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Abstract
The primary aim of this paper is to study the generalized
Fermat equation

𝑥2 + 𝑦2𝑛 = 𝑧3𝑝

in coprime integers 𝑥, 𝑦, and 𝑧, where 𝑛 ⩾ 2 and 𝑝 is a
fixed prime. Using modularity results over totally real
fields and the explicit computation of Hilbert cuspidal
eigenforms, we provide a complete resolution of this
equation in the case 𝑝 = 7, and obtain an asymptotic
result for fixed 𝑝. Additionally, using similar techniques,
we solve a second equation, namely, 𝑥2𝓁 + 𝑦2𝑚 = 𝑧17,
for primes 𝓁, 𝑚 ≠ 5.
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1 INTRODUCTION

The Diophantine equation

𝑥𝑝 + 𝑦𝑞 = 𝑧𝑟 (1)

for integers 𝑝, 𝑞, 𝑟 ⩾ 2 is known as the generalized Fermat equation. Since Wiles’ proof of Fer-
mat’s last theorem [22] some 25 years ago, it has been the subject of intense study, and has been
resolved for many infinite families of integer triples (𝑝, 𝑞, 𝑟). The generalized Fermat conjecture,
also known as the Fermat–Catalan conjecture, states that there are only finitely many triples of
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non-zero coprime integer powers (𝑥𝑝, 𝑦𝑞, 𝑧𝑟) satisfying (1) with 1∕𝑝 + 1∕𝑞 + 1∕𝑟 < 1. We refer the
reader to [5] for an excellent survey on the generalized Fermat equation, which assumes very little
background knowledge. We also refer to [3] for all (unconditional) results on this equation prior
to 2016, as well as [19, Theorem 8.7], [1, Theorem 1], and [7, Corollary 8.2] for (unconditional)
results on this equation since 2016.
The primary aim of this paper is to study the equation

𝑥2 + 𝑦2𝑛 = 𝑧3𝑝, (2)

for 𝑛 ⩾ 2 and 𝑝 a fixed prime. By [3, Theorem 1], this equation has no solutions in non-zero
coprime integers for 𝑝 = 2, 3, or 5. Using results on the modularity of elliptic curves over totally
real fields, irreducibility of Galois representations, and the explicit computation of Hilbert cuspi-
dal eigenforms, we obtain a complete resolution of this equation in the case 𝑝 = 7.

Theorem 1. Let 𝑛 ⩾ 2. The equation

𝑥2 + 𝑦2𝑛 = 𝑧21

has no solutions in non-zero coprime integers 𝑥, 𝑦, and 𝑧.

We also obtain the following asymptotic result.

Theorem 2. There exists an effectively computable constant 𝐶(𝑝), depending only on the prime 𝑝,
such that for all primes 𝓁 > 𝐶(𝑝), the equation

𝑥2 + 𝑦2𝓁 = 𝑧3𝑝

has no solutions in non-zero coprime integers 𝑥, 𝑦, and 𝑧.

For small values of 𝑝 > 7, it is possible to compute such a constant𝐶(𝑝). For example, in Propo-
sition 5.2 we find that we can take 𝐶(11) = 102930.
We start, in Section 2, by stating some known results on Equation (2) and introducing two

technical lemmas. Then, in Section 3, we carry out a descent argument. This is initiated by a fac-
torization of the left-hand side of (2) over the fieldℚ(𝑖), which leads to new ternary equations over
the maximal real subfield of the 𝑝th cyclotomic field. In Section 4, we associate a family of Frey
elliptic curves to these equations, and use standard level lowering results to relate these curves
(or more precisely their Galois representations) to Hilbert cuspidal eigenforms. Crucially, these
Frey curves will have multiplicative reduction at the primes above 3, and this will allow us to
circumvent the issues posed by the trivial solutions (those solutions satisfying 𝑥𝑦𝑧 = 0). These
arguments allow us to prove Theorems 1 and 2 in Sections 5 and 6, respectively.
Finally, in Section 7 we consider a different, although similar equation, namely,

𝑥2𝓁 + 𝑦2𝑚 = 𝑧𝑝, (3)

for primes 𝓁 and 𝑚, and 𝑝 a fixed odd prime. This equation has no solutions in non-zero
coprime integers 𝑥, 𝑦, and 𝑧, for 𝑝 ∈ {3, 5, 7, 11}, and for 𝑝 = 13 when 𝓁, 𝑚 ≠ 7 (see [1, Theo-
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rem 1.1], [3, Theorem 1], [4, Theorem 1], and [2, Theorem 1]). The case 𝑝 = 13 was then com-
pleted in [7, Corollary 8.2]. We partially extend these results to the case 𝑝 = 17. The main diffi-
culty in the case 𝑝 = 17 is the impossibility of computing the full Hilbert cusp form data at the
required levels.We overcome this byworking directly withHecke operators to prove the following
theorem.

Theorem 3. Let 𝓁, 𝑚 ≠ 5 be primes. The equation

𝑥2𝓁 + 𝑦2𝑚 = 𝑧17

has no solutions in non-zero coprime integers 𝑥, 𝑦, and 𝑧.

By [19, Theorem 8.7], the equation 𝑥5 + 𝑦5 = 𝑧17 has no solutions in non-zero coprime integers
𝑥, 𝑦, and 𝑧. Using this we obtain the following corollary to Theorem 3.

Corollary 4. Let 𝑛 ⩾ 2. The equation

𝑥2𝑛 + 𝑦2𝑛 = 𝑧17

has no solutions in non-zero coprime integers 𝑥, 𝑦, and 𝑧.

The Magma [8] code used to support the computations in this paper can be found at:

https://warwick.ac.uk/fac/sci/maths/people/staff/michaud/c/

2 KNOWNRESULTS AND PRELIMINARIES

If a triple of integers (𝑥, 𝑦, 𝑧) satisfies (1), then we shall say that the solution is non-trivial if 𝑥𝑦𝑧 ≠

0, and primitive if 𝑥, 𝑦, and 𝑧 are coprime.
We start by stating what we can deduce about solutions to (2) from other results on generalized

Fermat equations.

Theorem2.1 [3, 4, 9].Let𝑛 ⩾ 2and let𝑝 be prime. Suppose that there exist non-zero coprime integers
𝑥, 𝑦, and 𝑧 satisfying

𝑥2 + 𝑦2𝑛 = 𝑧3𝑝.

Then 𝑛 > 107, 𝑝 > 5, 𝑦 ≡ 3 (mod 6), 𝑥 is even, and 𝑧 is odd.

Proof. If 𝑛 = 2, then there are no non-trivial primitive solutions to (2) by [4, Theorem 1], so wewill
suppose 𝑛 > 2. If 𝑝 = 2, 3, or 5, then there are no non-trivial primitive solutions by [3, Theorem
1]. Next, we have that 𝑛 > 107 and 𝑦 ≡ 3 (mod 6) by [3, p. 11]. Finally, since 𝑦 is odd, we see that
𝑥 is even and 𝑧 is odd by considering the equation modulo 4. □

Wenote that the equation𝑥2 + 𝑦2𝑛 = 𝑧3 admits the trivial solutions (±1, 0, 1) and (0, ±1, 1). The
trivial solution (0, ±1, 1)would usually render unfeasible a successful application of the modular

https://warwick.ac.uk/fac/sci/maths/people/staff/michaud/c/
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method. The reason that this trivial solution can be ruled out in this case is because the corre-
sponding Frey curve (which is defined overℚ) at this solution has complexmultiplication. Indeed,
following the arguments of [9, p. 1306] and the proof of Theorem 1.1 in [6] in the case 𝐶 = 3, one
finds that the Frey curve at this solution is an elliptic curve of conductor 32withCM fieldℚ(

√
−1).

