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Abstract

This paper studies an otherwise standard principal-agent problem with hidden

information, but whether there are positive production externalities between agents:

the output of any agent depends positively on the e¤ort expended by other agents.

It is shown that the optimal contract for the principal exhibits two-way distortion:

the e¤ort of any agent is oversupplied (relative to the …rst-best) when his marginal

cost of e¤ort is low, and undersupplied his marginal cost of e¤ort is high. This pat-

tern of distortion cannot otherwise arise in optimal single- or multi-agent incentive

contracts, unless there are countervailing incentives. However, unlike the counter-

vailing incentives case, the pattern of distortion is robust to the precise form of the

externality.

¤I would like to thank an anonymous referee for very valuable comments.



1. Introduction

There is now a considerable literature on the principal-agent problem with multiple agents,

both with hidden action and hidden information. Multiple-agent problems only di¤er from

single-agent problems if there is some interaction between the agents. The two main forms

of interaction that are of interest are …rst, production externalities between agents (the

output of a particular agent depends on the e¤ort of other agents), and second, statistical

correlation in the environments of the agents.

Most of the literature so far has focussed on the second kind of interaction. For example,

in the hidden information case, a literature, starting with Demski and Sappington[4], has

focussed on the implications of (positive) correlation of the cost of e¤ort of two agents. It

turns out that, even in the case where agents are identical ex ante, before their private

information is revealed, the optimal contract for the principal treats the agents asymmet-

rically, recruiting one of the agents as a “policeman”, who can report on the type of the

other agent (Demski and Sappington[4], Glover[6], Ma, Moore and Turnbull[13]). Again,

in principal-agent problems with hidden actions, attention has focused on the case where

the production functions that map e¤orts of the agents into outputs are subject to corre-

lated random disturbances. In this setting, comparative compensation contracts, such as

contests, may be optimal (Mookherjee[16], Nalebu¤ and Stiglitz[17]).

By contrast, the implications of production externalities for the contract design have

little studied1 in the hidden action case, and not at all (to my knowledge) in the hidden

information case. This paper presents an analysis of a principal-multi-agent model with

hidden information where there are (positive) production externalities between agents. The

main …nding is that, in the optimal contract for the principal, the distortions that arise

relative to the …rst-best are quite novel: they cannot arise in principal-multi-agent models

without production externalities, even with correlated costs, unless the reservation utilities

of the agents vary with their cost-type in such a way that agents face countervailing incen-

1Exceptions are Che and Yoo[2], Itoh[9], Kandal and Lazear [10], and Mookherjee[16], all of whom

consider hidden action models. However, none of these papers is very close to this one, for reasons explained

in detail in the conclusions.
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tives in revealing cost information to the principal2. Here, we abstract from countervailing

incentives (by assuming that all agents have a reservation utility of zero) and show that

nevertheless, there is two-way distortion in output: an agent will choose an ine¢ciently low

value of output for some values of his private information, and an ine¢ciently high value

for other values.

The basic principal-agent model studied here is one where a number of agents choose

e¤ort to produce outputs: the output of agent i depends not only on his own e¤ort, but

also positively on the average e¤ort made by all other agents (the externalities are those

studied by Cooper and John[5] under the heading of “input games”). The basic model is

extended in Section 5 to allow for a richer structure of production externalities.

The marginal cost of e¤ort to agent i is parameterized by a variable µi, which is i0s

private information, and the µi are independently distributed3. There are no countervailing

incentives; reservation utility is zero for all agents. A contract o¤ered by the principal

to each agent is a choice of output and a monetary transfer, conditional on the vector of

reported µs from all agents.

We study incentive-compatible contracts for the principal in this setting, i.e. contracts

where it is either a dominant or Nash equilibrium strategy for each agent to tell the truth.

We assume that the number of agents is “large”; under this condition, we show that the

principal is no worse o¤ o¤ering a dominant-strategy incentive-compatible contract than a

Nash incentive-compatible one (see Proposition 1), and so we can without loss of generality

consider just the former class of contracts4. We show that, under quite weak conditions5,

2See Lewis and Sappington[12], Maggi and Rodriguez-Clare[15]. We discuss this literature in more detail

in Section 7.
3In fact, we assume a measure space of agents, where the distribution of marginal costs across agents is

common knowledge. However, this can be interpreted as the limiting case of a model with a …nite number

of agents, where the marginal costs of agents are independently and identically distributed.
4This is in contrast to the literature on two-agent models with private (correlated) information, where

the dominant-strategy incentive constraints are more restictive than the Bayes-Nash incentive constraints.
5See Theorem 1 below for a full statement of su¢cient conditions; these comprise standard conditions

on cost and revenue functions, plus some weak conditions on the spillovers between agents, and …nally the

requirement that the cost function must be separable in the agent’s e¤ort and cost parameter, and convex

in the latter.
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for the principal’s optimal contract in this class, the output of agent i is oversupplied for

low values of µi, and undersupplied for high values of µi.

The intuition is simple. First, as in the standard principal-agent model, for any value

of µi, the informational rent captured by any agent i is increasing in the e¤ort put in

by that agent. It follows from this that informational rent captured by any agent i is

decreasing in average output of agents j 6= i, as an increase in the average output of

agents j 6= i decreases the amount of e¤ort agent i needs to put in to produce a given

output. So, there is an interaction between the production externality and informational

rent. This interaction means that the principal has an additional incentive (over and above

the production externality) to raise the output of any agent i. This incentive co-exists

with the standard incentive -absent the externality - for the principal to restrict agent i0s

output in order to reduce agent i0s own informational rent, and so two-way distortion is the

outcome.

So, one way of expressing this intuition is to observe that in the setting of this paper, the

principal, rather than the agents, faces countervailing incentives; that is, he faces incentives

both to lower and raise the output of any particular agent relative to the …rst-best. This

intuition also relates to the general point, made e.g. by Sappington[18], that a principal

may introduce distortions in other instruments to better limit agents’ rents. In this case, the

extra instrument that the principal has, when facing any particular agent, is the (average)

output of other agents. Seen in this way, the main contribution of this paper is to establish

the precise pattern of the distortion in the other instrument.

A second notable feature6 of the optimal contract is that the transfer from principal

to agent has a yardstick property i.e. the transfer to some agent i is (at some point)

decreasing in the output of the other agent(s). This is the case even though the types of

the agents are uncorrelated, so the principa1 cannot exploit the correlation between agents’

6It is of course, well-known that in principal-multi-agent schemes with statistical correlation of costs

across agents, comparative compensation of the agents is often optimal. As shown by Nalebu¤ and

Stiglitz[17], and Mookherjee[16], contests (where agents are compensated only on the basis of the ordinal

ranking of their outputs) are sometimes optimal, and contests certainly have the yardstick property. More-

over, necessary and su¢cient conditions for contracts to be independent are very strong (Mookherjee[16]).
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types to extract additional informational rents, as in Cremer and McLean[3], Demski and

Sappington[4].

