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ABSTRACT

This thesis deals with the infinite-horizon optimal investment and consumption
problem for a utility maximising agent with Epstein–Zin stochastic differential utility
(EZ-SDU) preferences. In particular, it achieves four main goals.

The first achievement is to provide a detailed introduction to the problem of
continuous-time optimal investment and consumption under constant relative risk
aversion (CRRA) utility preferences—a restriction of EZ-SDU preferences—in a
Black–Scholes–Merton financial market. This is significantly simpler than the opti-
mal investment-consumption problem under EZ-SDU, but even in this case, features
of the problem take it outside the standard settings of classical primal stochastic con-
trol. This means that existing primal verification proofs rely on parameter restric-
tions, restrictions on the admissible strategies, or intricate approximation arguments.
We show in Chapter II that these complications can be overcome using a simple and
elegant argument involving a stochastic perturbation of the utility function.

The second achievement is to provide a detailed introduction to infinite-horizon
EZ-SDU, including a discussion of which parameter combinations lead to a well-
posed investment-consumption problem. To do this, we introduce a slightly different
formulation of EZ-SDU to that which is traditionally used in the literature. This
highlights the necessity and appropriateness of certain restrictions on the parameters
governing EZ-SDU. We provide a thorough comparison of our formulation of EZ-SDU
to the classical formulation.

Thirdly, and most importantly, we tackle the existence and uniqueness of infinite
horizon EZ-SDU—a result currently lacking from the literature. To do this, it is nec-
essary to make case distinctions depending on the parameters governing the agent’s
temporal and risk preferences. Specifically, if R is the agent’s risk aversion and S is
the agent’s elasticity of complementarity (which are both defined in Chapter I), we
must distinguish between the case when ϑ = 1−R

1−S ∈ (0, 1) and the case when ϑ > 1.
We argue in Chapter III that ϑ < 0 does not have a well-formulated solution—and
the case ϑ = 1 reduces EZ-SDU to CRRA utility.

Existence poses more challenges than uniqueness when ϑ ∈ (0, 1), but we show
that by generalising the solution to the EZ-SDU equation so that it becomes either
the minimal supersolution or the maximal subsolution, we may assign a unique (but
not necessarily finite) utility to all consumption streams. In the case ϑ > 1, it is
uniqueness that proves difficult, and the only consumption stream with a unique
utility process is the zero consumption stream. To overcome this, we introduce the
economically motivated notion of a proper solution, and argue that it corresponds to
the “true” utility process. We show that under certain conditions, the proper solution
exists and is unique.

The final achievement is a verification theorem for the optimal strategy. When
ϑ > 1, we optimise over the right-continuous attainable consumption streams with a
unique proper solution. When ϑ ∈ (0, 1), we prove verification under the necessary
and sufficient conditions for the investment-consumption problem to be well-posed.
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CHAPTER

I

INTRODUCTION

The problem of how to invest optimally is of obvious interest to anyone trading

in financial markets. When formulated mathematically, this problem—which has

long been studied in the fields of mathematical finance and financial economics—is

known as the Merton investment-consumption problem after Robert C. Merton, the

first person to find a solution in a continuous-time financial market [Mer69].

More generally, the Merton problem has come to be a name used to describe a

variety of investment and consumption optimisation problems that broadly ask the

following common question:

How should an agent investing in a financial market—whilst consuming

from their wealth—behave, so as to maximise their subjective utility over

a given period of time?

The most common variations of this problem deal with either: optimising the ex-

pected utility of wealth (modelled by a controlled stochastic process X = (Xt)t≥0) at

1



Introduction

some fixed time T in the future (in which case, consumption is omitted); or, addition-

ally allowing the agent to consume from their wealth and maximising the expected

utility gained from the consumption (modelled by a stochastic process C = (Ct)t≥0)

over some (possibly infinite) time horizon. Mathematically, if U : R+ → R is a con-

cave increasing (utility) function, the agent seeks to maximise either the objective

function J(X) = E [U(XT )] in the former case, or J(C) = E
[∫ T

0 e−δtU(Ct) dt
]
in

the latter. In this thesis, we will focus on variants of the latter problem. We will fur-

ther assume that T =∞, which results in the so-called lifetime problem. The aim of

this first chapter is to provide a brief overview of the problem with which this thesis

deals—the lifetime optimal investment and consumption problem for an agent with

Epstein–Zin stochastic differential utility. In this chapter, we omit formal definitions

and mathematical rigour, deferring them to the later chapters, and instead try to

help the reader develop an intuitive understanding of the concepts that will be used

throughout the thesis—and an explanation of why they are useful.

1 The Merton problem with CRRA utility

The standard (primal—as opposed to dual) approach to solving the Merton problem

consists of two steps: first, deriving a “candidate” optimal strategy and an associated

“value-process” by solving the Hamilton–Jacobi–Bellman equation or otherwise; and

then, verifying mathematically that this is in fact optimal. In practice, it is often

quite easy to derive the candidate optimal strategy, but the second step can be quite

mathematically complicated.

This thesis begins with an introduction to the original problem studied by Mer-

ton with U : R+ → R given by the constant relative risk aversion utility function,

U(c) = c1−R

1−R . We first derive the solution to the investment-consumption prob-

lem. Then we explain the standard approach to verification taken in the literature,

paying particular attention to any additional conditions imposed to make the proof

go through. Finally, we show that perturbing the value function by a multiple of

2



1 The Merton problem with CRRA utility

the optimal wealth process results in an elegant verification proof that requires no

constraints on parameters in addition to the strictly necessary.

1.1 Risk aversion and elasticity of intertemporal complementarity

The principal reason that one may choose to apply a utility function to consumption

and maximise the integral of discounted expected utility of consumption—as opposed

to just maximising the integral of discounted expected consumption—is to model the

agent as exhibiting risk aversion. We illustrate this with a simple example.

Suppose that our expected utility maximising agent is approached by a wealthy

benefactor who offers to give them £1000. Since the benefactor also enjoys gambling,

he offers them another choice: a gamble in which they either receive £2000 or £0

depending on the outcome of a coin toss. Both options will give the agent an expected

value of £1000, but which will they choose?

The answer can be explained by risk aversion, the agent’s preference for certainty.

Explicitly, to determine their preferences, we compare the value of E[U(X)] for each

gamble (random variable)X. The first option can be represented by the deterministic

y = 1000, and the second can be represented by the transformed Bernoulli random

variable

X =

 0, with probability 1
2

2000, with probability 1
2

, with E [X] = y. (1.1)

Now, because the utility function is strictly concave and X is random, Jensen’s

inequality implies that E [U(X)] < U(E [X]) = U(y). Hence, the agent strictly

prefers the risk-free option. This is illustrated graphically in Figure 1.1.

The certainty equivalent and the risk premium

For a utility function U and a gamble X, we may define the certainty equivalent

cU (X) to be the deterministic amount that gives the same expected utility as the

gambleX under U ; cU (X) = U−1(E[U(X)]). Clearly, since U−1 is increasing, there is

a direct equivalence between the preference ordering induced by the agent’s expected

3



Introduction

utilities and the associated certainty equivalent.

We may further define the risk premium ρU (X) of X to be the difference between

the expected value of X and its certainty equivalent; ρU (X) = E [X]−cU (X). Using

Jensen’s inequality gives cU (X) ≤ U−1(U(E [X])) = E[X] and ρU (X) ≥ 0.

Figure 1.1: An illustration of the utility assigned to the simple gamble given in (1.1). Since
U : R+ → R is concave, E [U(X)] ≤ U(E [X]). The certainty equivalent cU (X) and the risk
premium ρU (X) of the gamble are represented graphically.

Relative risk aversion and CRRA utility

There are a variety of ways of quantifying how risk averse an agent with expected

utility preferences is, with one of the most commonly used being their relative risk

aversion (RRA). Suppose that an agent has utility function U : R+ → R. Then,

their relative risk aversion1 (at a point x) is given by

RU (x) = −xU
′′(x)

U ′(x)
.

Let R ∈ R+\{1}. As the name suggests, the constant relative risk aversion (CRRA)

utility function2 U(x) = x1−R

1−R has a constant RRA given by R at all points x,

1RRA contrasts with the agent’s absolute risk aversion given by AU (x) = −U
′′(x)
U′(x)

.
2When R = 1, the utility function become U(x) = log(x).

4



1 The Merton problem with CRRA utility

RU (x) = R for x > 0.

Comparative risk aversion

It can be shown (see for example [FS16, Proposition 2.44]) that the risk premium

is increasing in R. Consequently, the certainty equivalent cR(·) associated to the

CRRA utility function with risk aversion R is decreasing in R. This means that if

we have two agents—agent A and agent B—with relative risk aversion parameters

RA and RB respectively, and if RA ≤ RB, then necessarily agent B will reject any

gamble that agent A rejects.

To see this, fix an arbitrary random variable X and deterministic value y. Then,

agent A rejects gamble X in favour of the deterministic y (denoted X ≺A y) if and

only if cRA(X) < cRA(y) = y. Since the certainty equivalent is decreasing in R,

cRB (X) ≤ cRA(X) < y and agent B will also reject the gamble (X ≺B y).

1.2 Assigning utility to stochastic consumption streams

Discounted expected CRRA utility

As we mentioned previously, we will first consider agents with discounted expected

CRRA utility preferences over the infinite time-horizon. This means that the agent

will aim to maximise

J(C) = E
[∫ ∞

0
e−δtU(Ct) dt

]
= E

[∫ ∞
0

e−δt
C1−R
t

1−R
dt

]
. (1.2)

To solve this problem, the value process V = (Vt)t≥0 is introduced, where

Vt = E
[∫ ∞

t
e−δtU(Ct) dt

∣∣∣∣Ft] . (1.3)

This represents the utility that the agent gains from time t onwards from the con-

sumption stream C = (Ct)t≥0.

Provided the integral in (1.2) is well-defined, an application of Fubini’s theorem

5
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and then Jensen’s inequality gives

J(C) =

∫ ∞
0

e−δtE

[
C1−R
t

1−R

]
dt ≤

∫ ∞
0

e−δt
(E [Ct])

1−R

1−R
dt = J(E [C]). (1.4)

As the risk premium is increasing in R, so too the difference between the left and

right hand sides of (1.4) is increasing in R (provided C is stochastic).

However, this is not the only effect that the parameter R has upon the agent’s

preferences. Suppose now that the agent is evaluating the discounted expected utility

of a deterministic consumption stream c = (c(t))t≥0, and suppose that δ > 0. Then,

we may introduce a measure Qδ, defined on the nonnegative real line and given by

Qδ(A) = δ
∫
A e
−δt dt. In this case, we may again use Jensen’s inequality to find that

J(c) =

∫ ∞
0

e−δt
(c(t))1−R

1−R
dt =

1

δ
EQδ [U(c)] ≤ 1

δ
U(EQδ [c]) = J(EQδ [c]). (1.5)

Furthermore, the larger the value of R, the larger the difference between the right

and left hand sides of (1.5).

Since we are considering deterministic consumption streams here, we can no

longer be capturing risk aversion. Is there a similar quantity to risk aversion that

captures this observed preference for consumption streams that are constant through-

out time as opposed to constant over states of the world?

The answer to this question is found in the economics literature on intertempo-

ral choice. In particular, the quantity that captures the difference between the left

hand and right hand sides of (1.5) is referred to as the elasticity of intertemporal

complementarity (EIC), the inverse of which is the more commonly used elastic-

ity of intertemporal substitution (EIS). A clear graphical explanation of how these

quantities affect preferences can be found in [Bom05].

Thus, for discounted expected CRRA utility, the parameter R plays two roles,

and is equal to both the agent’s RRA and their EIC. As a consequence, the agent’s

risk preferences and intertemporal variance preferences are inflexibly interrelated.

6



1 The Merton problem with CRRA utility

This “entanglement” is undesirable from a modelling perspective, and there is no

empirical evidence to suggest that the two concepts must be linked so strictly. It

is for this reason that we will consider Epstein–Zin stochastic differential utility—a

natural extension to CRRA utility that permits these two types of preferences to

differ.

Epstein–Zin stochastic differential utility

Stochastic differential utility [DE92]—and its discrete-time analogue, recursive util-

ity [EZ89, Wei89]—aim to resolve the entanglement issue outlined in the previous

section. To do this, the discounted utility function e−δtU(c) is replaced by an ag-

gregator g(t, c, v) so that instead of evaluating (1.3) to calculate the agent’s utility

from time t onwards, one solves the fixed point equation

Vt = E
[∫ ∞

t
g(s, Cs, Vs) ds

∣∣∣∣Ft] . (1.6)

The utility of a consumption stream C = (Ct)t≥0 is then given by V0. In particular,

the aggregator may depend on V in a nonlinear way. It is precisely this nonlinearity

that permits the disentanglement of risk preferences from intertemporal variance

preferences.

Epstein–Zin stochastic differential utility (EZ-SDU) is a particular type of SDU,

whose aggregator is given by gEZ(t, c, v) = be−δt c
1−S

1−S ((1−R)v)
S−R
1−S . It will be shown

in Chapter III that the parameter R controls the agent’s risk aversion and the param-

eter S controls their aversion to temporal variance. It turns out that the parameter

ϑ := 1−R
1−S is critical. First, it is argued in Chapter III that ϑ > 0 is necessary for the

Epstein–Zin SDU equation to have a meaningful solution over the infinite horizon.

Second, the mathematics of the problem is vastly different depending on whether

ϑ ∈ (0, 1) or ϑ ∈ (1,∞). When ϑ = 1, gEZ(t, c, v) = be−δt c
1−R

1−R , which corresponds

to a scaled version of discounted CRRA utility studied in the previous section. The

different parameter combinations are illustrated in Figure 1.2.

7
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The EZ-SDU process associated to a consumption stream C is therefore given by

V C = (V C
t )t≥0 which solves

V C
t = E

[∫ ∞
t

gEZ(s, Cs, V
C
s ) ds

∣∣∣∣Ft] , for all t ≥ 0, (1.7)

provided a unique solution to (1.7) exists. One of the main goals of this thesis will

be to investigate when this is the case and, when it is not the case, to explain what

steps may be taken to assign an economically meaningful utility process to C.

The Merton problem for EZ-SDU is therefore to find the value of supC∈C V
C

0

(and ideally a maximising consumption stream Ĉ), where C is a set of consumption

streams that can be self-financed from a financial market and to which a unique

meaningful utility process exists. Whilst C is left intentionally vague, it will become

clearer what the this set should be as the thesis progresses.

Figure 1.2: A plot of the different parameter combinations considered. In Chapter III
it is argued that ϑ := 1−R

1−S > 0 is necessary for the Epstein–Zin SDU equation to have
a meaningful solution over the infinite horizon. Chapter IV mainly deals with the case
ϑ ∈ (0, 1) and Chapter V focuses on the parameter combinations leading to ϑ > 1. The
CRRA case corresponding to ϑ = 1 is shown by the dashed line.

8
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2 Overview of the thesis and main contributions

II The Merton Investment-Consumption Problem under CRRA utility.

The second chapter will focus on the Merton problem [Mer69, Mer71] for an agent

with preferences determined by discounted expected constant relative risk aversion

utility. In this case, it is quite straightforward to write down the candidate value

function. However, it is more difficult to give a complete primal verification argu-

ment: first; the application of Itô’s formula to the candidate value function breaks

down due to an infinite derivative at zero if the wealth process hits zero; second, the

local martingale which arises from the application of Itô’s formula may fail to be a

martingale; third, and this holds even for constant proportional strategies, the value

function may fail to satisfy an appropriate transversality condition.

For all these reasons, it is difficult to give a concise, rigorous verification proof

via analysis of the value function, and many textbooks either sidestep the issues

or restrict attention to a subclass of admissible strategies, and/or restrict attention

to a subset of parameter combinations (especially R < 1, but even then there can

be substantive points which are often overlooked). The need for such a verification

argument has been obviated by the development of proofs using the dual method,

which provides a powerful and intuitive alternative approach, see Biagini [Bia10] for a

survey (and also [Kar89, KLSX91, KS98, Rog13]). Nonetheless, it would be satisfying

to provide a short and complete proof based on the primal approach. Furthermore,

the primal approach is well-suited to dealing with the Merton problem for an agent

with EZ-SDU. In this case, dual approaches are more involved and do not cover all

parameter combinations, so that the primal method is not redundant, and indeed

may provide a more direct approach.

The goal of Chapter II is partly to introduce the Merton problem in its simplest

form, and to give a simple, brief proof that the candidate value function is the value

function via the primal approach. Moreover it aims to give a proof which is valid

9



Introduction

for all parameter combinations for which the Merton problem is well-posed—a result

lacking from the primal literature.

III Stochastic Differential Utility: An Introduction.

In this chapter, we introduce the optimal investment-consumption problem for agents

whose preferences are given by EZ-SDU. We define SDU and EZ-SDU for infinite

horizon consumption streams and provide a clear interpretation of all the parameters,

with a focus on the feasible ranges for these parameters. We contrast EZ-SDU with

CRRA utility described in Section 1.2 and show that it does manage to disentangle

risk aversion from temporal variance aversion.

We take a different approach to that used in the rest of the infinite horizon SDU

literature and use a different aggregator as well as considering the infinite horizon

problem directly (we explain in Section III.5 in detail what the alternative approach

is). The key property of the aggregator that we consider is that it takes only one

sign. This means that issues regarding existence of the integral in the right hand

side of (1.6) do not arise.

We compare and contrast our formulation with that taken in the rest of the lit-

erature in Section III.5 and explain why we believe that our approach has many

advantages. In particular, we show that where there exist utility processes associ-

ated with both our aggregator and the classical aggregator, then the utility processes

agree, but crucially any utility process associated to the traditional aggregator is also

a utility process associated with our modified aggregator, whereas the converse is not

true. Moreover, when specialised to the case of additive utility, our aggregator cor-

responds to the classical formulation of the Merton problem, whereas the traditional

aggregator has a nonstandard specification in this context.

Our reformulation of the problem brings significant new insights concerning the

set of feasible parameters for the problem with Epstein–Zin preferences. In particular

we conclude that the RRA co-efficient (R) and the EIC co-efficient (S) must lie on

10



2 Overview of the thesis and main contributions

the same side of unity for the problem to make sense, at least for infinite horizon

problems. (In the classical Merton problem for power law utility the RRA and EIC

are necessarily equal.) This can be stated as ϑ := 1−R
1−S > 0. We further argue in

Section III.5 that the putative solutions which have been found previously in the

literature (in the case ϑ < 0) correspond to a bubble-like behaviour, where the value

associated with a consumption stream comes not from the utility of consumption in

the short and medium term, but rather from a perceived and unrealisable value in

the distant future.