By Theorem 2.1, we can restrict to the case 𝑛 = 𝓁, prime, with 𝓁 > 107.

Proposition 2.2. Let 𝓁, 𝑝 ⩾ 5 be primes. Suppose there exist non-zero coprime integers 𝑥, 𝑦, and 𝑧
satisfying

𝑥2 + 𝑦2𝓁 = 𝑧3.

If 𝑝 ∣ 𝑦, then 𝓁 < (
√
𝑝 + 1)2.

Proof. By [9, pp. 1306–1307], there exist coprime integers 𝑢 and 𝑣, with 𝑢𝑣 ≠ 0, 3 ∣ 𝑣, 𝑢 even, and
𝑣 odd, such that

𝑦𝓁 = 𝑣(3𝑢2 − 𝑣2). (4)

We associate to (4) the Frey elliptic curve

𝑊 ∶ 𝑌2 = 𝑋3 + 2𝑢𝑋2 + 𝑣2,

which has minimal discriminant and conductor

Δmin = 26 ⋅ 3−3 ⋅ 𝑣4(3𝑢2 − 𝑣2), 𝑁 = 25 ⋅ 3 ⋅ Rad2,3(Δmin).

Here, Rad2,3(Δmin) denotes the product of all primes other than 2 or 3 dividing Δmin.
Still following [9, pp. 1306–1307], we level-lower the curve𝑊, and find that 𝜌𝑊,𝓁 ∼ 𝜌𝑊0,𝓁

, for
𝑊0 an elliptic curve of conductor 96 = 25 ⋅ 3. Now, if 𝑝 ∣ 𝑦, then 𝑝 ∣ 𝑦𝓁 = 𝑣(3𝑢2 − 𝑣2), so 𝑝 ∣ Δmin

and𝑊 has multiplicative reduction at 𝑝. Also 𝑝 ∤ 96 as 𝑝 ⩾ 5, so

𝓁 ∣ 𝑝 + 1 + 𝑎𝑝(𝑊0) or 𝓁 ∣ 𝑝 + 1 − 𝑎𝑝(𝑊0).

Then |𝑎𝑝(𝑊0)| ⩽ 2
√
𝑝, so

𝓁 < 𝑝 + 1 + 2
√
𝑝 = (

√
𝑝 + 1)2,

as required. □

In order to prove Theorems 1 and 2, we will start (in Section 3) by carrying out a descent argu-
ment over themaximal real subfield of the𝑝th cyclotomic field. In this section, we introduce some
notation as well as two lemmas that will be useful in the sequel.
Let 𝑝 be an odd prime. We write 𝜁𝑝 for a primitive 𝑝th root of unity, so that ℚ(𝜁𝑝) is the 𝑝th

cyclotomic field which has degree 𝑝 − 1. We write 𝐾 = ℚ(𝜁𝑝 + 𝜁−1𝑝 ) for the maximal real subfield
of ℚ(𝜁𝑝). The field 𝐾 is a totally real abelian Galois field of degree (𝑝 − 1)∕2. We write 𝐾 for the
ring of integers of the field 𝐾. Then 𝐾 = ℤ[𝜁𝑝 + 𝜁−1𝑝 ]. The prime 𝑝 is totally ramified in 𝐾, and



348 MICHAUD-JACOBS

we write 𝔭 for the unique prime ideal of 𝐾 above 𝑝. We have

𝑝𝐾 = 𝔭(𝑝−1)∕2.

More generally we will denote prime ideals of𝐾 by 𝔮, or sometimes by 𝔮𝑚 for a prime above the
rational prime𝑚 ∈ ℤ. We also introduce the notation

𝜃𝑗 ∶= 𝜁
𝑗
𝑝 + 𝜁

−𝑗
𝑝 , for 𝑗 = 1,… , (𝑝 − 1)∕2.

For further background on cyclotomic fields and their subfields, we refer to [21, pp. 1–19].

Lemma 2.3 [1, Lemma 3.1]. For 1 ⩽ 𝑗 ⩽ (𝑝 − 1)∕2 we have

𝜃𝑗, 𝜃𝑗 + 2 ∈ ×
𝐾

and (𝜃𝑗 − 2)𝐾 = 𝔭.

For 1 ⩽ 𝑗 < 𝑘 ⩽ (𝑝 − 1)∕2 we have

(𝜃𝑗 − 𝜃𝑘)𝐾 = 𝔭.

Lemma 2.4. For any𝑚 ⩾ 1 and 1 ⩽ 𝑗 ⩽ (𝑝 − 1)∕2 we have

𝜃2
(𝑝−1)𝑚

𝑗 ≡ 𝜃𝑗 + 2 (mod 4𝐾).

Proof. Write 𝑟 = (𝑝 − 1)𝑚 ⩾ 2. Then

𝜃2
𝑟

𝑗 = (𝜁
𝑗
𝑝 + 𝜁

−𝑗
𝑝 )2

𝑟
=

2𝑟∑
𝑖=0

(
2𝑟

𝑖

)
𝜁
𝑗𝑖
𝑝 𝜁

−𝑗(2𝑟−𝑖)
𝑝 .

Using Legendre’s formula for the prime decomposition of a factorial, we have that 𝑣2
( 2𝑡

2𝑡−1

)
= 1

for any 𝑡 ⩾ 1. From this, and the identity

(
2𝑟

𝑖

)
=

𝑖∑
𝑡=0

(
2𝑟−1

𝑡

)(
2𝑟−1

2𝑟−1 − 𝑡

)
,

it is straightforward to show by induction on 𝑟 that

𝑣2

(
2𝑟

𝑖

)
⩾ 2, for 0 < 𝑖 < 2𝑟, 𝑖 ≠ 2𝑟−1 .

Then
2𝑟∑
𝑖=0

(
2𝑟

𝑖

)
𝜁
𝑗𝑖
𝑝 𝜁

−𝑗(2𝑟−𝑖)
𝑝 ≡ (𝜁

𝑗
𝑝)

2𝑚(𝑝−1)
+ 2 + (𝜁

−𝑗
𝑝 )2

𝑚(𝑝−1)
≡ 𝜃𝑗 + 2 (mod 4𝐾) ,

with the last equivalence coming from the fact that 2𝑚(𝑝−1) ≡ 1 (mod 𝑝). □
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3 DESCENT

Suppose there exist coprime integers 𝑥, 𝑦, and 𝑧, satisfying

𝑥2 + 𝑦2𝓁 = 𝑧3𝑝 (5)

for primes 𝓁 > 3 and 𝑝 > 5. We wish to obtain a factorization for 𝑦𝓁 over the field 𝐾. We follow
the descent argument of [1, pp. 1154–1155]. We start by considering the following factorization over
ℚ(𝑖):

(𝑦𝓁 + 𝑥𝑖)(𝑦𝓁 − 𝑥𝑖) = (𝑧3)
𝑝
.

Since 𝑥 and 𝑦 are coprime, there exist 𝑎, 𝑏 ∈ ℤ such that

𝑦𝓁 + 𝑥𝑖 = (𝑎 + 𝑏𝑖)𝑝 and 𝑧3 = 𝑎2 + 𝑏2.

