
warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/165003

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/165003
mailto:wrap@warwick.ac.uk

M
A

E
G
NS

I
T A T

MOLEM

U
N

IVERSITAS WARWICENSIS

An Applications Approach to Benchmarking and

Performance Modelling Low Latency

Interconnection Networks

by

Dean Gordon Chester

A thesis submitted to The University of Warwick

in partial fulfilment of the requirements

for admission to the degree of

Doctor of Philosophy

Department of Computer Science

The University of Warwick

October 2021

Copyright

© British Crown Owned Copyright 2021/AWE. Published with permission of

the Controller of Her Britannic Majesty’s Stationery Office. This document is

of United Kingdom origin and contains proprietary information which is the

property of the Secretary of State for Defence. It is furnished in confidence and

may not be copied, used or disclosed in whole or in part without prior written

consent of Defence Intellectual Property Rights DGDCDIPR-PL—Ministry of

Defence, Abbey Wood, Bristol, BS34 8JH, England.

ii

Contents

List of Figures vii

List of Tables viii

List of Listings ix

Acknowledgements x

Declarations xi

Abstract xii

Dedication xiii

Sponsorship and Grants xiv

Abbreviations xv

1 Introduction 1
1.1 Motivations . 3
1.2 Contributions . 5
1.3 Thesis Structure . 6

2 Background 8
2.1 Parallelisation . 8

2.1.1 Speedup . 8
2.1.2 Flynn’s Taxonomy . 9
2.1.3 Types of Parallelism . 11

2.2 Performance Engineering . 13
2.2.1 Benchmarking . 13
2.2.2 Performance Prediction 16

2.3 Low Latency Interconnect Design 20
2.3.1 Communication Stack . 20
2.3.2 Network Architecture . 21

2.4 Summary . 28

3 Compute Platforms and Applications 29
3.1 Compute Platforms . 29

3.1.1 Tinis . 30
3.1.2 Orac . 31

iii

3.1.3 Isambard . 31
3.1.4 Cori . 32
3.1.5 Astra . 32

3.2 Applications . 33
3.2.1 TeaLeaf . 34
3.2.2 Sweep3D . 35

3.3 Communication Patterns . 36
3.3.1 Halo Exchange . 37
3.3.2 Reduction . 38
3.3.3 Wavefront . 39

3.4 Summary . 39

4 Design and Implementation of a modern network benchmark 41
4.1 StressBench Design . 42

4.1.1 Motifs . 44
4.2 Application Replay Functionality 47

4.2.1 Applications Inside of StressBench 52
4.3 Application Communication Traffic and I/O Performance Studies 56

4.3.1 Full System Orchestration 56
4.3.2 I/O Study . 60

4.4 Summary . 63

5 Validation of a Network Micro-Simulator 65
5.1 Simulator Design . 66

5.1.1 Ember . 67
5.1.2 Hermes . 68
5.1.3 Firefly . 68
5.1.4 Merlin . 69
5.1.5 Simulator Performance . 70

5.2 Simulator Validation . 72
5.2.1 Validation Methodology 73
5.2.2 Modelling Hardware . 74
5.2.3 Modelling Software . 83

5.3 Towards Exascale Networks . 87
5.3.1 Fat Tree . 89
5.3.2 Dragonfly . 93

5.4 Summary . 95

6 Contention Aware Performance Modelling 100
6.1 Network Tapering . 101

6.1.1 Entire System . 103
6.1.2 Contended Applications 104

6.2 Network Utilization . 105
6.3 StressBench as simulation validation tool 110
6.4 Summary . 111

7 Discussions and Conclusions 115
7.1 Limitations . 116

7.1.1 Software . 116
7.1.2 Hardware . 117

7.2 Future Work . 117
7.2.1 Benchmarking . 118
7.2.2 Modelling . 120

A Applications inside of StressBench 135
A.1 TeaLeaf Motif Implementation 135
A.2 TeaLeaf Settings Structure . 137

List of Figures

1.1 Interacting Applications in relation to time 3

2.1 Flynn’s Taxonomy, D represents Data, P is the Processing Ele-
ments and I is the instruction . 10

2.2 Representativeness and Simplicity of Applications Scale 14
2.3 Distributed Application Communication Stack 20
2.4 Network Architecture . 21
2.5 Switch Architecture . 22
2.6 Fat-Tree Topology . 23
2.7 Dragonfly Topology - Group All-To-All 24
2.8 Torus Topology, S is a Switch in which multiple nodes can reside 24
2.9 HyperX Topology, S is a Switch in which multiple nodes can reside 25

3.1 Three Dimensional Wavefront Decomposition 36
3.2 Halo Exchange . 37
3.3 Reduction - Binary Tree Example 39

4.1 StressBench Architecture . 44
4.2 PingPong Comparisons for Three Machines 48
4.3 TeaLeaf Runtime Validation . 50
4.4 Measured and Emulated Communication Pattern for Halo2D . . 51
4.5 Sweep Runtime Validation . 51
4.6 Measured and Emulated Communication Pattern for Sweep3D . 52
4.7 LULESH Runtime Validation . 52
4.8 Measured and Emulated Communication Pattern for LULESH . 53
4.9 Measured and Emulated Communication Pattern for SWFFT . . 53
4.10 TeaLeaf Application Problem Sizes 55
4.11 CloverLeaf Application Problem Sizes 56
4.12 Application Runtimes in Isolation and in Contention on Tinis . . 59
4.13 Application Runtimes in Isolation and in Contention on Isambard 60
4.14 Measured File Sizes From Four Production Storage Systems . . . 61
4.15 Job Placement, Diagonal and Hash lines represent different ap-

plications . 62

5.1 Network Simulation Stack . 66
5.2 SST Partitioning Schemes . 71
5.3 Measured Memory Latency for Tinis and Isambard 75
5.4 Measured and Simulation PingPong Comparison for Three Systems 77

vi

5.5 Measured and Simulation Bandwidth Comparison for Three Sys-
tems . 79

5.6 Measured and Simulated AllReduce Operation Comparison - Isam-
bard . 80

5.7 Measured and Simulated AllReduce Operation Comparison - Ti-
nis 16 PPN . 80

5.8 Orac MPI Latency - OpenMPI vs Intel MPI 81
5.9 Orac Latency Simulation vs Measured (Intel MPI) 82
5.10 Orac Bandwidth Simulation vs Measured (Intel MPI) 82
5.11 Measured and Simulated AllReduce Operation Comparison - Orac 83
5.12 GPU Performance Trend . 89
5.13 TeaLeaf Runtime Performance for varying Switch Radix - Fat Tree 91
5.14 Sweep3D Runtime Performance for varying Switch Radix - Fat

Tree . 92
5.15 Costs Trends for Fat Tree Network 94
5.16 TeaLeaf Runtime Performance for varying Switch Radix - Dragonfly 97
5.17 Sweep3D Runtime Performance for varying Switch Radix - Drag-

onfly . 98
5.18 Costs Trends for Dragonfly Network 99

6.1 Non-Blocking Leaf Switch - Nodes represented by circles 102
6.2 Simulated Bandwidth with varying congestion size 106
6.3 Example Ternary Plot . 108
6.4 Congestor Ternary Plot for 1K and 64K congestors, orange repre-

sent NIC ports, Green represent the level 1 ports, blue represents
the core switch ports. The direction of the triangle shows whether
it is an uplink or downlink . 113

6.5 AllReduce Times against AllToAll Congestor Size 114

List of Tables

3.1 Tinis Specification . 31
3.2 Orac Specification . 31
3.3 Isambard Specification . 32
3.4 Cori Haswell (HSW) Specification 32
3.5 Cori Knights Landing (KNL) Specification 32
3.6 Astra Specification . 33

4.1 SWFFT Runtime Validation . 54
4.2 Comparison of CI for Incast and File I/O for Applications 60
4.3 Comparison of Application Workload against Congestion Impact

- Tinis . 63
4.4 Comparison of Application Workload against Congestion Impact

- Isambard . 63

5.1 TeaLeaf Benchmark 3 - Model Validation 86
5.2 TeaLeaf Benchmark 5 . 87
5.3 Sweep3D Weak Scale - 50x50x800 Per Process - Astra 88
5.4 Sweep3D Weak Scale - 50x50x800 Per Process - Isambard 88
5.5 Fat Tree Network Configurations 90
5.6 Fat Tree Switch Count Per Switch Radix 93
5.7 Dragonfly Network Configurations 95

6.1 Network Tapers . 102
6.2 Network Tapering for Linear Job Placement 103
6.3 Network Tapering for Random Job Placement 103
6.4 Isolated Runtimes for Tapered Fat Tree 105
6.5 Network Tapering on multiple applications - Linear Job Placement105
6.6 Network Tapering on multiple applications - Random Job Place-

ment . 106
6.7 Comparison of CI for Incast Traffic for Tinis 111

7.1 Comparison of Applications against Congestion Impact - Isambard118

viii

Listings

2.1 OpenMP Example . 11
3.1 Example 2D Halo Exchange . 38
3.2 Example Octant Sweep . 40
4.1 Example Input . 43
4.2 StressBench Input for TeaLeaf 54
5.1 MPI Call . 67
5.3 Hermes Latency Parameters . 68
5.4 Transmit Copy Send Parameters for FireFly 69
5.5 Topology Parameters for Cray Aries 70
5.6 Isambard Memory Parameters . 75
5.7 TeaLeaf Performance Model Input for Benchmark 3 128 Nodes . 84
5.8 Exit Early Condition for Sweep3D Motif 85
5.9 Angle Blocking for Sweep3D Motif 85
5.10 TeaLeaf Halo Exchange Y Direction Motif 86
6.1 Contended Network Utilisation SST Input Workload 109
7.1 Proposed Parameter Extension to StressBench 119
A.1 TeaLeaf Motif . 135
A.2 Modified Settings Structure . 137

ix

Acknowledgements

I would like to thank my supervisors, Prof. Stephen Jarvis, Dr. Suhaib Fahmy
and Dr. Gihan Mudalige for their support and in depth discussions that have
shaped this work over the past four years. Their encouragement to develop as
a scientist and continue to explore and push ideas and concepts has been an
invaluable experience.

I would also like to thank Dr. Simon Hammond at Sandia National Labora-
tories for his continued support and mentorship throughout the project; without
his guidance this project would not be where it is today. Additional thanks go to
Dr. Taylor Groves at the National Energy Research Scientific Computing Cen-
ter for discussions around network congestion and other types of distributed
applications away from multi-physics.

I would also like to thank my past and present colleagues and friends in
the High Performance Scientific Computing Group: Dr. Steven Wright, Dr.
James Davies, Dr. James Dickson, Dr. Dominic Brown, Dr. Richard Kirk,
Dr. Andrew Owenson, Andrew Lamzed-Short, Alex Cooper, Archie Powell and
Kabir Choudry for making the office environment an enjoyable place to work
and study. Special thanks to Dom and Richard for having been there since the
start and through the entire journey from the frustration to the laughter which
encouraged me to improve and continue.

From the Department of Computer Science I wish to thank Maria Ferriero,
Emma Woollacott, Sharon Howard, Dr. Roger Packwood, Paul Williamson,
Richard Cunningham and the rest of the secretarial and technical staff for their
assistance around administration, technical support throughout my Ph.D allow-
ing me to focus on research.

To the staff from AWE who have gone above and beyond to aid my research,
thank you Dr. Timothy Law, Dr. Seimon Powell and Prof. Richard Smedley-
Stevenson.

Dr. Matt Ismail and Dr. Dugan Witherick based at the Scientific Computing
Research Technology Platform, thank you for your patience and assistance with
providing access to computing resources to facilitate my research.

To my family and friends, Mum, Dad, Dr. Adam Chester, Tara, Hope,
Louise, Ben, Dr. John Galvin, William, Linda, Auntie Penny, Uncle Dave, Paul
Fellows, Simon Cooper, Dr. Simon Fowler, Dan Prince, Dr. Peter Butcher, Joe
Frangoudes, Noah Hall, Helen McKay and James Van Hinsbergh thank you for
the help and support over the last four years, I would have not been able to
have done this without your support. I would lastly like to thank my partner
Fiona for her love and support.

x

Declarations

This thesis is submitted to the University of Warwick in support of my appli-
cation for the degree of Doctor of Philosophy. It has been composed by myself
and has not been submitted in any previous application for any degree. The
work presented (including data generated and data analysis) was carried out by
the author except in the cases outlined below:

• The simulator presented in Chapter 5 was developed at Sandia National
Laboratories as a collaborative effort between the Department of En-
ergy (DOE), Industry and Academia. Some of the work outlined in this
thesis has contributed to the development, testing and validation of this
simulator.

• Measured data from Astra was collected by Dr. Simon D Hammond.

• Measured data from Cori was collected by Dr. Taylor L Groves.

• Figure 4.1 was created by Dr. Steven A Wright.

• Inode Sizes from Cori’s Storage Systems were collected by Dr. Lisa Ger-
hardt, Kirill Lozinskiy and Ravi Cheema (data for Figure 4.14).

Parts of this thesis have been published by the author:

[35] D. G. Chester, S. A. Wright, and S. A. Jarvis. Understanding commu-
nication patterns in HPCG. Electronic Notes in Theoretical Computer
Science, 340:55–65, 2018

[34] D. G. Chester, S. A. Wright, S. D. Hammond, T. R. Law, R. P. Smedley-
Stevenson, S. Maheswaran, and S. A. Jarvis. Full-system modeling and
simulation : contributions towards coupling, contention, and I/O. InMOD-
SIM 2019, 2019

[32] D. G. Chester, T. L. Groves, S. D. Hammond, T. R. Law, S. A. Wright,
R. P. Smedley-Stevenson, S. A. Fahmy, G. R. Mudalige, and S. A. Jarvis.
StressBench: A Configurable Full System Network and I/O Benchmark
Framework. In Proceedings of ISC HIGH PERFORMANCE 2021, 2021

[33] D. G. Chester, T. L. Groves, S. D. Hammond, T. R. Law, S. A. Wright,
R. P. Smedley-Stevenson, S. A. Fahmy, G. R. Mudalige, and S. A. Jarvis.
StressBench: A Configurable Full System Network and I/O Benchmark
Framework. In 2021 IEEE High Performance Extreme Computing Con-
ference (HPEC), 2021 (Awarded Best Paper)

xi

Abstract

As the field of High Performance Computing (HPC) approaches the Exascale
era we see larger systems coming online with a rich set of applications and pro-
gramming paradigms given the diverse system architecture employed to deliver
petascale levels of performance. Underpinning these distributed applications is
the use of interconnected nodes; something which can contribute to significant
performance degradation when a machine is highly utilised.

This thesis examines the interactions between communication patterns com-
monly seen in distributed applications written on top of Message Passing Inter-
face (MPI), with a benchmark framework (StressBench) designed to orchestrate
concurrent communication patterns. Application replay through StressBench
yields reproducible applications with in 15% difference in runtime, showing
that it provides a useful; abstraction from commercially sensitive production
applications. A congested workload is distributed across two supercomputers
demonstrating a slow down for application and Input Output (I/O) traffic, and
the effects of job placement on I/O and application traffic is investigated with
the benchmark framework.

This thesis documents a validation methodology for a layered simulator built
on top of Structural Simulation Toolkit (SST). Using the validated hardware
platforms accurate performance models are developed for four systems, and two
applications on top of the SST which are then used to evaluate future network
designs, both to support the development of next generation interconnection
networks and design responses for an Request for Proposal (RFP).

xii

This thesis is dedicated to my Grandfather.
William ‘Bill’ Chester

(1934-2018)

Sponsorship and Grants

The research presented in this thesis was made possible by the support of the

following benefactors and sources:

• Joint AWE-Warwick University: Centre for Computational Physics (CCPP)

(Grant Number: 30411884)

xiv

Abbreviations

ACK Acknowledgement

API Application Programming Interface

ASIC Application Specific Integrated Circuit

AWE Atomic Weapons Establishment

BDW Broadwell

BM Benchmark

BSP Bulk Synchronous Parallel

CFD Computational Fluid Dynamics

CG Conjugate Gradient

CPU Central Processing Unit

DOE Department of Energy

GPFS General Parallel File System

GPU Graphics Processing Unit

FFT Fast Fourier Transform

FLOP/s Floating-Point Operations Per Second

HPC High Performance Computing

HPCG High Performance Conjugate Gradients

I/O Input Output

IPL Instruction-Level Parallelism

IQR Inter-Quartile Range

ITAC Intel Trace Analyzer and Collector

HSW Haswell

KNL Knights Landing

xv

0. LISTINGS

LAN Local Area Network

OFI OpenFabrics Interfaces

OSI Open Systems Interconnection

OSU Ohio State University

MIMD Multiple Instruction Multiple Data

MPI Message Passing Interface

MISD Multiple Instruction Single Data

NACK Negative Acknowledgement

NERSC National Energy Research Scientific Computing Center

NIC Network Interface Controller

PGAS Partitioned Global Address Space

PMIx Process Management Interface - Exascale

QoS Quality of Service

RFP Request for Proposal

SAI Stalled, Active, Idle

SDLC Systems Development Life Cycle

SHMEM Symmetric Hierarchical Memory

SISD Single Instruction Single Data

SIMD Single Instruction Multiple Data

SPMD Single Program Multiple Data

SST Structural Simulation Toolkit

UGAL Universal Globally Adaptive Load-balanced Routing

VC Virtual Channel

xvi

CHAPTER 1
Introduction

Computation provides a vital method for investigating scientific phenomena that

are impractical to physically measure. It proves a safe, reliable and repeatable

environment to experiment. Some of these simulations require larger computers

to provide the computation resources, called supercomputers. Supercomput-

ers are large machines that support calculating large amounts of computation,

typically faster than desktop computers. The research field around design, de-

velopment and support of these software and hardware systems is called High

Performance Computing (HPC).

The Atlas Computer (delivered in 1962) is considered one of the first su-

percomputers [82], it could perform a floating-point multiplication operation in

around 5ms. Modern supercomputers can perform often 10 orders of magni-

tude more Floating-Point Operations Per Second (FLOP/s) than these systems

although they have shaped how HPC has developed. Some current supercom-

puters are constructed from commodity of-the-shelf hardware and networked

with a low latency interconnection network called an interconnect, such as In-

finiBand [1] which is commonly used. Previous interconnections networks have

come and gone due to more advanced technology developing, one such network

is Myrinet [20], originally a 1Gb/s link specifically designed for supercomputers

due to it’s low latency and high bandwidth, with a 10Gb version being released

in 2005. Machines first appeared with this network in 1995 and the last machine

appeared on the June 2014 TOP500 list [121]. Custom proprietary networks are

also common place inside of supercomputers with IBM (for BlueGene product

range1) and Cray/HPE developing specialist interconnects for supercomput-
1See: https://www.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_sm/1/877/

ENUS0207-_h01/index.html

1

https://www.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_sm/1/877/ENUS0207-_h01/index.html
https://www.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_sm/1/877/ENUS0207-_h01/index.html

1. Introduction

ers. The current Cray/HPE offering in the EX series2 is a 200Gbps network

providing low latency but higher jitter compared to an equivalent InfiniBand

solution [47]. Newer networks provide advanced routing algorithms which may

not provide the minimal path, this could result in higher latencies and decreased

network throughput. This increases the time to solution for an application.

Modern distributed HPC applications typically have to exchange data as the

problem sizes make them unfeasible to run on a single node, this is because of

power, cost and physical size limitations. One approach is to distribute the prob-

lem over multiple nodes thereby achieving more physical memory, somewhere

in the order of petabytes. This data exchange either between CPU cores (intra-

node) or nodes (inter-node) is limited by latency and bandwidth of the memory

and/or network subsystem. As the next era of supercomputers enters (named

the exascale-era) we see restrictions on power requirements with the Department

of Energy (DOE) (a large purchaser of supercomputers) stating the first gener-

ation of exascale supercomputers should consume 20MW at most [81]. This is

unachievable with current hardware configurations. In an effort to satisfy this

power requirement we see new node architectures developing which include an

accelerator(s) such as a Graphics Processing Unit (GPU). Summit (the second

fastest supercomputer as of the June 2021 TOP500 list [123]) features 6 GPUs

per node [103].

Large supercomputers typically run lots of small jobs rather than one full

system job (although this does happen) at one time, these jobs can interfere with

each other affecting application runtime and performance [131]. The effects of

the inter-job interference is a relatively new field in the HPC research area and

is of great interest as this can affect application communication performance

by as much as 50% for application communications on highly utilised super-

computers [131]. Figure 1.1 shows how some applications could interfere with

each other throughout an application run. The vertical dotted lines highlight

the points at which network contention could affect performance and the shapes
2See: https://support.hpe.com/hpesc/public/docDisplay?docId=a00109703en_us&

docLocale=en_US

2

https://support.hpe.com/hpesc/public/docDisplay?docId=a00109703en_us&docLocale=en_US
https://support.hpe.com/hpesc/public/docDisplay?docId=a00109703en_us&docLocale=en_US

1. Introduction

represent different communication patterns. In reality contending application

communication patterns will not lineup as neatly as the abstract figure due to

load imbalance and OS jitter, but provides a good visual representation for the

problem at hand.

Time
TeaLeaf

BookLeaf

Sweep3D

IO Application

All Reduce
1D Halo Exchange
MPI Receive

MPI Send
Visualisation Dump
Checkpoint

Collective

Figure 1.1: Interacting Applications in relation to time

Benchmarking advanced features is widely used to compare and contrast

Central Processing Unit (CPU) architectures yet are largely ignored for the

networking with current procurement procedures focusing on peak performance

numbers to aid decisions, which may not always be attainable in production.

This thesis investigates the benchmarking and modelling modern low latency

interconnection networks by focusing on application communication patterns

rather than traditional network benchmarks such as latency and bidirectional

bandwidth. This work aims to act as a case study for benchmarking and perfor-

mance modelling activities for future design and procurement processes as the

techniques presented in this thesis exercise the advanced networking features

that are arising in current and next generation low latency interconnection net-

works.

1.1 Motivations

Compute hardware has improved at a rapid pace of the last few decades resulting

in CPUs allowing results to be computed faster although this data movement

3

1. Introduction

has become the bottleneck due to memory and Input Output (I/O) subsystem

performance not growing at the same rate [93]. Both of these impact the network

performance which results in slower time to solutions for applications, as does

larger dense nodes seen in recent supercomputers. The memory bottleneck

can have a significant performance implications for data transmitted over the

network as it limits the network injection rate, to see in advances in more

memory bandwidth core counts are growing per socket to deliver performance.

The I/O subsystem can impact the network traffic as latency sensitive (small)

messages have to contend with the large bandwidth sensitive (large) messages

which leads to increases in the time to solution for applications, thus slowing

them down.

As network architectures evolve we are seeing the development of adaptive

routing algorithms, congestion control and Quality of Service (QoS) effect the

end user experience and time to solution for applications because these features

try to act more fairly than providing the minimum path, while the minimum

path should deliver the best performance, this may not always be the case when

a network becomes congested. These issues will only continue to deteriorate as

networks grow in size.

Memory performance limits the network injection rate as memory has to be

read and injected in to the network when transmitting, and written to memory

once received [89, 90, 124]. While recent developments allow the Network Inter-

face Controller (NIC) to interface with the memory directly removing the need

to communicate with the CPU the memory bus latency and bandwidth becomes

the issue. This can be further impacted by how the memory is managed by an

application, in the case of a simple latency benchmark the send/receive buffers

could be contiguous memory where as an application may have to stride across

the memory accessing non-contiguous blocks, when accessing multi-dimensional

arrays [56].

Slow parallel I/O performance means that I/O traffic has to reside inside

of the network while waiting to be relayed to the I/O nodes and depending

4

1. Introduction

on the network design and job placement could affect the time to solution for

applications. While we explicitly state I/O traffic this could be any type of

traffic waiting to propagate through a network; typically I/O traffic has to wait

for the I/O node to read/write to disk which is slower than system memory. This

type of traffic typically is also routed to the same endpoint further increasing

chances of network contention.

1.2 Contributions

This thesis makes the following contributions:

• We present the design and implementation a new Message Passing In-

terface (MPI) and I/O Benchmark framework (StressBench) capable of

driving and stressing network fabrics based on application workloads.

Replicated application workloads of four applications have been validated,

with a maximum difference of 15%. A full system workload is replicated

to demonstrate application performance degradation due to network and

I/O contention across two systems. We demonstrate how StressBench

can be used for performance studies investigating the effects of network

contention with multiple patterns against I/O traffic.

• We present a validation methodology and validated network models for

three common network fabrics built on top of the Structural Simulation

Toolkit (SST). These validated network models are used to develop ac-

curate performance models for Sweep3D and TeaLeaf. Using these net-

work models the design space of interconnection networks is explored for

potential exascale systems, looking at cost, switch radix and runtime per-

formance.

• Contention aware performance models are constructed to understand the

performance degradation due to shared resource contention in the network.

We demonstrate that with a tapered Fat Tree bandwidth can reduced by

5

1. Introduction

as much as 2GB/s when in contention with an 64K AllToAll congestion

pattern. StressBench is used to compare the effects of real network per-

formance against the simulated network making use of the full system

workload introduced with StressBench.

1.3 Thesis Structure

The structure of the thesis is as follows:

• Chapter 2 describes the terminology and techniques used in the High Per-

formance Computing, Benchmarking and Performance Modelling. This

chapter also introduces the design of a low latency interconnection net-

work.

• Chapter 3 presents the hardware and software used throughout this thesis.

The three hardware platforms are documented and two applications have

been used throughout this thesis Sweep3D and TeaLeaf.

• Chapter 4 documents the design and implementation of StressBench, ap-

plication replication validation results and two performance studies to un-

derstand the effects of network contention on application performance.

• Chapter 5 introduces network simulations with SST, presents the validated

network models and performance models for Sweep3D and TeaLeaf, and

future network design exploration is explored.

• Chapter 6 outlines contention aware performance modelling and presents

contention aware performance models to understand performance degra-

dation through simulation.

• Chapter 7 summaries the research outlined in this thesis.

The work presented in this thesis started from understanding communication

patterns in an application [35], the tools and techniques used in that paper have

been used throughout this thesis. The work from Chapter 4 has been published

6

1. Introduction

as both a poster [32] and research paper [33] at ISC 2021 and IEEE HPEC

respectively. The analysis of network degradation inside of the network switches

has been published as a poster [34] at MODSIM 2019.

7

CHAPTER 2
Background

Performance gains can come through two forms, software optimisations or hard-

ware optimisations. For software optimisations ensuring that the hardware is

fully utilised in the best way possible. With hardware optimisations ensure that

the application is running as fast as the hardware will allow. Both of these

optimisations need to be exploited to achieve a high level of performance. This

performance is often limited by some underlying theories which are described

in this chapter.