The arrangement of the rest of the paper is as follows. The model is presented in Section

2, and dominant-strategy incentive-compatible contracts are characterized in Section 3. The

main results on two-way distortion are presented in Section 4. Section 5 extends these results

to a richer class of production externalities. Section 6 discusses the yardstick property of

the optimal contract, and Section 7 discusses the related literature, especially the work on

countervailing incentives an principal-multi-agent problems, and concludes.

2. The Model

The model is an otherwise standard principal-multi-agent model with production exter-

nalities between agents. It is analytically convenient (for reasons explained in the next

section) to work with a “large” number of agents. Let the space of agents be (I;S; ¹),
where I = [0; 1]; S is the Borel ¾-algebra on I, and ¹ is the Lebesque measure. Every agent

provides e¤ort level ei 2 <+ at cost

ci = c(ei; µi)

where µi 2 [µ; µ] = £ parameterizes i0s cost of e¤ort. We assume the following properties

of c(:; :);

A1. ce; cµ; cµe; > 0, cee; cµee; cµµe ¸ 0:

These inequalities include the standard assumptions of positive and increasing marginal cost

of e¤ort, and the single-crossing condition cµe. A special case that satis…es A1 is c(e; µ) =

µe: The parameter µi is private information of agent i.

The agent also receives a transfer ti 2 < of a numeraire good from the principal, so his

utility from the pair (ei; ti) is

ui = ti ¡ c(ei; µi) (1)

Every agent has a reservation utility of zero, so there are no countervailing incentives for

agents.
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Spillovers are speci…ed as follows. We suppose that the agents are all engaged in produc-

tion processes, where the marginal product of any agent’s e¤ort is a¤ected by the average

e¤ort of the others, e =
R
I
eid¹. In other words, the set of agents I is a team, and the team

production technology is such that the spillover for agent i from the e¤ort of agent j 6= i is

the same as from the e¤ort of any other agent k 6= i. This is a natural simplifying assump-

tion often made when studying games with production externalities and large numbers of

players (e.g. Cooper and John’s [5] “input games”). It is relaxed in Section 5.

Following Cooper and John[5], we suppose the externality takes the following form:

qi = eig(e) (2)

where qi is output of i: We assume that g is twice continuously di¤erentiable, and that it

satis…es:

A2. g(e); g0(e) > 0; e 2 <+:

These assumptions are reasonable: g0 > 0 says that the spillover is positive, and g > 0

requires in particular that any agent i can produce even if all others do not i.e. g(0) > 0.

We choose units so that g(0) = 1: An example satisfying A2 is g = 1 + e®, 0 < ® · 1:

The production function (2) implies that the cost to agent i in e¤ort units of producing

qi also depends on aggregate output q: First, integrating over all the agents, (2) implies

q = eg(e) (3)

where q =
R
I
qid¹. Then, as g0(e) > 0, e 2 <+; the relationship (3) can be inverted on <+

to give e = °(q): But then from (2), we can write

ei = qis(q); s(q) =
1

g(°(q))
(4)

So, qis(q) is the amount of e¤ort required for agent i to produce output qi: Note that

s0(q) = ¡s2g0°0 < 0 as both g0; °0 > 0. That is, the higher aggregate output, the lower the

e¤ort required for i to produce some …xed output qi. Note also that as we have assumed

g(0) = 1, s(0) = 1 also.

The output of agent i generates revenue for the principal of r(qi), where r(:) is strictly

increasing and strictly concave: The idea here is that agent’s outputs are di¤erentiated and
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sold in separate markets7. The principal keeps the aggregate revenue net of payments, and

so gets pro…t

¼ =

Z

I

[r(qi)¡ ti]d¹ (5)

Following Demski and Sappington[4], we de…ne a contract8 as a compensation -output

pair (ti; qi) for each agent i 2 I as a function of all the cost announcements µ̂ =
³
µ̂i

´
i2I
: As

all agents are ex ante identical, we can focus on anonymous contracts where (ti; qi) depends

only on µ̂i and the distribution of announced characteristics. These contracts are de…ned

formally in the next section.

The order of events is now as follows. First, the principal chooses an anonymous contract.

Then, every agent i 2 I simultaneously announces a type µ̂i 2 £. Finally, production takes

place and transfers are made.

3. Incentive-Compatible Contracts

We begin by de…ning anonymous contracts. We assume that µi:I ! £ is a measurable

function. Consequently, we can de…ne the measure º on £ by º(A)=¹(fi 2 I jµi 2 Ag), for

all A in the Borel ¾-algebra on £; so; º is the distribution of (true) costs on £: Also, let

º̂ 2 P (£) be the distribution of announced costs on £ ; that is, º̂(A) = ¹
³n
i 2 I

¯̄
¯µ̂i 2 A

o´

for all Borel sets A ½ £ : Obviously, if all agents tell the truth, then º̂ = º: Note that9

7An alternative assumption would be that the agents’ outputs are identical, and so sold in the same

market, in which case revenue would be r = r(
R
I
qid¹): In this case, the analysis is exactly the same, except

we must strengthen A1 slightly by imposing cee > 0 to ensure an unique solution to problem P below.
8It would of course be possible in principle to have contract where the principal chooses a compensation-

input pair (ti; ei). However, following much of the principal-agent literature, we suppose that e¤ort is

non-contractible (Hart[7]).
9For this to be the case, we require the sets fi 2 I jµi 2 Ag ;

n
i 2 I

¯̄
¯µ̂i 2 A

o
to be measurable with

respect to ¹ for all Borel sets A ½ £: The …rst sets are all measurable as the map f(i) = µi is assumed

measurable with respect to ¹. The second sets are all measurable if, in turn, the “announcement function”

h (i.e. h(i) ´ µ̂i) mapping I into £ is assumed measurable with respect to ¹. In the announcement game,

agents are restricted to play anonymous strategies i.e. agent i announces µ̂i = ¾(µi), where ¾ : £ ! £ is

measurable with respect to º:(see below): So, the “announcement function” is the composition h = ¾ ± f;

where f(i) = µi: As, both ¾; f are measurable by assumption, so is h (Hildenbrand [8], p42).
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º; º̂ 2 P (£); where P (£) is the set of (Borel) probability measures on £:We now have:

De…nition 1. An anonymous contract is a pair of functions t : £ £ P (£) ! <; q :
££ P (£) ! <+ where agent i is o¤ered (ti; qi) = (t(µ̂i; º̂); q(µ̂i; º̂)) i¤ he announces a type

µ̂i and distribution of announced costs is º̂.

So, with an anonymous contract, (ti; qi) depends only on i0s announced cost and the

distribution of announced costs º̂: Consequently, the payo¤ to any agent i 2 I with µi = µ

who makes a cost announcement µ̂ depends only on µ; µ̂; º̂;

u(µ; µ̂; º̂) ´ t(µ̂; º̂)¡ c(q(µ̂; º)s(q̂); µ); q̂ =
Z

z2£
q(z; º̂)dº̂ (6)

Note that q̂ is the average output across all agents, given a distribution º̂ of announced

characteristics.

So, given a …xed anonymous contract, the agents play an “announcement” game. As

any agent’s utility depends only on his own action µ and the aggregate distribution of

actions, this is an anonymous game (Mas-Colell[14]). It is therefore natural to restrict

i0s announcement to depend only on his cost characteristic. So, following Mas-Colell[14],

we assume that a strategy pro…le in the announcement game is a measurable function

¾ : £ ! £, where i’s strategy is ¾(µi) = µ̂ i¤ µi = µ.