Comparing real and imaginary parts, we obtain

𝑦𝓁 =
(𝑎 + 𝑏𝑖)𝑝 + (𝑎 − 𝑏𝑖)𝑝

2
. (6)

Since 𝑦 and 𝑧 are coprime, we see that 𝑎 and 𝑏 are also coprime.
We recall the standard factorization, for 𝑢, 𝑣 ∈ ℂ,

𝑢𝑝 + 𝑣𝑝 =

𝑝−1∏
𝑗=0

(𝑢 + 𝑣𝜁
𝑗
𝑝) = (𝑢 + 𝑣)

(𝑝−1)∕2∏
𝑗=1

(𝑢 + 𝑣𝜁
𝑗
𝑝)(𝑢 + 𝑣𝜁

−𝑗
𝑝 ) .

Applying this to (6), we obtain

𝑦𝓁 = 𝑎 ⋅
(𝑝−1)∕2∏
𝑗=1

(
(𝑎 + 𝑏𝑖) + (𝑎 − 𝑏𝑖)𝜁

𝑗
𝑝

)
⋅
(
(𝑎 + 𝑏𝑖) + (𝑎 − 𝑏𝑖)𝜁

−𝑗
𝑝

)

= 𝑎 ⋅
(𝑝−1)∕2∏
𝑗=1

(
(𝜃𝑗 + 2)𝑎2 + (𝜃𝑗 − 2)𝑏2

)
.

So

𝑦𝓁 = 𝑎 ⋅
(𝑝−1)∕2∏
𝑗=1

𝛽𝑗 , (7)

where

𝛽𝑗 ∶= (𝜃𝑗 + 2)𝑎2 + (𝜃𝑗 − 2)𝑏2, for 𝑗 = 1,… , (𝑝 − 1)∕2 .

From (7), we see that 𝑎 is odd (since 𝑦 is odd), and so 𝑏 is even.
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By Theorem 2.1, we know that 3 ∣ 𝑦. We now claim that 3 ∣ 𝑎. Suppose not. If 3 ∤ 𝑏, then 𝑧3 =

𝑎2 + 𝑏2 ≡ −1 (mod 3), so 𝑧 ≡ −1 (mod 3), a contradiction by reducing (5) mod 3. So 3 ∣ 𝑏. Write
𝔮3 for a prime of𝐾 above 3. Then since 3 ∣ 𝑦 but 3 ∤ 𝑎, we have that 𝔮3 ∣ 𝛽𝑗 for some 𝑗 ∈ {1, … , (𝑝 −

1)∕2}. So

𝔮3 ∣ 𝛽𝑗 − (𝜃𝑗 − 2)𝑏2 = (𝜃𝑗 + 2)𝑎2.

So 𝔮3 ∣ (𝜃𝑗 + 2) ∈ ×
𝐾
, a contradiction. We conclude that 3 ∣ 𝑎.

Lemma 3.1. Suppose 𝑝 ∤ 𝑦. Then

𝑎 = 𝛼𝓁 , 𝛽𝑗𝐾 = 𝔟𝓁
𝑗
,

where 𝛼 ∈ ℤ with 𝛼 ≡ 3 (mod 6), and 𝛼𝐾, 𝔟1, … , 𝔟(𝑝−1)∕2 are pairwise coprime ideals of 𝐾 , all
coprime to 2𝑝.

Proof. We follow the first part of the proof of [1, Lemma4.1]. Since 2 ∣ 𝑏 and 2 ∤ 𝑎, we see that the𝛽𝑗
are coprime to 2𝐾 . Let 𝔮 be a prime of𝐾 and suppose that 𝔮 divides 𝑎 and 𝛽𝑗 . Then it also divides
(𝜃𝑗 − 2)𝑏2, and since 𝑎 and 𝑏 are coprime, it divides (𝜃𝑗 − 2)𝐾 = 𝔭. So 𝔮 = 𝔭, a contradiction,
since 𝑝 ∤ 𝑦.
Next, suppose that 𝔮 is a prime of 𝐾 with 𝔮 ∣ 𝛽𝑗, 𝛽𝑘 for 𝑗 ≠ 𝑘. Then

𝔮 ∣(𝜃𝑘 − 2)𝛽𝑗 − (𝜃𝑗 − 2)𝛽𝑘 = ((𝜃𝑗 + 2)(𝜃𝑘 − 2) − (𝜃𝑘 + 2)(𝜃𝑗 − 2))𝑎2,

𝔮 ∣(𝜃𝑗 + 2)𝛽𝑘 − (𝜃𝑘 + 2)𝛽𝑗 = ((𝜃𝑗 + 2)(𝜃𝑘 − 2) − (𝜃𝑘 + 2)(𝜃𝑗 − 2))𝑏2.

Since 𝑎 and 𝑏 are coprime, we see that

𝔮 ∣ (𝜃𝑗 + 2)(𝜃𝑘 − 2) − (𝜃𝑘 + 2)(𝜃𝑗 − 2) = 4(𝜃𝑘 − 𝜃𝑗).

Since (𝜃𝑘 − 𝜃𝑗)𝐾 = 𝔭 and 𝛽𝑗 is coprime to 2𝐾 , we have 𝔮 = 𝔭, another contradiction. So the
ideals 𝑎𝐾 and 𝛽𝑗𝐾 are pairwise coprime, and also all coprime to 2𝑝. The lemma follows. □

4 FREY CURVES

Wewill now associate a Frey curve (in fact a family of Frey curves) to (7) when 𝑝 ∤ 𝑦. The key dif-
ference between the Frey curve we define compared to the one defined in [1, p. 1156] is its behavior
at the primes of𝐾 above 2. The Frey curve we define will have additive, rather thanmultiplicative,
reduction at the primes above 2, and is therefore not semistable. The main consequences of this
are that we will need to apply different modularity and irreducibility results in Sections 5 and 6,
and it will also limit our ability to compute Hilbert cusp forms.
Suppose 𝑝 ∤ 𝑦. We now fix 𝑗 and 𝑘 such that 1 ⩽ 𝑗 < 𝑘 ⩽ (𝑝 − 1)∕2. Let

𝑢 = 𝛽𝑗, 𝑣 = −
(𝜃𝑗 − 2)

(𝜃𝑘 − 2)
⋅ 𝛽𝑘, 𝑤 =

4(𝜃𝑗 − 𝜃𝑘)

(𝜃𝑘 − 2)
⋅ 𝑎2. (8)
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Then 𝑢 + 𝑣 + 𝑤 = 0, and by Lemma 3.1 we have

𝑢𝐾 = 𝔟𝓁
𝑗
, 𝑣𝐾 = 𝔟𝓁

𝑘
, 𝑤𝐾 = 4 ⋅ 𝛼2𝓁 ⋅ 𝐾.

We define the Frey elliptic curve

𝐸 = 𝐸𝑗,𝑘 ∶ 𝑌2 = 𝑋(𝑋 − 𝑣)(𝑋 + 𝑤).

We note that 𝑢, 𝑣, and 𝑤, are defined as in [1, p. 1156], but the Frey curve we have chosen differs.
We discuss this choice in Remark 4.2.
Write Rad(𝔠) to denote the product of prime ideals dividing a non-zero ideal 𝔠 of 𝐾 .

