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Summary

In this paper, a global finite-time co-operative control is first time proposed for co-
operative multiple manipulators. The proposed control scheme is developed based on
an integration between a finite-time disturbance observer (FTDO) and a finite-time
integral sliding mode controller (FTISMC) to get a high robustness against the effects
of the model uncertainties and disturbances in the system. The switching term of the
integral sliding mode controller is reconstructed such that the desired sliding mani-
fold can be convergent in a finite time. The nominal controller of the integral sliding
mode control is developed based on an advanced backstepping control, namely
finite-time backstepping control, which also provides a finite time convergence. The
integration of the finite-time disturbance observer, finite-time switching term and
the finite-time backstepping controller forms a new global finite-time integral slid-
ing mode control. The effectiveness of the proposed approach is demonstrated based
on a co-operative control of a dual two-link manipulators.
KEYWORDS:
Multiple Manipulators; Finite-time convergence; Integral sliding mode control; Backstepping control.

1 INTRODUCTION

Robots have been widely applied in manufacturing sector to enhance the quality and quantity of the products [36], [24]. Initially,
a single robot was designed to hold/carry objects independently without interacting with other robots. However, for handling/-
carrying a long, large and heavy object, the use of single manipulator may not be sufficient. One solution for this problem is
to re-design structure of single robot manipulator so that it suits for this particular application. However, this design procedure
becomes complex and costly. An alternative solution for this issue is to use multiple simpler and cheaper robots. Due to this
demand, co-operative control of multiple manipulators has been developed recently [46], [17].

However, the design of co-operative control of multiple manipulators faces many challenges compared to those for single
robot because of the complex coupling effects in the motions between the robots and the handled object. To get a good tracking
precision for the object, all manipulators need to provide high tracking performances. Actually, the lower tracking precision of
a robot will possibly generate a huge tracking error for the whole system. Consequently, a huge internal force may be produced
that can disturb the stability of the system and even damage the handled objects or manipulators themselves [13]. Therefore, it
is necessary to enhance the tracking precision of robot manipulators [27]. Many solutions have been proposed to enhance the
tracking performance of robot manipulators. In [45], a nonlinear feedback control has been investigated for multiple manipu-
lators. In [25], a PD plus gravity compensation has been proposed. However, these approaches presumed a prior knowledge
of the full dynamic model of the robot. Unfortunately, this assumption might not be applicable for the practical robot systems;
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there always exist model uncertainties and disturbance in robot dynamics, which reduce the tracking performance of the robots
significantly [39],[4].

To eliminate the uncertainties and disturbances’ effects, many solutions have been explored. In the first approach, adaptive
control techniques have been developed [2], [5], [9]. In the second approach, learning techniques have been proposed [8], [10],
[16], [40], [14]. Alternative solutions based on disturbance observers have been recommended in [41], [38]. In [18], an reduced-
order observer has been developed. However, these conventional disturbance observer did not provide finite time convergence. To
obtain a finite time convergence of the disturbance estimate errors, a finite time disturbance observer based on a state estimation
scheme have been developed [23], [15]. In these disturbance observers, the disturbance estimate can be reconstructed when the
estimated states converged to the real states.

Due to its high robustness, sliding mode control (SMC) techniques have been utilized to suppress the effects of the uncer-
tainties and disturbances in the system [29]. The conventional SMC has been utilized to improve the tracking control of a
co-operative control of multiple manipulators [3]. Generally, the conventional SMC has two basic operaional stages. In the first
stage, the origin of the system is driven to reach the predefined sliding surface. Then, in the second stage, the system is controlled
to sustain its location in the sliding surface in infinite time. Unfortunately, the transition period in the first stage decreases the
settling time of the system [12]. To eliminate this shortcoming, integral sliding mode control (ISMC) has been proposed [31],
[32], [37]. In a comparison with its counterpart, i.e., the conventional SMC, the ISMC provides many prominant features [22].
First, no reaching phase is present. This property is helpful for many practical applications because it helps to guarantee the
physical constraints of the system can be satisfied from the beginning of the operating point. Second, the ISMC suppresses the
matched disturbances, yet it does not boosts the unmatched ones. Third, under the presence of matched uncertainties, the sys-
tem response is matching with the response of the nominal system. However, the conventional ISMC does not provide a finite
time convergence for the system. The property of finite time convergence is particularly useful for practical systems since it can
guarantee the stability and convergence after a finite time and increase the tracking precision for the system [47], [42]. Due to
this significance, finite time convergence has been studied extensively for many applications based on a new advanced SMC,
namely terminal sliding mode control (TSMC) [44], [30], [35], [34]. However, the TSMC does not provide the three afore-
mentioned desired properties like that of the ISMC. Another finite time controllers based on finite time backstepping control
have been developed [26], [43]. However, like the conventional backstepping control such as [32], the finite time backstepping
control possesses low robustness against uncertainties and disturbances compared to the sliding mode control approaches. This
motivates us to develop a new controller that can combine the property of finite time backstepping control and integral sliding
mode control to preserve the merit features of the two conventional approaches.

In this paper, in order to enhance the tracking performance of co-operative control of multiple manipulators, an integration
between a new finite-time disturbance observer (FTDO) and a new finite-time integral sliding mode control (FTISMC) is pro-
posed for the first time. First, a coupled dynamic model of the multiple manipulators and the handled object is derived. A FTDO
is then developed to estimate the disturbance component in the system. Next, a FTISMC, which includes a finite-time switch-
ing term and a finite-time backstepping control, which is used as a nominal controller, is derived so that the system can achieve
a finite time convergence. The finite time stability of the whole system is proved rigorously. Finally, the proposed method is
applied for a co-operative control of a dual two-link manipulators system. In summary, the major contributions of this paper can
be marked as follows:

• A finite-time disturbance observer is proposed. Compared to the conventional disturbance observers [41, 38], the proposed
observer guarantees a finite time stability and convergence of the estimated disturbance errors (see section 4). The finite
time convergence property of the proposed disturbance observer has a similar property as [23], [15], howerver the proposed
disturbance observer is designed for estimating the disturbance observer directly (the disturbance observer is reconstructed
based on a disturbance estimate component), while the approaches in [23], [15] reconstructed a disturbance estimate from
a state observer.

