
J. Fluid Mech. (2022), vol. 939, A27, doi:10.1017/jfm.2022.217

Brachistochronous motion of a flat plate parallel
to its surface immersed in a fluid
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We determine the globally minimum time T needed to translate a thin submerged flat plate
a given distance parallel to its surface within a work budget. The Reynolds number for the
flow is assumed to be large so that the drag on the plate arises from skin friction in a thin
viscous boundary layer. The minimum is determined computationally using a steepest
descent, where an adjoint formulation is used to compute the gradients. Because the
equations governing fluid mechanics for this problem are nonlinear, multiple local minima
could exist. Exploiting the quadratic nature of the objective function and the constraining
differential equations, we derive and apply a ‘spectral condition’ to show the converged
local optimum to be a global one. The condition states that the optimum is global if the
Hessian of the Lagrangian in the state variables constructed using the converged adjoint
field is positive semi-definite at every instance. The globally optimum kinematics of the
plate starts from rest with speed ∝ t1/4 and comes to rest with speed ∝ (T − t)1/4 as
a function of time t. For distances much longer than the plate, the work-minimizing
kinematics consists of an optimum startup, a constant-speed cruising, and an optimum
stopping.

Key words: variational methods

1. Introduction

Optimization over flow fields that satisfy equations governing fluid motion has many
applications. While initially applied to computational aerodynamics (Mohammadi &
Pironneau 2004), various situations ranging from sloshing of fluids in containers
for transport (Ibrahim, Pilipchuk & Ikeda 2001; Terashima & Yano 2001) to the
transport of a passive tracer for mixing (Eggl & Schmid 2018), and from the flapping
of a foil for propulsion and fluid energy conversion (Young, Lai & Platzer 2014;

† Email address for correspondence: shreyas.mandre@warwick.ac.uk

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives
licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use,
distribution, and reproduction in any medium, provided the original work is unaltered and is properly
cited. The written permission of Cambridge University Press must be obtained for commercial re-use
or in order to create a derivative work. 939 A27-1ht

tp
s:

//
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

2.
21

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

mailto:shreyas.mandre@warwick.ac.uk
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2022.217&domain=pdf
https://doi.org/10.1017/jfm.2022.217


S. Mandre

Jones & Yamaleev 2015; Quinn, Lauder & Smits 2015) to the optimal placement of an
actuator (Passaggia & Ehrenstein 2013; Economon, Palacios & Alonso 2015; Pasche,
Avellan & Gallaire 2019), are all formulated as fluid mechanics problems coupled
with optimization. For further industrial applications of computational fluid dynamical
optimization, see Thévenin & Janiga (2008). Fluid mechanical optimization also has
applications beyond industrial engineering. For example, animal body actuation for
propulsion in a fluid medium seeks to minimize the energetic cost of aerial (Berman &
Wang 2007; Pesavento & Wang 2009; Vincent, Liu & Kanso 2020) and aquatic (Pironneau
& Katz 1974; Kern & Koumoutsakos 2006; Tam & Hosoi 2007; Michelin & Lauga
2010, 2011, 2013; Tam & Hosoi 2011; Eloy & Lauga 2012; Alben, Miller & Peng 2013;
Montenegro-Johnson & Lauga 2014; Was & Lauga 2014; Maertens, Gao & Triantafyllou
2017) locomotion. Optimization is invoked in cardiovascular biomechanics (He et al.
1994; Marsden 2014) and sports biomechanics such as rowing (Labbé et al. 2019), where
fluid dynamics is central to the mechanics. Optimization is also an important tool to
study fundamental fluid dynamics. Fundamental bounds on fluid dynamics processes have
arisen from the hypothesis that turbulence optimizes fluid mechanical transport (Doering
& Constantin 1992, 1994; Nicodemus, Grossmann & Holthaus 1997a,b; Kerswell 1998;
Souza, Tobasco & Doering 2020). And the perturbation that underlies the transition to
turbulence bypassing a linear instability is also sought using fluid mechanical optimization
(Pringle & Kerswell 2010; Pringle, Willis & Kerswell 2012; Kerswell, Pringle & Willis
2014). Much more insight into fundamental and applied problems could be derived had it
not been for the difficulty of solving steady and time-dependent Navier–Stokes equations
coupled with optimization.

Powerful optimization techniques have been developed in the low-Reynolds-number
limit where viscous fluid forces dominate over inertial ones (Pironneau & Katz 1974; Tam
& Hosoi 2007, 2011; Eloy & Lauga 2012; Michelin & Lauga 2013; Montenegro-Johnson
& Lauga 2014; Was & Lauga 2014). These techniques exploit cleverly the linearity and
kinematic reversibility of the governing fluid equations at low Reynolds numbers to
organize the optimization phase space (Shapere & Wilczek 1987; Avron, Gat & Kenneth
2004). Furthermore, the linearity of the fluid dynamical equations also renders many
of the low-Reynolds-number optimization problems convex, so the optimum is unique.
The linearity and the time-reversibility of the governing equations do not hold when
the Reynolds number associated with the flow is finite or large, and consequently the
low-Reynolds-number techniques do not apply. In this regime, fundamental results are
few and far between. No choice other than computation by brute force exists for making
progress on fluid mechanical optimization problems. Modern computer hardware does
allow for retaining the infinite-dimensional nature of optimization space (Thévenin &
Janiga 2008; Pringle & Kerswell 2010; Pringle et al. 2012; Eggl & Schmid 2018; Boujo,
Fani & Gallaire 2019; Pasche et al. 2019). Techniques based on the adjoint formulation
that arise from using calculus of variations are used to derive gradients. Optimization is
then carried out by modifying iteratively the optimization variables along the gradient, or a
close variant thereof. However, the computational results of gradient-based methods from
problems with nonlinear constraints have not been definitive because of the possibility
of multiple local optima. An exhaustive computational search in the infinite-dimensional
state space is impossible, and consequently whether the global optimum was found has
remained unknown.