Lemma 4.1. The curve 𝐸 has good reduction at 𝔭 and multiplicative reduction at all primes of 𝐾
above 3. It has minimal discriminant and conductor

 = 28𝛼4𝓁𝔟2𝓁
𝑗
𝔟2𝓁
𝑘
,  = 23 ⋅ Rad(𝛼𝔟𝑗𝔟𝑘).

Proof. We have Δ = 16𝑢2𝑣2𝑤2 and 𝑐4 = 16(𝑤2 − 𝑢𝑣). We see that 𝔭 ∤ Δ, so 𝐸 has good reduc-
tion at 𝔭. By Lemma 3.1, 𝑐4 and Δ are coprime away from 2, so the Frey curve is semistable
away from 2. The curve 𝐸 has multiplicative reduction at all primes above 3 because 3 ∣ 𝛼 by
Lemma 3.1.
Let 𝔮 be a prime of 𝐾 above 2. We note that the model is minimal at 𝔮 since 𝑣𝔮(Δ) = 8 < 12.

So 𝑣𝔮() = 8, and it remains to show that we have 𝑣𝔮( ) = 3. We do this using Tate’s algorithm
[20]. We follow the exposition of Tate’s algorithm in [18, pp. 364–368] and outline the main steps.
Since 𝑣𝔮(2) = 1, we can take 2 as a uniformiser for the local field 𝐾𝔮. Write 𝑘 for the residue

field𝐾∕𝔮. Now, 𝔮2 ∣ 𝑤, so the point (0̃, 0̃) is a singular point of 𝐸∕𝑘, so 𝔮 ∣ 𝑎3, 𝑎4, 𝑎6. We then find
that 𝔮 ∣ 𝑏2, 𝔮2 ∣ 𝑎6, and 𝔮3 ∣ 𝑏8, so we proceed directly to Step 6.
Note that 𝑎2 ≡ 𝑣 ≡ 𝜃𝑗 (mod 𝔮). We would like to choose 𝛾 such that 𝛾2 ≡ 𝜃𝑗 (mod 𝔮). Write 𝑓

for the inertia degree of 𝔮. We choose

𝛾 = 𝜃2
(𝑝−1)𝑓−1

𝑗 .

Then 𝛾2 = 𝜃2
𝑓(𝑝−1)

𝑗
≡ 𝜃𝑗 (mod 𝔮). We then apply the transformation 𝑌 ↦ 𝑌 − 𝛾𝑋 to obtain

𝐸′ ∶ 𝑌2 − 2𝛾𝑋𝑌 = 𝑋(𝑋 − 𝑣)(𝑋 + 𝑤) − 𝛾2𝑋2.

We denote the Weierstrass coefficients of 𝐸′ by 𝑎′
𝑖
. Continuing with Step 6, we consider the poly-

nomial

𝑃(𝑇) ∶= 𝑇3 +
𝑎′
2

2
𝑇2 +

𝑎′
4

22
𝑇 +

𝑎′
6

23
= 𝑇

(
𝑇2 +

𝑎′
2

2
𝑇 +

𝑎′
4

22

)
.

Here, 𝑎′
4
= −𝑣𝑤 ≢ 0 (mod 𝔮3), so 𝑃 does not have a triple root in 𝑘, and we continue to Step 7.

We claim that 𝔮2 ∣ 𝑎′
2
= −𝑣 + 𝑤 − 𝛾2, so that 𝑃 has a double root in 𝑘. Since 𝑎 is odd and 𝑏 is even,
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𝑎2 ≡ 1 (mod 𝔮) and 𝑏2 ≡ 0 (mod 𝔮2). So

−𝑣 + 𝑤 − 𝜃2
(𝑝−1)𝑓

𝑗 ≡
(𝜃𝑗 − 2)(𝜃𝑘 + 2)

(𝜃𝑘 − 2)
− 𝜃2

(𝑝−1)𝑓

𝑗 (mod 𝔮2)

≡ 𝜃𝑗 + 2 − 𝜃2
(𝑝−1)𝑓

𝑗 (mod 𝔮2)

≡ 0 (mod 𝔮2) ,

where we have applied Lemma 2.4 in the final step.
We now start the subprocedure of Step 7 by choosing 𝜑 ∈ 𝐾 such that 𝜑2 ≡ −𝑣𝑤∕22 (mod 𝔮).

We note that 𝔮 ∤ 𝜑. We apply the transformation 𝑋 ↦ 𝑋 + 2𝜑 and denote our new Weierstrass
coefficients by 𝑎′′

𝑖
. We verify that our new polynomial 𝑃(𝑇) (defined as above) now has a double

root at 0̃. We have that 𝑎′′
3
= −4𝛾𝜑, and 𝑣𝔮(−4𝛾𝜑) = 2, so the polynomial

𝑌2 +
𝑎′′
3

22
𝑌 +

𝑎′′
6

24

has distinct roots in 𝑘, concluding our application of Tate’s algorithm. We read off that 𝑣𝔮( ) =

𝑣𝔮(Δ) − 5 = 3, with the reduction type at 𝔮 given by the Kodaira symbol I∗
1
. □

We note that for a fixed value of 𝑝, it is possible to verify whether 𝐸 has split or non-split mul-
tiplicative reduction at the primes above 3. This is because 𝑎2 ≡ 0 (mod 3) and 𝑏2 ≡ 1 (mod 3),
so if 𝔮3 denotes a prime of 𝐾 above 3, we find that

𝑐6 = −32(𝑣 − 𝑤)(𝑤 − 𝑢)(𝑢 − 𝑣) ≡ (𝜃𝑗 + 1)3 (mod 𝔮3).

The curve 𝐸 has split multiplicative reduction at 𝔮3 if and only if −𝑐6 is a square (mod 𝔮3) (see
[18, pp. 442–444]). For example, 𝐸 has split multiplicative reduction (for each choice of 𝑗) at the
unique prime above 3when 𝑝 = 7, but non-split multiplicative reduction (for each choice of 𝑗) at
the unique prime above 3 when 𝑝 = 11.

Remark 4.2. In order to simplify the computations in Sections 5 and 6,wewould like the conductor
of 𝐸 to be as small as possible. In particular, if we let 𝔮 be a prime of𝐾 above 2, then we would like
to minimize 𝑣𝔮( ). The best we can hope for would be to decrease this valuation from 3 to 2. We
cannot decrease this valuation further, as 𝐸 has potential good reduction at 𝔮. Unfortunately, we
found that by twisting 𝐸 by units and permuting 𝑢, 𝑣, and 𝑤, that we could only increase 𝑣𝔮( )

to 4. The curve 𝐸 we have chosen satisfies 𝑣𝔮( ) = 3 and allows for the easiest application of
Tate’s algorithm.

5 ASYMPTOTIC RESULTS

We would like to apply a suitable level-lowering result to the Frey curve 𝐸, and combine this
with Proposition 2.2 in order to conclude that any primitive solution (𝑥, 𝑦, 𝑧) to (5) is trivial, at
least for 𝓁 large enough. We first fix the following notation. We will write 𝔣 for a Hilbert cuspidal
eigenform over 𝐾 of parallel weight 2, and denote by ℚ𝔣 its Hecke eigenfield (the field generated
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by its eigenvalues under the action of the Hecke operators). If 𝔣 is new at its level, then we will
simply refer to 𝔣 as a Hilbert newform.

