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The advection and mixing of a scalar quantity by fluid flow is an important problem in engineering
and natural sciences. The statistics of the passive scalar exhibit complex behavior even in the
presence of a Gaussian velocity field. This paper is concerned with two Lagrangian turbulence
models that are based on the recent fluid deformation model, but adding a passive scalar field with
uniform mean gradient. For a range of Reynolds numbers, these models can reproduce the statistics
of passive scalar turbulence. For these models, we demonstrate how events of extreme passive
scalar gradients can be recovered by computing the instanton, i.e., the saddle-point configuration
of the associated stochastic field theory. It allows us to both reproduce the heavy-tailed statistics
associated with passive scalar turbulence, and recover the most likely mechanism leading to such
extreme events. We further demonstrate that events of large negative strain in these models undergo
spontaneous symmetry breaking.

Keywords: passive scalar turbulence, recent fluid defor-
mation model, reduced system, extreme events, instan-
ton, spontaneous symmetry breaking

I. INTRODUCTION

The 3D incompressible Navier-Stokes equations
(NSE),

∂tu+ u · ∇u+∇p− ν∆u = 0, ∇ · u = 0, (1)

describe the evolution of a fluid in time. Here,
u (x, t) ∈ R3 is the velocity field, ν denotes the kine-
matic viscosity, and p(x, t) ∈ R is the scalar pressure field
that enforces the incompressibility constraint. A passive
scalar, such as a substance concentration (e.g., pollutant
or temperature field without buoyancy feedback), is ad-
vected by a turbulent flow exhibiting complex spatial and
temporal scales of motions. The passive scalar equation
(PSE) gives its time evolution,

∂tθ + u · ∇θ − κ∆θ = 0, (2)

where κ denotes the diffusivity coefficient of θ (x, t) ∈ R.
Passive scalar turbulence is often taken as a testbed for
understanding fluid turbulence [1, 2], but is also relevant
in its own right to analyze, for example, advection pro-
cesses in the atmosphere [3, 4] or ocean [5, 6].

Understanding the statistical and geometrical proper-
ties of turbulent flow at small scales has been a long-
standing challenge. At these scales of motion, the pro-
lific activity of strain and vorticity triggers intense fluc-
tuations, resulting in intermittency, as observed in the
probability distribution functions (PDFs) of velocity gra-
dients [7]. The velocity gradient not only dominates the
smallest scales of motion, but it also embodies local ro-
tation and deformation rate, making it an observable
object of theoretical [8–10] and numerical/experimental

studies [11–13]. The dynamics of small inertial particles
immersed in a turbulent flow is dictated by the flow veloc-
ity gradients [14–16]. The small-scale statistics of passive
scalar fluctuations have sparked the same level of curios-
ity, as the scalar field displays anomalous scaling even in a
completely Gaussian velocity field [17, 18]. Other scalar
turbulence features have been studied such as the rise
of large-scale anisotropic scalar structures regardless of
Reynolds number [19], the inefficiency of turbulent flow
mixing linked to a high Schmidt number [20], anomalous
scaling [21], and statistical moments [22, 23].

Aiming at obtaining the statistics of the small scales
provided by the velocity gradients Aij = ∂ui/∂xj , a va-
riety of low dimensional models has been proposed in
the literature describing the evolution of Aij following a
tracer particle (Lagrangian description). As the effect of
pressure and viscosity renders the dynamical equation
for Aij unclosed, one is forced to resort to some clo-
sure approximation to obtain a self-contained model [24].
The restricted Euler (RE) equation [8], the tetrad model
[25], and the recent fluid deformation (RFD) [26] form a
history of such models, where in particular the last has
successfully regularized the finite-time singularity of the
nonlinear self-stretching term (−A2) observed in the RE
model, using ideas from linear damping [24, 27] and ge-
ometrical considerations of [25]. At the same time, it
preserves the statistical features of the velocity gradient
such as the left-skewness of its distribution, and the prop-
erties of the joint PDFs in the Q-R plane, where Q and
R are the second and third invariants of A, respectively.
Nevertheless, the RFD model is restricted to moderate
Reynolds numbers.

Reframing the closure problem in terms of conditional
averages, [28] proposes a model for the velocity gradient
by closing the deviatoric pressure Hessian and viscous
Laplacian conditional means with the help of a Gaussian
velocity field. Evaluation of the Gaussian conditional av-
erages allows for an analytical estimation of the model
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parameters. On the other hand, the resulting model suf-
fers from singularities when computed numerically. This
issue has been circumvented with an empirical adjust-
ment of parameters, retaining the functional form of the
Gaussian approximation, and resulting in the enhanced
Gaussian fields (EGF) closure. More recently, [29] merges
the two approaches, viz. the RFD and EGF, into a model
called RDGF (recent deformation Gaussian fields), tak-
ing advantage of both closures. In an attempt to extend
RFD closure to any Reynolds numbers, [30] proposes a
model that constrains the dynamics, such that the dis-
sipation fulfils certain statistical features at the cost of
introducing another free parameter that controls the in-
termittency.

The Lagrangian evolution of a passive scalar can be
added alongside the velocity gradient with similar argu-
ments as for the RFD model. The resulting passive scalar
RFD model (PS-RFD) proposed in [31] retains the sta-
tistical properties of the scalar gradient ψ := ∇θ, such as
the fat-tailed PDFs of ψ deviating from Gaussian at small
scales, in excellent agreement with full direct numerical
simulations of passive scalar turbulence [32]. Extreme
values of the scalar gradient dominate the tails, resulting
in heavy-tailed distributions. These outlier large gradi-
ents of the passive scalar, prevailing at the inertial scales
(intermittency), can effectively be studied by means of
instanton calculus due to their low probabilities, which
forms the main contribution of this work.