This article has two objectives. The first is to pose the fluid mechanical brachistochrone
problem and solve one of its instances. The problem asks for the shortest time to move an
object in a fluid a fixed distance within a limited work budget. The problem is inspired
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Brachistochronous motion of a flat plate

Flat plate

Boundary

layer

0

V (t̃ )

ỹ
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Figure 1. Schematic of a flat plate moving through a fluid.

by the brachistochrone problem introduced by Johann Bernoulli, which is generally
considered to have kick-started the calculus of variations (Goldstine 2012). Compared to
other extensions of Bernoulli’s original formulation (e.g. Camassa et al. 2008; Gurram
et al. 2019), the motivation behind our formulation of the fluid mechanical brachistochrone
differs. Ours is designed to epitomize high-Reynolds-number kinematic optimization and
highlight the essential difficulties introduced by fluid dynamic nonlinearities. The salient
characteristics of solutions to simple problems such as this one can be used as building
blocks to rationalize kinematic optimization results in more complex problems such
as biolocomotion. The second objective of this article is to demonstrate that the local
optimum found by adjoint-based numerical algorithms is globally optimal. We present a
computational test for this purpose. Such a test for fluid mechanical optimization problems
in the high-Reynolds-number case is constructed by exploiting the quadratic nature of the
nonlinearity in the governing fluid equations. A positive conclusion on this test establishes
that the computed local optimum also constitutes a bound on the objective function, and
therefore must be global.

The solution to the fluid mechanical brachistochrone in its full generality depends on
the shape of the object. Here, we seek to illustrate the essential features of the solution for
a streamlined body, where hydrodynamic drag is caused predominantly by skin friction.
With this in mind, we consider the case of a flat plate moving parallel to its surface.
Non-trivial flow occurs in a thin boundary layer near the plate and in its wake, which is
modelled by the Prandtl boundary layer equations. These equations retain the inertia of the
fluid, thus violating linearity and kinematic reversibility. No convexity results are known
for this case of the optimization problem, especially when the Reynolds number is large,
thus any computed local minimum need not be global.

The problem is equivalent to determining the profile of transient speed V(t̃) with time t̃
of a flat plate of length L moving parallel to its surface a distance D in time T (see figure 1)
that minimizes the mechanical work W̃ . The surrounding fluid of density ρ and viscosityμ
(with ν = μ/ρ) is of infinite extent and initially static, and the flow is considered laminar.
The plate is infinitesimal in its thickness and infinitely long in the third dimension so that
the resulting flow is two-dimensional and confined to a thin layer close to the plate.

The dimensionless parameters Re = ρDL/(μT) and ε = D/L represent the Reynolds
number and the target distance to be travelled relative to the plate length. We consider
the regime for Re � 1 and arbitrary ε, thereby retaining the essential nonlinearity in
the governing equations. This is in contrast to the case ε � 1 considered by Mandre
(2020), which eliminates the nonlinearity and, in return, facilitates an analytical solution.
Here we use a gradient-descent method based on calculus of variations for numerical
optimization, where an adjoint formulation is used to calculate the gradient. The details of
the adjoint-based gradient descent and characterization of the optimum kinematics are
presented in § 3. We find that for ε � 1, the minimum work W̃min needed for travel
in fixed duration T , or equivalently the shortest time Tmin under a work budget W̃ ,
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approach asymptotically

W̃min ≈ 1.328

√
μρD5L

T3 , Tmin ≈ 1.21

(
μρD5L

W̃2

)1/3

. (1.1a,b)

The result in (1.1a,b) also suffers from the possibility that the local minimum found
is not a global one. To confirm its global nature, we derive a sufficient condition for
global optimality and apply it computationally. We start in § 2 with the derivation of
this condition, which applies to optimization of quadratic objectives constrained by
quadratic partial differential equations. This addresses a major criticism of gradient-based
optimization methods, not only for fluid mechanical optimization but also generally for
quadratic programming problems. The condition uses the Lagrange dual formulation to
derive a bound on the objective function that agrees with the calculated optimum. The
condition is then used in § 3 to demonstrate computationally that the optimum found for
the brachistochrone problem is global.

2. Spectral condition for global optimality

Consider a time-independent region Ω occupied by a fluid for a time t ∈ [0, T]. The
objective is to find

Wmin = min
u(x,t)

W[u] ≡
∫ T

0

∫
Ω

(q(u)+ l(u)) dΩ dt (2.1a)

subject to ut + Q(u)+ L(u)+ C = 0, (2.1b)

for x ∈ Ω and t ∈ (0, T), where q(u) and Q(u) are quadratic, l(u) and L(u) are linear,
and C is constant in u and its spatial derivatives. In particular, assume that q(u) and
Q(u) do not depend on ut (here, subscript t denotes differentiation with respect to t).
The optimization may be over the initial condition for u (e.g. finding the minimal seed for
transition to turbulence – see Pringle & Kerswell 2010; Pringle et al. 2012), the boundary
condition for u (e.g. kinematic optimization – see Eggl & Schmid 2018; Boujo et al. 2019;
Mandre 2020), the forcing C (e.g. see Pasche et al. 2019), or any combination of the above.