Lemma 5.1. Let 𝐸 be the Frey curve defined in Section 4. Suppose that 𝐸 is modular and that 𝜌𝐸,𝓁
is irreducible. Then 𝜌𝐸,𝓁 ∼ 𝜌𝔣,𝜆 for a Hilbert newform 𝔣 at level𝓁 , where

𝓁 = 23 ⋅ 𝐾 ,

and 𝜆 ∣ 𝓁 is a prime of ℚ𝔣.

Proof. We apply [15, Theorem 7] to the curve 𝐸, which is the standard level-lowering result for
elliptic curves defined over totally real fields. The statement follows from Lemma 4.1. □

Using this, we can prove Theorem 2.

Proof of Theorem 2. We suppose that (𝑥, 𝑦, 𝑧) is a non-trivial primitive solution to (5). Suppose
𝑝 ∤ 𝑦. Let 𝐸 denote the Frey curve, defined in Section 4, associated to the solution (𝑥, 𝑦, 𝑧). Since
𝐾 is a totally real abelian number field in which 3 is unramified, and 𝐸 has semistable reduction
(in factmultiplicative reduction) at all primes above 3, we know that𝐸 ismodular by [13, Theorem
1.3].
Next, as 𝐾 is a totally real Galois field and 𝐸 is semistable away from 2, we can apply [14, The-

orem 2]. Write 𝐵𝑝 for the non-zero constant, which depends only on 𝑝, defined in [14, Theo-
rem 1]. Then if 𝓁 ∤ 𝑝 ⋅ 𝐵𝑝 (we include a factor of 𝑝, as 𝑝 is the only prime that ramifies in K),
then 𝜌𝐸,𝓁 is irreducible for 𝓁 > (1 + 33ℎ(𝑝−1))2, where ℎ denotes the class number of 𝐾. Since
(1 + 33ℎ(𝑝−1))2 > 𝑝, it follows that 𝜌𝐸,𝓁 is irreducible for 𝓁 > 𝐶′(𝑝), where

𝐶′(𝑝) ∶= 𝐵𝑝 ⋅ (1 + 33ℎ(𝑝−1))2 .

Suppose 𝓁 > 𝐶′(𝑝). Then applying Lemma 5.1, we have 𝜌𝐸,𝓁 ∼ 𝜌𝔣,𝜆, for a Hilbert newform 𝔣 at
level𝓁 , and 𝜆 ∣ 𝓁 a prime ofℚ𝔣. We write 𝑑 for the dimension of the space of Hilbert cusp forms
that are new at level𝓁 . Let 𝔮3 denote a prime of 𝐾 above 3. Then 𝐸 has multiplicative reduction
at 𝔮3 by Lemma 4.1. Write 𝑎𝔮3 for the trace of Frobenius of 𝜌𝔣,𝜆 at 𝔮3. Then

𝜆 ∣ Norm(𝔮3) + 1 + 𝑎𝔮3(𝔣) or 𝜆 ∣ Norm(𝔮3) + 1 − 𝑎𝔮3(𝔣).

It follows that

𝓁 ∣ Normℚ𝔣∕ℚ

(
Norm(𝔮3) + 1 + 𝑎𝔮3(𝔣)

)
or

𝓁 ∣ Normℚ𝔣∕ℚ

(
Norm(𝔮3) + 1 − 𝑎𝔮3(𝔣)

)
.

The size of 𝑎𝔮3(𝔣) is bounded by 2
√
Norm(𝔮3), and since [ℚ𝔣 ∶ ℚ] < 𝑑, we have

𝓁 ⩽

(
Norm(𝔮3) + 1 + 2

√
Norm(𝔮3)

)𝑑

= (
√
Norm(𝔮3) + 1)2𝑑.
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We set 𝐶(𝑝) = max{(𝐶′(𝑝), (
√
Norm(𝔮3) + 1)2𝑑}. If, instead, 𝑝 ∣ 𝑦, then 𝓁 < (

√
𝑝 + 1)2 < 𝐶′(𝑝)

by Proposition 2.2.
We conclude that if 𝓁 > 𝐶(𝑝), then we have a contradiciton, so no such non-trivial primitive

solution exists. □

Although the constant 𝐶(𝑝) in Theorem 2 is effectively computable, actually computing it is
another matter. In the case 𝑝 = 7, we are able to compute the Hilbert newforms (using Magma’s
Hilbert modular form package) at the level𝓁 and this allows us to compute a (relatively) small
value for 𝐶(7). Combining this with the fact that we have no solutions for 𝓁 < 107 will allow us
to prove Theorem 1 in the next section. Unfortunately, we were unable to compute the Hilbert
newforms at level𝓁 for 𝑝 > 7.
When 𝑝 ≡ 1 (mod 4), it is possible to choose 𝑗 and 𝑘 appropriately and twist the Frey curve

𝐸𝑗,𝑘 (as in [1, p. 1157–1158]) so that 𝐸𝑗,𝑘 is defined over a subfield of 𝐾, but we were still
unable to compute the Hilbert newforms (at the new required level) for 𝑝 = 13 (or any larger
𝑝 ≡ 1 (mod 4)).
Even though we cannot compute the required Hilbert newforms for 𝑝 > 7, we can still (follow-

ing the proof of Theorem 2) compute a value 𝐶(𝑝), provided that we can bound the dimensions of
the spaces of Hilbert cusp forms that are new at the level𝓁 . We consider the cases 𝑝 = 11, 13,
and 17.

Proposition 5.2. Let 𝑝 = 11, 13, or 17. Suppose 𝓁 > 𝐶(𝑝), with 𝓁 prime, where

𝐶(11) = 102930, 𝐶(13) = 1090946, 𝐶(17) = 10160315410.

Then the equation

𝑥2 + 𝑦2𝓁 = 𝑧3𝑝

has no solutions in non-zero coprime integers 𝑥, 𝑦, and 𝑧.

Proof. We follow the proof of Theorem 2, computing explicit constants. We first compute the
quantity 𝐵𝑝. We find that

𝐵11 = 1, 𝐵13 = 218 ⋅ 312 ⋅ 56 ⋅ 133, 𝐵17 = 232 ⋅ 58 ⋅ 138 ⋅ 174 ⋅ 678.

Since 𝓁 > 107, we can safely ignore the contribution from 𝓁 ∣ 𝑝 ⋅ 𝐵𝑝. Since 𝐾 has class number
1 in each case, we set 𝐶′(𝑝) = (1 + 33(𝑝−1))2. Next, 3 is inert in 𝐾 in each case, and Norm(3 ⋅
𝐾) = 3(𝑝−1)∕2. The dimensions 𝑑 of the spaces of Hilbert cusp forms that are new at level 𝓁
can be computed directly with Magma, and are 1201, 31 422, and 41 883 752, for 𝑝 = 11, 13, and 17,
respectively. We set

𝐶(𝑝) = max

{
(1 + 33(𝑝−1))2,

(√
3(𝑝−1)∕2 + 1

)2𝑑}
=
(√

3(𝑝−1)∕2 + 1
)2𝑑

,

and the proposition follows. □
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As discussed after the proof of Theorem 2, for 𝑝 = 13 and 𝑝 = 17, we could work over a subfield
of 𝐾 and obtain smaller (although still very large) constants in the above proposition.
It would be interesting to see if it is possible to find a bound on the dimension of the space of

Hilbert cups forms that are new at level 𝓁 in terms of 𝑝, or quantities associated to 𝑝. In this
way, it would be possible to obtain a value for the constant 𝐶(𝑝) without the need for calculating
the dimension explicitly.