• A finite-time integral sliding mode control (FTISMC) is first time explored for a co-operative control of multiple manip-
ulators. Compared to the existing approaches such as PD controller [25], adaptive control techniques [2], [5], [9] and
conventional SMC [3], the proposed method is superior since it has a strong robustness against the effects of the uncertain-
ties and faults, eliminates the reaching phase and provides a finite time convergence. Compared to other integral sliding
mode controllers such as [15], [6], [33], the proposed FTISMC has two major advantages: (1) it uses a dynamic model of
the robots to reconstruct an integral sliding surface, so it can eliminate the reaching phase and provide high robustness,
(2) it provides a finite time convergence, while the existing approaches, i.e., [15], [6], [33] cannot.
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• Compared to the conventional integral sliding mode control [31], [32], [37], both the switching term and nominal controller
of the proposed FTISMC provide a finite time convergence. Compared to other finite time controllers such as [1], [11],
the proposed FTISMC provides two major unique features: (1) an integration between a finite time disturbance observer
and FTISMC guarantees a global finite time convergence, (2) the proposed FTISMC integrates the merits of both integral
sliding mode control and finite time controller, so it provides higher robustness and faster convergence and no reaching
phase required.

• Compared to the conventional backstepping control [32], the developed finite-time backstepping control technique pro-
vides a finite time convergence. Compared to the finite-time backstepping control approaches such as [26], [43], the
proposed approach in this paper is unique in the way that the finite time backstepping is used as a nominal controller and
integrated with a finite time integral sliding mode control. Therefore, it preserves the advantages of the backstepping con-
trol and integral sliding mode control simultaneously, which provides much higher robustness compared to the existing
finite time backstepping control, i.e., [26], [43].

The remainder of this paper is organized as follows. Section 2 introduces some preliminaries. Problem statement is described
in section 3. Section 4 presents the design of the finite-time integral sliding mode control. The nominal controller of the integral
sliding mode control based on finite-time backstepping control is presented in section 5. The effectiveness of the proposed
approach is demonstrated in section 6. Section 7 provides conclusions and proposes future works.

2 PRELIMINARIES

Consider the differential equation below
�̇�(𝑡) = 𝑓 (𝑥(𝑡)), 𝑓 (0) = 0, 𝑥 ∈ 𝐷, 𝑥(0) = 𝑥0 (1)

where 𝑓 ∶ 𝐷 → ℜ𝑛 is continuous.
Definition 1. The system (1) is said to be global finite-time stable if the following two conditions are satisfied:

(i) It is globally asymptotically stable,
(ii) Any solution 𝑥(𝑡, 𝑥0) converges to the origin at some finite time, i.e., 𝑥(𝑡, 𝑥0) = 0, 𝑡 ≥ 𝑇 (𝑥0), where 𝑇 (𝑥0) is the settling

time function.
Lemma 1. [44] Consider a smooth positive Lyapunov function 𝑉 (𝑥) satisfied �̇� (𝑥) + 𝜆1𝑉 (𝑥) + 𝜆2𝑉 𝛾 (𝑥) ≤ 0 for any real
numbers 𝜆1 > 0, 𝜆2 > 1, 0 < 𝛾 < 1, then the system converges in finite time. The settling time of the system (1) is given by

𝑇 (𝑥0) ≤
1

𝜆1(1 − 𝛾)
ln

𝜆1𝑉 1−𝛾 (𝑥0) + 𝜆2
𝜆2

(2)
where 𝑉 (𝑥0) is the initial value of 𝑉 (𝑥).

3 PROBLEM STATEMENT

3.1 Problem statement
3.1.1 Kinematics of the System
In this paper, a co-operative control of 𝑚 𝑛-DOF manipulators illustrated in Fig. 1 is considered. Let 𝑥𝑖 ∈ ℜ𝑛𝑖 be the end-effector
pose of the 𝑖th manipulator, the kinematics of the 𝑖th manipulator, which describes the relationship between the position of the
end-effector 𝑥𝑖 and the joint angles 𝑞𝑖, can be described as

𝑥𝑖 = 𝜙𝑒,𝑖(𝑞𝑖) (3)
The derivative of (3) yields

�̇�𝑖 = 𝐽𝑒,𝑖(𝑞𝑖)�̇�𝑖 (4)
where 𝐽𝑒,𝑖(𝑞𝑖) ∈ ℜ𝑛𝑖×𝑛𝑖 is the Jacobian of the manipulator.
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Let 𝑥0 be the centroid of the handled object. The relationship between the end-effector of the 𝑖th manipulator, i.e., 𝑥𝑖, and the
centroid of the object, i.e., 𝑥0, can be defined by

𝑥0 = 𝜙𝑖(𝑥𝑖) (5)
Differentiating (5) with respect to time, yields

�̇�0 = 𝐽𝑖(𝑥𝑖)�̇�𝑖 (6)
where 𝐽𝑖(𝑥𝑖) is the Jacobian matrix. Furthermore, differentiating (6) with respect to time, yields [13]:

�̈�0 = �̇�𝑖(𝑥𝑖)�̇�𝑖 + 𝐽𝑖(𝑥𝑖)�̈�𝑖 (7)
where �̇�𝑖 and �̈�𝑖 are the velocity and acceleration of the end-effector of the 𝑖-th manipulator, respectively, �̇�0 and �̈�0 are the
velocity and acceleration of the mass center of the object, respectively.

3.1.2 Dynamics of robot manipulators
In the joint space, the dynamics of the 𝑖-th manipulator is [16], [14]:

𝑀𝑟,𝑖(𝑞𝑖)𝑞𝑖 + 𝐶𝑟,𝑖(𝑞𝑖, �̇�𝑖)�̇�𝑖 + 𝐺𝑟,𝑖(𝑞𝑖) = 𝜏𝑟,𝑖 + 𝐽 𝑇
𝑟,𝑖(𝑞𝑖)𝐹𝑟,𝑖 (8)

where 𝜏𝑟,𝑖 ∈ ℜ𝑛𝑖 is the joint torque, 𝑞𝑖, �̇�𝑖, 𝑞𝑖 ∈ ℜ𝑛𝑖 denotes the joint position, joint velocity, and joint acceleration, respectively,
𝑀𝑟,𝑖(𝑞𝑖) ∈ ℜ𝑛𝑖×𝑛𝑖 denotes the symmetric positive definite inertia matrix, 𝐶𝑟,𝑖(𝑞𝑖) ∈ ℜ𝑛𝑖×𝑛𝑖 is the Coriolis-centrifugal torque
matrix, 𝐺𝑟,𝑖 ∈ ℜ𝑛𝑖 denotes the gravity torque vector, 𝐹𝑟,𝑖 is the force vector exerted on the end-effector of the 𝑖th manipulator,
𝑛𝑖(𝑖 = 1, ..., 𝑚) denotes the number of 𝑖th manipulator’s DOFs, and 𝑚 is the number of manipulators.