The optimization proceeds by writing the Lagrangian

L[u,α] =
∫ T

0

∫
Ω

[
q + l − α · (ut + Q + L + C)

]
dΩ dt, (2.2)

where α(x, t) is the adjoint field. Accounts of how to find the adjoint and the gradients
δL/δu, and descend along it, can be found elsewhere (e.g. He et al. 1994; Mohammadi
& Pironneau 2004; Pringle & Kerswell 2010; Pringle et al. 2012; Passaggia & Ehrenstein
2013). Suppose that this process converges to u = u∗, corresponding to α = α∗ and W =
W∗.

To test if the converged state is a global minimum, we construct the Lagrange dual
D[α] = infu L[u,α]. The value of D[α] for any α is a lower bound on W[u] for u that
satisfies (2.1b) (Boyd & Vandenberghe 2004). The proof for (2.2) is as follows:

W[u] = L[u,α] � D[α], (2.3)

where in the first equality, we use that u satisfies (2.1b), and in the following inequality,
we use the infimum property of D.
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Brachistochronous motion of a flat plate

For the spectral condition, we choose α = α∗ to evaluate the bound. To determine
D[α∗], we need to minimize L[u,α∗] over all u, which is where the quadratic nature of the
functionals is instrumental. Since both W and (2.1b) are quadratic in u, the first variation
conditions in u are linear in u and identical to the adjoint equations employed during
the gradient descent. Thus they are satisfied automatically by u∗. But the satisfaction
of the first variation condition does not guarantee that u∗ is a minimizer. The total
nonlinear variation of H[u,α∗] = L[u,α∗] − L[u∗,α∗] determines whether u∗ is the
minimizer of L[u,α∗]. If the variation around the computed minimum can be proven
to be positive semi-definite, then the bounding property of the Lagrange dual implies
that the minimum is global. However, proving the positive semi-definiteness of a general
functional is difficult. Here, because of the quadratic nature of the functional, its positive
semi-definiteness can be tested by solving a linear eigenvalue problem. This quadratic
functional for the second variation of L is

H[u,α∗] =
∫ T

0

∫
Ω

(q − α∗ · Q) dΩ dt. (2.4)

If H[u,α∗] is positive semi-definite in u, then u∗ is the minimizer of L[u,α∗], and W∗
is its minimum. Instead, if H[u,α∗] is not positive semi-definite in u, then the minimum
D[α∗] is −∞. Mathematically,

D[α∗] =
{
W∗, if H[u,α∗] � 0 for all u,
−∞, otherwise.

(2.5)

Since ut does not appear in the integrand for H, the second variation is positive
semi-definite if and only if∫

Ω

(q − α∗ · Q) dΩ � 0 for all u and every t. (2.6)

To summarize, if (2.6) is satisfied, then W∗ is a lower bound on W[u] that is attained
at u∗, and is therefore the global minimum. Failure to satisfy (2.6) does not necessarily
mean that u∗ is not global but could imply a duality gap (Boyd & Vandenberghe 2004).
Duality gap is defined as the smallest possible difference W[u] − D[α] for u satisfying
constraints (2.1b). The duality gap is non-negative by definition and measures the tightness
of the bound offered by the Lagrange dual. The presence or absence of a duality gap for
general optimization problems is difficult to predict a priori. However, satisfaction of the
spectral condition demonstrates both the absence of a finite duality gap and the attainment
of a global minimum.

As an example, if (2.1b) represents the incompressible Navier–Stokes equations, then
u is the divergence-free velocity field, Q = u · ∇u + ∇p represents the advection term
(where ∇p ensures that Q is divergence-free), L = −ν∇2u represents the viscous term,
and C the body force term. For objectives such as the dissipation rate, q(u) = |∇u|2 and
l(u) = 0, the assumptions that the nonlinearities be quadratic and independent of ut are
satisfied. The corresponding condition for global optimality is∫

Ω

(|∇u|2 − α∗ · (u · ∇)u)dΩ � 0, (2.7)

over all divergence-free u, applied separately at each t. A condition equivalent to (2.7)
was derived by Doering & Constantin (1994) in the context of the background method
for turbulent transport. They named it the ‘spectral constraint’ because it requires that the
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self-adjoint linear operator underlying the quadratic form, i.e. the Hessian of L[u,α∗],
has non-negative eigenvalues. The interpretation of the background method in terms of a
Lagrange dual formulation was presented by Kerswell (1999), with which this derivation
shares much similarity. Based on this nomenclature, we term (2.6) the spectral condition.

3. Work-minimizing kinematics of a flat-plate

We now turn our attention to minimizing the work done to move a flat plate.

3.1. Mathematical formulation
In the limit Re � 1, the problem is formulated based on a thin viscous boundary layer that
governs the drag. The fluid outside this layer, to leading order in Re, remains stationary
as the plate moves. To model the flow in the boundary layer, we use a coordinate system
attached to the leading edge of the plate, as shown in figure 1, and a reference frame
attached to far field stationary fluid. The coordinates x̃, ỹ attached to the plate, and the
boundary layer flow velocity (ũ(x̃, ỹ, t̃), ṽ(x̃, ỹ, t̃)) in a reference frame of the far field fluid,
satisfy the Prandtl equations

ũt̃ + (ũ + V)ũx̃ + ṽũỹ − νũỹỹ = 0, (3.1a)

ũx̃ + ṽỹ = 0, (3.1b)

where subscripts x̃, ỹ and t̃ denote partial differentiation with respect to that variable. The
essential nonlinearity in fluid dynamics governing equations is due to the advection, which
is retained in this formulation. Exploiting the reflection symmetry, we consider only the
flow field for ỹ � 0 and the drag on one face of the plate. These equations are subject to
the boundary conditions

