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DIFFERENCES BETWEEN PERFECT POWERS : THE LEBESGUE-NAGELL

EQUATION

MICHAEL A. BENNETT AND SAMIR SIKSEK

Abstract. We develop a variety of new techniques to treat Diophantine equations of the shape

x2 + D = yn...

1. Introduction

Understanding the gaps in the sequence of positive perfect powers

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, . . .

is a problem at once classical and fundamentally difficult. Mihăilescu’s Theorem [43] (née Catalan’s
Conjecture) tells us that 8 and 9 are the only consecutive integers here, but it is not, for instance,
a consequence of current technology that there are at most finitely many gaps of length k, for any
fixed integer k > 1 (though this was conjectured to be the case by Pillai; see e.g. [49]). If we
simplify matters by considering instead gaps between squares and other perfect powers, then we
can show that such gaps, if nonzero, grow as we progress along the sequence. Indeed, the same
is even true of the greatest prime factor of the gaps. Specifically, we have the following, a special
case of Theorem 2 of [12]; here, by P (m) we denote the greatest prime divisor of a nonzero integer
m.

Theorem 1 (Bugeaud). Let n ≥ 3 be an integer. There exists an effectively computable positive
constant c = c(n) such that if x and y are coprime positive integers with y ≥ 2, then

P (x2 − yn) ≥ c log n

and, for suitably large x,

P (x2 − yn) ≥ log log y

30n
.

This result is a consequence of bounds for linear forms in logarithms, complex and p-adic. As
such, it can be made completely explicit and leads to an algorithm for solving the Lebesgue-Nagell
equation

(1) x2 +D = yn,

where we suppose that x and y are coprime nonzero integers, and that either

(i) D is a fixed integer, or
(ii) all the prime divisors of D belong to a fixed set of primes S.
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The terminology here stems from the fact that equation (1) with D = 1 was first solved by V.
A. Lebesgue [37], while T. Nagell [45], [46] was the first researcher to study such equations in a
systematic fashion.

Regrettably, this algorithm is still, in most instances, not a practical one. Even in the very
special case D = −2, we are not able to completely solve equation (1) (though there are a
number of partial results available in the literature; see e.g. Chen [16]). Almost all the (very
extensive) literature on this problem concerns cases where D > 0 and y is odd in (1). Under
these assumptions, we may solve the equation through appeal to a beautiful result of Bilu, Hanrot
and Voutier [8] on primitive divisors in binary recurrence sequences, at least for all but a few
small values of n. Proposition 5.1 of [14] (sharpening work of Cohn [19]) provides a very explicit
summary of this approach – one bounds the exponent n in (1) in terms of the class numbers
of a finite collection of imaginary quadratic fields, depending only upon the primes dividing D;
see Section 3 for details. Smaller values of n may be treated via techniques from elementary
or algebraic number theory, or through machinery from Diophantine approximation. By way of
example, in cases (i) and (ii), equation (1), for fixed n, reduces to finitely many Thue or Thue-
Mahler equations, respectively. These can be solved through arguments of Tzanakis and de Weger
[61], [62], [63] (see also [26] for recent refinements).

In case either D > 0 and y is even, or if D < 0, the literature on equation (1) is much sparser,
primarily since the machinery of primitive divisors is no longer applicable. In these cases, other
than bounds for linear forms in logarithms, the only general results that we know to apply to
equation (1) are derived from the modularity of Galois representations arising from associated
Frey-Hellegouarch curves. These are obtained by viewing (1) as a ternary equation of signature
(n, n, 2), i.e. as yn −D · 1n = x2. Such an approach can work to solve equation (1) in one of two
ways, either by

(a) producing an upper bound upon n that is sharper than that coming from linear forms in
logarithms, leaving a feasible set of small n to treat, or

(b) failing to produce such an upper bound, but, instead, providing additional arithmetic
information that allows one to solve all the remaining Thue or Thue-Mahler equations
below the bound coming from linear forms in logarithms.

An example of situation (a) is the case where D is divisible by only the primes in S = {5, 11}
and y is even. Then Theorem 1.5 of [4] implies that equation (1) has no nontrivial solutions for
all prime n > 11 and y even; work of Soydan and Tzanakis [59] treats smaller values of n and
the case where y is odd. For situation (b), papers of Bugeaud, Mignotte and the second author
[14], and of Barros [1] deal with a number of cases of equation (1) with D fixed and positive or
negative, respectively.

In the paper at hand, we will concentrate on the first of the two difficult cases, namely when
D > 0 and y is even in (1) (so that necessarily D ≡ −1 (mod 8)), under the additional hypothesis
that D is divisible only by a few small primes. For completeness, we will also treat the easier
situation where y is odd, under like hypotheses on D. In a companion paper [3], we will consider
equation (1) in the other challenging situation where D < 0. Our main result in this paper is the
complete resolution of equation (1) in case D > 0, P (D) < 13, gcd(x, y) = 1 and n ≥ 3. We prove
the following.

Theorem 2. There are precisely 1240 triples of positive integers (x, y, n) with n ≥ 3, gcd(x, y) = 1,
yn > x2 and

P (x2 − yn) < 13.
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They are distributed as follows.

n #(x, y) n #(x, y) n #(x, y) n #(x, y)
3 755 7 5 12 4 26 1
4 385 8 17 13 1
5 11 9 1 14 4
6 51 10 4 15 1

This amounts to solving the equation

(2) x2 + 2α23α35α57α711α11 = yn,

where x, y and n are positive integers, with gcd(x, y) = 1, n ≥ 3, and the αi are nonnegative
integers, i.e. equation (1), where D > 0 is supported only on primes in S = {2, 3, 5, 7, 11}. We
note that earlier work along these lines with the exception of the aforementioned paper of Soydan
and Tzanakis [59], either treat cases where there are no S-units congruent to −1 (mod 8), so
that the analogous equations cannot have y even (see e.g. work of Luca [38] for S = {2, 3}), or
simply omit these cases (see Pink [50] for S = {2, 3, 5, 7}, where solutions with y even are termed
exceptional). To solve equation (2) completely, we introduce a variety of new techniques, many of
which are applicable in a rather more general setting.

2. (Very) small values of n

We begin by treating equation (2) in case n ∈ {3, 4}. With these handled, we will thus be
able to assume, without loss of generality, that n ≥ 5 is prime. It is worth observing that our
methods of proof in this section work equally well in the analogous situation where D is supported
on S = {2, 3, 5, 7, 11}, but D < 0.

2.1. Exponent n = 3. If we suppose that n = 3 in equation (2), then the problem reduces to one
of determining S-integral points on

3#S = 35 = 243

Mordell elliptic curves of the shape y2 = x3 − k, where

k = 2δ23δ35δ57δ711δ11 , for δp ∈ {0, 1, 2}.
There are various ways to carry this out; if we try to do this directly using, say, the Magma
computer algebra package [9], we very quickly run into problems arising from the difficulty of
unconditionally certifying Mordell-Weil bases for some of the corresponding curves. We will instead
argue somewhat differently.

Given a solution to equation (2) in coprime integers x and y, consider the Frey-Hellegouarch
curve

Ex,y : Y 2 = X3 − 3yX + 2x,

which has discriminant
∆Ex,y = 2α2+63α3+35α57α711α11 .

This model has c-invariants
c4 = 144y and c6 = −1728x.

We may check via Tate’s algorithm that this curve is minimal at all primes p ≥ 3 and, while
possibly not minimal at 2, the fact that x and y are coprime implies that a corresponding minimal
model over Q has either

c4 = 144y, c6 = −1728x or c4 = 9y, c6 = −27x,

with the latter case occurring only if xy is odd.
The isomorphism classes of elliptic curves over Q with good reduction outside {2, 3, 5, 7, 11}

have recently been completely and rigorously determined using two independent approaches, by
von Kanel and Matschke [30] (via computation of S-integral points on elliptic curves, based upon
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bounds for elliptic logarithms), and by the first author, Gherga and Rechnitzer [5] (using classical
invariant theory to efficiently reduce the problem to solutions of cubic Thue-Mahler equations).
One finds that there are precisely 592192 isomorphism classes of elliptic curves over Q with good
reduction outside {2, 3, 5, 7, 11}; details are available at e.g.

https://github.com/bmatschke/s-unit-equations/blob/master/elliptic-curve-tables/

good-reduction-away-from-first-primes/K deg 1/curves K 1.1.1.1 S 2 3 5 7.txt

For each such class, we consider the corresponding c-invariants; if both c4 ≡ 0 (mod 144) and
c6 ≡ 0 (mod 1728), we define

(3) y =
c4

144
and x =

|c6|
1728

,

while if at least one of c4 ≡ 0 (mod 144) or c6 ≡ 0 (mod 1728) fails to hold, but we have c4 ≡
0 (mod 9) and c6 ≡ 0 (mod 27), we define

(4) y =
c4
9

and x =
|c6|
27

.

For the resulting pairs (x, y), we check that y > 0 and gcd(x, y) = 1. We find 755 such pairs,
corresponding to 812 triples (x, y, n). There are 5 triples with y > 109, with the largest value of
y corresponding to the identity

2802134365828012 + 216 · 36 · 5 · 78 · 112 = 42821246413.