This chapter is as follows, Section 2.1 presents some of the underlying laws

governing parallelisation. Section 2.2 introduces system engineering concepts

and shows the state of the art for benchmarking and performance modelling.

Section 2.3 is a primer on network architecture introducing the three key ele-

ments in a low latency interconnection network.

2.1 Parallelisation

This section covers the laws governing the behaviour and limits of parallel com-

putation and the classifications and types of parallelisms that can be exploited

to obtain high levels of performance from parallel applications.

2.1.1 Speedup

Speedup is a measure of scalability for an application, it is the ratio of serial

runtime (Ts) over parallel runtime (Tp) (see Equation (2.1)). This metric al-

lows for a quick comparison to see how an application is performing as the

parallel runtime decreases with more computational resources. If an application

8

2. Background

demonstrates a linear speedup then the application scales well.

S =
Ts
Tp

(2.1)

G Amdhal et al. proposes that the maximum limit from parallelisation is

governed by the time spent performing serial operations (see equation 2.2) [10].

In equation 2.2 s and p refer to the serial and parallel execution times respec-

tively and n is the number of processes the parallel section is spread across.

Speedup =
s+ p

s+ p
n

(2.2)

The approach taken by G Amdhal et al. focuses on a varying problem size

rather changes in runtimes. Gustafson proposes the following change to calcu-

lating speedup as seen in equation 2.3 [62].

Speedup = n+ (1− n)s (2.3)

This approach focuses on the parts of the application that are typically

fixed. This approach is favoured as problem sizes typically grow to match ca-

pacity rather than choosing to run the same problem size faster across more

resources [62]. This can be considered to demonstrate how well an application

weak scales.

2.1.2 Flynn’s Taxonomy

Flynn et al. proposes four types of parallelism for computer architectures [55],

Figure 2.1 shows the differences in the four ideas proposed. Single Instruction

Single Data (SISD) provides a basic building block of computation, one pro-

cess operates on a single data block with one instruction. Single Instruction

Multiple Data (SIMD) applies the same instruction to multiple blocks of data

simultaneously, this is similar to a vector processor or instruction set like Intel

SSE or AVX instructions. Multiple Instruction Single Data (MISD) allows for

9

2. Background

multiple instructions to operate on the same data allowing for task repetition

supporting fault tolerance. This approach is uncommon but one example of a

MISD design are the flight control computers of the space shuttle [118]. Multiple

Instruction Multiple Data (MIMD) allows for multiple instructions to operate

on multiple blocks of data, most of the implementations for MIMD are shared

memory based.

I

D

P

(a)
SISD

I

D

P P P

D D
(b) SIMD

I

D

P

I

P

I

P

(c) MISD

I

D

P

I

P

I

P

D D
(d) MIMD

Figure 2.1: Flynn’s Taxonomy, D represents Data, P is the Processing Elements
and I is the instruction

In addition to these classifications there exists another classification, Single

Program Multiple Data (SPMD) [45]. This classification has become synony-

mous with parallel scientific applications, such as MPI based applications.

10

2. Background

2.1.3 Types of Parallelism

Three types of fundamental parallelism exist, Task Level, Data Level and In-

struction Level. If all of these are exploited effectively then an application

will perform optimally, but often some of these parallelisms are unable to be

exploited together due to loss of accuracy. This is because the order of floating-

point operations differ between an single threaded and multi-threaded loop, this

can be corrected by ensuring that floating-point operations occur in the correct

order.

Task Level Parallelism

Task parallelism can take the form of either message passing, or a multi-threaded

approaches. There exists a hybrid message passing and multi-threaded approach

to ensure resources can be utilised to their fullest, this is useful with certain

unstructured applications such as LULESH [74].

Multi-Threading This approach allows communication where memory is lo-

cated on the same array and can be easily achieved with a variety of libraries,

such as PThreads1 or OpenMP [41]. OpenMP is more common for HPC appli-

cations than PThreads.

OpenMP is implemented with the use of compiler directives (called pragmas)

and the compiler handles the creation and deletion of the thread. OpenMP uses

the fork-join model for thread creation and deletion. At the start of the parallel

execution block threads are created and forked and then perform their portion of

work; finally joining when the last thread has completed its work [2]. Listing 2.1

shows a simple threaded loop with OpenMP.

1 #pragma omp parallel for

for(int i = 0; i < x; i++)

3 {

u[i] = u[i] * constant;

1See: https://man7.org/linux/man-pages/man7/pthreads.7.html

11

https://man7.org/linux/man-pages/man7/pthreads.7.html

2. Background

5 }

Listing 2.1: OpenMP Example

One disadvantage of multi-threaded applications is that they must reside on

the same node as the data cannot be passed between nodes. This limits the

problem size given restrictions on RAM and processing power.

Message Passing Message passing allows inter-node communication to take

place so messages can be passed around sharing information between nodes. The

MPI standard [57] defines the interface for implementations to provide, this is

often abstracted away from the underlying network hardware (see Section 2.3.1).

Several studies have looked at the effect of running message passing for intra-

node demonstrating that there is a performance impact compared to a shared

memory, multi-threaded approach [73, 110].

Data Level Parallelism

Vectorisation is a way to make Data Level Parallelism possible and can be

represented by SIMD from Flynn’s Taxonomy. Vector processors operate on

large one-dimensional arrays of data called vectors. These approaches were

common in the early days of supercomputers with the Cray-1 being a vector

machine [111].

Vector processing units are now commonly built in to generalised CPU ar-

chitectures with additional instructions such as AVX512 [109].

Instruction Level Parallelism

Instruction-Level Parallelism (IPL) shows how many of the operations a com-

puter program the hardware can perform simultaneously. To achieve IPL two

techniques could be used, firstly increasing the depth of the instruction pipeline,

allows more operations to be overlapped. A second approach is to increase the

number of instructions that are run at every stage of the instruction pipeline [106].

12

2. Background

2.2 Performance Engineering

Performance engineering covers a wide variety of techniques to ensure systems

comply to requirements during the Systems Development Life Cycle (SDLC).

This section discusses two techniques used throughout the lifetime of a HPC

system, benchmarking and modelling. Benchmarking demonstrates that a sys-

tem can ascertain a level of performance once constructed. Modelling allows for

exploration of design spaces to fulfill system requirements, one of the advantages

of modelling during the SDLC is that it provides indicative idea of the level of

performance a design may provide. In this thesis performance relates to the

time to solution for an application or the time for a benchmark to complete.

2.2.1 Benchmarking

A benchmark is a simple application that is run that stresses a a system or

subsystem, for example LINPACK [52] a linear algebra benchmark used to stress

the computation power of a system and STREAM is designed to only stress the

memory subsystem [92].

The TOP500 presents a list of the machines that perform well for LINPACK,

more recently High Performance Conjugate Gradients (HPCG) has become in-

creasingly common as a benchmark as this stresses a supercomputer similar to

a production application [67]. HPCG uses a preconditioned CG method with a

local symmetric Gauss-Seidel preconditioner.

Benchmarks come in varying complexity from micro-benchmarks through to

production applications like Sweep3D [80, 100, 53]. Given the complexity of

modern parallel applications the rise of proxy/mini applications which capture

some of the key resource characteristics (such as network traffic [78], compu-

tation [105]). Figure 2.2 shows the relationship of proxy applications to both

production applications and microbenchmarks.

13

2. Background

Production Applications

Application Benchmarks

Proxy
Applications

Micro-
Benchmarks

Re
pr

es
en

ta
tiv

en
es

s

Sim
plicity

Figure 2.2: Representativeness and Simplicity of Applications Scale

Network Benchmarks

The usual approach to assessing the performance of massively parallel systems

consists of executing a large set of benchmarks with a variety of differing com-

munication patterns, often sequentially. How concurrently running applications

interact with a machine’s shared resources (i.e., the interconnect and parallel

file system) is usually difficult to understand. As a result, these benchmarks fail

to provide an accurate picture of application performance as they are unable

to capture realistic network usage and highlight potential issues such as load

imbalances that may affect the performance of collective operations [88].

ScalaBenchGen provides a way to automatically trace and replay applica-

tions as a synthetic MPI benchmark [130]. This approach uses the MPI Profiling

layer (PMPI) to capture the MPI events which are stored chronologically; these

events are then replayed through a custom tool. One limitation of ScalaBench-

Gen is that it provides no capability to scale communication sizes as multiple

application traces must be captured with varying sizes.

File I/O can often interfere with MPI communications as large amounts

of traffic are sent and received over the network. Dickson et al. have studied

14

2. Background

the I/O characteristics of large applications by replicating I/O workloads with

MACSio [50]. This is achieved by capturing Darshan [27, 28] logs of applications,

parsing the log files and generating input parameters for MACSio. Darshan

captures I/O characteristics from applications, this is achieved by wrapping the

I/O function calls at link time. These additional functions handle the timing

and statistics aggregation. Darshan does not store all I/O events like a an MPI

trace tool such as Intel ITAC [70] but rather aggregates the data to characterise

the I/O patterns reducing the data generated [27, 28].

Common MPI Benchmarks include the Intel MPI Benchmarks (IMB) [69],

OSU Microbenchmarks (OSU) [104], and SKaMPI [110]. These microbench-

marks focus on the performance of singular MPI operations: either point-to-

point or collective operations. They are useful when trying to diagnose applica-

tion performance issues as they often report the average time for MPI operations.

SKaMPI is no longer under active development but was extended to cater for

complex communication patterns [64].

The NAS Parallel Benchmarks replicate commonly used application patterns

to benchmark systems [12]. While this benchmark suite comprises a wide variety

of parallel patterns it does not orchestrate them to show how the patterns can

interact with or affect one another.

More recent benchmarks such as GPCNeT look at testing network perfor-

mance in isolation and under load [36]. GPCNeT provides artificial noise in a

network with four congestor patterns and is designed to stress a system rather

than provide representative communication of a specific workload.

Task Bench is a parameterised benchmark for evaluating parallel systems [117].

It allows for rapid replication of a variety of programming models and applica-

tions. Configurable parameters allow the tuning of the length of the benchmark;

the degree of parallelism; the type of kernel (such as a stencil or sweep) and tun-

ing of any potential imbalance. This task-based approach is a novel idea that

allows for flexibility and customisation. One drawback of this tool is that it only

focuses on one task at a time meaning that it is difficult to understand how the

15

2. Background

chosen benchmark will perform in a production environment.

I/O studies looking at improving performance are not new [5, 132, 14]. These

studies typically focus on tuning I/O parameters for specific applications and

systems. They often fail to consider the I/O subsystem being a shared resource

and as such what contention may be affecting their performance.

Wright et al. have investigated the effects of I/O performance in relation to

contention of the I/O nodes within a system [129]. They note that contention

within the I/O subsystem can result in a 13% performance decrease on a multi-

user system.

Limitations of Current Benchmarks

A large proportion of the benchmarks presented are designed to measure the

peak network performance and often fail to test the advanced network features,

the exception to this is GPCNeT which is designed inject noise in to the network

to see the effects on common benchmarks. One issue with GPCNeT is that it

splits the entire MPI Communicator randomly, this means that a congestor

could reside on the same node and socket as a the benchmark under test. In

reality production systems are configured to not mix applications on the same

node or socket. Another limitation with GPCNeT is that it only provides micro-

benchmarks which are not representative to production applications and there is

a missing understanding to how network congestion impacts application traffic.

In the literature there is no benchmark to stress the network and I/O concur-

rently, GPCNeT makes use of an incast traffic pattern to replicate I/O traffic

which may not be representative as these patterns often neglect to factor a

read/write time associated with performing the I/O.

2.2.2 Performance Prediction

Performance predictions allow architects to understand performance character-

istics of systems prior to the implementation. These typically come in two

methods, analytical models and simulation.

16

2. Background

Analytical

An analytic model is a mathematical representation of time required for some

operation. This operation for HPC applications is typically the longest part of

the execution or the cricitcal path of an application.

Common approaches to analytical network models include Bulk Synchronous

Parallel (BSP) [126], LogP [39, 40] and LogGP [9].

The BSP model operates across supersteps, these steps consists of compu-

tation and a communication phase. At the start of a superstep synchronisation

takes place then the computation can take place. If the data required is on

a remote node then it must be retrieved during a previous superstep. In a

communication phase then exchange data with other nodes.

The LogP model uses 4 parameters to model communication time:

• L - Communication Delay (flight time of message - latency)

• o - Communication Overhead (time taken to transmit/recevie a message)

• g - gap (minmimum time between consecutive messages)

• P - number of processors

The LogP model assumes all messages are small, and in 1997 Alexandrov

suggested the addition of a new parameter to cater for longer messages, called

the LogGP model. The new parameter is the time Gap per byte and is the time

taken to transmit a byte on the network.

In 1993 Adeve et al. showed that the performance of a parallel application

could be modelled outside of strict modelling frameworks by taking a generic

approach (see equation 2.4) [6].

Ttotal = (Tcomputation + Tcommunication + Toverlap) + Tsynchronisation + Toverhead

(2.4)

In Equation 2.4 overlapping time from the communication and computation

is taken in to account with Toverlap. Resource contention and system overhead

17

2. Background

are considered independently in the model (Toverhead) and any cost associated

to synchronisation during the application run is catered with Tsynchronisation.

Each cost is calculated by either benchmarking, or timing sections of a code.

Once disadvantage of an analytical model is that there is an an underlying

assumption that blocks of computation and synchronisation that place at the

same time in lockstep and are deterministic which may not always be the case.

The use of reusable models has become prevalent with the development of

a plug and play wavefront model [100]. This reduces the model development

time, and increases the applicability of the model.

Simulation

Simulation is the recreation of some experimental setup with a computer based

representation. This is usually performed with a simulator, these fall in to

two categories Discrete-event driven and trace driven [72]. In Discreete-event

simulations events are typically added to a queue and processed in chronological

order. In contrast trace-driven simulations replay a trace of recorded events in

which the order of execution is sequential.

There are limitations with a trace-driven simulation, these include:

• Scalability - traces must be created on a physical system

• Flexibility - traces can not be modified

There are many simulators covering different HPC system subsystems such

as CPU, Memory and IO. Some notable examples of interconnect simulators

include; SST/Macro [79], CODES [38], WARPP [66] and TraceR [71].

SST/Macro provides a macro simulation of the network using an analytical

(MACRELS) and packet model (PISCES). MACRELS makes the assumption

that data is moved as a single chunk while PISCES models individual packets

moving through the network [79]. The packet model provides two levels of

simulation: simple which assumes that packet flits travel as a single unit and

are not separated; and cut-through which allows for the separation of flits but

18

2. Background

provides an aggregated latency/bandwidth approximation for flits similar to

MACRELS.

CODES [38] was designed to explore design questions around large-scale

storage systems. It is built on top of the Rensselaer Optimistic Simulation

System (ROSS) [29] which is a parallel discrete event simulation framework

similar to SST. CODES has been developed to have a tightly coupled network

model and this has been validated against an IBM BlueGene/L. A key feature

of CODES is that, while it was designed for storage systems, it can be used to

model collective performance for different topologies [98].

TraceR is a scalable simulator built on top of the parallel discrete event

capabilities of CODES and ROSS allowing for scalable packet-level simulations

of applications [71]. This is done by replaying communication traces through

the simulation stack.

WARPP is macro simulation toolkit that predicts application runtime for

applications by allowing you to recreate a communication pattern for the simu-

lator and playing this through a system configuration. WARPP allows the mod-

elling of core-to-core, socket-to-socket, and node-to-node configurations which

are representative of modern HPC systems [66]. WARPP achieves these by

using latency measurements of existing systems to approximate the timing for

sending individual messages.

Limitations of Current Modelling Techniques

Analytical models fail to capture the advanced features that are present in

modern low latency interconnection networks, for example if we consider two

packets traversing a network that are freely available to be routed adaptively

one packet could take the minimum path while the second could have additional

hops in the network. In the case of a LogP or LogGP model then this would

equate to differing values for o (the communication overhead).

Using simulation as a modelling technique allows for advanced network fea-

tures to be modelling and accurately but this will only be the case if the sim-

19

2. Background

ulator can reflect the crossbar and the input and output queues. SST/Macro

provides some of this functionality but does not provide a cycle accurate router

model which can cause implications when using this to design future networks.

Given this it is impossible to model applications in a multi-user scenario.

One other area for concern with these modelling techniques is the validation

process, while it is a good assumption to measure the latency between the links

and compare against the simulation yet this fails to capture all the nuances of

a system such as the memory latency and the host to NIC bus.

2.3 Low Latency Interconnect Design

This section explains the different aspects of a low latency interconnection net-

work, it provides a description on the software communication stack that sits

on top of the underlying hardware.

2.3.1 Communication Stack

Figure 2.3 shows these different layers, similar to the Open Systems Intercon-

nection (OSI) model.

Parallel Application

UCX OpenFabrics uGNI

uGNI

MPI SHMEM PGAS

Cornelis Omnipath InfiniBand

Application Layer

Communication Layer

Message Semantics Layer

Transport Layer

Figure 2.3: Distributed Application Communication Stack

The application layer represents the parallel application. This is designed to

20

2. Background

exploit the computational resources. This application is built with a communi-

cation library such as MPI or SHMEM. The communication library interfaces

with the NIC drivers either through the kernel or through an additional li-

brary such as OpenFabrics Interfaces (OFI) libfabric [60], UCX [115] or Cray’s

uGNI [107]. Data is then transmitted over the network.

2.3.2 Network Architecture

In this section we consider the hardware aspects of network design. This falls

in to three key areas; firstly the network topology, secondly flow control and

finally routing algorithms.

Figure 2.4 outlines an interconnection network. These networks differ from

other Local Area Network (LAN) in the fact that they do not use a shared

communication medium, instead each link is independent and can communicate

without requiring to take control of the transmission medium. Examples of

shared medium networks include Ethernet [3] and Wi-Fi [4].

Interconnection Network

Node Node Node

Node Node Node

Figure 2.4: Network Architecture

In the OSI model layer 2 frames are transported over the physical layer,

multiple frames make up a packet at layer 3. In the case of low latency networks

the smallest form of data movement is a flow control digit (flit). A physical

digit (phit) is the smallest unit of data processed by a switch; multiple phits are

combined to form a flit [44].

Figure 2.5 shows the basic architecture of a simplistic switch. Each of the

ports has a input buffer and an output buffer, data then flows across the cross-

bar. This is common across most interconnects for example Cray Aries [54],

21

2. Background

Intel Omni-Path [18] (now branded as Cornelis Omni-Path) and InfiniBand [1].

The switch radix refers to the number of ports available on a switch; for example

a NVIDIA Mellanox InfiniBand Switch SB7800 consists of 362; therefore has a

switch radix of 36. The Cray Aries router has a switch radix of 64 [54].

Crossbar

Input

Output

Input

Output

Input

Output

Input

Output

Input

Output

Input

Output

Figure 2.5: Switch Architecture

Topologies

There are several key network topologies employed in low latency networks. The

most common is the Fat-Tree [83].

Fat-Trees (also known as a folded Clos) are shaped similarly to a tree, and

have root switches and leaf switches (see Figure 2.6). Typical implementations

are 2 or 3 level and may be tapered between the root and leaf switches, reducing

cost and increasing the number of available endpoints but at the expense of

global bandwidth.

The worst case hop count is shown in Equation 2.5. If the left most node

and the right most node want to communicate then it must go through each

layer up and down in the tree but only hits the root switch once, this is only

considered as 1 hop.
2See https://www.mellanox.com/related-docs/prod_ib_switch_systems/pb_sb7800.pdf

22

https://www.mellanox.com/related-docs/prod_ib_switch_systems/pb_sb7800.pdf

2. Background

Switch

N N N N

Switch

Switch

N N N N

Figure 2.6: Fat-Tree Topology

Worst Case Hop Count = (2×Number of Levels)− 1 (2.5)

Dragonfly is another network topology [76]; one key advantage of this topol-

ogy is that this topology can be more cost effective for more endpoints than

a Fat-Tree [76]. Networks based upon a Dragonfly are grouped in to three

ranks, firstly the router, secondly a intra-group and thirdly inter-groups (see

Figure 2.7). Figure 2.7 shows four nodes per router and three routers per group

configuration with one global link per router for inter-group communication.

The design of inter-group networks are left to the implementer, in the case of

Cray Aries this is an All-To-All 2D mesh while NVIDIA’s Dragonfly+ imple-

mentation utilises a tapered Fat-Tree for the intra-group topology [116].

The Aries implementation from Cray of a Dragonfly utilises 4 nodes to 1

router and 96 routers per group connected as an All-To-All mesh electrically;

the inter-group connections are optical and can be tapered reducing cost [54].

The average hop count for a Dragonfly is 5, this is where the node needs to

communicate with a node from another group. The worst case could be higher

than a fat tree for a sufficiently large network because the adaptive routing

could make the data travel over multiple routers.

Torus are multidimensional topologies based upon a mesh or a cube network

(k-ary n-mesh/cube network).

In 1977 Sullivan et al. document the first implementation of an n-cube net-

23

2. Background

Switch

N N N N

Switch

N N N N

Switch

N N N N

To Group N

To Group N

To Group N

Figure 2.7: Dragonfly Topology - Group All-To-All

work [119, 120]. The requirement for this network design came from the per-

formance constraint of one word being transmitted every instruction. Sullivan

et al. show that the average propagation delay is n
2 , with low link utiilisation.

Figure 2.8 shows a 2D torus, in a 3x3 grid, a switch (s in the figure) can then

have multiple nodes attached.

More recent implementations of a torus topology include the Cray SeaStar [26,

8]. This features a 3D Torus, common configurations were 25x16x24 in size as

seen in Titan [19].

S S S

S S S

S S S

Figure 2.8: Torus Topology, S is a Switch in which multiple nodes can reside

HyperX is an alternative to DragonFly topology for providing a high num-

24

2. Background

ber of endpoints while reducing cabling and router count [7]. There are currently

no commercially available implementations of a HyperX network. Figure 2.9

shows a 2D HyperX configuration, again multiple terminals can be attached to

the switches (s in the diagram).

S S S S

S S S S

Figure 2.9: HyperX Topology, S is a Switch in which multiple nodes can reside

Flow Control Mechanisms

As low latency networks do not share a medium the transmission of data is

controlled by other means. Flow control can be broken down in to two sub-

categories; buffered and bufferless. Bufferless flow control is the simplest flow

control; packets are forwarded is resources are available or dropped/misrouted

in the case where resources are not available. Buffered flow control stores the

data until resources become available.

Buffered flow control can perform on both packets and flits. Store-and-

forward and cut-through methods are examples of packet buffered flow control.

Store-and-forward stores the packet until the all of the packet is received and

then forwards it [44].

The latency of the packet is given in Equation 2.6.

25

2. Background

T = Htr +H

(
L

b

)
(2.6)

Cut-through does not wait for all of the packet to be received instead starts

transmitting when resources become available [75]. This is sometimes known as

virtual cut-through flow control and should not be confused with virtual channel

flow control discussed later on. This approach reduces the latency for the packet

compared to the store and forward method; Equation 2.7 shows the serialisation

latency for cut-through.

T = Htr +
L

b
(2.7)

Flit based buffered flow control methods include Wormhole Routing [43] and

Virtual Channel Flow [42]. While Wormhole Routing contains routing in the

title it is a flow control method. Wormhole routing works much like the packet

based approach cut-through yet does not require the storage space of a packet

just a flit. Issues arise when the output is blocked because there is insufficient

resource available to forward the flit.

Virtual Channel Flow control provides multiple Virtual Channel (VC) per

single physical channel overcoming the blocking problems of Wormhole as a flit

can just utilise another virtual channel [42]. This approach improves channel

bandwidth utilisation as it is not held idle while waiting to forward a blocked

packet.

When buffering data at a switch, the switch must also know of the state

if upstream buffers, this is controlled by one of three methods; credit-based

flow control, on/off flow control and ack/nack flow control. In credit-based flow

control the upstream router keeps count of the available flit buffers downstream.

This count is decremented when a buffer is used; once this reaches 0 it must wait

for the downstream switch to credit the upstream switch when it has forwarded

a flit and a VC has become available [44]. For on/off flow control buffer state is

handled with a control signal; when the flit has been received and the number

26

2. Background

of buffers drops below a free buffers threshold the signal is turned off [44]. Once

the number of free buffers rises above the threshold for re-enabling it is turned

back on. The threshold for turning off the control signal should be greater than

the relationship between time of additional flits being sent/received (trt) after

the signal changed state and the length (Lf) of the flit in bits (see Equation 2.8).

This ensures that the buffers do not overflow.

Foff ≥ trtb

Lf
(2.8)

In the case of ack/nack flow control a switch simply forwards a flit as it

does not store upstream information. If the downstream switch has a buffer

available then it replies with an Acknowledgement (ACK) [44]. If no buffer

space is available then the flit is dropped and the downstream switch replies

with a Negative Acknowledgement (NACK). This approach inefficient for both

buffer space and bandwidth, due to flits being resent and have to be held on the

upstream switch.

Routing Algorithms

Routing algorithms can either be oblivious or adaptive. Oblivious routing al-

gorithms include Valiant’s Routing algorithm [127] and minimal oblivious rout-

ing [101]. Oblivious routing algorithms route traffic irrespective of network

load, compared to adaptive routing algorithms which will change the path data

takes. In minimal oblivious routing traffic always takes the shortest path, in

comparison Valiant’s algorithm chooses a path at random to forward traffic.

Adaptive routing allows the traffic to be routed across different routes on

a per flit basis based upon current state information, similar to changing the

journey of a car due to traffic. Universal Globally Adaptive Load-balanced

Routing (UGAL) is one approach to adaptive routing, traffic with this rout-

ing algorithm either take the minimal path or a non-minimal path [77, 108].

Congestion is avoided with this algorithm by using Valiant Load-balanced rout-

27

2. Background

ing [125]. UGAL is commonly seen on Dragonfly topologies rather than a fat

tree where minimal static routing provides the best performance.

2.4 Summary

This chapter has introduced types of parallelisation and the concept of speedup

for parallel applications. Subtopics of performance engineering (benchmarking

and performance modelling) have been introduced, the current state of the art

for performance modelling and benchmarking has been discussed. The building

blocks of a low latency interconnection network have been explained, which is

further motivates the work presented in this thesis.

This thesis moves the state of the art forward for benchmarking by introduc-

ing a new flexible network and I/O benchmark called StressBench that allows

for communication patterns to be concurrently across a system. Simulation is

progressed with a reusable validation technique that been used to validate four

systems and build performance models for two applications. Application per-

formance predictions are then generated for a multi-user shared system demon-

strating the usefulness this has on system procurement and network design.

28

CHAPTER 3
Compute Platforms and Applications

The hardware and software marry together to make the simulation of physics

possible. In this chapter we discuss the hardware specifications of the computing

resources used and the in depth view of the applications used throughout this

thesis.

