieved. In Section 5, experimental 
demonstrations of MFI and simultaneous monitoring of CD and OSNR have been carried out. The 
conclusions of the paper are drawn in Section 6. 

2. Numerical simulations of simultaneous monitoring on OSNR and CD  

 
Fig. 1. Transmission setup for simultaneous monitoring of OSNR and CD. TX: transmitter; EDFA: erbium-doped fiber amplifier; 

VOA: variable optical attenuator; SMF: single-mode fiber; BPF: band-pass filter; PD: photodetector. 

To demonstrate the performance of NN (trained with AAHs) in the simultaneous monitoring of CD 
and OSNR, numerical simulations have been performed using VPItransmissionMaker software, with a 
system setup shown in Fig. 1. Six modulation formats, including RZ-OOK, NRZ-OOK, CRZ-OOK, 
DPSK, DQPSK and 16QAM, are generated and transmitted over a SMF, all at a data rate of 10 Gbps. 
The EDFA is employed to introduce the amplified spontaneous emission (ASE) noise to the signal and 
the noise power is controlled by a VOA to adjust the OSNR in the range of 10 - 40 dB with a step size 
of 0.3 dB. The dispersion coefficient of the SMF is set as 17 ps/(nmƒkm) and the total CD is in the range 
of 170 - 1870 ps/nm with a resolution of 17 ps/nm, controlled via the length of fiber. After the optical 
BPF, the signals are detected using a PD and are then asynchronously sampled at the receiver. The 
received signals, which are used to generate AAHs, contain 8448 amplitude samples. The abscissa of 
AAHs is the index of the bin, and the ordinate is the number of corresponding occurrences. Different 
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from the existing methods of manually extracting features, AAHs contain information about the amount 
of different impairments in the system, and AAHs are sensitive to changes in OSNR and CD of the 
transmission link. Therefore, the AAHs represented by a vector of number of occurrences can be used as 
the input neurons and the outputs of the NN are the actual OSNR and CD values of the system. The NN 
can automatically extract the features in the AAHs, and continuously optimize the parameters of the 
network during the training process, so that the two outputs of the network gradually approach the actual 
CD and OSNR values. The data set includes six different modulation formats, and each has 10201 
combinations of CD and OSNR values. Within the 61206 sets of data, we randomly select 40000 
components as the training data, 10000 components as the validation data and 10000 components as the 
test data, for the training and the application of NN. 

 
Fig. 2. Structure of the NN used for simultaneous monitoring of OSNR and CD. 

The NN used in this work is a fully connected scheme with multiple hidden layers, as shown in Fig. 
2. The input of the NN is the number of amplitude samples that fall into each bin interval. The number 
of bins is chosen as 80, meaning that the input layer of the NN has 80 neurons. The training data are fed 
in batches, with a batch size of 32. The activation function of the NN is the Rectified Linear Unit (ReLU), 
since it requires less complexity in training and optimization and can show a better performance [19,20]. 
The training data set [XTrain, YTrain] is employed to optimize the NN parameters (w and b) by minimizing 
the mean-square-error (MSE) |YTrain-YPredict|2 over the whole training set. The optimizer used in the NN 
is the adaptive moment estimation (Adam). The Adam algorithm integrates the ideas of Gradient 
Descent, Momentum, Adagrad, RMSprop and their improved variants [21]. The advantages of the Adam 
algorithm include low computing power, small memory requirements, insensitivity to gradient scaling 
and easy adjustment of hyperparameters. The learning rate of Adam is initially set as 0.001. When the 
loss starts to behave stable, the learning rate will drop to one tenth of its initial value. NNs with different 
numbers of hidden layers are applied to perform the simultaneous monitoring of OSNR and CD, and 
results are shown in Table 1. 