2.2. Exponent n = 4. In this case, we may rewrite equation (2) as

(y2 − x)(y2 + x) = 2α23α35α57α711α11

and so either α2 = 0, in which case

(5) u1 + u2 = 2y2,

where ui are coprime {3, 5, 7, 11}-units, or we have

(6) u1 + u2 = y2,

where ui are coprime {2, 3, 5, 7, 11}-units. In each case, since xy 6= 0, we may suppose that
u1 > u2. To be precise, we have

u1u2 = 3α35α57α711α11 ,

√
1

2
(u1 + u2) = y and

1

2
(u1 − u2) = x,

and
u1u2 = 2α2−23α35α57α711α11 ,

√
u1 + u2 = y and u1 − u2 = x,

in cases (5) and (6), respectively.
As for n = 3, we can write down corresponding Frey-Hellegouarch curves which have good

reduction outside {2, 3, 5, 7, 11} (and, additionally in this situation, have nontrivial rational 2-
torsion). It is easier to attack this problem more directly. Both equations (5) and (6) take the
form a + b = c2, where a and b are {2, 3, 5, 7, 11}-units with gcd(a, b) square-free. Machinery for
solving such problems has been developed by de Weger [64], [65]. Data from an implementation
of this by von Kanel and Matschke [30] is available at

https://github.com/bmatschke/solving-classical-diophantine-equations/blob/master

/sums-of-units-equations/sumsOfUnitsBeingASquare S 2 3 5 7 11.txt

We find that there are 1418 pairs a, b such that a+ b is a square, gcd(a, b) is square-free, a ≥ b,
and the only primes dividing a and b lie in {2, 3, 5, 7, 11}. We further restrict our attention to
those with additionally a > b ≥ 1 and either gcd(a, b) = 1 (in which case we take x = a − b,
y =
√
a+ b), or gcd(a, b) = 2 (whence we choose x = 1

2 (a− b) and y =
√

1
2 (a+ b)). This leads to

385 pairs of coprime, positive integers x, y with y4 > x2 and P (y4−x2) < 13. These pairs actually

https://github.com/bmatschke/s-unit-equations/blob/master/elliptic-curve-tables/good-reduction-away-from-first-primes/K_deg_1/curves_K_1.1.1.1_S_2_3_5_7.txt
https://github.com/bmatschke/s-unit-equations/blob/master/elliptic-curve-tables/good-reduction-away-from-first-primes/K_deg_1/curves_K_1.1.1.1_S_2_3_5_7.txt
https://github.com/bmatschke/solving-classical-diophantine-equations/blob/master/sums-of-units-equations/sumsOfUnitsBeingASquare__S_2_3_5_7_11.txt
https://github.com/bmatschke/solving-classical-diophantine-equations/blob/master/sums-of-units-equations/sumsOfUnitsBeingASquare__S_2_3_5_7_11.txt
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lead to 406 triples (x, y, n), since 17 of the values of y are squares and 4 of them are cubes. The
largest y we find corresponds to the identity

10705281592 + 2183374112 = 327194.

For the remainder of the paper, we may therefore assume that the exponent n in equation (2)
is prime and ≥ 5.

3. Primitive divisors : equation (2) with y odd

If the variable y is odd in (2), one may use work of Bilu, Hanrot and Voutier [8] on primitive
divisors in binary recurrence sequences to quickly solve equation (2) for all but small n. To see this
connection, observe that under certain hypotheses, equation (1) with D > 0 leads, after factoring
over Q(

√
−D), to an equation of the shape

(n−1)/2∑
r=0

(
n

2r + 1

)
an−2r−1(−D)r = ±1, a ∈ Z,

or, equivalently,

(7)
αn − αn

α− α
= ±1,

where α = a +
√
−D. The term on the left-hand side of this latter equation is an element in a

Lucas sequence and hence any result guaranteeing that such a quantity is divisible by a prime
automatically contradicts equation (7).

More specifically, for our purposes, we have as a starting point a special case of Theorem 2 and
Lemmata 2 and 4 of Pink [50] (see also Proposition 5.1 of [14] and Theorem 1 of Cohn [19]; the
appeal to [8] is implicit).

Proposition 3.1. Suppose that D > 1 is an integer and write D = c2d where d is square free.
Let h denote the class number of the imaginary quadratic field Q(

√
−d) and suppose that there

exist positive integers x and y with y odd, and an odd prime n ≥ 5 with gcd(x,D) = 1, such that

x2 +D = yn.

If n fails to divide h, then we have one of

• there exist integers u and v such that v | c, v 6= ±c, x+ c
√
−d = (u+ v

√
−d)n, n | c2− v2

and y = u2 + dv2, or
• (n,D, x) = (5, 19, 22434) or (5, 341, 2759646).

In the first case, we have additionally that

n | c
∏
p|c

(
1− (−d/p)

p

)
,

where
(
·
p

)
denotes the Kronecker symbol.

In our situation, we can write

2α23α35α57α711α11 = c2d,

with c and d integers, and d squarefree. We verify via Magma that the corresponding quadratic
fields Q(

√
−d) have, in every case, class numbers h satisfying

h ∈ {1, 2, 4, 8, 12, 32}.
From Proposition 3.1, it thus follows that n ∈ {5, 7, 11}. More precisely, a solution to (2) can exist
with y odd, gcd(x, y) = 1 and n ∈ {5, 7, 11} only if

• n2 | c, or
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• n ‖ c and n | d, or
• n = 5, 11 | c and (−d/11) = 1.

Comparing imaginary parts in the equation x+ c
√
−d = (u+ v

√
−d)n, we find that

(8) 5u4 − 10u2v2d+ v4d2 =
c

v
if n = 5,

(9) 7u6 − 35u4v2d+ 21u2v4d2 − v6d3 =
c

v
if n = 7,

and

(10) 11u10 − 165dv2u8 + 462v4d2u6 − 330v6d3u4 + 55d4v8u2 − d5v10 =
c

v
if n = 11,

while, comparing real parts, in each case we have u | x. Suppose p ∈ {2, 3, 5, 7, 11}, p 6= n and that
p | c/v. Since x and y are coprime, it follows that p - xy, whence p - u. From equations (8), (9)
and (10), we have that p - dv. If p = 2, we therefore have that y = u2 + dv2 is even, contradicting
p | c/v and gcd(x, y) = 1. If p = 3, each of (8), (9) and (10) yields a contradiction, modulo 3. If
n = 5, from (8),

(v2d− 5u2)2 − 20u4 ≡ 0 (mod p),

a contradiction for p = 7. If n = 7 and p = 5, we have that

2u2 + u2d2 − v2d3 ≡ 0 (mod 5),

again, a contradiction. Finally, if p = n and p2 | c/v, it follows that p | dv, whereby p | u,
contradicting gcd(x, y) = 1. Summarizing, equations (8), (9) and (10) reduce to the Thue-Mahler
equations

(11) 5u4 − 10u2v2d+ v4d2 = ±5δ11γ11 ,

(12) 7u6 − 35u4v2d+ 21u2v4d2 − v6d3 = ±7δ11γ11

and

(13) 11u10 − 165dv2u8 + 462v4d2u6 − 330v6d3u4 + 55d4v8u2 − d5v10 = ±11δ5γ57γ7 ,

respectively, where δ ∈ {0, 1} and the γp are nonnegative integers (with γp = 0 if p | d). To solve
these, we treat the equations

5X4 − 10dX2Y 2 + d2Y 4 = ±5δ11γ11 , δ ∈ {0, 1}, γ11 ≥ 0

and
X4 − 10dX2Y 2 + 5d2Y 4 = ±11γ11 , γ11 ≥ 0,

where, in each case, gcd(X,Y ) = 1 and

d ∈ {1, 2, 3, 6, 7, 11, 14, 21, 22, 33, 42, 66, 77, 154, 231, 462}.
Additionally, we solve

7X3 − 35X2Y + 21XY 2 − Y 3 = ±7δ11γ11

and
11X5 − 165X4Y + 462X3Y 2 − 330X2Y 3 + 55XY 4 − Y 5 = ±11δ5γ57γ7 ,

in coprime integers X and Y , δ ∈ {0, 1} and γp ≥ 0. In these latter two equations, we have taken
X = u2 and Y = dv2.

Appealing to the Thue-Mahler equation solver, implemented in Magma and associated to the
paper [26], we find solutions as follows :

n = 5, d = 2, (u, v) = (1, 1), (1, 2),

n = 5, d = 7, (u, v) = (3, 2),

n = 5, d = 10, (u, v) = (1, 1)
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and

n = 5, d = 30, (u, v) = (1, 1).

These lead to solutions of equation (2) with

(x, y, n) = (1, 3, 5), (241, 9, 5), (241, 3, 10), (4443, 37, 5), (401, 11, 5) and (4201, 31, 5).

We have thus proved the following.

Proposition 3.2. The only solutions to (2) with n ≥ 5 prime, gcd(x, y) = 1 and y odd correspond
to the identities

12 + 2 · 112 = 35, 2412 + 23 · 112 = 95, 4012 + 2 · 53 = 115,

42012 + 2 · 3 · 53 · 114 = 315 and 44432 + 22 · 7 · 116 = 375.

The remainder of the paper is devoted to equation (2) in the difficult case where y is even.
Under this assumption, we may not appeal to the machinery of primitive divisors. We will instead
use three main ingredients...

4. Reduction to Thue-Mahler equations: the case of even y

From the results of the preceding sections, we are left to treat (2) with y even and n ≥ 5 prime.
It therefore remains then to consider the equation

(14) x2 + 3α35α57α711α11 = yn with y even, gcd(x, y) = 1 and n ≥ 5 prime.

The purpose of this section and the next is to prove the following proposition.

Proposition 4.1. The only solutions to (14) with n < 2× 108 correspond to the identities

312 + 32 · 7 = 45, 52 + 7 = 25, 1812 + 7 = 85, 172 + 3 · 5 · 72 = 45,

232 + 32 · 5 · 11 = 45, 1306792 + 3 · 73 · 117 = 1305, 472 + 34 · 52 · 7 = 47, 112 + 7 = 27,

72 + 33 · 5 · 112 = 47, 1172 + 5 · 72 · 11 = 47, 1032 + 3 · 52 · 7 · 11 = 47,

and 81432 + 33 · 5 · 72 · 112 = 413.

We assume without loss of generality that x ≡ 1 (mod 4). As before we shall write

(15) 3α35α57α711α11 = c2d, where d is squarefree and c = 3β35β57β711β11 .

Since y is even, it follows from (14) that d ≡ −1 (mod 8), whence necessarily

(16) d ∈ {7, 15, 55, 231}.