This chapter is as follows:

• Section 3.1 outlines the hardware configurations of the systems used through-

out this thesis.

• Section 3.2 discusses the two primary applications used throughout this

thesis in detail.

• Section 3.3 demonstrates common MPI implementations for communica-

tion patterns used by the applications mentioned in Section 3.2.

3.1 Compute Platforms

Modern HPC systems are typically interconnected servers which offer compu-

tation, storage and management. These servers are typically referred to as a

node or blade. A node usually has 3 key elements, a CPU, RAM and NIC. The

storage of a single node is typically irrelevant given that file systems are typ-

ically shared amongst all nodes. Common parallel filesystems include General

Parallel File System (GPFS) [114] and Lustre [25].

Throughout this thesis the following compute platforms have been used ex-

tensively. These platforms differ in size, stage of lifecycle, CPU architecture as

well as network architecture. The oldest system in use is Tinis, entering produc-

29

3. Compute Platforms and Applications

tion in October 2015 and the newest system is Isambard entering production in

November 2018.

The machines used in this thesis are significant because they cover a wide

spectrum of what are considered supercomputers rather than a standalone com-

pute server, from small clusters (Orac) to large machines such as Cori which

was number 5 in the top500 when it entered production in 2016 [122]. One

notable feature of these machines is that smaller machines typically use a Fat

Tree network topology while larger machines may use a Dragonfly.

In the UK there are two tiers of HPC resources used by both academia and

industry. Firstly we have the Tier 1 machine, currently called Archer2. This is

one of the largest systems in the UK which features 5,860 nodes. Tier 2 machines

are typically smaller in the 64-512 node sizes, for example Isambard. Universities

may have their own smaller clusters such as Orac and Tinis. Given the large

machine sizes there are typically resource limits dictated to stop resources being

starved by large jobs. In the case for Tinis a user can request 32 nodes at

one time without a reservation, where as on Archer2 the maximum job size is

1024 nodes. These constraints can be used to aid procurement decisions and

scheduling requirements on a machine, for example on Cori the job scheduler

will not allocate job sizes less than a group (384 nodes) to multiple groups as

this significantly slows down the applications [37].

3.1.1 Tinis

Tinis is a 212 node cluster featuring Intel Haswell (HSW) CPU and an In-

finiBand interconnect. This machine is based at the University of Warwick.

Table 3.1 shows the hardware specifications for Tinis. The systems is built

using Lenovo NeXtScale nx360 M5 servers.

The software stack used on Tinis is GCC 8.3 and OpenMPI v4.0.3. The job

scheduler for this system is Slurm.

30

3. Compute Platforms and Applications

Table 3.1: Tinis Specification

Component

CPU 2 x Intel Xeon E5-2630 v3 2.4 GHz (Haswell)
Memory Per Node 64GB
Network QLogic TrueScale InfiniBand (QDR)
Network Topology 2-Level Tapered Fat Tree (2:1)
Parallel Filesystem GPFS

3.1.2 Orac

Orac is a 84 node at the University of Warwick featuring Intel Broadwell (BDW)

CPUs and an Intel Omni-Path low latency network. The specifications for Orac

can be seen in Table 3.2. Orac is constructed from Lenovo NeXtScale nx360 M5

servers.

Table 3.2: Orac Specification

Component

CPU 2 x Intel Xeon E5-2680 v4 (Broadwell) 2.4 GHz
Memory Per Node 128GB
Network Intel Omni-Path
Network Topology 2-Level Tapered Fat Tree (2:1)
Parallel Filesystem GPFS

The Intel compiler (v2020.4.304) was used for Orac with Intel MPI 2019

(2019.9.304).

3.1.3 Isambard

Isambard is a tier 2 machine based on the Cray XC series; this machine makes

use of the Marvell ThunderX2 CPU. This system uses XC50 blades. It features

329 nodes residing in 1 Dragonfly group.

OpenMPI 4.0.3 was used on Isambard, compiled with GCC using the Cray

Programming Environment (9.0.6).

31

3. Compute Platforms and Applications

Table 3.3: Isambard Specification

Component

CPU 2 x 32-core Marvell ThunderX2 2.1 GHz
Memory Per Node Phase 1: 256GB Phase 2: 512GB
Network Cray Aries
Network Topology Dragonfly
Parallel Filesystem Lustre

3.1.4 Cori

Cori (based at National Energy Research Scientific Computing Center (NERSC))

is a Cray XC40 System featuring both HSW and Knights Landing (KNL) CPU;

the machine totaling 12,076 nodes (2388 HSW, and 9688 KNL nodes) makes

use of 34 Dragonfly groups.

This split system design is similar to other large scale machines such as

Trinity [51].

Table 3.4: Cori HSW Specification

Component

CPU 2 x Intel Xeon Processor E5-2698 v3 2.3 GHz
Memory Per Node 128GB
Network Cray Aries
Network Topology Dragonfly
Parallel Filesystem Lustre

Table 3.5: Cori KNL Specification

Component

CPU Intel Xeon Phi Processor 7250 1.4GHz
Memory Per Node 96GB DDR4 & 16GB MCDRAM
Network Cray Aries
Network Topology Dragonfly
Parallel Filesystem Lustre

3.1.5 Astra

Astra (based at Sandia National Laboratories) was the first petascale ARM

machine utilising the ThunderX2 CPU from Marvell.

32

3. Compute Platforms and Applications

Table 3.6: Astra Specification

Component

CPU 2 x 32-core Marvell ThunderX2 2 GHz
Memory Per Node 128GB
Network Mellanox Infiniband (EDR)
Network Topology 3-Level Tapered Fat Tree (2:1)
Parallel Filesystem Lustre

The compiler used on Astra was GCC (v9.0) and OpenMPI (v4.0.1) was

used for the MPI library.

3.2 Applications

Applications for HPC systems take many forms and solve different problems,

although at the heart of these applications lay some primitive communication

patterns.

The two applications (TeaLeaf and Sweep3D) chosen for this thesis con-

tribute to a large proportion of the runtime of production codes at Atomic

Weapons Establishment (AWE) and the DOE. In the case of some produc-

tion applications at AWE the time solving equations using linear solvers can

be 20-50% of the overall runtime, as linear solvers are strong scaled they be-

come predominantly communication bound which limits the scale due to the

communication overhead [35]. The performance of sparse linear solvers limits

the size, fidelity and quality of the computational results [11]. The wavefront

communication pattern used by Sweep3D can consume as much as 50-80% of

the runtime for some production applications used both AWE and DOE. Given

the high percentage of runtime and scaling issues, it is prudent to focus on these

applications so that improvements can be seen as networks continue to evolve.

The message profiles for the communication patterns inside of TeaLeaf and

Sweep3D are deterministic and fixed during initialisation. They do not change as

the applications progresses as is the case with some Adaptive Mesh Refinement

algorithms or an unstructured mesh applications.

33

3. Compute Platforms and Applications

The communication patterns used in this applications are not just used in

multi-physics applications but other applications such as a Halo Exchange is

used in GROMACS [128] which is a molecular dynamics application which can

model chemical bonding interactions.

The decomposition schemes used in these applications leads to a regular

computation/communication pipeline that are deterministic with regular syn-

chronisation points such as calculating a residual in a linear solver. This makes

them easy to model as there is very little load imbalanced generated as the

problem is evenly distributed across all the computational resources.

3.2.1 TeaLeaf

TeaLeaf is a proxy application for solving the heat conduction equations [94] it

provides four iterative solvers. TeaLeaf solves the heat conduction equations in

both 2D and 3D using a 5 and 7 point stencil respectively. The temperatures are

cell-centred. The linear solvers provided include a Conjugate Gradient (CG),

Jacobi, Chebyshev and a communication avoiding CG algorithm.

Linear Solvers typically solve systems in the form:

Ax = B (3.1)

Algorithm 1 describes a preconditioned conjugate gradient algorithm. This

preconditioned algorithm solves b− Ap0 = ri. The first residual reduction (r0)

is calculated, then carries on calculating until it has converged. The solution is

then xi. The preconditioner is the matrix M−1 which is applied to the residual

reduction [112].

Practically this algorithm can be broken down to two key communication

patterns; firstly a reduction for example the calculating of the residual needs to

be performed across all ranks. The second is a halo exchange in which boundary

data is exchanged after a calculation.

As this type of application scales it becomes predominately communication

34

3. Compute Platforms and Applications

Algorithm 1 Preconditioned Conjugate Gradient Algorithm
r0 := b−Ax0
z0 :=M−1r0
p0 := zo
for i = 1, 2, ... until convergence do

αi :=
ri•zi
Api•pi

xi+1 := xi + αipi
ri+1 := ri − αiApi
zi+1 :=M−1ri+1

βi :=
ri+1•zi+1

ri•zi
pi+1 := zi+1 + βipi

end for

bound due to decreasing computation intensity across the MPI ranks.

Five input problems sets are provided called benchmarks, these vary in size

from a small 10x10 grid to a 4000x4000 grid size. Typical problem sizes ran

in production for linear solvers vary from 500x500 (Benchmark 3) through to

4000x4000 (Benchmark 5).

3.2.2 Sweep3D

Sweep3D is a discrete ordinates transport code [80, 100, 53], solving the multi-

group Boltzmann transport equation. Sweep3D operates over three dimensions

(Nx, Ny, Nz) which are decomposed over a 2D processor array (n × m). This

decomposition occurs over the X and Y dimensions, each process receives all of

the Z dimension (see Figure 3.1).

The algorithm employed by Sweep3D can be seen in Algorithm 2. The most

north east tile has to wait for the all other tiles to be processed. In total 8

sweeps through the arrays are required for Sweep3D, one for each of the vertices

of the 3D cube. Sweep3D performance has been improved by the inclusion of

the blocking factor, this allows a group of tiles to be computed prior to the

communication phase.

35

3. Compute Platforms and Applications

Ny

Nz

Nx
Figure 3.1: Three Dimensional Wavefront Decomposition

Algorithm 2 Sweep3D Algorithm
for Each energy group do

for Each Sweep do
for Each Angle Block do

for Tile Block in Z do
Receive form West Neighbour
Receive form South Neighbour
for Each Angle do

Compute Tile
end for
Send to East Neighbour
Send to North Neighbour

end for
end for

end for
end for

3.3 Communication Patterns

This section briefly describes some of the common communication patterns com-

monly used in parallel applications. These patterns form the foundations to the

distributed parallel applications described in Section 3.2.

These communication patterns can be constructed as small motifs. Motifs

are small runnable communication patterns that are typically taken from appli-

cations and can be run in isolation without the overhead of having to run the

36

3. Compute Platforms and Applications

entire application. Sections 3.3.1, 3.3.2 and 3.3.3 explain the communication

patterns with code snippets on how they are performed in MPI.

3.3.1 Halo Exchange

A halo exchange exchanges the data at the boundary cells. An implementation

may typically vary the number of rows/columns that are exchanged. Figure 3.2

shows a structured 2D halo exchange with a depth of 2 (green cells are exchanged

with neighbours).

Figure 3.2: Halo Exchange

A typical blocking MPI implementation for a 2D halo exchange can be seen

in Listing 3.1.

An unstructured halo exchange is similar but the boundary lengths are

not uniform (depending on the partitioning scheme used). The data accessed

may not be from contiguous memory which has performance implications, MPI

provides functionality to address some of these non-contiguous memory access

through the creation of custom MPI types which can handle the memory ad-

dressing cleanly.

37

3. Compute Platforms and Applications

1 if(y_up) {
MPI_Status status;

3 MPI_Send(y_buffer, length, MPI_DOUBLE, y_up, 1, MPI_COMM_WORLD)
;
MPI_Recv(y_buffer, length, MPI_DOUBLE, y_up, 1, MPI_COMM_WORLD,
&status);

5 }
if(y_down) {

7 MPI_Status status;
MPI_Send(y_buffer, length, MPI_DOUBLE, y_down, 1,
MPI_COMM_WORLD);

9 MPI_Recv(y_buffer, length, MPI_DOUBLE, y_down, 1,
MPI_COMM_WORLD, &status);

}
11

if(x_left) {
13 MPI_Status status;

MPI_Send(x_buffer, length, MPI_DOUBLE, x_left, 1,
MPI_COMM_WORLD);

15 MPI_Recv(x_buffer, length, MPI_DOUBLE, x_left, 1,
MPI_COMM_WORLD, &status);

}
17 if(x_right) {

MPI_Status status;
19 MPI_Send(x_buffer, length, MPI_DOUBLE, x_right, 1,

MPI_COMM_WORLD);
MPI_Recv(x_buffer, length, MPI_DOUBLE, x_right, 1,
MPI_COMM_WORLD, &status);

21 }

Listing 3.1: Example 2D Halo Exchange

3.3.2 Reduction

A reduction combines the elements in an array with a specific operation. The

MPI standard provides standard operations (e.g. minimum, maximum, sum-

mation). MPI implementations typically provide multiple algorithms for per-

forming these operations, such as recursive doubling or a binary tree. These

implementations have an impact the performance of the operation as some gen-

erate more communication traffic.

Figure 3.3 shows how values propagate up a binary tree to perform a reduc-

tion.

An AllReduce is a modification to this in which the result is broadcast to all

38

3. Compute Platforms and Applications

8

5

1 2

7

6

(a) Starting Values

29

8

1 2

13

6

(b) Computed Results

Figure 3.3: Reduction - Binary Tree Example

MPI ranks when calculated. In this thesis an AllReduce is tuned to be a Binary

Tree Reduction and Broadcast.

3.3.3 Wavefront

In the case of Sweep3D the communication pattern requires the result from a

previous cell prior to calculate its own value.

Listing 3.2 demonstrates the sweep across one octant of a 3D cube. A check

is made to see if the neighbouring cell is an edge, if not it will wait until the

data has been received before progressing to perform the tile computation and

then finally send the data on to its neighbours.

Wavefronts are seen in other types of applications in use at the DOE, such

as Computational Fluid Dynamics (CFD) and linear solver applications [97].

3.4 Summary

This chapter has covered the hardware platforms that are used throughout this

thesis. This chapter has also provided an explanation of the software applica-

tions used and how they are implemented with MPI.

The patterns discussed in this chapter form the basis of many parallel ap-

plications and are applicable to many scientific applications.

39

3. Compute Platforms and Applications

1 for (int k = 0; k < z_dimension; k += kba) {
if (xDown > -1) {

3 MPI_Recv(xRecvBuffer, nx_len, MPI_DOUBLE, xDown, 1000,
MPI_COMM_WORLD, &status);

}
5

if (yDown > -1) {
7 MPI_Recv(yRecvBuffer, ny_len, MPI_DOUBLE, yDown, 1000,

MPI_COMM_WORLD, &status);
}

9

physics(x,y,z);
11

if (xUp > -1) {
13 MPI_Send(xSendBuffer, nx_len, MPI_DOUBLE, xUp, 1000,

MPI_COMM_WORLD);
}

15

if (yUp > -1) {
17 MPI_Send(ySendBuffer, ny_len, MPI_DOUBLE, yUp, 1000,

MPI_COMM_WORLD);
}

19 }

Listing 3.2: Example Octant Sweep

40

CHAPTER 4
Design and Implementation of a modern network benchmark

Predicting the performance of supercomputers is vitally important in evaluat-

ing their suitability for applications and for informing the procurement process.

Time to solution is usually the primary metric of consideration, and can be im-

pacted by OS jitter [46], network contention [16], and resource allocation [15].

While there exist a variety of simulators focused on modeling the computational

aspects of supercomputers, consideration of the networking infrastructure has

been less thorough. Since network contention can cause variability in commu-

nication time [37]; it is prudent to develop a benchmarking tool that is capable

of reproducing traffic patterns commonly seen in scientific applications, thereby

allowing for more faithful replication of these workloads on new and existing ma-

chines. By benchmarking systems using higher level communication patterns,

such a benchmarking tool enables applications to be evaluated on a variety of

architectures without source code being released, which is beneficial in the case

of commercially sensitive and/or restricted codes, where the underlying appli-

cation architecture cannot be exposed. Common MPI benchmark tools either

take a generic approach to network congestion [36] or focus on performance of

individual MPI operations [69, 104]. This generic approach to network conges-

tion may not be representitive of what can be expected from a shared multi-user

system.

Understanding the interactions and impact between applications on a multi-

user system can be used to improve both resource scheduling and allocation;

and the communication patterns themselves for example the development of

communication avoiding algorithms such as those used within linear solver ap-

plications [30].

41

4. Design and Implementation of a modern network benchmark

In this chapter we address these shortcomings with the development of a

novel network replication framework called StressBench, that is capable of exe-

cuting complex communication patterns concurrently and reproducing applica-

tion workflows.

Specifically, this chapter documents the development of a customisable net-

work and I/O benchmarking tool that uses traffic patterns to evaluate archi-

tectures; evaluates the tool against commonly used network microbenchmarks

and validate application workflow replication with four proxy applications all

within 20% difference; replicates a full system run and use this to demonstrate

the impact of network contention on the time-to-solution of multiple proxy ap-

plications. Finally, we extend our full system replication to present a novel

case study assessing the communication performance while in contention with

common I/O strategies.

This chapter is as follows Section 4.1 outlines the design of a modern MPI

benchmark for evaluating network architectures; Section 4.2 demonstrates re-

play functionality inside of StressBench and Section 4.3 looks at performing

performance studies looking at how I/O traffic interferes with application com-

munication traffic.

4.1 StressBench Design

StressBench was designed to be flexible and applicable to all parallel workloads;

this is done through a portable interface. This allows for extension and addi-

tions to the communication patterns. Multiple communication patterns can be

chained together to create a job which can resemble a production application.

A communication pattern is applied in three phases:

Decomposition In this phase the proxy application breaks up the global MPI

communicator world into the relevant MPI groups which each have multi-

ple communication patterns associated with them. Once the MPI groups

have been constructed the communication patterns themselves perform a

42

4. Design and Implementation of a modern network benchmark

decomposition if required to establish their nearest neighbours in the case

of a halo exchange.

Perform During the perform phase the communication patterns execute as

if they were a standalone application using their MPI communicator to

communicate. Each pattern is timed individually and the total job is

timed.

Cleanup The cleanup phase allows the patterns to safely clean up any resources

that have been consumed. Each job also collates the timings from each of

its group’s ranks and then prints these to standard out.

These three phases are separated by global barriers to ensure they begin at

the same time such that the patterns under test are controlled tightly to ensure

that they are performed concurrently.

Listing 4.1 shows an example TeaLeaf iteration with I/O write after. Inputs

for StressBench must take the following form: Job Name, Node List and then a

list of motifs.

1 [JOB_NAME] TeaLeaf_CG
[NID_LIST] 6,9,17,18,33,41,58,67,72,75,83,84,87,90,102,103

3 [MOTIF] AllReduce
[MOTIF] Compute -m 350000

5 [MOTIF] AllReduce
[MOTIF] Compute -m 350000

7 [MOTIF] halo2d -x 4000 -y 4000
[MOTIF] MPIIO -s 1500000 -i 1 -m 256 -f <file_path> -n

MPI_File_write_all

Listing 4.1: Example Input

Figure 4.1 shows the architecture for StressBench. Job creation is the con-

struction of the motifs in to a job. The job list is given to StressBench which

executes each of the motifs consecutively per job and the jobs concurrently. The

three phases of a motif are globally barriered and then the results aggregation

occurs during the clean up.

43

4. Design and Implementation of a modern network benchmark

Figure 4.1: StressBench Architecture

4.1.1 Motifs

Patterns can be written by providing implementations for each of the key

phases of a given proxy application. The example communication patterns

are taken from mini-applications and can be seen in production applications.

As these patterns try to interact with the network (a shared resource) con-

tention increases which can degrade application performance. These examples

have been taken from the following proxy applications; TeaLeaf [94], Clover-

Leaf [87], Sweep3D [80], LULESH [74] and Hardware/Hybrid Accelerated Cos-

mology Code (HACC) [63].

A “compute” pattern is provided so that more intricate workloads can be

built. The compute pattern includes the capability to emulate load imbalance;

this has been achieved by generating a value from a specified distribution.

The design of the emulated patterns depends on the communications and

computation pipeline. In the case of a TeaLeaf there is no overlap between the

communications and computation pipeline. For Sweep3D the communication

and computation pipeline are tightly coupled so therefore the computation has

to be integrated in to the design of the motif. By understanding the communi-

cation and computation pipeline the information can then be built in to a motif

by providing implementations to the 3 phases. For the implementation of the

2D halo-exchange the problem decomposition was extracted from TeaLeaf and

then rebuilt inside of the decompose functionality. The perform functionality

involved inspecting how the 2D halo-exchanges take place and replicating the

MPI calls based upon the provided communicator. In the deletion phase all

buffers used are freed; this is independent of the pattern being replicated.

Multiple motifs have already been implemented in StressBench:

44

4. Design and Implementation of a modern network benchmark

Halo Exchanges A 2D structured halo exchange and 3D unstructured halo

exchange are provided.

AllReduce Support for two reduction operations; sum and minimum opera-

tions.

Computation A computation motif is provided to emulate computation. A

distribution can be provided to generate a load imbalance.

Incast A file I/O motif providing N-1 communications.

AllToAll An AllToAll pattern is provided in the default package.

Sweep3D A Sweep3D motif is provided offering a Sweep communications pat-

tern.

PingPong A PingPong style motif is also provided for measuring the latency

while in contention.

I/O Motifs

I/O motifs have been integrated in to StressBench to allow I/O subsystem to

be benchmarked simultaneously to the network. Thereby giving the ability to

understand the interactions between I/O traffic and MPI application traffic;

while these may be configured to avoid interaction the underlying network has

fixed resources that are shared by both types of traffic.

Currently two I/O strategies are implemented, namely N-1 and N-N. These

two approaches are the most widely used within HPC applications. StressBench

uses N-1 for reading input files.

Currently these two I/O strategies can be executed through HDF5, MPI-IO

or POSIX file operations. Writes are typically of more interest than reads but

both have been developed for StressBench [28].

The I/O bandwidth reported by the motifs is calculated with Equation (4.1).

BW =
Bytes Read/Written

Time Taken
(4.1)

45

4. Design and Implementation of a modern network benchmark

In an effort to validate this implementation, StressBench was run with Dar-

shan profiling the I/O operations. The cumulative timings were taken from

the Darshan log for the MPI-IO operations and compared to the cumulative

timings from the the output of the motif. The ‘MPIIO_F_WRITE_TIME’

counter from the Darshan log was used for the comparison. The difference in

the timings was less than 0.5% for 1GB files and less than 0.01% for 10GB files.

This difference is caused by two factors. Firstly, the resolution of timers and

secondly the position in which the timer is placed. Darshan provides wrappers

around the I/O function calls which insert the timers within the call while the

MPI-IO motif places the timing calls around the I/O function call which in-

cludes the calls to capture the information for Darshan; resulting in a marginal

difference between the times reported by Darshan and MPI-IO motif.

Traditional MPI benchmarks focus on peak performance for example IMB

and OSU are designed to run on a quiet system.

One of the motifs built inside of StressBench is AllPingPong which runs

from 0 to 4MB message sizes in the same way as PingPong in IMB and Latency

in OSU. This motif was used in the comparison against IMB and OSU. It is

possible to measure the latency of a specific message size inside of StressBench.

The default compiler and linker flags were used for building the microbench-

mark suites. In the case of StressBench the default optimisation level is -O0.

The latency benchmarks were scheduled to use one core across two nodes; each

of these values were repeated 10 times across different days to establish the

average latency the benchmark may achieve. This is because adaptive routing

may change the path that the traffic follows and increase the latency.

Figure 4.2 shows how traditional PingPong benchmarks compare against

StressBench, for Cori, Isambard and Tinis.

StressBench performed similarly to the existing MPI microbenchmarks such

as PingPong resulting in slight increase in the returned latencies.

For Tinis the average increase in the reported latency was 3.9% (maximum

11.4%) for IMB and 2.75% (maximum 8.2%) for OSU. On Isambard this average

46

4. Design and Implementation of a modern network benchmark

difference in the latency was a decrease of -7.9% (maximum -26.3%) for IMB

and -29% (maximum -49.2%) for OSU. The large variability on Isambard comes

from the adaptive routing inside of the network as each PingPong message may

take a different route to reach the desired endpoint.

Stressbench demonstrates a negligible difference between traditional mi-

crobenchmarks thus is a suitable replacement for these microbenchmarks.

4.2 Application Replay Functionality

To build a representative workload we extracted key characteristics from a proxy

application flow in order to replicate these patterns with StressBench. TeaLeaf

is a linear solver proxy application that has a variety of solvers.

The proxy application is instrumented to capture computation timings, using

Caliper [21]. Caliper allows for application’s source code to be annotated and

records snapshots during application execution.

The motifs can be rebuilt either independently such as TeaLeaf in which the

CG iteration is replicated as all reduces; computation and the halo exchange. In

the case of the Sweep communications we have coupled the computation with

the communications and it results in one motif.

To verify the communication patterns match they were traced with Intel

Trace Analyzer and Collector (ITAC) and the point-to-point message profiles

captured. To further validate the workload we compare the times captured

inside of StressBench with the timings from the proxy application. The compute

timings were generated using a Gaussian distribution function parameterised to

model OS jitter.

In the case of TeaLeaf we emulate one Conjugate Gradient (CG) iteration.

Benchmark (BM) 5 was chosen for the selected problem and has been strong-

scaled. This problem is the crooked pipe problem in which a pipe has a lower

density than its surroundings and therefore heat travels faster through this part

of the problem domain. A conjugate gradient iteration in TeaLeaf consists of two

47

4. Design and Implementation of a modern network benchmark

2−2 21 24 27 210 213 216 219 222
100

101

102

103

Message Size [bytes]

La
te
nc
y
[µ
s]

IMB OSU StressBench

(a) Tinis

2−2 21 24 27 210 213 216 219 222
100

101

102

Message Size [bytes]

La
te
nc
y
[µ
s]

IMB OSU StressBench

(b) Cori

2−2 21 24 27 210 213 216 219 222

101

102

103

Message Size [bytes]

La
te
nc
y
[µ
s]

IMB OSU StressBench

(c) Isambard

Figure 4.2: PingPong Comparisons for Three Machines

reductions with computation and a 2D halo exchange with post computation;

this was confirmed by tracing the application with Intel ITAC and reading

48

4. Design and Implementation of a modern network benchmark

through the application source code.

Figure 4.3 shows how a Conjugate Gradient Iteration inside TeaLeaf com-

pares with StressBench. The difference in the measured and emulated runtimes

for TeaLeaf was less than 10% difference. When the communication patterns

were traced with Intel ITAC the message profiles did not differ. The computa-

tional motif runtime provided less than 1% of the variability compared to the

measured TeaLeaf run. The large variations came from the communications

notably the halo exchange. In our emulation the message packing was treated

as additional computation rather than part of the communication directly. This

was chosen because the message packing and unpacking occurs after the com-

munication has taken place and the memory is sent/received from contiguous

blocks. When TeaLeaf is strong scaled like this at larger scales the communi-

cations can dominate the execution of an iteration; the computation roughly

halves as MPI ranks double.