IV Stochastic Differential Utility: Existence and Uniqueness Results.

This chapter gives a rigorous treatment of the Merton problem for Epstein–Zin

stochastic differential utility, with the main focus being on parameter combina-

tions such that ϑ ∈ (0, 1). The first main contribution is an existence result which

shows that there exists a well-defined utility process for a large class of consumption

streams. Since there are no existence results for infinite horizon EZ-SDU, this is a

significant addition to the literature. Then, provided ϑ ∈ (0, 1), we show how to ex-

tend the existence result further to give a well-defined (though not necessarily finite)

utility process for any consumption stream. We show that depending on the sign of

the aggregator, it either corresponds to the minimal supersolution or the maximal

subsolution. Again, key to our proofs is the fact that under our formulation the

aggregator takes one sign.

We then turn to uniqueness. Under the same parameter restriction, we show that

the EZ-SDU process associated to a consumption stream is unique.3 The main idea

is to use a comparison theorem for (sub- and super-) solutions to ensure a unique

representation of the utility process.

Finally, we turn to the identification of the optimal investment and consumption

strategy, and the optimal utility process. The candidate optimal strategy and candi-

3When this condition fails, and despite claims to the contrary in the literature, there are simple
examples showing nonuniqueness. This is discussed in detail in Chapter V.
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date optimal utility process are known (see [SS99, MMKS20, KSS17]), and the main

techniques behind a verification argument are also well established in the literature.

But, what distinguishes our results is the fact that we optimise over all admissible

consumption streams, i.e., all consumption streams which can be financed from an

initial wealth x. Typically in the extant literature optimisation only takes place

over an abstract sub-family of consumption streams for which the utility process ex-

ists, is unique, and possesses certain regularity and integrability conditions. Further,

since there are very few existence results in the literature, often the only strategies for

which it can be verified that the utility process indeed satisfies the required regularity

conditions are the constant proportional investment-consumption strategies. Since

we optimise over all admissible consumption streams, this is a significant advance.

V Stochastic Differential Utility: Proper Solutions When ϑ > 1.

Under the parameter combinations leading to ϑ = 1−R
1−S ∈ (0, 1), studied in Chap-

ter IV, we showed that there exists a unique utility process for every consumption

process (perhaps taking values in [−∞,∞]). However, when ϑ > 1, uniqueness fails.

Thus, to make progress we must first decide which utility process to associate to a

given consumption process. Only then can we attempt to optimise over investment-

consumption pairs.

We begin by studying constant proportional investment consumption strategies.

For such strategies, an explicit (time-homogeneous) solution is known. However, we

show that when ϑ > 1, there exists a family of solutions to the EZ-SDU equation

(1.7). These (time-inhomogeneous) solutions can be characterised by an absorption

time—the first time that they hit zero and are absorbed. In particular, the utility

process corresponding to absorption time T ignores all utility gained from consump-

tion from time T onwards. To rule out these degenerate solutions, we introduce the

notion of a proper solution and argue that it gives the ‘true’ utility process associated

to a consumption stream.

We then proceed to show that: first, for a very wide class of consumption pro-
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cesses C there exists a proper utility process V associated to C; second, for a wide

class of consumption streams C the proper utility process V is unique; third, for

a wide class of consumption streams, the proper solution corresponds to two other

solution concepts with desirable mathematical properties. Finally, we solve the op-

timal investment-consumption problem in a constant parameter financial market,

where we optimise over the right-continuous attainable consumption streams that

have a unique proper solution associated to them.

3 Probabilistic setup and notation

We will work throughout on a filtered probability space (Ω,F , (Ft)t≥0,P) satisfying

the usual conditions4 of right-continuity and completeness and where F0 is P-trivial.

Let P be the set of progressively measurable processes, and let P+ and P++ be the

restrictions of P to processes that take nonnegative and positive values, respectively.

Moreover, denote by S the set of all semimartingales. We identify processes in P

or S that agree up to indistinguishability.

We set R+ := [0,∞), R− = (−∞, 0] and R++ = (0,∞).

4 The Black–Scholes–Merton financial market

Throughout this thesis we will assume a Black–Scholes–Merton financial market

consisting of a risk-free asset with interest rate r ∈ R whose price process S0 =

(S0
t )t≥0 is given by S0

t = exp(rt) and a risky asset whose price process S = (St)t≥0

follows a geometric Brownian motion with drift µ ∈ R and volatility σ > 0:

dSt
St

= µ dt+ σ dBt, S0 = s > 0.

An agent operating with this investment opportunity set and initial wealth x > 0

4There are a couple of times that we relax this assumption to aid an example, but these points
will be clearly highlighted.
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chooses an admissible investment-consumption strategy (ϑ0, ϑ, C) = (ϑ0
t , ϑt, Ct)t≥0,

where ϑ0
t ∈ R denotes the number of riskless assets held at time t, ϑt ∈ R denotes

the number of shares of the risky asset held at time t, and Ct ∈ R+ represents the

rate of consumption at time t. We require that ϑ0, ϑ, C are progressively measurable

processes, ϑ0 is integrable with respect to S0, ϑ1 is integrable with respect to S, C

is integrable with respect to the identity process5, the wealth process X = (Xt)t≥0

defined by

Xt := ϑ0
tS

0
t + ϑtSt (4.1)

is P-a.s. nonnegative and the self-financing condition,

Xt = x+

∫ t

0
ϑ0
s dS0

s +

∫ t

0
ϑs dSs −

∫ t

0
Cs ds, t ≥ 0,

is satisfied. We then denote by Π0
t :=

ϑ0
tS

0
t

Xt
and Πt := ϑtSt

Xt
the fraction of wealth in-

vested in the riskless and risky asset at time t, respectively.6 Noting that Π0
t + Πt = 1

by (4.1), it follows that X satisfies the SDE

dXt = ϑ0
t dS0

t + ϑt dSt − Ct dt

= XtΠ
0
t r dt+XtΠt(µdt+ σ dBt)− Ct dt

= XtΠtσ dBt + (Xt(r + Πt(µ− r))− Ct) dt, (4.2)

subject to X0 = x. This means that we can describe an admissible investment-

consumption strategy for initial wealth x > 0 more succinctly by a pair (Π, C) =

(Πt, Ct)t≥0 of progressively measurable processes. In particular, we introduce the

following two definitions.

Definition 4.1. Given x > 0 an admissible investment-consumption strategy is a pair

(Π, C) = (Πt, Ct)t≥0 of progressively measurable processes, where Π is real-valued

5By saying that a process X is integrable with respect to the identity process we mean that∫ t
0
|Xs|ds <∞ P-a.s. for each t > 0.
6Strictly speaking, Π0

t and Π1
t are not defined for Xt = 0, but this does not matter. We can for

example set Π0
t := 0 and Πt := 1 for Xt = 0.
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4 The Black–Scholes–Merton financial market

and C is nonnegative, such that the SDE (4.2) has a unique strong solution Xx,Π,C

that is P-a.s. nonnegative. We denote the set of admissible investment-consumption

strategies for x > 0 by A (x; r, µ, σ).

The objective criteria by which the strategy is evaluated will depend only upon

the consumption and not upon the investment portfolio in the financial assets. This

motivates the following definition:

Definition 4.2. A consumption stream C ∈ P+ is called attainable for initial

wealth x > 0 if there exists a progressively measurable process Π = (Πt)t≥0 such

that (Π, C) is an admissible investment-consumption strategy. Denote the set of

attainable consumption streams for x > 0 by C (x; r, µ, σ).

When it is clear which financial market we are considering, we simplify the no-

tation and write A (x) = A (x; r, µ, σ) and C (x) = C (x; r, µ, σ).

Remark 4.3. If (Π, C) ∈ A (x) is such that the corresponding wealth process Xx,Π,C

has P-a.s. positive paths, we can define the process Γ = (Γt)t≥0 by Γt := Ct/X
x,Π,C
t .

Here, Γt denotes the fraction of wealth consumed per unit time at time t. Conversely,

for any pair (Π,Γ) = (Πt,Γt)t≥0 of progressively measurable processes such that

Π is real-valued and square-integrable with respect to the identity process and Γ

is nonnegative and integrable with respect to the identity process, there exists a

unique positive process Zx,Π,Γ = (Zx,Π,Γt )t≥0 such that Zx,Π,Γ = Xx,Π,C for C :=

ΓZx,Π,Γ. We conclude that we can parameterise consumption via the fraction of

wealth consumed per unit time rather than an absolute value.
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CHAPTER

II

THE MERTON

INVESTMENT-CONSUMPTION

PROBLEM UNDER CRRA UTILITY

In the Merton investment-consumption problem (Merton [Mer69, Mer71]) a risk-

averse agent seeks to maximise the expected integrated discounted utility of con-

sumption over the infinite horizon in a Black–Scholes–Merton financial market. In

this chapter, we will give a rigorous account of the problem, paying particular atten-

tion to any assumptions made for the argument to go through.

The structure of this chapter is as follows. In the first section we introduce the

problem, and in Section 2 we derive the candidate value function. In Section 3 we

give a proof of the main result under a set of clearly-stated assumptions which are

designed precisely to make the proof work. Often, this is the approach taken in the
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stochastic control literature (see, for example, Davis and Norman [DN90], Fleming

and Soner [FS06, Example 5.2] and Pham [Pha09]), where the authors artificially

impose such restrictions on the set of admissible strategies or on the parameter values

to ensure that these assumptions are satisfied by default.

In Section 4, we summarise two of the most general primal approaches in the

literature—Karatzas et al [KLSS86] and Davis and Norman [DN90]—both of which

use a perturbation argument to weaken some of the assumptions. In particular,

[DN90] provided inspiration for our approach taken in Section 5.

In Section 5 we give our proof of the Verification Theorem, which works for

all parameter combinations for which the problem is well-posed and allows for all

admissible strategies. At its heart, our idea is a modification of the approach in

[DN90]. We perturb the utility function, which leads to a perturbed value function.

However, rather than perturbing by the addition of a deterministic constant, we

perturb by adding a multiple of the optimal wealth process. The great benefit is

that the optimal consumption and the optimal investment are unchanged under the

perturbation, which means that mathematical calculations remain strikingly simple.

Moreover, these arguments are valid whenever the Merton problem is well-posed.

Finally, the Appendix to Chapter II contains: an example which illustrates how

one of the clearly-stated assumptions may easily fail; a section detailing a convenient

numéraire change that allows us to weaken the parameter restrictions imposed by

[KLSS86] and [DN90] and illustrate the role played by the discount factor more

clearly; a discussion the case of logarithmic utility; and, for completeness, a brief

discussion of duality methods for the Merton problem.

Our proof of the Verification Theorem is an improvement on the existing primal

results in at least three important ways. First, it places no restrictions on the class of

admissible strategies: for example, unlike much of the stochastic control literature,

it does not require the fraction of wealth invested in the risky asset to be bounded.

Second, the proof covers all parameter combinations for which the Merton problem

is well-posed (and does not assume that interest rates and discounting are positive—
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1 The Merton objective function

as we shall argue these quantities depend on the choice of accounting units, and

therefore are not absolutes in themselves). Third, our proof is simple, elegant and

concise and not counting the derivation of the candidate solution and candidate value

function can be written up in just over one page (Theorem 5.1 and Corollary 5.4).

1 The Merton objective function

The objective of the agent is to maximise the expected discounted utility of consump-

tion over an infinite time horizon for a given initial wealth x > 0. To any attainable

consumption stream C ∈ C (x), they associate a value J(C) ∈ [−∞,∞], where

J(C) := E
[∫ ∞

0
e−δtU (Ct) dt

]
.

Remark 1.1. Here, δ ∈ R can loosely be interpreted as a discount or impatience

parameter. Note that, unlike much of the literature, we do not assume that δ >

0. One reason for this is that a deterministic change of accounting units leads

to the same Merton investment-consumption optimisation problem, but under a

different set of parameters, including a modified value of δ. We will see in Section

II.B that the problem with parameters R, r, µ, σ, δ is equivalent to the problem with

parameters R, r + γ, µ + γ, σ, δ − (R − 1)γ where γ ∈ R is an arbitrary constant.

In particular, it is possible to make a perfectly a reasonable change of units, and

change the sign of δ. A second reason is that when R > 1 the interpretation of

the restriction δ > 0 is less clear. Note that e−δt C
1−R
t

1−R = (e−δt/(1−R)Ct)1−R

1−R . Then,

when R > 1, the discounted utility of consumption is equivalent to the utility of

upcounted consumption. Equally plausible might be to take the utility of discounted

consumption which would correspond to upcounting the utility of consumption. In

the absence of a unequivocal rationale for a sign restriction on δ, we allow δ to be

unrestricted.

We assume that the agent has constant relative risk aversion (CRRA) or equiva-
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lently that U : [0,∞)→ [−∞,∞) takes the form U(c) = c1−R

1−R , where R ∈ (0,∞)\{1}

is the coefficient of relative risk aversion;1 R = 1 is the case of logarithmic utility

U(c) = log(c) and is discussed in Section II.C. Note that since R 6= 1, the sign of

U(c) is uniquely determined. Thus, if
∫∞

0 e−δtU (Ct) dt is not integrable, we can

define J(C) := +∞ when R < 1 and J(C) := −∞ when R > 1.

In summary, the problem facing the agent is to determine

V (x) := sup
C∈C (x)

J(C) = sup
C∈C (x)

E

[∫ ∞
0

e−δt
C1−R
t

1−R
dt

]
.

2 The candidate value function

From the homogeneous structure of the problem we expect (see for example, Rogers

[Rog13, Proposition 1.2]) that V (κx) = κ1−RV (x) and that if (Π̂, Ĉ) is an optimal

strategy in A (x) then (Π̂κ = Π̂, Ĉκ = κĈ) is optimal in A (κx) for κ > 0. For this

reason, we may guess that it is optimal to invest a constant fraction of wealth in the

risky asset, and to consume a constant fraction of wealth. (Of course, this will be

verified later.) So, consider an investment-consumption strategy that at each time t,

invests a constant proportion of wealth Πt = π into the risky asset and consumes a

constant fraction ξ > 0 of wealth per unit time, i.e., Ct = ξXt.2

Then, the agent’s wealth process X = Xx,π,ξX is given by

Xt = x exp

(
πσBt +

(
r + π(µ− r)− ξ − π2σ2

2

)
t

)
. (2.1)

Denoting the market price of risk or Sharpe ratio by λ := µ−r
σ , we obtain

C1−R
t

1−R
=

x1−Rξ1−R

1−R
exp

(
πσ(1−R)Bt + (1−R)

(
r + λσπ − ξ − π2σ2

2

)
t

)
.

1We follow the convention that 01−R :=∞ for R > 1.
2This is well defined by Remark I.4.3.
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Multiplying this by e−δt and taking expectations gives

E

[
e−δt

C1−R
t

1−R

]
= x1−R ξ

1−R

1−R
e−H(π,ξ)t, (2.2)

where

H(π, ξ) = H(π, ξ;R, δ, λ, r, σ) := δ − (1−R)

(
r + λσπ − π2σ2

2
R− ξ

)
.

Provided that H(π, ξ) > 0, we find that

J(ξX) = E

[∫ ∞
0

e−δt
ξ1−RX1−R

t

1−R
dt

]
=

x1−R

1−R
ξ1−R

H(π, ξ)
. (2.3)

We want to maximise this expression considered as a function of π and ξ, where the

maximisation is restricted to pairs (ξ, π) for which H(π, ξ) > 0.

In order to maximise this over π, we want to minimise (1− R)H(π, ξ), which is

equivalent to maximising λσπ − π2σ2

2 R. This is achieved at π̂ = λ
σR . In this case

λσπ̂ − π̂2σ2

2 R = λ2

2R and the problem then becomes to maximise

x1−R

1−R
ξ1−R

H(π̂, ξ)
=

x1−R

1−R
ξ1−R(

δ − (1−R)(r + λ2

2R − ξ)
) =:

x1−R

1−R
f(ξ)

over ξ. This is equivalent to maximising log(f(ξ)), since log(x) is increasing in x.

Taking derivatives of log(f(ξ)) shows that the maximum is attained at ξ̂ = η, where

η :=
1

R

[
δ − (1−R)

(
r +

λ2

2R

)]
, (2.4)

provided that η > 0. (If η ≤ 0, no maximum exists.)

Therefore, when η > 0, the agent’s optimal behaviour (at least over constant

proportional strategies) and corresponding value function are given by

π̂ =
µ− r
σ2R

, ξ̂ = η, V̂ (x) := J(ξ̂X) =
η−Rx1−R

1−R
. (2.5)
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When η ≤ 0, the problem is ill-posed. Indeed, if R < 1, then H(π̂, ξ) ↓ 0 as

ξ ↓ − ηR
(1−R) and hence J(ξX) ↑ ∞ by (2.3). If R > 1, then H(π, ξ) ≤ H(π̂, ξ) =

Rη + (1 − R)ξ ≤ Rη ≤ 0 for every π ∈ R and ξ ≥ 0. Hence, at least for constant

proportional strategies J(ξX) = −∞. We will see in Corollary 5.5 that J(C) = −∞

for every admissible consumption stream C ∈ C (x).

3 The verification argument under fiat conditions

In this section, we prove that our candidate optimal strategy (π̂, ξ̂X) from (2.5) is

optimal in a subset of the class of all admissible strategies. Since the conditions

defining that class are chosen precisely in such a way that the proof works, we call

them fiat conditions.

Definition 3.1. Fix x > 0. An investment-consumption strategy (Π, C) ∈ A (x) is

called fiat admissible if the following three conditions are satisfied:

(P) The wealth process Xx,Π,C is P-a.s. positive.

(M) The local martingale
∫ ·

0 e
−δtσΠt(X

x,Π,C
t )1−R dBt is a supermartingale.

(T) The transversality condition lim inft→∞ E[e−δt
(Xx,Π,C

t )1−R

1−R ] ≥ 0 is satisfied.

We denote the set of all fiat admissible investment-consumption strategies for x > 0

by A ∗(x). A consumption stream C ∈ C (x) is called fiat attainable for x > 0 if

there is an investment process Π such that (Π, C) ∈ A ∗(x). We denote the set of

fiat attainable consumption streams by C ∗(x).