Let M = Md = Q(
√
−d). We note the structure of the class group of M :

Cl(M) ∼=


1 d = 7

C2 d = 15

C4 d = 55

C2 × C6 d = 231.

Lemma 4.2. Let c′ = ±c with the sign chosen so that c′ ≡ 1 (mod 4). Let

h =


1 d = 7

2 d = 2

4 d = 55

6 d = 231

and η = r + s
√
−d, where (r, s) =


(1/4,−1/4) d = 7

(1/8,−1/8) d = 15

(3/32, 1/32) d = 55

(5/128,−1/128) d = 231.



8 MICHAEL BENNETT AND SAMIR SIKSEK

Let 0 ≤ κn ≤ h − 1 be the unique integer satisfying κn · n ≡ −2 (mod h). Then there is some
non-zero µ ∈ OM such that

(17)
x+ c′

√
−d

2
= η(2+κn·n)/h · µn.

Moreover, η is supported only on prime ideals dividing 2 and µ is supported only on prime ideals
dividing 2y.

Proof. As d ≡ −1 (mod 8), the prime 2 splits in OM as 2OM = P ·P, where

(18) P = 2OM +

(
1 +
√
−d

2

)
· OM .

We may rewrite (14) as

(19)

(
x+ c′

√
−d

2

)(
x− c′

√
−d

2

)
=

yn

4
.

Note that the two factors on the left hand-side of this last equation are coprime elements of OM .
Since x ≡ c′ ≡ 1 (mod 4), we see that P divides the first factor on the left hand-side. We thus
deduce that

(20)

(
x+ c′

√
−d

2

)
· OM = P−2 · An,

where A is an integral ideal divisible by P, with A ·A = yOM . The order of the class [P] in Cl(M)
is h. Thus P−h is principal, and η has been chosen so that P−h = ηOM . Let B = Pκn ·A. Then
we may rewrite (20) as(

x+ c′
√
−d

2

)
· OM = P−(2+κn·n) ·Bn = η(2+κn·n)/h ·Bn.

Since n is a prime that does not divide the order of Cl(M), the ideal B must be principal. Let µ
be a generator for B. Then

x+ c′
√
−d

2
= ±η(2+κn·n)/h · µn

and (17) follows on absorbing the sign into µ. It is clear that η is supported on P only. Moreover
B is an integral ideal with norm 2κny. It follows that µ is supported only on prime ideals dividing
2y. �

Lemma 4.3. The only solutions to equation (14) with 5 ≤ n ≤ 11 prime are those given in
Proposition 4.1.

Proof. We drop our requirement that x > 0 and replace it with the assumption x ≡ 1 (mod 4), so
that we can apply Lemma 4.2. For each exponent n, there are four cases to consider depending
on the value of d ∈ {7, 15, 55, 231} in (15). For each pair (n, d), Lemma 4.2 asserts that (x, c′)
satisfies (17) with µ ∈ OM . We write

µ = r + s(1 +
√
−d)/2,

with r and s rational integers. We will show that gcd(r, s) = 1. If 2 | r and 2 | s then P | µ which
contradicts the coprimality of the two factors in the left hand-side of (19). If ` | r and ` | s, is an
odd prime then again we contradict the coprimality of those two factors. Hence gcd(r, s) = 1.

From (17), we have

c′ =
1√
−d

(
ηm · (r + s(1 +

√
−d)/2)n − ηm · (r + s(1−

√
−d)/2)n

)
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where m = (2+κn ·n)/h. The expression on the right has the form 2−hmF (r, s) where F ∈ Z[X,Y ]
is homogeneous of degree n. We therefore, in each case, obtain a Thue-Mahler equation of the
form

F (r, s) = 2hm · c′ = ±2hm · 3β35β57β711β11 .

We solved these Thue-Mahler equations using the Thue-Mahler solver associated with the paper
[26]. This computation took around one day and resulted in the solutions in Proposition 4.1 for
n ∈ {5, 7}; there were no solutions for n = 11. �

5. Frey-Hellegouarch curves and related objects

We continue to treat (2) with y even, i.e. equation (14), where we maintain the assumption
that x ≡ 1 (mod 4). Although the results of the previous section allow us to assume more, for
now we merely impose the following constraint on the exponent: n ≥ 7 is prime. Following the
first author and Skinner [4], we associate to a solution (x, y, n) the Frey-Hellegouarch elliptic curve
F = F (x, y, n) defined via

(21) F : Y 2 +XY = X3 +

(
x− 1

4

)
X2 +

yn

64
X.

The model here is minimal, semistable, and we note the following invariants,

c4 = x2 − 3

4
yn, c6 = −x3 +

9

8
xyn

and

∆F =
y2n

212
(x2 − yn) = −2−12 · 3α35α57α711α11 · y2n.

We invoke the results of the first author and Skinner [4] (which merely require that n ≥ 7 is
prime). These build on the modularity of elliptic curves over Q following Wiles and others [66],
[10], Ribet’s level lowering theorem [52], and the isogeny theorem of Mazur [40]. Write N for the
conductor of E and let

N ′ =
N∏
`||N

n|ord`(∆F )
`
.

The results of the first author and Skinner assert the existence of a weight 2 newform f of level
N ′ such that

(22) ρF,n ∼ ρf,n,

with n | n a prime ideal in the ring of integers OK of the Hecke eigenfield K of f .

Lemma 5.1. N ′ = 2R where R | 3 · 5 · 7 · 11. Moreover, for ` ∈ {3, 5, 7, 11}, we have

(23) ` - N ′ ⇐⇒ α` ≡ 0 (mod n) ⇐⇒ 2 ord`(c) + ord`(d) ≡ 0 (mod n)

where b, c are given in (15).

Proof. Since E is semistable, N is squarefree, and thereforeN ′ is squarefree. Note that ord2(∆F ) =
2n ord2(y)− 12. Thus 2 || N and n - ord2(∆F ). Thus 2 || N ′.

Next let ` ≥ 13. Then ord`(∆F ) = 2n ord`(y) and hence ` - N ′. It follows that N ′ = 2R with
R | 3 · 5 · 7 · 11.

To prove the second part of the lemma, note that, for ` ∈ {3, 5, 7, 11},

ord`(∆) = α` + 2n ord`(y) = 2 ord`(c) + ord`(d) + 2n ord`(y).

If α` = 0 and ord`(y) = 0, then ` - N and so ` - N ′, and therefore (23) holds. Suppose α` > 0 or
ord`(y) > 0. Then ` || N . By the formula for N ′, we have ` - N ′ if and only if n | ord`(∆) which
is equivalent to n | α`. This completes the proof. �
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Let f be the weight 2 newform of level N ′ satisfying (22). Write

(24) f = q +

∞∑
m=2

cmqm

for the usual q-expansion of f . Then K = Q(c1, c2, . . .), and the coefficients ci belong to OK .

Lemma 5.2. Let ` - N ′ be a prime and write

C′f,` =

{
(`+ 1)2 − c2` if K = Q
` · ((`+ 1)2 − c2`)) if K 6= Q.

Let d be as in (15), and set

T`(f) =


{a ∈ Z ∩ [−2

√
`, 2
√
`] : `+ 1− a ≡ 0 (mod 4)} if (−d/`) = 1

{a ∈ Z ∩ [−2
√
`, 2
√
`] : `+ 1− a ≡ 0 (mod 2)} if (−d/`) = −1

∅ if ` | d.
Let

Cf,` = C′f,` ·
∏

a∈T`(f)

(a− c`).

If ρF,n ∼ ρf,n, then n | Cf,`.

Proof. Suppose ` - N ′ and write N for the conductor of F . Suppose ρF,n ∼ ρf,n. A standard
consequence [55, Propositions 5.1, 5.2] of this is that{

c` ≡ a`(F ) (mod n) if ` 6= n and ` - N
c` ≡ ±(`+ 1) (mod n) if ` 6= n and ` | N.

Here the restriction ` 6= n is unnecessary if K = Q. It follows if ` | N that n | C′f,`. We observe
that the discriminant of F can written as

∆ = (−d) · (cyn/26)2.

If ` | d then ` | N and so we take Cf,` = C′f,`.
Suppose ` - N and so ` - d. Thus c` ≡ a`(F ) (mod n). To complete the proof it is sufficient to

show that a`(F ) ∈ T`(f). The model for F given in (21) is isomorphic to

(25) F : Y 2 = X3 + xX2 +
yn

4
X,

and so has a point of order 2. Thus `+ 1− a`(F ) = #F (F`) ≡ 0 (mod 2). Moreover, if (−d/`) =
1 then the discriminant is a square modulo `, so F/F` has full 2-torsion, whence #F (F`) ≡
0 (mod 4). Thus a`(F ) ∈ T`(f). �

There are a total of 76 conjugacy classes of newforms f at the levels N ′ = 2R with R | 3·5·7·11,
of which 59 are rational (and so correspond to elliptic curves). Since there are four possible values
of d ∈ {7, 15, 55, 231} this gives 4 × 76 = 304 pairs (f, d) to consider. We apply Lemma 5.2 to
each pair (f, d), letting

Cf,d =
∑
Cf,` · OK

where the sum is over all primes 3 ≤ ` < 500 not dividing N ′. It follows from Lemma 5.2 that
n | Cf,d. We let

Cf,d = NormK/Q(Cf,d).
Since n | n, we have that n | Cf,d. Of the 304 pairs (f, d), the integer Cf,d is identically zero
for 114 pairs, and non-zero for the remaining 190 pairs. For the 190 pairs (f, d) where Cf,d 6= 0,
we find that the largest possible prime divisor of any of these Cf,d is 11. By the results of the
previous section we know all the solutions to (14) with n ∈ {7, 11}. We can therefore eliminate
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these 190 pairs from further consideration. We focus on the 114 remaining pairs (f, d). Here, each
f satisfies K = Q and so corresponds to an elliptic curve E/Q whose conductor is equal to the
level N ′ of f . Moreover, each of these elliptic curve E has non-trivial rational 2-torsion. This is
unsurprising in view of the remarks following [55, Proposition 9.1]. We observe that ρf,n ∼ ρE,n.
Thus we have 114 pairs (E, d) to consider, and if (x, y, n) is a solution to (14) with n ≥ 13 prime
then there is some pair (E, d) (among the 114) where d satisfies (15) and E/Q is an elliptic curve
such that ρF,n ∼ ρE,n. In particular, for any prime ` - N ′,{

a`(E) ≡ a`(F ) (mod n) if ` - N
a`(E) ≡ ±(`+ 1) (mod n) if ` | N.