The message profile shows how many bytes were sent and received by each

of the MPI ranks. The message profile from the halo exchange matched for the

measured and emulated, Figure 4.4. These plots show the message sizes match

the real communication pattern and the motif, any difference in the plots would

indicate the communication patterns not matching.

The largest difference in runtime between the proxy application and the

emulation is less than 10% for Tinis in the comparison.

Sweep3D is a discrete ordinates transport code [80, 100]. We have emulated

a typical application run which consists of 12 iterations. The problem was weak

scaled for each rank to have a grid size of 40x40x100. The measured compute

time was 61us per octant.

Figure 4.6 shows how there is no difference in the message profiles between

Sweep3D and the motif.

Figure 4.5 shows how StressBench compares to the weak-scaled input deck.

The average difference was 3.2% with the largest difference 6% for 16 nodes.

As the input deck was weak scaled; we felt this was the best approach to use

49

4. Design and Implementation of a modern network benchmark

20 21 22 23 24 25

10−4

10−3

10−2

Node Count

E
xe
cu
ti
on

T
im

e
[s
]

Measured Collectives Measured Point To Point
Emulated Collective Emulated Point to Point
Measured Total Emulated Total

Figure 4.3: TeaLeaf Runtime Validation

the average computation time. The point-to-point message profiles for both the

measured and emulation matched when compared.

LULESH is a 3D Unstructured Lagrangian Explicit Shock Hydrodynamics

proxy application [74]. As with TeaLeaf we have emulated one iteration; we

chose to emulate the 50th iteration to provide some warm up iterations. We have

performed a weak scaling study across a mesh of 813. The computation time

was 0.81s for all runs. The maximum difference was 15% between the measured

and emulated; this was for the a single node with 8 MPI ranks. For multi-node

runs the average difference was less than 5%. Figure 4.7 shows the comparison

between the runtimes for the measured and emulated results. This demonstrates

that StressBench can be used to effectively emulate communication patterns

found in production applications.

Figure 4.8 displays the message profiles for the 50th iteration of LULESH

and the motif.

SWFFT is a Fast Fourier Transform (FFT) proxy application. This type of

communication pattern features heavily in astronomy related simulation codes

50

4. Design and Implementation of a modern network benchmark

0 10 20
0

10

20

Sender Process

R
ec
ei
ve
r
P
ro
ce
ss

0

2

4

6

8

·106

(a) Measured

0 10 20
0

10

20

Sender Process

R
ec
ei
ve
r
P
ro
ce
ss

0

2

4

6

8

·106

(b) Emulated

Figure 4.4: Measured and Emulated Communication Pattern for Halo2D

20 21 22 23 24 25

130

140

150

Node Count

E
xe
cu
ti
on

T
im

e
[s
]

Measured Emulated

Figure 4.5: Sweep Runtime Validation

for example Hardware/Hybrid Accelerated Cosmology Code (HACC) [63]. The

FFT implementation in SWFFT is from HACC; this operates on 1D FFT steps

which are interleaved as transposition and sequential steps. This approach re-

duces communication overhead. We have emulated a forwards FFT and back-

wards FFT during the emulation of the pattern. The MPI communications

were traced and the number of bytes for the point-to-point communications

were recorded. Figure 4.9 shows that the point-to-point message sizes for the

real and emulated runs match; as does the send/receive processes. The mea-

51

4. Design and Implementation of a modern network benchmark

0 10 20
0

10

20

Sender Process

R
ec
ei
ve
r
P
ro
ce
ss

0

2

4

6

·104

(a) Measured

0 10 20
0

10

20

Sender Process

R
ec
ei
ve
r
P
ro
ce
ss

0

2

4

6

·104

(b) Emulated

Figure 4.6: Measured and Emulated Communication Pattern for Sweep3D

100 101

0.7

0.75

0.8

0.85

Node Count

E
xe
cu
ti
on

T
im

e
[s
]

Measured Emulated

Figure 4.7: LULESH Runtime Validation

sured and emulated runtimes for SWFFT differed by as much as 11.4% for a

strong scaled problem of 160x160x160. The average error was -7.8% for this

problem, results can be seen in Table 4.1.

4.2.1 Applications Inside of StressBench

Building an application in to StressBench is simpler than constructing pat-

terns as the application can be treated as an Application Programming In-

terface (API) which can be called. Given the proposed portable interface for

52

4. Design and Implementation of a modern network benchmark

0 10 20
0

10

20

Sender Process

R
ec
ei
ve
r
P
ro
ce
ss

0

2

4

6

·105

(a) Measured

0 10 20
0

10

20

Sender Process

R
ec
ei
ve
r
P
ro
ce
ss

0

2

4

6

·105

(b) Emulated

Figure 4.8: Measured and Emulated Communication Pattern for LULESH

0 10 20 30
0

20

Sender Process

R
ec
ei
ve
r
P
ro
ce
ss

0

2

4

6
·106

(a) Measured

0 10 20 30
0

20

Sender Process

R
ec
ei
ve
r
P
ro
ce
ss

0

2

4

6
·106

(b) Emulated

Figure 4.9: Measured and Emulated Communication Pattern for SWFFT

StressBench (section 4.1) the API calls (to the application) can be called in

the relevant phases. The easiest applications to interface with StressBench are

applications developed in C as there are no type differences. In section 4.2.1 we

show how a C application is interfaced with StressBench and in section 4.2.1 we

show how a C++ application has been interfaced with StressBench.

C Application

TeaLeaf was chosen as a C application to interface with StressBench. The

TeaLeaf application needed to modified to store the communicator provided

from StressBench, this was added to the Settings structure. The communication

routines were then changed to use the communicator stored rather than the

53

4. Design and Implementation of a modern network benchmark

Table 4.1: SWFFT Runtime Validation

Nodes Measured Emulated Difference

1 0.1383 0.1340 -3.1045
2 0.0555 0.0530 -4.4551
4 0.0357 0.0316 -11.3894
8 0.0190 0.0180 -5.4324
16 0.0266 0.0250 -6.1350
32 0.0263 0.0253 -3.8023

MPI_COMM_World.

Another modification to TeaLeaf was the addition to support a different

input and output files, by default TeaLeaf looks for a file called ‘tea.in’ for the

input and outputs to ‘tea.out’. This allows different problem sizes for each job

within StressBench.

The application is then usable as any other motif, Listings 4.2 shows how to

the input for running the TeaLeaf application in StressBench.

[JOB_NAME] TeaLeaf

2 [NID_LIST] 0,1,2,3

[MOTIF] TeaLeaf -i /home/user/tealeaf/tea.in -o /home/user/tealeaf/

tea.out

Listing 4.2: StressBench Input for TeaLeaf

To validate this implementation still operated as before with no overhead

each problem set from TeaLeaf was run across 4 nodes on Isambard. Each of

the problems validated against the solutions contained within ‘tea.problems’,

the computed solutions matched for the application run independently and the

application running in StressBench. Figure 4.10 shows how the runtime of the

application and the reported times from StressBench compare, there is a negli-

gible difference between the time reported by the application and StressBench’s

course-grained aggregated timing. The average time is presented from five runs

within StressBench for each of the problem sets, with the minimum and maxi-

mum times as the error bars.

54

4. Design and Implementation of a modern network benchmark

1 2 3 4 5
0

20

40

60

80

Problem

E
xe
cu
ti
on

T
im

e
[s
]

Application Application StressBench

Figure 4.10: TeaLeaf Application Problem Sizes

C++ Application

CloverLeaf [87] was chosen as the C++ application to integrate with Stress-

Bench, because the patterns are similar to those in the I/O study in Sec-

tion 4.3.2. CloverLeaf is a two dimensional Lagrangian-Eulerian explicit hydro-

dynamics proxy application [87]. Interfacing with a C++ application requires

a C/C++ interface to be developed so that StressBench can call the functions

from the application. The C/C++ interface implemented allows the functions

and objects within the C++ application to be treated as C functions.

Again with this application the communicator from StressBench was stored

and used in the communicator functions. CloverLeaf already supports different

input and output files and did not require modification like TeaLeaf.

To validate the implementation 5 datasets were run through the CloverLeaf

application and the CloverLeaf implementation in StressBench. This was per-

formed on Isambard across 4 nodes, the comparison of the runtimes can be seen

in Figure 4.11, similar to the TeaLeaf timings there is no significant difference

in the runtimes when running the application through StressBench.

55

4. Design and Implementation of a modern network benchmark

2 4 8 16 32 64

20

40

60

80

100

Problem

E
xe
cu
ti
on

T
im

e
[s
]

Application Application StressBench

Figure 4.11: CloverLeaf Application Problem Sizes

4.3 Application Communication Traffic and I/O

Performance Studies

This section uses StressBench to investigate two scenarios, firstly a full system

workload is constructed and run across a cluster orchestrated with StressBench.

The second performs an I/O study looking at the effects of I/O traffic on com-

munication patterns.

4.3.1 Full System Orchestration

The validated applications can be composed to mimic a representative system

workload. The mimicked workload allows explorations into potential slowdowns

as a result of job placement and communication interactions affecting perfor-

mance.

The workload we have examined utilised the communication patterns in

TeaLeaf and Sweep. Applications often perform I/O to either checkpoint or to

output a visualisation [50].

Existing benchmark suites [36, 113] use an incast like communication pattern

56

4. Design and Implementation of a modern network benchmark

to replicate I/O traffic. While this communication pattern can induce similar

network traffic it often lacks the ability to replicate I/O bandwidth which means

that it could artificially clear the network. When evaluating a mimicked work-

load we have used both Incast traffic and real I/O traffic through the use of the

Incast and I/O motifs.

I/O traffic patterns were added to these workloads after a number of it-

erations to emulate this. The size of the I/O has been approximated using

Equation (4.2), where domain size is the problem size in the case of TeaLeaf it

is 4000×4000.

I/O Message Size =
Domain Size× variables

MPI Ranks
(4.2)

The system was randomly distributed to have eight jobs of sixteen nodes

each; two Sweep3D with an Incast, two TeaLeaf with an Incast, two repeated

file I/O and finally two AllToAll Traffic. The problem domain for Sweep3D

was configured as 1003 cube and 5 iterations. The blocking factor for the Z

dimension was set to 10 and Incast message size was set to 7,111,111 bytes per

rank.

For TeaLeaf the problem was configured similarly to that used in the above

validation: a domain size of 4000×4000; five iterations were performed with a

incast motif at the end having a message size of 1,500,000.

A representative Incast size of 480,469 bytes per MPI rank was configured

for five iterations.

The file I/O was performed using an ‘MPI_File_write_all’ call with the

MPI-IO motif.

Figure 4.12 shows how each of the jobs performed in isolation and under

contention on Tinis. The mean is shown with the diamond inside of the box

plots and the line represents the median. The distance between the whiskers

is the Inter-Quartile Range (IQR), the value for the upper and lower whiskers

using Equation 4.3. Outliers are represented as coloured shapes outside of the

57

4. Design and Implementation of a modern network benchmark

whiskers. The boxplots show that with the network under contention these run-

times generally shift upwards and the boxplots elongates showing wider vari-

ability in the time to solution for the jobs. Each job was run in isolation for

20 runs under the same resource allocation of 128 nodes with all other nodes

not being provided jobs. All jobs were then combined to execute concurrently

across the 128 jobs 30 times. All these runs were preformed on a system during

a maintenance window to ensure no external factors affected communication

times for the workload.

Whisker = Quartile± 1.5× IQR (4.3)

For Sweep3D on Tinis the worst case slowdown was 1.2×; for TeaLeaf we

show a 1.8× slowdown when the applications are trying to run in contention

with other applications on the system. There are some anomalies in which the

traffic under contention could under some circumstances perform faster than

isolation, such as the job TL2. This is because the network contention is a

temporal and one of the contending jobs could have slowed down due to CPU

throttling creating a load imbalance and TL2 being able to transmit optimally,

the messages from the application do not have to wait for resources across the

network. The static routing deployed in the Fat Tree inside of Tinis means that

the outliers are primarily caused by the aforementioned reasons.

Figure 4.13 shows the how Sweep3D and TeaLeaf performed in isolation and

under contention on Isambard. The slowdown worst case slowdown for Sweep3D

was 1.02, TeaLeaf 1.02 and AllToAll was 1.2. Outliers for the jobs running

on Isambard are of more interest, because the network makes use of adaptive

routing [54]. The adaptive routing algorithm employed by Aries adaptively on

a per packet basis, so packets part of the same message may not take the same

path and can arrive out of order. This means that for the larger the messages

(such as the AllToAll) could take many different paths, which sees benefit for

this job but increases the communication times for other jobs as this application

58

4. Design and Implementation of a modern network benchmark

begins to congest all the links across the network.

Sweep 1
Isol.

Sweep 1
Cont.

Sweep 2
Isol.

Sweep 2
Cont.

4

6

8

R
un

ti
m
e
[s
]

(a) Sweep Comparison

TL 1
Isol.

TL 1
Cont.

TL 2
Isol.

TL 2
Cont.

2

4

6

8

R
un

ti
m
e
[s
]

(b) TeaLeaf Comparison

Incast 1
Isol.

Incast 1
Cont.

Incast 2
Isol.

Incast 2
Cont.

14

16

18

20

22

R
un

ti
m
e
[s
]

(c) Incast Comparison

A2A 4K
Isol.

A2A 4K
Cont.

A2A 2K
Isol.

A2A 2K
Cont.

0.2

0.3

R
un

ti
m
e
[s
]

(d) All-To-All Comparison

Figure 4.12: Application Runtimes in Isolation and in Contention on Tinis

Chunduri et al. present a congestion impact (CI) metric [36], shown in Equa-

tion (4.4).

CI =
tcongested

tisolated
(4.4)

As discussed previously, an Incast pattern can provide a similar communi-

cation pattern to file I/O. As such we ran the same jobs with the Incast motif

rather than an MPI-IO Write motif. Table 4.2 shows how the CI differs between

Incast and the use of file I/O on both systems. It is clear that the impact of

using real file I/O is greater than using an Incast motif.

Due to the transient nature of the traffic hotspots it is possible that mes-

sages are unaffected by network contention resulting in no congestion impact

for motifs.

59

4. Design and Implementation of a modern network benchmark

Sweep 1
Isol.

Sweep 1
Cont.

Sweep 2
Isol.

Sweep 2
Cont.

4

6

8
R
un

ti
m
e
[s
]

(a) Sweep Comparison

TL 1
Isol.

TL 1
Cont.

TL 2
Isol.

TL 2
Cont.

2

4

6

8

R
un

ti
m
e
[s
]

(b) TeaLeaf Comparison

Incast 1
Isol.

Incast 1
Cont.

Incast 2
Isol.

Incast 2
Cont.

14

16

18

20

22

R
un

ti
m
e
[s
]

(c) Incast Comparison

A2A 4K
Isol.

A2A 4K
Cont.

A2A 2K
Isol.

A2A 2K
Cont.

0.2

0.3
R
un

ti
m
e
[s
]

(d) All-To-All Comparison

Figure 4.13: Application Runtimes in Isolation and in Contention on Isambard

Table 4.2: Comparison of CI for Incast and File I/O for Applications

Tinis Isambard
Pattern Incast MPIIO Incast MPIIO

Sweep 1 1.0068 1.0744 1.0146 1.4664
Sweep 2 1.0010 1.1356 1.0331 1.4266
TeaLeaf 1 1.0172 1.4094 1.0157 1.7936
TeaLeaf 2 1.0707 1.1345 1.0196 1.4392
Incast 1 1.0088 1.1314 1.0004 1.6109
Incast 2 1.0426 1.1161 1.0021 1.6868
All To All 2K 1.0157 1.1917 1.0137 1.0327
All To All 4K 1.0587 1.0000 1.2327 1.0014

4.3.2 I/O Study

This study looks at the interactions between I/O traffic and application traffic,

and the performance degradation of both of these with StressBench.

There is a presumption that I/O traffic interferes with application traffic yet

no such study exists quantifying this interference. As such we have designed

60

4. Design and Implementation of a modern network benchmark

this study to cover breadth rather than depth into a specific interaction. The

study focuses on some common communication patterns from applications; we

use the validated patterns mentioned above.

To understand the interactions between application communications and I/O

traffic we have run a range of application patterns against some large file sizes

which would cause congestion inside of the network. In order to ascertain suit-

able file sizes we analysed the file sizes on four storage systems at NERSC. The

data was collected using RobinHood policy engine [48] and inserting the POSIX

information in to a mySQL database [85, 59]. The data provided consisted of

the size of files as reported by the inode for each files [59]. We grouped the data

in to 5 buckets: 0GB, 1GB, 10GB, 100GB and 500GB. Figure 4.14 shows how

many files are situated in each of the 5 groups.

0GB 1GB 10GB 100GB 500GB

103

104

105

106

107

108

109

17

21

15

12

9

18

21

14

11

8

16

20

13

10

7

16

19

13

10

7

File Size

N
um

be
r
of

F
ile
s

cscratch project2 projecta projectb

Figure 4.14: Measured File Sizes From Four Production Storage Systems

In an effort to negate background network noise the runs performed the

pattern in isolation and then in contention; each job then completed this 10

times. This was done to ensure that the isolated and contended runs performed

as close as possible to each other such that they would have an equivalent

background noise. These jobs were repeated at differing times across a week to

61

4. Design and Implementation of a modern network benchmark

achieve best and worst case background network noise. Each motif in the run

was configured to run for at least 30 seconds so that the network can get fully

congested and links can be exhausted. This ensures that any adaptive routing

algorithms has time to take affect on communication patterns. Previous work

has shown that system load can interfere with latency sensitive messages [35].

The study not only looked at the the effects of pattern and file size but also

the effects on job placement. Three job placement schemes were used; linear,

interleaved and random; Figure 4.15 shows how the three placement schemes

differ.

Figure 4.15: Job Placement, Diagonal and Hash lines represent different appli-
cations

For runs on Tinis 32 nodes were utilised while on Isambard 256 node runs

were used. Both sets of runs consisted of a 50:50 split between the pattern of

interested and offending I/O traffic.

To assess the performance degradation we compare the CI. Table 4.3 shows

how the CI differs against the four file sizes tested for Tinis. Table 4.4 shows

how the CI differs against the four file sizes tested for Isambard.

In the case of Tinis the file size seems to have negligible difference in the

impact on the performance rather the job locality has a greater impact. This

is due to the Fat tree network topology deployed in Tinis. Traffic that can be

routed between nodes across the same switch are unlikely to suffer because of

the file I/O traffic, such as the linear job placement. This results in a slowdown

of communication time thus increasing the application runtime.

I/O traffic generated on Isambard has a greater effect on application com-

munication traffic (shown in Table 4.4). This is most notable with a linear

placement; with this network it is also observed that I/O traffic size impacts

62

4. Design and Implementation of a modern network benchmark

the application communication traffic.

Table 4.3: Comparison of Application Workload against Congestion Impact -
Tinis

AllReduce Halo Exchange Sweep3D

Interleaved
1GB 1.026 1.006 1.001
10GB 1.154 1.007 1.000
100GB 1.172 1.003 1.006
500GB 1.222 1.004 1.001

Linear
1GB 1.028 1.006 1.000
10GB 1.023 1.006 1.002
100GB 1.015 1.004 1.000
500GB 1.024 1.000 1.002

Random
1GB 1.015 1.008 1.002
10GB 1.132 1.000 1.004
100GB 1.152 1.010 1.003
500GB 1.135 1.008 1.001

Table 4.4: Comparison of Application Workload against Congestion Impact -
Isambard

AllReduce Halo Exchange Sweep3D

Interleaved
1GB 1.000 1.100 1.001
10GB 1.000 1.015 1.036
100GB 1.122 1.018 1.070
500GB 1.145 1.059 1.045

Linear
1GB 1.031 2.026 1.189
10GB 1.050 1.159 1.139
100GB 1.104 1.125 1.286
500GB 1.212 1.157 1.118

Random
1GB 1.101 1.073 1.001
10GB 1.119 1.096 1.046
100GB 1.262 1.138 1.064
500GB 1.304 1.137 1.199

4.4 Summary

In this chapter the development of a modern reconfigurable network bench-

mark built on top of MPI has been presented. The approach presented allows

for domain complexity to be abstracted away so that the underlying network

63

4. Design and Implementation of a modern network benchmark

performance can be studied using real-world communication patterns. The pat-

terns being studied can be implemented with MPI directly requiring no external

infrastructure. These patterns can then be connected together to look at how

applications utilise the network while in contention with other communication

patterns.

By chaining multiple motifs together applications can easily be replicated

within StressBench, we demonstrate that runtime differences are less than 15%

for a variety of applications. Applications can also be plugged in to the flexible

to run applications instead of separate motifs.

The presented orchestration of several applications running concurrently

shows that StressBench is a suitable tool for evaluating network performance;

with applications such as TeaLeaf running 1.4× on a fat tree slower while in

contention with other applications. We also show that real I/O traffic has a

greater impact on application communication performance resulting in larger

slowdowns when compared to Incast like application traffic. These slow downs

results longer time to solutions and more computation resources being used to

facilitate the runs as wallclock times are increased to ensure jobs complete. This

can impact on research budget where the computation resource is fixed.

We have shown how on systems with adaptive routing that file size affects

the performance rather than the placement of the jobs; while on systems with

static routing such as those in fat trees we have shown that job location is more

likely to cause issues with contention. To mitigate this contention jobs could

be scheduled to avoid being placed linearly and instead interleaved; this may

improve the performance of the application communication patterns.

Possible extensions to this work include more validated communication pat-

terns from other scientific disciplines and machine learning applications, as well

as the addition of I/O libraries to allow for better replication of applications.

64

CHAPTER 5
Validation of a Network Micro-Simulator

As large scale systems increase in heterogeneity it is becoming more important to

consider the various components and their contributions to bottlenecks within

systems. Modeling efforts have previously lacked fidelity in aspects such as

topological awareness, as is the case for LogP [39, 40]. Analytical modeling

techniques such as these are severely limited due to the significant assumptions

made in arriving at results, and as such, they pose a challenge for exploring the

design space for interconnection of supercomputers for the Exascale era.

Another approach for such exploration is simulation, which falls in to two

distinct categories: macro- and cycle accurate simulation. A macro-simulation,

similarly to an analytical model, makes assumptions about the behaviour of the

various components in the system, but offers more configurability, hence allowing

for enhanced exploration of the design space than an analytical model. Cycle

accurate simulators are typically developed by network vendors and simulate

networks in detail down to moving each FLIT through the network. The major

trade-off between these two types of simulator come down to accuracy vs time.

While cycle-accurate simulators are accurate they are often slow; compared to

macro-simulators/analytical models that are considerably faster.

While macro simulators largely make assumptions for system parameters,

some customisation can be applied to better reflect system characteristics when

evaluating how changes might impact performance. One notable case study

looks at the jitter between two operating systems and feeds this into the macro

simulator WARPP to evaluate application system performance at scale [65].

In this chapter we present a micro-simulator for simulating interconnection

networks and validation with microbenchmarks across three systems. Two appli-

65

5. Validation of a Network Micro-Simulator

cation performance models are constructed on top of the system models. Finally

this chapter looks at pushing the system models in larger networks looking at

the performance and cost tradeoffs of larger switches.

This chapter is structured as follows, Section 5.1 describes the simulator built

on top of SST. Section 5.2 shows the validation for the hardware platforms and

the performance models for Sweep3D and TeaLeaf. Section 5.3 speculates about

how design of fat trees and dragonfly networks influences designs.

5.1 Simulator Design

The design of SST compliments the development of a network simulator as an

interconnected stack; similar to a real HPC system. For this four components

that interlink and connect to provide network simulation where each compo-

nent represents a different layer in the networking stack. Figure 5.1 shows the

elements stack.

Ember

Hermes

Firefly

Merlin

Application

MPI Implementation

Network Interface Card

Network Switch

Figure 5.1: Network Simulation Stack

This stacked design allows for customisability and high fidelity without com-

promising the simulation of other elements in the stack; such as evaluating col-

lective algorithms for a known network topology and interconnect.

Building on top of SST means that it inherits a large feature set; such as

statistic collection being handled and aggregated at the core instead of the com-

66

5. Validation of a Network Micro-Simulator

ponents. The components presented utilize statistic collection and aggregation

so detailed analysis can be conducted at all levels in the networking stack.

5.1.1 Ember

Ember provides high-level logic for constructing communication patterns which

we have named motifs. Motifs provide a synonyms mechanism with developing

MPI or Symmetric Hierarchical Memory (SHMEM) applications so that they

can be recreated for a scalable communications patterns.

A motif is constructed in three phases; decomposition, generate and com-

plete. In the decomposition phase the pattern calculates in neighbours (if re-

quired) and creates the send/receive buffers such as for a halo exchange. During

the generate phase the motifs feeds communication events in to a queue which

are processed in chronological order, by the Ember Engine. The Ember Engine

processes the event queue to ensure all events complete and ensures that the

state machine flows correctly.

This approach of a usable API provides scalable communication traces that

are not limited to traces alone, meaning that motifs scaling behaviour can be

observed for large scale simulations. This is because traces store the number

of bytes sent and received and then replayed with the same function call, to

scale this approach requires working knowledge of the application so that the

communications are scaled appropriately. Listing 5.1 shows how to make an

MPI call for an application and Listing 5.2 shows an equivalent call in Ember.

1 MPI_Allreduce(&send, &recv, length, MPI_DOUBLE, MPI_SUM,
MPI_COMM_WORLD);

Listing 5.1: MPI Call

2 enQ_allreduce(evQ, m_sendBuf, m_recvBuf, m_count, DOUBLE, m_op,
GroupWorld);

Listing 5.2: Ember Call

67

5. Validation of a Network Micro-Simulator

5.1.2 Hermes

Hermes is the SST element which provides state machines to ensure correct

simulation of MPI and SHMEM semantics. The principle activity of the state

machines is to convert communication activities from application patterns into

MPI/SHMEM operations and have them progress correctly according to the

programming model specification. Delays can be added in to the Hermes layer to

represent software delay inside of the MPI and SHMEM layer of an application,

see Listing 5.3.

1 ’sendStateDelay_ps’ : 0,
’recvStateDelay_ps’ : 0,

3 ’waitallStateDelay_ps’ : 0,
’waitanyStateDelay_ps’ : 0,

Listing 5.3: Hermes Latency Parameters

5.1.3 Firefly

Firefly provides the functionality of the NIC. This functionality allows for high

fidelity simulation of the key components within a NIC; such as the bus used

between the host and NIC. This component also handles the packetization and

byte movement engine. Firefly is able to handle multiple MPI ranks connected

to one firefly NIC, this is similar to current multicore systems.