Remark 3.2. As far as we are aware, the above notion of fiat admissible strategies

has not been explicitly used in the literature before. However, the conditions (P),

(M) and (T) or stronger versions thereof have been used explicitly or implicitly

throughout the stochastic control literature on the Merton problem:

1. Condition (P) is (implicitly) assumed throughout most of the stochastic control

literature dealing with the Merton problem; a notable exception is [KLSS86].

22



3 The verification argument under fiat conditions

However, for R > 1, (P) can be assumed without loss of generality because any

admissible strategy (Π, C) ∈ A (x) violating (P) has J(C) = −∞.

2. Condition (M) is implied by the stronger condition

(M1) The local martingale
∫ ·

0 σΠt(X
x,Π,C
t )1−Re−δt dBt is a martingale.

It is not difficult to check that for R < 1, (M1) is implied by the even stronger

condition

(B) Π is uniformly bounded.

A common approach in the stochastic control literature is to assume (B), see

e.g. Davis and Norman [DN90, Equation (2.1)(B)], Fleming and Soner [FS06,

Equation IV.5.2], or Pham [Pha09, Equation (3.2)], and then prove (M1) for

R < 1.3

3. Condition (T) is implied by the stronger standard transversality condition4

(T1) limt→∞ E[e−δt
(Xx,Π,C

t )1−R

1−R ] = 0.

When R < 1, Davis and Norman [DN90, page 682] prove that (T1) is satisfied

for any admissible strategy satisfying (B). Pham [Pha09, Equation (3.39)] and

Fleming and Soner [FS06, Equation IV.5.11] require (T1), and prove that the

candidate optimal strategy has this property.

It is clear that C ∗(x) ⊂ C (x). The following result shows that the candidate

optimal strategy (π̂, ξ̂X) from (2.5) is optimal in the class of fiat admissible strategies.

Theorem 3.3. Suppose η := 1
R [δ − (1 − R)(r + λ2

2R)] > 0. Let the function V̂ :

(0,∞)→ R be given by V̂ (x) = x1−R

1−R η
−R. Then, for x > 0,

V ∗(x) := sup
C∈C ∗(x)

J(C) = J(Ĉ) = V̂ (x),

3Davis and Norman [DN90, Proof of Theorem 2.1] argue that (B) implies (M1) also in the case
R > 1 but this is not the case. See Example A.1.

4Note, however, that if R > 1, (T) and (T1) are equivalent.
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where the corresponding optimal investment-consumption strategy is (Π, C) = (Π̂, Ĉ);

Π̂ =
λ

σR
, Ĉ = ηXx,Π̂,Ĉ . (3.1)

Proof. First, we show that V ∗(x) ≥ V̂ (x) = J(Ĉ). By the arguments in Section 2,

it only remains to show that Ĉ is fiat attainable. It follows from the construction of

Ĉ, that the wealth process Xx,Π̂,Ĉ is P-a.s. positive. Next, a similar calculation as

in (2.2) shows that for each T > 0,

E
[∫ T

0
e−2δtσ2π̂2

(
Xx,Π̂,Ĉ
t

)2−2R
dt

]
= σ2π̂2

∫ T

0
exp

((
λ2(1−R)2

R2
− 2η

)
t

)
dt <∞.

This implies that the local martingale
∫ ·

0 exp(−δt)σΠ̂t(X
x,Π̂,C
t )1−R dBt is a (square-

integrable) martingale and hence a supermartingale. Finally, (2.2) together with the

fact that H(π̂, η) = η > 0, implies that (Π̂, Ĉ) satisfies the transversality condition

(T1).

Next, we show that V ∗(x) ≤ V̂ (x). Let (Π, C) ∈ A ∗(x) be arbitrary. If R > 1,

we may in addition assume without loss of generality that C1−R is integrable with

respect to the identity process; for otherwise J(C) = −∞. It suffices to argue that

J(C) ≤ V̂ (x).

Set X := Xx,Π,C for brevity and define the process M = (Mt)t≥0 by

Mt =

∫ t

0
e−δsU(Cs) ds+ e−δtV̂ (Xt).

We want to apply Itô’s formula to M . This is indeed possible as V̂ is in C2(0,∞)

and X is positive by fiat admissibility of (Π, C). Note that V̂x(Xt) is positive and

V̂xx(Xt) is negative. Then, noting that the argument of V̂ and its derivatives is Xt

throughout, we obtain

dMt = σΠtXte
−δtV̂x dBt

+ e−δt

[
C1−R
t

1−R
− δV̂ + (Xt(r + σλΠt)− Ct)V̂x +

σ2

2
Π2
tX

2
t V̂xx

]
dt
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3 The verification argument under fiat conditions

= dNt + e−δtL(Πt, Ct;Xt, V̂ ) dt.

where Nt =
∫ t

0 σΠsXse
−δsV̂x dBs =

∫ t
0 η
−RσΠsX

1−R
s e−δs dBs is a local martingale

and

L(π, c;x, v = v(x)) =
c1−R

1−R
− δv + (x(r + σλπ)− c)vx +

σ2

2
π2x2vxx. (3.2)

Maximising (3.2) over π ∈ R and c ≥ 0, shows that the optimisers are attained at

π̂ = λ
σ
−vx
xvxx

and ĉ = v
−1/R
x . Plugging in V̂ shows that L(ĉ, π̂;x, V̂ ) = 0, which implies

that V̂ solves the Hamilton-Jacobi-Bellman equation

sup
π∈R,c≥0

L(π, c;x, v) = 0. (3.3)

It follows that

Mt ≤ V̂ (x) +Nt, t ≥ 0. (3.4)

Taking expectations and using fiat admissibility of (Π, C) to ensure that N is a

supermartingale, we find for each t ≥ 0,

E [Mt] ≤ E
[
V̂ (x) +Nt

]
≤ V̂ (x).

Taking the limit as t goes to infinity, and using the monotone convergence theorem

as well as the transversality condition, we obtain

J(C) = lim
t→∞

E
[∫ t

0
e−δs

C1−R
s

1−R
ds

]
= lim

t→∞
E
[
Mt − e−δtV̂ (Xx,Π,C

t )
]

(3.5)

≤ lim sup
t→∞

E [Mt]− lim inf
t→∞

E
[
e−δtV̂ (Xx,Π,C

t )
]
≤ lim sup

t→∞
E [Mt] ≤ V̂ (x).

This establishes the claim.

Remark 3.4. A close inspection of the proof of Theorem 3.3 shows that for the

optimal strategy (Π̂, Ĉ), the process M̂ = (M̂t)t≥0 given by M̂t :=
∫ t

0 e
−δsU(Ĉs) ds+
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The Merton Investment-Consumption Problem under CRRA utility

e−δtV̂ (Xx,Π̂,Ĉ) is a uniformly integrable martingale. Indeed, in this case N̂ is a

martingale and M̂ = V̂ (x)+ N̂ . Hence, M̂ is a martingale. It is uniformly integrable

because, by the transversality condition (T1) and monotone convergence, equation

(3.5) implies that M̂t converges in L1 to M̂∞ :=
∫∞

0 e−δsU(Ĉs) ds.

For R < 1, the above fiat verification theorem can be easily turned into to a

general verification theorem that does not restrict to fiat attainable consumptions.

Corollary 3.5. Suppose R < 1 and η > 0. Then, V (x) = V̂ (x).

Proof. It is sufficient to show that (P), (M) and (T) are satisfied for general strate-

gies, or to find a way of bypassing the relevant part of the argument. First, (T)

is automatically satisfied by the fact that X1−R/(1 − R) is nonnegative. Next, M

is nonnegative and hence N is bounded below by −V̂ (x) by (3.4). Therefore, N is

always a supermartingale and (M) is automatically satisfied.

Finally, to avoid imposing (P), one has to refine the argument in Theorem 3.3 by

a stopping argument. To wit, fix an admissible strategy (Π, C) ∈ A (x). Then, for

n ∈ N , set τn := inf{t ≥ 0 : Xx,Π,C ≤ 1
n} and let τ∞ := limn→∞ τn. Then it is not

difficult to check that Xt = Xx,Π,C
t ≥ 1/n > 0 if t ≤ τn and Xt = 0 = Ct if t ≥ τ∞.5

Moreover, for each n, we get

E [M τn
t ] ≤ E

[
V̂ (x) +N τn

t

]
≤ V̂ (x).

Now first taking the limit t→∞, we obtain

E
[∫ τn

0
e−δs

C1−R
s

1−R
ds

]
≤ lim sup

t→∞
E [M τn

t ] ≤ V̂ (x).

Next, taking the limit n → ∞, the result follows from the monotone convergence

theorem and the fact that
∫∞
τ∞
Cs ds = 0 P-a.s.

Remark 3.6. The above approach of avoiding (P) is taken in [KLSS86, Theorem

4.1]. Note, however, that there the stopping argument is slightly more involved as
5More precisely, we have

∫∞
τ∞

Cs ds = 0 P-a.s.
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4 Verification approaches for R > 1

it also requires stopping when the wealth process Xx,Π,C or the quadratic varia-

tion of
∫ ·

0 σΠ dW gets too large. But this additional stopping rather obfuscates the

argument.

Remark 3.7. If R > 1, extending Theorem 3.3 to general admissible strategies is far

more involved. While condition (P) can be assumed without loss of generality (recall

Part 1 of Remark 3.2), condition (M) is in general not satisfied as there are investment

strategies Π and consumption strategies C such that N fails to be a supermartingale,

see Section II.A. Note that these strategies are suboptimal because L(Πt, Ct;Xt, V̂ ) is

(very) negative. Finally, we have no reason to expect that the transversality condition

(T) is satisfied. Indeed, (T) even fails for constant proportional strategies: If ξ >
ηR
R−1 , thenH(π̂, ξ) < 0, and it follows from (2.2) that limt→∞ E

[
e−δt

1−RX
x,π̂,ξX
t

]
= −∞.

4 Verification approaches for R > 1

As we have explained in Remark 3.7, a verification argument for general admissi-

ble strategies requires some additional ideas for the case R > 1. In this section,

we discuss the two most general approaches in the extant stochastic control litera-

ture. Both approaches first consider a perturbation of the problem (or the candidate

solution) and then let the perturbation disappear.

The first full verification of the solution to the Merton problem of which we

are aware (under an assumption of strictly positive discounting and interest rates) is

Karatzas et al [KLSS86], which built on the previous work of Lehoczky et al [LSS83].

There, the idea is to solve a perturbation of the original problem in which the agent

may go bankrupt, at which point they receive a residual value P . (Part of their

motivation was to better understand the results of Merton [Mer71] on HARA utilities,

see also Sethi and Taskar [ST88].) The solution to the perturbed problem is very

clever, and is developed in the case of a general utility function, but it is also very

intricate and takes many pages of calculation. Moreover, when specialised to the

case of CRRA utilities, it places some assumptions on the parameter values beyond
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The Merton Investment-Consumption Problem under CRRA utility

the necessary assumption of well-posedness of the Merton problem. The problem

with bankruptcy is of independent interest, but more important for our purposes is

the fact that, given the solution to the problem with bankruptcy for a CRRA utility,

by letting P ↓ 0 (R < 1) or P ↓ −∞ (R > 1) Karatzas et al [KLSS86] recover the

solution to the original Merton problem.

In their seminal paper on transaction costs, Davis and Norman [DN90, Section

2] briefly consider the Merton problem without transaction costs. They assume that

the proportion of wealth invested in the risky asset is bounded, and for R < 1 they

go on to prove a verification theorem for strategies restricted to this class. Further,

in the case R > 1 they propose a different perturbation, this time a deterministic

perturbation of the candidate value function. The key point is that in the perturbed

problem the candidate value function has a finite lower bound, and this allows Davis

and Norman [DN90] to re-apply arguments from the R < 1 case, although the

restriction to uniformly bounded investment strategies remains. The candidate value

for the perturbed problem can be used to give an upper bound on the true value

function, which converges to the candidate solution to the Merton problem as the

perturbation disappears. Unlike the argument in Karatzas et al [KLSS86], the proof

is quite short, but again it only works for certain parameter combinations, and more

importantly it restricts attention to a subclass of admissible strategies.

4.1 Perturbation with finite bankruptcy

The first perturbation approach is by Karatzas et al [KLSS86] who study an opti-

mal investment-consumption problem with bankruptcy for a general utility function

which is of interest in its own right, building on earlier work [LSS83] by a subset

of the authors. In the following, we only describe their contribution towards the

solution of the Merton problem for CRRA utilities. We assume R > 1, and we use

our notation.

Assume that δ > 0 and r > 0. For an admissible strategy (Π, C) ∈ A (x),

denote the bankruptcy time τ0 = τx,Π,C0 = inf{t : Xx,Π,C
t = 0}. Then choose a finite
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4 Verification approaches for R > 1

bankruptcy value P ∈ (−∞, 0) and consider the problem with bankruptcy:

V P (x) := sup
C∈C (x)

JP (C) = sup
C∈C (x)

E

[∫ τx,Π,C0

0
e−δtU(Ct) dt+ e−δτ

x,Π,C
0 P

]
. (4.1)

Note that the classical Merton problem corresponds to the limiting case P = −∞.

Karatzas et al [KLSS86] show the following:

(A) Suppose that a C2-function V̂ P : (0,∞) → (P, 0) solves the HJB equation

corresponding to the optimisation problem (4.1) given by

δṼ (x) = sup
c≥0,π

[
Ṽ ′(x)((µ− r)πx+ (rx− c)) +

1

2
π2σ2x2Ṽ ′′(x) + U(c)

]
, (4.2)

for x > 0. Subject to limx↓0 Ṽ (x) = P .

Then, V̂ P (x) = V P (x) for all x ∈ [0,∞).

(B) For each P ∈ (−∞, 0), there exists a C2-function V̂ P : (0,∞) → (P,∞) that

solves the HJB equation (4.2) with limx↓0 V̂
P (x) = P .

(C) V (x) ≤ limP↓−∞ V̂
P (x) = V̂ (x), which together with V̂ (x) ≤ V (x) establishes

the claim.

Here, the argument for (A) is relatively straightforward; see [KLSS86, Theorem 4.1]

and not more difficult than the proof of our Theorem 4.3. Similarly, the argument

for (C) is easy: the first inequality follows from the fact that V (x) ≤ V P (x) ≤ V̂ P (x)

for each x > 0 and P ∈ R− by the definition of V P and (A); the second inequality

is straightforward using the explicit form for V̂ P .

But the main difficulty—and great ingenuity—of the argument in [KLSS86] is

(B). Indeed, a direct calculation for r > 0 case takes at least two pages and yields

the answer:6

V̂ P (x) =
ν

η(R− ν)

(
η

R

R− ν
1− ν

(1−R)P

) 1−ν
1−R

(ĈP (x))ν−R + η−1 (ĈP (x))1−R

1−R
, (4.3)

6For r = 0, we get the simpler answer V̂ (x, P ) = η−1(ηx+ (η(1−R)P )1/(1−R))1−R/(1−R).
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where the function ĈP (x) describing the optimal consumption is the inverse of the

function

IP (c) = −η−1

(
η

R

ν −R
ν − 1

(1−R)P

) 1−ν
1−R

cν +
c

η
,

and ν is the negative root of the equation λ2

2 ζ
2 + (r − δ − λ2

2 )Rζ − rR2 = 0.

4.2 Perturbation of the value function

The second perturbation approach is by Davis and Norman [DN90] who study the

Merton problem with transaction costs; the perturbation argument for R > 1 in

the frictionless case is a fortunate by-product, and not the main contribution of the

paper. Again we will use our notation to describe their approach.

Assume that δ > 0 and r > 0. Denote by A b(x) the set of all admissible strategies

(Π, C) for which Π is uniformly bounded, write C b(x) for the corresponding set of

attainable consumption strategies and set V b(x) := supC∈C b(x) J(C). For ζ > 0,

consider the perturbed value function V̂ ζ(x) = V̂ (x + ζ) and for (Π, C) ∈ A b(X)

(such that C1−R is integrable with respect to the identity process), consider the

process M ζ defined by

M ζ =

∫ t

0
e−δtU(Cs) ds+ e−δtV̂ ζ(Xt).

Then the same argument as in the proof of Theorem 3.3 but with V̂ replaced by V̂ ζ

yields

dM ζ
t = dN ζ

t + L(Πt, Ct;Xt, V̂
ζ) dt

Using that V̂ ζ(x) = V̂ (x+ ζ), it is straightforward to check that

sup
π∈R,c≥0

L(π, c;x, V̂ ζ) = −rζV̂ ζ
x (Xt)e

−δt ≤ 0.

It follows that, under the crucial assumption that r ≥ 0, we have L(Πt, Ct;Xt, V̂
ζ) ≤

0. Finally, using that Π and V̂ ζ
x are bounded, it is not difficult to check that N ζ is
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5 The general verification argument

a square integrable martingale. Now following the proof of Theorem 3.3, and using

that |V̂ ζ | is bounded and δ > 0 it follows that

J(C) ≤ lim supE
[
M ζ
t

]
− lim inf E

[
e−δtV̂ ζ(Xx,Π,C

t )
]
≤ lim supE

[
M ζ
t

]
≤ V̂ ζ(x).

We may conclude that V b(x) ≤ V̂ ζ(x) and taking the limit as ζ ↓ 0, it follows that

V b(x) = V̂ (x).

5 The general verification argument

In this section, we present our general verification argument. It is inspired by the

perturbation argument of Davis and Norman, see Section 4.2. The key idea is to

use the candidate optimal consumption strategy as a stochastic perturbation of the

utility function. This yields a very elegant and simple argument that has the trio of

advantages that it is no more difficult than the fiat verification argument in Theorem

3.3, it does not need to distinguish between the case R > 1 and R < 1 and it does

not involve any stopping argument.

The following theorem contains the solution to the stochastically perturbed Mer-

ton problem. The subsequent corollary then lets this perturbation disappear. Re-

call the notations of Theorem 3.3: η = 1
R [δ − (1 − R)(r + λ2

2R)], Π̂ = λ
σR and

V̂ (x) = x1−R

1−R η
−R.