5.1. The Method of Kraus.

Lemma 5.3. Let c′ = ±c with the sign chosen so that c′ ≡ 1 (mod 4). Let

γ = u+ v
√
−d where (u, v) =


(1/8, 3/8) d = 7

(7/8, 1/8) d = 15

(3/8, 1/8) d = 55

(5/16,−1/16) d = 231.

Choose εn ∈ {1,−1} to satisfy n ≡ εn (mod 3). Then there is some δ ∈M∗ such that

(26)
x+ c′

√
−d

x− c′
√
−d

=

{
γ · δn if d = 7, 15, 55

γ(2+εn·n)/3 · δn if d = 231.

Moreover, δ is supported only on prime ideals dividing y.

Proof. From the proof of Lemma 4.2, and in particular (20), we have

(27)

(
x′ + c

√
−d

x′ − c
√
−d

)
· OM = (P/P)2 ·Bn

with B = A/A. Here P is given by (18), and A is an integral ideal dividing y. We observe that B
is supported only on prime ideals dividing y. First let d = 7, 15 or 55. In these cases the fractional
ideal (P/P)2 is principal, and we have chosen γ so that it is a generator. Since n is a prime not
dividing the order of Cl(M) we have that B is also principal. Let δ ∈ M∗ be a generator of B.
Then

x+ c′
√
−d

x− c′
√
−d

= ±γ · δn,

and we complete the proof for d = 7, 15 and 55 by absorbing the ± sign into δ.

Suppose now that d = 231. The class of the fractional ideal P/P has order 3, and we have
chosen γ to be a generator of (P/P)3. We may rewrite (27) as

x+ c′
√
−d

x− c′
√
−d

= (P/P)2+εn·n · Cn

where C = B · (P/P)εn . Note that 3 | (2 + εn · n) and hence

(P/P)2+εn·n = γ(2+εn·n)/3 · OM .

The ideal C must be principal and hence we complete the proof by letting δ be a suitably chosen
generator for C. We note that in all cases δ is supported only on primes of OM dividing y. �



12 MICHAEL BENNETT AND SAMIR SIKSEK

Lemma 5.4. Let n ≥ 13 be a prime and (E, d) be one of the remaining 114 pairs. Let q = kn+ 1
be a prime. Suppose that (−d/q) = 1, and choose a such that a2 ≡ −d (mod q). Let g0 be a
generator for F∗q and g = gn0 . Let (u, v) be as in the statement of Lemma 5.3. If d = 7, 15 or 55
then let

Θ′q =
{

(u+ va) · gi : i = 0, 1, . . . , k − 1
}
⊂ Fq.

If d = 231, then set

Θ′q =
{

(u+ va)(2+εn·n)/3 · gi : i = 0, 1, . . . , k − 1
}
⊂ Fq

and, in all cases, let

Θq = Θ′q \ {0, 1}.
Suppose the following two conditions hold:

(i) aq(E)2 6≡ 4 (mod n).
(ii) aq(E)2 6≡ aq(Hθ)

2 (mod n) for all θ ∈ Θq, where

Hθ : Y 2 = X(X + 1)(X + θ).

Then ρF,n � ρE,n.

Proof. We suppose that ρF,n ∼ ρE,n and derive a contradiction. Since n ≥ 11, we note that,
in particular, q 6∈ {2, 3, 5, 7, 11}. Suppose first that q | y. Then q + 1 ≡ ±aq(E) (mod n). But
q+ 1 = kn+ 2 ≡ 2 (mod n) and hence aq(E)2 ≡ 4 (mod n), contradicting hypothesis (i). We may
therefore suppose that q - y. In particular q is a prime of good reduction for the Frey curve F ,
and also for the curve E, whence aq(F ) ≡ aq(E) (mod n).

Since a2 ≡ −d (mod q), by the Dedekind-Kummer theorem the prime q splits in OM as a
product of two primes qOM = q · q where we choose

(28) q = qOM + (a−
√
−d) · OM .

In particular a ≡
√
−d (mod q). Moreover, Fq = Fq. Since q | q and q - 2y, it follows from (19)

that q - (x± c′
√
−d). We let θ ∈ F∗q satisfy

(29) θ ≡ x+ c′
√
−d

x− c′
√
−d

(mod q).

We will contradict hypothesis (ii), and complete the proof, by showing that θ ∈ Θq and aq(F ) =

±aq(Hθ). If θ ≡ 1 (mod q) then q | 2c′
√
−d giving that q | 2 · 3 · 5 · 7 · 11, which is impossible.

Therefore θ 6≡ 1 (mod q). Let (u, v), γ, δ be as in the statement of Lemma 5.3. Note that γ is
supported only at the primes above 2 and that δ is supported at only at the primes above y. Since
q - y, we may reduce γ and δ modulo q. In particular,

γ ≡ u+ av (mod q).

Moreover, δn (mod q) belongs to the subgroup of F∗q generated by g = gn0 of order k. The fact
that θ belongs to Θ′q (and therefore to Θq) follows from (29) and (26).

It remains to show that aq(F ) = ±aq(Hθ). The model for F in (21) is isomorphic to the model
in (25). We note that the polynomial on the right hand-side of (25) can be factored as

(30) X

(
X +

x+ c′
√
−d

2

)(
X +

x− c′
√
−d

2

)
.

Thus, F (mod q) is a quadratic twist of Hθ, whence

aq(F ) = aq(F ) = ±aq(Hθ) = ±aq(Hθ),

completing the proof. �
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Remark. We know by Dirichlet’s theorem that the natural density of primes q satisfying the
conditions q = kn+1 and (−d/q) = 1 is 1/2n. We now give a heuristic estimate for the probability
of succeeding to show that ρF,n � ρE,n using a single q = kn + 1 that satisfies (−d/q) = 1. The
set Θ′q has size k, and so Θq has size close to k. For a given θ ∈ Θq, we expect the probability

that aq(E)2 6≡ aq(Hθ)
2 (mod n) to be roughly (1 − 2/n). Thus the probability of the criterion

succeeding is around (1−2/n)k. In particular, if k is large compared to n/2 then we expect failure,
but if k is small compared to n/2 then we expect success. Moreover, if we fail with one particular
value of q, we are likely to fail with larger values of q (which correspond to larger values of k).

However, this heuristic is likely to be inaccurate when
√
q is small compared to n, since aq(E)

and aq(Hθ) both belong to the Hasse interval [−2
√
q, 2
√
q], and the probability of the criterion

succeeding is around (1− 1/
√
q)k.

There are 11078932 primes n in the interval 13 ≤ n < 2 × 108. Recall that we have 114
remaining pairs (E, d) with E/Q an elliptic curve and d ∈ {7, 15, 55, 231}. We wrote a Magma

script that applied the criterion of Lemma 5.4 to the 11078932 × 114 = 1262998248 ≈ 1.3 × 109

triples (E, d, n). For each such triple the script searches for a prime q = kn+ 1 with k < 103 such
that the hypotheses of Lemma 5.4 are satisfied. This computation took around 7000 hours, but,
since it was distributed over 114 processors, finished in less than three days. For all but 1230 of
the 1262998248 triples (E, d, n) the script found some q satisfying the hypotheses of Lemma 5.4.
We are therefore reduced to considering the remaining 1230 triples (E, d, n). While these are
somewhat too numerous to record here, we note that the largest value of n appearing in any of
these triples is n = 1861 and this corresponds to E being the elliptic curve with Cremona label
210A1 and d = 15.

5.2. A refined sieve. Our adaptation of the method of Kraus (Lemma 5.4) makes use of one
auxiliary prime q satisfying q = kn + 1 and (−k/q) = 1. To treat the remaining 1230 triples
(E, d, n), we will use a refined sieve that combines information from several such primes q.

Lemma 5.5. Let (E, d, n) be one of the remaining 1230 triples. Let q = kn + 1 be a prime.
Suppose that (−d/q) = 1 and choose a such that a2 ≡ −d (mod q). Let c′, h, (r, s), κn be as in
Lemma 4.2, m = (2 + κn · n)/h ∈ Z.and set

ρ1 = (r + sa)m and ρ2 = (r − sa)m.

Let g0 be a generator for F∗q and g = gn0 . Further, let us define

Υ′′q =
{(
ρ1 · gi, ρ2 · gj

)
: i = 0, 1, . . . , k − 1, j = 0, 1

}
⊂ Fq × Fq,

Υ′q =
{

(θ1, θ2) ∈ Υ′′q : θ1θ2(θ1 − θ2) 6= 0
}

and

Υq =
{

(θ1, θ2) ∈ Υ′q : aq(Hθ1,θ2) ≡ aq(E) (mod n)
}
,

where Hθ1,θ2/Fq is the elliptic curve

Hθ1,θ2 : Y 2 = X(X + θ1)(X + θ2).

Write

Φ′q =
{

(θ1 − θ2)/a · (F∗q)2n : (θ1, θ2) ∈ Υq

}
⊂ F∗q/(F∗q)2n

and

Φq =

{
Φ′q ∪ {(ω/a) · (F∗q)2n : ω = ρ1, ρ1g, −ρ2, −ρ2g} if aq(E)2 ≡ 4 (mod n)

Φ′q otherwise.