The memory latencies are modelled under the assumption there is a base

latency with an addition per byte. This calculation can either be linear or a

multiplication of the size for a given size range. This is similar real systems,

where latency can increase as size increases [23]. Listing 5.4 demonstrates how

configured latencies may vary for different access sizes. In this example if 249

bytes was being read from the memory read to send over the network the latency

to read the memory is 77.23ns.

68

5. Validation of a Network Micro-Simulator

’txMemcpyMod’: ’firefly.LatencyMod’,
2 "txMemcpyModParams.op" : "Mult",

"txMemcpyModParams.base" : "10ns",
4 "txMemcpyModParams.range.0" : "0-15:0ps",

"txMemcpyModParams.range.1" : "16-63:250ps",
6 "txMemcpyModParams.range.2" : "64-:270ps",

Listing 5.4: Transmit Copy Send Parameters for FireFly

5.1.4 Merlin

Merlin supplies topological and networking infrastructure. At the heart of Mer-

lin lies a high radix router implementation that provides a extensible feature set

to aid investigate how varying routing and Quality of Service (QoS) affect the

overall performance of the system. Routers inside of HPC networks typically

have a crossbar; this crossbar applies an algorithm that manages how packets

flow across the crossbar. The high radix router models the input and output

queues which means that the crossbar can be modelled cycle accurately with-

out the time complexity of a cycle accurate simulator. The high radix router

provides multiple cross-bar arbitration policies to investigate performance these

include; round robin allocation, least recently used; age and random.

Network topology can affect network performance, as such when a new sys-

tem is under design all topologies should be evaluated. Topologies that are

currently supported include; Dragonfly, Fat tree, HyperX, Mesh, and a Torus.

The Fat Tree topology parameter is denoted as:

“<downlinks_L1>,<uplinks_L1>:<downlinks_L2>,<uplinks_L2>" for the sim-

ulator. This notation is used throughout this chapter when discussing Fat Tree

topologies.

Dragonfly topologies take in a different set of parameters, these include the

number of hosts per gorup, routers per group and the number groups. Listing 5.5

show the topology parameters for Isambard.

69

5. Validation of a Network Micro-Simulator

platdef.addParamSet("topology",{
2 "hosts_per_router": 4,

"routers_per_group": 96,
4 "intergroup_links":10,

"num_groups" : 1,
6 "link_latency" : "120ns",

"host_link_latency": "120ns",
8 })

Listing 5.5: Topology Parameters for Cray Aries

5.1.5 Simulator Performance

SST is a parallel-discrete event simulation toolkit and provides a variety of ways

to parallelise and partition simulations running inside of the core. As with any

parallel application how the job is run has significant impact on the runtime.

Some considerations when running a simulation at scale are the simulated mes-

sage sizes and network topology. These two things have the largest impact on

the simulation time given they require knowledge of how the simulator will per-

form. Large messages (typically those over the rendezvous size) that have to

traverse farthest across the simulated network and are poorly placed partitioned

means that the runtime is excessively long.

Parallelisation

Threading and MPI are parallelisations techniques supported by the SST core.

Threading is provided by PThreads1 rather than OpenMP [41] threads.

There are some drawbacks and tradeoffs for a hybrid vs MPI approach.

One main issue is the synchronisation that takes place between all the MPI

ranks. If the simulator is ran as a fully MPI application the message sizes of the

synchronisation decreases but there are more ranks for the collective operation

to occur on which can increase the time of the operation.

This is of course dependant on what type of system you are running on,

large simulations presented in this thesis have been run on Isambard, where as
1See: https://man7.org/linux/man-pages/man7/pthreads.7.html

70

https://man7.org/linux/man-pages/man7/pthreads.7.html

5. Validation of a Network Micro-Simulator

smaller simulations have been run on a dual-socket BDW system and a Intel

Core i7 Apple MacBook Pro. The run configuration for Isambard has been a

full MPI approach, on the dual-socket system hybrid and solely threading have

been used. Threading with the 20 threads on the BDW system offered some

performance gain over MPI, presumably because the synchronisation did not

have to take place and memory could be directly accessed.

Partitioning

The SST core provides two partitioners with the default installation, linear and

round-robin. It also provides an interface to build with Zoltan [24], although

this work only focuses on the use of the linear and round-robin partitioners

as Zoltan’s runtime far exceeded the time to run the simulation and therefore

provided no benefit to the simulations.

Figure 5.2 shows linear and round-robin partitioning schemes for 8 MPI

Ranks across two nodes. Linear fills the resources first before moving on to the

next node. Round-robin iterates over all the nodes placing a component on the

next available resource.

Node 1 Node 2

Linear

Node 1 Node 2

Round Robin

Figure 5.2: SST Partitioning Schemes

The round-robin partitioning approach has significant benefits for when sim-

ulating large Dragonfly networks because the network infrastructure is situated

on the nodes where the NIC maybe located, this improves the data locality for

the simulation improving the time to solution.

In this work Fat Trees have been simulated with linear partitioning and Drag-

onfly networks have been simulated using round-robin partitioning to improve

71

5. Validation of a Network Micro-Simulator

the performance of the simulator.

5.2 Simulator Validation

We present a methodology to validate the decomposed simulator to provide

assurances that the layers accurately reflect systems, and finally present the

validated performance models. Validation of the simulator comes in two forms

firstly the validation of the hardware model using low level benchmarks, such as

PingPong, Streaming Bandwidth and collectives. Secondly the validation of the

performance models built on top of the simulator. The performance models sit

on a well benchmarked accurate platforms for the simulator and require changes

at the Ember layer. Given the layered design this provides confidence that the

platforms accurately reflect system architecture.

Existing validations for performance models primarily use micro-benchmarks

to ensure that the point to point latency is modelled correctly [17, 38] and then

make assumptions that all communication sit on top of this latency which is not

always the case as with different implementations for performing an AllReduce.

Newer approaches to trying to validate performance model include the use of

machine learning [86]. This approach provides a fast performance model, com-

pared to a simulation but can result in inaccurate models when extrapolating

data given a training set [86]. This approach has been used across four machines

with 3 different interconnects, it is shown that with a machine learning based

performance model it can accurately predict runtimes for applications given the

models high coefficient of determination (R2). Both of these approaches are fine

for high level models such as a macro simulations but lack the detail to truly test

the components that comprise a low latency interconnection network. To test

each of the sub-components inside of the networking stack further benchmarks

will be required to ensure that parts of the networking subsystem are stressed

which will push the performance model, this will provide assurance that each of

the layers are being modelled closer to the real system.

72

5. Validation of a Network Micro-Simulator

This section demonstrates the highly accurate platforms for four systems,

Astra, Isambard, Orac and Tinis. Performance models are then shown for three

systems.

5.2.1 Validation Methodology

Mubarak et al. explain that network benchmarking should occurs over a vari-

ety of scenarios, such as separate switches, groups to ensure that the distance

between the nodes is increased [99]. Benchmarks used for validation must also

take in to account the message rates to ensure that they cater for a wide variety

of messages sizes and that benchmarks should use a variety of node sizes, not

just two in the case of a PingPong (or latency) benchmark [99].

Given the design of the simulator benchmarks have been chosen to stress the

components, firstly the memory subsystem is benchmarked using LMBench [96].

LMbench measures the memory read latency by Back-to-back load; this is where

each instruction is a cache-missing load so has to retrieve it from this next level of

memory [96]. This benchmark was chosen because the benchmark was validated

against a SGI Indy machine.

A latency benchmark is then run across 2 nodes across the same switch and

separate switches. This allows the a comparison that link latencies reflect the

system. This configuration is one core across both nodes. The benchmark must

be run on different days to alleviate any background noise and must be repeated

a significant number of times.

The bandwidth of the network must be measured, this is achieved using

the Ohio State University (OSU) Bandwidth benchmark. As with the latency

benchmark this must be run on separate days across the same switch and sep-

arate switches, running on separate switches provides insight in to how the

network tapering affects the message rate.

Collective performance can then be ascertained with an AllReduce bench-

mark for the system which can be compared against the simulation. This should

be performed with a packed node and one MPI rank per node; this will further

73

5. Validation of a Network Micro-Simulator

confirm that the network model matches the system.

Once this data has been collected the model can be constructed and com-

pared against this data, an accurate model will demonstrate similar trends

through the results obtained with few deviations.

5.2.2 Modelling Hardware

To model a system first the system must be benchmarked to establish the per-

formance of the key subsystems, these include the network performance and

memory subsystem. The results of these benchmarks feed in to a platform.

Figure 5.3 shows the memory read latency for Isambard and Tinis. The

interest is the latency after the L3 cache as this is where the data hits the main

system memory. The L3 cache size of Intel HSW CPU is 15MB after which the

latency is approximately 100ns rising with a slight include, which starts to flaten

off towards as more memory is being read from this is because the bandwidth

of the memory bus can be saturated. For Isambard the L3 cache size is 32MB,

the latency to the main memory is around 64ns, this climbs quickly to reach

the 100ns similar to Tinis. The bandwidth of the memory takes longer to get

saturated as there is more bandwidth available on this newer CPU which is

why it does not flatten as quickly as CPU in Tinis. Listing 5.6 documents the

configured memory parameters for the Isambard platform.

Benchmarking the network performance involves benchmarking the entire

network stack to establish any software overhead there might be limiting the

true network performance. This additional software delay can be accounted for

inside of Hermes in the simulation. The Intel MPI Benchmarks [69] and OSU

Microbenchmark suite [104] have been used to benchmark the systems.

To construct a platform the values from a latency benchmark need to be

used; although this only provides part of the picture to ensure the platform

truly represents a system. We have also used a streaming bandwidth benchmark

(part of the OSU microbenchmark suite) to ensure that the sustained bandwidth

matches the system. A poorly designed platform focusing on just point-to-point

74

5. Validation of a Network Micro-Simulator

10−3 10−2 10−1 100 101 102 103

100

101

102

Size [MiB]

La
te
nc
y
[n
s]

Tinis Isambard

Figure 5.3: Measured Memory Latency for Tinis and Isambard

’txMemcpyMod’: ’firefly.LatencyMod’,
2 "txMemcpyModParams.op" : "Mult",
"txMemcpyModParams.base" : "65ns",

4 ’txMemcpyModParams.range.0’: ’0-1024:500ps’,
’txMemcpyModParams.range.1’: ’1024-8191:250ps’,

Listing 5.6: Isambard Memory Parameters

latency can result in higher sustained bandwidth, as the streaming benchmark

exposes hardware latencies that can remain hidden. A implementation of the

OSU Bandwidth benchmark has been developed for Ember.

Figure 5.4 shows how the simulated systems compares against the measured

results for a latency benchmark. There is a large difference after the transition

point between eager and rendezvous protocols is because the simulator is unable

to utilise the buffers correctly, this gets resolved as the messages size increases,

75

5. Validation of a Network Micro-Simulator

this increase appears across all systems modelled although most noticeable with

the Astra platform. Errors are also introduced in the model as there are still

some approximations in the model that are not catered for, one such assumption

is that latency over the host to NIC bus is the same irrespective of the data

transfer, this may not be the case yet it is difficult to capture the parameters

for such a model without understanding the internals of a proprietary NIC.

Another source of error in the model includes processing time within the switch,

while the parameters for the simulator are broken down in to the input and

output latencies in reality these are unknown in the real world and need to be

approximated. In the case of Omni-Path the switch latency is around 100-110ns

but does not state how this is split between the input and output [18]. Another

factor that would affect the switch latency is the crossbar arbitration policy

which again needs to be approximated as it is not publicly available, this has

implications for two inputs sending to the same output port as to which would

reach the output queue first.

To mitigate against measurement error the micro-benchmarks have been re-

peated ten times across ten different points in time, this negates any background

noise in the system and tends towards a value with little or no variance. With

these results the arithmetic mean can be calculated, the use of the average time

is suitable because of the law of large numbers shows that as the number of

samples increase they tend to a specific value [49].

The application results presented were also ran a large number of times to

ascertain the average time for the communications. Given the structured nature

of the decomposition the computation time did not vary greatly. To mitigate

against any background noise these jobs were typically during a maintenance

window with a job size utilising at least 95% of the system. The applications

were also ran on sequential nodes to minimise number of hops for the commu-

nications improving the runtime of the applications.

Figure 5.5 shows how the simulated systems streaming bandwidth bench-

mark compares to the measured results. The streaming bandwidth benchmarks

76

5. Validation of a Network Micro-Simulator

2−2 21 24 27 210 213 216 219 222
100

101

102

103

Message Size [bytes]

La
te
nc
y
[µ
s]

Measured Simulated

(a) Tinis

2−2 21 24 27 210 213 216 219 222

101

102

103

Message Size [bytes]

La
te
nc
y
[µ
s]

Measured Simulated

(b) Isambard

2−2 21 24 27 210 213 216 219 222

101

102

Message Size [bytes]

La
te
nc
y
[µ
s]

Measured Simulated

(c) Astra

Figure 5.4: Measured and Simulation PingPong Comparison for Three Systems

sends a set of messages (known as the window size) to an MPI rank using non-

blocking MPI communications, once the receiver (usually rank 0) has received

77

5. Validation of a Network Micro-Simulator

all of these messages it replies with a blocking send and receive. The time is

captured for all of these communications is used to calculate the Bandwidth.

This benchmark is capable of stressing the CPU/NIC bus as the messages sent

with rapid succession [13]. The message rate is calculated from the measured

bandwidth and can be seen in Equation 5.1, confirming that the message rates

are accurate.

Message Rate =
Sustained Bandwidth

Message Size
(5.1)

Mubarak et al. suggest that the collective performance is difficult to model

as that they are implementation dependant and likely to show a shortcoming

of the simulator [99]. Given this we have modeled our AllReduce applications

as binary trees which do a reduce then a broadcast. All measured results pre-

sented were configured to ensure that AllReduce operations used a binary tree

reduction and a broadcast, this was achieved by setting the following OpenMPI

parameters: coll_tuned_allreduce_algorithm, coll_tuned_bcast_algorithm and

coll_tuned_reduce_algorithm. The comparison of an AllReduce between the

benchmarks on Isambard and the simulation can be seen in Figure 5.6. One

node with 1 PPN is not shown for clarity, but the measured time was 0.12µs

and the simulated time was 0.1 µs resulting in an error of 17%. The time for

an AllReduce operation with the default Cray MPI runtime was 54.84µs for

256 nodes, this tuned algorithm performs nearly 3.5× slower that the standard

Cray collective operation but provides a useful comparisons against other net-

work technologies that may not support optimisations made by the Cray MPI

runtime. Astra’s results showed less than 15% difference for the AllReduce tim-

ings when configured to use a binary tree, Figure 5.7 shows the comparison of

the reduction for Tinis for a packed node.

78

5. Validation of a Network Micro-Simulator

2−2 21 24 27 210 213 216 219 222
100

102

Message Size [bytes]

B
an

dw
id
th

[M
B
/s
]

Measured Simulated

(a) Tinis

2−2 21 24 27 210 213 216 219 222
100

102

104

Message Size [bytes]

B
an

dw
id
th

[M
B
/s
]

Measured Simulated

(b) Isambard

2−2 21 24 27 210 213 216 219 222
100

102

104

Message Size [bytes]

B
an

dw
id
th

[M
B
/s
]

Measured Simulated

(c) Astra

Figure 5.5: Measured and Simulation Bandwidth Comparison for Three Systems

Orac Modelling Case Study

As described in Section 3.1.2 is an Intel Omni-Path system based at Warwick.

Initial work to model this system was abandoned to favour Tinis an InfiniBand

79

5. Validation of a Network Micro-Simulator

2 4 8 16 32 64 128 256

50

100

150

200

Node Count

E
xe
cu
ti
on

T
im

e
[µ
s]

Measured - 1PPN Simulated - 1 PPN
Measured - 64 PPN Simulated - 64 PPN

Figure 5.6: Measured and Simulated AllReduce Operation Comparison - Isam-
bard

1 2 4 8 16 32 64 128
5

10

15

20

25

Node Count

E
xe
cu
ti
on

T
im

e
[µ
s]

Measured Simulated

Figure 5.7: Measured and Simulated AllReduce Operation Comparison - Tinis
16 PPN

system given software configurations provided poor performance, latencies for

small messages are approximately 5x slower with the configuration of OpenMPI

80

5. Validation of a Network Micro-Simulator

2−2 21 24 27 210 213 216 219 222

100

101

102

103

Message Size [bytes]

La
te
nc
y
[µ
s]

OpenMPI Intel MPI

Figure 5.8: Orac MPI Latency - OpenMPI vs Intel MPI

compared to a newly built Intel MPI, see Figure 5.8.

The default OpenMPI (v4.0.5) is configured to use UCX which is poorly op-

timised for the Omni-Path network architecture, given the latencies seen across

other systems are less than 2µS the 5µS for small messages shows that there is a

performance implication - slower time to solution. With Intel MPI performing

sufficiently well, we present the data from the hardware model using Intel MPI

rather than OpenMPI.

The validation methodology (presented in Section 5.2.1) is applied to the

development of the Orac model. The measured base latency was 96ns for the

main memory latency for the BDW CPUs in Orac. Figure 5.9 shows how the

simulated and measured latency compare, it is worth noting for the message

size after the eager/rendezvous transition point is is 85% yet for the sustained

bandwidth measurements this is only a -15.8% under prediction. The trend

for the sustained bandwidth closely fits the measured results demonstrating

that the message injection rate is correct, the differences in the latencies comes

from the link latency (latency of a cable) not being matched to the system, see

Figure 5.10.

81

5. Validation of a Network Micro-Simulator

2−2 21 24 27 210 213 216 219 222

100

101

102

Message Size [bytes]

La
te
nc
y
[µ
s]

Measured Simulated

Figure 5.9: Orac Latency Simulation vs Measured (Intel MPI)

2−2 21 24 27 210 213 216 219 222
100

102

104

Message Size [bytes]

B
an

dw
id
th

[M
B
/s
]

Measured Simulated

Figure 5.10: Orac Bandwidth Simulation vs Measured (Intel MPI)

Figure 5.11 shows how the model performs for an 8 byte AllReduce for both

1 PPN and 28 PPN. The average error for 1 PPN was -9.99% and for 28 PPN

it was 10.78%. The 50% under prediction for 1 node with 28 PPN comes from

the assumption in the model that there is more core-to-core bandwidth that the

BDW CPU provides.

82

5. Validation of a Network Micro-Simulator

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

5

10

15

20

Node Count

E
xe
cu
ti
on

T
im

e
[µ
s]

Measured - 1 PPN Simulated - 1 PPN
Measured - 28 PPN Simulated - 28 PPN

Figure 5.11: Measured and Simulated AllReduce Operation Comparison - Orac

5.2.3 Modelling Software

With the combination of hardware simulation and software simulation we can

make predictions of the runtime of applications on system. We have chosen two

proxy applications to model, firstly Sweep3D which is a three-dimensional dis-

crete ordinates neutron transport benchmark [68, 80, 100]. Secondly we model

TeaLeaf [95] a linear solver proxy application.

The two proxy applications were instrumented so that the key computa-

tion times could be established; this was achieved with Caliper [22]. Caliper

is a power instrumentation framework that allows performance to be put in

to applications during development and then activate the features at runtime.

Caliper allows for application source code to be annotated and records snapshots

during application execution.

Benchmark 3 and 5 were chosen for the selected problems for TeaLeaf and

has been strong-scaled, TeaLeaf does not weak scale due to the decomposition

scheme implemented [95]. The difference between the benchmarks is the grid

size, for benchmark 3 a grid size of 500×500 is configured, for benchmark the

83

5. Validation of a Network Micro-Simulator

grid size is 4000×4000. This problem is the crooked pipe problem in which

a pipe has a lower density than its surroundings and therefore heat travels

faster through this part of the problem domain. A Conjugate Gradient (CG)

iteration in TeaLeaf consists of two reductions with computation and a 2D halo

exchange with post computation, Listing 5.7 shows the input for the Tinis run

for benchmark 3. When TeaLeaf is strong scaled like this at larger scales the

communications can dominate the execution of an iteration; the computation

roughly halves as MPI ranks double. This occurs because the problem size

is fixed and distributed over more MPI ranks. We simulate one CG Iteration

avoiding the convergence criteria of the application.

1 PlatformDefinition.loadPlatformFile("tinis_platform")
PlatformDefinition.setCurrentPlatform("tinis")

3

system = System()
5

ep = EmberMPIJob(0,128, 16, 1)
7 ep.addMotif("Init")
ep.addMotif("Allreduce iterations=1 compute=16169")

9 ep.addMotif("Allreduce iterations=1 compute=18818")
ep.addMotif("tealeafMotifs.2DHalo nx=500 ny=500 iterations=1

post_compute_time=20522")
11 ep.addMotif("Fini")

system.allocateNodes(ep,"linear")
13

system.build()

Listing 5.7: TeaLeaf Performance Model Input for Benchmark 3 128 Nodes

Equation 5.2 defines our metric for the error between simulated and mea-

sured results. This version was chosen given that a minus error shows an under

prediction rather than loosing the direction of the error.

Error =
Simulated−Measured

Measured
× 100 (5.2)

To model Sweep3D a motif was constructed to represent the communications

from within the inner_auto loop. This wavefront code provides multiple block-

ing angles per octant. This motif provides the ability to support weak scaling

84

5. Validation of a Network Micro-Simulator

for an odd number of MPI ranks. This was achieved by causing the extra ranks

provided inside of the simulator to exit from the motif early. Listing 5.8 shows

how the motif exits early for ranks that sit outside of the run size when the

performance model has been weak scaled across an odd number of cores, such

as on Astra. Listing 5.9 shows how the angle blocking has been implemented

for the (0,0) to (Px, Py) sweep.

if(rank() >= (px*py)) {
2 return true;
}

Listing 5.8: Exit Early Condition for Sweep3D Motif

1 // Sweep from (0, 0) outwards towards (Px, Py)
for(uint32_t kk = 0; kk < mm; kk += mmi) {

3 for(uint32_t i = 0; i < nz; i+= kba) {
if(x_down >= 0) {

5 enQ_recv(evQ, x_down, m_xDownSendLen, 1000, GroupWorld);
}

7

if(y_down >= 0) {
9 enQ_recv(evQ, y_down, m_yDownSendLen, 1000, GroupWorld);

}
11

enQ_compute(evQ, nsCompute);
13

if(x_up >= 0) {
15 enQ_send(evQ, x_up, m_xUpSendLen, 1000, GroupWorld);

}
17

if(y_up >= 0) {
19 enQ_send(evQ, y_up, m_yUpSendLen, 1000, GroupWorld);

}
21 }

}

Listing 5.9: Angle Blocking for Sweep3D Motif

The 2D halo exchange motif was developed to model the decomposition and

halo exchange exhibited in TeaLeaf. The decomposition scheme used is the

same as the TeaLeaf application; the communications used are also the same.

Listing 5.10 shows how the motif implements the Y direction for communication.

85

5. Validation of a Network Micro-Simulator

if (m_neighbour_top != EXTERNAL_FACE) {
2 enQ_isend(evQ, NULL, y_send_length, DOUBLE, m_neighbour_top,

1000, GroupWorld, &m_requests[msgRequest++]);
enQ_irecv(evQ, NULL, y_send_length, DOUBLE, m_neighbour_top,
1000, GroupWorld, &m_requests[msgRequest++]);

4 }

6 if (m_neighbour_bottom != EXTERNAL_FACE) {
enQ_isend(evQ, NULL, y_send_length, DOUBLE, m_neighbour_bottom
, 1000, GroupWorld, &m_requests[msgRequest++]);

8 enQ_irecv(evQ, NULL, y_send_length, DOUBLE, m_neighbour_bottom
, 1000, GroupWorld, &m_requests[msgRequest++]);

}
10

enQ_waitall(evQ, msgRequest, &m_requests[0], NULL);

Listing 5.10: TeaLeaf Halo Exchange Y Direction Motif

For benchmark 3 the largest error on Isambard was 12% and 10.37% on

Tinis, see Table 5.1. Errors were slightly larger for benchmark 5 12.5% and

9.8% for Isambard and Tinis respectively.

Table 5.1: TeaLeaf Benchmark 3 - Model Validation

Nodes Isambard Tinis

Measured Simulated Error Measured Simulated Error

1 231.23 229.15 -0.90 255.53 229.02 -10.37
2 239.76 263.51 9.91 180.67 162.96 -9.80
4 277.93 334.59 20.39 144.08 134.13 -6.91
8 315.29 370.55 17.53 126.46 122.76 -2.93
16 405.39 370.545 -8.60 117.71 124.35 5.64
32 455.37 449.35 -1.32 121.09 132.487 9.41
64 545.41 512.85 -5.97 124.38 130.241 4.71
128 590.61 553.39 -6.30 144.28 141.24 -2.11
256 656.05 634.83 -3.23 - - -

Sweep3D is a discrete ordinates transport code [80, 100]. We have simu-

lated both strong scaled and weak scaling on Tinis and Isambard, and weak

scaling results for Astra. The strong scaled runs saturated the nodes (64 pro-

cesses per node (PPN) on Isambard and 16 PPN on Tinis). The weak scaled

runs did not always saturate nodes although did try to keep the problem size

as square as possible. For Astra the largest simulation consisted of 114,582

86

5. Validation of a Network Micro-Simulator

Table 5.2: TeaLeaf Benchmark 5

Nodes Isambard Tinis

Measured Simulated Error Measured Simulated Error

1 12159.66 12155.90 -0.03 30085.96 29886.40 -0.66
2 5979.25 6000.53 0.36 14948.17 14831.800 -0.78
4 2974.79 3028.40 1.80 7425.83 7346.870 -1.06
8 1057.50 1088.24 2.91 3754.85 3685.990 -1.83
16 722.33 703.97 -2.54 1255.25 1194.900 -4.81
32 626.44 594.88 -5.04 447.08 411.942 -7.86
64 585.27 512.45 -12.44 285.25 268.982 -5.70
128 - - - 222.86 204.878 -8.07
256 712.59 629.66 -11.64 - - -

processes (2048 nodes). On Tinis, the problem size for strong-scaling was

150x150x150, the weak-scaling problem size was 50x50x800 per process. Isam-

bard used 1000x1000x1000 for strong-scaling, weak scaling used 50x50x800. The

Astra weak-scaled problem size was 50x50x800 per process. The blocking factor

for all of the runs was 10.

The measured computation for weak scaling was 785µs, 24.9ms and 7.8ms

per octant for Astra, Isambard and Tinis respectively. The standard deviation

on the computation timings was 71µs for Isambard. The weak scaling predic-

tions showed the largest error on Astra was -17.67% for 16 nodes, for Isambard

this was -10.79% for 256 nodes and Tinis showed an error of -9.51% for 16 nodes.