Table 1 Results of simultaneous monitoring of OSNR and CD with different numbers of hidden layers 

The numbers of hidden layers 2 4 6 8 10 

Average OSNR error(dB) 0.2922  0.1427  0.1257  0.1064  0.1163  

Average CD error(ps/nm) 10.2799  4.7763 4.0070 3.3320 3.3871 

Training time(s) 427.1315 583.6901 747.2634 989.0715 1231.8016 
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The average errors of the OSNR and the CD in Table 1 are calculated based on 
σ |்ܻ ௦௧ െ ܻௗ௧|ଵ
ଵ /10000 . It is found that the NN shows the best performance when the 

number of hidden layers is 8. The training time is calculated using Google Colab with a graphics 
processing unit (GPU) Tesla T4. Although it can be seen from Table 1 that the more hidden layers of the 
NN the longer the training time, the 8-hidden layer NN takes the least time when the NNs have the same 
loss. This arises from the fast convergence speed and fewer required numbers of epochs in the training 
of the 8-hidden layer NN. Since the training process is implemented offline, the training time is not the 
major consideration in defining the number of NN layers. When the number of hidden layers is 8, the 

CD and the OSNR monitoring accuracy, calculated as ሺ1െ σ |ሺೞିುೝሻ/ೞ|భబబబబ
భ

ଵ
ሻ ൈ 100%, are 

99.45% and 99.49%, respectively.  
 

 
(a)                                         (b) 

Fig. 3. (a) Histogram and normal distribution fitting of the OSNR estimation error using the 8-hidden layer NN. (b) Histogram 

and normal distribution fitting of the CD estimation error using the 8-hidden layer NN. 

Figure 3 depicts the histograms and the correponding normal distribution fittings of the CD and the 
OSNR estimation errors using the 8-hidden layer NN, respectively. It can be seen that most of the OSNR 
errors lie between -0.18 and 0.18 dB and more than 95% errors are situated between -0.32 and 0.32 dB. 
Similarly, most of the CD errors lie between -5 and 5 ps/nm, and more than 95% CD errors are located 
between -10 and 10 ps/nm. 

3. CD monitoring for a wider range of dispersion 

To investigate the performance of the NN (trained with AAHs), the transmission system in Fig. 1 is 
employed to perform the CD monitoring with a larger range of dispersion. The OSNR is in the range of 
10-40 dB with a step size of 1.0 dB, and the CD value is in the range of 170-8670 ps/nm with a step size 
of 34 ps/nm. The data set again includes six modulation formats, and each scheme has 7781 combinations 
of CD and OSNR values. We divide the CD values, between 170 ps/nm and 8670 ps/nm, into five groups 
to verify the CD monitoring behavior in each group. From each group of data, we randomly select 5000 
components as the training set, 2000 components as the validation set, and 2000 components as the test 
set for the training and the application of NN. The training set is also imported in batches, with a batch 
size of 16. The number of the hidden layers is again selected as 8. The number of neurons in the output 
layer is 1, since only the CD monitoring is performed. 
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Table 2 Average CD monitoring error in each group 

Group index 1 2 3 4 5 

Range of CD (ps/nm) 170-1870 1870-3570 3570-5270 5270-6970 6970-8670 

Average CD error (ps/nm) 2.8253 7.5979 39.0034 423.6310 426.8650 

The average CD monitoring error in each group is listed in Table 2. Figure 4 describes the scatter 
plots of predicted CD versus actual CD for group 1-5. It can be seen in Fig. 4 that the CD monitoring in 
the first two groups works well, while the CD monitoring in the third group shows some degradation. 
The CD monitoring cannot be performed in the last two groups (group 4 and 5). This is because when 
the CD is over large, AAHs are not sensitive to the variation of CD any more.  

 
    (a)                                           (b) 

  
     (c)                                           ( 

Fig. 4. (a)-(c) Scatter plots of predicted CD versus actual CD for group 1-3, respectively; 
(d) Scatter plots of predicted CD versus actual CD for group 4 and 5. 