If ρF,n ∼ ρE,n, then necessarily

(31) c′ · (F∗q)2n ∈ Φq.
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Proof. Let M = Q(
√
−d). Let q | q be the prime ideal of OM given by (28); thus OM/q = Fq and√

−d ≡ a (mod q). Let µ be as in Lemma 4.2. From (17) and its conjugate we have

(32)
x+ c′

√
−d

2
≡ ρ1 · µn,

x− c′
√
−d

2
≡ ρ2 · µn (mod q).

Suppose first that q - y. Thus both F and E have good reduction at q, and so aq(F ) ≡
aq(E) (mod n). It follows from (19) that q - ((x ± c′

√
−d)/2) and that q - µ, µ. Recall that

g = gn0 where g0 is a generator for F∗q ; it particular, g is a non-square, it generates (F∗q)n, and has

order k. We note that the class of µn modulo q is either in (F∗q)2n or in g · (F∗q)2n. Hence there is

some φ ∈ (F∗q)2n, and some 0 ≤ j ≤ 1 such that

x− c′
√
−d

2
≡ ρ2 · gj · φ (mod q).

Now the class of µn/φ modulo q belongs to (F∗q)n and so is equal to gi for some 0 ≤ i ≤ k− 1. We
note that

x+ c′
√
−d

2
≡ ρ1 · gi · φ (mod q).

Hence (
x+ c′

√
−d

2
,
x− c′

√
−d

2

)
≡ (θ1 · φ, θ2 · φ) (mod q)

where (θ1, θ2) ∈ Υ′′q . Since q - ((x ± c′
√
−d)/2) we see that θ1θ2 6= 0. Moreover, θ1 − θ2 =

c′
√
−d/φ ∈ F∗q . Thus (θ1, θ2) ∈ Υ′q. Now recall that the model for the Frey curve F in (21) is

isomorphic to the model given in (25). The polynomial on the right hand-side of the latter model
factors as in (30). Thus F/Fq is isomorphic to the elliptic curve

Y 2 = X(X + θ1φ)(X + θ2φ).

As φ is a square in Fq, we see that this elliptic curve is in turn isomorphic to the elliptic curve
Hθ1,θ2 . Then aq(F ) = aq(F ) = aq(Hθ1,θ2) = aq(Hθ1,θ2). Since aq(E) ≡ aq(F ) (mod n), it follows
that (θ1, θ2) ∈ Υq. Moreover,

c′ =
1√
−d
·
(
x+ c′

√
−d

2
− x− c′

√
−d

2

)
≡ θ1 − θ2

a
· φ (mod q).

Since φ ∈ (F∗q)2n this proves (31).
So far we have considered only the case q - y. We know that if q | y then aq(E) ≡ ±(q +

1) ≡ ±2 (mod n). Thus if aq(E)n 6≡ 4 (mod n) then q - y and the proof is complete. Suppose
aq(E)2 ≡ 4 (mod n) and that q | y. In particular q | µ or q | µ, but cannot divide both by the

coprimality of the factors on the right hand-side of (19). Suppose q | µ. Then x ≡ c′
√
d (mod q)

and so from (32) we have

c′ ≡ ρ1√
−d
· µn ≡ ρ1

a
· µn (mod q).

However, the class of µn modulo q belongs to either (F∗q)2n or g · (F∗q)2n, establishing (31). The
case q | µ is similar. This completes the proof. �

Lemma 5.6. Let (E, d, n) be one of the remaining 1230 triples. Let q = kn + 1 be a prime.
Suppose that (−d/q) = −1. Let M = Q(

√
−d) and let q = qOM . Write Fq = OM/q ∼= Fq2 . Let

c′, h, (r, s), κn be as in Lemma 4.2, and set m = (2 + κn · n)/h ∈ Z. Define ρ1 = (r + sa)m,
choose g0 to be a generator for F∗q, and set g = gn0 . Define

Υ′′q =
{
ρ1 · gi : i = 0, 1, . . . , 2q + 1

}
⊂ F∗q,

Υ′q =
{
θ ∈ Υ′′q : θ 6= θq

}
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and

Υq =
{
θ ∈ Υ′q : aq(Hθ) ≡ aq(E) (mod n)

}
,

where Hθ/Fq is the elliptic curve

Hθ : Y 2 = X(X + θ)(X + θq).

Let

Φq =
{

(θ − θq)/
√
−d · (F∗q)2n : θ ∈ Υq

}
⊂ F∗q/(F∗q)2n.

If ρF,n ∼ ρE,n then necessarily (31) holds.

Proof. We note that in Fq Galois conjugation agrees with the action of Frobenius. Thus if α ∈ OM
and α denotes its conjugate, then α ≡ αq (mod q).

Since (−d/q) = −1 and x2 + c2d = yn we observe that q - y. Thus F and E both have good
reduction at q, and so aq(F ) ≡ aq(E) (mod n). Let µ be as in Lemma 4.2. Thus q - µ, µ. Recall
that g = gn0 where g0 is a generator for F∗q. Hence µn ≡ gj for some integer j. From (17)

x+ c′
√
−d

2
≡ ρ1 · gj (mod q) and

x− c′
√
−d

2
≡ (ρ1 · gj)q (mod q).

Write j = i+ (2q + 2)t, where i ∈ {0, 1, . . . , 2q + 1} and t an integer. We note that

g2q+2 = (gq+1
0 )2n.

Moreover, gq+1
0 = g0g

q
0 ∈ F∗q . Thus there is some θ ∈ Υ′′q and some φ ∈ (F∗q)2n such that

x+ c′
√
−d

2
≡ θ · φ (mod q) and

x− c′
√
−d

2
≡ θq · φ (mod q).

Since q - c′
√
−d, we see that θ 6= θq and so θ ∈ Υ′q. We note that the model for F in (25) can,

over Fq, be written as

Y 2 = X(X2 + φ · (θ + θq)X + φ · (θθq)),
where the coefficients are fixed by Frobenius and so do indeed belong to Fq. This model is a twist
by φ of Hθ. As φ is a square in F∗q , we have aq(Hθ) = aq(F ) ≡ aq(E) (mod n). Thus θ ∈ Υq.
Finally,

c′ =
1√
−d
·
(
x+ c′

√
−d

2
− x− c′

√
−d

2

)
≡ θ − θq√

−d
· φ (mod q).

Since φ ∈ (F∗q)2n, this proves (31). �

Lemma 5.7. Let (E, d, n) be one of the remaining 1230 triples. Let q1, q2, . . . , qr be primes
satisfying qi ≡ 1 (mod n). Let

ψq : (Z/2nZ)4 → F∗q/(F∗q)2n, ψq(x1, x2, x3, x4) = (−3)x15x2(−7)x3(−11)x4 · (F∗q)2n.

If (−d/q) = 1, let Φqi be as in Lemma 5.5 and if (−d/q) = −1, let Φqi be as in Lemma 5.6.
Suppose

r⋂
i=1

ψ−1
qi (Φqi) = ∅.

Then ρF,n � ρE,n.

Proof. Recall, from (14) and (15), that

c = 3β35β57β711β11 .

Thus c ≡ (−1)β3+β7+β11 (mod 4) and hence, since we choose c′ = ±c so that c′ ≡ 1 (mod 4),

c′ = (−1)β3+β7+β11 · 3β35β57β711β11 = (−3)β35β5(−7)β7(−11)β11 .
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Table 1. This table gives the six triples (E, d, n) such that the intersection⋂200
i=1 ψ

−1
qi (Φqi) is non-empty. Here the elliptic curve E is given in the first column

in Cremona notation. We note that n = 13 for all six triples. Therefore the
intersection given in the last column is a subset of (Z/26Z)4.

Elliptic Curve d n

200⋂
i=1

ψ−1
qi (Φqi)

462b1 231 13 { (7, 2, 19, 3), (9, 1, 24, 9) }
462f1 231 13 { (0, 15, 25, 13), (15, 18, 5, 0) }
2310j1 231 13 { (11, 6, 6, 18), (24, 19, 19, 5) }
2310l1 231 13 { (10, 5, 22, 8) }
2310m1 231 13 {(5, 14, 11, 21), (7, 21, 19, 19) }
2310o1 15 13 { (1, 0, 1, 1) }

Suppose ρF,n ∼ ρE,n. Thus

ψq(β3, β5, β7, β11) = c′ · (F∗qi)
2n ∈ Φqi

by (31). Therefore

((β3, β5, β7, β11) mod 2n) ∈
r⋂
i=1

ψ−1
qi (Φqi)

giving a contradiction. �

We wrote a Magma script which for each of the 1230 remaining triples (E, d, n) recursively
computes the intersections

ψ−1
q1 (Φq1),

2⋂
i=1

ψ−1
qi (Φqi),

3⋂
i=1

ψ−1
qi (Φqi), . . .

where the qi are primes ≡ 1 (mod n). It stops when the intersection is empty, or when we have
used 200 primes qi, whichever is first. If the intersection is empty, then we know from Lemma 5.7
that ρF,n � ρE,n and we may eliminate the particular triple (E, d, n) from further consideration.
We reached an empty intersection in 1224 cases. Table 1 gives the details for the six triples
(E, d, n) where the intersection is non-empty.

5.3. Proof of Proposition 4.1. We now complete the proof of Proposition 4.1. To summarise,
Lemma 4.3 showed that the only solutions to (14) with exponent n ∈ {5, 7, 11} are the ones given
in the statement of Proposition 4.1. In view of the results of this section, it only remains to
consider the six triples (E, d, n) given in Table 1. To eliminate further cases we make use of the
following result of Halberstadt and Kraus [27, Lemme 1.6].

Theorem 3 (Halberstadt and Kraus). Let E1 and E2 be elliptic curves over the rationals and
write ∆j for the minimal discriminant of Ej. Let n ≥ 5 be a prime such that ρE1,n ∼ ρE2,n.
Let q1, q2 6= n be distinct primes of multiplicative reduction for both elliptic curves such that
ordqi(∆j) 6≡ 0 (mod n) for i, j = 1, 2. Then

ordq1(∆1) · ordq2(∆1)

ordq1(∆2) · ordq2(∆2)

is congruent to a square modulo n.