We can now de…ne dominant-strategy and Nash incentive-compatible contracts.

De…nition 2. An anonymous contract is dominant-strategy incentive-compatible i¤

u(µ; µ; º̂) ¸ u(µ; µ̂; º̂), all µ; µ̂ 2 £, all µ̂ 6= µ; all º̂ 2 P (£) (7)

That is, truth-telling (¾(µ) = µ) is a dominant-strategy for any agent in the announcement

game. Nash incentive-compatible contracts are de…ned similarly;.

De…nition 3. An anonymous contract is Nash incentive-compatible i¤

u(µ; µ; º) ¸ u(µ; µ̂; º), all µ; µ̂ 2 £, all µ̂ 6= µ (8)

That is, truth-telling is a Nash equilibrium in the announcement game; it is best for any

agent to tell the truth, given the distribution of announced costs is the true one.

Our …rst result gives conditions under which a contract is dominant-strategy or Nash

incentive-compatible. This, and all subsequent results, are proved in the Appendix.
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Proposition 1. A contract (tD; qD) is dominant-strategy incentive- compatible i¤ it

satis…es

tD(µ̂; º̂) = c(qD(µ̂; º̂)s(q̂); µ̂) +

Z ¹µ

bµ
cµ(qD(z; º̂)s(q̂); z)dz +AD; AD 2 < (9)

for all (µ̂; º̂) 2 ££ P (£), where q̂ is de…ned as above, and

@qD(µ̂; º̂)

@µ̂
· 0 almost everywhere on £ (10)

Moreover, there is a dominant-strategy incentive-compatible contract that yields the prin-

cipal the same payo¤ as her highest payo¤ from the Nash incentive-compatible contract.

Proposition 1 indicates that the principal can restrict attention to dominant-strategy

incentive-compatible contracts. So, we drop the “D” subscript on qD; tD without loss of

generality. The dependence of this pair on the measure of announced characteristics, º̂,

is suppressed below for brevity except where appropriate, so we may write an anonymous

contract simply as (t(µ); q(µ))µ2£.

It is also a result of independent interest for the following reason. It is well-known that

when the number of agents is …nite (e.g. with two agents) in problems of this types, the prin-

cipal can generally do better with Nash incentive-compatible contracts than with dominant-

strategy contracts, under the assumption that the truth-telling equilibrium prevails, as the

constraints placed on contract design are less demanding (Demski and Sappington [4]).

The key assumption that generates this equivalence for the principal is that the number

of agents is “large”, not any of the other assumptions of the model. For then, from the

point of view of any particular agent i 2 I , the behavior of other players in the “announce-

ment” game is non-stochastic in the aggregate i.e. every player faces a …xed distribution

of announcements v̂. To see this, suppose that we have a general production technology

where the spillover s depends on the entire distribution of output, Â, not just the average q.

Then, inspection of the proof of Proposition 1 reveals that the result goes though as before,

where s(Â) replaces s (q).
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4. Contract Design and Two-Way Distortion

The problem faced by the principal is to choose a (dominant-strategy) incentive-compatible

contract to maximise his pro…t, de…ned in (5), from among the class of such contracts. The

problem can be formulated as follows. First, let F : £ ! [0; 1] be the distribution function

of costs de…ned as F (x) = º([µ; x]), and suppose that F (:) is absolutely continuous, with

density f(:) > 0: Also, let w(µ) ´ u(µ; µ; º): Then the principal’s payo¤ is;

¼ =

Z µ

µ

[r(q(µ))¡ t(µ)]f (µ) dµ (11)

=

Z µ

µ

"
r(q(µ))¡ c(q(µ)s(q); µ) +

Z µ

µ

cµ(q(z)s(q); z)dz

#
f (µ) dµ ¡ w(¹µ)

=

Z µ

µ

[r(q(µ))¡ Ã(q(µ)s(q); µ)] f (µ) dµ ¡w(¹µ)

In the second line we have used (9), and the fact that AD = w(¹µ), as shown in the Appendix,

where w(µ) ´ u(µ; µ; º). In the third line, we have integrated by parts, and …nally

Ã(e; µ) = c(e; µ) +
1

h(µ)
cµ(e; µ) (12)

where h(µ) = f(µ)=F (µ) is the hazard rate10 for the distribution of µ: So, Ã(e; µ) has an

obvious interpretation as the perceived cost, from the principal’s point of view, of extracting

output q(µ) from a type-µ when aggregate output is q. The second term in (12) is the

informational rent accruing to the agent and is positive by A1, so the perceived cost always

strictly exceeds the true cost (Ã(e; µ) ¸ c(e; µ)), and does so strictly unless µ = µ.

The principal therefore solves11 the following problem:

max
q(:)¸0

Z µ

µ

[r(q(µ))¡ Ã(q(µ)s(q); µ)] f (µ) dµ s.t.

q0(µ) · 0

q =

Z µ

µ

q(µ)f(µ)dµ

10h(x) can be interpreted as the approximate conditional probability (for small ¢) that cost parameter

µ does not fall below x ¡ ¢ given that it has already fallen from ¹µ to x (La¤ont and Tirole[11], p66).
11 . Note that the choice of q; t must also ensure that the agent participation constraints w(µ) ¸ 0 are

satis…ed. First, as w0 < 0 by standard arguments, the only potentially binding participation constraint is

w(µ) ¸ 0. As µ is decreasing in w(µ); it is immediately obvious that the principal sets w(µ) = 0:
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Call this problem P. Even in the absence of the monotonicity constraint q0(µ) · 0, this is

not a concave problem, due to the presence of externalities in the perceived cost function.

Denote by (q¤(µ))µ2£ a solution to P. We will say that a solution to P is interior if 0 <

q¤(µ) < 1, all µ 2 £.

We can characterize the solution to P under the following assumption which ensures an

interior solution;

A3. r0(0) > Ãe(0; µ); limq!1 r0(q) = 0; lime!1 ce(e; µ) = 1:

Assumption A3 imposes quite standard Inada-type conditions on revenue and cost functions.

Proposition 2. If A1-A3 hold, and the monotone hazard rate condition h0(µ) · µ; µ 2 £
holds, then there exists an interior solution to problem P, and at this solution, q(µ) solves

r0(q(µ)) = Ãe(q(µ)s(q); µ)s(q) + E [Ãe(q(µ)s(q); µ)q(µ)] s
0(q) (13)

where the expectation is taken with respect to µ:

Note that (13) equates the marginal revenue generated by an increase in q(µ) to the

perceived marginal cost to the principal - taking into account informational rent and the

production externality - of an increase in q(µ). The …rst term on the right-hand side of (13)

is the internal marginal cost of raising q(µ) incrementally, and the second term (which is

negative, as s0 < 0) is the external marginal bene…t of raising q(µ) in terms of reduced costs

for all agents.