ũ(0 � x̃ � L, ỹ, t̃)+ V(t) = 0, (3.2a)

ũỹ(x̃ < 0 or x̃ > L, ỹ, t̃) = 0, (3.2b)

ũ(x̃, ỹ → ∞, t̃) = 0, (3.2c)

ũ(x̃ → −∞, ỹ, t̃) = 0, (3.2d)

ũ(x̃, ỹ, t̃ = 0) = 0. (3.2e)

The drag force is given by f̃ = 2
∫ L

0 μ ũỹ(x̃, ỹ = 0, t̃) dx̃, and the net work done for the
motion is

W̃ =
∫ t

0
V(t)

∫ l

0
2μ ũỹ(x̃, ỹ = 0, t̃) dx̃ dt̃. (3.3)

The variables are rescaled as

t̃ = Tt, x̃ = Lx, ỹ = δy, ũ = D
T

u, ṽ = Dδ
TL

v, (3.4a–e)

where δ = √
νT , to yield the dimensionless form of the governing boundary layer

equations as

M ≡ ut + ε(u + f )ux + εvuy − uyy = 0, (3.5a)

C ≡ ux + vy = 0, (3.5b)
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Brachistochronous motion of a flat plate

in the semi-infinite half-space y � 0, and

u|x∈P,y=0 + f (t) = uy|x ∈P,y=0 = 0, (3.6a)

v|y=0 = uy|y=∞ = u|x=±∞ = u|t=0 = 0, (3.6b)

where P = [0, 1] specifies the extent of the flat plate, and f (t) = (T/D)V(t̃) is the
dimensionless plate speed. Subscripts x, y and t on u and v denote partial derivatives.

The following notation will be also used

〈φ〉γ1...γm ≡
∫∫∫

φ dγ1 . . . dγm, (3.7)

where γi could be any of x, y or t. The limits of integration are [0, 1] on t, [0,∞] on y, and
[−∞,∞] on x. For example, 〈φ〉xy is

∫∞
0

∫∞
−∞ φ dx dy. For simplicity, 〈φ〉 ≡ 〈φ〉xyt.

The work done is W̃ = 2D2L
√
μρ/T3 W[ f ], where W[ f ] = 〈f (t) uy(x, y = 0, t)〉xt.

For (u, v) satisfying (3.5) and (3.6), the work done must appear as an increase in the
kinetic energy of the fluid or be viscously dissipated, i.e.

W[ f ] = Ŵ[ f ] ≡
〈

1
2 u2

∣∣∣
t=1

〉
xy

+ 〈u2
y〉, (3.8)

which is necessarily positive.
The objective of the optimization is to minimize W[ f ] subject to M = C = 0 in the

fluid. The Lagrangians using W[ f ] and Ŵ[ f ] are

L = W[ f ] − 〈αM + εβC〉 − λD (3.9a)

and
L̂ = Ŵ[ f ] − 〈α̂M + εβC〉 − λD, (3.9b)

respectively, where α(x, y, t), α̂(x, y, t), β(x, y, t) and λ are Lagrange multipliers, and

D = 〈f 〉t − 1 (3.10)

is the constraint on the distance travelled by the plate. We also define û = u + f , which is
the x-component of the fluid velocity in the reference frame of the plate. Gradient descent
is convenient using L because in these variables, the adjoint satisfies an equation similar
to that for u. On the other hand, the spectral condition is derived using L̂, which when
expressed in û reveals an eigenvalue problem with homogeneous boundary conditions. By
virtue of (3.8), the two formulations in L and L̂ are equivalent, related by α̂ = α + u.

The multipliers α and β satisfy the condition that first variations of L due to u and v
vanish, i.e.

αt + ε(u + f )αx + ε(vα)y + εβx + αyy = 0, (3.11a)

βy = αuy, (3.11b)

in y > 0, subject to the boundary conditions

α|x∈P,y=0 − f (t) = αy|x ∈P,y=0 = 0, (3.12a)

β|y=∞ = αy|y=∞ = α|x=∞ = α|t=1 = 0. (3.12b)
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Figure 2. Optimal f (t) for different ε coded according to the colour in the adjoining colourbar. The dotted
curve shows f0(t) from (3.19a), and the dashed curve shows unity.
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Wmin

λ
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101
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Figure 3. Minimum work for translating a flat plate and the verification of the corresponding spectral
constraint. (a) Plot of Wmin as a function of ε. The dotted line shows W0,min ≈ 1.014 from (3.19b), and
the dashed line shows 0.664ε1/2. (b) Minimum λmin = mint∈(0,1) λ(t) (blue circles) and maximum λmax =
maxt∈(0,1) λ(t) (red squares) of λ(t). Thus the region shaded grey shows the values taken by λ(t) for the
corresponding ε. By virtue of (3.18), the second variation (3.17) is given by λ〈ψ2 + ψ2

x + ψ2
y 〉. Since the

quantity in the angled brackets is positive definite, λ(t) being positive for all t implies that the second variation
in (3.17) is also positive definite, thus the spectral condition is satisfied.