6 THE EQUATION 𝒙𝟐 + 𝒚𝟐𝒏 = 𝒛𝟐𝟏

We now set 𝑝 = 7. The field 𝐾 = ℚ(𝜁7 + 𝜁−17 ) has degree 3. We would first like to prove the irre-
ducibility of 𝜌𝐸,𝓁 for 𝓁 > 107. As the curve 𝐸 is not semistable, we cannot use the same techniques
as in [1, pp. 1160–1166].

Lemma 6.1. Let 𝑝 = 7. Let 𝐸 be the Frey curve defined in Section 4. Then 𝜌𝐸,𝓁 is irreducible for
𝓁 > 65 ⋅ 66.

Proof. The prime 3 is inert in 𝐾, and by Lemma 4.1, 𝐸 has multiplicative reduction at 3𝐾 . Since
3 > deg(𝐾) − 1 = 2, we can apply [17, Theorem 1.3] to deduce that the representation 𝜌𝐸,𝓁 is irre-
ducible for 𝓁 > 65 ⋅ 66. □

We note that 65 ⋅ 66 < 107, so 𝜌𝐸,𝓁 is irreducible for 𝓁 > 107.

Proof of Theorem 1. By Theorem 2.1, we may restrict to the case of 𝑛 = 𝓁 prime, with 𝓁 > 107.
We suppose that (𝑥, 𝑦, 𝑧) is a non-trivial primitive solution to (2). If 7 ∣ 𝑦, then 𝓁 ⩽ 13 by Proposi-
tion 2.2, sowewill assume that 7 ∤ 𝑦, and associate the Frey curve𝐸 to this solution, as in Section 4.
The curve 𝐸 is modular by [13, Theorem 1.3], or alternatively by applying the more general

result that any elliptic curve defined over a totally real cubic field is modular [12, Theorem 1]. By
Lemma 6.1, 𝜌𝐸,𝓁 is irreducible, and we can therefore apply Lemma 5.1 and level-lower. We have
𝜌𝐸,𝓁 ∼ 𝜌𝔣,𝜆, for a Hilbert newform 𝔣 at level𝓁 , and 𝜆 ∣ 𝓁 a prime of ℚ𝔣. The prime 3 is inert in 𝐾,
and we write 𝔮3 = 3 ⋅ 𝐾 , which has norm 27.
The dimension of the space of cusp forms that are new a level𝓁 is 5. We note that using this

information alone is not enough to obtain a contradiction, as the bound obtained following the
proof of Theorem 2 is (

√
27 + 1)10 > 107. Instead, we compute the newform decomposition using

Magma, and find that there are five newforms at level𝓁 (each with ℚ𝔣 = ℚ necessarily). We can
now mimic the proof of Theorem 2 to obtain the bound 𝓁 < (

√
27 + 1)2 < 39, giving the desired

contradiction. □

We note that explicitly computing the values 𝑎𝔮3(𝔣) for each of the five newforms at level𝓁
would allow us to obtain a sharper bound than 𝓁 < 39 in the final step of the above proof, but
since we are assuming 𝓁 > 107 anyway, this is not necessary.
It is in fact possible to avoid the newform computation in the proof of Theorem 1. Setting 𝑎 = 1

and 𝑏 = 0 (which corresponds to the trivial solution (0, 1, 1)), the Frey curve 𝐸 is an elliptic curve
with conductor 𝓁 . By modularity, we obtain a Hilbert newform 𝔣 at level 𝓁 with ℚ𝔣 = ℚ. In
particular, following the proof of Theorem 2,we obtain the improved inequality𝓁 < (

√
27 + 1)8 <

107.
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7 THE EQUATION 𝒙𝟐𝓵 + 𝒚𝟐𝒎 = 𝒛𝟏𝟕

We now consider the equation

𝑥2𝓁 + 𝑦2𝑚 = 𝑧17 (9)

for primes 𝓁 and𝑚. Our aim is to prove Theorem 3.We directly extend the work carried out in [1],
and so we do not provide a very detailed exposition when the same ideas are present. We continue
using the same notation as in the previous sections.
We suppose that (𝑥, 𝑦, 𝑧) is a primitive solution to (9). We can interchange 𝑥 and 𝑦 to ensure

that 𝑥 is even. This is a key step, as it means that the only trivial solutions are (0, ±1, 1). When
the values corresponding to these trivial solutions are substituted into the Frey curve 𝐹1 we
define below, we will obtain a singular elliptic curve, and this will not endanger the success of
the modular method. If 𝓁 = 2, then there are no non-trivial primitive solutions by [4, Theorem
1]. If 𝓁 = 3, then there are no non-trivial primitive solutions by [2, Theorem 1]. If 𝓁 = 17, then
there are no non-trivial primitive solutions by [10, Main Theorem]. We therefore suppose 𝓁 ⩾ 5

and 𝓁 ≠ 17.
As in Section 3, there exist coprime integers 𝑎 and 𝑏 such that

𝑥𝓁 + 𝑦𝑚𝑖 = (𝑎 + 𝑏𝑖)17 and 𝑧 = 𝑎2 + 𝑏2.

Since 𝑥 is even, 𝑎 is even and 𝑏 is odd.
As before, we write 𝐾 = ℚ(𝜁17 + 𝜁−1

17
) and follow the notation of the previous sections. We fix

𝑗 = 1 and 𝑘 = 4 so that 𝜃𝑗 and 𝜃𝑘 are interchanged by the unique involution in Gal(𝐾∕ℚ). We
write 𝐾′ for the unique degree 2 subfield of 𝐾, with ring of integers 𝐾′ , and we write 17 for the
unique prime of 𝐾′ above 17.

Case 1: 17 ∤ 𝑥
Let 𝑢, 𝑣, and 𝑤 be defined as in (8). The Frey elliptic curve we define is

𝐹1 ∶ 𝑌2 = 𝑋(𝑋 − 𝑢)(𝑋 + 𝑣) .

The curve 𝐹1 is defined over 𝐾, but not necessarily over 𝐾′.
Case 2: 17 ∣ 𝑥
Let

𝑢′ =
𝛽𝑗

(𝜃𝑗 − 2)
, 𝑣′ = −

𝛽𝑘
(𝜃𝑘 − 2)

, 𝑤′ =
4(𝜃𝑗 − 𝜃𝑘)

(𝜃𝑗 − 2)(𝜃𝑘 − 2)
⋅ 𝑎2.

The Frey elliptic curve we define is

𝐹2 ∶ 𝑌2 = 𝑋(𝑋 − 𝑢′)(𝑋 + 𝑣′).

By our choice of 𝑗 and 𝑘, the curve 𝐹2 is defined over 𝐾′, and we view it as a curve defined over
𝐾′. This curve has a 2-torsion point over 𝐾′ and will have full 2-torsion over 𝐾, but it will not
necessarily have full 2-torsion over 𝐾′.
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Lemma 7.1 [1, Lemma 6.1]. Let 𝑖 = 1 or 2, so that 𝐹𝑖 is one of the Frey curves defined above. Suppose
that 𝜌𝐹𝑖,𝓁 is irreducible and 𝐹𝑖 is modular. Then 𝜌𝐹𝑖,𝓁 ∼ 𝜌𝔣𝑖,𝜆𝑖 for a Hilbert newform 𝔣𝑖 at level𝓁,𝑖 ,
where

𝓁,1 = 2 ⋅ 𝐾, 𝓁,2 = 2 ⋅ 17,

and 𝜆𝑖 ∣ 𝓁 is a prime of ℚ𝔣𝑖
.