We can now turn to analyze the distortions induced by the presence of both informational

rent and externalities at the solution to problem P, and which are implicit in the …rst-order

condition (13). The benchmark is the full-information case, where the principal can observe

the cost parameter of each agent. In this case, the principal sets marginal bene…t of an

increment in q(µ) equal to true marginal cost, ignoring informational rent i.e. we replace

the perceived marginal cost function in (13) by the true one to get

r0(q(µ)) = ce(q(µ)s(q); µ)s(q) + E [ce(q(µ)s(q); µ)q(µ)] s
0(q) (14)

Again, the …rst term on the right-hand side of (14) is the internal marginal cost of raising

q(µ) incrementally, and the second is the external marginal bene…t of raising q(µ).
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Compare (13) to (14) …rst for the familiar case without externalities. In this case, we can

take s(q) ´ 1; s0(q) ´ 0. Then, the full-information and incentive-compatible …rst-order

conditions are

r0(q(µ)) = ce(q(µ); µ) (15)

r0(q(µ)) = ce(q(µ); µ) +
1

h(µ)
cµe(q(µ); µ) (16)

respectively. So, inspection of (15),(16), plus the fact that cµe > 0 from A1, indicates that

without externalities, when µ is private information, marginal cost is “too high”, due to the

presence of informational rents, and e¤ort is undersupplied for all values of µ except the

lowest: This is a standard result (La¤ont and Tirole [11]).

In the general case, by reference to (14), we have the following de…nition.

De…nition 4. Output is oversupplied by an agent of type µ if

r0(q(µ)) < ce(q(µ)s(q); µ)s(q) + E [ce(q(µ)s(q); µ)q(µ)] s
0(q)

and undersupplied by an agent of type µ if

r0(q(µ)) > ce(q(µ)s(q); µ)s(q) + E [ce(q(µ)s(q); µ)q(µ)] s
0(q)

So, with oversupply, marginal revenue of an increment in output is below the marginal

cost of an increment in output (taking into account spillover e¤ects), and conversely, with

undersupply, it is above. We now have the main result of the paper.

Theorem 1. Assume A1-A3 hold, the monotone hazard rate condition holds, and that

c(µ; e) = ·(µ)c(e); with ·00 ¸ 0: Then, there is two-way distortion in the solution to problem

P. That is, there exists µ < µ0 < ¹µ such that for µ 2 [µ; µ0), e¤ort is oversupplied, and for

µ 2 (µ0; µ], e¤ort is undersupplied.

This result can be interpreted as follows. At the solution to P, the principal always

equates marginal revenue to perceived marginal cost Ães(q) + E[Ãeq(µ)]s
0(q): So, Theorem

1 says that when µ is high, perceived marginal cost is greater than true marginal cost,

and when µ is low, perceived marginal cost is less than true marginal cost. This is to
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be compared to the standard case without externalities, where perceived marginal cost is

greater than true marginal cost for all µ. So, the new insight here is that with production

externalities, when µ is low, perceived marginal cost is less than true marginal cost, even

though perceived total cost is always greater then true total cost; it is this that generates

the two-way distortion.

The intuition for this new result is as follows. From (13), (14), the di¤erence between

the perceived and true marginal cost of output is

cµe(q(µ)s(q); µ)

h(µ)
s(q) + E

·
cµe(q(µ)s(q); µ)

h(µ)
q(µ)

¸
s0(q) (17)

The …rst term in (17) is due to informational rent, and is always positive. The second term

is negative as s0 < 0. It captures the e¤ect that an increase in q(µ) has on the information

rent accruing to other agents via the spillover. Speci…cally, a small increase ¢ in q(µ)

leads to a reduction ¢s0(q) in the e¤ort required by all agents, and this in turn leads to a

reduction of

E

·
cµe(q(µ)s(q); µ)

h(µ)
q(µ)

¸
¢s0(q)

in the informational rent captured by these agents. Whether the perceived marginal cost

of output is above or below the true marginal cost depends on the relative magnitude of

these two terms. When µ ' µ, 1=h(µ) ' 0, and so the second term in (17) dominates the

…rst term, implying that the perceived marginal cost of output is below the true marginal

cost, and leading in turn to oversupply by our de…nition.

We now comment on the su¢cient conditions for two-way distortion. First, assumptions

A1-A3 are not at all restrictive. Assumption A1 is quite standard in the principal-agent

literature. Assumption A2 imposes weak and reasonable conditions on the spillover function

g, and A3 imposes quite standard Inada-type conditions on r and c. Finally, the condition

that c be separable in e; µ and convex in µ is quite weak.

5. Multiple Teams

Probably the main restriction of the model of this paper is that only the aggregate e¤ort

of agents a¤ects the marginal cost of e¤ort of any particular agent. One simple way of
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relaxing this assumption somewhat is to suppose that there are two groups of agents, or

teams, Il; l = a; b, with Ia [ Ib = I; Ia \ Ib = ;: Then, it is natural to suppose that the

aggregate e¤ort of team a; ea, has some impact on the productivity of a member of team

b, but less than the e¤ect it has on the productivity of a member of team a. This can be

captured formally by writing

qai = e
a
i g(e

a + ¾eb); qbi = e
b
ig(e

b + ¾ea))

where superscripts denote team membership, and 0 < ¾ < 1 measures the between-team

spillover, which is less than the within-team spillover as ¾ < 1. Also, we assume that

g(:) satis…es A2. Using the identity el =
R
i2Il e

l
id¹; we have

qa = eag(ea + ¾eb) (18)

qb = ebg(eb + ¾ea) (19)

Now, it is easily checked that the Jacobian of the system (18),(19) is non-singular on <2
+

(see e.g. (21 below), so we can invert (18),(19) to get

ea = °a(qa; qb)

eb = °b(qa; qb)

By the symmetry of technology, °a(x; y) ´ °b(y; x). Let °aj (q
a; qb) denote the derivative of

°a with respect to its jth argument; j = a; b; and the same for °b. For future reference,

note that

°ii =
1

D
[gj + e

jg0j] > 0; °
i
j =

¡¾eig0i
D

< 0 (20)

where gi = g(ei + ¾ej); and

D = (ga + e
ag0a)(gb + e

bg0b)¡ ¾2eag0aebg0b > 0 (21)

So, from (20), an increase in output by team a requires an increase in e¤ort by team a,

but an increase in output by team b allows members of team a to reduce their e¤ort, while

producing a constant output, due to the inter-team spillover.

Now, for a member i of team a, we can de…ne

eai =
qai

g(°a(qa; qb) + ¾°b(qa; qb))
= qai s

a(qa; qb) (22)
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and sb(qa; qb) can be de…ned similarly. By the symmetry of technology, sa(x; y) ´ sb(y; x).

Let saj (q
a; qb) denote the derivative of sa with respect to its jth argument; j = a; b. So,

saj (q
a; qb) measures the change in the e¤ort required by i 2 Ia to produce one unit of output,

when qj increases. When qa ' qb, this change is negative12 for j = a; b.

The preferences of both principal and agents are as before; any agent i 2 Il has a cost

of e¤ort function c(µi; ei) which satis…es A1 and A3, and the agents maximise their transfer

from the principal net of the cost of e¤ort. As before, the output of any agent i 2 Il

generates revenue r(qi) for the principal, where r satis…es A3, and the principal wishes to

maximize the sum across teams of revenue minus transfers.