Theorem 5.1. Suppose η > 0. Denote by Y = (Yt)t≥0 the candidate optimal wealth

process started from unit initial wealth 1, i.e., Yt := X1,Π̂,ηX
t , and by G = (Gt)t≥0,

the corresponding optimal consumption stream, i.e., Gt = ηYt. Fix ε > 0, define

the function Uε : [0,∞) × (0,∞) → (−∞,∞) by Uε(c, g) = (c+εg)1−R

1−R , and for an

attainable consumption stream C consider

Jε(C) := E
[∫ ∞

0
e−δtUε(Ct, Gt) dt

]
= J(C + εG).
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Then, for x > 0,

Vε(x) := sup
C∈C (x)

Jε(C) = V̂ (x+ ε).

Moreover, the supremum is attained when Π = Π̂ and C = Ĉ where Ĉ = ηXx,Π̂,Ĉ .

Proof. First, from the SDE for the wealth process (I.4.2) we have thatXx,Π̂,ηX+εY =

Xx+ε,Π̂,ηX . It follows that Ĉ + εG = ηXx+ε,Π̂,ηX ∈ C (x + ε), which together with

Theorem 3.3 implies that Jε(Ĉ) = J(Ĉ + εG) = V̂ (x+ ε).

It remains to show that Vε(x) ≤ V̂ (x+ε). The argument is very similar to the one

in the proof of Theorem 3.3. Let (Π, C) ∈ A (x) be arbitrary and set X := Xx,Π,C

for brevity. The dynamics of X + εY are given by

d(Xt+εYt) =

(
σΠtXt +

λ

R
εYt

)
dBt+

(
Xt(r + Πtσλ)− Ct +

(
r +

λ2

R
− η
)
εYt

)
dt.

Define the process M ε = (M ε
t )t≥0 by

M ε
t =

∫ t

0
e−δsUε(Cs, Gs) ds+ e−δtV̂ (Xt + εYt).

We proceed to apply Itô’s formula to M ε. Noting that the argument of V̂ and its

derivatives is (Xt + εYt) throughout, we obtain

dM ε
t = e−δtU(Ct + εηYt) + e−δt

[
−δV̂ dt+ V̂x d(Xt + εYt) +

1

2
V̂xx d[X + εY ]t

]
= dN ε

t + e−δtLε(Πt, Ct;Xt, Yt, V̂ ) dt

where N ε
t =

∫ t
0 e
−δsη−R(Xs + εYs)

−R(σΠsXs + λε
R Ys) dBs and, with z = x+ εy,

Lε(π, c;x, y, v = v(z)) =
(c+ εηy)1−R

1−R
+

[
x(r + πσλ)− c+ (r +

λ2

2
− η)εy

]
vz

+
1

2

(
σπx+

λεy

R

)2

vzz − δv

= L

(
πx

z
+
λεy

σRz
, c+ εηy; z, v = v(z)

)
.
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Here L is the operator defined in (3.2). Then7

sup
π∈R,c≥0

Lε(π, c;x, y, V̂ = V̂ (z)) = sup
π∈R,c≥0

L

(
πx

z
+
λεy

σRz
, c+ εηy; z, V̂ = V̂ (z)

)
= sup

π̃∈R,c̃≥εηy
L
(
π̃, c̃, z, V̂ = V̂ (z)

)
≤ sup

π̃∈R,c̃≥0
L
(
π̃, c̃; z, V̂ = V̂ (z)

)
= 0

where the final equality follows from (3.3). This gives

M ε
t ≤ V̂ (x+ ε) +N ε

t , t ≥ 0. (5.1)

Next, define the process Λε = (Λεt )t≥0 by

Λεt :=

∫ t

0
e−δsUε(0, Gs) ds+ e−δtV̂ (0 + εYt) =

∫ t

0
e−δsU(εGs)ds+ e−δtV̂ (εYt).

Then, Λε ≤M ε by monotonicity of U and V̂ . Using that Λε is a (UI) martingale by

Remark 3.4, it follows that N ε is bounded below by the (UI) martingale Λε−V̂ (x+ε)

and is hence a supermartingale.

Taking expectation in (5.1), we find for each t ≥ 0,

E [M ε
t ] ≤ E

[
V̂ (x+ ε) +N ε

t

]
≤ V̂ (x+ ε). (5.2)

Next, note that X + εY satisfies the transversality condition (T) since

lim inf
t→∞

E
[
e−δt

(Xt + εYt)
1−R

1−R

]
≥ ε1−R lim inf

t→∞
E

[
e−δt

Y 1−R
t

1−R

]
= 0. (5.3)

Taking the limit in (5.2) as t goes to infinity and using (5.3), we may conclude

that for any C ∈ C (x),

Jε(C) = lim
t→∞

E
[∫ t

0
e−δs

(Cs + εGs)
1−R

1−R
ds

]
= lim

t→∞
E
[
M ε
t − e−δtV̂ (Xt + εYt)

]
7The inequality is in fact an equality since the maximum over c̃ is attained at V̂ −1/R(z) = ηz =

η(x+ εy) ≥ εηy.
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≤ lim sup
t→∞

E [M ε
t ]− lim inf

t→∞
E
[
e−δtη−R

(Xt + εYt)
1−R

1−R

]
≤ lim sup

t→∞
E [M ε

t ] ≤ V̂ (x+ ε).

Remark 5.2. The perturbation of the problem by the additional consumption of εG

elegantly and simply transforms the problem to one in which the fiat conditions (P),

(M) and (T) are satisfied. Since Y is positive P-a.s., the same is trivially true for

X + εY . Moreover, J(εG) = ε1−RJ(G) > −∞ and this allows us to easily find an

integrable lower bound on N ε and hence conclude it is a supermartingale. Again Y

satisfies a transversality condition (T) and so the same is trivially true for X + εY .

Remark 5.3. One interpretation of the theorem is that a financially-savvy benefactor

gives the agent an additional consumption stream based on an initial wealth ε which

is invested optimally by the benefactor. Then, if the agent behaves optimally with

their own wealth, the two consumption streams and investment strategies remain

perfectly aligned to each other, and the derivation and valuation of the candidate

optimal strategy is simple and immediate.

Corollary 5.4. Suppose η > 0. Then, for x > 0,

V (x) := sup
C∈C (x)

J(C) = J(Ĉ) = V̂ (x).

Proof. The equality J(Ĉ) = V̂ (x) follows from Theorem 3.3. It remains to establish

that V (x) ≤ V̂ (x). Using the notation of Theorem 5.1, for any C ∈ C (x), we get

J(C) ≤ Jε(C) ≤ Vε(x) = V̂ (x+ε). Letting ε ↓ 0, we conclude that V (x) ≤ V̂ (x).

We finish this section by showing that in the case R > 1 if η ≤ 0, every C ∈ C (x)

has J(C) = −∞.

Corollary 5.5. Suppose that R > 1 and η ≤ 0. Then

V (x) = sup
C∈C (x)

J(C) = −∞.
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5 The general verification argument

Proof. Fix C ∈ C (x). It suffices to show that J(C) = −∞. We use an approximation

argument. For n ∈ N set δn := δ + R( 1
n − η). Then, δn > δ and ηn := 1

R [δn − (1 −

R)(r+ λ2

2R)] = 1
n > 0. Then, as U(c) < 0 for c ≥ 0, it follows from Corollary 5.4 that

J(C) = E
[∫ ∞

0
e−δsU(Cs) ds

]
≤ E

[∫ ∞
0

e−δnsU(Cs) ds

]
≤ x1−R

1−R
(ηn)−R, n ∈ N.

Taking the limit as n goes to ∞, it follows that J(C) = −∞.
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APPENDIX TO CHAPTER II

II.A An example where N fails to be a supermartingale

For R > 1, the process N in the proof Theorem 3.3 can fail to be supermartingale.

We first give an abstract version of an example and then two concrete specifications.

Example A.1. Let (Π, C) ∈ A (x) be such that X = Xx,Π,C has P-a.s. positive paths.

Define the stopping time

τ := inf

{
t ≥ 0 :

∫ t

0
η−RσΠsX

1−R
s e−δs dBs = 1

}
.

If τ is bounded, then N fails to be a supermartingale because E [Nτ ] = 1 > 0 =

E [N0].

The above abstract situation can be achieved either by “wild” investment or by

“too fast” consumption, or a combination of the two.

For an example of a “wild” investment strategy Π, assume that µ ≥ r > 0 and
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define the stopping time

τ̃ := inf

{
t ≥ 0 :

∫ t

0

η−Rσe−δs

1− s
dBs = 1

}
.

Note that τ̃ < 1 P-a.s. since
∫ 1

0

(
η−Rσe−δs

1−s

)2
ds =∞. Then define (Π, C) ∈ A (x) by

Πt =
1

1− t
XR−1
t 1{t≤τ̃}, Ct := rXt + ΠtXt(µ− r).

Then, the corresponding wealth process X is a stopped and time changed CEV

process:

dXt = XR
t

σ

1− t
1{t≤τ̃} dBt, X0 = x.

Since R > 1, X remains positive. Since τ = τ̃ P-a.s. we have τ < 1 P-a.s. and N

fails to be a supermartingale.

For an example of a “too fast” consumption strategy C (with bounded investment

strategy Π), assume that µ ≥ r > 0 and define the stopping time

τ̄ := inf

{
t ≥ 0 :

∫ t

0

x1−Rη−Rσeσ(1−R)Bs−(δ+
(1−R)

2
σ2)s

1− s
dBs = 1

}
.

Note that τ̄ < 1 P-a.s. since
∫ 1

0 (x
1−Rη−Rσeσ(1−R)Bs−(δ+

(1−R)
2 σ2)s

1−s )2 ds =∞, P-a.s. Then

define (Π, C) ∈ A (x) by

Πt = 1{t≤τ̄}, Ct :=
1

R− 1

Xt

1− t
1{t≤τ̄} + rXt + ΠtXt(µ− r).

Then, the corresponding wealth process satisfies the SDE

dXt = σXt1{t≤τ̄} dBt −
1

R− 1

Xt

1− t
1{t≤τ̄} dt, X0 = x.
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It is not difficult to check that this has the solution

Xt = x(1− t ∧ τ̄)
1

R−1 eσBt∧τ̄−
1
2
σ2(t∧τ̄)

which is well-defined and positive by the fact that τ̄ < 1 P-a.s. Since τ = τ̄ P-a.s.,

we have τ < 1 P-a.s. and N fails to be a supermartingale.

II.B Change of numéraire arguments and the role of the

discount factor

It is interesting to study how the Merton problem behaves under a change of numéraire.

As we have seen in Section 4, using the perturbation arguments of Karatzas et

al [KLSS86] or Davis and Norman [DN90], we get verification arguments for the case

R > 1 under the parameter restrictions δ > 0 and r > 0. The goal of this section is

to show using a change of numéraire that this parameter restriction can be weakened,

although not to the extent that it covers all the parameter combinations for which

η > 0. We then discuss how these arguments shed some light on the interpretation

of the parameter δ.

A pair (S̃0, S̃) = (S̃0
t , S̃t)t≥0 of semimartingales is said to be economically equiv-

alent to (S0, S) if there exists a positive continuous semimartingale D = (Dt)t≥0

such that S̃0 = DS0 and S̃ = DS. Here, the interpretation of D is an exchange

rate process and (S̃0, S̃) describes the financial market in a different currency unit;

see [Her17, Section 2.1] for more details. We will restrict attention to deterministic

processes D in which case D is better described as a change in accounting units.

Next, recall that if (ϑ0, ϑ, C) is a admissible investment-consumption strategy for

initial wealth x > 0, (where ϑ0 and ϑ1 denote the number of shares held in the riskless

and risky asset, respectively), then the corresponding wealth process X = ϑ0
tS

0
t +ϑtS

satisfies the SDE

dXt = ϑ0
t dS0

t + ϑt dSt − Ct dt.
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Now if (S̃0, S̃) is economically equivalent to (S0, S) with corresponding exchange

rate process D, it is not difficult to check that the corresponding wealth process

X̃ := ϑ0S̃0 + ϑS̃ = DX satisfies the SDE

dX̃t = ϑ0
t dS̃0

t + ϑt dS̃t − C̃t dt,

where C̃ = DC. This means that if C describes an attainable consumption strategy

in units corresponding to (S0, S), then C̃ = DC describes the same consumption

strategy in units corresponding to (S̃0, S̃) (which is also attainable for those units).

Consider now the case that Dt = eγt for some γ ∈ R. Then, (S̃0, S̃) is again

a Black–Scholes–Merton model with interest rate r̃ = r + γ, drift µ̃ = µ + γ and

volatility σ̃ = σ. Let C be an attainable consumption strategy in units corresponding

to (S0, S) and C̃ = DC the corresponding attainable consumption strategy in units

corresponding to (S̃0, S̃). Then C̃/S̃0 = DC/DS0 = C/S0 and

J(C; δ) := E
[∫ ∞

0

e−δt

1−R
C1−R
t dt

]
= E

[∫ ∞
0

e−(δ+r(R−1))t

1−R

(
Ct
S0
t

)1−R
dt

]
= J(C/S0; δ + r(R− 1)) = J(C̃/S̃0; δ + (r̃ − γ)(R− 1))

= E

∫ ∞
0

e−(δ−(R−1)γ+r̃(R−1))t

1−R

(
C̃t

S̃0
t

)1−R

dt


= E

[∫ ∞
0

e−(δ−(R−1)γ)t

1−R
C̃1−R
t dt

]
= J(C̃; δ − (R− 1)γ). (2.1)

It follows from the above calculation that the Merton problem for R, r, µ, σ, δ is

equivalent to the Merton problem for R, r+ γ, µ+ γ, σ, δ− (R− 1)γ for each γ ∈ R.

Note in particular, that the well-posedness parameter η from (2.4) is independent of

the choice of accounting units. This means that if we have a verification argument

for the parameters R, r+γ, µ+γ, σ, δ− (R−1)γ, we also have verification argument

for the parameters R, r, µ, σ, δ. Hence, if δ+r(R−1) > 0 we can choose γ = δ−r(R−1)
2(R−1)

so that δ̃ = r̃ = δ+r(R−1)
2 > 0 and then we can extend the verification arguments
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of Karatzas et al [KLSS86] or Davis and Norman [DN90] to this case. It follows

that instead of needing to assume δ > 0 and r > 0 as in [KLSS86] and [DN90] it

is sufficient to assume only that δ + r(R − 1) > 0. We provide more details on

using a numéraire change for the problem with bankruptcy studied by Karatzas et

al. [KLSS86] in Section II.B.2.

II.B.1 What is the role of the discount factor?

The above ideas also shed some light on the interpretation of the parameter δ. To

this end, consider an alternative formulation of the Merton problem and associate

to an attainable consumption stream C the expected utility

K(C;φ) = E

[∫ ∞
0

e−φt

1−R

(
Ct
S0
t

)1−R
dt

]
, (2.2)

where φ := δ+r(R−1) is the impatience rate. Then, K(C;φ) = J(C, φ−r(R−1)). In

order to emphasise the dependence of the problem on the accounting units which are

being used, we might expand the notation to write J(C;S0, S; δ) and K(C;S0, S;φ)

and then (2.1) becomes

J(C;S0, S; δ) = J(C̃; S̃0, S̃; δ − (R− 1)γ),

whilst, for K(C, φ) = K(C;S0, S, φ) we find

K(C̃; S̃0, S̃, φ) = E

[∫ ∞
0

e−φt

1−R

(
DtCt
DtS0

t

)1−R
dt

]
= K(C;S0, S, φ).

In particular, K defined via (2.2) has the advantage that (unlike J) it is numéraire-

independent in the sense that a change of accounting unit leaves the problem value

unchanged.8 With this in mind it makes sense to focus on the impatience rate φ

rather than the discount rate δ. Note that η = 1
Rφ + R−1

R
λ2

2R so that the optimal

8This applies not only to deterministic changes of accounting units, but also to stochastic changes
of numéraire.
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consumption rate is a linear (convex if R > 1) combination of the impatience rate

and (half of) the squared Sharpe ratio per unit of risk aversion, with the weights

depending on the risk aversion.

II.B.2 The Merton problem with bankruptcy revisited

Using the ideas of this section, we can revisit the argument of Karatzas et al [KLSS86]

to give a much simpler proof for V (x) = V̂ (x) in the case that δ + (1−R)r > 0.

The idea is to consider the case r = 0, which is not studied in Karatzas et

al [KLSS86]. For r = 0, it is not difficult to check that the HJB equation (4.2) has

the solution

V̂ P,r=0
η =

(ηx+ (η(1−R)P )1/(1−R))1−R

η(1−R)
,

which is substantially simpler than the solution (4.3) for r > 0. Since the argument

in (A) and (C) of Section 4.1 carry verbatim over to r = 0, we have a verification

argument for the Merton Problem in the case that δ > 0 and r = 0. Now if δ+r(R−

1) > 0, we choose γ = −r, so that δ̃ = δ + r(R − 1) > 0 and r̃ = 0, and the above

change of numéraire argument in Section II.B give a verification argument also in

this case.

II.C The Merton problem with logarithmic utility

The case of logarithmic utility U(c) = log(c) corresponds to the case of unit coeffi-

cient of relative risk-aversion. The function log differs from the other CRRA utility

functions in that it may take both signs but much of the analysis goes through in

exactly the same way.

Under logarithmic utility, the problem facing the agent is to choose an admissible

strategy (Π, C) ∈ A (x) so as to find

V (x) := sup
C∈C (x)

J(C) := sup
C∈C (x)

E
[∫ ∞

0
e−δt log (Ct) dt

]
.
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Since log takes both positive and negative values, we make the definition9

E
[∫ ∞

0
e−δt log (Ct) dt

]
:= E

[(∫ ∞
0

e−δt log (Ct) dt

)+
]
−E

[(∫ ∞
0

e−δt log (Ct) dt

)−]
,

where for each ω,

∫ ∞
0

e−δt log (Ct) dt :=

∫ ∞
0

e−δt log (Ct)
+ dt−

∫ ∞
0

e−δt log (Ct)
− dt,

with the standard convention that ∞−∞ := −∞.

As before, we postulate a constant proportion of wealth for both our optimal

investment and our optimal consumption, Πt = π and Ct = ξXt. In this case, our

wealth process is given by (2.1). Taking logarithms we find that

log(Ct) = log(ξx) + πσBt +

(
r + λσπ − ξ − π2σ2

2

)
t. (3.1)

This implies that

E[e−δt log(ξXt)] = e−δt log(ξx) + e−δt
(
r + λσπ − ξ − π2σ2

2

)
t.