The curves 𝐹1 and 𝐹2 are modular by [13, Theorem 1.3] (or by using the modularity results in
[1]). In order to apply this lemma, we must first prove the irreducibility of 𝜌𝐹𝑖,𝓁 for 𝑖 = 1 and 2.
Although we need only prove this for 𝓁 > 5, we prove irreducibility for 𝓁 = 5 too, in the hope that
our subsequent results may, in the future, be extended to include the case 𝓁 = 5.

Lemma 7.2. Let 𝑖 = 1 or 2, so that𝐹𝑖 is one of the Frey curves defined above. Then 𝜌𝐹𝑖,𝓁 is irreducible
for 𝓁 ⩾ 5.

We first prove the following lemma.

Lemma 7.3. We have

(i) 𝑋0(14)(𝐾
′) = 𝑋0(14)(ℚ(

√
17)).

(ii) 𝑋0(11)(𝐾
′) = 𝑋0(11)(ℚ(

√
17)).

(iii) 𝑋0(20)(𝐾) = 𝑋0(20)(ℚ(
√
17)).

(iv) Let𝐶 be the elliptic curve with Cremona reference 52a1 given by 𝑦2 = 𝑥3 + 𝑥 − 10. Then𝐶(𝐾) =
𝐶(ℚ) = ℤ∕2ℤ.

Proof. The curves 𝑋0(14) and 𝑋0(11) are elliptic curves, and it is straightforward to verify parts (i)
and (ii) directly with Magma.
Next, let 𝑋 = 𝑋0(20). This is an elliptic curve, given by Cremona label 20a1, and admits the

following model over ℚ:

𝑋 ∶ 𝑦2 = 𝑥3 + 𝑥2 + 4𝑥 + 4.

The minimal polynomial of 𝜃1 over 𝐾′ is a quadratic polynomial and we set 𝑑 to be its discrim-
inant, so that 𝐾 = 𝐾′(

√
𝑑). We denote by 𝑋𝑑 the quadratic twist of 𝑋 by 𝑑. Then 𝑋 and 𝑋𝑑 are

isomorphic over 𝐾, with an isomorphism given by

𝜑 ∶ 𝑋(𝐾) ⟶ 𝑋𝑑(𝐾), (𝑥, 𝑦) ⟼

(
𝑥

𝑑
,

𝑦

𝑑
√
𝑑

)
.

Using Magma we compute the following:

𝑋(𝐾′) = 𝑋(ℚ(
√
17)) = ℤ⊕ ℤ∕6ℤ = ⟨𝑅⟩⊕ ⟨𝑄⟩,

𝑋𝑑(𝐾
′) = ℤ∕2ℤ,

𝑋(𝐾)tors = 𝑋(ℚ)tors = ℤ∕6ℤ = ⟨𝑄⟩,
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where 𝑅 = ((3
√
17 + 5)∕8, (9

√
17 + 47)∕16) and𝑄 = (4, 10). We were unable to directly compute

𝑋(𝐾) with Magma. However, we can start by noting that

Rank(𝑋(𝐾)) = Rank(𝑋(𝐾′)) + Rank(𝑋𝑑(𝐾
′)) = 1.

Next, let 𝑃 ∈ 𝑋(𝐾) and let 𝜎 ∈ Gal(𝐾∕𝐾′). Then

𝑃 + 𝑃𝜎 ∈ 𝑋(𝐾′) and 𝜑(𝑃 − 𝑃𝜎) ∈ 𝑋𝑑(𝐾
′) = 𝑋𝑑(𝐾

′)tors .

Applying 𝜑−1 we have 𝑃 − 𝑃𝜎 ∈ 𝑋(𝐾)tors = 𝑋(ℚ)tors. It follows that 2𝑃 = (𝑃 + 𝑃𝜎) + (𝑃 − 𝑃𝜎) ∈

𝑋(𝐾′).
Now choose 𝑃 ∈ 𝑋(𝐾) such that 𝑋(𝐾) = ⟨𝑃⟩⊕ ⟨𝑄⟩, and write 𝑅 = 𝑟𝑃 + 𝑠𝑄 for 𝑟, 𝑠 ∈ ℤ with

0 ⩽ 𝑠 ⩽ 5. If 𝑟 = 2𝑟′ + 1 is odd, then

𝑃 = 𝑅 − 𝑠𝑄 − 𝑟′(2𝑃) ∈ 𝑋(𝐾′).

If 𝑟 = 2𝑟′ is even, then 𝑅 − 𝑠𝑄 = 2(𝑟′𝑃). To obtain a contradiction, it will suffice to show that 𝑅
and 𝑅 + 𝑄 are not 2-divisible. The prime 137 is totally split in 𝐾. Let 𝔮 denote a prime of 𝐾 above
137, and let 𝑘 = 𝐾∕𝔮. We find that 𝑋(𝑘) = ℤ∕2ℤ ⊕ ℤ∕60ℤ, and that the points �̃� and �̃� + �̃�

both have order 60; a contradiction in each case since there are no points of order 120 in𝑋(𝑘). We
conclude that 𝑃 ∈ 𝑋(𝐾′), and thus 𝑋(𝐾) = 𝑋(𝐾′) = 𝑋(ℚ(

√
17)). This proves part (iii).

Finally, for part (iv), we first verify that 𝐶(ℚ) = 𝐶(𝐾)tors = ℤ∕2ℤ. Then defining 𝑑 as above, we
check that

Rank(𝐶(𝐾)) = Rank(𝐶(𝐾′)) + Rank(𝐶𝑑(𝐾
′)) = 0,

as required. □

Proof of Lemma 7.2. Suppose that 𝜌𝐹𝑖,𝓁 is reducible. In Case 1, arguing as in [1, p. 1165], we find
that there exists an elliptic curve defined over 𝐾 with good reduction at the unique prime of 𝐾
above 17, full 2-torsion over 𝐾, and a torsion point of order 2𝓁 over 𝐾. By the Hasse–Weil bounds,
we have

𝓁 ⩽
(
√
17 + 1)2

4
< 7,

so 𝓁 = 5. In Case 2, again arguing as in [1, p. 1165], we deduce the existence of an elliptic curve
defined over 𝐾′ with a torsion point of order 2𝓁 over 𝐾′. By [11, Theorem 1.2], the largest prime
order of a point of an elliptic curve defined over a quartic field is 17, and since 𝓁 ≠ 17, we obtain
5 ⩽ 𝓁 ⩽ 13.
It remains to deal with 𝓁 = 5 in Case 1, and 𝓁 = 5, 7, 11, and 13 in Case 2. When 𝓁 = 5, the

curves 𝐹1 and 𝐹2 give rise to non-cuspidal 𝐾-points on the modular curve 𝑋0(20). For 𝓁 = 7, the
curve 𝐹2 gives rise to a non-cupsidal𝐾′-point on𝑋0(14), and when 𝓁 = 11, the curve 𝐹2 gives rise
to a non-cupsidal 𝐾′-point on 𝑋0(11). Now, applying Lemma 7.3, we see that we in fact obtain
ℚ(

√
17)-points on each of these threemodular curves. It follows that 𝑗(𝐹𝑖) ∈ ℚ(

√
17) for 𝑖 ∈ {1, 2}

when 𝓁 = 5, and for 𝑖 = 2 when 𝓁 = 7 or 11.
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Let �̂� denote one of the two primes of ℚ(
√
17) above 2, and let 𝔮 = �̂�𝐾 , which is a prime of 𝐾

above 2. Viewing 𝑗(𝐹𝑖) ∈ 𝐾, for 𝑖 ∈ {1, 2} we have 𝑣𝔮(𝑗(𝐹𝑖)) = −(20𝑣2(𝑎) − 4), and we find that

220𝑣2(𝑎)−4𝑗(𝐹𝑖) ≡
𝜃2
𝑗
𝜃2
𝑘

(𝜃𝑗 − 𝜃𝑘)
2

(mod 𝔮).