As we will line out below, the instanton formalism [33–
35], and its more rigorous cousin, large deviation the-
ory [36, 37], rely on the fact that in stochastic systems,
rare events often occur in a rather predictable way: While
common events usually have a multitude of possible his-
tories, outlier events must rely on a very precise interplay
of physical mechanisms and forcing realizations, lead-
ing to a prototypical system trajectory for the desired
rare event. At its core lies the estimation of a stochas-
tic (path-)integral by a saddle-point approximation, or
equivalently by a (functional) Laplace method, that com-
putes the most likely trajectory, called the instanton, as
well as its probability, as the solution of a large optimiza-
tion problem. Instanton calculus has been successfully
applied to many stochastic systems, including in fluid
dynamics [38–41] and waves [42, 43]. These principles
will be applied in this paper to analyze outlier events in
passive scalar turbulence. More specifically, we will in-
vestigate extreme gradients of θ for the PS-RFD models
via the instanton formalism to find the most likely real-
ization leading to outlier events, and compare the proba-
bility scaling predicted by the instanton to the observed
heavy-tailed distribution of Monte Carlo (MC) simula-
tions. This demonstrates how the instanton gives us di-
rect access to the tail scaling of passive scalar turbulence.

This paper is structured as follows: Section II pro-
vides a brief overview of the RFD models of the flow
velocity gradient and the passive scalar gradient. Follow-
ing that, in section III, we introduce a reduced version,
based on axial and reflection symmetry considerations

that are obeyed statistically by the system. We will in-
vestigate the limitations of these symmetry assumptions
and the symmetry breaking of large strain events in sec-
tion III B. Section IV is devoted to the instanton formal-
ism as applied to the PS-RFD system, including its ac-
tion/rate function and a system of instanton equations
that solve the optimization problem. Section V then
analyzes heavy-tailed PDFs of the passive scalar gra-
dient. Such heavy-tailed distributions, associated with
non-convex rate-functions, pose a particular difficulty for
the application of sample-path large deviations; thus, we
apply in section V B a revised formalism based on non-
linear convexification of extreme event instantons [44].
Finally, we conclude in section VI.

II. THE RECENT FLUID DEFORMATION
MODELS

In this section, we briefly recall the recent fluid defor-
mation model [26] and its extension to the dynamics of
passive scalar gradients [31].

A. Lagrangian velocity gradient in the recent fluid
deformation model

The Lagrangian time evolution of the velocity gradient
tensor A is obtained by taking the gradient of the NSE
(1):

dAij
dt

= −AinAnj −
∂2p

∂xi∂xj
+ ν

∂2Aij
∂xn∂xn

, (3)

where d/dt = ∂/∂t + uk ∂/∂xk stands for the material
derivative. Due to the incompressibility of the flow, A
must be traceless, Tr(A) = 0. As previously stated, equa-
tion (3) is not closed in terms of A at position x and time
t because the anisotropic part of the pressure Hessian is
highly non-local, and the Laplacian of A in the viscous
term is not easily expressed in terms of A.

The RFD closure models these unclosed terms based
on the hypotheses detailed in [26]. The RFD dynamics of
the deformation that the Lagrangian particle undergoes
along the flow, (3), is:

dA
dt

= −A2 +
Tr(A2)

Tr(C−1)
C−1 − Tr(C−1)

3T
A +
√
εW , (4)

where,

C = exp(−τAT) exp(−τA), (5)

approximates the Cauchy-Green tensor with τ represent-
ing a short decorrelation time. As shown by equation 4,
the RFD model has two time scale parameters. They
are the decorrelation time τ , which is assumed to be the
Kolmogorov time scale τK , and T identifying with the
integral time scale. Therefore, on dimensional grounds,
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the role of Reynolds number is played by the parame-
ter r = (τ/T )−2. We remark that while this parameter
scales like a Reynolds number, it is not identical in value
to the Reynolds-number in actual fluid flow. For exam-
ple, [45] compares the RFD at τ/T = 0.1 against DNS
at Reλ ≈ 150, showing for example comparable inter-
mittency trends. Additionally, increasing r in the RFD
above a threshold (around 400) leads to unphysical re-
sults and eventually to a numerical blow up [26, 29, 45].

To reach a statistical equilibrium, a tensorial stochastic
force W (t) has been introduced into (4). Its strength is
determined by a parameter ε, which we pick as ε = 0.25.
The force is correlated as

E [dWij(t)dWkl(t)] = Gijkl dt, (6)

where the fourth order tensor,

Gijkl = 2δikδjl −
1

2
δilδjk −

1

2
δijδkl, (7)

is consistent with both the isotropy assumption and in-
compressibility.

As a small scale quantity, A is expected to scale
with 1/τ . Indeed, the phenomenology of turbulence
states that 〈Tr(S2)〉 = 1/(2τ2K), suggesting a non-
dimensionalization of the RFD equation with τ . In
this setting, the modeled Cauchy-Green tensor would
depend weakly on the Reynolds number since the ex-
plicit τ -dependence would be absent. When non-
dimensionalizing with τ , the deterministic part of the
RFD would depend on r only through the viscous
term. Conversely, the dimensionless noise amplitude gets
smaller as the Reynolds number is increased [28] because
it scales with a positive power of the small time scale
like τ3. Here, though, we non-dimensionalize with T ,
according to [26, 46, 47]. With this choice, τ still ap-
pears in the modeled Cauchy-Green tensor as a small
parameter. As a consequence, expansion and truncation
of the Cauchy-Green tensor can be carried out, which, in
turn, simplifies the instanton equations later on (29) (see
also Appendix 1). In addition, this truncation allows for
a qualitative discussion regarding the emergence of ex-
treme passive scalar gradients in section V. With this in
mind, the non-dimensionalized RFD takes the form,

dĀ
dt̄

= −Ā2 +
Tr(Ā2)

Tr(C̄−1)
C̄−1 − Tr(C̄−1)

3
Ā +
√
ε̄ W̄ , (8)

where the dimensionless variables are defined according
to,

t̄ =
t

T
, Ā = TA , τ̄ =

τ

T
, C̄ = exp(−τ̄ ĀT) exp(−τ̄ Ā) ,

ε̄ = T 3ε , W̄ =
√
T W . (9)

Hereafter, we are taking r ∈ {25, 100, 156, 278}. To
compare our simulations to real turbulence, we com-
puted the flatness of our MC simulations and found
〈(Al−〈Al〉)4〉/〈(Al−〈Al〉)2〉2 = 3.52 for the largest value

r = 278 (where Al stands for the longitudinal velocity
gradients). According to data in [48, 49] a rough esti-
mate of the maximum Taylor-Reynolds number (Reλ)
attained by RFD simulations is Reλ ≈ 20. In addition,
[50] reports that the skewness of value 0.4 is compati-
ble with Reλ ≈ 20. This agrees with the RFD result
of skewness 〈(Al − 〈Al〉)3〉/〈(Al − 〈Al〉)2〉3/2 = 0.39 for
r = 278. While this is a fairly low Reλ-regime, it nev-
ertheless leads to fat-tailed distributions for the passive
scalar gradients, as depicted in figure 4.