We shall use Theorem 3 and Lemma 5.1 to eliminate the first five of the six outstanding triples
(E, d, n) given in Table 1. In all these cases n = 13. We know from the proof of Lemma 5.7 that
(β3, β5, β7, β11) (mod 26) belongs to the intersection in the last column of the table.
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Consider the first triple, corresponding to the first row of the table. The β5 ≡ 1 or 2 (mod 26).
But β5 = ord5(c). Thus 2 ord5(c) + ord5(d) ≡ 2β5 + ord5(231) ≡ 2 or 4 (mod 13) and so by
Lemma 5.1, 5 must divide the conductor of E which is 462 giving a contradiction. The same
argument eliminates the second triple.

Next we consider the third triple. Here β7 ≡ 6 or 19 (mod 26), and so ord7(c) ≡ β7 ≡ 6
(mod 13). Then 2 ord7(c) + ord7(d) ≡ 2β7 + ord7(231) ≡ 0 (mod 13). By Lemma 5.1, 7 does not
divide the conductor of E which is 2310 giving a contradiction.

We next consider the fourth triple. Here the elliptic curve E with Cremona reference 2310l1

has minimal discriminant

∆E = 24 × 312 × 53 × 7× 11.

We apply Theorem 3 with E1 = F , E2 = E, q1 = 2 and q2 = 3. From the proof of Lemma 5.1 we
have

ord2(∆F ) ≡ −12 ≡ 1 (mod 13), ord3(∆F ) = 2β3 + ord3(231) ≡ 2× 10 + 1 ≡ 8 (mod 13).

Hence
ord2(∆F ) · ord3(∆F )

ord2(∆E) · ord3(∆E)
≡ 1× 8

4× 12
≡ 11 (mod 13)

which is a non-square modulo 13, contradicting Theorem 3.
Next we consider the fifth triple. Here there are two possibilities for (β3, β5, β7, β11). In the

second possibility we have β7 ≡ 19 (mod 26) which leads to a contradiction via Lemma 5.1. We
focus on the first possibility. The minimal discriminant of the curve E is

∆E = 24 × 38 × 5× 73 × 11.

We obtain a contradiction by applying Theorem 3 with q1 = 2 and q2 = 3.
We are left with the last triple, which we have been unable to eliminate by appealing to

Theorem 3 or Lemma 5.1 or by further sieving. In fact (14) has the solution

(33) 81432 + 33 · 5 · 72 · 112 = 413.

Here n = 13, d = 15 and c = 3 · 7 · 11. We note that the vector of exponents for this value
of c is (β3, β5, β7, β11) = (1, 0, 1, 1) which agrees with prediction in the last column of the table.
Moreover, letting x = −8143 ≡ 1 (mod 4), and yn = 413 in the Frey curve F gives the elliptic
curve 2310o1. To complete the proof we need to solve (14) with d = 15 and n = 13. We do this
by reducing this case to a Thue-Mahler equation using the approach in the proof of Lemma 4.3.
After possibly changing the sign of x so that x ≡ 1 (mod 4), we have that

x+ c′
√
−15

2
=

(
1−
√
−15

8

)(
r + s · (1 +

√
−15)

2

)13

, y = r2 + rs+ 4s2

for some integers r and s satisfying

F13(r, s) =

13∑
i=0

air
13−isi = ±4 · 3β3 · 5β5 · 7β7 · 11β11 ,

where

i ai i ai i ai
0 1 5 36036 10 195624
1 0 6 −34320 11 −95160
2 −312 7 −226512 12 −51428
3 −1144 8 −66924 13 924.
4 8580 9 340340
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We solved this Thue-Mahler equation using the Magma package associated to the paper [26].
The only solution is with

r = 0, s = ±1, β3 = 1, β5 = 0, β7 = 1, β11 = 1.

This corresponds to the identity (33) and completes the proof of Proposition 4.1.

Remark. It is natural to ask if the case n = 13 could have been dealt with entirely using
the Thue-Mahler approach, just as we did for n ∈ {5, 7, 11} in Lemma 4.3. The Thue-Mahler
solver that we are using can quickly deal with the Thue-Mahler equations associated to the pairs
(d, n) = (7, 13) and (55, 13). However, the Thue-Mahler equation for the pair (d, n) = (231, 13)
appears to be somewhat beyond the capabilities of the Thue-Mahler solver. The approach in [26]
reduces solving a Thue-Mahler equation to solving a certain number of S-unit equations. The
Thue-Mahler equation for the pair (d, n) = (15, 13) reduces to solving four S-unit equations. The
Thue-Mahler equation for the pair (d, n) = (231, 13) reduces to solving 2240 S-unit equations.
This explains the effort we invested into eliminating (d, n) = (231, 13) via sieving and appeals to
Theorem 3 and Lemma 5.1.

6. Equation (2) with y even : large exponents

From the results of the preceding sections, it remains to solve equation (2) with y even and
exponent n large and prime.

6.1. Upper bounds for n : linear forms in logarithms, complex and q-adic. Our first
order of business will be to produce an upper bound for the exponent n. To this end, as it
transpires, it will prove useful to have at our disposal a lower bound upon y. From the discussion
following Lemma 5.2, we have that ρF,n ∼ ρE,n for E/Q with nontrivial rational 2-torsion.

Let us begin by supposing that we have a solution to

x2 + 3α35α57α711α11 = yn

with n ≥ 7 prime and y = 2κ for κ a positive integer. Then the Frey-Hellegouarch curve F has
nontrivial rational 2-torsion and conductor

N = 2 · 3δ35δ57δ711δ11 where δi ∈ {0, 1},

so that

N ∈ {14, 30, 42, 66, 70, 154, 210, 330, 462, 770, 2310},
and minimal discriminant

−22κn−123α35α57α711α11 .

A quick check of Cremona’s tables reveals that we find such curves with minimal discriminant
negative and divisible by precisely 22κn−12, with n ≥ 7 prime, only for 18 isomorphism classes of
curves, given, in Cremona’s notation, by

14a4, 210b5, 210e1, 210e6, 330c1, 330c6, 330e4, 462a1, 462d1, 462e1,
462g3, 770a1, 770e1, 770g3, 2310d4, 2310n1, 2310n6, 2310o1.

Most of these have 2κn− 12 = 2 and so κ = 1 and n = 7. Since P (27 − x2) > 11 for 1 ≤ x < 11
odd, only the curve 14a4 with ∆ = −22 · 7 corresponds to a solution, arising from the identity
112 + 7 = 27. Four more curves have 2κn − 12 = 16 and so κ = 2 and n = 7. Corresponding
identities are

72 + 33 · 5 · 112 = 214, 472 + 34 · 52 · 11 = 214, 1032 + 3 · 52 · 7 · 11 = 214, 1172 + 5 · 72 · 11 = 214,

arising from the curves 330c1, 210e1, 2310n1 and 770e1, with discriminants

−216 · 33 · 5 · 112, −216 · 34 · 52 · 7, −216 · 3 · 52 · 7 · 11 and − 216 · 5 · 72 · 11,
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respectively. Neither 462d1 nor 462e1 lead to any solutions while 2310o1, with discriminant
−240 · 33 · 5 · 72 · 112, corresponds to the identity

81432 + 33 · 5 · 72 · 112 = 226.

We may thus suppose that y is divisible by an odd prime factor, provided n ≥ 17.

Lemma 6.1. If n ≥ 17 and y is even, we have

y > 4n− 4
√

2n+ 2.

Proof. By our preceding remarks, there necessarily exists an odd prime p | y. Since ρF,n ∼ ρE,n
where E/Q has nontrivial rational 2-torsion, the fact that gcd(x, y) = 1, thus allows us to conclude
that

ap(E) ≡ ±(p+ 1) (mod n).

From the Hasse-Weil bounds, we have that ap(E) is bounded in modulus by 2
√
p, so that, using

the fact that ap(E) is even,

n <
1

2
(
√
p+ 1)2 ≤ 1

2
(
√
y/2 + 1)2.

The desired inequality follows. �

As before, define c and d via (15), where, since y is even, d ∈ {7, 15, 55, 231}, and let c′ = ±c
with the sign chosen so that c′ ≡ 1 (mod 4).

To derive an upper bound upon n, we will begin by using (26) to find a “small” linear form in
logarithms. We prove

Lemma 6.2. If

Λ = log

(
x+ c′

√
−d

x− c′
√
−d

)
and we suppose further that

(34) yn > 100 c2d,

then

log |Λ| < 0.75 + log c+
1

2
log d− n

2
log y.

Proof. Assumption (34), together with, say, Lemma B.2 of Smart [57], implies that

|Λ| ≤ −10 log(9/10)

∣∣∣∣x+ c′
√
−d

x− c′
√
−d
− 1

∣∣∣∣ = −20 log(9/10)
c
√
d

yn/2
,

whence the lemma follows. �

To show that log |Λ| here is indeed small, we first require an upper bound upon exponents.
From (26), we have that

(35)
2 · c′
√
−d

x− c′
√
−d

=

{
γ · δn − 1 if d ∈ {7, 15, 55}
γ(2+εn·n)/3 · δn − 1 if d = 231.

For prime q, let Qq denote an algebraic closure of the q-adic field Qq, and define νq to be the

unique extension to Qq of the standard q-adic valuation over Qq, normalized so that νq(q) = 1.
For any algebraic number α of degree d over Q, we define the absolute logarithmic height of α via
the formula

(36) h(α) =
1

d

(
log |a0|+

d∑
i=1

log max
(

1, |α(i)|
))

,
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where a0 is the leading coefficient of the minimal polynomial of α over Z and the α(i) are the
conjugates of α in C. Since gcd(x, q) = 1, it follows from (35) that, if we set

Λ1 =

{
δn − (1/γ) if d ∈ {7, 15, 55}
δn − (1/γ)(2+εn·n)/3 if d = 231,

then νq(Λ1) ≥ αq/2, for q ∈ {3, 5, 7, 11}.
To complement this with an upper bound for linear forms in q-adic logarithms, we will appeal

to Proposition 1 of Bugeaud [11].