In the multi-team case, an anonymous contract for team l is de…ned as above i.e. as a

pair of functions tl : £ £ P (£) £ P (£) ! <; ql : £ £ P (£) £ P (£) ! <+ where agent

i 2 Il is o¤ered (ti; qi) = (tl(µ̂i; º̂); ql(µ̂i; º̂)) i¤ he announces a type µ̂i and the distribution

of announced costs for both teams is º̂ = (º̂a; º̂b):

Then it is easy to check that Proposition 1 goes though, modi…ed in the obvious way

i.e. the principal can do no better with a Nash incentive-compatible contract than with a

dominant-strategy one, and the transfer to a member of team l = a; b who reports µ̂ is

tl(µ̂; º̂) = c(ql(µ̂; º̂)s
l(q̂a; q̂b); µ̂) +

Z ¹µ

bµ
cµ(ql(µ̂; º̂)s

l(q̂a; q̂a); z)dz

where q̂l =
R
Il
qid¹. Now assume that the two teams are identical in size (¹(Ia) = ¹(Ib)), and

in the distribution of costs across group members (ºa = ºb). So, the distribution function

of costs in either team is F; with density f: As before, suppress the dependence of ql(:) on

º. The principal therefore solves the following problem P0:

max
qa(:);qb(:)¸0

X

l=a;b

Z µ

µ

£
r(ql(µ))¡ Ã(ql(µ)sl(qa; qb); µ)

¤
f (µ) dµ s.t.

q0l(µ) · 0; l = a; b

ql =

Z µ

µ

ql(µ)f(µ)dµ; l = a; b

Due to the symmetry of the problem, we focus on the class of symmetric solutions to P0

where qa(:) = qb(:) = q(:). Under assumption A3, there will be an interior symmetric solu-

tion to this problem i.e. Proposition 2 extends, and the …rst-order condition characterizing
12See (A.23) in the Appendix.
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q(:) is

r0(q(µ)) = Ãe(q(µ)s
a(q; q); µ)sa(q; q) + E [q(µ)Ãe(q(µ)s

a(q; q); µ)] (saa(q; q) + s
a
b (q; q)) (23)

Also, note that De…nitions 3 and 4 of undersupply and oversupply carry over directly to

this case. We then have the following extension of the main result to the multi-team case;

Theorem 2. Assume that the assumptions of Theorem 1 on r; c, and F hold. Then, there

is two-way distortion in the solution to problem P0. That is, there exists µ < µ0 < ¹µ such

that if µ 2 [µ; µ0), e¤ort is oversupplied, and for µ 2 (µ0; µ], e¤ort is undersupplied.

It seems likely that a version of this result could be proved for the case of n teams,

although the statement and proof would be cumbersome. So, our two-way distortion result

does not depend crucially on the precise form of the externality between agents.

6. Yardstick Transfers

So far, we have restricted attention to contracts where agents directly report their types

(direct mechanisms, in the parlance of the implementation literature). In practice, prin-

cipals generally use contracts where the transfer from principal to agent(s) depends on

output, rather than a reported type (indirect mechanisms). However, the class of incentive-

compatible contracts described in Proposition 1 can easily be written in this form.

Let ~q¡1 be the inverse of qi = ~q(µi); this inverse always exists as the monotonicity con-

dition is satis…ed by assumption of a monotone hazard rate (Proposition 2). Now consider

the transfer schedule

t(qi; q) ´ t(~q¡1(qi); q) = c(qis(q); ~q
¡1(qi)) +

Z ¹µ

~q¡1(qi)
cµ(qis(q); z)dz (24)

Note also that the transfer schedule (24) satis…es the yardstick property, as de…ned in

the introduction; namely, that the transfer to some agent i is decreasing in the output of

other agent(s). To see this, di¤erentiate to get

@t(qi; q)

@q
= s0(q)qi[ce(qis(q); ~q

¡1(qi)) +

Z ¹µ

~q¡1(qi)
cµe(qis(q); z)dz] < 0 (25)
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7. Conclusions and Related Literature

This paper has shown that in an otherwise standard principal-agent problem with hidden

information, the presence of positive production externalities between agents leads, un-

der quite general conditions, to two-way distortion, with the output of any agent i being

oversupplied when his marginal cost of e¤ort is low, and undersupplied when his marginal

cost of e¤ort is high. As remarked in the Introduction, two-way distortion cannot arise in

principal-multi-agent models with hidden information of the type studied in the literature13,

and a fortiori, it cannot arise in the standard single-agent case.

The literature related to the analysis of this paper is small. There is to my knowledge,

no work that studies production externalities in principal-multi-agent models with hidden

information. There are a small number of papers which allow for production externalities in

principal-multi-agent models with hidden actions [Che and Yoo[2], Itoh[9], Mookherjee[16],

Kandal and Lazear[10]]. However, Che and Yoo[2] and Mookherjee[16], are concerned en-

tirely with the study of the cost-minimization problem for the principal (characterizing the

minimum cost of inducing a given pair of actions by the two agents), and do not discuss

the issue of whether actions that are then chosen by the principal are above or below their

…rst-best levels.

Itoh [9] studies choice of e¤ort level as well as the cost-minimization problem given e¤ort

levels, but his focus is rather di¤erent. Speci…cally, each of two agents can choose not only

an e¤ort level that enhances the success probability of his own project, but also the level of

another e¤ort variable (“helping” e¤ort) that enhances the success probability of the other

agent’s project. The main objective of his paper is to establish conditions under which the

principal will choose a positive level of “helping” e¤ort in the incentive-compatible contract.

By contrast, in the model of this paper, e¤ort is one-dimensional, but has a joint product;

it enhances the output not only of the agent who exerts it, but other agents.

Finally, Kandal and Lazear[10] allow for general production spillovers, but they do not

characterize the principal’s optimal incentive-compatible contract. Rather they study a

13As shown by Demski and Sappington[4], and Ma, Moore, and Turnbull [13], output is always under-

supplied, whether the announcement game equilibrium is in dominant or Bayes-Nash strategies.
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particular “equal shares” contract where each of N agents gets 1/N of the revenue (or

output), and study Nash equilibria in e¤ort levels in this setting. Their focus is on the

role of “peer pressure” i.e. social norms or informal monitoring and punishment within the

group of agents in enhancing Nash equilibrium e¤ort levels.

However, as mentioned in the introduction, it is well-known that two-way distortion

can arise in the single-agent case when the standard set-up is modi…ed so that the agent

faces countervailing incentives (Lewis and Sappington[12], Maggi and Rodriguez-Clare[15]).

This case arises when the reservation utility of the agent, as well as his cost of acting for

the principal, depends on his private information. It was …rst observed by Lewis and

Sappington[12] that two-way distortion could arise in this case. For example, consider the

problem of regulation of a monopolist with unknown cost (Baron and Myerson,[1]) where

the regulator chooses the output of the …rm ,and a transfer payment to the …rm i.e. a

non-linear price. Such a model can be interpreted as a special case (i.e. without spillovers)

of the one considered in this paper. Suppose, plausibly, that the …rm’s reservation pro…t

(the pro…t it could make by exiting the regulated market and producing elsewhere) depends

negatively upon its marginal cost parameter14, µ. In this case, the …rm has an incentive to

understate its marginal cost (to increase its reported reservation pro…t, in order to induce

the regulator to set a higher price), as well as to overstate its marginal cost (again, to induce

the regulator to set a higher price).