The first variation with respect to f , given by

δL
δf

=
〈[

uy − αy
]

y=0

〉
x
− ε〈αux〉xy − λ, (3.13)

must also vanish.
The optimization is carried out using gradient descent in f using (3.13) while solving

(3.5), (3.6), (3.11) and (3.12) numerically, as described in Appendix A. We find that
this procedure converges to f = f∗, u = u∗, v = v∗, α = α∗ and W[ f ] = Wmin, as δL/δf
approaches 0. The converged profiles for f (t) are shown in figure 2, and the corresponding
Wmin in figure 3(a).
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Brachistochronous motion of a flat plate

3.2. Spectral condition
To prove that the computed minimum is global, we choose α̂ = α̂∗ = α∗ + u∗ and the
Lagrange dual

D[α̂] ≡ min
u,v,β,f

L̂. (3.14)

Because L̂ is quadratic in (u, v, β, f ), by virtue of (3.11) and (3.12) (u∗, v∗, β∗, f∗) is a
stationary point of L̂ in those variables, for which L̂ = Wmin. It is the second variation

H[α̂∗; u, v, f ] = Ŵ[ f ] − ε
〈
α̂∗((u + f )ux + vuy)

〉
(3.15)

in (u, v, f ) for (u, v) satisfying (3.5b) that determines whether (u∗, v∗, β∗, f∗) is a
minimum of L̂. This leads to

W[ f ] � D[α̂∗] =
{
Wmin, if H � 0 for all (u, v, f ),
−∞, otherwise.

(3.16)

The condition H � 0 is satisfied if for each t ∈ (0, 1), we have

Δ[u, v] = 〈û2
y − α̂∗ε(ûûx + vûy)〉xy � 0, (3.17)

for all (û, v) satisfying (3.5b) and (3.6).
Equation (3.5b) implies a stream function ψ such that û = ψy and v = −ψx.

Substituting this in (3.17) and integrating by parts yields the related optimization problem

λ(t) = min
ψ
Δ = min

ψ
〈ψ2

yy + εα̂∗xψ
2
y − εα̂∗yψxψy〉xy,

subject to 〈ψ2 + ψ2
x + ψ2

y 〉xy = 1

⎫⎬
⎭ (3.18)

for each t ∈ (0, 1). The solution of (3.18) implies Δ � λ(t) 〈ψ2 + ψ2
x + ψ2

y 〉xy and hence
the spectral constraint is satisfied if λ(t) � 0 for t ∈ (0, 1). Here, λ(t) is determined
numerically by constructing the generalized eigenvalue problem from the linear operators
underlying the quadratic forms in (3.18), which is described in Appendix A. As shown in
figure 3(b), λ(t) is positive for each t, thus proving that the local minimum found in § 3.1
is a global one.

3.3. Interpretation of the results
As seen in figures 2 and 3(a), the analytical solution by Mandre (2020) derived for ε � 1,

f (t) = f0(t) = Ct1/4(1 − t)1/4 (3.19a)

and
Wmin = W0,min ≈ 1.014, (3.19b)

where C ≈ 1.62, approximates the solution for finite ε � 0.5. As ε increases beyond,
the optimal f (t) departs from f0(t), while Wmin rises above W0,min. In particular, f (t)
starts from f (0) = 0 and ends at f (1) = 0 but flattens out in the middle. For ε � 5, f (t)
approaches unity, except at the start and the end. In other words, the optimum kinematics
to cover a distance D � L in time T is to cruise at the average speed U ≈ D/T , except to
start and stop. For ε � 1, Wmin is also observed to rise ∝ ε1/2.
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S. Mandre

The following dimensional argument rationalizes these observations. The drag
according to Blasius (1907) for a flat plate moving at steady speed U is given
by 0.664

√
μρU3L, and consequently, the work done to move the plate is W̃∞ =

0.664T
√
μρU5L. Consider covering the distance D = UT in two stages, of durations aT

and (1 − a)T , moving with speeds U1 = bU/a and U2 = (1 − b)U/(1 − a), respectively,
for constants a and b between 0 and 1. When ε � 1, steady state is reached much faster
than the duration of each segment, and the modified kinematics approximately incurs the
work

0.664T
√
μρU5L

(
b5/2

a3/2 + (1 − b)5/2

(1 − a)3/2

)
. (3.20)

This work is minimized when b = a, or U1 = U2 = U. In other words, the penalty
incurred in the work done when traveling fast outweighs the benefits accrued when
traveling slower, explaining why the optimum avoids modulation of the speed. Converting
W̃∞ to a dimensionless form yields Wmin ≈ 0.664ε1/2 for ε � 1, agreeing up to leading
order with the results of the computations as shown in figure 3(a). Accounting for the two
sides of the plate leads to (1.1a,b).

It is seen readily why the optimal profile avoids an impulsive start and stop. For t � 1
(and 1 − t � 1), owing to the development of the viscous boundary layer, the unsteady
inertia ut and shear viscosity uyy in (3.5) dominate, while advection ε(u + f )ux + εvuy
is negligible. Therefore, in the first variation condition (3.13), the dominant balance is
between uy and αy. For an impulsive start, the initial shear stress profile on the plate is
uy|y=0 ≈ f (0)/

√
πt due to the growth of the boundary layer thickness proportional to√

t. The adjoint dynamics, due to their backwards evolution in time, does not ‘know’
about the impulsive start, and therefore cannot generate an αy that matches this asymptotic
behaviour. This behaviour can be observed explicitly in the analytical solution for ε � 1
(Mandre 2020) and carries over to finite ε. Therefore, for small t, one can always reduce
the work done by eliminating any impulsive start (and analogously an impulsive stop).