B. Passive scalar turbulence in the recent fluid
deformation model

In a similar manner, taking the gradient of the PSE
(2) yields

dψi
dt

= −Aji ψj + κ
∂2ψi
∂xj∂xj

; ψ = ∇θ ∈ R3. (10)

Following the same rationale of the previous section, the
PS-RFD is derived from closing the diffusive Laplacian
with the help of the short-time Cauchy-Green tensor and
a diffusive integral time scale Tθ, yielding [31],

dψ

dt
= −AT ψ − Tr(C−1)

3Tθ
ψ +
√
ε F , (11)

where F denotes a random force that is white
in time with amplitude ε, whose correlation reads
E (dFi(t) dFj(t)) = δij dt. Hereafter, we assume that the
noise strength is the same in both stochastic equations (4)
and (11). [31] investigates the statistical characteristics
of the kinematics of the RFD passive gradient, whereas
[32] compares the PDFs from (11) and the DNS, reveal-
ing the presence of heavy tails.

In terms of dimensionless variables (9), the PS-RFD
becomes,

dψ̄

dt̄
= −ĀTψ̄ − Tr(C̄−1)

3T̄θ
ψ̄ +
√
ε̄ F̄ , (12)

where ψ̄ = Tψ, F̄ =
√
TF are introduced as the dimen-

sionless passive scalar gradient and random forcing, re-
spectively, T̄θ = Tθ/T is the dimensionless diffusive con-
stant and C̄ is provided by (9). It is tempting to identify
the dimensionless time scale with the Schmidt Sc num-
ber as it measures the ratio ν/κ. However, as pointed
out by [31], Sc = ν/κ ≈ (Tθ/T )((∂X)2/(∂Xθ)

2), where
∂X and ∂Xθ are the smallest scales reached by velocity
gradient and scalar gradient, respectively. The assump-
tion made by the model considers ∂X = ∂Xθ, that is,
the smallest scales of turbulence are of the same order of
the smallest scales of the diffusive process. It is known
from the phenomenology of turbulence that these length
scales are of the same order only for Sc near unity. As a
result, the PS-RFD is limited to Sc close to unity [31]. A
Lagrangian model for passive scalar gradients similar to
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the PS-RFD which accounts for Schmidt number depen-
dence is lacking yet. The role of T̄θ and r in the develop-
ment of extreme events shall be discussed in section V.
Subsequently, we will be working with the dimensionless
RFD and PS-RFD with the bar suppressed for notational
clarity.

Equation (11) was conceived to model isotropic pas-
sive scalar fluctuations. Nevertheless, a more standard
setup investigated both in experiments [51] and numer-
ical simulations [20, 21] is the one in which there is an
imposed mean passive scalar gradient. In the presence of
this large-scale mean profile, experiments reveal a persis-
tent skewness in the direction of mean gradient regardless
of Reynolds numbers [51, 52]. This observation indicates
a violation of the postulate of local isotropy, usually as-
sumed in the context of Kolmogorov theory [7], where
anisotropies introduced by the large scale forcing mech-
anism vanishes as one approaches the smallest scales of
motion for high Reynolds numbers. This anomaly is at-
tributed to the formation of ramp-cliff structures. See
[21] for a recent investigation on the role of these struc-
tures in the contribution to odd-order moments statistics.

In light of that, we will adapt the original PS-RFD
to include a uniform mean derivative scalar in a given
direction. Starting from (10), supplementing a passive
scalar mean gradient corresponds to replacing ψ → ψ+Ψ,
with a constant Ψ ∈ R3. The diffusive term is unaffected
by this change so that no further modelling is required.
As a result, the PS-RFD closure subjected to a uniform
mean gradient reads,

dψ

dt
= −AT (ψ + Ψ)− Tr(C−1)

3Tθ
ψ +
√
ε F . (13)

Without loss of generality, we are considering Ψ =
(1, 0, 0) from now on. After simulating equation (13), we
observed that the model captures the prevailing skewness
along the direction of the mean gradient, which can be
seen from the asymmetry of the pdf (figure 4). Though
many works report a skewness of order unity [21, 49, 51],
our results point to skewness approximately in the range
3 - 4.4 with a slight upward trend towards increasing
r. These higher values of skewness may indicate that the
model emulates a Schmidt number lower than unity since
the odd-order moments decrease as Sc increases [21]. For
the fifth-order normalized moment, no significant trend
was found.

III. REDUCED RFD AND PASSIVE SCALAR
RFD MODELS

Conditioning on large strain values in the RFD model,
and similarly on large passive scalar gradients in the PS-
RFD system reveals a statistical tendency to respect axial
and reflective symmetries around the axis prescribed by
the dominant strain. This has been observed before for
the RFD model [53], and for PS-RFD [54], leading to a
simplification of both RFD and PS-RFD models. This

motivates us here to discuss some details of this dimen-
sional reduction, in particular, how spontaneous symme-
try breaking at large strain values leads to a failure of
the symmetry-based reduction.

A. Dimensional reduction of the RFD model

The RFD model (8) describes the evolution of a 3× 3
matrix A, but in fact has only 5 independent variables:
This is easily understood following the standard decom-
position of the velocity gradient into symmetric and
anti-symmetric parts, namely, Aij = Sij + Ωij where
Sij = (Aij+Aji)/2 and Ωij = (Aij−Aji)/2 represent the
rate of strain and rate of rotation tensors, respectively.
By diagonalizing Sij , only three of the six variables in Sij
remain. The interpretation is that after diagonalization,
the coordinate system is aligned with the principal axis
of strain, from which only two are independent due to
Tr(A) = Tr(S) = 0. The rotation matrix’s three vari-
ables represent the rate of rotation with respect to each
principal axis. Explicitly,

A =

a 0 0
0 b 0
0 0 c

+
1

2

 0 −ωc ωb
ωc 0 −ωa
−ωb ωa 0

 , (14)

with a, b and c = −(a + b) are the three rates of strain,
and ωa, ωb and ωc are the projections of the vorticity
ωi = εijkΩkj along the principal axes.