Table 5.3 shows how the simulator performed on Astra. Results for Isambard

can be see in Table 5.4.

5.3 Towards Exascale Networks

Cost vs performance is one of the driving forces behind design decisions when de-

signing a network. Dragonfly networks typically require significantly less routers

and cables compared to a fat tree for large node counts. This is because the

typical switch radix for a fat tree implementation is 36 or 48 this results in

multiple layers to facilitate large node counts rather than the typical 2/3 level

trees. Network vendors (such as NVIDIA/Mellanox and Cornelis) are starting

87

5. Validation of a Network Micro-Simulator

Table 5.3: Sweep3D Weak Scale - 50x50x800 Per Process - Astra

Nodes Measured Simulated Error

1 13.89 12.62 -9.17
2 14.24 12.98 -8.83
4 14.91 13.25 -11.17
8 15.75 13.79 -12.47
16 17.48 14.39 -17.67
32 18.67 15.40 -17.53
64 19.97 16.72 -16.29
128 21.94 18.63 -15.07
256 24.55 21.31 -13.19
512 28.55 25.12 -12.00
1024 34.06 30.47 -10.55
2048 42.08 38.11 -9.43

Table 5.4: Sweep3D Weak Scale - 50x50x800 Per Process - Isambard

Nodes Measured Simulated Error

1 18.10 17.48 -3.42
2. 18.38 18.09 -1.58
4 19.39 1.10 -1.50
8 20.30 20.41 0.55
16 - - -
32 24.10 24.93 3.46
64 27.35 28.75 5.11
128 31.91 34.08 6.81
256 46.65 41.62 -10.79

to provide support for multiple network topologies for their product lines. In the

case of Mellanox 400Gbps network two network topologies are supported, a Fat

Tree and Dragonfly+. When considering a next generation network the targeted

network topologies could have significant implications on cost and performance.

As the research and development costs grow as boundaries are pushed to deliver

next generation networks this could have implications on the cost of different

solutions as such different network toplogoies should be evaluated.

We consider three sized networks 256, 4096 and 131,072 nodes, and con-

sider 5 switch radii looking at how cost and performance are affected. As the

switch radix changes the network design should also change to reflect the larger

switches. These three network sizes were chosen because they reflect representa-

88

5. Validation of a Network Micro-Simulator

K
80

P
10
0

V
10
0

A
10
0

N
ex
t
G
en
er
at
io
n

0.5

1

·104

Generation

P
er
fo
rm

an
ce

[F
LO

P
/S

]

Figure 5.12: GPU Performance Trend

tive system sizes, if we consider that Tinis based at Warwick is 212 nodes with

its replacement (Avon) being 180 compute nodes. ARCHER2 is 5,848 nodes

and the 131,072 reflect a system that could be equivalent to a 1EFLOP system.

The node performance is based upon the current trend of NVIDIA GPU,

see figure 5.12. The current trend shows that the the next generation after the

A100 could provide 12TFLOPs per GPU (for double precision floating-point

operations), if one GPU per node was chosen as a node architecture this would

require 83,333 nodes to reach 1EFLOP. It is worth mentioning that a common

design is to have multiple GPU, 6 GPUs per node is not uncommon across the

top 10 of the TOP500, this would bring the node count down to 13,889 to build

a system with theoretical peak performance of 1EFLOP.

5.3.1 Fat Tree

Fat Trees need further levels to facilitate more nodes, this is typically done

with a high radix director switch which internally is a 2-level Fat Tree. In the

following scenarios we consider all switches to be of the same radix rather than

including a director switch. The designed networks are none-blocking.

Table 5.5 shows the network configurations for the networks for the desired

89

5. Validation of a Network Micro-Simulator

node sizes.

Table 5.5: Fat Tree Network Configurations

Switch Radix Nodes

256 4096 131,072

36 18,18:15 18,18:18,18:13 18,18:18,18:18,18:18,18:2
48 24,24:11 24,24:24,24:8 24,24:24,24:24,24:10
64 32,32:8 32,32:32,32:4 32,32:32,32:32,32:4
96 48,48:6 48,48:48,48:2 48,48:48,48:48,48:2
128 64,64:4 64,64:64 64,64:64,64:32

For the performance aspect both linear and random job placements are con-

sidered, we look at the time to solution as a measure of the performance. Ran-

dom placements can provide an insight in to the worst case run time for a

communication pattern. For smaller TeaLeaf problem sizes 3.5% improvements

can be seen for linearly placed jobs, and can be as high as 5% for random placed

jobs (see Figure 5.13). At 131,072 nodes the pattern is heavily communication

bound, for random placement the small problem size for TeaLeaf can perform

nearly 19% slower when placed randomly compared to linear job placement.

For the small network random placement has a negligible effect on the time to

solution for TeaLeaf.

In the case for Sweep3D improves can be seen as high as 7% for linearly

placed jobs at 4096 nodes, Figure 5.14. Larger switches with random job place-

ment suffer less performance degradation as there are more nodes connected

to leaf switches and less layers in the Fat Tree for the traffic to traverse. The

131,072 sizes network can see a performance degradation of 25% for smaller

hosts per router when random placement is considered over a linear placed job.

The following costings are as follows: switch is equivalent to 1 and a cable is

equal to 0.02. We explore whether or not larger switches are more cost effective

for a Fat Tree network. As the switch radix increases the number of switches

requires decreases, in the case of the 256 node network the reduction is by 1
3 ,

in the case of the 131,072 node network this is around 1
10

th of the routers (see

Table 5.6). Given that there is such a reduction in switches from 46,656 to

90

5. Validation of a Network Micro-Simulator

36 48 64 96 128

2

4

6

·10−3

Switch Radix

E
xe
cu
ti
on

T
im

e
[s
]

Benchmark 3 - Linear Benchmark 3 - Random
Benchmark 5 - Linear Benchmark 5 - Random

(a) 256 Nodes

36 48 64 96 128

1.1

1.2

·10−3

Switch Radix

E
xe
cu
ti
on

T
im

e
[s
]

Benchmark 3 - Linear Benchmark 3 - Random
Benchmark 5 - Linear Benchmark 5 - Random

(b) 4096 Nodes

36 48 64 96 128

1.6

1.8

2

·10−3

Switch Radix

E
xe
cu
ti
on

T
im

e
[s
]

Benchmark 3 - Linear Benchmark 3 - Random
Benchmark 5 - Linear Benchmark 5 - Random

(c) 131072 Nodes

Figure 5.13: TeaLeaf Runtime Performance for varying Switch Radix - Fat Tree

91

5. Validation of a Network Micro-Simulator

36 48 64 96 128

6.8

7

7.2

·10−4

Switch Radix

E
xe
cu
ti
on

T
im

e
[s
]

Linear Random

(a) 256 Nodes

36 48 64 96 128

0.8

1

1.2

·10−3

Switch Radix

E
xe
cu
ti
on

T
im

e
[s
]

Linear Random

(b) 4096 Nodes

36 48 64 96 128

1

1.5

2

·10−3

Switch Radix

E
xe
cu
ti
on

T
im

e
[s
]

Linear Random

(c) 131072 Nodes

Figure 5.14: Sweep3D Runtime Performance for varying Switch Radix - Fat
Tree

92

5. Validation of a Network Micro-Simulator

4096 routers required to implement a large network (131,072) when increasing

the switch radix the cost reduction (see Figure 5.15) also becomes noticeable

driving the motivation for manufacturers to design larger switches.

Table 5.6: Fat Tree Switch Count Per Switch Radix

Switch Radix Nodes

256 4096 131072

36 16 468 46656
48 13 384 17280
64 10 256 12288
96 8 192 13824
128 6 66 4096

5.3.2 Dragonfly

Dragonfly networks consist of groups that are interconnected, the one benefit

of the Dragonfly is the reduced cost for large networks when compared to Fat

Tree networks. Similar to Fat Trees we look at designing dragonfly networks for

three networks; although now we consider the switch radix to be the number of

hosts per router. This because while the Cray Aries is a 64 port router only 4

of those ports go to hosts. Considering just the switch radix instead of number

of hosts limits the maximum network size, which may be insufficient to achieve

the 131,072 network size. As an example if a Dragonfly is configured with a 48

port switch the maximum number of hosts is 4096 if the ports are divided by

equally, with 16 hosts per router, 16 routers per group, and 16 groups and 1

inter-group connection.

Table 5.7 shows the designs of the Dragonfly networks used for analysis. The

number of inter-group links was configured as 10; this is sufficient as the test

patterns for Sweep3D and TeaLeaf are latency bound rather than bandwidth

bound.

For a small Dragonfly (256 nodes) the job placement of a TeaLeaf application

has no effect on the runtime, compared to larger Dragonfly (131,072 nodes) net-

works where the placement makes TeaLeaf perform around 9% worse compared

93

5. Validation of a Network Micro-Simulator

36 48 64 96 128
0

20

40

60

80

Switch Radix

Sp
ec
ul
at
iv
e
C
os
t

Cost - 1x Cost - 2x Cost - 3x
Cost - 4x Cost - 5x

(a) 256 Nodes

36 48 64 96 128
0

1,000

2,000

Switch Radix

Sp
ec
ul
at
iv
e
C
os
t

Cost - 1x Cost - 2x Cost - 3x
Cost - 4x Cost - 5x

(b) 4096 Nodes

36 48 64 96 128
0

1

2

·105

Switch Radix

Sp
ec
ul
at
iv
e
C
os
t

Cost - 1x Cost - 2x Cost - 3x
Cost - 4x Cost - 5x

(c) 131072 Nodes

Figure 5.15: Costs Trends for Fat Tree Network

94

5. Validation of a Network Micro-Simulator

Table 5.7: Dragonfly Network Configurations

Hosts
Per

Router

Nodes

256 4096 131072

Routers
Per

Group

Number
of

Groups

Routers
Per

Group

Number
of

Groups

Routers
Per

Group

Number
of

Groups

36 4 2 64 2 64 64
48 3 2 43 2 43 64
64 2 2 32 2 32 64
96 2 2 22 2 22 64
128 1 2 16 2 16 64

to a linear placed job (see Figure 5.16). Large jobs on the Dragonfly randomly

placed the problem size have a negligible effect on the runtime.

Performance gains are seen for all network sizes with an increased switch

radix, Figure 5.17. For large Dragonfly networks performance degradation can

be as high as 13% for randomly placed jobs

Figure 5.18 shows the costs for the Dragonfly network configurations. For

131,072 nodes increasing the switch radix from 36 nodes to 128 could see the

cost decrease by as much as 4×.

5.4 Summary

This chapter has demonstrated three validated hardware models for network

simulations built with SST. A case study looking at how poorly configured

software can lead to issues something that modelling can assist with diagnos-

ing. Three motifs have been implemented for ember to produce the models

presented. The OSU Bandwidth benchmark has been implemented to ensure

that the models accurately reflect the system. We present accurate models of

the hardware by demonstrating that micro-benchmarks are less than 10% dif-

ferent. This chapter has shown the development of two motifs for modelling

Sweep3D and TeaLeaf using Ember. We show that two applications can be

modelled accurately with these three platforms with all three systems showing

95

5. Validation of a Network Micro-Simulator

less than 20% error.

The performance of the simulator is dependant on the simulation being run,

care needs to be taken to ensure resources are utilised correctly with respect to

how big to scale the simulation and run configuration such that it effectively

utilises the hardware.

These models have been used to speculate about what future networks could

look like with growing switch radii. Cost and performance have been considered,

showing that there are performance gains and cost savings to be made from

larger network switches. The performance improves for Fat Trees could be as

high as 7% for linearly placed jobs if vendors provide larger switch radii. The

time to solution is improved with the design for a Dragonfly presented over the

competing Fat Tree for 131,072 nodes. A Dragonfly solution can be 10× cheaper

than an equivalent sized Fat Tree network for 131,072 networks, irrespective of

the switch radix used. The Dragonfly topology is good solution to minimise

cost and improve performance when a full system job is considered to be the

primary target.

Increasing the switch radix shows performance improvements regardless of

the network topology being chosen, this is because typically applications do

significant near neighbour communications and reducing the hop counts can

improve the communication time improving application runtimes. One implica-

tion of increasing the switch radix is that the physical circuitry for encoding the

date on to the wire (called a SerDes) cannot be made smaller inside of the switch

Application Specific Integrated Circuit (ASIC) resulting in a physical limit on

the number of ports on a switch. One alternative to this is to bifurcate the port

and half the available bandwidth, this could be beneficial for applications which

do not need the available injection bandwidth, such as TeaLeaf and Sweep3D.

This would allow for a higher switch radii and negligible effects on the time to

solution at scale.

96

5. Validation of a Network Micro-Simulator

36 48 64 96 128

2

4

6

·10−3

Switch Radix

E
xe
cu
ti
on

T
im

e
[s
]

Benchmark 3 - Linear Benchmark 3 - Random
Benchmark 5 - Linear Benchmark 5 - Random

(a) 256 Nodes

36 48 64 96 128

7.5

8

8.5

·10−4

Switch Radix

E
xe
cu
ti
on

T
im

e
[s
]

Benchmark 3 - Linear Benchmark 3 - Random
Benchmark 5 - Linear Benchmark 5 - Random

(b) 4096 Nodes

36 48 64 96 128

1.1

1.15

1.2
·10−3

Switch Radix

E
xe
cu
ti
on

T
im

e
[s
]

Benchmark 3 - Linear Benchmark 3 - Random
Benchmark 5 - Linear Benchmark 5 - Random

(c) 131072 Nodes

Figure 5.16: TeaLeaf Runtime Performance for varying Switch Radix - Dragon-
fly

97

5. Validation of a Network Micro-Simulator

36 48 64 96 128

4.6

4.8

5

5.2

·10−4

Switch Radix

E
xe
cu
ti
on

T
im

e
[s
]

Linear Random

(a) 256 Nodes

36 48 64 96 128

7

7.5

8

·10−4

Switch Radix

E
xe
cu
ti
on

T
im

e
[s
]

Linear Random

(b) 4096 Nodes

36 48 64 96 128

0.8

1

1.2

·10−3

Switch Radix

E
xe
cu
ti
on

T
im

e
[s
]

Linear Random

(c) 131072 Nodes

Figure 5.17: Sweep3D Runtime Performance for varying Switch Radix - Drag-
onfly

98

5. Validation of a Network Micro-Simulator

36 48 64 96 128
0

20

40

Switch Radix

Sp
ec
ul
at
iv
e
C
os
t

Cost - 1x Cost - 2x Cost - 3x
Cost - 4x Cost - 5x

(a) 256 Nodes

36 48 64 96 128
0

200

400

600

Switch Radix

Sp
ec
ul
at
iv
e
C
os
t

Cost - 1x Cost - 2x Cost - 3x
Cost - 4x Cost - 5x

(b) 4096 Nodes

36 48 64 96 128
0

1

2

·104

Switch Radix

Sp
ec
ul
at
iv
e
C
os
t

Cost - 1x Cost - 2x Cost - 3x
Cost - 4x Cost - 5x

(c) 131072 Nodes

Figure 5.18: Costs Trends for Dragonfly Network

99

CHAPTER 6
Contention Aware Performance Modelling

Until now performance modelling has focused on simplistic models predicting the

peak performance of applications and allowing us to extrapolate data to under-

stand what limitations arise in larger systems. While this peak performance is

useful in diagnosing hardware/software issues that occur during commissioning

(such as Section 5.2.2) it is still not reflective of how applications will perform

in a multi-user shared environment. This could be beneficial with designing

systems for a Request for Proposal (RFP) as a multi-user shared environment

can be demonstrated prior to implementation of a system. It would allow for

rapid prototyping of the network design space such that cost vs performance

can be evaluated for capacity systems (for example those procured by the DOE

under the Commodity Technology Systems (CTS-1) platform1). Commodity

Technology Systems are designed to run many small jobs, compared with a ca-

pability system which may run a few large jobs (typical full machine/partition

runs). Another option is to consider that time is finite and to achieve the most

throughput from a system should multiple smaller jobs be run (like a capacity

system) or allow applications to run at full system scale (capability system), this

is dependant on the use-case for a HPC system and the applications that are

being run. The modelling approach used in Section 6.1 can be used to evaluate

whether a system could provide a better throughput for a capacity or capability

jobs.

Modelling network contention is difficult given the temporal nature of the

issue. Modern approaches have looked at using analytical models for modelling

contention [91], or have focused purely on one application [61] to look at what

is going on inside of the network. The work presented in this chapter looks at
1See: https://asc.llnl.gov/computers/commodity

100

https://asc.llnl.gov/computers/commodity

6. Contention Aware Performance Modelling

simulating multiple applications to understand the interactions between appli-

cations for both time to solution and network utilisation, both of which are of

interest when designing a network as it can provide insight in to the expected

level of performance that may be seen in a multi-user environment.

The simulator (presented in Chapter 5) has been designed to simulate multi-

ple jobs across a network as well as a singular job. This is achieved by assigning

the endpoints different jobs. If endpoints inside of the simulator are not provided

a job, they do not drive any network traffic.

In this chapter we use the simulator to investigate three scenarios looking

at effects inside of the application level and time to solution as well as a view

inside of the network. Firstly we evaluate the effects of tapering a Fat Tree in an

effort to increase computation while keeping network costs the same. Secondly

network utilisation is studied through simulation from contending applications.

Finally we investigate using StressBench as a tool to validate the simulators

multi-user simulations.

6.1 Network Tapering

One key consideration when designing a network for a system is the global

bandwidth. A non-blocking fat tree has full global bandwidth, although this is

costly to implement as it requires more switches and cabling. In this section we

evaluate the effects of network tapering through simulation, by understanding

whether there is a net gain from increasing node count and network taper.

This work focuses on tapered Fat Trees, although the Dragonfly implemen-

tation from Cray can be tapered by removing the global links between groups.

The network switch in question is a 36 port leaf network switches, similar to

switch design inside of Tinis. The hardware platforms are based upon the Tinis

model with a modified Fat Tree shape. Non-blocking this network supports 72

nodes, this can increase to 128 nodes with an 8:1 taper. Table 6.1 shows the

shape of the tapered networks making use of a 36 port switch. Figure 6.1 shows

101

6. Contention Aware Performance Modelling

a leaf switch with a non-blocking configuration.

Table 6.1: Network Tapers

Blocking Factor Network Shape

Non Blocking (1:1) 18,18:4
2:1 24,12:4
3:1 27,9:4
5:1 30,6:4
8:1 32,4:4

Switch

Figure 6.1: Non-Blocking Leaf Switch - Nodes represented by circles

The effects of tapering on three communication patterns, Sweep3D, ten

TeaLeaf CG iterations and an AllToAll. For Sweep3D a cube of 100 and 1000

was chosen to run, benchmark 3 and 5 for CG was used for the problem sizes

for the TeaLeaf CG iterations, and a small (1024B) and large (4MB) AllToAll

was used.

Linear and Random job placement was used to understand the effects on the

runtime of the communication pattern. Random job placement provides insight

in to the worst case runtime as jobs may not be situated on consecutive nodes,

resulting in an sub-optimal job placement.

102

6. Contention Aware Performance Modelling

6.1.1 Entire System

In this section we consider how the communication patterns are affected by the

network tapering for Tinis if the network taper was changed to increase the

computation.

Table 6.2 and 6.3 shows how the patterns perform for linear and random

job placements at 72 nodes. For larger problem sizes random job placement

increases the time to solution of the communication patterns, this is because

the jobs may be further away and have to travel further across the network. In

the case of linear job placement improvements in the runtime for the patterns

is seen because the traffic is located on the same switch so less traffic has to

flow through the root switches. For the AllToAll the reduction in the global

bandwidth has a significant effect on the runtime increasing by as much as

33.2% for a linearly placed AllToAll pattern. The effects of tapering lessen for

nearest neighbour communications like those seen in TeaLeaf and Sweep3D.

Table 6.2: Network Tapering for Linear Job Placement

Taper AllToAll Sweep3D TeaLeaf

1024 4MB 100 1000 BM3 BM5

Non-Blocking (1:1) 2.7944 3.9523 0.0393 6.5438 0.5416 2.7514
2:1 2.7944 4.1500 0.0393 6.5438 0.5416 2.7514
3:1 2.7944 4.3024 0.0393 6.5440 0.5416 2.7514
5:1 2.7944 4.6764 0.0393 6.5439 0.5416 2.7514
8:1 2.7944 5.2651 0.0393 6.5439 0.5416 2.7514

Table 6.3: Network Tapering for Random Job Placement

Taper AllToAll Sweep3D TeaLeaf

1024 4MB 100 1000 BM3 BM5

Non-Blocking (1:1) 2.7944 4.0603 0.0396 6.5443 0.5417 2.7514
2:1 2.7944 4.2330 0.0395 6.5443 0.5417 2.7515
3:1 2.7944 4.4142 0.0396 6.5444 0.5417 2.7514
5:1 2.7944 4.7417 0.0396 6.5449 0.5417 2.7515
8:1 2.7944 5.1786 0.0396 6.5448 0.5417 2.7515

103

6. Contention Aware Performance Modelling

6.1.2 Contended Applications

In this section application contention is studied to understand if network taper

affects the time to solution for applications.

The system is configured to use nine 8-node jobs rather than the 72 nodes

in Section 6.1.1, this is similar to how a real system maybe used in a multi-user

shared environment. An RFP may state that jobs are less than a specific size

(e.g. eight nodes). One key design criteria may to be have a multiple of job size

for the number of nodes off a leaf switch to minimise the distance that traffic

has to travel. It is also worth nothing that the throughput of the system is

improved for a tapered network, so for a fixed period of time the system can

run more jobs. In this simple configuration 8 more jobs could be processed in

the time frame when heavily tapered (e.g. 8:1) compared to the non-blocking

design, this is beneficial if the target applications for a system do not require

global bandwidth.

The applications are configured to use the same parameters (problem sizes

are the same) this is similar to a parameter sweep in which a property of the

physics (such as the initial density or temperature) could change but the problem

size remains the same.

Table 6.5 and 6.6 show how the applications perform under contention in a

linear and random job. These results are the total time to run all jobs. The

isolated times to run 1 job on a none blocking fat tree can be seen in Table 6.4,

this could be considered the best time to solution.

For applications like Sweep3D and TeaLeaf there is a negligible difference

in the runtime when considering a tapered network design rather than none

blocking design. While if the applications in use feature large AllToAlls then

a tapered network design will hinder the performance by as much as 11.7%

for random job placement. When the linear job placement is considered the

performance suffers degradation for a non-blocking Fat Tree design by as much

as 7.4%.

104

6. Contention Aware Performance Modelling

Table 6.4: Isolated Runtimes for Tapered Fat Tree

Pattern Problem Size Runtime [s]

AllToAll 1024 0.2848
4MB 0.7758

Sweep3D 100 0.0227
1000 6.8216

TeaLeaf Benchmark 3 0.2508
Benchmark 5 20.4734

Table 6.5: Network Tapering on multiple applications - Linear Job Placement

Taper AllToAll Sweep3D TeaLeaf

1024 4MB 100 1000 BM 3 BM 5

Non-Blocking (1:1) 0.285 0.833 0.023 6.851 0.251 20.474
2:1 0.285 0.776 0.023 6.822 0.251 20.473
3:1 0.285 0.833 0.023 6.851 0.251 20.474
5:1 0.285 0.841 0.023 6.851 0.251 20.473
8:1 0.285 0.776 0.023 6.822 0.251 20.473

6.2 Network Utilization

HPC systems are rarely single job machines and often run a variety of applica-

tions concurrently. These concurrent jobs can interact with each other gener-

ating contention. As the contention increases inside of the switch has to buffer

some of the traffic.

Given that the simulator models the queues on the input and output ports

this contention can be modelled easily by simulating multiple communication

patterns simultaneously.

A tapered Fat Tree is evaluated to understand how congestion affects ap-

plication communication traffic through simulation. The tapered Fat Tree is a

subtree from the Astra Topology, this is because the statistics collection results

in vast amounts of data generated from the simulation.

PingPong has been contended against an AllToAll congestion pattern with

a varying congestion message size, given the 2:1 taper inside of the Fat Tree in

Astra network performance can drop by as much 2GB/s for very large congestion

message sizes (64K Bytes), see Figure 6.2. The drop in the available bandwidth

105

6. Contention Aware Performance Modelling

Table 6.6: Network Tapering on multiple applications - Random Job Placement

Taper AllToAll Sweep3D TeaLeaf

1024 4MB 100 1000 BM 3 BM 5

Non-Blocking (1:1) 0.285 0.841 0.023 6.888 0.251 20.474
2:1 0.285 0.855 0.003 6.891 0.251 20.474
3:1 0.285 0.863 0.023 6.886 0.251 20.474
5:1 0.285 0.885 0.023 6.897 0.251 20.474
8:1 0.285 0.939 0.023 6.912 0.251 20.474

2−2 21 24 27 210 213 216 219 222

0

2

4

6

Message Size [bytes]

B
an

dw
di
th

[G
B
/s
]

Quiet 1024 Congestion 2048 Congestion
4096 Congestion 8192 Congestion 16384 Congestion
32768 Congestion 65536 Congestion

Figure 6.2: Simulated Bandwidth with varying congestion size

is because the AllToAll consumes all the bandwidth on the uplinks inside of the

fat tree, this means that the smaller PingPong messages have to wait for the

AllToAll iteration to complete before these messages can complete. One option

to try and improve the performance could be preemption, which interleaves the

smaller messages with the larger messages and can provide a fairer share of

the communication channel, like the saturated uplinks inside of the Fat Tree.

The presented bandwidth was calculated using Equation 6.1. This reduction in

available bandwidth can have a profound effect on patterns that utilise large

message sizes, such a I/O traffic.

106

6. Contention Aware Performance Modelling

BW =
Bytes

Latency
(6.1)

Timing information can be captured by the simulator to time the three

possible states for an output port on the high-radix switch. The three states are

Stalled, Active, Idle (SAI). Active represents data flowing, idle means that there

is no communication taking place and could be performing computation. The

stalled state is where there is data to send but can not send the data. Stalling

can occur either because of insufficient credit (where there is data to send but

not enough credit to send the data) or the arbitration policy of the crossbar

prohibiting the transmission of data.

The times captured can then normalised to represent a portion of the run-

time, Equations 6.2, 6.3, 6.4. The sum of the normalised times will equate to

1.

Stalled = 1− Active+ Idle
Runtime

(6.2)

Idle = 1− Active+ Stalled
Runtime

(6.3)

Active = 1− Idle+ Stalled
Runtime

(6.4)

To represent these three states a ternary plot is used, Figure 6.3 shows an

example ternary plot. In the figure the blue circle represents active all of the

time, the red square represents fully stalled and the brown circle is fully idle.

The black star represents the values 1
3 Active, 1

3 Idle, 1
3 Stalled. The blue

diamond is 0.8 Active, 0.05 Stalled and 0.15 Idle.