The well-posedness condition η > 0 for R = 1 is equivalent to δ > 0. So, suppose

first that δ > 0. Then

J(ξX) = E
[∫ ∞

0
e−δs

(
r + λσπ − ξ − π2σ2

2

)
s+ e−δs log(ξx)ds

]
=

1

δ2

(
δ log(ξ) + δ log(x) +

(
r + λσπ − ξ − π2σ2

2

))
.

By taking derivatives with respect to π and ξ, we find that this is maximised at

9There are other ways E
[∫∞

0
e−δt log (Ct) dt

]
might be defined. For example, one could

make the subtly different definition E
[∫∞

0
e−δt log (Ct) dt

]
:= E

[∫∞
0
e−δt log (Ct)

+ dt
]
−

E
[∫∞

0
e−δt log (Ct)

− dt
]
, with the convention ∞ − ∞ := −∞. The advantage of our definition

is that in the case δ ≤ 0 it leads to a much cleaner final statement of results. In the case δ > 0,
the two definitions are equivalent because then E

[∫∞
0
e−δt log (Ct)

+ dt
]
< ∞ for all admissible

consumption streams C.
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π = π̂ := λ
σ and ξ = ξ̂ := δ. Note that this corresponds to the candidate optimal

strategy given in (3.1) for R = 1. Then, the candidate value function is given by

V̂ (x) :=J
(
ξ̂X
)

=
1

δ2

(
δ log(δx) + r +

λ2

2
− δ
)
.

To prove optimality, one considers the stochastically perturbed Merton problem

corresponding to the aggregator Uε(c, g) = log(c+ εg) and G = δY for Y the wealth

process under the candidate optimal strategy. The corresponding version of Theorem

5.1 then goes through exactly as when R ∈ (0,∞) \ {1}.

When δ ≤ 0 the problem becomes delicate. Set κ := r + λ2

2 .

If κ > 0 choose Πt := π̂ = λ
σ and Ct := κ

2Xt. Then, (3.1) gives

log(Ct) = log
(κ

2
x
)

+ λBt +
κ

2
t.

It follows from the strong law of large numbers, that for P-a.e. ω, log(Ct(ω)) ≥ 1 for

all t sufficiently large. Hence

∫ ∞
0

e−δt log (Ct) dt = +∞ P-a.s.

whence J(C) = +∞.

If κ ≤ 0, we show that for every admissible consumption stream

∫ ∞
0

e−δt (log (Ct))
− dt = +∞ P-a.s.,

and hence J(C) = −∞. Here we only consider the case that r < 0; the case r = 0

(which implies that λ = 0) is similar but easier.

First, we show that for any (Π, C) ∈ A (x), there exists (Π̃, 0) ∈ A (x) such that

ert
∫ t

0
e−ru Cu du ≤ Xx,Π̃,0

t P-a.s., t ≥ 0. (3.2)

Let ϑt :=
ΠtX

x,Π,C
t
St

and define the process G = (Gt)t≥0 by Gt = x0 +
∫ t

0 ϑuSu(σ dBu+
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(µ−r) du). Then, using the product formula and the dynamics of Xx,Π,C , we obtain

0 ≤ e−rtXx,Π,C
t = x0 +

∫ t

0
ϑuSuσ( dBu + λ du)−

∫ t

0
e−ruCu du

= Gt −
∫ t

0
e−ruCu du = e−rtXx,Π̃,0

t −
∫ t

0
e−ruCu du,

where Π̃t := ϑtSt
Gt

1{Gt>0}. Rearranging gives (3.2).

Next, we show that

lim inf
t→∞

Xx,Π̃,0 = 0 P-a.s. (3.3)

Itô’s formula and the fact that κ ≤ 0 gives

log(Xx,Π̃,0)

= log(x0) +

∫ t

0
Π̃uσ dBu +

∫ t

0

(
κ− (Π̃uσ − λ)2

2

)
du ≤ log(x0) +

∫ t

0
Π̃uσ dBu.

There are two cases: On the event {
∫∞

0 Π̃2
u du < ∞},

∫∞
0 (κ − (Π̃uσ−λ)2

2 ) du = −∞

and limt→∞
∫ t

0 Π̃uσ dBu exists in R, whence limt→∞ log(Xt) = −∞. On the event

{
∫∞

0 Π̃2
u du = ∞}, lim inft→∞

∫ t
0 Π̃uσ dBu = −∞ by the law of iterated logarithm,

whence lim inft→∞ log(Xt) = −∞. So we have (3.3).

Finally, combining (3.3) with (3.2) yields

lim inf
t→∞

ert
∫ t

0
e−ruCu du = 0 P-a.s.

This implies that the random set A := {u ∈ [0,∞) : Cu < 1/2} has P-a.s. infinite

Lebesgue-measure. But this implies that

∫ ∞
0

e−δt log (Ct)
− dt ≥

∫ ∞
0

log (Ct)
− dt ≥

∫
A

log(2) dt = +∞ P-a.s.

Putting the results together we have the following result for logarithmic utility:
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Theorem C.1. Suppose δ > 0. Then, for x > 0,

V ∗(x) := sup
C∈C ∗(x)

J(C) = J(Ĉ) =
1

δ2

(
δ log(δx) + r +

λ2

2
− δ
)
,

where the corresponding optimal investment-consumption strategy is given by (Π, C) =

(Π̂, Ĉ), where Π̂ = λ
σR and Ĉ = δXx,Π̂,Ĉ .

Suppose δ ≤ 0. Then, the problem is ill-posed. For κ := r + λ2

2 > 0 we have

V ∗(x) = +∞, whereas for κ ≤ 0 we have V ∗(x) = −∞.

II.D The dual approach

For completeness, we include a brief description of the dual approach to the Merton

problem. This is a static argument in the sense that we replace the dynamic ad-

missibility condition—that the wealth process is negative at all times—with a static

budget feasibility condition. As before, we only deal with a Black–Scholes–Merton fi-

nancial market, and in this case the argument is particularly simple since the market

is complete and hence there is exactly one equivalent martingale measure.

Define the state-price density process ζ = (ζt)t≥0 by

ζt = e−rtE(−λW )t = exp

(
−λBt −

(
r +

λ2

2

)
t

)
. (4.1)

The following proposition gives a neat equivalent criterion for a consumption process

to be admissible in terms of the state price density.

Proposition D.1. A nonnegative progressively measurable process C is in C (x) if

and only if the budget feasibility condition holds:

E
[∫ ∞

0
ζsCs ds

]
≤ x. (4.2)

Proof. Suppose that C ∈ C (x). Let Π be the corresponding investment process such

that (Π, C) ∈ A (x). Denote the corresponding wealth process by X = Xx,Π,C and
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define the nonnegative process Y = (Yt)t≥0 by Yt = ζtXt +
∫ t

0 ζsCs ds. The product

rule, the definition of ζ in (4.1) and the dynamics of X from (I.4.2) give

dYt = ζt dXt +Xt dζt + d〈ζ,X〉t + ζtCt dt = ζtXt(Πtσ − λ) dBt. (4.3)

Hence, Y is a nonnegative local martingale and therefore a supermartingale. Using

ζtXt ≥ 0 and Fatou’s Lemma we conclude that

x = Y0 ≥ lim inf
t→∞

E [Yt] ≥ E
[∫ ∞

0
ζsCs ds

]
.

Therefore, Equation (4.2) holds.

Conversely, suppose that Equation (4.2) holds. Then, since ξ =
∫∞

0 ζtCt dt

is integrable, we may define the uniformly integrable martingale Z = (Zt)t≥0 by

Zt = E[ξ|Ft]. By the Brownian martingale representation theorem, there exists a

predictable process H = (Ht)t≥0 ∈ L(W ) such that

Zt = E [ξ] +

∫ t

0
Hs dBs.

Let Π = (Πt)t≥0 be given by

ΠtXt =
Ht + λζt
ζtσ

.

Then, using (4.3) we find that the wealth process started from initial wealth x′ =

E [ξ] ≤ x satisfies

ζtXt +

∫ t

0
ζsCs ds = Yt = Zt = E

[∫ ∞
0

ζsCs ds

∣∣∣∣Ft] .
Hence, ζtXt = E[

∫∞
t ζsCs ds|Ft] ≥ 0 since both ζ and C are nonnegative. Conse-

quently, the pair (Π, C) is admissible and C is an attainable consumption stream.

The verification argument then goes as follows. First, the candidate consumption
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process Ĉ from (3.1) satisfies

e−δtU ′(Ĉt) = V̂x(x)ζt, (4.4)

as well as

E
[∫ ∞

0
ζsĈs ds

]
= x. (4.5)

Then, for an admissible C ∈ C (x), using the budget condition (4.2) for C as well as

the budget condition (4.5) for Ĉ, together with (4.4) and the simple fact that the

concave function U is bounded above by its tangent, i.e., U(b) ≤ U(a) + (b−a)U ′(a)

for a > 0, b ≥ 0, we obtain

E
[∫ ∞

0
e−δtU(Ct) dt

]
≤ E

[∫ ∞
0

(
e−δtU(Ĉt) + e−δtU ′(Ĉt)(Ct − Ĉt)

)
dt

]
= E

[∫ ∞
0

e−δtU(Ĉt) dt

]
+ V̂x(x)E

[∫ ∞
0

ζt(Ct − Ĉt) dt

]
≤ E

[∫ ∞
0

e−δtU(Ĉt) dt

]
= V̂ (x).

Here, the last inequality from the fact that since since C is admissible, it is budget

feasible, and that the budget constraint in (4.2) is satisfied with equality for Ĉ. This

proves optimality of Ĉ.
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CHAPTER

III

STOCHASTIC DIFFERENTIAL

UTILITY: AN INTRODUCTION

In this chapter, we introduce stochastic differential utility (SDU) and explain how

it permits a wider range of risk aversion and temporal variance aversion prefer-

ences than the time-additive utility studied in Chapter II. In particular, we focus on

infinite-horizon Epstein–Zin stochastic differential utility (EZ-SDU).

Within the economics literature, SDU (introduced by Duffie and Epstein [DE92]

as the continuous-time analogue of recursive utility (Epstein and Zin, [EZ89], Weil

[Wei89], Kraft and Seifreid [KS14]), and further developed by Duffie and Lions [DL92],

Skiadas [Ski98] and Schroder and Skiadas [SS99]) is viewed as an extension to classi-

cal additive utilities, and recognised as having the potential to explain several of the

inconsistencies between the predictions of the Merton model and agent behaviour
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(for example, the equity premium puzzle [Mehra and Prescott, MP85] and the risk-

free rate puzzle [Wei89]).1 However, with several honourable exceptions (including

[KSS13, KS14, SS16, KSS17, Xin17, MX18, MMKS20]), SDU has not been widely

studied in the mathematical finance literature. Given the deep connections with

many areas of modern probability theory (for example, backward stochastic differ-

ential equations (BSDEs)) this is in some ways surprising, but given the technical

challenges involved it is also understandable.

The fact that we concentrate on the infinite horizon brings several issues into

focus. Over the infinite horizon, it is not possible to work backwards from the

terminal horizon and it is necessary to consider some form of transversality condi-

tion as an alternative. Moreover, integrability (and uniform integrability) become

much more significant challenges. However, although the infinite-horizon problem

brings potentially different (and greater) technical challenges when compared with

the finite-horizon problem, it can lead to a time-homogeneous Merton problem and

therefore to a dimension reduction and the greater prospect of closed-form solutions.

The structure of this chapter is the following: In Sections 1 and 2 we introduce

SDU and EZ-SDU, explaining the roles of the parameters involved; in Section 3

we define the Merton problem for EZ-SDU and derive a candidate for the optimal

strategy; in Section 4 we compare our EZ aggregator with the difference form of the

EZ aggregator; and in Section 5 we compare our formulation of EZ-SDU with that

used in the rest of the infinite-horizon SDU literature. In particular, in Section 5.1

we outline the conventional approach to infinite-horizon SDU (see for example Duffie

and Epstein [DE92] and Melnyk, Muhle-Karbe and Seifried [MMKS20]) in which the

infinite-horizon problem is replaced with a family of finite-horizon problems coupled

with a transversality condition. We show that any utility process formulated in

this manner is necessarily a utility process under our formulation (after a change of

numéraire), whereas the converse is not true. In Section 5.2 we define the concept of

1Summaries of these “puzzles” in the asset pricing economics literature can be found in [Cam99,
Cam00].
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a utility bubble for CRRA utility—essentially, a scenario in which the utility process

and the utility gained from consumption differ in sign—and show that choosing a

mismatched transversality condition can lead to such bubbles arising. In section 5.3,

we show that utility bubbles can also arise for stochastic differential utility, and that

the utmost care must be taken if one wishes to use the conventional approach and

deviate from the ‘natural’ transversality condition.

1 Stochastic differential utility

Stochastic diffential utility is a generalisation of time-additive discounted expected

utility and is designed to allow a separation of risk preferences from time preferences.

The goal in this section is to explain how this statement should be interpreted.

Under discounted expected utility, the value or utility of a consumption stream

is given by JU (C) = E
[∫∞

0 U(t, Ct) dt
]
and the value or utility process is given by

Vt = E[
∫∞
t U(s, Cs)|Ft]. Under SDU, the function U = U(s, Cs) is generalised to

become an aggregator g = g(s, Cs, Vs), and the stochastic differential utility process

V C = (V C
t )t≥0 associated to a consumption stream C solves

V C
t = E

[∫ ∞
t

g(s, Cs, V
C
s )ds

∣∣∣∣Ft] . (1.1)

This creates a feedback effect in which the value at time t may depend in a nonlinear

way on the value at future times. This feature leads to a separation of the two

phenomena mentioned in the previous section: risk aversion and temporal variance

aversion.

Note that if g takes positive and negative values, the conditional expectation on

the right hand side of (1.1) may not be well-defined. With this in mind, we introduce

the following definitions.

Definition 1.1. An aggregator is a function g : [0,∞)×R+×R→ R. For C ∈P+,

define I(g, C) :=
{
V ∈P : E

∫∞
0 |g(s, Cs, Vs)| ds <∞

}
. Further, let UI(g, C) be
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the set of elements of I(g, C) which are uniformly integrable. Then, V ∈ I(g, C) is a

utility process associated to the pair (g, C) if it has càdlàg paths and satisfies (1.1)

for all t ∈ [0,∞).

Remark 1.2. All utility processes are necessarily semimartingales and uniformly in-

tegrable. Indeed, let M = (Mt)t≥0 be the (càdlàg) martingale given by Mt =

E
[∫∞

0 g(s, Cs, V
C
s )ds

∣∣Ft] and A = (At)t≥0 the continuous adapted process given

by At =
∫ t

0 g(s, Cs, V
C
s )ds. Then, V C = M − A ∈ S . Moreover, let M̃ = (M̃t)t≥0

be the uniformly integrable martingale given by M̃t = E
[∫∞

0 |g(s, Cs, V
C
s )|ds

∣∣Ft].
Then, V C ∈ UI(g, C) since

|V C
t | ≤ E

[∫ ∞
t
|g(s, Cs, V

C
s )|ds

∣∣∣∣Ft] ≤ E
[∫ ∞

0
|g(s, Cs, V

C
s )|ds

∣∣∣∣Ft] = M̃t, t ≥ 0.

Definition 1.3. C is g-evaluable if there exists a utility process V ∈ I(g, C) associ-

ated to the pair (g, C). The set of g-evaluable consumption streams C is denoted by

E (g).

Furthermore, if the utility process is unique (up to indistinguishability), then C

is g-uniquely evaluable. The set of g-uniquely evaluable C is denoted by Eu(g).

Throughout this chapter (with a few exceptions where we explictly state other-

wise), we will only consider uniquely evaluable consumption streams. Provided that

C is uniquely evaluable, we may therefore define the stochastic differential utility of

a consumption stream C and aggregator g by Jg(C) := V C
0 where V C satisfies (1.1).

The restriction to evaluable or uniquely evaluable consumption streams is a very

real restriction. We will see examples, in this chapter and the next, of many reason-

able consumption streams which are not evaluable when ϑ ∈ (0, 1). We will see in

Chapter V that, when ϑ > 1, the only uniquely evaluable consumption stream is the

zero consumption stream.
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2 Epstein–Zin stochastic differential utility

The goals of this section are: firstly, to introduce Epstein–Zin stochastic differential

utility, which is a generalisation of the discounted CRRA utility that was the focus

of Chapter II; secondly, to define the associated aggregator; thirdly, to examine some

of the properties of EZ-SDU; and finally, to justify any restrictions on coefficients

that must be imposed to make EZ-SDU well-founded. We will see in Section 2.1

that EZ-SDU allows a disentanglement of risk preferences from temporal variance

preferences.

The Epstein–Zin aggregator corresponding to the vector of parameters (b, δ, R, S)

is a function gEZ : R+ ×R+ ×V→ V, given by

gEZ(t, c, v) := be−δt
c1−S

1− S
((1−R)v)

S−R
1−R . (2.1)

Here V = (1 − R)R+ is the domain of the Epstein–Zin utility process and both R

and S lie in (0, 1) ∪ (1,∞). It is convenient to introduce the parameters ϑ := 1−R
1−S

and ρ = S−R
1−R = ϑ−1

ϑ , so that (2.1) becomes

gEZ(t, c, v) = be−δt
c1−S

1− S
((1−R)v)ρ . (2.2)

Note that when S = R the aggregator reduces to the discounted CRRA utility

function. This case corresponds to ϑ = 1 and ρ = 0.

Remark 2.1. The expression in (2.2) is a reformulation of the classical Epstein–Zin

stochastic differential utility. Other authors use the difference form aggregator g∆
EZ

given by

g∆
EZ(c, v) := b

c1−S

1− S
((1−R)v)ρ − δϑv. (2.3)

When we want to emphasise the difference between the two formulations we will call

(2.2) the discounted form of the EZ-SDU aggregator. As might be expected there

is a very close relationship between solutions of the two different forms, and we will
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discuss this further in Section 4. Note immediately however, that the discounted

form is easily recognised as the natural generalisation of CRRA utility as given in

Chapters I and II. Indeed, when R = S, the aggregator becomes U(t, c) = be−δt c
1−R

1−R .

Let gEZ be the aggregator in (2.2). We begin by trying to give interpretations of

the various parameters and to show that (despite appearances) R captures the agent’s

risk aversion whereas S captures agent’s elasticity of intertemporal complementarity,

or temporal variance aversion. In addition, δ represent the agent’s subjective discount

rate, and b is a scaling parameter which has no effect on the agent’s preferences (as

long as it is positive) - see Remark 2.2. We have included b to facilitate comparison

with other forms of Epstein–Zin SDU used in the literature, but it may be set to 1

without loss of generality (alternatively, sometimes it is set equal to δ).