We verify that
𝜃2
𝑗
𝜃2
𝑘

(𝜃𝑗−𝜃𝑘)
2 (mod 𝔮) ∉ 𝔽2 for 𝑗 = 1 and 𝑘 = 4 (in fact this holds for any choice of 1 ⩽

𝑗 < 𝑘 ⩽ 8). However, 
ℚ(

√
17)
∕�̂� = 𝔽2, contradicting 𝑗(𝐹𝑖) ∈ ℚ(

√
17).

Finally, we consider 𝓁 = 13 for Case 2. Since 𝐹2 has full 2-torsion over 𝐾, it will give rise to a
non-cuspidal 𝐾-point, which we denote by 𝑃, on the modular curve 𝑋0(52). As in Lemma 7.3, we
write 𝐶 for the elliptic curve with Cremona label 52a1. This is an optimal elliptic curve, and we
have the modular parametrization map defined over ℚ:

𝜑 ∶ 𝑋0(52) ⟶ 𝐶.

The curve 𝐶 has modular degree 3, so the degree of 𝜑 is 3. We have 𝜑(𝑃) ∈ 𝐶(𝐾) = 𝐶(ℚ) ≅ ℤ∕2ℤ

by Lemma 7.3. So 𝑃 ∈ 𝜑−1(𝐶(ℚ)), which has size at most 6 since 𝜑 has degree 3. However, 𝑋0(52)

has 6 rational cusps, so 𝜑−1(𝐶(ℚ)) must consist of only cusps, contradicting the fact that 𝑃 is a
non-cuspidal point. □

We note that the idea of using the modular parametrization map to study points on modular
curves is present in the author’s work in [16, pp. 16–21]. Here, we did not even need to compute a
model for 𝑋0(52) to obtain the desired conclusion.
Having proven the necessarymodularity and irreducibility statements, we can proceed to apply

Lemma 7.1 to the curves 𝐹1 and 𝐹2.

Proof of Theorem 3. We suppose that (𝑥, 𝑦, 𝑧) is a non-trivial primitive solution to (5). Let 𝑖 = 1 or 2
according to whether 17 ∤ 𝑥 or 17 ∣ 𝑥, and let 𝐹𝑖 denote the Frey curve associated to this solution.
We apply Lemma 7.1 to conclude that 𝜌𝐹𝑖,𝓁 ∼ 𝜌𝔣𝑖,𝜆𝑖 for a Hilbert newform 𝔣𝑖 at level𝓁,𝑖 , where
𝜆𝑖 ∣ 𝓁 is a prime of ℚ𝔣𝑖

.
The spaces of Hilbert cusp forms that are new at levels 𝓁,1 and 𝓁,2, respectively, have

dimensions 647 and 49, and we can compute their newform decompositions using Magma. We
use the same notation as in [1, pp. 1166–1168], and follow the same method, when possible, to
eliminate the newforms at these levels. In Case 2, we have 𝓁,2 = 2 ⋅ 17 and using the set of
primes 𝑆 = {3, 67, 101} in the sieve, we are able to eliminate all the newforms for primes 𝓁 > 5

with 𝓁 ≠ 17. In Case 1, there are 35 newforms we would like to eliminate. Using the set of primes
𝑆 = {3, 67, 101} again, we eliminate 31 of these newforms for all primes 𝓁 > 3 with 𝓁 ≠ 17.
The four remaining newforms, which we denote as 𝔤1, 𝔤2, 𝔤3, and 𝔤4, have Hecke eigenfields of

degree 136, 152, 152, and 160, respectively, and we are unable to compute their Hecke eigenvalues
using Magma. However, for a prime 𝔮 ∣ 𝑞 of 𝐾 with 𝑞 ∤ 2 ⋅ 17, by considering the factorization of
the characteristic polynomial of theHecke operator at 𝔮, we can compute theminimal polynomial
of 𝑎𝔮(𝔤𝑖) for each 𝑖. In particular, this allows us to compute Normℚ𝔤𝑖

∕ℚ(𝑐 − 𝑎𝔮(𝔤𝑖)) for any 𝑐 ∈ ℤ.
Let

𝐴𝑞 ∶= {0 ⩽ 𝜂, 𝜇 ⩽ 𝑞 − 1, (𝜂, 𝜇) ≠ (0, 0)}.
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Then for (𝜂, 𝜇) ∈ 𝐴𝑞, we can compute the quantity Normℚ𝔤𝑖
∕ℚ(𝐵𝔮(𝔤𝑖, 𝜂, 𝜇)), where 𝐵𝔮(𝔤𝑖, 𝜂, 𝜇) is

defined as in [1, pp. 1167]. We then have that 𝓁 ∣ 𝐵𝔮(𝔤𝑖), where

𝐵𝔮(𝔤𝑖) ∶= 𝑞
∏

(𝜂,𝜇)∈𝐴𝑞

Normℚ𝔤𝑖
∕ℚ(𝐵𝔮(𝔤𝑖, 𝜂, 𝜇)).

Since this holds for each prime 𝔮 ∣ 𝑞 with 𝑞 ∤ 2 ⋅ 17, we can choose several such primes 𝔮 and
compute the greatest common divisor of the values 𝐵𝔮(𝔤𝑖). We choose one prime of 𝐾 above each
of the rational primes in the set {3, 67, 157} and compute the greatest common divisor of the values
𝐵𝔮(𝔤𝑖) for each 𝑖. This greatest common divisor is not divisible by any prime > 3 when 𝑖 = 1, and
is not divisible by any prime > 5 for 𝑖 = 2, 3, and 4. These computations complete the proof of the
theorem. □

It would of course be preferable to eliminate the condition 𝓁, 𝑚 ≠ 5 in Theorem 3. There are
three obstructing newforms at level𝓁,1 (the newforms 𝔤2, 𝔤3, and 𝔤4) with Hecke eigenfields of
degree 152, 152, and 160. There are four obstructing newforms at level𝓁,2withHecke eigenfields
of degree 2, 2, 6, and 6. We expect that for each of these newforms 𝔣 the representation 𝜌𝔣,𝜆 is
reducible, for 𝜆 ∣ 5 a prime of ℚ𝔣, and that this is why we are unable to discard them. Proving that
this would in fact allow us to discard these newforms since 𝜌𝐹𝑖,5 is irreducible for 𝑖 = 1 and 2. This
seems like a difficult task, and would likely require an extension of the ideas present in [7, 5–8].
We note that it is also possible to twist the curve 𝐹1 so that it is defined over the smaller field 𝐾′

(see [1, p. 1158]) and obtain a different set of Hilbert newforms. We were still unable to eliminate
𝓁 = 5 in this case due to the presence of four obstructing newforms.
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