An AllReduce, 2D Halo Exchange, Sweep3D and AllToAll congestion pat-

tern were simulating varying the size of the AllToAll congestion pattern. The

jobs were placed randomly. Listing 6.1 shows the input workload for the com-

munication patterns. The input workload is similar to the input for StressBench

and inspiration was taken from this file for the development of StressBench.

107

6. Contention Aware Performance Modelling

0

20

40

60

80

100

0 20 40 60 80 100
0

20

40

60

80

100

ActiveSt
al
led

Idle

Figure 6.3: Example Ternary Plot

The state of the network ports is evaluated using the SAI metrics. Figure 6.4

shows the portion of time each of the switch ports spent in each of the SAI states

for two congestion sizes at four time intervals, 0.5ms, 331ms and 662ms and the

last time stamp of the simulation. The final simulated time for the 1K congestor

size was 993.30ms and the simulated time for the 64K congestor was 993.31ms.

In the figure the colour represents the level inside of the fat tree (green is the

leaf switch, orange is the root switch). The direction of the triangle represents

whether the switch port is an uplink or a downlink in the Fat Tree. The general

trend as the congestor message size increases is a traffic on the links is shifted

towards the stalled axis. This is because there becomes less credit for data

transmission to occur so data has to reside on the switch until credit becomes

available. The observed affect of increasing the congestor message size is that the

links move to the stalled axis as the congestor message size increases, triangles

move from the right to the left of the ternary plot.

At timestamp 331ms stalling for the leaf switches increases for the 1K con-

gestor sizes compared to the 64K congestor sizes. The NIC ports are more active

compared to a 64K congestion size which are more idle for this timestamp.

108

6. Contention Aware Performance Modelling

1 #Sweep
[JOB_ID] 1

3 [NID_LIST] 0-15
[MOTIF] Init

5 [MOTIF] Sweep3D pex=28 pey=32 nx=448 ny=512 nz=800 iterations=2 kba
=10 computetime=10

[MOTIF] Fini
7

#Halo Exchange
9 [JOB_ID] 2
[NID_LIST] 21-47,72-83,99-122

11 [MOTIF] Init
[MOTIF] Halo2D iterations=10 compute=10 messagesizey=4000

messagesizex=4000
13 [MOTIF] Fini

15 #AllReduce
[JOB_ID] 1

17 [NID_LIST] 48-71,90-97,125-140
[MOTIF] Init

19 [MOTIF] Allreduce iterations=1000 compute=2
[MOTIF] Fini

21

#Congestor
23 [JOB_ID] 4

[NID_LIST] 17-20,84-89,98,123,124,141-144
25 [MOTIF] Init

[MOTIF] Alltoall iterations=1 bytes=<Congestor Size>
27 [MOTIF] Fini

Listing 6.1: Contended Network Utilisation SST Input Workload

At 662ms more of the downlinks to NICs are stalled waiting for the data to

be sent for a 1K congestor compared to the 64K where these links are more idle

and active. More of the orange downlinks are waiting for the transmitting and

receiving data and not as idle as the NIC ports at 64K

Understanding the state of the ports due to the congestion provides insights

that could allow for scheduling improves to applications, such as delaying the

application communication to reduce the effects of contention. One approach

could be to stop the NIC from communicating and buffer the data on the node

rather than inside of the network, similar to the idea presented by Q Liu et

al. [84].

109

6. Contention Aware Performance Modelling

The communications also suffered a slow down with the AllReduce slowing

down by 6.6µs, Figure 6.5 shows how the time for an AllReduce slowdown as

the congestor size increases. The slowdown in the AllReduce operation may not

seem significant but given that to solve benchmark 5, a total of 75,635 itera-

tions are required across the 20 time steps. This results in 151,270 AllReduce

operations increasing the runtime by 0.85s on top of the best case time.

6.3 StressBench as simulation validation tool

Finely controlling jobs across a machine is complicated, because jobs may not

start at the same time. The communications may also not start at the same time

due to computation imbalance. The initialisation may take varying times so the

comparison of the communication patterns might not be correct. StressBench

overcomes some of these issues and may be a suitable tool to validate congestion

simulations.

The full system workload presented in Chapter 4.3.1 has been used inside

of the simulator to explore whether the simulator can provide analysis in to

congested workloads of real systems. The applications made use of an AllToAll,

I/O workloads, Sweep3D and TeaLeaf running concurrently across the system.

The same application parameters were used between the measurements and the

simulations.

The Tinis platform validated in Section 5.2 was used for the hardware plat-

form and the endpoints were provided the same job placement scheme as in

Section 4.3.1.

The timings were captured by enabling the motif log for each of the jobs and

comparing the time they exited from the fini motif to calculate the congestion

impact. The simulator built on top of the SST does not provide a mechanism

to extract the finish times of individual jobs, therefore the time they exit the

final motif must be used to work out when the job finishes. Table 6.7 shows how

the congestion impacts differs for the same workload. The I/O motifs are not

110

6. Contention Aware Performance Modelling

shown due to unable to simulate these in a reasonable time frame; this is down

to the very large message sizes which impact the performance of the simulator.

Table 6.7: Comparison of CI for Incast Traffic for Tinis

Pattern Measured Simulated

Sweep 1 1.0068 1.009
Sweep 2 1.0010 1.006
TeaLeaf 1 1.0172 1.001
TeaLeaf 2 1.0707 1.001
All To All 2K 1.0157 4.889
All To All 4K 1.0587 4.133

The reason for the over prediction in the congestion impact is that the rout-

ing algorithm takes the minimal path for downlinks and uplinks on the Fat Tree

topology. The core switches are modelled as independent switches rather than

combining the switches to match the required switch radix for the simulations.

In the case of Tinis there are 12 switches with 3 ports each in the simulation

rather than one 36 port switch like the real system. This means that the traffic

is being forced over the same uplinks rather than being spread evenly over all

available uplinks. This is a failing in the minimal path routing algorithms as

they choose first shortest path rather than the equivalent shortest path.

6.4 Summary

This chapter has explored using the simulator to perform some advanced analy-

sis at network tapering and congested workloads. This work has looked at both

effects on the application level and inside of the network switches. This work

has also investigated whether StressBench can be used to validate contented

workloads to understand the congestion impact of workloads in the simulations.

We have seen a 33.2% increase in the time to perform an AllToAll message

when the tapered network is 8:1. When the system is considered as multi-

user system the increase in runtime for an AllToAll can be as much as 11.4%

when distributed randomly but for linear placement this is 7.4%. Contending

111

6. Contention Aware Performance Modelling

Sweep3D and TeaLeaf applications have a negligible effect due to the tapering

because of the messages being sent are latency sensitive. This is of use when

designing systems with multiple jobs as insight in to the type of applications

bandwidth requirements can ensure the optimal network is designed to meet the

requirements.

Available bandwidth on a 2:1 tapered Fat Tree can be reduced by as much

as 2GB/s when in contention of large AllToAlls, which can slowdown large mes-

sages that are bandwidth bound. In the presented congested workload AllRe-

duces are slowed down by 5.6µs which for entire applications can slow down the

time to solution. The SAI metrics can be used to go further than just looking at

the slowdown due to a congestor but for evaluation of routing algorithms. The

ternary plots provide a good visual aid to see direction of the trend, an optimal

system may spend the most time idle, or active and the shortest time stalled.

Workloads from StressBench can be translated to easily working with the

simulator although care must be taken to overcome some of the limitations of the

simulator, such as topology generation not equating to the same as the system.

We have seen that the simulator returns pessimistic results for the congestion

impact for communication patterns that require a lot of bandwidth, such as

AllToAll but for structured applications the results are similar to the measured

results.

This type of performance modelling is slow to simulate given that multi-

ple endpoints inject the network with different traffic patterns which is causing

contention in the network switches. Going forward simulations like this should

typically focus on smaller instances of time rather than entire application or

workflow to improve speed and reduce data output. Simulation of larger net-

works can make it difficult to see the observed effects given the vast amount of

data generated.

112

6. Contention Aware Performance Modelling

(a) 1K at 0.5ms (b) 64K at 0.5ms

(c) 1K at 331ms (d) 64K at 331ms

(e) 1K at 662ms (f) 64K at 662ms

(g) 1K at 993ms (h) 64K at 993ms

Figure 6.4: Congestor Ternary Plot for 1K and 64K congestors, orange represent
NIC ports, Green represent the level 1 ports, blue represents the core switch
ports. The direction of the triangle shows whether it is an uplink or downlink

113

6. Contention Aware Performance Modelling

Empty 1K 2K 4K 8K 16K 32K 64K

40

42

44

Node Count

E
xe
cu
ti
on

T
im

e
[µ
s]

Figure 6.5: AllReduce Times against AllToAll Congestor Size

114

CHAPTER 7
Discussions and Conclusions

This thesis has looked at moving the state of the art network benchmarking

forward, modelling applications and systems to prepare for the next era for low

latency interconnection networks. Going forward it may be irrelevant to show

the peak performance of a network given that multi-user system environments

fail to offer this level of performance. Something which should be considered

during the design and implementation phases of a new system. Simulators pro-

vide an invaluable tool to providing insight in to the goings on of a speculative

design, with the improved performance of higher fidelity simulators the vast

design space for a low latency interconnection network can be evaluated within

reasonable timeframes. Simulation can add value to the response of an RFP as

real world scenarios can be replicated and replayed to ensure that the interac-

tions of applications is not overlooked and the performance is representative of

what a user would expect from a multi-user shared environment.

One of the issues is that networks remain slow and have not advanced as

quickly as processing power is memory latency, and so having to move the data

to memory remains one primary reason for slow network performance. While

advances in network design have improved data transfer rates and scalibility the

endpoints are becoming the limiting factor, something which will get worse as

networks grow in size.

Chapter 4 presents a new configurable network and I/O benchmark for

stressing low latency interconnection networks, allowing domain specialisms to

be abstracted to away from the network traffic and allows these to run con-

currently across a system. This also shows the need to use real I/O traffic

rather than incast traffic generators as they often fail to saturate the network

115

7. Discussions and Conclusions

sufficiently.

Chapter 5 has presented a validation methodology for benchmarking and

modelling systems which has been proven for four systems. The first per-

formance model of TeaLeaf has been presented and a performance model of

Sweep3D has been shown built on top of the SST. Some of the Exascale low la-

tency interconnection design space has been explored to evaluate whether higher

radix switches become cost effective for Dragonfly and Fat Tree topologies.

Chapter 6 looks at pushing existing validated models to understand inter-

actions between communication patterns through simulation, called contention

aware performance modelling. This contention aware performance modelling

has looked at the effects on an application’s time to solution for tapered Fat

Trees and the effects of contention within a network switch. Comparisons are

drawn upon for using StressBench as a validation tool for the contention aware

performance models.

The remainder of this chapter will focus on the limitations of the thesis

(Section 7.1). In Section 7.2 discusses the future work.

7.1 Limitations

This work focuses on the time to solution (the execution time for an application)

as a performance metric, while it shows any performance gains it overlooks other

useful measurements such as power consumption and cost. Practical configura-

tions are also overlooked such wiring larger switch radii leads to complications

given that wires should be the same length to ensure that they have the same

latency, longer cables can be come an issue to bundle in a space constrained

server rack.

7.1.1 Software

The majority of the applications used throughout this thesis are structured, this

means that message sizes are typically the same size across the same dimension,

116

7. Discussions and Conclusions

this is is not the case for unstructured applications.

The work in this has primarily focused on MPI structured applications,

such as Sweep3D and TeaLeaf which simulate physics applications. While they

are relevant they do not reflect all types of applications that are typically run

on HPC systems. The applications used throughout this thesis overlook some

other disciplines such as Biology, Chemistry and Machine Learning applications

that are now becoming widely used. The work still has relevance as some of

the communication patterns used in this thesis are still common place in these

domain areas. This work has overlooked other widely used parallel programming

paradigms such as SHMEM and Partitioned Global Address Space (PGAS).

7.1.2 Hardware

The systems used during the course of this thesis vary in size, network technology

and CPU, while the majority of analysis was performed on small systems (less

than 512 nodes). This is because there are issues with running StressBench at

scale, such as a large number of processes reading from a file can cause a file

system to hang as the traffic acts like a denial of service attack. One approach to

resolve this would look at starting applications with SPINDLE from Lawrence

Livermore National Laboratory [58]. A large number of processes are slow to

initialise and can take a significant time to start running, this is an active area of

research as systems grow in size to reach exascale there will be more processes.

Process Management Interface - Exascale (PMIx) is under active development

looking at the effects of large process counts and how to speed up application

start up for exascale [31].

7.2 Future Work

The future work highlights where benchmarking and modelling should go as

such we discuss both independently.

117

7. Discussions and Conclusions

7.2.1 Benchmarking

This thesis has presented a MPI and I/O benchmark called StressBench which

can stress low latency interconnection networks. StressBench (in its current

form) has severed its purpose to understand network interactions for this thesis

and valuable studies to gain an understanding of communication traffic interac-

tions with I/O traffic.

In Chapter 4 it is stated that applications may be less impacted by I/O

traffic when placed interleaved on a Dragonfly rather than linearly, with the

aforementioned enhancements to StressBench we can now test this hypothesis.

TeaLeaf and CloverLeaf were the patterns of interest rather than just the

composite parts as in Section 4.3.2. The same file sizes were used on Isambard

as the I/O study on the communication patterns (see Section 4.3.2). TeaLeaf

benchmark 5 was used for this study, and CloverLeaf used benchmark 64.

Table 7.1 shows how the applications perform against different file sizes and

job placements on Isambard. The trend matches that seen in Chapter 4, this

shows that the patterns themselves are sufficient to perform a comparison. This

shows that application performance can be improved by using interleaved job

placement when contending perform significant I/O operations, such as large

write operations.

Table 7.1: Comparison of Applications against Congestion Impact - Isambard

CloverLeaf TeaLeaf

Interleaved
1GB 1.036 1.041
10GB 1.029 1.067
100GB 1.037 1.036
500GB 1.060 1.052

Linear
1GB 1.083 1.061
10GB 1.090 1.083
100GB 1.123 1.281
500GB 1.156 1.135

Random
1GB 1.096 1.142
10GB 1.085 1.021
100GB 1.114 1.130
500GB 1.265 1.213

118

7. Discussions and Conclusions

Studies involving communication patterns lead to the same results, demon-

strating that for benchmarking just communication patterns is a suitable ap-

proach compared to entire applications. There are several advantages to this

approach, firstly the domain complexity can be removed as there is no need

for the computation this reduces the time the benchmark takes to run as the

entire application needs not be run. Secondly this allows for exploration of how

different implementations of communication patterns affect the performance to

see if any performance gain can be achieved by changing the implementation

without rewriting the application.

In the current implementation it is severely limited in functionality due to

design choices during the early development, these include a text based input

that is manually parsed. One improvement may be to create an interface using

Python so that some flexibility can be added to input decks for generating the

more complicated workflows, similar to how inputs are created for Ember, Firefly

and Merlin.

Another limitation of the current design is that for large jobs, buffers may

consume large amounts of RAM as each motif has their own buffer. One im-

provement may be that a job takes a problem size parameter and defines job

local arrays that are used by all motifs, Listing 7.1 demonstrates a small ex-

ample. This would significantly reduce the memory footprint of the benchmark

framework, although this may change the performance characteristics of the

benchmark compared to the communication pattern that is trying to be repli-

cated.

1 [JOB_NAME] TeaLeaf_CG_Iteration
[PARAMS] -x 4000 -y 4000 -iterations 10

3 [NID_LIST] 0,1,2,3
[MOTIF] AllReduce

5 [MOTIF] AllReduce
[MOTIF] 2DHalo

Listing 7.1: Proposed Parameter Extension to StressBench

The current implementation of StressBench does not support hybrid pro-

119

7. Discussions and Conclusions

gramming models (such as MPI + OpenMP) something which applications have

shifted towards in an effort to improve performance of applications. Another

hybrid model is MPI on GPU which can support multiple GPUs across multiple

nodes with a technology called GPUDirect [102]. Given this rise of popularity of

programming models being able to use these as part of the benchmark suite will

provide further realistic insight in to network usage, such as network contention,

and CPU-NIC bus utilisation.

One of the things that may cause StressBench to fail as a benchmark is

its adoption in the benchmark field. This is considered a limitation because

it provides a benchmark framework which may be too customisable compare

to something like GPCNeT. If consumers contribute communication patterns

and encourage results during a RFP they will be able to make more informed

decisions to their procurement process. If the ideas from StressBench were to

merge with another MPI benchmark suite then the framework may be formally

adopted by the community.

7.2.2 Modelling

The work presented in this thesis has validated the four elements for SST. This

approach provides an accurate approximation for modelling a network and the

associated software stack but lacks some features of modern HPC systems.

Firstly, the endpoints modelling are primarily CPU based, which provides

useful understanding for current and previous systems. The heterogeneity of

systems is increasing as we approach the exascale era, therefore considering

how MPI on GPU performance affects the software and hardware interactions

will become key when modelling future applications. Another issue is that I/O

endpoints are not currently modelled; the placement of these I/O nodes can

have effects on the performance of network traffic (see Section 4.3.2). Allowing

the option to situate the I/O nodes could allow the simulator to become a vital

tool during procurement for HPC systems.

The simulator provides capability to support both hardware and software co-

120

7. Discussions and Conclusions

design. This functionality can aid the design of future algorithms to understand

how they will perform of different topologies. This should not just be limited

to algorithms and communication patterns but applied to paradigms as well to

understand if there is a better approach, this is of significant interest as system

architecture changes to reach exascale level of performance.

This work has primarily used the latency or measured bandwidth to assess

there correctness of results, these measurements are taken at the application

layer, this means that errors cannot be broken down on a per layer basis. Po-

tential advances in telemetry inside of the network and lower software layers

may enable a finer granularity to capture and assess the error at different layers

in the networking stack.

The use of contention aware performance modelling demonstrated in this

thesis just scratches the surface of the area. The complexity introduced could

begin to look at what improvements to flow control algorithms could be de-

veloped to improve performance of link contention. Another consideration is

to rapidly evaluate routing algorithms to look at congestion avoidance during

traffic movement, this may be a semi-adapative routing solution.

121

Bibliography

[1] Infiniband architecture specification volume 1 - general specifications. In-
finiBand Architecture Specification, 1:1–4379, 2015.

[2] Openmp application programming interface. OpenMP 4.5 Complete Spec-
ifications), 2015.

[3] Ieee standard for ethernet. IEEE Std 802.3-2018 (Revision of IEEE Std
802.3-2015), 2018.

[4] Ieee standard for information technology–telecommunications and infor-
mation exchange between systems - local and metropolitan area networks–
specific requirements - part 11: Wireless lan medium access control (mac)
and physical layer (phy) specifications. IEEE Std 802.11-2020 (Revision
of IEEE Std 802.11-2016), 2021.

[5] A. Acharya, M. Uysal, R. Bennett, A. Mendelson, M. Beynon,
J. Hollingsworth, J. Saltz, and A. Sussman. Tuning the performance of
i/o-intensive parallel applications. In Proceedings of the fourth workshop
on I/O in parallel and distributed systems: part of the federated computing
research conference, pages 15–27, 1996.

[6] V. S. Adve. Analyzing the Behavior and Performance of Parallel Pro-
grams. PhD thesis, University of Wisconsin - Madison, October 1993.

[7] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber. Hy-
perx: Topology, routing, and packaging of efficient large-scale networks. In
Proceedings of the Conference on High Performance Computing Network-
ing, Storage and Analysis, SC ’09, New York, NY, USA, 2009. Association
for Computing Machinery.

[8] S. R. Alam, J. A. Kuehn, R. F. Barrett, J. M. Larkin, M. R. Fahey,
R. Sankaran, and P. H. Worley. Cray xt4: an early evaluation for petascale
scientific simulation. In SC ’07: Proceedings of the 2007 ACM/IEEE
Conference on Supercomputing, pages 1–12, 2007.

[9] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman. Loggp:
Incorporating long messages into the logp model for parallel computation.
Journal of Parallel and Distributed Computing, 44(1):71–79, 1997.

[10] G. M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967,

122

BIBLIOGRAPHY

Spring Joint Computer Conference, AFIPS ’67 (Spring), page 483–485,
New York, NY, USA, 1967. Association for Computing Machinery.

[11] H. Anzt, E. Boman, R. Falgout, P. Ghysels, M. Heroux, X. Li, L. Curf-
man McInnes, R. Tran Mills, S. Rajamanickam, K. Rupp, B. Smith, I. Ya-
mazaki, and U. Meier Yang. Preparing sparse solvers for exascale com-
puting. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 378(2166):20190053, 2020.

[12] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, et al. The nas parallel benchmarks. The International Journal
of Supercomputing Applications, 5(3):63–73, 1991.

[13] B. W. Barrett and K. S. Hemmert. An application based mpi message
throughput benchmark. In 2009 IEEE International Conference on Clus-
ter Computing and Workshops, pages 1–8, 2009.

[14] B. Behzad, H. V. T. Luu, J. Huchette, S. Byna, R. Aydt, Q. Koziol,
M. Snir, et al. Taming parallel i/o complexity with auto-tuning. In SC’13:
Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis, pages 1–12. IEEE, 2013.

[15] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs. There goes the
neighborhood: performance degradation due to nearby jobs. In SC’13:
Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis, pages 1–12. IEEE, 2013.

[16] A. Bhatele, A. R. Titus, J. J. Thiagarajan, N. Jain, T. Gamblin, P.-
T. Bremer, M. Schulz, and L. V. Kale. Identifying the culprits behind
network congestion. In 2015 IEEE International Parallel and Distributed
Processing Symposium, pages 113–122. IEEE, 2015.

[17] R. F. Bird, S. A. Wright, D. A. Beckingsale, and S. A. Jarvis. Perfor-
mance modelling of magnetohydrodynamics codes. In M. Tribastone and
S. Gilmore, editors, Computer Performance Engineering, pages 197–209,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[18] M. S. Birrittella, M. Debbage, R. Huggahalli, J. Kunz, T. Lovett, T. Rim-
mer, K. D. Underwood, and R. C. Zak. Intel® omni-path architecture:
Enabling scalable, high performance fabrics. In 2015 IEEE 23rd Annual
Symposium on High-Performance Interconnects, pages 1–9, 2015.

[19] A. S. Bland, J. C. Wells, O. E. Messer, O. R. Hernandez, and J. H.
Rogers. Titan: Early experience with the cray xk6 at oak ridge national

123

BIBLIOGRAPHY

laboratory. In Proceedings of cray user group conference (CUG 2012),
pages 3–4. Cray User Group Stuttgart, Germany, 2012.

[20] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz, J. Seizovic, and
W.-K. Su. Myrinet: a gigabit-per-second local area network. IEEE Micro,
15(1):29–36, 1995.

[21] D. Boehme, T. Gamblin, D. Beckingsale, P.-T. Bremer, A. Gimenez,
M. LeGendre, O. Pearce, and M. Schulz. Caliper: performance introspec-
tion for hpc software stacks. In SC’16: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, pages 550–560. IEEE, 2016.

[22] D. Böhme, T. Gamblin, P.-T. Bremer, O. Pearce, and M. Schulz. Caliper:
Composite performance data collection in HPC codes, 2015.

[23] K. Boland and A. Dollas. Predicting and precluding problems with mem-
ory latency. IEEE Micro, 14(4):59–67, 1994.

[24] E. G. Boman, Ü. V. Çatalyürek, C. Chevalier, and K. D. Devine. The
zoltan and isorropia parallel toolkits for combinatorial scientific com-
puting: Partitioning, ordering and coloring. Scientific Programming,
20(2):129–150, 2012.

[25] P. J. Braam and P. Schwan. Lustre: The intergalactic file system. In
Ottawa Linux Symposium, volume 8, pages 3429–3441, 2002.

[26] R. Brightwell, K. Pedretti, K. Underwood, and T. Hudson. Seastar in-
terconnect: Balanced bandwidth for scalable performance. IEEE Micro,
26(3):41–57, 2006.

[27] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and
R. Ross. Understanding and improving computational science storage
access through continuous characterization. ACM Trans. Storage, 7(3),
Oct. 2011.

[28] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley. 24/7
characterization of petascale i/o workloads. In 2009 IEEE International
Conference on Cluster Computing and Workshops, pages 1–10, 2009.

[29] C. D. Carothers, D. Bauer, and S. Pearce. Ross: A high-performance, low-
memory, modular time warp system. Journal of Parallel and Distributed
Computing, 62(11):1648–1669, 2002.

124

BIBLIOGRAPHY

[30] E. Carson, N. Knight, and J. Demmel. An efficient deflation technique
for the communication-avoiding conjugate gradient method. Electronic
Transactions on Numerical Analysis, 43(125141):09, 2014.

[31] R. H. Castain, J. Hursey, A. Bouteiller, and D. Solt. Pmix: Process man-
agement for exascale environments. Parallel Computing, 79:9–29, 2018.

[32] D. G. Chester, T. L. Groves, S. D. Hammond, T. R. Law, S. A. Wright,
R. P. Smedley-Stevenson, S. A. Fahmy, G. R. Mudalige, and S. A. Jarvis.
StressBench: A Configurable Full System Network and I/O Benchmark
Framework. In Proceedings of ISC HIGH PERFORMANCE 2021, 2021.

[33] D. G. Chester, T. L. Groves, S. D. Hammond, T. R. Law, S. A. Wright,
R. P. Smedley-Stevenson, S. A. Fahmy, G. R. Mudalige, and S. A. Jarvis.
StressBench: A Configurable Full System Network and I/O Benchmark
Framework. In 2021 IEEE High Performance Extreme Computing Con-
ference (HPEC), 2021.

[34] D. G. Chester, S. A. Wright, S. D. Hammond, T. R. Law, R. P. Smedley-
Stevenson, S. Maheswaran, and S. A. Jarvis. Full-system modeling and
simulation : contributions towards coupling, contention, and I/O. In
MODSIM 2019, 2019.

[35] D. G. Chester, S. A. Wright, and S. A. Jarvis. Understanding commu-
nication patterns in HPCG. Electronic Notes in Theoretical Computer
Science, 340:55–65, 2018.

[36] S. Chunduri, T. Groves, P. Mendygral, B. Austin, J. Balma, K. Kan-
dalla, K. Kumaran, G. Lockwood, S. Parker, S. Warren, et al. Gpcnet:
designing a benchmark suite for inducing and measuring contention in
hpc networks. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–33,
2019.

[37] S. Chunduri, K. Harms, S. Parker, V. Morozov, S. Oshin, N. Cherukuri,
and K. Kumaran. Run-to-run variability on xeon phi based xc systems. In
Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1–13, 2017.