Since it is already known that the CD monitoring using NNs (trained with AAHs) is only applicable 
to the dispersion of up to 5270 ps/nm, the impact of the number of bins on the CD monitoring 
performance is then investigated for the CD range of 1870-5270 ps/nm. 

Table 3 Average CD errors under different number of bins 

The number of bins 80 100 120 140 160 180 200 

Average CD error (ps/nm) 29.1243 24.2481 22.8859 20.2782 18.4844 17.5490 16.6832 
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Table 3 shows the average CD monitoring errors when the numbers of bins are 80, 100, 120, 140, 
160, 180 and 200, respectively. When the number of bins increases from 80 to 100, the average CD 
monitoring error shows a significant reduction, however, when the number of bins continues rising, the 
average CD monitoring error decreases more and more slowly. In general, the input features become 
more obvious as the number of bins increases. This is more conducive to the NN training. Therefore, a 
larger number of bins can reduce the average monitoring error of CD. However, it will require more 
input neurons, and will result in the increased computational complexity. Since there is a trade-off 
between the CD monitoring error and the computational complexity, the number of bins should not be 
set too much. When the number of bins is 200, the CD monitoring accuracy is 99.47%. 

4. MFI for a large range of dispersion 

 
Fig. 5. Structure of the NN used for MFI. 

The NN used for MFI employs a fully connected structure, as shown in Fig. 5, where only a single 
hidden layer is applied. The numbers of neurons in the input and the output layers are determined by the 
number of bins (e.g. 80 in the test here) in AAHs and the number of considered modulation formats (e.g. 
6 in this paper), respectively. The activation function used for the first two layers is ReLU, and the 
activation function used for the last layer is Softmax. The output of Softmax function characterizes the 
relative probability between different categories and this activation function has wide application 
senarios in multi-classification tasks [22]. The output of the NN is a one-dimensional vector with six 
probabilities, and the classification result is determined by the index of the highest probability. The loss 
function in Softmax is the cross entropy which can measure the degree of difference in random variables 
with different probability distributions. The smaller the cross entropy value is, the better the model 
prediction behaves. The optimizer used in the NN is Adam. The data set includes six different modulation 
formats, each scheme has 4681 combinations of CD (in the range of 170-5270 ps/nm with a resolution 
of 34 ps/nm) and OSNR (in the range of 10-40 dB with a step size of 1.0 dB). Similar as previous 
operations, within the 28086 sets of data, we randomly select 16000 components as the training set, 6000 
components as the validation set, and 6000 components as the test set for the training and the application 
of NN. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 6. Eye-diagrams and corresponding AAHs for (a) NRZ-OOK; (b) RZ-OOK; (c) CRZ-OOK; (d) DPSK; (e) DQPSK; (f) 

16QAM. The CD is 170 ps/nm and the OSNR is 30 dB. 

Figure 6 shows eye-diagrams and corresponding AAHs for different modulation formats. AAHs for 
these six modulation formats behave significantly different, and thus such AAHs can be used as input 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

features of the NN. The overall results for MFI using the NN proposed in Fig. 5 are summarized in Table 
4. It is clear from the table that all the six modulation formats have been well classified with an overall 
accuracy of 100 % despite a considerable range of OSNR and CD. 

Table 4 Indentification accuracies of six modulation formats   

Actual Modulation Format 
Indentified Modulation Format 

RZ-OOK NRZ-OOK CRZ-OOK DPSK DQPSK 16QAM 

RZ-OOK 100 % - - - - - 

NRZ-OOK - 100 % - - - - 

CRZ-OOK - - 100 % - - - 

DPSK - - - 100 % - - 

DQPSK - - - - 100 % - 

16QAM - - - - - 100 % 

Table 5 lists some comparisons between the poposed method and other machine learning (ML) 
techniques using specific features in other literature. Compared with the previous work, the monitoring 
range and accuracy of the method we proposed have been significantly improved [23]. 