From (4) and (8), the dynamics of the 𝑖th manipulator in the Cartesian space can be represented as:
𝑀𝑖(𝑞𝑖)�̈�𝑖 + 𝐶𝑖(𝑞𝑖, �̇�𝑖)�̇�𝑖 + 𝐺𝑖(𝑞𝑖) = 𝜏𝑖 + 𝐹𝑖 (9)

where,
𝑀𝑖(𝑞𝑖) = 𝐽−𝑇

𝑟,𝑖 (𝑞𝑖)𝑀𝑟,𝑖(𝑞𝑖)𝐽−1
𝑟,𝑖 (𝑞𝑖),

𝐶𝑖(𝑞𝑖, �̇�𝑖) = 𝐽−𝑇
𝑟,𝑖 (𝑞𝑖)(𝐶𝑟,𝑖(𝑞𝑖, �̇�𝑖) −𝑀𝑟,𝑖(𝑞𝑖)𝐽−𝑇

𝑟,𝑖 �̇�𝑟,𝑖(𝑞𝑖))𝐽
−𝑇
𝑟,𝑖 ,

𝐺𝑖(𝑞𝑖) = 𝐽−𝑇
𝑟,𝑖 (𝑞𝑖)𝐺𝑟,𝑖(𝑞𝑖),

𝜏𝑖 = 𝐽−𝑇
𝑟,𝑖 (𝑞𝑖)𝜏𝑟,𝑖,

𝐹𝑖 = 𝐽−𝑇
𝑟,𝑖 (𝑞𝑖)𝐽

𝑇
𝑟,𝑖(𝑞𝑖)𝐹𝑟,𝑖.

(10)

Property 1. [8] The matrix 𝑀𝑖(𝑞𝑖) is symmetric and positive definite.
Property 2. [8],[16] The skew-symmetric matrix 2𝐶𝑖(𝑞𝑖, �̇�𝑖) − �̇�𝑖(𝑞𝑖) ∈ ℜ𝑛𝑖×𝑛𝑖 satisfies that

𝑥𝑇 [�̇�𝑖(𝑞𝑖) − 2𝐶𝑖(𝑞𝑖, �̇�𝑖)]𝑥 = 0,∀𝑥 ∈ ℜ𝑛𝑖 (11)

3.1.3 Coupled Dynamics of Multiple Manipulators and the Handled Object
Under the input of the exerted force produced by 𝑚 manipulators, the motion of the object is described by [16]

𝑀0(𝑥0)�̈�0 + 𝐶0(𝑥0, �̇�0)�̇�0 + 𝐺0(𝑥0) = 𝐹0 − 𝐹𝑑 (12)
where 𝐹𝑑 is the environmental force vector. Note that the environmental force is unknown, so it can be considered as an
uncertainty/disturbance component in the system.

From (6), we also have
𝐹0 = −𝐽 (𝑥0)𝐹𝑟 (13)

where 𝐽 (𝑥0) = 𝑑𝑖𝑎𝑔(𝐽𝑖(𝑥0)) ∈ ℜ�̄�×�̄� and 𝐹𝑟 = [𝐹 𝑇
1 , ..., 𝐹

𝑇
𝑚 ]

𝑇 , here, �̄� =
∑𝑚

1 𝑛𝑖 is declared.
From (9), a compact form of the dynamic model of the 𝑚 manipulators can be introduced as

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐺(𝑞) = 𝜏𝑟 + 𝐹𝑟 (14)
From the results in (7), the coupled dynamics between manipulators and the handled object can be represented in a form

below:
𝑀(𝑞)𝐽 (𝑥0)�̈�0 +

(

𝑀(𝑞)�̇� (𝑥0) + 𝐶(𝑞, �̇�)
)

�̇�0 + 𝐺(𝑞) = 𝜏𝑟 + 𝐹𝑟 (15)
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FIGURE 1 Multiple manipulators steer the object follows a desired trajectory

where 𝑞 = [𝑞𝑇1 , ..., 𝑞
𝑇
𝑚]

𝑇 ∈ ℜ�̄�, 𝐽 (𝑥0) = 𝑑𝑖𝑎𝑔(𝐽𝑖(𝑥0)) ∈ ℜ�̄�×�̄�, 𝑀(𝑞) = 𝑑𝑖𝑎𝑔(𝑀𝑖(𝑞𝑖)) ∈ ℜ�̄�×�̄�, 𝐶(𝑞, �̇�) = 𝑑𝑖𝑎𝑔(𝐶𝑖(𝑞𝑖, �̇�𝑖)) ∈
ℜ�̄�×�̄�, 𝜏𝑟 = [𝜏𝑇1 , ..., 𝜏

𝑇
𝑚 ]

𝑇 ∈ ℜ�̄�×1, and �̄� =
∑𝑚

1 𝑛𝑖.
By multiplying left side of (15) by 𝐽 𝑇 (𝑥0), integrating equations (12) and (13), yields [16]

Ω(𝑞, 𝑥0)�̈�0 + Ψ(𝑞, �̇�, 𝑥0, �̇�0) + Γ(𝑞, 𝑥0, �̇�0) = 𝜏 − 𝐹𝑑 (16)
where Ω(𝑞, 𝑥0) = 𝐽 𝑇 (𝑥0)𝑀(𝑞)𝐽 (𝑥0) + 𝑀0 ∈ ℜ�̄�×�̄�, Ψ(𝑞, �̇�, 𝑥0, �̇�0) = 𝐽 𝑇 (𝑥0)(𝑀(𝑞)�̇� (𝑥0) + 𝐶(𝑞, �̇�)𝐽 (𝑥0)) + 𝐶0(𝑥0) ∈ ℜ�̄�×�̄�,
Γ(𝑞, 𝑥0, �̇�0) = 𝐽 𝑇 (𝑥0)𝐺(𝑞) + 𝐺0 ∈ ℜ�̄�×1, and 𝜏 = 𝐽 𝑇 (𝑥0)𝜏𝑟 ∈ ℜ�̄�×1.