A complete analysis of a principal-agent problem with countervailing incentives is pre-

sented in Maggi and Rodriguez-Clare[15], where it is shown that the pattern of the two-way

distortion (and whether or not there is pooling) depends crucially on whether the reserva-

tion utility of the agent is convex or concave in his private information. If it is a concave

or mildly convex function, then the agent’s output is ine¢ciently low when his cost of pro-

duction is low, and ine¢ciently high when his cost of production is high. If the reservation

utility is strongly convex, then the opposite is the case15.

14As in the model of this paper without spillovers, we assume that the cost of the …rm is c(q; µ) where q

is output and the analogue of A1 above is satis…ed.
15Also, in the concave/mildly convex case, production is e¢cient at the highest and lowest costs, and

also at an interior cost. In the strongly convex case, production is e¢cient only at an interior cost value.
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One intuition for their result, in the context of the Baron-Myerson model, is as follows.

Suppose that µ can only take on two values, “high” or “low”. If the …rm has, on balance, an

incentive to overstate its cost, the optimal action for the principal is to allow the low-cost

…rm to produce at a point where marginal revenue is greater than marginal cost. This is

because high-cost …rms will wish to imitate low cost …rms at the full-information optimum,

and these constraints can be slackened by reducing output and price of low-cost …rms, thus

making their price-output pair less attractive to high-cost …rms. An identical logic applies

in the other case: if the …rm has, on balance, an incentive to understate his cost, the optimal

action for the principal is to allow the high-cost …rm to produce at a point where marginal

revenue is less than marginal cost.

Now return to the case where µ is a continuous variable. The derivative of reservation

pro…t with respect to µ measures the strength of the incentive that the …rm has to understate

its marginal cost slightly in order to increase its reported reservation pro…t. If the derivative

of reservation pro…t with respect to µ is decreasing in µ (i.e. the reservation pro…t is concave

in µ), then the marginal incentive to understate µ in order to increase its reservation pro…t

is stronger when µ is high, and so high (low) µ types have on balance an incentive to

understate (overstate). But then by the argument in the previous paragraph, the …rm’s

output is ine¢ciently low when its cost of production is low, and ine¢ciently high when its

cost of production is high. The argument is similar in the case where the reservation pro…t

is convex in µ:

The above discussion makes it clear that the intuition for two-way distortion in the

countervailing incentives case is somewhat involved. By contrast, in our setting, there is

a clear and simple intuition for the two-way distortion, as explained in Section 4 above.

Moreover, the pattern of two-way distortion identi…ed here is robust: it does not depend

on the precise nature of the production externality, as long as it is positive and satis…es

the very weak assumptions in A2 above. Finally, Maggi and Rodriguez-Clare[15]assume a

much more special class of cost functions than those considered in this paper16.

16In the notation of this paper, they assume c(q; µ) = µq:
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Appendix

A. Appendix

Proof of Proposition 1. (i) First, as every agent is of measure zero, each agent takes º̂

as …xed when deciding on her announcement µ̂. So, from De…nition 2, for truth-telling to

be a dominant strategy, µ̂ = µ must maximize (6), holding º̂ …xed. De…ne

w(µ; v̂) ´ u(µ; µ; º̂) (A.1)

to be the utility from truth-telling, conditional on º̂. Standard arguments (see e.g. La¤ont

and Tirole[11]) imply that the necessary and su¢cient conditions for this are as follows;

@v(µ; º̂)

@µ
= ¡cµ(q(µ̂; v̂)s(q̂); µ) almost everywhere on £ (A.2)

@q(µ; º̂)

@µ
· 0 almost everywhere on £ (A.3)

where (A.2), (A.3) are the envelope and monotonicity conditions respectively. Integrating

(A.2), we can write

w(µ; º̂) = w(¹µ; º̂) +

Z ¹µ

µ

cµ(q(µ̂; v̂)s(q̂); z)dz (A.4)

Also by de…nition from (A.1), w(µ; º̂) ´ t(µ; º̂)¡ c(q(µ̂; v̂)s(q̂); µ), implying

t(µ̂; º̂) ´ c(q(µ̂; v̂)s(q̂); µ) + w(µ̂; º̂) (A.5)

Combining (A.4) and (A.5) gives (9), with the constant AD equal to v(¹µ; º̂).

(ii) From De…nition 3, for truth-telling to be a Nash strategy, all we need is that µ̂ = µ

must maximize (6), holding º̂ …xed at º: But then a similar argument implies that the

contract will be Nash incentive-compatible as long as

tN (µ̂; º) = c(µ̂qN (µ̂; º)s(q); µ̂) +

Z ¹µ

bµ
c(qN(µ̂; º)s(q); µ̂)dz +AN ; AN 2 < (A.6)

@qN (µ̂; º)

@µ̂
· 0 almost everywhere on £ (A.7)

where q̂ =
R
µ2£ q(µ; º)dº is aggregate output given truth-telling. We know by de…nition that

given a Nash-incentive compatible contract (qN ; tN ), there-is a truth-telling equilibrium
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in the announcement game. At this equilibrium, º̂ = º: So, if we choose AD = AN ,

qD(µ) = qN(µ) all µ 2 £, then tD(µ; º) = tN (µ; º), all µ 2 £, so there is a dominant -

strategy incentive-compatible contract that yields the principal the same payo¤ as a Nash

incentive-compatible contract when, in the induced announcement game, agents tell the

truth.

(iii) Now consider the Nash incentive-compatible contract (q̂N(µ̂; º); t̂N(µ̂; º)) that max-

imizes the principal’s expected payo¤, under the assumption that agents tell the truth17.

Given this contract, there may be other Nash equilibria in the announcement game, where

a positive measure of agents do not tell the truth. It is clear that in any other such equi-

librium, the principal can be no better o¤ than in the truth-telling equilibrium. Thus,

the maximum payo¤ that the principal can get from any Nash incentive-compatible con-

tract is no higher than the payo¤ that the principal can achieve from a dominant-strategy

incentive-compatible contract. ¤
Proof of Proposition 2. (i) We proceed to solve problem P by initially ignoring the

monotonicity constraint q0(µ) · 0: In general, the e¤ect on pro…t of a small increase in with

respect to q(µ), taking into account the dependence of q on q(µ), is;

@¼

@q(µ)
= r0(q(µ))f (µ)¡ Ãe(q(µ)s(q); µ)s(q)f(µ)¡ E [q(µ)Ãe(q(µ)s(q); µ)] s0(q)f(µ) (A.8)

First, suppose that there is a non-interior solution where q(µ) = 0, for some µ 2 £.