Theorem 4 (Bugeaud). Let q be a prime number and let α1, α2 denote algebraic numbers which
are q-adic units. Let f be the residual degree of the extension Qq(α1, α2)/Qq and put D =
[Qq(α1, α2) : Qq]/f . Let b1 and b2 be positive integers and put

Λ1 = αb11 − α
b2
2 .

Denote by A1 > 1 and A2 > 1 real numbers such that

logAi ≥ max

{
h(αi),

log q

D

}
, i ∈ {1, 2},

and put

b′ =
b1

D logA2
+

b2
D logA1

.

If α1 and α2 are multiplicatively independent, then we have the bound

νq(Λ1) ≤ 24q(qf − 1)

(q − 1) log4(q)
D4

(
max

{
log b′ + log log q + 0.4,

10 log q

D
, 5

})2

· logA1 · logA2.

We will choose q ∈ {3, 5, 7, 11} and apply this result with the following choices of parameters :

f = 1, D = 2, α1 = δ, α2 = 1/γ, b1 = n

and

b2 =

{
1 if d ∈ {7, 15, 55}

(2 + εn · n)/3 if d = 231.

logA1 =
kd
2

log y

and

logA2 = max

{
k0(d) log 2

2
,

log q

2

}
.

Let us suppose here and henceforth that

(37) n > 108.

Then, in all cases, from Lemma 6.1 and

b′ =
n

max {k0(d) log 2, log q}
+

κd
kd log y

,

we have that

log b′ + log log q + 0.4 > 5 log q

and, moreover, that

log b′ + log log q + 0.4 < log n+ 0.401.

Theorem 4 thus yields the inequalities

νq(Λ1) < c(d, q) · (log n+ 0.401)
2

log y,
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where

c(d, q) =


96q

log3 q
if d = 7, or if d = 15 and q ∈ {5, 7, 11},

576 log 2
log4 3

if d = 15, q = 3,
768q log 2

log4 q
if d = 55,

1728q log 2
log4 q

if d = 231.

It follows that

(38)
∑

q∈{3,5,7,11}

αq log q < C(d) · (log n+ 0.401)
2

log y,

where
C(d) = 2

∑
q∈{3,5,7,11}

c(d, q) log q.

We have

C(7) = 2

(
288

log2 3
+

480

log2 5
+

672

log2 7
+

1056

log2 11

)
< 1571,

C(15) = 2

(
572 log 2

log3 3
+

480

log2 5
+

672

log2 7
+

1056

log2 11

)
< 1691,

C(55) = 2

(
2304 log 2

log3 3
+

3840 log 2

log3 5
+

5376 log 2

log3 7
+

8448 log 2

log3 11

)
< 5547

and

C(231) = 2

(
5184 log 2

log3 3
+

8640 log 2

log3 5
+

12096 log 2

log3 7
+

19008 log 2

log3 11

)
< 12480.

Now consider

(39) Λ2 = kd log

(
x−D0

√
−d

x+D0

√
−d

)
= n log (εγ) + κd log (−γd) + jπi,

where we take the principal branches of the logarithms, and ε ∈ {−1, 1} and j are chosen so that

|log (εγ)| < π

2

and |Λ2| is minimal. Note that we have

d | log (−γd) |
7 arccos(3/4)
15 arccos(7/8)
55 arccos(23/32)
231 arccos(103/128)

Assume first that inequality (34) fails to hold. Then, from (38), we have

n <
2 log 10

log y
+ C(d) · (log n+ 0.401)

2
,

contradicting Lemma 6.1, (37) and C(d) < 12480. It follows, then that we may assume that
inequality (34) holds and hence conclude, from Lemma 6.2, that

log |Λ2| < 0.75 + log kd +
1

2
C(d) · (log n+ 0.401)

2
log y − n

2
log y.

From Lemma 6.1 and (37), we find, in all cases, that

(40) log |Λ2| < −0.4778n log y.

It therefore follows from the definition of Λ2 that

|j|π < πn

2
+ arccos(23/32) + y−0.4778n <

πn

2
+ π,
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and so

(41) |j| ≤ n− 1

2
.

6.1.1. Linear forms in three logarithms. To deduce an initial lower bound upon the linear form in
logarithms |Λ2|, we will use the following, the main result (Theorem 2.1) of Matveev [39].

Theorem 5 (Matveev). Let K be an algebraic number field of degree D over Q and put χ = 1
if K is real, χ = 2 otherwise. Suppose that α1, α2, . . . , αn0

∈ K∗ with absolute logarithmic heights
h(αi) for 1 ≤ i ≤ n0, and suppose that

Ai ≥ max{Dh(αi), |logαi|}, 1 ≤ i ≤ n0,

for some fixed choice of the logarithm. Define

Λ = b1 logα1 + · · ·+ bn0
logαn0

,

where the bi are integers and set

B = max{1,max{|bi|Ai/An0
: 1 ≤ i ≤ n0}}.

Define, with e := exp(1), further,

Ω = A1 · · ·An0
,

C(n0) = C(n0, χ) =
16

n0!χ
en0(2n0 + 1 + 2χ)(n0 + 2)(4n0 + 4)n0+1 (en0/2)

χ
,

C0 = log
(
e4.4n0+7n5.5

0 D2 log(eD)
)

and W0 = log (1.5eBD log(eD)) .

Then, if logα1, . . . , logαn0
are linearly independent over Z and bn0

6= 0, we have

log |Λ| > −C(n0)C0W0D
2 Ω.

We apply Theorem 5 to Λ = Λ2 with

D = 2, χ = 2, n0 = 3, b3 = n, α3 = ±γ, b2 = κd, α2 = −γd, b1 = j, α1 = −1.

We may thus take

A3 = log y, A2 = k0(d) log 2, A1 = π and B = n.

Since

4C(3)C0 = 218 · 3 · 5 · 11 · e5 · log
(
e20.2 · 35.5 · 4 log(2e)

)
< 1.80741× 1011,

and

W0 = log (3en log(2e)) < 2.63 + log n,

we may therefore conclude that

log |Λ2| > −3.94× 1011k0(d) (2.63 + log n) log y.

It thus follows from (40) that

n < 8.25× 1011k0(d)(log n+ 2.63),

whence, in all cases, since k0(d) ≤ 6,

(42) n < 1.76× 1014.

To improve this inequality, we appeal to a sharper but less convenient lower bound for linear
forms in three complex logarithms, due to Mignotte (Theorem 2 of [42]).
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Theorem 6 (Mignotte). Consider three non-zero algebraic numbers α1, α2 and α3, which are
either all real and > 1, or all complex of modulus one and all 6= 1. Further, assume that the
three numbers α1, α2 and α3 are either all multiplicatively independent, or that two of the numbers
are multiplicatively independent and the third is a root of unity. We also consider three positive
rational integers b1, b2, b3 with gcd(b1, b2, b3) = 1, and the linear form

Λ = b2 logα2 − b1 logα1 − b3 logα3,

where the logarithms of the αi are arbitrary determinations of the logarithm, but which are all real
or all purely imaginary. We assume that

0 < |Λ| < 2π/w,

where w is the maximal order of a root of unity in Q(α1, α2, α3). Suppose further that

b2| logα2| = b1 | logα1|+ b3 | logα3| ± |Λ|

and put

d1 = gcd(b1, b2), d3 = gcd(b3, b2) and b2 = d1b
′
2 = d3b

′′
2

Let K,L,R,R1, R2, R3, S, S1, S2, S3, T, T1, T2, T3 be positive rational integers with

K ≥ 3, L ≥ 5, R > R1 +R2 +R3, S > S1 + S2 + S3 and T > T1 + T2 + T3

Let ρ ≥ 2 be a real number. Let a1, a2 and a3 be real numbers such that

ai ≥ ρ| logαi| − log |αi|+ 2D h(αi), i ∈ {1, 2, 3},

where D = [Q(α1, α2, α3) : Q]
/

[R(α1, α2, α3) : R], and set

U =

(
KL

2
+
L

4
− 1− 2K

3L

)
log ρ.

Assume further that

(43) U ≥ (D + 1) log(K2L) + gL(a1R+ a2S + a3T ) +D(K − 1) log b− 2 log(e/2),

where

g =
1

4
− K2L

12RST
and b = (b′2η0)(b′′2ζ0)

(
K−1∏
k=1

k!

)− 4
K(K−1)

,

with

η0 =
R− 1

2
+

(S − 1)b1
2b2

and ζ0 =
T − 1

2
+

(S − 1)b3
2b2

.

Put

V =
√

(R1 + 1)(S1 + 1)(T1 + 1).