Consider the case of conditioning on a large value for
the first longitudinal component of the velocity gradient,
e.g., A11(tf ) takes a value a. It is clear that

A11 =
(
Λ(α)AΛT(α)

)
11
, (15)

where Λ(α) is the rotation matrix with respect to x1 axis,
namely,

Λ(α) =

1 0 0
0 cosα sinα
0 − sinα cosα

 . (16)

Equation (15) simply means that many different configu-
rations of A lead to the same A11, namely those obtained
by rotating about the x1 axis, which is a manifestation
of the axial symmetry. Indeed, by arguments of isotropy,
the probability obeys P (A) = P (Λ(α)AΛT(α)).

We can, in addition, demand that A itself is axisym-
metric. This corresponds to a situation where we assume
that only the x1-component of the strain is relevant, and
we are free to ignore the others. In this case, the num-
ber of degrees of freedom can be reduced even more.
Let an infinitesimal rotation about the x1 axis given by
Λij = δij+α ε1ij+O(α2). After this transformation, the
velocity gradient reads,

A′ij = Aij + α (ε1ikAkj + ε1jlAil) . (17)



5

With the hypothesis that A is invariant under rotations
with respect to x1, that is, A′ij = Aij , it can be shown
that A takes the form

A =

a 0 0
0 −a/2 −ωa/2
0 ωa/2 −a/2

 . (18)

As a result, the number of degrees of freedom was reduced
from 5 to 2. One of them is related to the rate of strain,
a, and the other is related to the vorticity. By invoking
the reflection transformation over the x2-x3-plane (i.e.,
x1 → −x1) and admitting that A respects this symmetry
as well, we have that ωa = −ωa = 0, and only one degree
of freedom remains.

In summary, diagonalizing the rate of strain tensor re-
duces the degrees of freedom from nine to five. Further-
more, assuming invariance of rotation about one of the
principal axis of strain (axial symmetry) implies that the
vorticity lines up with the principal axis, so that a single
component of the vorticity remains, decreasing the num-
ber of independent variables by two. Additionally, the
same axial symmetry demands the two rates of strain
to be the same, which implies two degrees of freedom
left. Finally, the assumption that the velocity gradi-
ent respects reflection symmetry requires a zero vorticity;
otherwise, the symmetry would be broken. As a result,
only a single degree of freedom is left, corresponding to
the axial rate of strain.

Based on these arguments, we can devise a simplified
stochastic model that accounts for the same statistics of
the longitudinal component of the RFD model (8), which
we call reduced RFD [53], given by

da

dt
= v(a) +

√
ε η, (19)

where a corresponds to A11 and

v(a) = −a2+
3

2
a2

e
− 2a√

r

e
− 2a√

r + 2e
a√
r

− a
3

(e
− 2a√

r +2e
a√
r ) . (20)

The noise term η(t) is a zero-mean white scalar random
variable.

One may ask whether the assumption of invariance un-
der rotation of A is always valid. The answer is no. As
it will be discussed in section III B, there is a critical r
above which the velocity gradient A fails to share the
same symmetry of the probability, and the system un-
dergoes a symmetry breaking, closely related to spon-
taneous symmetry breaking featuring in other areas of
physics [55, 56]. Hence, the dimensional reduction is no
longer possible. Crucially, this critical r coincides with
similar limitations of the original RFD model [26].

B. Numerical results for symmetry breaking of the
RFD model

Here we give evidence for the validity of the dimension-
ally reduced model (19) for moderate r, and the eventual

symmetry breaking of the full 8D model (8). We recall
that for the reduced RFD, an analytical PDF can be
easily found by solving the corresponding Fokker-Planck
equation [53]. Shown in figure 1 are the PDFs obtained
via MC simulations (red dots), in the range r ∈ [25, 400],
against the analytical PDFs of the reduced model (solid
red lines). For the lowest r values up to r = 156, there is
a reasonable agreement between the full 8D-RFD and the
reduced 1D-RFD. For higher r, a disagreement is seen in
the right tail; note, though, that positive strain values
are irrelevant for the development of large passive scalar
gradients, as will be shown later. As r is increased further
to r = 400 (τ/T = 0.05), at the very right of figure 1,
the disagreement becomes more pronounced, including
on the far left tail. Here, the 1D-RFD predicts a bimodal
PDF with a new local minimum located at A11 = −3.01.
By contrast, this bimodality is not observed in the 8D-
RFD. The emergence of this bimodal profile remains for
larger values of Reynolds number. Roughly r = 400 es-
tablishes the upper limit where the dimensional reduction
can sensibly be applied.

The discrepancy between 8D-RFD and 1D-RFD
demonstrates that for r & 400 the hypothesis of symme-
tries (axial and reflection) outlined in the previous sec-
tion do not hold. Consequently, other components of the
velocity gradient start to play a role in the dynamics and
may not be neglected. However, it remains true that the
equation itself, and thus also the PDF, remains invariant
under rotations and reflections for any value of the pa-
rameter r. Only individual sample trajectories break the
symmetry, while the statistics remain symmetric. Hence,
it makes sense to borrow a terminology of condensed
matter/high-energy physics [55, 56], observing that the
model undergoes spontaneous symmetry breaking, since
the symmetry of the model is not realized by the individ-
ual states of the system A, even though the action and
consequently the PDF does observe it. The fact that
this indeed happens can be shown numerically. Figure 2
shows the joint PDFs ρ(ω2, ω3|A11) of the perpendicular
components of the vorticity ωi = εijkΩkj , conditioned
on relatively large negative A11 at different r. In other
words, this shows the distribution of the vorticity vector
in the presence of extreme strain, in the plane perpendic-
ular to the strain axis. For moderate r = 100 and 400 the
distribution is concentrated around 0, highlighting that
the vorticity vector points along the strain axis (or is alto-
gether zero). For very large r, though, the perpendicular
vorticity components prefer to occupy a ring away from
(0, 0), indicating the breakdown of axisymmetry for the
individual sample. At this r, vorticity is more likely to
be at an angle against the strain axis. Note that while we
do not believe that the RFD model remains a valid de-
scription of 3D NSE turbulence in this regime; we remark
that symmetry breaking has recently been observed for
extreme strain events in full 3D Navier-Stokes [57].