Evaluating @¼
@q(µ)

at this point, we get

1

f(µ)

@¼

@q(µ)
= r0(0)¡ Ãe(0; µ)s(q)¡E [q(µ)Ãe(q(µ)s(q); µ)] s0(q)

> r0(0)¡ Ãe(0; µ)s(0) = r0(0) ¡ Ãe(0; µ) > 0

where the last inequality follows by A3. So it pays the principal to increase q(µ); a contra-

diction.

Again, suppose that there is a no solution because

@¼

@q(µ)
> 0; all q(~µ) (A.9)

17It is clear that such a contract exists, from the proof of Proposition 2 below.
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for some ~µ 2 £: Fix some ~q(:); and take a sequence fqn(µ)g1n=1 with qn(~µ) = ~q(~µ) + Án with

limn!1 Án = 1, and qn(µ
0) = ~q(µ0); µ0 6= ~µ. Note that as qn(:) is equal to ~q(:) a.e., then

~q = E[qn(µ)] is …xed, as is E [qn(µ)Ãe(qn(µ)s(~q); µ)] : Taking the limit in (A.8), we get

lim
n!1

1

f(µ)

@¼

@q(µ)
= lim

n!1
r0(qn(µ))¡ lim

n!1
Ãe(qn(µ)s(~q); µ)s(~q)

+E [qn(µ)Ãe(qn(µ)s(~q); µ)] s
0(~q) (A.10)

= lim
q!1

r0(q)¡ lim
e!1

Ãe(e; µ)s(~q)¡ E[~q(µ)Ãe(~q(µ)s(~q); µ)]s0(~q)

< 0

where in the last line we have used limq!1 r0(q) = 0; lime!1 Ãe(e; µ) = 1 where the second

limit follows directly from lime!1 ce(e; µ) = 1 in A3 and Ãe ¸ ce. So, we conclude an

interior solution always exists. This interior solution is characterized by …rst-order condition

for a maximum of (11), which we obtain from (A.8) by equating the RHS to zero, dividing

through by f (µ); and then writing out Ãe in full. This gives (13) in the text.

(ii) Let the solution to (13) be q(µ). For q(µ) to be feasible in P, it must be the case that

it satis…es the monotonicity condition ~q0(µ) · 0: Note that from (13), using the second-order

condition, we have;

sign q0(µ) = sign
@2¼

@q(µ)@µ
(A.11)

But again from (13), we have

@2¼

@q(µ)@µ
= ¡Ãeµ[(q(µ)s(q); µ)s(q)f(µ)¡ q(µ)(q(µ)s(q); µ)s0(q)f(µ)] (A.12)

so it su¢ces to show that Ãeµ > 0. Now, from (12), we have

Ãeµ(q(µ)s(q); µ) = ceµ(q(µ)s(q); µ) +
1

h(µ)
ceµµ(q(µ)s(q); µ)¡

h0

h2
ceµ(q(µ)s(q); µ) (A.13)

Also, from A1, ceµµ ¸ 0, and from monotone hazard rate condition, h0 · 0. So, from

(A.13), Ãeµ > 0, as required. ¤
Proof of Theorem 1. (i) We show that if the distribution of µ, F , has an everywhere

decreasing hazard rate, then the induced distribution · = ·(µ); has an everywhere decreas-

ing hazard rate. This fact means that we can, without loss of generality, set ·(µ) = µ. In

particular, we will use the fact cµµe = 0 in what follows. First, from A1, cµ = ·0(µ)c(e) > 0,
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so · is invertible on K = [·(µ); ·(µ)]. So the induced distribution of ·;G(x) := F (·¡1(x));

x 2 K is well-de…ned, as is the density g(x) = f (·¡1(x))=·0(x). Recalling the de…nition of

the hazard rate of G, it is su¢cient to prove that G(x)=g(x) is increasing in x: Then

d[G(x)=g(x)]

dx
=

G(x)

f(·¡1(x))
·00(x) + ·0(x)

d[F (·¡1(x))=f(·¡1(x))]

dx

The …rst term is non-negative as ·00 ¸ 0, and the second term is strictly positive by the

fact that F has a decreasing hazard rate and d·¡1=dx > 0. So, we conclude that g(x)=G(x)

is strictly decreasing on K, as required.

(ii) Note that 1=h(µ) = F (µ)=f (µ) = 0, and so from (13), we have at µ = µ that

r0(q(µ)) = ce(q(µ)s(q); µ)s(q) + E [q(µ)ce(q(µ)s(q); µ)] s
0(q) + E

·
q(µ)

h(µ)
cµe(q(µ)s(q); µ)

¸
s0(q)

(A.14)

As s0(q) < 0, and cµe > 0, it follows from (A.14) that

r0(q(µ)) < ce(q(µ)s(q); µ)s(q) + E [q(µ)ce(q(µ)s(q); µ)] s
0(q)

i.e. oversupply at µ = µ. Also, from (13), and De…nition 4, to have undersupply at µ = ¹µ,

we must have

cµe(q(µ)s(q); µ)

h(¹µ)
s(q) + E

·
cµe(q(µ)s(q); µ)

h(µ)
q(µ)

¸
s0(q) > 0

Rearranging, and recalling s0(q) < 0, we get

¡ s(q)
s0(q)

cµe(q(µ)s(q); µ)

h(¹µ)
> E

·
q(µ)

h(µ)
cµe(q(µ)s(q); µ)

¸
(A.15)

Now note the following facts: (i) as the monotone hazard rate condition holds, 1
h(µ)

is in-

creasing in µ; (ii) from Proposition 1, q(µ) is decreasing in µ; (iii) cµe(q(µ)s(q); µ) is increasing

in µ as

dcµe(q(µ)s(q); µ)

dµ
= cµee(q(µ)s(q); µ)s(q)q

0(µ) + cµµe(q(µ)s(q); µ)

= cµee(q(µ)s(q); µ)s(q)q
0(µ) < 0

where we have used cµµe = 0 in the last line. So, from (i)-(iii), it follows that

E

·
cµe(q(µ)s(q); µ)

h(µ)

¸
E [q(µ)] > E

·
cµe(q(µ)s(q); µ)q(µ)

h(µ)

¸
(A.16)
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So, from (A.16), a su¢cient condition for (A.15) to hold is that

¡ s(q)
s0(q)

cµe(q(µ)s(q); µ)

h(¹µ)
> E

·
cµe(q(µ)s(q); µ)

h(µ)

¸
E [q(µ)] (A.17)

Rearranging (A.17), using q = E [q(µ)], gives

cµe(q(µ)s(q); µ)=h(¹µ)

E[cµe(q(µ)s(q); µ)=h(µ)]
> ¡s

0(q)q

s(q)
(A.18)

But, the LHS of (A.18) is greater than 1 by the properties of cµe=h derived above. So, it is

certainly su¢cient for undersupply at µ = ¹µ that

1 ¸ ¡s
0(q)q

s(q)
(A.19)

As s0 = ¡ 1
g2
g0°0, it follows that

¡s0q
s

=
1

g
g0°0q (A.20)

But di¤erentiation of (3), which implicitly de…nes °; gives

°0 =
1

g + eg0(e)
(A.21)

So, combining(A.20) and (A.21), and using q = eg; we get

¡s0q
s

=
eg0(e)

g + eg0(e)
< 1

so (A.19) clearly holds, as required.