3.2 Control Objective
Let 𝜒1 = 𝑥0 and 𝜒2 = �̇�0, the dynamic model expressed in (16) can be represented in a state space form

�̇�1 = 𝜒2

�̇�2 = Ω(𝑞, 𝑥0)
−1𝑢 + Υ(𝑞, �̇�, 𝑥0, �̇�0) + Θ

(17)
where 𝑢 = 𝜏 is the control input. Θ = −Ω(𝑞, 𝑥0)𝐹𝑑 denotes the disturbance components. Υ(𝑞, �̇�, 𝑥0, �̇�0) =
Ω(𝑞, 𝑥0)

−1(−Ψ(𝑞, �̇�, 𝑥0, �̇�0) − Γ(𝑞, 𝑥0, �̇�0)) denotes the lumped known component.
Assumption 1. The unknown disturbance component is bounded by

|Θ| ≤ 𝛿 (18)
where 𝛿 is a known constant.
Assumption 2. [13], [16] The object is not deformed under the force exerted by the arms.
Assumption 3. [13],[16] When the manipulators handle the object, no relative movement occurs between the end-effectors of
the robots and the handled object.

Based on the assumptions, the objective of this paper is to design a finite-time integral sliding mode control so that the centroid
of the object 𝑥0 = 𝜒1 can track the desired trajectory 𝑥0𝑑 precisely, and that the tracking error can converge to zero in a finite
time.

4 DESIGN OF FINITE-TIME DISTURBANCE OBSERVER

Consider the following observer:
̇̂𝜒2 = Ω(𝑞, 𝑥0)

−1𝑢 + Υ(𝑞, �̇�, 𝑥0, �̇�0) + Θ̂ (19)
Substituting (17) into (19), we obtain the following error:

̇̃𝜒2 = Θ̃ (20)
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where 𝜒2 = 𝜒2 − �̂�2 and Θ̃ = Θ − Θ̂. The disturbance observer can be designed as:
Θ̂ = 𝑒 + 𝜑(𝜒2) + (𝛿 + 𝜈)∫ 𝑠𝑖𝑔𝑛( ̇̃𝜒2) + 𝑙 ∫

̇̃𝜒 𝛾1
2

̇̂𝑒 = −𝜙(𝜒2)
(

Ω(𝑞, 𝑥0)
−1𝑢 + Υ(𝑞, �̇�, 𝑥0, �̇�0) + Θ̂

)

(21)

where 𝜑(𝜒2) is a linear function of 𝜒2 and 𝜙(𝜒2) = (𝜕𝜑(𝜒2)∕𝜕𝜒2) is a positive constant, 𝜈 is a small positive constant, and 𝑙 is a
positive constant, and 0 < 𝛾1 < 1 .

Differentiating (21) with respect to time, we have
̇̂Θ = ̇̂𝑒 + 𝜙(𝜒2)(�̇�2) + (𝛿 + 𝜈)𝑠𝑖𝑔𝑛( ̇̃𝜒2) + 𝑙 ̇̃𝜒 𝛾1

2

= −𝜙(𝜒2)
(

Ω(𝑞, 𝑥0)
−1𝑢 + Υ(𝑞, �̇�, 𝑥0, �̇�0) + Θ̂

)

+ (𝛿 + 𝜈)𝑠𝑖𝑔𝑛( ̇̃𝜒2) + 𝑙 ̇̃𝜒 𝛾1
2

+ 𝜙(𝜒2)
(

Ω(𝑞, 𝑥0)
−1𝑢 + Υ(𝑞, �̇�, 𝑥0, �̇�0) + Θ

)

= 𝜙(𝜒2)Θ̃ + (𝛿 + 𝜈)𝑠𝑖𝑔𝑛( ̇̃𝜒2) + 𝑙 ̇̃𝜒 𝛾1
2

(22)

From (20) and (22), the disturbance observation error can be computed as
̇̃Θ = −𝜙(𝜒2)Θ̃ − (𝛿 + 𝜈)𝑠𝑖𝑔𝑛( ̇̃𝜒2) + Θ̇ − 𝑙 ̇̃𝜒 𝛾1

2

= −𝜙(𝜒2)Θ̃ − (𝛿 + 𝜈)𝑠𝑖𝑔𝑛(Θ̃) + Θ̇ − 𝑙Θ̃𝛾1
(23)

Consider a Lyapunov function candidate 𝑉 (Θ̃) = 1
2
Θ̃2. Combining the derivative of the Lyapunov function with the results

in (23), we have
�̇� = Θ̃ ̇̃Θ

= Θ̃
(

−𝜙(𝑥2)Θ̃ − (𝛿 + 𝜈)𝑠𝑖𝑔𝑛(Θ̃) − Θ̇ − 𝑙Θ̃𝛾1
)

≤ −𝜙(𝑥2)Θ̃2 − 𝑙Θ̃𝛾1+1

≤ −2𝜙(𝑥2)𝑉 − 2𝛾1+1𝑙𝑉
𝛾1+1
2

(24)

Therefore, based on the result of Lemma 1, the finite time convergence of the disturbance estimation error is established.
However, the estimation of (21) cannot be implemented since the term ̇̃𝜒2 is not available. Hence, in order to obtain a FTDO, a
finite-time estimation of ̇̃𝜒2 is needed. To get the estimation, we employ a second-order non-recursive sliding mode differentiator
[21]:

�̇�1 = 𝜁2(𝑡) − 𝑘1|𝜁1(𝑡) − 𝜒2|
𝛽1𝑠𝑖𝑔𝑛(𝜁1(𝑡) − 𝜒2)

�̇�2 = −𝑘2|𝜁1(𝑡) − 𝜒2|
𝛽2𝑠𝑖𝑔𝑛(𝜁1(𝑡) − 𝜒2)

(25)
where 𝑘1, 𝑘2 > 0 and the exponents 𝛽1 and 𝛽2 are chosen such that: 𝛽𝑖 ∈ (0, 1), 𝑖 = 1, 2 and 𝛽1 = 𝛽 and 𝛽2 = 2𝛽 −1, where 𝛽 is a
value within the interval (1 − 𝜖, 1) and 𝜖 > 0 is sufficiently small. The parameters 𝑘𝑖, 𝑖 = 1, 2 are assigned such that the matrix:

𝐴 =
[

−𝑘1 1
−𝑘2 0

]

(26)
is Hurwitz.