Standing Assumption 1 (Rational Parameter Assumption). We assume b > 0,

δ ∈ R and R 6= S ∈ R+ \ {1}.

The case S = R corresponds to CRRA utility. We exclude the case R = S as it

has been extensively studied and is well understood.

In addition to excluding R = S we also exclude R = 1 and S = 1. Just as power

law utility becomes logarithmic utility when R = S = 1, EZ-SDU also changes

form. The parameter combination when S = 1 is considered by Chacko and Viceira

[CV05]. (It is less clear how to extend EZ-SDU to the case R = 1.) Rather than

study these limiting cases we focus on the case R 6= 1 6= S, where the issues are

already substantial.

Positivity of b corresponds to monotone preferences which are increasing in con-

sumption. We will show in Section 2.1 via a pair of examples that the condition

R > 0 corresponds to the agent being risk averse (rather than risk seeking) to vari-

ance of consumption over ω, and the condition S > 0 corresponds to the agent being

averse to variance (rather than variance seeking) in consumption over time. The

parameter δ is left unrestricted. Whilst it is natural based on its interpretation as a

discount factor to expect δ to be positive, when EZ-SDU is associated with a finan-
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cial market model a deterministic change of consumption units leads to a change in

the value of δ and potentially to a change in sign, see Section 3.2 (also see Remark

II.1.1 and Section II.B from Chapter II). Since typically the choice of accounting

units is arbitrary there is no economic or mathematical reason to require or expect

that δ ≥ 0.

If gEZ is the Epstein–Zin aggregator given in (2.2) then the utility process V C =

V = (Vt)t≥0 associated to consumption C and aggregator gEZ solves

Vt = E
[∫ ∞

t
be−δs

C1−S
s

1− S
((1−R)Vs)

ρ ds

∣∣∣∣Ft] . (2.4)

Remark 2.2. The parameter b has no effect on preferences, provided it is positive.

To see this, suppose that V is a solution to (2.4) with b = 1. For arbitrary d > 0

it follows that dϑV = (dϑVt)t≥0 is a solution to (2.4) with b = d. Since preferences

remain unchanged by a multiplicative scaling of the utility function, it does not

matter which value of b we choose.

2.1 Risk aversion and temporal variance aversion

In Section I.1.2, we explained the dual roles of the parameter R in CRRA discounted

expected utility and how it controls both the agent’s risk aversion and their aver-

sion to variance of temporal consumption. In this section, we shall see that under

EZ-SDU, the parameter R governs risk preferences and the parameter S governs

preferences over deterministic consumption streams that vary throughout time.

Consider a deterministic consumption stream c = (c(t))t≥0. Then, V c = V =

(V (t))t≥0 can be found by solving the ordinary differential equation

dV (t)

dt
= −be−δt c(t)

1−S

1− S
((1−R)V (t))ρ,

subject to limt→∞ V (t) = 0. Making the change of variables to W (t) = (1−R)V (t)
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and dividing through by W (t)ρ, we find (recall ϑ = 1−R
1−S = 1

1−ρ)

1

W (t)ρ
dW (t)

dt
= −be−δtϑc(t)1−S , lim

t→∞
W (t) = 0. (2.5)

Assuming that e−δsc(s)1−R is integrable at infinity, a solution to (2.5) is W (t) =(∫∞
t be−δsc(s)1−S ds

)ϑ
. Therefore, a utility process V = V c associated to c is

V (t) =
1

1−R

(
b

∫ ∞
t

e−δsc(s)1−S ds

)ϑ
. (2.6)

In particular, when Ca,γ = (Ca,γt )t≥0 is the deterministic, exponentially decaying

consumption stream given by Ct = Ca,γt = ae−γt and δ + γ(1− S) > 0 we find

V (t) = V Ca,γ

t = e−(δ+γ(1−S))ϑt

(
b

δ + γ(1− S)

)ϑ a1−R

1−R

and JgEZ (Ca,γ) := V Ca,γ
0 =

(
b

δ+γ(1−S)

)ϑ
a1−R

1−R .

Now consider a ‘purely random’ consumption stream, whose paths have no vari-

ance over time, except for an exponential decay. Suppose that the nonnegative

random variable Y is such that Y and Y 1−R are integrable. Let Ft = σ(Y ) for all

t > 0.2 Consider the (progressively measurable) consumption stream CY,γt ≡ Y e−γt

for t > 0. All uncertainty is resolved instantaneously at t = 0. The value of such a

consumption stream is given by

JgEZ (CY,γ) =

(
b

δ + γ(1− S)

)ϑ
E
[
Y 1−R

1−R

]
≤
(

b

δ + γ(1− S)

)ϑ (E[Y ])1−R

1−R
= JgEZ (CE[Y ],γ),

where the inequality follows directly from Jensen’s inequality. The loss in utility

from the uncertainty is captured by the risk-aversion R of the agent and the larger

value of R, the stronger the agent’s preference for certainty. Thus R may interpreted

2For the exposition, we temporarily drop the assumption that the filtration (Ft)t≥0 is right-
continuous.
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as the agent’s aversion to risk. Looking at (2.4) or (2.6) one might expect that the

risk aversion comes from the value of S but, contrary to naive intuition, this is not

the case.

Now consider the agent’s preferences over deterministic consumption streams that

vary over time. Assume temporarily and for the purposes of exposition that δ > 0

and ϑ > 0 and define a new (probability) measure Q = Qδ on the Borel σ-algebra

B(R+) by

Qδ(A) =

∫
A
δe−δt dt.

The choice of δ accounts for the agent’s temporal preferences for consumption in the

sense that the higher the value of δ, the greater the weighting on consumption which

occurs earlier.

Now compare a (deterministic) consumption stream c = (c(t))t≥0 with its Qδ-

average value EQδ [c] =
∫∞

0 δe−δtc(t) dt which we suppose to be finite. From (2.6) we

know that the value at time 0 is given is given by

V c(0) =
1

1−R

(
b

δ

)ϑ(∫ ∞
0

δe−δtc(t)1−S dt

)ϑ
= ϑ

(
b

δ

)ϑ (EQδ [c1−S])ϑ
1− S

.

Again, Jensen’s inequality (and ϑ > 0) gives 1
1−S (EQδ [c1−S ])ϑ ≤ 1

1−S [(EQδ [c])1−S ]ϑ,

which implies that V c
0 ≤ V

EQδ [c]
0 . Note that all of the variance aversion (after chang-

ing the Lebesgue measure to an equivalent probability measure) comes from S. This

justifies considering S as the parameter governing aversion to variance over time. In

the economics literature S is named the elasticity of intertemporal complementarity

(EIC).

Note that if (1 − R)Vt < 0 then the integrand on the right hand side of (2.4) is

ill-defined for non-integer ρ. This justifies the choice V = (1 − R)R+. Further, the

integrand is either positive (S < 1) or negative (S > 1). It is therefore necessary to

impose a link between the co-efficient of RRA R and co-efficient of EIC S to ensure

agreement in the sign of the left-hand-side of (2.4) and the right hand side. Recall

that ϑ = 1−R
1−S .
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Theorem 2.3. For EZ-SDU over the infinite-horizon with aggregator given by (2.2)

we must have ϑ > 0 for there to exist solutions to (2.4).

The condition ϑ > 0, or equivalently ρ ∈ (−∞, 1) means that either both R and

S are greater than unity, or both R and S are smaller than unity.

In the finite time horizon problem the parity issue can be overcome by adding

a bequest function so that (2.4) is replaced by Vt = E[
∫ T
t be−δs C

1−S
s

1−S ((1 − R)V )ρ +

e−δT B(XT )
1−R |Ft] where B : R+ 7→ R+ assigns a value to terminal wealth. But, even

over the finite horizon this leads to conceptual issues: for example, when S < 1 < R

the utility process is negative at time t, even though the term corresponding to con-

sumption over (t, T ) is everywhere positive, because this positive term is outweighed

by the contribution from the bequest. Moreover if we let the terminal horizon tend

to infinity the problem becomes even more stark—in order to outweigh the increasing

(as terminal horizon T increases) contribution from consumption the contribution

from the bequest must also grow, and must become more (not less) influential as

the terminal horizon increases. In Section 4.2 we argue that in the limit T ↗ ∞

we end up with bubble-like behaviour which cannot be justified economically, and

which is not consistent with any notion of transversality. This further justifies the

requirement ϑ > 0.

3 Optimal investment and consumption in a Black–Scholes–

Merton financial market

3.1 The financial market and attainable consumption streams

The financial market that we consider in this chapter (and throughout the thesis)

is the Black–Scholes–Merton financial market given in Section I.4 on page 13. It is

shown in Section I.4 that, given such a financial market, we can define the set of

attainable consumption streams C (x) to be the consumption streams that the agent

can self finance from initial wealth x > 0.
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The goal of an agent with Epstein–Zin stochastic differential utility preferences

is to maximise JgEZ (C) over attainable consumption streams. However, JgEZ (C) is

currently only defined for C ∈ Eu(gEZ) and therefore, we can currently only optimise

over uniquely evaluable consumption streams. Thus, we seek to find

V ∗Eu(gEZ)(x) = sup
C∈C (x)∩Eu(gEZ)

V C
0 = sup

C∈C (x)∩Eu(gEZ)
JgEZ (C). (3.1)

This is very restrictive. For ϑ > 1, one can show that Eu(gEZ) = {0} and so the

problem (3.1) is meaningless. Further, even when ϑ ∈ (0, 1), there are many at-

tainable consumptions streams which are nonevaluable and therefore to which we

currently cannot assign them a utility. For example, when S > 1, the zero con-

sumption stream is not evaluable. Since it might reasonably be argued that the zero

consumption stream is clearly suboptimal (and when S > 1 should give a utility

process with negative infinite utility), we would like to eliminate this choice of con-

sumption stream because it is suboptimal and not because we cannot evaluate it.

The same applies to other nonevaluable consumption streams. Ideally, we would like

every attainable consumption stream to be considered, and not just the “nice” ones

for which we can define a unique utility process. For ϑ ∈ (0, 1), this problem will be

considered in Chapter IV.

3.2 Changes of numéraire

One apparent advantage of the difference form g∆
EZ of the EZ-SDU aggregator given

in (2.3) over the discounted form gEZ given in (2.2) is that g∆
EZ , unlike gEZ , has no

explicit time-dependence, i.e. g∆
EZ = g∆

EZ(c, v) whereas gEZ = gEZ(t, c, v). However,

when we consider EZ-SDU in the constant parameter Black–Scholes–Merton model

a simple change of accounting unit leads to a modification of the discount factor

δ, but leaves the problem otherwise unchanged. It follows that by an appropriate

choice of units we can switch to a coordinate system in which the aggregator becomes

time-independent. The change of accounting units has an effect upon the financial
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market model, but it remains a Black–Scholes–Merton financial market, albeit with

modified interest rate and market drift.

Let C be a consumption stream with corresponding utility process V for gEZ .

Let χ ∈ R and define the the discounted consumption stream C̃ by C̃t = e−χtCt.

Then, V satisfies

Vt = E
[∫ ∞

t
be−δs

C1−S
s

1− S
((1−R)Vs)

ρ ds

∣∣∣∣Ft]
= E

[∫ ∞
t

be−(δ−χ(1−S))t C̃
1−S
s

1− S
((1−R)Vs)

ρ ds

∣∣∣∣∣Ft
]
.

This implies V is the utility process for C̃ with the aggregator gχ,EZ defined by

gχ,EZ(t, c, v) = be−(δ−χ(1−S))t c
1−S

1− S
((1−R)v)ρ .

Choosing χ = δ
1−S , we find that V is the utility process for the time independent

aggregator

fEZ = fEZ(c, v) = gχ,EZ(t, c, v) = b
c1−S

1− S
((1−R)v)ρ .

Furthermore, V ∈ I(fEZ , C̃ = (Cte
− δ

1−S t)t≥0) if and only if V ∈ I(gEZ , C) =

I(g0,EZ , C) and C̃ ∈ Eu(fEZ) in and only if X ∈ Eu(gEZ).

If we consider the discounted wealth process X̃Π,C̃
t := e−

δ
1−S tXΠ,C

t then, by ap-

plying Itô’s lemma, we find that with r̃ = r − δ
1−S and µ̃ = µ− δ

1−S ,

dX̃Π,C̃
t = X̃Π,C̃

t Πtσ dBt +
(
X̃Π,C̃
t (r̃ + Πt(µ̃− r̃))− C̃t

)
dt, X̃Π,C̃

0 = x.

This means that our control problem (3.1) admits the equivalent formulation,

V ∗Eu(gEZ)(x) = sup
C∈C (x;r,µ,σ)∩Eu(gEZ)

V C,gEZ
0

= sup
C̃∈C (x;r̃,µ̃,σ)∩Eu(fEZ)

V C̃,fEZ
0 = V ∗Eu(fEZ)(x).
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In particular, by an appropriate change of accounting units the problem for EZ-SDU

in discounted form reduces to an equivalent form with no discounting. This simpli-

fication result will be used extensively in Chapter IV on existence and uniqueness,

but whilst we are comparing and contrasting the discounting and difference forms

we will continue to allow δ to be any real number.

3.3 The candidate optimal strategy

Suppose now ϑ > 0. We seek to heuristically find an admissible (and uniquely

evaluable) consumption stream C that maximises the value of V C
0 , where

V C
t = E

[∫ ∞
t

be−δs
C1−S
s

1− S
(
(1−R)V C

s

)ρ
ds

∣∣∣∣Ft] . (3.2)

As in the Merton problem with CRRA utility, it is reasonable to expect that the op-

timal strategy is to invest a constant proportion of wealth in the risky asset and con-

sume a constant proportion of wealth. Consider the investment-consumption strategy

Π ≡ π ∈ R and C ≡ ξX for ξ ∈ R++. Then, solving (I.4.2), the wealth process

Xx,π,ξ = X = (Xt)t≥0 is given by Xt = x exp
(
πσBt +

(
r + π(µ− r)− ξ − π2σ2

2

)
t
)
,

and then, for s > t

X1−R
s = x1−R exp

(
πσ(1−R)Bt + (1−R)

(
r + λσπ − ξ − π2σ2

2

)
t

)
. (3.3)

As in the Merton problem, consider a value process of the form Vt = V (t,Xt) =

Ae−βt
X1−R
t

1−R for some constant β to be determined. Substituting this expression into

(3.2), and using 1− S + ρ(1−R) = 1−R yields

Vt = E
[∫ ∞

t
be−δs

(ξXs)
1−S

1− S

(
Ae−βsX1−R

s

)ρ
ds

∣∣∣∣Ft]
= bAρ

ξ1−S

1− S
E
[∫ ∞

t
e−(δ+βρ)sX1−R

s ds

∣∣∣∣Ft] (3.4)
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Then, for s > t, E[e−(δ+βρ)sX1−R
s |Ft] = e−(δ+βρ)tX1−R

t e−Hδ+βρ(π,ξ)(s−t), where for

ν ∈ R, Hν : R×R++ 7→ R is given by

Hν(π, ξ) = ν + (R− 1)

(
r + λσπ − ξ − π2σ2

2
R

)
. (3.5)

Remark 3.1. If we consider the constant proportional investment-consumption (π, ξ),

then the drift of (e−νtX1−R
t )t≥0 is given by −Hν(π, ξ). This means that Hν(π, ξ) is

a critical quantity for both the well-definedness of the integral E[
∫∞

0 e−νtX1−R
t dt]

and the transversality condition limt→∞ E[e−νtX1−R
t ] = 0 which will feature heavily

in Section 5.

Provided that Hδ+βρ(π, ξ) > 0, so that the integral in (3.4) is well-defined, it

follows that

Vt =
be−(δ+βρ)tAρξ1−S

Hδ+βρ(π, ξ)

X1−R
t

1− S
.

Since V was postulated to be of the form Vt = Ae−βt
X1−R
t

1−R , it must be the case that

β = δ+ βρ (i.e. β = δϑ) and A = A(π, ξ) =
(
bϑξ1−S

Hβ(π,ξ)

)ϑ
> 0. Then, δ+ βρ = δϑ and

H := Hδϑ satisfies

H(π, ξ) = δϑ+ (R− 1)

(
r + λσπ − ξ − π2σ2

2
R

)
.

It follows that any proportional investment strategy (Π = π, C = ξX) is evaluable

provided that H(π, ξ) is positive.

To find the optimal strategy amongst constant proportional strategies (and hence

to find the candidate optimal strategy) it remains to maximise A(π,ξ)
1−R over (π, ξ) ∈

R×R++ such that H(π, ξ) > 0. There is a turning point of A(π,ξ)
1−R = 1

1−R

(
bϑξ1−S

H(π,ξ)

)ϑ
at (π̂, ξ̂) = ( λ

σR , η) where

η =
1

S

(
δ + (S − 1)r + (S − 1)

λ2

2R

)
(3.6)

and this point is such that H(π̂, ξ̂) = H( λ
σR , η) > 0 provided η > 0. Under the
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condition η > 0 it is easily checked that (π = λ
σR , ξ = η) is a maximum of A(π,ξ)

1−R

over {(π, ξ) : H(π, ξ) > 0}; it then follows that max{ξ>0:H(π̂,ξ)>0} V0 = bϑη−ϑS x
1−R

1−R .

Considering this as a function of the initial wealth, for η > 0 the candidate value

function is defined by

V̂ (x) = bϑη−ϑS
x1−R

1−R
. (3.7)

The results of this section are summarised in the following proposition:

Proposition 3.2. Define D = {(π, ξ) ∈ R×R+ : H(π, ξ) > 0}. Consider constant

proportional strategies with parameters (π, ξ) ∈ D. Suppose ϑ > 0 and η > 0, where

η is given in (3.6).

(i) For (π, ξ) ∈ D, one solution V = (Vt)t≥0 to (3.2) is given by

Vt = e−δϑt
(
bϑξ1−S

H(π, ξ)

)ϑ
X1−R
t

1−R
. (3.8)

(ii) The global maximum of h(π, ξ) = 1
1−R

(
bϑξ1−S

H(π,ξ)

)ϑ
over the set D is attained at

(π, ξ) = ( λ
σR , η) and the maximum is bϑη−ϑS

1−R .