[38] J. Cope, N. Liu, S. Lang, P. Carns, C. Carothers, and R. Ross. Codes: En-
abling co-design of multilayer exascale storage architectures. In Proceed-
ings of the Workshop on Emerging Supercomputing Technologies. ACM,
2011.

125

BIBLIOGRAPHY

[39] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,
R. Subramonian, and T. von Eicken. Logp: Towards a realistic model
of parallel computation. In Proceedings of the Fourth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPOPP
’93, page 1–12, New York, NY, USA, 1993. Association for Computing
Machinery.

[40] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,
R. Subramonian, and T. von Eicken. Logp: Towards a realistic model of
parallel computation. SIGPLAN Not., 28(7):1–12, July 1993.

[41] L. Dagum and R. Menon. Openmp: an industry standard api for shared-
memory programming. IEEE Computational Science and Engineering,
5(1):46–55, 1998.

[42] W. J. Dally. Virtual-channel flow control. In Proceedings of the 17th An-
nual International Symposium on Computer Architecture, ISCA ’90, page
60–68, New York, NY, USA, 1990. Association for Computing Machinery.

[43] W. J. Dally and C. L. Seitz. The torus routing chip. Distributed Comput-
ing, 1(4):187–196, 1986.

[44] W. J. Dally and B. P. Towles. Principles and practices of interconnection
networks. Elsevier, 2004.

[45] F. Darema, D. George, V. Norton, and G. Pfister. A single-program-
multiple-data computational model for epex/fortran. Parallel Computing,
7(1):11–24, 1988.

[46] P. De, V. Mann, and U. Mittaly. Handling os jitter on multicore multi-
threaded systems. In 2009 IEEE International Symposium on Parallel &
Distributed Processing, pages 1–12. IEEE, 2009.

[47] D. De Sensi, S. Di Girolamo, K. H. McMahon, D. Roweth, and T. Hoefler.
An in-depth analysis of the slingshot interconnect. In SC20: International
Conference for High Performance Computing, Networking, Storage and
Analysis, pages 1–14. IEEE, 2020.

[48] T. M. Declerck et al. Using robinhood to purge data from lustre file
systems. Proceedings of the 2014 User Group, Lugano, 2014.

[49] F. Dekking, C. Kraaikamp, H. Lopuhaä, and L. Meester. A Modern In-
troduction to Probability and Statistics: Understanding Why and How.
Springer Texts in Statistics. Springer London, 2006.

126

BIBLIOGRAPHY

[50] J. Dickson, S. A. Wright, D. Harris, S. Maheswaran, J. Herdman, M. C.
Miller, and S. A. Jarvis. Enabling portable i/o analysis of commercially
sensitive hpc applications through workload replication. Cray User Group,
pages 1–14, 2017.

[51] D. W. Doerfler. Trinity: Next-generation supercomputer for the asc pro-
gram. Technical report, Sandia National Lab.(SNL-NM), Albuquerque,
NM (United States), 2014.

[52] J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart. LINPACK
users’ guide. SIAM, 1979.

[53] M. R. Dorr and C. H. Still. Concurrent source iteration in the solution of
three-dimensional, multigroup discrete ordinates neutron transport equa-
tions. Nuclear Science and Engineering, 122(3):287–308, 1996.

[54] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson,
T. Johnson, J. Kopnick, M. Higgins, and J. Reinhard. Cray cascade: A
scalable hpc system based on a dragonfly network. In SC ’12: Proceed-
ings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, pages 1–9, 2012.

[55] M. J. Flynn. Some computer organizations and their effectiveness. IEEE
Transactions on Computers, C-21(9):948–960, 1972.

[56] S. Fogerty, M. Martineau, R. Garimella, and R. Robey. A comparative
study of multi-material data structures for computational physics applica-
tions. Computers & Mathematics with Applications, 78(2):565–581, 2019.
Proceedings of the Eight International Conference on Numerical Methods
for Multi-Material Fluid Flows (MULTIMAT 2017).

[57] M. Forum. MPI: A Message-Passing Interface Standard Version 3.1. Tech-
nical report, MPI Forum, June 2015.

[58] W. Frings, D. H. Ahn, M. LeGendre, T. Gamblin, B. R. de Supinski, and
F. Wolf. Massively parallel loading. In Proceedings of the 27th Interna-
tional ACM Conference on International Conference on Supercomputing,
ICS ’13, page 389–398, New York, NY, USA, 2013. Association for Com-
puting Machinery.

[59] Glenn Lockwood. Inode sizes on NERSC’s production file systems. https:
//zenodo.org/record/2530940 (accessed December 17, 2020), 2019.

[60] O. I. W. Group. ofiwg/libfabric: Open Fabric Interfaces. https:

//github.com/ofiwg/libfabric (Accessed 27th September 2021), 2021.

127

https://zenodo.org/record/2530940
https://zenodo.org/record/2530940
https://github.com/ofiwg/libfabric
https://github.com/ofiwg/libfabric

BIBLIOGRAPHY

[61] T. Groves, R. E. Grant, S. Hemmer, S. Hammond, M. Levenhagen, and
D. C. Arnold. (sai) stalled, active and idle: Characterizing power and
performance of large-scale dragonfly networks. In 2016 IEEE International
Conference on Cluster Computing (CLUSTER), pages 50–59. IEEE, 2016.

[62] J. L. Gustafson. Reevaluating amdahl’s law. Commun. ACM,
31(5):532–533, May 1988.

[63] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, and K. Heitmann.
Hacc: Extreme scaling and performance across diverse architectures. In
SC’13: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, pages 1–10. IEEE, 2013.

[64] M. Haller and T. Worsch. Skampi—including more complex communica-
tion patterns. In High Performance Computing in Science and Engineer-
ing’03, pages 455–466. Springer, 2003.

[65] S. D. Hammond, G. R. Mudalige, J. Smith, J. Davis, S. A. Jarvis, J. Holt,
I. Miller, J. Herdman, and A. Vadgama. To upgrade or not to upgrade?
catamount vs. cray linux environment. In 2010 IEEE International Sym-
posium on Parallel & Distributed Processing, Workshops and Phd Forum
(IPDPSW), pages 1–8. IEEE, 2010.

[66] S. D. Hammond, G. R. Mudalige, J. Smith, S. A. Jarvis, J. Herdman, and
A. Vadgama. Warpp: a toolkit for simulating high-performance parallel
scientific codes. In Proceedings of the 2nd International Conference on
Simulation Tools and Techniques, page 19, 2009.

[67] M. A. Heroux and J. Dongarra. Toward a new metric for ranking high
performance computing systems. SAND2013-4744, 2013.

[68] A. S. C. Initiative et al. The ASCI SWEEP3D benchmark code, 1995.

[69] Intel. Intel MPI Benchmarks. https://software.intel.com/en-us/

imb-user-guide (accessed September 20, 2020), 2020.

[70] Intel. Intel Trace Analyzer and Collector. https://software.intel.com/
en-us/intel-trace-analyzer (accessed September 20, 2021), 2021.

[71] N. Jain, A. Bhatele, S. White, T. Gamblin, and L. V. Kale. Evaluating hpc
networks via simulation of parallel workloads. In SC’16: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 154–165. IEEE, 2016.

128

https://software.intel.com/en-us/imb-user-guide
https://software.intel.com/en-us/imb-user-guide
https://software.intel.com/en-us/intel-trace-analyzer
https://software.intel.com/en-us/intel-trace-analyzer

BIBLIOGRAPHY

[72] R. Jain and R. JAIN. The Art of Computer Systems Performance Analy-
sis: Techniques for Experimental Design, Measurement, Simulation, and
Modeling. Wiley professional computing. Wiley, 1991.

[73] H.-W. Jin, S. Sur, L. Chai, and D. K. Panda. Lightweight kernel-
level primitives for high-performance mpi intra-node communication over
multi-core systems. In 2007 IEEE International Conference on Cluster
Computing, pages 446–451, 2007.

[74] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z. De-
Vito, R. Haque, D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz,
and C. Still. Exploring traditional and emerging parallel programming
models using a proxy application. In 27th IEEE International Parallel
& Distributed Processing Symposium (IEEE IPDPS 2013), Boston, USA,
May 2013.

[75] P. Kermani and L. Kleinrock. Virtual cut-through: A new computer com-
munication switching technique. Computer Networks (1976), 3(4):267–
286, 1979.

[76] J. Kim, W. Dally, S. Scott, and D. Abts. Cost-efficient dragonfly topology
for large-scale systems. IEEE Micro, 29(1):33–40, 2009.

[77] J. Kim, W. J. Dally, S. Scott, and D. Abts. Technology-driven, highly-
scalable dragonfly topology. In 2008 International Symposium on Com-
puter Architecture, pages 77–88. IEEE, 2008.

[78] B. Klenk and H. Fröning. An overview of mpi characteristics of exascale
proxy applications. In International Supercomputing Conference, pages
217–236. Springer, 2017.

[79] S. Knight, J. P. Kenny, and J. J. Wilke. Supercomputer in a laptop:
Distributed application and runtime development via architecture simula-
tion. In International Conference on High Performance Computing, pages
347–359. Springer, 2018.

[80] K. R. Koch, R. S. Baker, and R. E. Alcouffe. Solution of the first-order
form of the 3-d discrete ordinates equation on a massively parallel pro-
cessor. Transactions of the American Nuclear Society, 65(108):198–199,
1992.

[81] P. Kogge. The tops in flops. IEEE Spectrum, 48(2):48–54, 2011.

[82] S. H. Lavington. A history of Manchester computers. NCC Publications,
1975.

129

BIBLIOGRAPHY

[83] C. E. Leiserson. Fat-trees: Universal networks for hardware-efficient
supercomputing. IEEE Transactions on Computers, C-34(10):892–901,
1985.

[84] Q. Liu and R. D. Russell. Rgbcc: A new congestion control mechanism for
infiniband. In 2016 24th Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing (PDP), pages 91–100, 2016.

[85] G. K. Lockwood, K. Lozinskiy, L. Gerhardt, R. Cheema, D. Hazen, and
N. J. Wright. A quantitative approach to architecting all-flash lustre file
systems. In International Conference on High Performance Computing,
pages 183–197. Springer, 2019.

[86] P. Malakar, P. Balaprakash, V. Vishwanath, V. Morozov, and K. Ku-
maran. Benchmarking machine learning methods for performance model-
ing of scientific applications. In 2018 IEEE/ACM Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems
(PMBS), pages 33–44, 2018.

[87] A. Mallinson, D. A. Beckingsale, W. Gaudin, J. Herdman, J. Levesque,
and S. A. Jarvis. Cloverleaf: Preparing hydrodynamics codes for exascale.
The User Group, 2013, 2013.

[88] P. Marendić, J. Lemeire, T. Haber, D. Vučinić, and P. Schelkens. An
investigation into the performance of reduction algorithms under load im-
balance. In European Conference on Parallel Processing, pages 439–450.
Springer, 2012.

[89] R. P. Martin, A. M. Vahdat, D. E. Culler, and T. E. Anderson. Effects
of communication latency, overhead, and bandwidth in a cluster archi-
tecture. In Proceedings of the 24th Annual International Symposium on
Computer Architecture, ISCA ’97, page 85–97, New York, NY, USA, 1997.
Association for Computing Machinery.

[90] R. P. Martin, A. M. Vahdat, D. E. Culler, and T. E. Anderson. Effects of
communication latency, overhead, and bandwidth in a cluster architecture.
SIGARCH Comput. Archit. News, 25(2):85–97, May 1997.

[91] M. Martinasso and J.-F. Méhaut. A contention-aware performance model
for hpc-based networks: A case study of the infiniband network. In Eu-
ropean Conference on Parallel Processing, pages 91–102. Springer, 2011.

[92] J. D. McCalpin. Stream benchmark. Link: www. cs. virginia.
edu/stream/ref. html# what, 22:7, 1995.

130

BIBLIOGRAPHY

[93] J. D. McCalpin. Memory bandwidth and system balance in hpc systems.
Invited talk, Supercomputing, 2016.

[94] S. McIntosh-Smith, M. Martineau, T. Deakin, G. Pawelczak, W. Gaudin,
P. Garrett, W. Liu, R. Smedley-Stevenson, and D. Beckingsale. Tealeaf:
a mini-application to enable design-space explorations for iterative sparse
linear solvers. In 2017 IEEE International Conference on Cluster Com-
puting (CLUSTER), pages 842–849. IEEE, 2017.

[95] S. McIntosh-Smith, M. Martineau, T. Deakin, G. Pawelczak, W. Gaudin,
P. Garrett, W. Liu, R. Smedley-Stevenson, and D. Beckingsale. Tealeaf:
A mini-application to enable design-space explorations for iterative sparse
linear solvers. In IEEE International Conference on Cluster Computing
(CLUSTER), pages 842–849, Sep. 2017.

[96] L. W. McVoy, C. Staelin, et al. lmbench: Portable tools for performance
analysis. In USENIX annual technical conference, pages 279–294. San
Diego, CA, USA, 1996.

[97] J. Morel. Deterministic transport methods and codes at los alamos. Tech-
nical report, Los Alamos National Lab., NM (US), 1999.

[98] M. Mubarak, C. D. Carothers, R. B. Ross, and P. Carns. Using massively
parallel simulation for MPI collective communication modeling in extreme-
scale networks. In Proceedings of the Winter Simulation Conference 2014,
pages 3107–3118. IEEE, 2014.

[99] M. Mubarak, N. Jain, J. Domke, N. Wolfe, C. Ross, K. Li, A. Bhatele,
C. D. Carothers, K.-L. Ma, and R. B. Ross. Toward reliable validation of
hpc network simulation models. In 2017 Winter Simulation Conference
(WSC), pages 659–674, 2017.

[100] G. R. Mudalige, M. K. Vernon, and S. A. Jarvis. A plug-and-play model
for evaluating wavefront computations on parallel architectures. In 2008
IEEE International Symposium on Parallel and Distributed Processing,
pages 1–14. IEEE, 2008.

[101] T. Nesson and S. L. Johnsson. Romm routing on mesh and torus networks.
In Proceedings of the Seventh Annual ACM Symposium on Parallel Algo-
rithms and Architectures, SPAA ’95, page 275–287, New York, NY, USA,
1995. Association for Computing Machinery.

[102] NVIDIA. GPUDirect | NVIDIA Developer. https://developer.nvidia.
com/gpudirect (accessed September 15, 2021), 2021.

131

https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect

BIBLIOGRAPHY

[103] Oak Ridge National Laboratory. Summit – Oak Ridge Leader-
ship Computing Facility. https://www.olcf.ornl.gov/olcf-resources/
compute-systems/summit/ (accessed September 15, 2021), 2021.

[104] Ohio State University. OSU Micro-Benchmarks. http://mvapich.cse.

ohio-state.edu/benchmarks/ (accessed September 20, 2020), 2020.

[105] A. M. B. Owenson, S. A. Wright, R. A. Bunt, Y. K. Ho, M. J. Street, and
S. A. Jarvis. An unstructured cfd mini-application for the performance
prediction of a production cfd code. Concurrency and Computation: Prac-
tice and Experience, 32(10):e5443, 2020. e5443 cpe.5443.

[106] D. A. Patterson and J. L. Hennessy. Computer Organization and De-
sign The Hardware/Software Interface. Morgan Kaufmann, fourth edition,
2012.

[107] H. Pritchard, I. Gorodetsky, and D. Buntinas. A ugni-based mpich2 neme-
sis network module for the xe. In European MPI Users’ Group Meeting,
pages 110–119. Springer, 2011.

[108] M. S. Rahman, S. Bhowmik, Y. Ryasnianskiy, X. Yuan, and M. Lang.
Topology-custom ugal routing on dragonfly. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis, pages 1–15, 2019.

[109] J. Reinders. Intel AVX-512 Instructions. https://software.intel.com/
content/www/us/en/develop/articles/intel-avx-512-instructions.

html (Accessed 27th September 2021), 2013.

[110] R. Reussner, P. Sanders, L. Prechelt, and M. Müller. Skampi: A detailed,
accurate mpi benchmark. In European Parallel Virtual Machine/Message
Passing Interface Users’ Group Meeting, pages 52–59. Springer, 1998.

[111] R. M. Russell. The cray-1 computer system. Commun. ACM, 21(1):63–72,
Jan. 1978.

[112] Y. Saad. Iterative methods for sparse linear systems. SIAM, second edi-
tion, 2003.

[113] Sandia National Laboratories. Ember Communication Pattern Li-
brary. https://github.com/sstsimulator/ember (accessed December
17, 2020), 2018.

[114] F. B. Schmuck and R. L. Haskin. Gpfs: A shared-disk file system for large
computing clusters. In FAST, volume 2, 2002.

132

https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
http://mvapich.cse.ohio-state.edu/benchmarks/
http://mvapich.cse.ohio-state.edu/benchmarks/
https://software.intel.com/content/www/us/en/develop/articles/intel-avx-512-instructions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-avx-512-instructions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-avx-512-instructions.html
https://github.com/sstsimulator/ember

BIBLIOGRAPHY

[115] P. Shamis, M. G. Venkata, M. G. Lopez, M. B. Baker, O. Hernandez,
Y. Itigin, M. Dubman, G. Shainer, R. L. Graham, L. Liss, et al. Ucx: an
open source framework for hpc network apis and beyond. In 2015 IEEE
23rd Annual Symposium on High-Performance Interconnects, pages 40–
43. IEEE, 2015.

[116] A. Shpiner, Z. Haramaty, S. Eliad, V. Zdornov, B. Gafni, and E. Zahavi.
Dragonfly+: Low cost topology for scaling datacenters. In 2017 IEEE 3rd
International Workshop on High-Performance Interconnection Networks
in the Exascale and Big-Data Era (HiPINEB), pages 1–8, 2017.

[117] E. Slaughter, W. Wu, Y. Fu, L. Brandenburg, N. Garcia, W. Kautz,
E. Marx, K. Morris, Q. Cao, G. Bosilca, S. Mirchandaney, W. Lee, S. Tre-
ichler, and U. Patrick McCormick pat@lanl.gov Los Alamos National Lab-
oratory. Task bench: A parameterized benchmark for evaluating parallel
runtime performance. In 2020 SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), pages
864–878, Los Alamitos, CA, USA, nov 2020. IEEE Computer Society.

[118] A. Spector and D. Gifford. The space shuttle primary computer system.
Commun. ACM, 27(9):872–900, Sept. 1984.

[119] H. Sullivan and T. R. Bashkow. A large scale, homogeneous, fully dis-
tributed parallel machine, i. In Proceedings of the 4th Annual Symposium
on Computer Architecture, ISCA ’77, page 105–117, New York, NY, USA,
1977. Association for Computing Machinery.

[120] H. Sullivan and T. R. Bashkow. A large scale, homogeneous, fully
distributed parallel machine, i. SIGARCH Comput. Archit. News,
5(7):105–117, Mar. 1977.

[121] TOP500.org. June 2014 - TOP500 Supercomputers. https://www.

top500.org/lists/top500/2014/06/ (accessed September 15, 2021),
2014.

[122] TOP500.org. November 2016 - TOP500 Supercomputers. https://www.

top500.org/lists/top500/2016/11/ (accessed December 8, 2021), 2016.

[123] TOP500.org. June 2021 - TOP500 Supercomputers. https://www.

top500.org/lists/top500/2021/06/ (accessed September 15, 2021),
2021.

[124] K. Underwood and R. Brightwell. The impact of mpi queue usage on
message latency. In International Conference on Parallel Processing, 2004.
ICPP 2004., pages 152–160 vol.1, 2004.

133

https://www.top500.org/lists/top500/2014/06/
https://www.top500.org/lists/top500/2014/06/
https://www.top500.org/lists/top500/2016/11/
https://www.top500.org/lists/top500/2016/11/
https://www.top500.org/lists/top500/2021/06/
https://www.top500.org/lists/top500/2021/06/

BIBLIOGRAPHY

[125] L. G. Valiant. A scheme for fast parallel communication. SIAM journal
on computing, 11(2):350–361, 1982.

[126] L. G. Valiant. A bridging model for parallel computation. Commun. ACM,
33(8):103–111, Aug. 1990.

[127] L. G. Valiant and G. J. Brebner. Universal schemes for parallel commu-
nication. In Proceedings of the Thirteenth Annual ACM Symposium on
Theory of Computing, STOC ’81, page 263–277, New York, NY, USA,
1981. Association for Computing Machinery.

[128] D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J.
Berendsen. Gromacs: fast, flexible, and free. Journal of computational
chemistry, 26(16):1701–1718, 2005.

[129] S. A. Wright and S. A. Jarvis. Quantifying the effects of contention on
parallel file systems. In 2015 IEEE International Parallel and Distributed
Processing Symposium Workshop, pages 932–940, 2015.

[130] X. Wu, V. Deshpande, and F. Mueller. Scalabenchgen: Auto-generation
of communication benchmarks traces. In 2012 IEEE 26th International
Parallel and Distributed Processing Symposium, pages 1250–1260. IEEE,
2012.

[131] X. Yang, J. Jenkins, M. Mubarak, R. B. Ross, and Z. Lan. Watch out
for the bully! job interference study on dragonfly network. In SC ’16:
Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 750–760, 2016.

[132] W. Yu, J. S. Vetter, and H. S. Oral. Performance characterization and
optimization of parallel i/o on the xt. In 2008 IEEE International Sym-
posium on Parallel and Distributed Processing, pages 1–11. IEEE, 2008.

134

APPENDIX A
Applications inside of StressBench

A.1 TeaLeaf Motif Implementation

int TL_Decompose(MPI_Comm communicator, void** data, char** params,

int numberOfParams) {

2 int opt;

char* inputFile = 0;

4 char* outputFile = 0;

TeaLeafData* in = malloc(sizeof(TeaLeafData));

6 while((opt = getopt(numberOfParams, params, "i:o:")) != -1) {

switch(opt) {

8 case ’i’:

inputFile = malloc((strlen(optarg)+1)*sizeof(char));

10 strcpy(inputFile, optarg);

break;

12 case ’o’:

outputFile = malloc((strlen(optarg)+1)*sizeof(char));

14 strcpy(outputFile, optarg);

break;

16 }

}

18

// Create the settings wrapper

20 Settings* settings = (Settings*)malloc(sizeof(Settings));

set_default_settings(settings);

22 if(inputFile != NULL) {

settings->tea_in_filename = inputFile;

24 }

26 if(outputFile != NULL) {

settings->tea_out_filename = outputFile;

28 }

// Fill in rank information

30 initialise_ranks(settings, communicator);

32 // Perform initialisation steps

135

Applications inside of StressBench

Chunk* chunks;

34 initialise_application(&chunks, settings);

in->chunks = chunks;

36 in->settings = settings;

*data = in;

38 return 0;

}

40

int TL_Perform(MPI_Comm communicator, void* data) {

42 TeaLeafData* in = (TeaLeafData*)data;

// Perform the solve using default or overloaded diffuse

44 #ifndef DIFFUSE_OVERLOAD

diffuse(in->chunks, in->settings);

46 #else

diffuse_overload(in->chunks, in->settings);

48 #endif

}

50

int TL_Destruct(MPI_Comm communicator, void* data) {

52 TeaLeafData* in = (TeaLeafData*)data;

// Print the kernel-level profiling results

54 if(in->settings->rank == MASTER)

{

56 PRINT_PROFILING_RESULTS(in->settings->kernel_profile);

}

58

// Finalise the kernel

60 kernel_finalise_driver(in->chunks, in->settings);

62 // Finalise each individual chunk

for(int cc = 0; cc < in->settings->num_chunks_per_rank; ++cc)

64 {

finalise_chunk(&(in->chunks[cc]));

66 free(&(in->chunks[cc]));

}

68

// Finalise the application

70 free(in->settings);

}

136

Applications inside of StressBench

Listing A.1: TeaLeaf Motif

A.2 TeaLeaf Settings Structure

1 // The main settings structure

typedef struct Settings

3 {

// Set of system-wide profiles

5 struct Profile* kernel_profile;

struct Profile* application_profile;

7 struct Profile* wallclock_profile;

9 // Log files

FILE* tea_out_fp;

11

// Solve-wide constants

13 int rank;

int end_step;

15 int presteps;

int max_iters;

17 int coefficient;

int ppcg_inner_steps;

19 int summary_frequency;

int halo_depth;

21 int num_states;

int num_chunks;

23 int num_chunks_per_rank;

int num_ranks;

25 bool* fields_to_exchange;

27 bool is_offload;

29 bool error_switch;

bool check_result;

31 bool preconditioner;

33 double eps;

double dt_init;

137

Applications inside of StressBench

35 double end_time;

double eps_lim;

37

// Input-Output files

39 char* tea_in_filename;

char* tea_out_filename;

41 char* test_problem_filename;

43 Solver solver;

char* solver_name;

45

Kernel_Language kernel_language;

47

// Field dimensions

49 int grid_x_cells;

int grid_y_cells;

51

double grid_x_min;

53 double grid_y_min;

double grid_x_max;

55 double grid_y_max;

57 double dx;

double dy;

59 MPI_Comm communicator;

61 } Settings;

Listing A.2: Modified Settings Structure

138

	List of Figures
	List of Tables
	List of Listings
	Acknowledgements
	Declarations
	Abstract
	Dedication
	Sponsorship and Grants
	Abbreviations
	Introduction
	Motivations
	Contributions
	Thesis Structure

	Background
	Parallelisation
	Speedup
	Flynn's Taxonomy
	Types of Parallelism

	Performance Engineering
	Benchmarking
	Performance Prediction

	Low Latency Interconnect Design
	Communication Stack
	Network Architecture

	Summary

	Compute Platforms and Applications
	Compute Platforms
	Tinis
	Orac
	Isambard
	Cori
	Astra

	Applications
	TeaLeaf
	Sweep3D

	Communication Patterns
	Halo Exchange
	Reduction
	Wavefront

	Summary

	Design and Implementation of a modern network benchmark
	StressBench Design
	Motifs

	Application Replay Functionality
	Applications Inside of StressBench

	Application Communication Traffic and I/O Performance Studies
	Full System Orchestration
	I/O Study

	Summary

	Validation of a Network Micro-Simulator
	Simulator Design
	Ember
	Hermes
	Firefly
	Merlin
	Simulator Performance

	Simulator Validation
	Validation Methodology
	Modelling Hardware
	Modelling Software

	Towards Exascale Networks
	Fat Tree
	Dragonfly

	Summary

	Contention Aware Performance Modelling
	Network Tapering
	Entire System
	Contended Applications

	Network Utilization
	StressBench as simulation validation tool
	Summary

	Discussions and Conclusions
	Limitations
	Software
	Hardware

	Future Work
	Benchmarking
	Modelling

	Applications inside of StressBench
	TeaLeaf Motif Implementation
	TeaLeaf Settings Structure

	Insert from: "WRAP_Coversheet_Theses_new1.pdf"
	http://wrap.warwick.ac.uk/165003