When the differentiator (25) is converged, the following results are obtained:
𝜁1 = �̃�2, 𝜁2 = ̇̃𝑥2 (27)

Inserting the results in (27) into (21), the disturbance observer is finally designed as
Θ̂ = 𝑒 + 𝜑(𝜒2) + (𝛿 + 𝜈)∫ 𝑠𝑖𝑔𝑛(𝜁2) + 𝑙3 ∫ 𝜁 𝛾12

̇̂𝑒 = −𝜙(𝜒2)
(

Ω(𝑞, 𝑥0)
−1𝑢 + Υ(𝑞, �̇�, 𝑥0, �̇�0) + Θ̂

)

(28)

Theorem 1. The disturbance observation error, i.e., Θ̃ = Θ− Θ̂, under the proposed observer in (28) and the differentiator (25)
converges to zero after a finite time.

Proof. Since the result in (27) is obtained after a finite time, the stability and convergence of the of the disturbance observer
designed in (28) can be achieved as a similar way as in (24). This completes the proof.



AUTHOR ONE ET AL 7

5 DESIGN OF FINITE-TIME INTEGRAL SLIDING MODE CONTROL

5.1 Finite-time integral sliding mode control
Assumption 4. The disturbance estimation error Θ̃ is bounded by

|Θ̃| ≤ 𝜍 (29)
where 𝜍 is a known constant.

In order to obtain the objective defined above, a finite-time integral sliding mode control (FTISMC) is designed in this section.
Denote 𝑒 = 𝜒1 − 𝑥0𝑑 as the trajectory tracking error. In order to get both the error, i.e., 𝑒, and the derivative of error, i.e., �̇�,

converged to zero, the following filter is introduced:
𝑠 = �̇� + 𝜆𝑒 (30)

where 𝜆 is a design parameter.
Adding the derivative of (30) and the result in (17) yields

�̇� = 𝑒 + 𝜆�̇�
= Ω(𝑞, 𝑥0)

−1𝑢 + Υ(𝑞, �̇�, 𝑥0, �̇�0) + Θ − �̈�0𝑑 + 𝜆�̇�
(31)

The proposed sliding surface has a form below [31, 32]:
𝜎(𝑡) = 𝑠 (𝑡) − 𝑠 (0)

−

𝑡

∫
0

(

Ω(𝑞, 𝑥0)
−1𝑢0 + Υ(𝑞, �̇�, 𝑥0, �̇�0) − �̈�0𝑑 + 𝜆�̇�

)

𝑑𝑡
(32)

where 𝑠(0) is the initial value of the sliding surface 𝑠. Note that the designed sliding surface (32) can eliminate the reaching phase
of the sliding mode. The nominal controller 𝑢0 is used to stabilize the system in the presence of no uncertainty or disturbance
(Θ = 0), i.e., �̇� = Ω(𝑞, 𝑥0)

−1𝑢 + Υ(𝑞, �̇�, 𝑥0, �̇�0) − �̈�0𝑑 + 𝜆�̇�.
The derivative of (32) provides

�̇� =
(

Ω(𝑞, 𝑥0)
−1𝑢 + Υ(𝑞, �̇�, 𝑥0, �̇�0) + Θ − �̈�0𝑑 + 𝜆�̇�

)

−
(

Ω(𝑞, 𝑥0)
−1𝑢0 + Υ(𝑞, �̇�, 𝑥0, �̇�0) − �̈�0𝑑 + 𝜆�̇�

) (33)

Theorem 2. Consider the system (17) and the sliding surface defined in (32). If the control input of the system is designed as
𝑢 = 𝑢0 + 𝑢𝑠 + 𝑢𝑑 (34)

where 𝑢0 is used to control the nominal system, 𝑢𝑠 is the switching term and it is designed as
𝑢𝑠 = −Ω(𝑞, 𝑥0)(𝜍 + 𝜖)𝑠𝑖𝑔𝑛(𝜎) − 𝑘𝜎 − 𝑙𝜎[𝛾1] (35)

where the constant 𝜖 is chosen as a small value and 𝛿 is defined as in Assumption 1, 𝑘 and 𝑙 are positive constants, 0 < 𝛼1 < 1,
and 𝜎[𝛾1] = |𝜎|𝛾1𝑠𝑖𝑔𝑛(𝜎), and, the disturbance compensational term:

𝑢𝑑 = −Ω(𝑞, 𝑥0)Θ̂ (36)
then, the sliding surface 𝜎 converges to zero in a finite time.

Proof. Inserting the result in (34) into (33):
�̇� = Ω(𝑞, 𝑥0)

−1𝑢𝑠 − Θ̃ (37)
Inserting the composite controller (34) and (35) into (33), yields

�̇� = −(𝜍 + 𝜖)𝑠𝑖𝑔𝑛(𝜎) − Θ̃ − 𝑘𝜎 − 𝑙𝜎[𝛾1] (38)
By defining a Lyapunov function candidate as 𝑉 = 1

2
𝜎𝑇 𝜎, the following result is obtained:

�̇� = 𝜎𝑇 �̇�
= 𝜎𝑇 (

−(𝜍 + 𝜖)𝑠𝑖𝑔𝑛(𝜎) − Θ̃ − 𝑘𝜎 − 𝑙𝜎[𝛾1]
)

= −(𝜍 + 𝜖) |𝜎| − Θ̃𝜎 − 𝑘𝜎𝑇 𝜎 − 𝑙|𝜎|𝛾1+1

≤ −2𝑘𝑉 − 2𝛾1+1𝑙𝑉
𝛾1+1
2

(39)
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Reflecting the result in (39) with the result in Lemma 1, it reaches a conclusion that the finite time convergence of the system is
guaranteed. This completes the proof.
Remark 1. The sliding gain 𝜍 used in (35) was selected based on the Assumption 4. In the case that the bounded value 𝜍 is
unknown, an adaptive technique can be employed to approximate the unknown bounded value online. There are some adaptive
approaches existing in the literature that the interested readers can refer to, for example [32], [28], [19].
Remark 2. The switching term (35),which contains a ’sign’ function, provides chattering, which reduces the system performance
significantly. To suppress this undesired symptom, a boundary method can be employed and that the switching term 𝑢𝑠 can be
re-designed as:

𝑢𝑠 = −Ω(𝑞, 𝑥0)(𝜍 + 𝜖) 𝜎
|𝜎| + 𝑐

− 𝑘𝜎 − 𝑙𝜎[𝛾1] (40)
where the positive constant 𝑐 is a design parameter.