We also find that for finite ε, the optimal starting and stopping dynamics behave
proportionally to t1/4 and (1 − t)1/4, respectively. This is observed in the numerical
solution for over four orders of magnitude in t, as shown in figure 4. The reason is
analogous to that in the analytical solution for vanishing ε in (3.19). Near the starting and
stopping times, the advection is negligible and the optimal kinematics is governed by the
viscous diffusion of momentum within the fluid, just as is the case when ε � 1 (Mandre
2020), which causes this behaviour. To see this more clearly, consider the approximations
of (3.5a) and (3.11a) for small t,

ut − uyy ≈ 0, (3.21a)

αt + αyy ≈ 0, (3.21b)

driven by the boundary conditions u|y=0 = −f (t) and α|y=0 = f (t). The approximate
gradient for small t is dominated by

δL
δf

≈
〈[

uy − αy
]

y=0

〉
x
. (3.22)

The first term in this expression is the part of the variation arising from a change in f (t),
while the second term arises from the resulting variation in the shear force on the plate.
Because x derivatives drop out of this approximation, the solution to (3.21) is uniform in x,
and the integral in x can be dropped. Elimination of an impulsive start implies a power-law
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Brachistochronous motion of a flat plate

10−7 10−4 10−1

t

10−2

10−1

100

10−2

10−1

100

f (t)

(a) (b)

−10−2 −10−4 −10−6

t − 1

Figure 4. Optimal starting and stopping kinematics plotted on a logarithmic scale. (a) Starting kinematics;
colour code identical to that in figure 2; dashed line shows t1/4. (b) Stopping kinematics; dashed line shows
(T − t)1/4.

behaviour for f at small t, say f (t) ≈ atn for 0 < t < t̂, where t̂ � t is a time until which the
approximation remains valid. The Dirichlet-to-Neumann map for the heat equation (3.21)
then implies

uy|y=0 ≈ −
∫ t

0

ansn−1
√

π(t − s)
ds = −antn−1/2

√
π

∫ 1

0

wn−1
√

1 − w
dw, (3.23a)

αy|y=0 ≈ −
∫ t̂

t

ansn−1
√

π(s − t)
ds = −antn−1/2

√
π

∫ 1

t/t̂

1

wn+1/2
√

1 − w
dw, (3.23b)

where the second half of each equation is derived by using the transformation w = s/t for
(3.23a) and w = t/s for (3.23b). Substituting in (3.22) and using t/t̂ ≈ 0 yields

δL
δf

≈ antn−1/2
√

π

∫ 1

0

1√
1 − w

(
1

wn+1/2 − wn−1
)

dw. (3.24)

For this leading-order estimate of the gradient to vanish, the integrand must vanish, which
yields n = 1/4. In other words, the variations arising from perturbing the plate speed and
those arising from the resulting perturbation in shear stress both scale as tn−1/2 for plate
speed ∝ tn. The coefficient of proportionality is calculated as the integral in (3.24). It
is necessary that the coefficient vanishes for the variation to be zero, which happens to
leading order for n = 1/4.

Equations (3.21)–(3.22) are invariant under the transformation where u and α are
exchanged, f → −f , and t → 1 − t. Thus the transformed version of the derivation above
also predicts the dependence proportional to (1 − t)1/4 for f (t) near t = 1. Furthermore,
the invariance described above and asymptotic independence to departures from the
power law (which enable setting t/t̂ → 0 in (3.23b)) implies that even the constant of
proportionality, a, is the same for the starting and stopping kinematics. In other words,
f (t) ∼ at1/4 near t = 0 and f (t) ∼ a(1 − t)1/4 near t = 1, with the same value for the
coefficient a. This is observed readily in the analytical solution for the case ε � 1 from
(3.19), and is verified numerically in figure 5 for all ε. Thus the optimal starting and
stopping kinematics are asymptotically identical for all ε.

Finally, we observe that for ε � 1, the starting and stopping dynamics as a function of εt
are independent of ε, as seen in figure 6. (Here, εt is the ratio of the dimensional distance
covered when travelling at speed D/T to the dimensional plate length.) For ε � 5, these
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10−1 100

ε
101

1.5

2.0

3.0

a

Figure 5. The coefficient a in the asymptotic power-law dependence f (t) ∼ at1/4 for t � 1 (blue circles),
and f (t) ∼ a(1 − t)1/4 for 1 − t � 1 (red crosses). The coefficients are obtained by determining the best-fit
coefficient in the range 0.5 < f (t) < 0.3. The dotted line shows C = 1.62, which is the asymptotic value for
ε � 1, according to (3.19). The dashed curve shows the result for the asymptotic limit ε � 1 from (3.29a,b).

optimal starting and stopping dynamics approach successively closer to limiting curves.
These limiting curves denote the work-minimizing kinematics for the flat plate to attain
a constant cruising speed from rest, and to stop from the cruising motion, respectively.
These starting and stopping kinematics do not depend separately on the total distance
travelled D or the time taken T , but depend only on the cruising speed. For the purpose
of determining the optimal startup and stopping kinematics, we non-dimensionalize the
target cruising speed to unity. The governing equations to determine this kinematics are
identical to the ones developed in § 3.1, with the following exceptions. The variables t
and y are rescaled as εt = t′ and y

√
ε = y′, and formally, t′ ranges from 0 to τ → ∞ (all

the integrals in (3.9) are now over the semi-infinite time interval). The distance travelled
condition D = 0 is replaced by the unit target cruising speed

D′ = lim
τ→∞

1
τ

∫ τ

0
fstart(t′) dt′ − 1 = 0. (3.25)

An additional constraint that the final velocity profile approaches the Blasius steady-state
profile us(x, y, t) with us(x ∈ P, y = 0, t) = −1 is added. Imposing a target final state for
u implies that the condition for starting the backwards time-integration of α must be
determined as part of the solution. This condition is determined trivially to be the steady
solution of (3.11) with u = us, u(x ∈ P, y = 0, t) = −1 and α(x ∈ P, y = 0, t) = 1. The
numerical procedure described in Appendix A then yields the optimum startup kinematics.