It is worth mentioning that in same range of r where
the symmetry breaking happens, the RFD model itself
becomes problematic as well, as numerical instabilities
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FIG. 1. PDFs of the A11 component of the velocity gradient tensor Aij = ∂ui/∂xj , for a range of Reynolds numbers. The red
dots show a histogram of a MC for the full RFD model (8), compared against the analytical prediction of the reduced RFD
system (19) (solid line). It shows the emergence of another fixed point of the 1D reduced system at A11 = −3.01 for r = 400,
which is an artifact of the model reduction.
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FIG. 2. The joint PDF ρ(ω2, ω3|A11) of the perpendicular
components of the vorticity, conditioned on relatively large
negative strain values A11, for different values of r. As r in-
creases, the originally very small variances around the most
likely configuration (ω2, ω3) = (0, 0) grows in variance. At
high r, a zero perpendicular vorticity is no longer predom-
inant. Instead, the most likely vorticity clusters on a ring,
indicating a spontaneous symmetry breaking of the vorticity
conditioned on large negative strain.

start to appear, as reported by [26]. Here, we shall briefly
explain that by considering the high-r limit of (8). In the
limit of infinite r, the RFD model reduces to

dA
dt

= −A2 +
Tr(A2)

3
I− A +

√
εW . (21)

Apart from the stochastic forcing, this equation corre-
sponds to the linear damping closure proposed by [58]. It
has been shown that the linear damping is not enough to
counteract the strong non-linearities of the self-stretching
and pressure Hessian terms, being subject to finite-time
singularities.

C. Dimensional reduction of the passive scalar
RFD model

Following the same logic, one may derive a 2-
dimensional reduced model for the PS-RFD by consider-
ing the statistics of only a single component of the passive
scalar gradient, namely, ψ1 = ∇1θ which points towards

the imposed mean gradient Ψ = (1, 0, 0). More specif-
ically, assuming now that both A and ψ are invariant
under rotation around the x1 axis, the components ψ2

and ψ3 must vanish. As a result, the reduced version of
the PS-RFD model (12) is defined as [54],

dψ1

dt
= b(ψ1, a) +

√
ε ξ, (22)

where

b(ψ1, a) = −(ψ1 + 1) a− (e
− 2a√

r + 2 e
a√
r )

ψ1

3Tθ
, (23)

and ξ(t) is a white scalar noise that is independent of
η(t) in (19). The dynamics of ψ1(t) depend on the lon-
gitudinal velocity gradient a(t). Thus, equation (22) has
to be solved together with (19).

Being dependent on the RFD, it is clear that the di-
mensional reductions for PS-RFD will fail in the same
range of r where RFD symmetry breaks down, but is in
excellent agreement for r . 400. Next, the instanton
equations and their simplified version for the PS-RFD
system are obtained. Since there is a significant gain in
numerical efficiency in solving the instanton equations of
the reduced system, we will do so whenever the dimen-
sional reduction is justified.

IV. INSTANTON FORMALISM AND
EXTREME EVENTS

In this section, we apply the instanton formalism to the
PS-RFD model described in section II. Intuitively, the
instanton formalism relies on the fact that in some limit
(such as the small noise or extreme event limits) probabil-
ities can be efficiently estimated through a prototypical
“placeholder” event that observes the same scaling as the
actual probability. A probability of an event is always a
sum (or integral) over all possible ways the event can oc-
cur, weighted by its respective probability. In the limit,
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this integral can be approximated by a saddlepoint ap-
proximation or Laplace method, giving the leading order
exponential contribution. For example, we are interested
in the probability of observing events of extreme passive
scalar gradients at the final time, P (ψ1(tf ) > z). Then,
the instanton formalism postulates that the probability
scales like an exponential,

P (ψ1(tf ) > z) ∼ exp
(
−ε−1I(z)

)
. (24)

The exponential scaling, given by the rate function I(z),
can be obtained by evaluating an action S[A, ψ] at the
instanton (A∗, ψ∗),

I(z) = S[A∗, ψ∗] = inf
ψ1(tf )>z

S[A, ψ] , (25)

where the instanton is the minimizer of the action. We
will derive the action for the PS-RFD model in sec-
tion IV B. In our setup, the instanton formalism is equiv-
alent to sample path large deviation theory [36, 37, 59].

A. Related works

The action functional for the RFD model has first been
determined in [47]. The instanton equations were lin-
earized in this reference to derive an approximate ana-
lytical solution, with additional consideration of the fluc-
tuations around the linearized instanton. As a result, to
leading order in the perturbative expansion, the fluctu-
ations yield an effective action with renormalized noise.
That is, to first order, the fluctuations around the in-
stanton can be taken into account by renormalizing the
noise correlator. This approach was used to evaluate the
PDFs of the velocity gradient and the joint PDF of the
R and Q invariants.

By contrast, [53] determines the instanton numeri-
cally by solving the corresponding highly non-linear RFD
Hamilton’s equations with the Chernykh-Stepanov (C-S)
algorithm [60]. Further, following the perturbation tech-
niques outlined in [47], a detailed analytical treatment
of the RFD closure has been given by [61], providing a
hierarchical classification of several Feynman diagrams.
In addition to the noise renormalization, [61] also com-
putes the propagator renormalization derived from a lin-
ear instanton approximation. The resulting PDFs are
compared with the ones from [53] with good agreement.

More recently, [54] applies instanton arguments also to
the PS-RFD model, proposing a parametric form of the
Hamilton’s equation. Aside from that, a perturbation
expansion has been carried out along the lines of [47, 61]
to account for instanton path fluctuations.

Putting these results into perspective, all are capable
of obtaining only mild non-Gaussian PDFs, that is, they
work for a restricted range of τ , namely, τ/T ≥ 0.1 (r .
100). As r increases, and intermittency starts to play
a role, the probability distributions develop heavy tails.
Consequently, the corresponding rate function ceases to

be convex, which prevents naive instanton approaches
based on the Gärtner-Ellis theorem to remain well-posed.
To overcome this and to apply the instanton formalism
to more turbulent flows, here we introduce a nonlinear
convexification to treat the heavy-tailed distribution, as
discussed in section V.