5.2 Design of nominal controller based on finite-time backstepping control
In order to obtain a global finite-time convergence for the system, the nominal controller 𝑢0 needs to guarantee a finite time
convergence. In this paper, a finite-time backstepping control is proposed to achieve this property.

From (17), the nominal system dynamics can be represented as
�̇�1 = 𝜒2

�̇�2 = Ω(𝑞, 𝑥0)
−1𝑢0 + Υ(𝑞, �̇�, 𝑥0, �̇�0)

(41)
The finite-time backstepping control is designed step by step as follows:
Step 1: First, the tracking error is introduced as:

𝑧1 = 𝜒1(𝑡) − 𝑥0𝑑(𝑡) (42)
The following control system can be obtained from (42):

�̇�1 = 𝛼1(𝑡) − �̇�0𝑑(𝑡) (43)
In the above equation, �̇�1 = 𝛼1(𝑡) is considered as a virtual control input. In order to stabilize the system (43), the virtual control
input can be selected as:

𝛼1(𝑡) = −𝜅1𝑧1(𝑡) + �̇�0𝑑(𝑡) − 𝑙1𝑧
[𝛾2]
1 (44)

where 𝜅1 and 𝑙1 are positive constants, 0 < 𝛾2 < 1 and 𝑧[𝛾2]1 = |𝑧1|𝛾2𝑠𝑖𝑔𝑛(𝑧1).
Step 2: The following error is introduced

𝑧2(𝑡) = 𝜒2(𝑡) − 𝛼1(𝑡) (45)
Then, combining the derivative of (45) with the results in (44) and (10), yields

�̇�2(𝑡) = �̇�2(𝑡) − �̇�1(𝑡)
= Ω(𝑞, 𝑥0)

−1𝑢0 + Υ(𝑞, �̇�, 𝑥0, �̇�0) − �̇�1(𝑡)
(46)

Step 3: Consider a Lyapunov function candidate:
𝑉 (𝑧1, 𝑧2) =

1
2
𝑧21 +

1
2
𝑧22 (47)

Differentiating (47) with respect to time and integrating the results with the ones obtained in (46) and (43), yields
�̇� (𝑧1, 𝑧2) = 𝑧1�̇�1 + 𝑧2�̇�2

= 𝑧1
(

𝑧2(𝑡) + 𝛼1(𝑡) − �̇�𝑑(𝑡)
)

+ 𝑧2(Ω(𝑞, 𝑥0)
−1𝑢0 + Υ(𝑞, �̇�, 𝑥0, �̇�0)) − �̇�1(𝑡)

(48)
The nominal control input is selected as

𝑢0 =Υ(𝑞, �̇�, 𝑥0, �̇�0) + Ω(𝑞, 𝑥0)(�̇�1 − 𝑧1 − 𝜅2𝑧2 − 𝑙2𝑧
[𝛾2]
2 ) (49)

where the constants 𝜅2 > 0, 𝑙2 > 0 and 𝑧[𝛾2]2 = |𝑧2|𝛾2𝑠𝑖𝑔𝑛(𝑧2).
Theorem 3. Consider the nominal system (41). If the control input designed in (49) is used for the system (41), then, the tracking
errors, i.e., 𝑧1, 𝑧2, converge to zero in a finite time.
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Proof. Adding the control input (49) into (48), we obtain
�̇� (𝑧1, 𝑧2) ≤ 𝑧1�̇�1 + 𝑧2�̇�2

≤ 𝑧1(−𝜅1𝑧1 − 𝑙1𝑧
[𝛾2]
1 ) + 𝑧2(−𝜅2𝑧2 − 𝑙2𝑧

[𝛾2]
2 )

≤ −𝜅1𝑧21 − 𝜅2𝑧
2
2 − 𝑙1|𝑧1|

𝛾2+1 − 𝑙2|𝑧2|
𝛾2+1

≤ −
2
∑

𝑖=1
𝜅𝑖𝑧

2
𝑖 −

2
∑

𝑖=1
𝑙𝑖|𝑧𝑖|

𝛾2+1

≤ −𝑎𝑉 − 𝑏𝑉
𝛾2+1
2

(50)

Refering the result in (50) with the result stated in Lemma 1, it can be concluded that the sliding errors, i.e., 𝑧1 and 𝑧2, converge
to zero in a finite time. This completes the proof.
Remark 3. The controller (49) contains the derivative of the virtual control input 𝛼1. From (44), when computing the derivative
of the virtual control input 𝛼1, it will appear the term |𝑧1|𝛾2−1�̇�1, so it is singular when 𝑧1 = 0 and �̇�1 ≠ 0. To avoid the singularity,
a first-order differentiating technique below can be applied to compute the virtual input 𝛼1 and the derivative of 𝛼1:

�̇� = 𝑧

𝑧 = −𝑙1|𝛽 − 𝛼|
1
2 𝑠𝑖𝑔𝑛(𝛽 − 𝛼1) + 𝜇

�̇� = −𝑙2𝑠𝑖𝑔𝑛(𝜇 − 𝑧)

(51)

where 𝑙1 and 𝑙2 are constants. 𝛽 and �̇� are the estimate of 𝛼1 and its derivative. Further detail about the method to eliminate the
singularity can be referred to [43].

Remark 4. In the literature, there are some more issues needed to be considered further when designing controller for co-
operative control of multiple manipulators. For example, the input and output constraints of the system should be considered as
in the approaches [16], [14]. The interaction between the handled object and the unknown environment should be investigated
as in [14], etc. However, solving these properties are not focused in this paper. The major contribution of this paper is to propose
a finite-time controller for the co-operative control of multiple manipulators system with enhanced capability on disturbance
rejection. The interested readers are recommended for the mentioned papers, i.e., [16],[14], for solving the discussed issues.

Remark 5. In the literature, many finite time/fixed time control methods have been proposed for nonlinear systems, for example
[7, 20]. However, compared to the existing approaches, the proposed approach has three major advantages: (1) the proposed
approach is designed based on an integral sliding mode control so it eliminates the reaching phase and provides higher robust-
ness agaisnt uncertainties and disturbance, (2) the proposed approach provides a global finite time convergence, (3) the design
procedure is simple and straightforward. However, it has a disadvantage is that the controller requires an knowledge of dynamic
model.