(iii) The optimal strategy for (3.8) is (π̂, ξ̂) = ( λ
σR , η) and satisfies V̂0 = bϑη−ϑS x

1−R

1−R =

V̂ (x), where x denotes initial wealth.

The candidate well-posedness condition for the investment-consumption problem

is η > 0, where η is given in (3.6). We shall see in Corollary IV.4.3 that when

ϑ ∈ (0, 1) this is a necessary and sufficient condition for the well-posedness of the

problem. The agent’s (candidate) optimal investment in this case is a constant

fraction π̂ = λ
σR of their wealth—a proportion which is independent of their EIC. The

agent’s investment preferences are controlled solely by the risk aversion coefficient

R. The agent’s (candidate) optimal consumption is a constant proportion η of their

wealth.

To interpret η, it is insightful to perform a change of numèraire. As in Section
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II.B, the problem may be rewritten in equivalent form as

Vt = E

[∫ ∞
t

be−(δ+r(S−1))s

1− S

(
Cs
S0
s

)1−S
((1−R)Vs)

ρ ds

∣∣∣∣∣Ft
]
.

With this in mind, it makes sense to call φ := δ+r(S−1) the impatience rate. Then,

the optimal proportional consumption rate is given by

η =
φ

S
+
S − 1

S

λ2

2R
.

This is a linear (convex if S > 1) combination of the impatience rate and (half of)

the squared Sharpe ratio per unit of risk aversion, with the weights depending on

the elasticity of intertemporal complementarity S.

Remark 3.3. The well-posedness condition η > 0 is equivalent to δ > (1−S)
(
r + λ2

2R

)
(or φ > (1 − S) λ

2

2R). This means that when S > 1 (or r < 0), the problem can be

well-posed even for negative values of δ (or φ).

Remark 3.4. When ϑ > 1, uniqueness of a utility process fails (for example Vt = 0

always solves (3.2)). In this case, the first issue is to decide which utility process to

associate to a consumption stream; this in turn has implications for the optimal value

function and optimal consumption stream, and ultimately for the well-posedness of

the problem. Since this is a delicate issue and deserves a full discussion, we postpone

it to a later chapter covering the case ϑ > 1.

4 A comparison of the discounted and difference formu-

lations

The goal of this section is to compare the discounted and difference formulations

of the aggregator for EZ-SDU. Despite the ubiquity of the latter in the literature,

we will argue that the discounted form has many advantages. As demonstrated in

Section 3.2, its main disadvantage, the fact that it has an explicit dependence on
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time, is easily overcome by a change in accounting unit.

4.1 The difference form of CRRA utility

Additive utilities such as CRRA may be thought of as special cases of SDU in which

the aggregator has no dependence on v. In this sense CRRA utility may be identified

with the aggregator

gCRRA(t, c, v) = gCRRA(t, c) = e−δt
c1−R

1−R
.

Note that, provided E
[∫∞

0 e−δs
∣∣C1−R

s

∣∣ ds] <∞, it follows that

V C
t = E

[∫ ∞
t

e−δs
C1−R
s

1−R
ds

∣∣∣∣Ft] (4.1)

is the unique utility process associated with consumption C for aggregator gCRRA and

then JgCRRA(C) = V C
0 . Further, if E[

∫∞
0 e−δs|C1−R

s |ds] = ∞ we can set J(C) = ∞

if R < 1 and J(C) = −∞ if R > 1.

In particular, two subtle but important questions which are crucial to the study

of SDU are absent from the additive utility setting: first, what value to assign to

nonevaluable strategies, and second which utility process to assign to consumptions

which are not uniquely evaluable.

Suppose C is such that E
[∫∞

0 e−δs
∣∣C1−R

s

∣∣ ds] < ∞. Then, the martingale

M = (Mt)0≤t≤∞ given by Mt := E
[∫∞

0 e−δs C
1−R
s

1−R ds
∣∣∣Ft] is uniformly integrable

and satisfies Mt =
∫ t

0 e
−δs C1−R

s
1−R ds+ Vt where V is the utility process in (4.1). Using

that M∞ =
∫∞

0 e−δs C
1−R
s

1−R ds and rearranging, we find that Vt =
∫∞
t e−δs C

1−R
s

1−R ds −∫∞
t dMt. Then, applying Itô’s formula to V ∆ given by V ∆

t := eδtVt and integrat-

ing yields V ∆
t =

∫∞
t

(
C1−R
s

1−R − δV
∆
s

)
ds +

∫∞
t eδs dMs, provided such a solution is

well-defined. Taking expectations, and assuming that M δ = (M δ
t )t≥0 given by

M δ
t =

∫ t
0 e

δsdMs is a uniformly integrable martingale we get the difference form
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of discounted expected utility,

V ∆
t = E

[∫ ∞
t

(
C1−R
s

1−R
− δV ∆

s

)
ds

∣∣∣∣Ft] . (4.2)

Modulo the technical issues, under CRRA preferences, it is possible to define the

value associated to a consumption stream C as the initial value V ∆
0 of the utility

process V ∆ = (V ∆
t )t≥0 where V ∆ solves (4.2), rather than using (4.1). However,

doing so brings several immediate disadvantages. It is no longer obvious if solutions

to (4.2) are unique or even exist. This may result in a smaller class of evaluable

strategies. Indeed there are simple deterministic counter-examples to existence of a

solution to (4.2), see Example 4.1. The counterexamples arise because the integrand
C1−R
s

1−R − δV
∆
s takes both signs and so the integral on the right hand side of (4.2) may

not be well-defined. (In contrast, E[
∫∞

0 e−δs C
1−R
s

1−R ] is always well defined, at least

in [−∞,∞].) Further, whenever E[
∫∞

0 e−δs|C1−R
s |ds] < ∞, we have that M is a

uniformly integrable martingale. But M δ may not be uniformly integrable, and the

representation (4.2) may fail.

Example 4.1. Suppose δ > 0 and let A = ∪n≥0[2n, 2n+1). Consider the deterministic

consumption stream c = (c(t))t≥0 which satisfies

U(c(t)) :=
c(t)1−R

1−R
=

2δ

1−R
eδ(dte−t)1Ac(t).

It is easily checked (consider the cases t ∈ A and t ∈ Ac separately) that V ∆ defined

by V ∆(t) = 1
1−Re

δ(t−btc)(1A(t)−1Ac (t)) satisfies dV ∆(t) =
[
δV ∆(t)− c(t)1−R

1−R

]
dt (at

least for non-integer t).

Clearly,
∫∞
t

(
c(s)1−R

1−R − δV ∆(s)
)

ds is not well-defined since both the positive

part and the negative part are infinite and hence it is not the case that V ∆ solves

V ∆ =
∫∞
t

(
c(s)1−R

1−R − δV ∆(s)
)

ds. On the other hand, V (t) = e−δtV ∆(t) is a solution

to the discounted formulation V (t) =
∫∞
t e−δs c(s)

1−R

1−R ds. (Note that since U(c(s)) is

bounded and δ > 0, V (0) is finite.)

Thus, if we set g∆
CRRA(t, c, v) = c1−R

1−R−δv and gCRRA = e−δt c
1−R

1−R , then E (g∆
CRRA) (
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E (gCRRA). In particular, there are consumption streams which can be evaluated un-

der the formulation (4.1) but which cannot be evaluated using (4.2).

4.2 The difference form of Epstein–Zin stochastic differential utility

In the previous section we argued that for additive CRRA preferences, the dis-

counted form was better than the difference form for three reasons: first, existence

and uniqueness of the utility process are guaranteed; second, there is a wider class

of consumption streams to which it is possible to assign a (finite) value; and third,

it is possible to assign a value (possibly infinite) to any consumption stream even

when
∫∞

0 gCRRA(s, Cs)ds is not integrable. The goal in this section is to show that,

although the first property in this list no longer applies, when we move to EZ-SDU

preferences the second and third advantages of the discounted form remain. Indeed,

much of the discussion is as in the additive case.

Suppose that C ∈ Eu(gEZ) and set Mt := E[
∫∞

0 be−δs C
1−S
s

1−S ((1−R)Vs)
ρ ds|Ft].

After a re-arrangement, (3.2) becomes

Vt = Mt −
∫ t

0
be−δs

C1−S
s

1− S
((1−R)Vs)

ρ ds

=

∫ ∞
t

be−δs
C1−S
s

1− S
((1−R)Vs)

ρ ds −
∫ ∞
t

dMs.

Furthermore, applying Itô’s lemma to the upcounted utility process V ∆ = (V ∆
t )t≥0

defined by V ∆
t := eδϑtVt, we find that V ∆ satisfies3

V ∆
t =

∫ ∞
t

(
b
C1−S
s

1− S
(
(1−R)V ∆

s

)ρ − δϑV ∆
s

)
ds −

∫ ∞
t

eδϑs dMs,

and we may reasonably hope to be able to define the (upcounted) utility process as

3Here, we have assumed that all integrals are well-defined and finite. In practice this is not
always true.

67



Stochastic Differential Utility: An Introduction

the solution to

V ∆
t = E

[∫ ∞
t

(
b
C1−S
s

1− S
(
(1−R)V ∆

s

)ρ − δϑV ∆
s

)
ds

∣∣∣∣Ft] . (4.3)

This is the utility process associated to the difference form of the Epstein–Zin ag-

gregator, g∆
EZ .

As in Section 4.1, for some consumption streams (4.3) is not well defined because

the integrand takes both positive and negative values. If the utility process is de-

fined via the difference aggregator g∆
EZ then it is necessary to restrict the class of

consumption streams, when compared with those which can be evaluated under gEZ .

Example 4.2. This example is similar to Example 4.1. Recall the definition of A,

and consider the deterministic consumption stream c = (c(t))t≥0 such that c(t)1−S

1−S :=

2 δ
b(1−S)e

δ(dte−t)1Ac(t). Let V ∆ = (V ∆(t))t≥0 be given by V ∆(t) = 1
1−R exp(δϑ(t −

btc)(1A(t)− 1Ac(t))). Then,

dV ∆(t) =

[
δϑV ∆(t)− bc(t)

1−S

1− S
((1−R)V ∆(t))ρ

]
dt.

For this consumption stream, both the positive and negative part of the integral

∫ ∞
t

(
b
c(t)1−S

1− S
((1−R)V ∆(t))ρ − δϑV ∆(s)

)
ds =

∫ ∞
t

δϑV ∆(s) [1A(s)− 1Ac(s)] ds

are infinite for all t ≥ 0. Hence, it cannot be the case that V ∆ solves (4.3). On the

other hand, if V (t) = e−δϑtV ∆(t), then

∫ ∞
0

be−δt
c(t)1−S

1− S
((1−R)V (t))ρ dt =

∫ ∞
0

2e−δt
δ

1− S
eδϑ(dte−t)1Ac(t) dt <∞

and V = (V (t))t≥0 ∈ I(gEZ , c). Furthermore, it can be shown that V solves (3.2).

Thus, E(g∆
EZ) ( E(gEZ).
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5 Alternative formulations of SDU

5.1 A family of finite-horizon problems

Our approach to investment-consumption problems for EZ-SDU over the infinite

horizon differs from the conventional approach in two important ways. First, we use

the discounted aggregator given by (2.2) whereas the standard approach is to use the

difference form. Second, we define the value function over the infinite horizon directly

(with the natural transversality condition that the value process tends to zero in

expectation following as a consequence), whereas the standard approach (formulated

by Duffie, Epstein and Skiadas in the appendix to [DE92], and developed further by

Melnyk et al. [MMKS20]) is to look for utility processes which solve a family of finite-

horizon problems (where now the form of the transversality condition is not so clear,

and may be part of the definition of a utility process). We have already compared the

aggregators, so the goal in this section is to explain why we believe that it is better

to define utility processes over the infinite horizon directly, and why, as a corollary,

parameter combinations corresponding to ϑ < 0 cannot make economic sense.

For the sake of exposition, we introduce some additional pieces of notation. Fix

an aggegrator g and C ∈P+. Then, for T > 0, let

IT (g, C) =

{
W ∈P :

∫ T

0
|g(s, Cs,Ws)|ds <∞

}

and JT = JT (g, C) be a subset of IT (g, C) such that elements of JT have additional

regularity and/or integrability properties. Let J :=
⋂
T>0 JT . Examples of suitable

sets JT will be given below.

As an alternative to defining utility processes directly over the infinite horizon,

[DE92] and [MMKS20] define utility processes as solutions to a family of finite-

horizon problems.

Definition 5.1. V is the (ν,J)-utility process associated to the consumption stream
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C and aggregator g if it has càdlàg paths, lies in J, satisfies the transversality con-

dition limt→∞ e
−νtE[|Vt|] = 0, and for all 0 ≤ t ≤ T <∞,

Vt = E
[∫ T

t
g(s, Cs, Vs) ds+ VT

∣∣∣∣Ft] . (5.1)

Remark 5.2. It follows as in Remark 1.2 that a (ν,J)-utility process is automatically

a semimartingale.

Let E ν,J(g) be the set of consumption streams C such that there exists a (ν,J)-

utility process associated to C for aggregator g, and let E ν,J
u (g) be the subset of

E ν,J(g), where there exists a exists a unique (ν,J)-utility process. Moreover, let

C0(x) be some subset of C (x), the set of attainable consumption streams given

initial wealth x. Additional regularity conditions on the consumption streams may

be encoded in C0(x).

In order to avoid the technical challenges of dealing with the infinite-horizon

problem directly, the idea in [DE92, MMKS20] is to replace the problem of find-

ing V (x) with the problem of finding V
C0,E

ν,J
u (g)

(x) = sup
C∈C0(x)∩E ν,Ju (g)

V C
0 , for an

appropriate transversality parameter ν and appropriate sets C0(x) and J. But this

immediately raises several issues. What exactly are the spaces C0(x), E ν,J(g) and

E ν,J
u (g)? How do we (easily) check whether C ∈ C0(x) and/or C ∈ E ν,J

u (g)?

Regarding the choice of transversality condition, the issue crystalises as: first,

how do we know that E ν,J(g) is nonempty?; second, how do we know that a utility

process V associated with a consumption C makes economic sense? As regards

the first issue, if ν < ν ′, any (ν,J)-utility process is also a (ν ′,J)-utility process.

Hence, E ν,J(g) ⊆ E ν′,J(g) and if ν is chosen too small, then it may easily follow

that E ν,J(g) does not include the candidate optimal solution. As regards the second

issue, in Section 5.2 below we introduce the concept of a bubble solution and argue

that bubble solutions do not make economic sense.

Duffie et al. [DE92] impose Lipschitz-style conditions which exclude EZ-SDU.

Melnyk et al. [MMKS20] do study EZ-SDU but the main focus of [MMKS20] is to
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understand the impact of market frictions on the investment-consumption problem

for SDU-preferences. Nonetheless, in the frictionless case which is the subject of

this thesis, Melnyk et al. prove some of the most complete results for Epstein–

Zin preferences currently available in the literature. Melnyk et al. [MMKS20] only

consider R > 1 but this is mainly to limit the number of cases rather than because

their methods do not extend to the general case.

Definition 5.3 (Melnyk et al. [MMKS20, Definition 3.1]). Suppose R > 1 and δ > 0.

For T > 0, let

S1
T = {V : V ∈ S with E

[
sup0≤t≤T |Vt|

]
<∞}

J1
T = S1

T ∩ IT (g∆
EZ , C).

J2
T =

{
V : V ∈ J1

T : Vt ≤ −C1−R
t
R−1 ≤ 0 for all 0 ≤ t ≤ T

}
.

For k ∈ {1, 2} set Jk :=
⋂
T>0 J

k
T and let C0(x) be the set of C ∈ C (x) for which

there exists Π such that Π(Xx,Π,C)1−R ∈ S1
T for all T > 0 and 1

1−R(Xx,Π,C)1−R ∈ J1.

Moreover, if 0 < ϑ < 1, set JMMS := J1 and EMMS = EMMS(g∆
EZ) := E δϑ,JMMS

(g∆
EZ);

if ϑ > 1 or ϑ ∈ (−∞, 0), set JMMS := J2 and EMMS = EMMS(g∆
EZ) := E δ,JMMS

(g∆
EZ).

Note that as we move from ϑ ∈ (0, 1) to ϑ /∈ (0, 1) the transversality parameter

ν changes from δϑ to δ. Moreover, an additional restriction that V ≤ −C1−R

R−1 is

imposed.

Melnyk et al. [MMKS20] take b = δ. Then, from (3.7) we have that for η > 0 the

candidate value function is given by V̂ (x) = η−ϑSδϑ x
1−R

1−R .

Theorem 5.4 (Melnyk et al. [MMKS20, Corollary 2.3, Theorem 3.4]). Suppose

R > 1 and δ > 0. Then, EMMS = EMMS
u . Moreover, suppose µ−r

Rσ2 /∈ {0, 1} and

η > 0.

(i) If ϑ ∈ (0, 1) (i.e. 1 < R < S), then VC0,EMMS
u

(x) = V̂ (x).

(ii) If ϑ ∈ (1,∞) (i.e. 1 < S < R) and R−S
R−1 δ < η < δ, then VC0,EMMS

u
(x) = V̂ (x).
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(iii) If ϑ ∈ (−∞, 0) (i.e. S < 1 < R) and δ < η < δR−SR−1 , then VC0,EMMS
u

(x) = V̂ (x).

The results of Melnyk et al. [MMKS20] on the frictionless problem are amongst

the few rigorous results on the investment-consumption problem over the infinite

horizon. Nonetheless, they are incomplete in several respects. For all values of ϑ,

there is no existence result; although it is possible (at least under the conditions of

the theorem) to verify that the candidate optimal consumption stream is a member

of C0(x) ∩ EMMS
u , in general little is said about which consumption streams are

evaluable by Definition 5.3, and it is unclear if the space of evaluable strategies goes

beyond the set of constant proportional strategies. The fact that the wealth process

must satisfy transversality and integrability conditions means that many plausible

consumption streams are excluded by assumption, rather than because they are sub-

optimal.

When ϑ /∈ (0, 1) there are additional issues. In that case, the transversality

condition in Definition 5.3 is that ν = δ. This condition leads to simple mathematics,

but does not necessarily make economic sense—in Section 5.3 we will argue that the

economically-correct transversality condition is ν = δϑ. Moreover, the restriction to

consumption streams for which there exists a utility processes with V ≤ 1
1−RC

1−R

seems both hard to verify in general and hard to interpret. Finally, the analysis

in [MMKS20] leaves several parameter combinations uncovered, including the case

{ϑ > 1, η ∈ (0, δρ] ∪ [δ,∞)}.