If, for some positive real number χ, we have

(i) (R1 + 1)(S1 + 1)(T1 + 1) > KM,

(ii) Card{αr1αs2αt3 : 0 ≤ r ≤ R1, 0 ≤ s ≤ S1, 0 ≤ t ≤ T1} > L,

(iii) (R2 + 1)(S2 + 1)(T2 + 1) > 2K2,

(iv) Card{αr1αs2αt3 : 0 ≤ r ≤ R2, 0 ≤ s ≤ S2, 0 ≤ t ≤ T2} > 2KL, and

(v) (R3 + 1)(S3 + 1)(T3 + 1) > 6K2L,
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where

M = max
{
R1 + S1 + 1, S1 + T1 + 1, R1 + T1 + 1, χ V

}
,

then either

(44) |Λ| · LSe
LS|Λ|/(2b2)

2|b2|
> ρ−KL,

or at least one of the following conditions (C1), (C2), (C3) holds :

(C1) |b1| ≤ R1 and |b2| ≤ S1 and |b3| ≤ T1,

(C2) |b1| ≤ R2 and |b2| ≤ S2 and |b3| ≤ T2,

(C3) either there exist non-zero rational integers r0 and s0 such that

(45) r0b2 = s0b1

with

(46) |r0| ≤
(R1 + 1)(T1 + 1)

M− T1
and |s0| ≤

(S1 + 1)(T1 + 1)

M− T1
,

or there exist rational integers r1, s1, t1 and t2, with r1s1 6= 0, such that

(47) (t1b1 + r1b3)s1 = r1b2t2, gcd(r1, t1) = gcd(s1, t2) = 1,

which also satisfy

|r1s1| ≤ gcd(r1, s1) · (R1 + 1)(S1 + 1)

M−max{R1, S1}
,

|s1t1| ≤ gcd(r1, s1) · (S1 + 1)(T1 + 1)

M−max{S1, T1}
and

|r1t2| ≤ gcd(r1, s1) · (R1 + 1)(T1 + 1)

M−max{R1, T1}
.

Moreover, when t1 = 0 we can take r1 = 1, and when t2 = 0 we can take s1 = 1.

To apply this result to Λ = Λ2, we distinguish between two cases, depending on whether j is
negative or nonnegative, respectively. In the first case (j < 0), we choose

(48) b1 = κd, α1 = −γd, b2 = n, α2 = ±γ and b3 = −j, α3 = −1.

In the second, we have

(49) b1 = κd, α1 = −γd, b2 = j, α2 = −1 and b3 = n, α3 = ±γ.

It follows, in case (48), that

h(α1) =
k0(d) log 2

2
, h(α2) =

1

2
log(y) and h(α3) = 0.

Let us suppose that d = 231 (this should give the worst constants). We can take

a1 = ρ arccos(103/128) + 6 log(2), a2 =
1

2
ρπ + log(y) and a3 = ρπ.

As noted in [14], if we suppose that m ≥ 1 and define

(50)
K = [mLa1a2a3], R1 = [c1a2a3], S1 = [c1a1a3], T1 = [c1a1a2], R2 = [c2a2a3],

S2 = [c2a1a3], T2 = [c2a1a2], R3 = [c3a2a3], S3 = [c3a1a3] and T3 = [c3a1a2],
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where

(51)
c1 = max{(χmL)2/3, (2mL/a1)1/2}, c2 = max{21/3(mL)2/3, (m/a1)1/2L}

and c3 = (6m2)1/3L,

then conditions (i)-(v) are automatically satisfied. It remains to verify inequality (43).
Define

R = R1 +R2 +R3 + 1, S = S1 + S2 + S3 + 1 and T = T1 + T2 + T3 + 1.

We choose
ρ = 7.5, L = 155, m = 15 and χ = 0.03,

so that
c1 = (2mL/a1)1/2, c2 = 21/3(mL)2/3,

and we have
K = [K1 +K2 log(y)],

where
K1 = 5760812.3270 . . . and K2 = 488992.9376 . . . .

We thus have
S1 = 4800, S2 = 46505 and S3 = 360293.

Since Lemma 6.1 and (37) together imply that

(52) log y > 19.8068,

we find, after a little work, that M = R1 + T1 + 1 and that g < 0.2407.
Since we have

d1 = d3 = 1, b′2 = b′′2 = n,

it follows from (37) that

η0 =
1

2
(R1 +R2 +R3) +

1

n
(S1 + S2 + S3) < 23056 log y + 271618

and, from |j| ≤ (n− 1)/2,

ζ0 =
1

2
(T1 + T2 + T3) +

−j
2n

(S1 + S2 + S3) < 8735 log y + 205800.

From Lemma 3.4 of [42], we have the inequality

(53) log

(
K−1∏
k=1

k!

) 4
K(K−1)

≥ 2 logK − 3 +
2 log

(
2πK/e3/2

)
K − 1

− 2 + 6π−2 + logK

3K(K − 1)
,

whence, from K > 106,

log

(
K−1∏
k=1

k!

) 4
K(K−1)

> 2 logK − 3.

It follows, appealing to (37) and (52), that

b < e3n2 (23056 log y + 271618) (8735 log y + 205800)

(5760812.3270 + 488992.9376 log y)
2 < 0.02323n2 < 7.2× 1026,

where the last inequality is a consequence of (42). The right-hand-side of inequality (43) is thus
bounded above by

4 log(K) + 5.4274× 108 + 4.6069× 107 log(y) + 61.842K

while the left-hand-side satisfies

U > 156.146K + 76.062.
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If inequality (43) fails to hold, it follows that

94.304K < 4 log(K) + 5.4274× 108 + 4.6069× 107 log(y),

contradicting

K > 5760811.3270 + 488992.9376 log y

and (52).
Note that we have

LSeLS|Λ2|/(2b2)

2|b2|
=

31898922.5 e31898922.5|Λ2|/n

n

and hence, from (40),

LSeLS|Λ2|/(2b2)

2|b2|
<

31898922.5 exp
(

31898922.5
ny0.4778n

)
n

< 0.319,

where the last inequality is a consequence of Lemma 6.1 and (37). If we have inequality (44), it
thus follows that

log |Λ2| > 1.14− 312.31K.

Once again appealing to (40), we find that

0.4778n log y < 312.31K − 1.14 < 312.31 (5760812.3271 + 488992.9377 log y)

and so

n < 3.1963× 108 +
3.7656× 109

log y
,

whence, from (52),

(54) n < 5.10× 108.

If, on the other hand, inequality (44) fails to be satisfied, from inequality (37) and our choices
of S1 and S2, necessarily (C3) holds. We have M = R1 + T1 + 1 and hence if (45) holds then
n | s0, where

|s0| ≤
(S1 + 1)(T1 + 1)

R1 + 1
<

4801 (2402 + 204 log y)

6336 + 537 log y
.

From (52), the right-hand-side here is at most 1823, whence necessarily s0 = 0, a contradiction.
We thus have (47). In particular,

(55) (κdt1 − jr1)s1 = r1t2n,

for integers r1, s1, t1, t2 with r1 | 2 and

(56) |s1t1| ≤ gcd(r1, s1) · (S1 + 1)(T1 + 1)

R1 + 1
< gcd(r1, s1) · 1823.

In particular, we have

(57) |t1| ≤ 1822.

Since s1 is coprime to t2 and n > 108 is prime, it follows that also s1 | r1, whence

n | κdt1 − jr1.

If t2 6= 0, we thus have, from (41),

n ≤ |j|+ κd|t1| ≤
n− 1

2
+ 2|t1| <

n− 1

2
+ 3644,

contradicting n > 108. If, on the other hand, t2 = 0, then jr1 = κdt1 and so (again using κd = 1
for d = 231)

|j| ≤ κd|t1| ≤ 1822.
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We may thus rewrite Λ2 as a linear form in two logarithms :

(58) Λ2 = n log (ε1γ)− log (α) ,

where we have defined α such that

−κd log (−γd)− jπi = log(α).

For such an α, we have (use d = 231 so that κd = 1 and k0(d) = 6)

h(α) = 3 log 2 and |logα| ≤ arccos(103/128) + |j|π.

We will appeal to Corollary 1 of Laurent [36] :

Theorem 7 (Laurent). Consider the linear form

Λ = c2 log β2 − c1 log β1,

where c1 and c2 are positive integers, and β1 and β2 are multiplicatively independent algebraic
numbers. Define D = [Q(β1, β2) : Q]

/
[R(β1, β2) : R] and set

b′ =
c1

D logB2
+

c2
D logB1

,

where B1, B2 > 1 are real numbers such that

logBi ≥ max{h(βi), | log βi|/D, 1/D}, i ∈ {1, 2}.

Then

log |Λ| ≥ −CD4 (max{log b′ + 0.21,m/D, 1})2
logB1 logB2,

for each pair (m,C) in the following set

{(10, 32.3), (12, 29.9), (14, 28.2), (16, 26.9), (18, 26.0), (20, 25.2),
(22, 24.5), (24, 24.0), (26, 23.5), (28, 23.1), (30, 22.8)} .

We apply this to Λ2 as in (58), with

D = 1, c2 = n, β2 = ε1γ, c1 = 1, β1 = α,

so that we may choose (again using d = 231 so that kd = 3)

logB1 =
3

2
log y, logB2 = arccos(103/128) + |j|π,

whence

b′ =
1

arccos(103/128) + |j|π
+

2n

3 log y
.

We take

(m,C) = (10, 32.3),

so that, from (37), (40), (52) and |j| ≤ 1822,

0.4778n log y < 277358 log2 n log y.

whence n < 2.14× 108.
Here, in all cases, we choose χ = 0.03 and, for the other parameters,

ρ L m upper bound upon n
7.5 155 15 5.10× 108

7.7 89 16 1.91× 108

7.8 86 15 1.73× 108

7.7 90 14 1.71× 108
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7. Extending to include 13

We need to work in Q(
√
−d) for (in addition to previous)

d ∈ {39, 143, 455, 15015}.
Conductor 30030 has 56 isogeny classes of elliptic curves with nontrivial rational 2-torsion. We

have

52 + 39 · 12

4
= 24,

532 + 143 · 32

4
= 210,

12 + 455 · 32

4
= 210,

372 + 15015 · 12

4
= 212.
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[22] L. Dembélé and J. Voight, Explicit methods for Hilbert modular forms, In Elliptic curves, Hilbert modular
forms and Galois deformations, Adv. Courses Math. CRM Barcelona, pages 135–198. Birkhäuser/Springer, Basel,
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115–153.

[30] R. von Kanel and B. Matschke, ??

http://magma.maths.usyd.edu.au/magma/


THE LEBESGUE-NAGELL EQUATION 29

[31] A. Koutsianas, An application of the modular method and the symplectic argument to a Lebesgue-Nagell
equation, Mathematika 66 (2020), 230–244.
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