6 RESULTS AND DISCUSSIONS

In this section, the performance of the proposed approach is illustrated. The two homogeneous manipulators handling and
steering an object is used in this simulation study, as shown in Fig. 2. The parameters of the dual manipulators are selected as
the same values, as depicted in Table 1, and each manipulator has a force sensor to measure external forces.

The dual manipulators are supposed to handle and steer a cube object with the the parameters shown in Table 1. The center
of the object are subjected to track the following trajectory:

⎡

⎢

⎢

⎣

𝑥0𝑑
𝑦0𝑑
𝜃0𝑑

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0.2 cos(0.1𝑡)
0.2 sin(0.1𝑡)

0

⎤

⎥

⎥

⎦

(52)

where 𝑥0𝑑 and 𝑦0𝑑 and 𝜃0𝑑 are the desired trajectory of the object. The following parameters are selected to model dynamics of
the object:
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TABLE 1 Parameters of the Manipulator

Parameters Descriptions Value

𝑚𝑖1 Mass of link 1 2.00𝑘𝑔
𝑚𝑖2 Mass of link 2 1.00𝑘𝑔
𝑙𝑖1 Length of link 1 0.3𝑚
𝑙𝑖2 Length of link 2 0.3𝑚
𝐼𝑖1 Inetia of link 1 0.047𝑘𝑔�̇�2

𝐼𝑖2 Inertia of link 2 0.0021𝑘𝑔�̇�2

𝑙0 Length of cube object 0.1
𝑚0 Mass of cube object 0.2𝑘𝑔
𝐼0 Mass of cube object 0.2𝑘𝑔�̇�2

𝑀0 =
⎡

⎢

⎢

⎣

1 0 0
0 1 1
0 0 1

⎤

⎥

⎥

⎦

, 𝐶0 =
⎡

⎢

⎢

⎣

1 0 0
0 1 1
0 0 1

⎤

⎥

⎥

⎦

, 𝐺0 =
⎡

⎢

⎢

⎣

0
−9.8
0

⎤

⎥

⎥

⎦

.
Denotes 𝑞11 and 𝑞12 as the first, the second joint angles, and 𝑥1 and 𝑦1 are the position in the Cartesian space, respectively,

of the first manipulator. Correspondingly, the definitions for the second manipulators are 𝑞21, 𝑞22, 𝑥2 and 𝑦2, respectively. The
kinematic model is described by
[

𝑥1
𝑦1

]

=
[

𝑙1 cos(𝑞11) + 𝑙2 cos(𝑞11 + 𝑞12)
𝑙1 sin(𝑞11) + 𝑙2 sin(𝑞11 + 𝑞12)

]

+
[

𝑏1
0

]

,
[

𝑥2
𝑦2

]

=
[

𝑙1 cos(𝑞21) + 𝑙2 cos(𝑞21 + 𝑞22)
𝑙1 sin(𝑞21) + 𝑙2 sin(𝑞21 + 𝑞22)

]

+
[

𝑏2
0

]

, where [𝑏1, 0]𝑇 and [𝑏2, 0]𝑇 are the position of the bases of two manipulators.
Therefore, the Jacobian matrices are computed as
𝐽𝑒,1(𝑞) =

[

𝐽𝑒,11(𝑞) 𝐽𝑒,12(𝑞)
], where, 𝐽𝑒,11(𝑞) =

[

−𝑙1 sin(𝑞11) − 𝑙2 sin(𝑞11 + 𝑞12)
𝑙1 cos(𝑞11) − 𝑙2 cos(𝑞11 + 𝑞12)

]

, 𝐽𝑒,12(𝑞) =
[

−𝑙2 sin(𝑞11 + 𝑞12)
𝑙2 cos(𝑞11 + 𝑞12)

]

, and

𝐽𝑒,2(𝑞) =
[

𝐽𝑒,21(𝑞) 𝐽𝑒,22(𝑞)
], where, 𝐽𝑒,21(𝑞) =

[

−𝑙1 sin(𝑞21) − 𝑙2 sin(𝑞21 + 𝑞22)
𝑙1 cos(𝑞21) − 𝑙2 cos(𝑞21 + 𝑞22)

]

, 𝐽𝑒,22(𝑞) =
[

−𝑙2 sin(𝑞21 + 𝑞22)
𝑙2 cos(𝑞21 + 𝑞22)

]

.
The Jacobian matrix between the end-effectors and the object is 𝐽0(𝑥0) = 𝑑𝑖𝑎𝑔(𝐽1(𝑥0), 𝐽2(𝑥0)), where:
𝐽1(𝑥0) =

[

1 0 𝑙0
2
sin(𝜃)

0 1 − 𝑙0
2
cos(𝜃)

]

,

𝐽2(𝑥0) =

[

1 0 − 𝑙0
2
sin(𝜃)

0 1 𝑙0
2
cos(𝜃)

]

.
The 𝑖th (𝑖 = 1 and 2) manipulator is simulated using the following dynamical parameters:
𝑀𝑟,𝑖 =

[

𝑝𝑖1 + 2𝑝𝑖2 cos(𝑞𝑖2) 𝑝𝑖3 + 𝑝𝑖2 cos(𝑞𝑖2)
𝑝𝑖3 + 𝑝𝑖2 cos(𝑞𝑖2) 𝑝𝑖3

]

,

𝐶𝑟,𝑖 =
[

−𝑝𝑖2 sin(𝑞𝑖2)�̇�𝑖2 −𝑝𝑖2 sin(𝑞𝑖2)�̇�𝑖2
𝑝𝑖2 sin(𝑞𝑖2)(�̇�𝑖1 + �̇�𝑖2) 0

]

,

𝐺𝑟,𝑖 =
[

(𝑚𝑖1𝑙𝑐2 + 𝑚𝑖2𝑙𝑖1)𝑔 cos(𝑞𝑖1) + 𝑚𝑖2𝑙𝑐2𝑔 cos(𝑞𝑖1 + 𝑞𝑖2)
𝑚𝑖2𝑙𝑐2𝑔 cos(𝑞𝑖1 + 𝑞𝑖2)

]𝑇

, where 𝑝𝑖1 = 𝑚𝑖1𝑙2𝑐1 + 𝑚𝑖2(𝑙2𝑖1 + 𝑙𝑐22) + 𝐼𝑖1 + 𝐼𝑖2; 𝑝𝑖2 = 𝑚𝑖2𝑙𝑖1𝑙𝑐2;
𝑝𝑖3 = 𝑚𝑖2𝑙2𝑐2 + 𝐼𝑖2.