For the optimum stopping kinematics, the time variable t′ is shifted so that the final
time is zero. The initial state for u is us, and the final state is unknown. Therefore, α = 0
at t′ = 0 holds. The distance travelled condition is replaced by

D′′ = lim
τ→∞

1
(−τ)

∫ 0

−τ
fstop(t′) dt′ − 1 = 0. (3.26)

Following the numerical procedure in Appendix A then yields the optimal stopping
kinematics. Figure 6 shows that the profiles for finite but large ε converge to the optimal
starting and stopping kinematics. An empirical but convenient fit

fstart(t′) = (1 − e−At′)1/4, fstop(t′) = (1 − eBt′m)1/(4m), (3.27a,b)

with A ≈ 2.62, B ≈ 2.06 and m ≈ 0.70, approximates the computed starting and stopping
dynamics with correct asymptotic behaviour and an error with an L1 norm <1 %.
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Brachistochronous motion of a flat plate

0 1 2
0

0.5

1.0
(a) (b)

0

0.5

1.0

f (t)

−2 −1 0
ε(t − 1)εt

Figure 6. Optimal starting and stopping kinematics. (a) Startup dynamics of optimal kinematics for ε = 5, 10,
20 and 50 (same colour code as in figure 2) plotted against εt. The solid black curve shows the optimal starting
kinematics, and the overlapping dotted green curve shows the empirical fit in (3.27a,b). (b) Same as (a), but for
stopping kinematics.

A composite expression for the optimal kinematics for ε � 1 can now be constructed
using fstart and fstop. Because fstart � 1, the distance travelled by the plate always lags
behind one moving with cruising speed. Indeed,

∫∞
0 ( f (t′)− 1) dt′ ≈ −0.14, implying in

dimensional terms that by the time steady cruising at a speed Uc is reached, the optimal
kinematics lags a distance 0.14L × (UcT/D) behind. Similarly, an additional distance
0.43L × (UcT/D) is lost when stopping. Thus the total distance travelled in time T
is UcT(1 − 0.57/ε). Equating this distance to D yields Uc = (D/T)/(1 − 0.57/ε). The
corresponding composite expression for f (t) is

f (t) ≈ fstart(εt)+ fstop(ε(t − 1))− 1
1 − (0.57/ε)

. (3.28)

Near t = 0 and t = 1, respectively, this composite expression approaches

f (t) ∼ (Aεt)1/4

1 − (0.57/ε)
and f (t) ∼ [ε(1 − t)]1/4 B1/(4m)

1 − (0.57/ε)
, (3.29a,b)

which agrees with the computed solutions for large but finite ε, as shown in figure 5. The
equality of the asymptotic startup and stopping kinematics in (3.29a,b) implies A ≈ B1/m,
which is satisfied approximately to about 8 %.

Finally, we test the validity of the Prandtl boundary layer approximation, which neglects
the νũx̃x̃ term from the Navier–Stokes equations. The size of this term depends on the
boundary layer thickness δ, which in turn depends on the asymptotic regime in ε. So long
as the boundary layer is thinner than L, the boundary layer approximation applies far from
the edges of the plate. In a region of length � ∝ √

νt from the edges, the boundary layer
approximation fails. The contribution of this region to the drag force on the plate scales as
μU (where U = D/T), whereas the drag on the rest of the plate scales as μUL/δ, which is
a factor O(L/δ) larger. Thus from both of these sources, the boundary layer approximation
commits an error of O(δ/L).

For ε � 1, the boundary layer thickness is δ ∝ √
νt, which grows no thicker than√

νT . Thus in this regime, the condition for validity of the approximation is δ � L,
which is independent of the Reynolds number. An identical conclusion was reached
by Mandre (2020) in a more general case. For ε � 1, the boundary layer grows to
a maximum thickness that scales as δ ∝ √

νL/U, and the error in the boundary layer
approximation scales as δ/L = O(Re−1/2). Thus in this regime, the condition for validity
of the approximation is Re � 1.
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4. Discussion and conclusion

We have characterized the fastest motion of a flat plate moving parallel to its surface a fixed
distance within a work budget. The salient results are as follows. The optimum velocity
of the plate starts from rest as t̃1/4 and comes to a complete stop as (T − t̃)1/4. When the
distance travelled is large compared to the plate length, the optimum kinematics consists
of an optimum startup, followed by a uniform cruising and an optimum stopping. In this
case, the minimum time for displacement is given by (1.1a,b). The spectral condition is
used to prove that the computed local minimum is a global one.

These results, in essence, apply to motion of streamlined bodies such as aerofoils
where the drag arises from skin friction and can be used for open-loop programming
of underwater robotics. The state-of-the-art approach in controlling underwater actuators
uses a parameterization of the hydrodynamic forces (McMillan, Orin & McGhee 1995;
Yuh & West 2001; Sivčev et al. 2018), thus eliminating salient features of the optimum
kinematics governed by the boundary layer growth. The solution can also be used
as a test for more sophisticated computational implementations of fluid mechanical
optimization.