B. The action and instanton equations for the
PS-RFD dynamics

In accordance with [54], the PS-RFD action reads [62–
64] ,

S[P,A,Π, ψ] =

∫ tf

ti

dt

[
Tr
(
PT(Ȧ− V(A))

)
− 1

2
PijGijklPkl

+ΠT(ψ̇ −M(ψ,A))− 1

2
ΠTΠ

]
,

(26)

where

M(ψ,A) = −AT(ψ + Ψ)− Tr(C−1)

3Tθ
ψ , (27)

and

V(A) = −A2 +
Tr(A2)

Tr(C−1)
C−1 − Tr(C−1)

3
A , (28)

stand for the drift terms of equations (12) and (8), respec-
tively, and Π ∈ R3 (P ∈ R3×3) is the conjugated momen-
tum of ψ (A), closely related to the auxiliary variables
of the Martin-Siggia-Rose-Janssen-de Dominicis formal-
ism [62–64].

The minimum of the action functional (26) is achieved
by the solutions of the following corresponding instanton
equations of the fields A, ψ:

δS

δPij
= 0, ⇒ Ȧij = V (A)ij +Gijkl Pkl,

δS

δAij
= 0, ⇒ Ṗij = −Pkl∇AijV (A)kl −Πk∇AijM (ψ,A)k ,

δS

δΠk
= 0, ⇒ ψ̇k = M (ψ,A)k + Πk,

δS

δψk
= 0, ⇒ Π̇k = −Πn ∇ψk

M (ψ,A)n ,

(29)

for t ∈ [ti, tf ]. The full formulas for these gradients are
derived in appendix 1, where we expand the drifts up to
second order [47].

These four coupled equations (29) are solved simulta-
neously using the C-S scheme [60, 65], which corresponds
effectively to a gradient descent of the constrained opti-
mization problem [66]. The boundary conditions of (29)
are specified by the choice of observable. Here, we are
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looking for events where one component ψj of the pas-
sive scalar gradient exceeds a threshold z, which leads to

A (ti) = 0, ψ (ti) = 0, P (tf ) = 0, Πj (tf ) = λ∇F (ψj (tf )) ,
(30)

where the initial values of the fields are their stable equi-
librium points, the origin. The final time constraint
on the gradient of passive scalar to attain z = ψj (tf )
is implemented in (30) through a Lagrange multiplier
λ ∈ R, [67]. The function F : R → R is a nonlinear
reparametrization to ensure there is a unique λ for every
large passive scalar gradients of interest [44].

C. Instantons for the reduced PS-RFD dynamics

The full instanton equations (29) correspond to the
system (8, 12). However, when a final time constraint
is imposed on a component of the passive scalar, such
as F (ψ1 (tf )) (30), it exhibits symmetric behavior (with
respect to axial and reflective symmetries) that reduce
this 11-variables system to one with only two leading
variables, ψ1 (t) and a (t). The same reduction applies to
conditioning on other components of ψ. As discussed in
section III, this reduction is valid for r . 400.

For the reduced model (19), (22), the resulting 2D in-
stanton equations are

ȧ = v (a) + p,

ṗ = −p ∂v (a)

∂a
− q ∂b (ψ1, a)

∂a
,

ψ̇1 = b (ψ1, a) + q,

q̇ = −q ∂b (ψ1, a)

∂ψ1
,

(31)

where p (t) = P11 (t) and q (t) = Π1 (t). The drifts
v (a) and b (ψ1, a) are derived in the reduced models’ sec-
tion, III, namely equations (20, 23).

The difference between equations (29) and (31) is that
the latter is more computationally efficient than the for-
mer due to the significant reduction of its dimensions,
and we will use it in the following to estimate the tail
probabilities of the passive scalar gradient. Figure 3
demonstrates numerically that this simplification is in-
deed justified for the instanton, as the predicted proba-
bilities P (ψ1(tf ) > z) of exceeding a passive scalar gra-
dient z at final time tf is in excellent agreement between
MC sampling of the full RFD model, and the instanton
estimates of both the full and the reduced models.

V. EXTREME GRADIENT OF THE PASSIVE
SCALAR

In this section we provide both analytical and numer-
ical results for extreme passive scalar gradients in the

0 2 4 6 8 10

z

10−4

10−3

10−2

10−1

100

P
(ψ 1(

t f
)>z

)

r = 100

11D Monte-Carlo

11D Instanton

2D Instanton

FIG. 3. The complementary cumulative distribution func-
tions of passive scalar gradients P (ψ1(tf ) > z), (solid line)
compared to the outcomes of both 11D and 2D instantons
results (red and blue, respectively), with r = 100 and Tθ = 1.
Both the full and the reduced instantons agree with MC sim-
ulations of the full system.

PS-RFD. Starting from the model equations (12), which
we rewrite here for convenience,

dψ

dt
= −AT (ψ+Ψ)− Tr(C−1)

3Tθ
ψ+
√
ε F ; C = e

A√
r e

AT√
r ,

(32)
recall that the first term on the right hand side of this
stochastic equation accounts for the advection, whereas
the second term describes the effect of diffusion. We shall
discuss the role played by parameters Tθ and r. In the
limit of high r, the Cauchy-Green tensor C can be ex-
panded to order O(r−1),

Tr(C−1) = 3 +
1

2r
Tr
(
A2 + A2T + 2ATA

)
= 3 +

2

r
Tr
(
S2
)
, (33)

where S is the rate of strain tensor S = (A + AT)/2.
Taking this into consideration, equation (32) is rewritten
as

dψ

dt
= −AT (ψ + Ψ)− ψ

Tθ
− 2ψ

3Tθ r
Tr(S2) +

√
ε F . (34)

From (34), it is clear that the second term on the right
side is linear damping for ψ, acting to decrease the size
of fluctuations, with Tθ being the (dimensionless) char-
acteristic time. The behavior of the third term, on
the other hand, can be understood as follows: Finite-
ness of dissipation (recall the scaling we use (8)) reads
〈Tr(S2)〉 = r/2. As a result, the third term is expected
to remain bounded, on average, as r increases. By con-
trast, the first term is expected to get larger (in ab-
solute value) since A, on phenomenological grounds, is
expected to scale as A ≈ T/τ . Hence, as r increases
keeping Tθ constant, the effect of the advection (first
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(ψ 1(
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))

(a)

Tθ = 1
r = 25

r = 100

r = 156

r = 278
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ψ1(tf)
10−5
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100

ρ
(ψ 1(

t f
))

(b)

r = 100
Tθ = 0.5

Tθ = 1

Tθ = 1.5

Tθ = 2

FIG. 4. PDFs of the first component of passive scalar gra-
dients, ψ1, obtained from MC simulations of the PS-RFD
system (8), (12) for various Reynolds numbers r and diffu-
sive time scales Tθ. Subfigure (a) exhibits heavier tails as
r increases, where Tθ is set to unity, indicating significant
turbulent mixing. Subfigure (b) shows that increasing Tθ at
a moderate value of Reynolds number, r = 100, results in
heavy-tailed gradient distributions, caused by a high trans-
port rate.

term) overcomes the third term that accounts for mod-
eled turbulent-diffusion effects.