The environmental force is modeled as 𝐹𝑑 = [0.2 sin(𝑡), 0.2 cos(𝑡), 0]𝑇 .
First, we verify the effectiveness of the proposed FTDO. The parameters of the disturbance observer are slected as 𝜙(𝜒2) =

𝑑𝑖𝑎𝑔(5, 5, 5), 𝛿 + 𝜈 = 15, 𝑙 = 10, 𝛾1 = 0.75 for the FTSMC, the parameters of the second-order non-recursive sliding mode
differentiator in (25) are selected as 𝛽 = 0.8, 𝑘1 = 20, 𝑘2 = 210. The estimation performance of the proposed disturbance
observer is illustrated in Fig. 3. From Fig. 3, it can be seen that the disturbance observer provides very high accurate disturbance
estimation.
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FIGURE 2 Multiple manipulators steer the object follows a desired trajectory

FIGURE 3 Time history of disturbance estimation

In the next, the tracking performance of the proposed method is verified. In order to demonstrate the superior performance of
the proposed approach, it is compared with other state-of-the-art control technique, which is being used for co-operative control
of multiple manipulators, including PD+gravity compensation (PD+G) and computed torque control (CTC). The design of the
PD+G and the CTC can be designed as in Appendix A andB , respectively. The parameters of the PD+G controller are selected
as 𝐾𝑝 = 10 and 𝐾𝑑 = 20, and the parameters of the CTC are selected as 𝐾𝑝 = 10 and 𝐾𝑑 = 20. The parameters of the proposed
FTISMC are selected as: for the switching term: 𝜍 + 𝜖 = 0.5, 𝑐 = 2.5, 𝑘 = 10, 𝛾1 = 0.75, 𝑙 = 12, and for the finite-time
backstepping controller: 𝜅1 = 𝜅2 = 0.2, 𝑙1 = 𝑙2 = 100 and 𝛾2 = 0.75. These parameters are selected based on a trial and error
procedure based on a computer simulation.

The tracking performance of the three controllers, i.e., PD+G, CTC and FTISMC, are shown in Fig. 4. The detail tracking
errors of the PD+G, CTC and the FTISMC are also shown in Figs. 5, 6 and 7, respectively. From Figs. 4, 5, 6 and 7, it can
be seen that the PD+G controller provides poor tracking performance for the system in the presence of the disturbance 𝐹𝑑 ; the
tracking error is big, as shown in Figs. 4 and 5. The CTC provides a slightly better performance than the PD+G, as shown in
Figs. 4 and 6. In contrast, the proposed FTISMC tackles the effects of the disturbance 𝐹𝑑 very well; the tracking errors converge
to zero very quickly, as shown in Fig 7. The time history of the sliding surface 𝜎 of the FTISMC is shown in Fig. 8. From Fig.
8, it can be seen that the reaching phase is almost eliminated. It means the sliding surface 𝜎 converges to zero from beginning.
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FIGURE 4 Comparison in tracking performance between three controllers, i.e., PD+G, CTC and FTISMC

FIGURE 5 Tracking errors of the system under the PD+G controller

The individual control efforts of the three controllers, i.e., PD+G, CTC and FTISMC, are shown in Figs. 9, 10 and 11,
respectively. Note that 𝜏1 and 𝜏2 are the forces acting on the object to track the desired trajectory 𝑥0 and 𝑦0, while 𝜏3 is the torque
acting on the object to track the desired 𝜃0. From these figures, it can be observed that the controllers provide smooth control
efforts.

7 CONCLUSIONS AND FUTURE WORKS

In this paper, a new global finite-time convergent control method has been introduced for co-operative control of multiple
manipulators based on an integration between a finite-time disturbance observer and a finite-time integral sliding mode control
technique. Different from the conventional integral sliding mode control, both the nominal controller and the switching term
of the proposed finite-time integral sliding mode control technique provide finite time stability and convergence. This design
strategy is significant for practical applications since it suppresses the effects of the uncertainties and disturbances very well
thanks to the property of the integral sliding mode control, and provides finite time convergence for the system and improves the
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FIGURE 6 Tracking errors of the system under the CTC controller

FIGURE 7 Tracking errors of the system under the FTISMC controller

FIGURE 8 Time history of the sliding surface 𝜎 of the FTISMC controller

tracking performance of the system thanks to the characteristics of the finite-time controller. The simulation results conducted
on co-operative control of dual two-link manipulators demonstrates the effectiveness of the suggested method.

In future works, the constraints on inputs and outputs of the system will be studied and solved. The problem of co-operative
control of multiple manipulators and deformed object will be investigated as well.
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FIGURE 9 Control inputs of the PD+G controller

FIGURE 10 Control inputs of the CTC controller

FIGURE 11 Control inputs of the proposed FTISMC controller
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APPENDIX

A THE PD PLUS GRAVITY COMPENSATION

The PD plus gravity compensation (PD+G) can be designed for the coupled system (33) as [25]
𝜏 = 𝐾𝑝𝑒𝑞 +𝐾𝑑 �̇�𝑞 + Γ(𝑞, 𝑥0, �̇�0) (A1)

where,
𝑒𝑞 = 𝑥0𝑑 − 𝑥0 (A2)

where 𝐾𝑝 and 𝐾𝑑 are the proportional and derivative gains.

B COMPUTED TORQUE CONTROLLER

The computed torque controller (CTC) can be designed for the coupled system (33) as
𝜏 =Ω(𝑞, 𝑥0)

(

�̈�0𝑑 +𝐾𝑝𝑒𝑞 +𝐾𝑑 �̇�𝑞
)

+ Ψ(𝑞, �̇�, 𝑥0, �̇�0) + Γ(𝑞, 𝑥0, �̇�0)
(B3)

where,
𝑒𝑞 = 𝑥0𝑑 − 𝑥0 (B4)

where 𝐾𝑝 and 𝐾𝑑 are the proportional and derivative gains.
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