Table 5 Comparisons between the poposed method and other machine learning techniques  

Features 

domain 

ML�
techniques 

Computation 

Complexity  

Modulation 

formats 

OSNR monitoring 

range (dB) 

Classificati

on accuracy 

Monitoring 

accuracy  
Reference 

CDF SVM 

SVM and DNN 

have comparable 

time complexity. 

DP-QPSK 

DP-16QAM 

DP-64QAM 

5-30  - 

MAE=0.24 dB  

MAE=0.24 dB 

MAE=0.24 dB 

[24] 

Constellation 

images 
CNN  

CNN achieves 

higher time 

complexity. 

QPSK 

8PSK 

8QAM 

16QAM 

32QAM 

64QAM 

15-30 

100 % 

100 % 

100 % 

100 % 

100 % 

100 % 

Accuracy>95% [25] 

AAH DNN - 

NRZ-OOK 

RZ-OOK 

CRZ-OOK 

DPSK 

DQPSK 

16QAM 

10-40 

100 % 

100 % 

100 % 

100 % 

100 % 

100 % 

MAE=0.11 dB 

Accuracy>99% 
This work 

5. Experimental setup for OPM 

Simultaneous monitoring of OSNR and CD in the experimental system was performed first. Fig.7 (a) 
and (b) show the experimental setup of the 10 Gbps NRZ-OOK and QPSK signals for the simultaneous 
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monitoring of CD and OSNR using NNs and AAHs. In Fig. 7 (a), a tunable laser centered at 1550 nm is 
externally modulated (with an intensity modulator, Fujitsu FTM7920FBA) by 10 Gb/s pseudo-random 
bit sequence (PRBS) signals with a pattern length of 215-1 to generate the NRZ-OOK signals. An EDFA 
and a VOA are employed to produce different levels of ASE noise to adjust the OSNR values. The noise 
output is combined with the modulated signals through a 3-dB coupler. The combined (noise and data) 
signals are amplified by another EDFA and are then launched into the SMF with different lengths, which 
is used to introduce different amount of CD. The signals are further tapped using a 10:90 coupler to 
implement a conventional OSNR measurement with an optical spectrum analyzer (OSA), while signals 
in the other branch (90%) pass through a bandpass filter (BPF) with a 3 dB bandwidth of 0.6 nm. Optical 
signals are detected using a 10 GHz photodiode. The PD converts the received optical signals into 
electrical signals, which are then asynchronously sampled by the digital signal analyzer (DSA, Tektronix 
DSA 8300). In principle, the electrical signal can be asynchronously sampled at a rate much slower than 
the symbol rate. The sampling rate of DSA we set in this experiment is 80 Gbps to reduce the sampling 
time. In Fig. 7(b), a tunable laser at 1550 nm is modulated (with the QPSK modulator, SHF 46213D) by 
a 5 Gbaud signal generator (Anritsu MG3694C) to produce the QPSK signals. The rest of the setup and 
devices are roughly the same as decribed in Fig. 7 (a). The range of the OSNR monitoring is from 15 dB 
to 30 dB with a resolution of 0.5 dB. The dispersion coefficient of the SMF in this experiment is about 
15.93 ps/(nmxkm) and the length of the SMF varies from 0 to 46.5 km with a step size of 3.1 km. In other 
words, the CD monitoring range is from 0 to 740.75 ps/nm with a resolution of 49.38 ps/nm. For each 
specific system condition and signal format, five samples including an input feature vector and two 
output values have been collected. The experimental data set contains two modulation formats, and each 
scheme has 2480 combinations of CD and OSNR values. Within the 4960 sets of data, we randomly 
select 3800 components as the training data, 500 components as the validation data and 500 components 
as the test data, for the training and the application of NN. 

            

                    (a)                                               (b)                                               

Fig. 7. Experimental setup of the (a) NRZ-OOK (b) QPSK transmission system. 