Our claim is that as the parameters Tθ or r are in-
creased, the development of a large passive scalar gradi-
ent can be enhanced. Increasing Tθ leads to lower damp-
ing effects played by the second and third terms on the
RHS of (34). Likewise, increasing r enables the advection
term to surpass the effect of the third term on the RHS
of (34). The advection term, in turn, will contribute to
an increase of ψ as long as an eigenvalue of A associated
with the direction of ψ is negative, which means that the
compressional directions of the velocity gradient lead to
extreme values of the passive scalar gradients. This qual-
itative analysis meets the known trends in the alignment
of the scalar gradient with strain [68, 69].

0 2 4 6 8 10 12 14

z

10−9

10−7

10−5

10−3

10−1

P
(ψ 1(

t f
)>z

)

Tθ = 1

Inst, r = 25

Inst, r = 100

Inst, r = 156

Inst, r = 278

MC, r = 25

MC, r = 100

MC, r = 156

MC, r = 278

FIG. 5. The complementary cumulative distribution func-
tions of the passive scalar, P (ψ1(tf ) > z). Compared are
MC simulations (dotted lines) against 2D instantons esti-
mates (solid lines) for different values of r (Tθ is set to unity).
There is clear agreement between 11D MC and the 2D instan-
ton estimate in particular when ψ1 becomes large (far tails),
in accordance with large deviations theory.

A. Heavy tails and convexification

We are now equipped to investigate the probability to
observe extreme passive scalar gradients for different r
and Tθ. Figure 4 displays the PDFs of the first compo-
nent of passive scalar gradients, ψ1, at the final time tf ,
for various values of r in (a), and diffusive timescales Tθ
in (b). They are obtained by MC simulations of the full
11D PS-RFD system (8, 12). It illustrates that indeed
increasing both r and Tθ invokes heavy tails for the pas-
sive scalar gradient due to strong turbulent mixing and
high transport rates. We also remark that the fattening
of the tails is more sensitive to the diffusive time scale Tθ
than to the Reynolds number. This can be understood
through equation (34), where it is evident that increas-
ing Tθ leads to a decrease of two suppression terms for
ψ, compared to only one for r.

B. Extreme configurations of the passive scalar
gradient

The probabilities obtained from MC sampling can
be directly compared to predictions from the instanton
formalism, obtained by solving the optimization prob-
lem (25). In practice, we do so by numerically solving
the instanton equations (31). This comes of a signifi-
cant performance benefit over computing the instanton
for the full model (29), allowing us to compute the min-
imizer faster. For example, the average speed-up factor
for r = 100 and z ∈ [2, 10] is 54. The benefit of solv-
ing equations (31) is even more significant for extreme
events since this factor of improvement grows as r and/or
z increase. To overcome the problem of heavy tails, we
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A11
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ψ

1
r = 156, Tθ = 1

FIG. 6. Events of extreme passive scalar gradient for the
reduced model in the a-ψ1-plane. The streamlines depict
the deterministic drift of the reduced PS-RFD model. The
line shows the instanton for realizing a final-time event of
ψ(tf ) = 6.91, starting from the fixed point (0, 0) (white line).
The density of trajectories of MC-simulations, conditioned
on the same outcome, is shown as a heatmap where the sam-
ples number equals 367 (filtered out of 3 × 106 trajectories).
Extreme outcomes of ψ1 are commonly achieved by first tran-
sitioning into a region of negative strain, in which it is much
easier to excite strong gradients. The instanton correctly pre-
dicts this mechanism.

convexify the rate function with a reparametrization of
the observable according to the scheme presented in [44].
Concretely, we choose F (z) = sign(z) log log |z|, to be in-
serted as boundary condition into (30). We then use the
C-S algorithm [60, 65] to obtain the instanton fields A
and ψ and their respective conjugate momenta P and Π.
These allow us to (i) obtain the tail scaling of the passive
scalar gradient PDF by computing the action of the in-
stanton, and (ii) identify the mechanism responsible for
the formation of extreme passive scalar gradient events
within the model.

Figure 5 presents the logarithmic probabilities of MC
simulations of the passive scalar ψ1(tf ) (dotted lines)
against 2D instantons results (solid lines) for different
values of r, where Tθ is set to unity. It demonstrates an
excellent agreement of the tail scaling between the 11D
MC simulation and the instanton prediction, in partic-
ular, when ψ1 becomes large. Note that the instanton
computation allows us to go extremely far into the tails,
where MC becomes inefficient. Figure 6 depicts a set of

realizations achieving an extreme passive scalar gradient,
ψ1 = 6.91, in the a-ψ1 plane. Here, the shading indicates
the MC density of trajectories that exhibit this large pas-
sive scalar gradient at the final time, with samples num-
ber equals 367 (filtered out of 3×106 trajectories). While
the solid line shows the instanton prediction for compar-
ison. Visible is the dominant mechanism for producing
large passive scalar gradients: Fluctuations in the rele-
vant strain component drives the system into a region
of large negative strain, which deterministically ampli-
fies the passive scalar gradient to large values. Note that
the dominant reactive channel is nicely predicted by the
instanton.

VI. CONCLUSION

We investigate events of extreme passive scalar gradi-
ents in turbulent flows by using Lagrangian turbulence
models extended to handle passive scalar advection. We
demonstrate how a reduced two-dimensional model (one
component of strain and passive scalar gradient each)
captures the important mechanisms responsible for large
passive scalar gradients. Notably, the symmetries neces-
sary to apply the reduced model become broken for very
extreme events or very large Reynolds numbers, which we
can observe by direct sampling. We remark that the full
RFD model also fails to describe fully developed Navier-
Stokes turbulence in this regime, so that the reduced
model remains a helpful simplification for our purposes.