The implication of the spectral condition goes beyond the solution of the
brachistochrone. The derivation of the spectral condition is inspired by elements of the
upper bound theory for Navier–Stokes equations to bound properties of turbulence (Hopf
1940; Doering & Constantin 1992, 1994; Constantin & Doering 1995; Nicodemus et al.
1997a). The theory seeks upper bounds on properties of turbulent flow, e.g. the dissipation
rate. If the bounding analysis is posed in terms of an optimization framework, with the
Navier–Stokes equations as constraints, then the Lagrange dual can be used to derive the
bound (Kerswell 1999). Analogous to the presentation in § 2, the spectral constraint also
follows naturally in upper bound theory.

In this article, the principles from the upper bound theory are modified and applied
to computational optimization of fluid flow. Such optimization employs the adjoint
formulation for efficient implementation of gradient descent but suffers from the
uncertainty of being trapped in a local minimum. By leveraging the similarity between
the adjoint-based gradient descent and the upper bound theory, we have presented
the spectral condition to address this difficulty. The biggest drawback of applying the
spectral condition is that when it fails, it gives no indication of the underlying reason.
The failure could be because the local optimum is not a global one, or because of a
duality gap. More work is needed to be able to distinguish between these possibilities.
When the condition succeeds, as it did for the solution presented here, the possibility
of the global optimum being different from the one found is eliminated. The spectral
condition amounts computationally to an additional (possibly generalized) eigenvalue
problem per time step of the converged local optimum. Compared to the iterations
for gradient descent, the computational effort for testing the spectral condition is
marginal.

For the spectral condition, the domain Ω is assumed to not vary with t. This
means that for problems with deforming boundaries, e.g. sloshing (Ibrahim et al. 2001;
Terashima & Yano 2001), shape (Mohammadi & Pironneau 2004, 2010; Brandenburg
et al. 2009) and kinematic (Kern & Koumoutsakos 2006; Gazzola, Van Rees &
Koumoutsakos 2012; van Rees, Gazzola & Koumoutsakos 2015; Maertens et al. 2017)
optimization problems, the variable domain needs to be mapped to a fixed reference
domain (Brandenburg et al. 2009). When this transformation maintains the quadratic
nature of the Navier–Stokes equations, the spectral condition remains applicable.
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Brachistochronous motion of a flat plate

The coordinates used for the flat-plate brachistochrone considered in § 3 illustrate such a
transformation.

The spectral condition can also be used in optimization problems constrained by
other quadratic partial differential equations, e.g. the Foppl–von Kármán equations for
deformation of flat plates (Jones & Mahadevan 2015), the Korteweg–de Vries equation for
waves (Dalphin & Barros 2018), the Kuramoto–Sivashinsky equation for reacting flows
(Gomes, Papageorgiou & Pavliotis 2016), and partial differential equations used for image
processing (Aubert & Kornprobst 2006).

From a fundamental perspective, the fluid mechanical brachistochrone is a prototypical
example of fluid mechanical optimization, in the same way as the brachistochrone problem
is for calculus of variations. In this way, the significance of the solution that we have
presented surpasses these applications.
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Appendix A

The elimination of the highest x derivatives in the Navier–Stokes equations made by the
boundary layer approximation causes a loss of regularity in the imposition of the spectral
condition. A term σ 〈v2

x 〉, with σ � 1, is added numerically to W and Ŵ to restore this
regularity. We use σ = 10−2. We use a computational domain −3 � x � 3 and 0 � y � 8.
Smaller values of σ and larger domains do not change the results presented here.

A.1. Numerical solution and gradient descent
Equations (3.5) are discretized on a fixed non-uniform grid in t, y and x, such that grid
points are clustered closer to t = 0 and 1, y = 0, and x = 0 and 1. (A number of different
clustering schemes were tested to verify the two-digit accuracy in the numerical results.)
The partial differential equations (3.5) were discretized using first-order upwind finite
differences – the term (u + f )ux was treated explicitly, while vuy and uyy were treated
implicitly in time. The adjoint equations (3.11) were discretized to be the numerical
adjoints of the discretization of (3.5). A two-level checkpointing scheme (Griewank &
Walther 2000) is used to generate u and v needed to integrate the adjoint variables
backwards in t. This procedure ensures that for any discretized f (t), the numerical solution
satisfies the discretized versions of (3.5), (3.6), (3.11) and (3.12), and the first variation
δL/δf from (3.13) can be calculated. The optimization in f is achieved using gradient
descent by starting from an initial guess f 0(t) = 1, and iteratively updating it as f n+1(t) =
f n(t)+ s(δL/δf ), for a fixed small number s ≈ 10−3. The multiplier λ in (3.13) is chosen
so that D = 0 is satisfied by f n+1.
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A.2. Numerical verification of the spectral constraint
The solution of (3.18) is the smallest eigenvalue of the generalized eigenvalue problem
Aψ = λBψ , where

Aψ ≡ ψyyyy + σψxxxx − ε

[
(α̂∗yψy)y + (α̂∗xψx)y + (α̂∗xψy)x

2

]
, (A1a)

Bψ ≡ ψ − ψxx − ψyy. (A1b)

The boundary condition u = 0 as x → ±∞ needs closer examination, because this implies
û = f /= 0 there, which needs to be solved as part of the eigenvalue problem. Noting
that u = 0 is equivalent to ûx = ux = 0, the eigenvalue problem is solved with the latter
boundary condition. The value of f can then be read off from the solution. As before, these
operators are programmed as sparse matrices based on the finite-difference discretization.
An implicitly restarted Lanczos algorithm for symmetric matrices from the ARPACK
library (Lehoucq, Sorensen & Yang 1998) in shift-invert mode is then used to find the
smallest eigenvalue.
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