Using a three-layer neural network, the simultaneous monitoring of the CD and the OSNR has been 
implemented experimentally. Figure 8 (a) and (b) show the experimental results of the OSNR monitoring. 
It can be seen that most of the OSNR errors lie between -0.6 and 0.6 dB and more than 95% errors are 
situated between -0.8 and 0.8 dB. The average OSNR monitoring error of the 500 test sets is 0.48 dB. 
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(a)                                             (b)                                                

Fig. 8. (a) Scatter plot of predicted OSNR versus actual OSNR in the experiment.(b) Histogram and normal distribution fitting of 

the OSNR estimation error in the experiment. 

Figure 9 (a) and (b) show the experimental results of the CD monitoring. Figure 9(a) describes the 
scatter plot of the predicted CD versus the actual CD. It can be seen from Fig. 9(b) that most of the CD 
errors lie between -20 and 20 ps/nm and more than 95% errors are situated between -27 and 27 ps/nm. 
The results indicate that the average CD monitoring error of the 500 test sets is 15.86 ps/nm. It is found 
that the estimation errors in the experiments are larger than those in the simulations. This is because that 
there are not sufficient amount of data collected in the experiments due to the limitations in the lab. Since 
the dispersion resolution in the experiment is 49.38 ps/nm, the data of many intermediate dispersion 
values cannot be collected. Using more than 4000 sets of experimental data, we have experimentally 
proved the feasibility of the proposed method. 

 

     (a)                                             (b) 

Fig. 9. (a) Scatter plot of predicted CD versus actual CD in the experiment.(b) Histogram and normal distribution fitting of  

the CD estimation error in the experiment. 

After completing simultaneous monitoring of OSNR and CD, the task of MFI using the experimental 
data was carried out. The experimental data here includes the data of QPSK and NRZ-OOK mentioned 
above, as well as the data of binary phase shift keying (BPSK). We randomly select 4000 components 
as the training set, 500 components as the validation set, and 500 components as the test set for the 
training and the application of NN with 3 layers. The numbers of neurons in the input and the output 
layers are 80 and 3, respectively. The overall results for MFI of the experimental data using the NN are 
summarized in Table 6. It is clear from the table that all the three modulation formats have been well 
classified with an overall accuracy of 100 %. The experimental system and the simulation system have 
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the same identification results. The classificaition results obtained by experiment and simulation are the 
same. 

Table 6 Indentification accuracies of three modulation formats in the experimental system 

Actual Modulation Format 
Indentified Modulation Format 

NRZ-OOK QPSK BPSK 

NRZ-OOK 100 % - - 

QPSK - 100 % - 

BPSK - - 100 % 

6. Conclusion 

In this paper, OPM tasks have been investigated based on the application of NNs, which are 
specifically trained with AAHs. This method is not only applicable to the 10 Gbps fiber-optic network, 
but also is applicable to higher-speed optical networks. When the number of hidden layers is 8, the 
simultaneous monitoring of CD and OSNR shows the best performance, with an average OSNR error of 
0.1064 dB and an average CD error of 3.3324 ps/nm. It is also found that this proposed monitoring 
scheme, based on AAHs trained NNs, works well for the CD range of up to 5270 ps/nm, and the increase 
in the number of bins can reduce the average monitoring error. In the CD range of 1870-5270 ps/nm, the 
increase in the number of bins can make input features more distinct. This is beneficial to the training of 
the NNs. With the further increase of the CD (larger than 5270 ps/nm), the input features corresponding 
to each label become almost the same and cannot be employed for the NN training any more. Numerical 
simulations also indicate that the accuracy of the MFI is 100% for the CD range of 170-5270 nm/ps. 
Furthermore, the feasibility of the proposed method using NNs and AAHs has been experimentally 
verified. Therefore, OPM tasks in fiber-optic networks can be implemented in an accurate, effiencient 
and low-cost manner using the proposed NN-AAH structure. 
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