(iii) The …nal step is to show that there is a single critical value µ0 below which there

is oversupply, and above which there is undersupply, it su¢ces to show that the di¤erence

between the perceived marginal cost (the right-hand side of (13)) and the true marginal

cost (the right-hand side of (14)) is monotonically increasing in µ for a …xed q; q(µ): This

di¤erence is given in (17), and is clearly increasing in µ for …xed q; q(µ) from the monotone

hazard rate condition and the properties of c. ¤
Proof of Theorem 2. It is easy to check, using (23) and following the proof of Theorem

1, that there will be two-way distortion if

¡(saa(q; q) + sab (q; q))q
sa(q; q)

· 1 (A.22)
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First, it follows directly from di¤erentiation of (22) that

saa(q
a; qb) = ¡ g

0

g2
[°aa + ¾°

b
a] (A.23)

sab (q
a; qb) = ¡ g

0

g2
[°ab + ¾°

b
b]

Now, using (A.23),(20),(21), and the fact that qa = qb = q we get

¡(saa(q; q) + sab (q; q))q
sa(q; q)

=
g0q

g
[°aa + ¾°

b
a + °

a
b + ¾°

b
b] (A.24)

=

µ
g0e

g

¶
g

D
(1 + ¾)[g + eg0(1¡ ¾)]

=

µ
g0e

g

¶µ
g(1 + ¾)[g + eg0(1¡ ¾)]

g2 + 2geg0 + e2(g0)2(1¡ ¾2)

¶

where g = g(e+¾e): So, we require that the term on the RHS of (A.24) be weakly less than

1, which simpli…es to µ
g0e

g

¶
¾ · 1 +

µ
g0e

g

¶

which certainly holds. ¤
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B. Junkyard

This assumption could be relaxed in the following way without changing the statement and

proof of results. Let d(i; j) be a measure of the “distance” between agents i and j in the

production process, with d(i; j) = d(j; i), all i; j 2 I; d(i; i) = 0. and normalise so that
R
j2I d(i; j)d¹ = 1. De…ne the aggregate spillover for i as ¾i =

R
j2I d(i; j)qjd¹. then (2)

could be generalised to qi = eig(¾i). Also, suppose that g is linear, so qj = ej[® + ¯¾j].

Then, multiplying through by d(i; j) and integrating this over j 2 I we get

Qi =

Z

j2I
d(i; j)qjd¹ = ¾i[®+ ¯

Z

j2I
d(i; j)¾jd¹] = ¾i[®+ ¯§i]

. Preforming the same operation again, we get

Q = §[® + ¯§]; Q =

Z

i2I
d(i; j)

Z

j2I
d(i; j)qjd¹; § =

Z

i2I
d(i; j)

Z

j2I
d(i; j)ejd¹

We can then invert to get § = °(Q)

Example 1.

Let g(e) = 1 + ¾e. Note that g(0) = 1, as required. So,

q = eg(e) = e+ ¾e2

So,

e = °(q) =

p
1 + 4¾q ¡ 1

2¾

So,

s(q) =
1

g(°(q))
=

1

1 + ¾
p
1+4¾q¡1
2¾

=
2p

1 + 4¾q + 1

So,
¡qs0
s

=
(1 + 4¾q)¡0:54¾qp
1 + 4¾q + 1

So, ¡qs
0

s
· 1 i¤

(1 + 4¾q)¡0:54¾q ·
p
1 + 4¾q + 1

which certainly holds, as can be checked after some rearrangement. ¤
Here c = µe, and µ is uniformly distributed on an interval of unit length, so F (µ) =

µ ¡ µ; f(µ) = 1. Also, g(e) = e®, then it is easily checked that s(q) = q¡
®

1+® = q¡¯ , so
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0 < ¯ < 1. Finally, r(q) = 2
p
q. Then it is easily checked that Ã(e; µ) = (2µ ¡ µ)e; so the

perceived cost function is

Ã = (2µ ¡ µ)q(µ)q¡¯

Then, the condition (??) reduces to

1 + ¯ ¸ 2q(2µ ¡ µ)
E[(2µ ¡ µ)q(µ)] (B.1)

But as E[(2µ ¡ µ)q(µ)] ¸ E[q(µ)]µ = µq, then (B.1) certainly holds if

1 + ¯ ¸ 2(2µ ¡ µ)
µ

=) ¯2 +
4

µ

Also, the …rst-order condition reduces to

(q(µ))0:5 = Ãe(q(µ)s(q); µ)s(q) + E [q(µ)Ãe(q(µ)s(q); µ)] s
0(q)

Returning to the Theorem, we note the following corollary:

Corollary 3. If the external e¤ect of aggregate e¤ort is iso-elastic i.e. g(e) = e®, ® > 0,

then there is always two-way distortion.

Proof. If g(e) = e®, then it is easily checked that s(q) = q¡
®

1+® , so ¡ s0q
s
= ®

1+®
< 1. But as

remarked above, the upper bound on ¡ s0q
s

in the Theorem is greater than unity, so in this

case, the condition on the elasticity in the theorem always holds.

e wil also assume directly the following properties of s :

A2. s(0) < 1, limq!1 qs0(q) = 0:

The …rst of these conditions says that any agent is able to produce even if all other

agents do not, and the second ensures that in the aggregate, the size of the externality

goes to zero as output goes to in…nity. An example which satis…es these conditions is the

iso-elasric case g(e) = e®: Then it is easily checked that s(q) = q¡
®

1+® = q¡¯ , 0 < ¯ < 1

so s(0) = 1, and qs0(q) = ¡¯q¡¯. [CUT Following Demski and Sappington[4], we focus on

two possible equilibrium concepts for this game, dominant strategy and Nash equilibrium.
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This gives rise two concepts of an incentive-compatible contract.]La¤ont(1995) has shown

that in an otherwise standard principal-agent model where the agent may take some unob-

servable e¤ort to reduce the probability of environmental catastrophe, and where the agent

is risk-averse, and has limited liability, then

Consequently, de…ne a transfer schedule as a map t : <2
+ ! < where is the transfer to

agent i if he produces output i and aggregate output is q. Given a transfer schedule, the

agents then play a game where the strategies are (qi)i2I , and payo¤s ui = t(qi, q)¡qis(q)µi.
Call this the output game.

This game is non-trivial due to the spillovers, and the fact that t(qi, q) may depend

non-trivially on q: This is simply the inventive-compatible payment schedule (9) written as

a function of (qi; q) rather than (µi; º). As ~q0(µi) < 0, qi maximizes (24) if and only if µi

maximizes (9): So, we can conclude that faced with payo¤ ui = t(qi; q) ¡ qis(q)µi where

t(qi; q) is de…ned in (24) qi = ~q(µi) maximizes ui whatever q i.e. qi = ~q(µi) is a dominant

strategy for i in the output game18. So, the output game replicates the outcome of the

direct mechanism described above.

18This is quite a striking result, because (as Cooper and John[5] have shown), output games of this type

without principal-agent relationships (i.e. where agents capure the full value of their output) typically have

multiple equilbria, due to strategic complementarities between agents.
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