We employ the instanton formalism to capture the scal-
ing of very large outlier events in the tails of the PDF of
passive scalar gradients. This most likely trajectory not
only yields the correct tail scaling, even in the fat-tailed
regime, but further allows us to investigate the mecha-
nism responsible for the buildup of large gradients in the
reduced model.
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VII. APPENDIX

1. The detailed derivations of the gradients of the drifts

To compute the gradient of the exponential terms of V (A) and M (ψ,A) with respect tensor A, they need to be

extended. Up to the second order of τ , the power series of the matrix exponential eX =
∑∞
n=0

Xn

n! is used for the

stationary Cauchy-Green tensor C−1. Notice that it still possesses the physical features of the full drifts of this model
[47]. The expansion process is ordered in the following points:

• The power series of the matrix exponential to extend C−1 gives:

C−1 =
(
eτA eτA

T
)−1

=

( ∞∑
n=0

(
−τAT

)n
n!

)( ∞∑
n=0

(−τA)
n

n!

)

= I− τ (A + AT) +
τ2

2

(
A2 + 2ATA +

(
AT
)2)

+O
(
τ3
)
.

Then, the trace of C−1 after the truncation to the second order is

Tr
(
C−1

)
= 3 + τ2 Tr

(
A2
)

+ τ2 Tr
(
ATA

)
, (35)

where the linearity property of the trace operator and the fact that Tr (A) = Tr
(
AT
)

= 0 (due to the incom-

pressibility of the flow) and Tr
(
A2
)

= Tr
((

AT
)2)

are used.

• Substituting the expanded version of C−1 and its trace in the drift term (28) gives:

V (A) = −A2 +
Tr(A2)

3 + τ2 Tr (A2) + τ2 Tr (ATA)

[
I− τ

(
A + AT

)
+

τ2

2

(
A2 + 2ATA +

(
AT
)2)]− A

3

[
3 + τ2 Tr

(
A2
)

+ τ2 Tr
(
ATA

)]
.

(36)

The quantity 1/(3 + τ2 Tr
(
A2
)

+ τ2 Tr
(
ATA

)
) can be rewritten in terms of Maclaurin series as follows,

1

3 (1− x)
=

1

3

∞∑
n=0

xn, x := −1

3

(
τ2 Tr

(
A2
)

+ τ2 Tr
(
ATA

))
.

Thus,

1

3 + τ2 Tr (A2) + τ2 Tr (ATA)
=

1

3
− 1

9

(
τ2 Tr

(
A2
)

+ τ2 Tr
(
ATA

))
+O

(
τ3
)
.

• Inserting the last equality into equation (36) and considering only the second order terms of τ yields the
truncation formula of V (A) (28), [53]:

V (A) =

4∑
p=1

Vp (A) , (37)

where Vp (A) contains all the components of O (Ap), that is:

V1 (A) = −A,

V2 (A) = −A2 +
I
3

Tr(A2),
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V3 (A) = −τ
3

Tr(A2)
(
A + AT

)
− τ2

3
A
(

Tr
(
A2
)

+ Tr
(
ATA

))
,

V4 (A) = −τ
2

9
Tr(A2) I

(
Tr(A2) + Tr(ATA)

)
+
τ2

6
Tr(A2)

(
A2 + 2AT A +

(
AT
)2)

.

• Similarly, the extension version of M (ψ,A), resulting from substituting the truncated trace (35) into the drift
of the PS-RFD (27), is

M (ψ,A) = −AT (ψ + Ψ)− 1

3Tθ

(
3 + τ2 Tr

(
A2
)

+ τ2 Tr
(
ATA

))
ψ. (38)

Now, obtaining the gradient tensors ∇AijV (A)kl, ∇AijM (ψ,A)k and ∇ψk
M (ψ,A)n (required for instanton

equations (29) ) from the truncated drifts (37, 38) is straightforward computations, as shown:

• The first gradient tensor is

(∇AV (A))klij = ∇AijV (A)kl =

4∑
p=1

∇AijVp (A)kl , (39)

where,

∇Aij
V1 (A)kl = −∂Akl

∂Aij
= −δkiδlj ,

∇Aij
V2 (A)kl =

∂

∂Aij

[
−A2

kl +
1

3
δkl Tr(A2)

]
= −δkiAjl −Aki δlj +

2

3
δklAji,

∇Aij
V3 (A)kl = −τ

3

∂

∂Aij

[
Tr(A2) (Akl +Alk) + τ Akl

(
Tr(A2) + Tr(ATA)

)]
= −τ

3

(
2Aji (Akl +Alk) + Tr(A2) (δki δlj + δli δkj)

)
− τ2

3

(
δki δlj

(
Tr(A2) + Tr(ATA)

)
+ 2Akl (Aji + Aij)

)
,

∇Aij
V4 (A)kl =

∂

∂Aij

[
− τ2

9
Tr(A2) δkl

(
Tr(A2) + Tr(AT A)

)
+
τ2

6
Tr(A2)

(
A2
kl + 2Amk Aml +A2

lk

)]
= −2

9
τ2 δkl

[
Aji

(
2 Tr(A2) + Tr(ATA)

)
+ Tr(A2)Aij

]
+
τ2

3

[
Aji

(
A2
kl + 2Amk Aml +A2

lk

)
+ Tr(A2)

(
δkj Ail +Aik δlj

+
1

2
(δkiAjl +Aki δlj + δliAjk +Ali δkj)

)]
.

The following relations are used:

∂A2
kl

∂Aij
= δkiAjl +Aki δlj ,

∂ Tr(A2)

∂Aij
= Aji +Aji = 2Aji,

∂ Tr(ATA)

∂Aij
= 2Aij .
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• The second gradient tensor is

(∇AM (ψ,A))kij = ∇Aij
M (ψ,A)k =

∂

∂Aij

[
−Amk (ψm + Ψm)

− 1

3Tθ

(
3 + τ2 Tr(A2) + τ2 Tr(ATA)

)
ψk

]
= −δkj(ψi + Ψi)−

2 τ2

3Tθ
(Aji +Aij) ψk.

(40)

• The third gradient tensor is

(∇ψM (ψ,A))nk = ∇ψk
M (ψ,A)n =

∂

∂ψk

[
−Amn ψm −

1

3Tθ

(
3 + τ2 Tr(A2) + τ2 Tr(ATA)

)
ψk

]
= −Akn −

1

3Tθ

(
3 + τ2 Tr(A2) + τ2 Tr(ATA)

)
δnk.

(41)
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