Although the space EMMS is difficult to describe, the following result, whose

proof is given in Appendix IV.D, says that if C has an associated utility process in

the sense of Melnyk et al., then automatically it has an associated utility process in

the sense of a solution to (1.1). The converse is not true.

Proposition 5.5. Suppose ϑ ∈ (0, 1) or ϑ ∈ (1,∞) and suppose δ > 0. Suppose

C ∈ EMMS and let V ∆ be a (δϑ,JMMS)-utility process associated to consumption

stream C and aggregator g∆
EZ . Then, V given by Vt = eδϑtV ∆

t is a utility process

associated to consumption stream C and aggregator gEZ in the sense of Definition 1.1.

In particular, EMMS(g∆
EZ) ⊂ E (gEZ).
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Although Melnyk et al. [MMKS20] also define utility processes in the case ϑ < 0

we will argue that the solutions in this case do not make sense.

5.2 The transversality condition and utility bubbles in the additive

case

Our goal is to show that, when coupled with the switch from the infinite-horizon

problem to the family of finite-horizon problems approach, a mismatched transver-

sality condition can lead to peculiar behaviour. We conclude that the modeller is

not free to choose the transversality condition, at least in the framework of Def-

inition 5.1, and electing to use the wrong condition can either rule out perfectly

reasonable admissible strategies (and possibly rule out all strategies, including the

candidate optimal strategy) or it can allow utility processes to be defined which have

the characteristics of a bubble.

In this section we consider the simpler case of time-additive CRRA utility. We

will assume throughout this section that: the well-posedness condition ηa := δ
R −

1−R
R (r+ λ2

2R) > 0 holds (note that this is a necessary and sufficient condition for the

well-posedness of the Merton problem with additive utility by Corollary II.5.4 and

Corollary II.5.5 on page 34); also, that R > 1. The latter condition is only imposed

to avoid case distinctions and similar behaviour is observed when R < 1.

In this case it is clear that for gCRRA-evaluable consumption stream, the infinite-

horizon formulation

Vt = E
[∫ ∞

t
e−δs

C1−R
s

1−R
ds

∣∣∣∣Ft] , 0 ≤ t <∞,

is equivalent to the finite-horizon formulation:

Vt = E
[∫ T

t
e−δs

C1−R
s

1−R
ds+ VT

∣∣∣∣Ft] , 0 ≤ t ≤ T <∞, (5.2)

if and only if the transversality condition limT→∞ E[VT ] = 0 is met. Define V ∆
t =
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eδtVt. By arguing as in the proof of Proposition 5.5 (specialised to the case ϑ = 1),

V satisfies (5.2) if and only if V ∆ satisfies

V ∆
t = E

[∫ T

t

(
C1−R
s

1−R
− δV ∆

s

)
ds+ V ∆

T

∣∣∣∣Ft] , 0 ≤ t ≤ T <∞, (5.3)

where the transversality condition is e−δtE[V ∆
t ]→ 0.

The above observation suggests that the ‘correct’ transversality condition for the

problem with the difference aggregator is e−δtE[V ∆
t ]→ 0. But, what happens if the

transversality condition is modified to become e−νtE[V ∆
t ]→ 0 for some ν 6= δ?

For π̂ = λ
σR and ξ > 0 with Hδ(π̂, ξ) = δ + (R− 1)(r + λσπ − ξ − π2σ2

2 R) > 0, it

follows from (3.3) that the constant proportional strategy with Π ≡ π̂ and C = ξX

satisfies E[C1−R
t ] = ξ1−RE[X1−R

t ] = ξ1−Rx1−Re(1−R)(r+ λ2

2R
−ξ)t and the solution to

(5.2) is

Vt = V ξ
t =

K(ξ)

1−R
e−δtX1−R

t ,

where K(ξ) := ξ1−R

Hδ(π̂,ξ)
= ξ1−R

Rηa+(1−R)ξ . This implies that a solution to (5.3) is given

by

V ∆
t = V ∆,ξ

t = eδtVt =
K(ξ)

1−R
X1−R
t . (5.4)

On the other hand, e−νtE[V ∆
t ] → 0 is equivalent to e(δ−ν)tE[Vt] → 0, which in turn

is equivalent to Hν(π̂, ξ) > 0. We can therefore define the maximum value of ξ such

that the transversality condition e−νtE[V ∆
t ]→ 0 is satisfied. This is given by

ξνmax := sup{ξ > 0 : there is π ∈ R with Hν(π, ξ) > 0} =
(
r + λ2

2 + ν
R−1

)
+
<∞.

First, consider a stronger transversality condition, e−νtE[V ∆
t ] → 0 for ν < δ.

This means that Hδ(π̂, ξ) > Hν(π̂, ξ). In this case, if Hδ(π̂, ξ) > 0 ≥ Hν(π̂, ξ), or

equivalently if ξ is such that Rηa > (R − 1)ξ ≥ ν + (R − 1)
(
r + λ2

2R

)
, then V ∆

defined in (5.4) satisfies (5.3) but it does not satisfy the transversality condition

e−νtE[V ∆
t ] → 0. In particular, if ηa > ξνmax then the candidate optimal strategy

leads to a utility process which does not satisfy the transversality condition and
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hence does not lie in the set of consumption streams over which the optimisation

takes place. This is illustrated in Figure 5.1a for the case R > 1 (but can also occur

when R < 1).

(a) When the transversality condition is too
small (ν < δ) the candidate optimal strategy
may not be evaluable.

(b) When the transversality condition is too
large (ν > δ), the candidate optimal strategy
is not optimal and some consumption streams
lead to bubble-like utility processes.

Figure 5.1: Plots of the solution to (5.4) associated to the constant proportional investment-
consumption strategy (π̂, ξ) along with blocked out region where the transversality condition
is not met (Hν(π̂, ξ) ≤ 0).

Second, consider solving (5.3) under a weaker transversality condition e−νtE[V ∆
t ]→ 0

for ν > δ. In this case, Hν(π̂, ξ) > Hδ(π̂, ξ). Let ξ 6= Rηa
R−1 be such that Hν(π̂, ξ) >

0 > Hδ(π̂, ξ) (for example ξ = ξε := δ+ε
R−1 +

(
r + λ2

2R

)
= ε+Rηa

R−1 > 0 for ε ∈ (0, ν − δ)).

Again, it follows that V ∆,ξε as defined (5.4) solves (5.3) for the constant proportional

investment-consumption strategy (π, ξ) = (π̂, ξε). As Hν(π̂, ξε) > 0, the transversal-

ity condition e−νtE[V ∆,ξε
t ]→ 0 is met.

Further V ∆,ξε = −K(ξε)
R−1 X

1−R where K(ξε) = − ξ1−R
ε
ε . In particular, V ξε

0 =

ξ1−R

ε
x1−R

R−1 > 0. By comparison, V η
0 = bη−ϑS x

1−R

1−R < 0. Hence, the candidate optimal

strategy no longer maximises the initial value of the utility process over constant

proportional strategies, in contradiction to the well-established theory for this case.

In the case R > 1 where we would expect to assign a negative utility, we may

actually obtain an arbitrarily large positive utility (see Figure 5.1b). This can be

done by letting ε↘ 0 in the above. What is happening is that—whilst the integrand
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in (5.2) is always negative—the discounted expected future utility E
[
V ∆
T

∣∣Ft] is

diverging to positive infinity as T ↗ ∞. The agent is always receiving a negative

utility from consumption, but this is offset by an ever-increasing positive contribution

from expectations of future utility. The endless optimism that things will always be

better in the future creates bubble-like behaviour.

Although there are special features in the additive case, the study of CRRA

utility does show that some delicacy is needed when defining infinite-horizon utility

to be the solution to the finite-horizon utilities paired with a transversality condition.

If we wish to define stochastic differential utility in this manner, we must be very

careful that we use the appropriate transversality condition.

In preparation for the move beyond the additive case we record the following

definition and proposition summarising the results of this section.

Definition 5.6. V is a CRRA-bubble for a consumption stream C if V solves (5.2)

for each 0 ≤ t ≤ T <∞ but V and U = U(t, C) are of opposite sign.

Proposition 5.7. (i) For constant proportional strategies, there are no CRRA-

bubbles which satisfy the transversality condition e−δtE[V ∆
t ]→ 0.

(ii) If ν < δ then there is a financial market such that the candidate optimal

investment-consumption strategy does not satisfy the transversality condition.

(iii) If ν > δ, there is a financial market such that there is a consumption strean for

which the associated utility process satisfies the transversality condition but is

a CRRA-bubble. When R > 1, the candidate optimal consumption stream does

not maximise V C
0 over attainable strategies.

5.3 Transversality, the case ϑ < 0, and the family of finite-horizon

problems.

For the EZ-SDU aggregator in discounted form over the infinite horizon it is not

possible to define a utility process in the case ϑ < 0. However, several authors have
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attempted to define a utility process for ϑ < 0 using the difference form with the

family of finite-horizon problems approach or otherwise. Motivated by the analysis

of the additive case, in this section we explain why the mathematical results they

find may not have a sensible economic interpretation.

The only strategies for which we can hope to find a nontrivial utility process in

explicit form are constant proportional investment-consumption strategies. More-

over, the candidate optimal strategy is of this form. In consequence, and for this

section only, we make the following assumption so we can see explicitly the issues

which arise when ϑ < 0.

Temporary Standing Assumption (for Section 5.3 only). Consumption plans

under consideration in this section are generated by constant proportional investment-

consumption strategies (π, ξ). If an associated utility process exists, then it is of the

form V ∆
t = Bξ1−RX1−R

t
1−R where B = B(π, ξ) ∈ R++ is a positive constant. If there

is no solution of the form V ∆
t = Bξ1−RX1−R

t
1−R for B ∈ (0,∞), then the consumption

stream is not evaluable.

Remark 5.8. Note that if ϑ ∈ (0, 1), Corollary IV.2.9 below shows that if a utility

process exists for a consumption stream C, then it is unique. If ϑ /∈ [0, 1], then

this need not be the case. In that case we must decide which utility process to

assign to a given consumption stream. Typically the literature makes additional

assumptions to ensure that the time-homogeneous solution V ∆
t = Bξ1−RX1−R

t
1−R is

the utility process associated with C, if such a solution exists. Without discussing

what these assumptions might be, the impact of the temporary standing assumption

is to assign the utility process V ∆ given by V ∆
t = Bξ1−RX1−R

t
1−R to the constant

proportional strategy.
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Finding an explicit solution for the finite-horizon formulation

Consider g∆
EZ and a constant proportional investment-consumption strategy (π, ξ).

Suppose V ∆ = (V ∆
t )t≥0 is a solution to

V ∆
t = E

[∫ T

t

[
b
ξ1−SX1−S

s

1− S
(
(1−R)V ∆

s

)ρ − δϑV ∆
s

]
ds+ V ∆

T

∣∣∣∣Ft] (5.5)

for all 0 ≤ t ≤ T <∞. We look for a solution of the form V ∆
t = Bξ1−RX1−R

t
1−R where

B = B(π, ξ) is a positive constant which we seek to identify—we need B ≥ 0 since

we require V ∆ is V-valued. For a constant proportional strategy (π, ξ), we have that

E[X1−R
s |Ft] = X1−R

t e−H0(s−t) where H0 = H0(π, ξ) is as in (3.5) with ν = 0. Then,

substituting the candidate form for V ∆ into (5.5) and dividing by ξ1−RX1−R
t yields

B

1−R
=

∫ T

t

[
b

1− S
Bρ − δϑB

1−R

]
e−H0(s−t) ds+

B

1−R
e−H0(T−t),

and, provided H0(π, ξ) 6= 0,

B = (bϑBρ − δϑB)
1− e−H0(T−t)

H0(π, ξ)
+Be−H0(T−t). (5.6)

It follows that there is a solution of the given form if there is a solution to

BHδϑ(π, ξ) = B(δϑ+H0(π, ξ)) = bϑBρ, (5.7)

where Hδϑ(π, ξ) is as in (3.5) with ν = δϑ. (If H0(π, ξ) = 0, instead of (5.6), we get

B = (T − t)(bϑBρ − δϑB) +B which means that again B solves (5.7).) Since b > 0,

there can only be a positive solution to (5.7) if ϑHδϑ(π, ξ) > 0.

Note that already this is different to the additive case (ρ = 0 and ϑ = 1) in

the way that it was presented in Section 5.2. In the additive case we (effectively)

looked for solutions to B(δ + H0(π, ξ)) = b but did not require that B > 0; indeed

we sometimes found (genuine) solutions with B > 0 and sometimes bubble solutions

with B < 0. Solutions in the additive case with B < 0 do not satisfy V ∈ V and are
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automatically excluded when we consider utility processes in the EZ-SDU framework.

We now argue that similar ideas mean that the case ϑ < 0 does not make sense if

bubble solutions are excluded.

Suppose ϑ 6= 1 (equivalently ρ 6= 0 or R 6= S) and consider nonnegative solutions

to (5.7). If ϑ ∈ (0, 1) (equivalently ρ < 0), then this equation has a solution if and

only if Hδϑ(π, ξ) > 0 and then the solution is unique and given by B =
(

bϑ
Hδϑ(π,ξ)

)ϑ.
If ϑ > 1, then B = 0 is always a solution to (5.7) (and so is B =∞ if Hδϑ(π, ξ) > 0)

and there exists a strictly positive, finite solution if and only if Hδϑ(π, ξ) > 0, whence

again B =
(

bϑ
Hδϑ(π,ξ)

)ϑ. If ϑ < 0, then B = 0 is always a solution to (5.7), B =∞ is a

solution ifHδϑ(π, ξ) < 0 and there exists a further solution if and only ifHδϑ(π, ξ) < 0

whence B =
(

b|ϑ|
|Hδϑ(π,ξ)|

)ϑ
. By the Temporary Standing Assumption, we exclude zero

and infinity as solutions.

A change of accounting units

For a constant proportional strategy (π̂ = λ
σR , ξ), a change of accounting units will

have the effect of changing the discount parameter. Fix δ and g∆
EZ but introduce

also gγ = gγEZ and V γ where gγ := b c
1−S

1−S ((1 − R)v)ρ − γϑv and V γ = (V γ
t )t≥0 is a

solution to

V γ
t = E

[∫ T

t

[
be(γ−δ)s ξ

1−SX1−S
s

1− S
((1−R)V γ

s )ρ − γϑV γ
s

]
ds+ V γ

T

∣∣∣∣Ft] (5.8)

for all 0 ≤ t ≤ T < ∞. (Then also (gδ, V δ) ≡ (g∆
EZ , V

∆).) As before, we look for a

solution of the form V γ
t = Bγξ

1−RX1−R
t

1−R where Bγ = Bγ(π, ξ) ∈ (0,∞).

Lemma 5.9. Let (Xγ
t )t≥0 be given by Xγ

t = Xte
− (γ−δ)

1−S t so that Xγ is the wealth

process which arises from a change of accounting unit.

(i) V ∆ solves (5.5) if and only if V γ defined by V γ
t = e(γ−δ)ϑtV ∆

t solves (5.8).

(ii) V γ solves (5.8) if and only if it also solves

V γ
t = E

[∫ T

t

[
b
ξ1−S(Xγ

s )1−S

1− S
((1−R)V γ

s )ρ − γϑV γ
s

]
ds+ V γ

T

∣∣∣∣ Ft]
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Proof. The proof of (i) follows by a similar argument to the one used in the proof of

Proposition 5.5. Statement (ii) is a simple renaming of variables.

In particular, taking γ = 0, V 0
t solves

V 0
t = E

[∫ T

t
bξ1−S (X0

s )1−S

1− S
(
(1−R)V 0

s

)ρ
ds+ V 0

T

∣∣∣∣ Ft] . (5.9)

Considering solutions of (5.9) it is clear that the aggregator g0 takes only one

sign (except possibly on the boundary where it may not be defined) in the sense that

either g0 : R+ ×R+ ×V 7→ R+ or g0 : R+ ×R+ ×V 7→ R−.

Utility bubbles

As in Section 5.2, we define bubble solutions to be solutions which differ in sign from

the aggregator.

Definition 5.10. V is a bubble solution for a consumption stream C and aggregator

g if V solves

Vt = E
[∫ T

t
g(s, Cs, Vs) ds+ VT

∣∣∣∣ Ft]
for each 0 ≤ t ≤ T <∞ and either V ≥ 0 and g ≤ 0 or V ≤ 0 and g ≥ 0, so that V

and g = (g(s, Cs, Vs))s≥0 are of opposite sign.

Hypothesis 1. There are no bubble solutions under any choice of accounting units.

Theorem 5.11. Under Hypothesis 1 we must have ϑ > 0.

Proof. Consider the constant proportional strategy (π, ξ).

Suppose there exists a utility process V ∆ which solves (5.5). Then, by Lemma

5.9, we can switch accounting units so that V 0 solves (5.9). There g has one sign.

Since there are no bubble solutions under any accounting units, V 0 is not a bubble

and therefore has the same sign as g0. Hence, (1 − S)V 0
t ≥ 0. Further, since the

integral in (5.9) is monotonic in T and E[V 0
T ] always has exponential growth (or

decay) for proportional investment-consumption strategies, we must have E[V 0
T ]→ 0

for V 0 (and V ∆) to take finite values.
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But, E[V 0
T ]→ 0 if and only if e−δϑtE[V ∆

t ]→ 0 which is equivalent toHδϑ(π, ξ) > 0.

Since there exists a solution to (5.7) if and only if ϑHδϑ(π, ξ) > 0 it must be the case

that ϑ > 0.

Now we want to consider which transversality condition we should associate with

(5.5). Suppose the transversality condition is

e−νtE[V ∆
t ]→ 0. (5.10)

It is easy to see that E[e−νtV ∆
t ]→ 0 if and only if e−(ν−δϑ)tE[e−γϑtV γ

t ]→ 0, and the

transversality condition (5.10) becomes e−(ν−δϑ)tE[V 0
t ]→ 0.

Hypothesis 2. (i) The transversality condition associated with the aggregator g

should depend on the aggregator, but not on the financial market.

(ii) Whenever the problem is well-posed, the utility process associated with the can-

didate optimal consumption stream satisfies the transversality condition (5.10).

Proposition 5.12. Under Hypothesis 2 we must have that ν ≥ δϑ.

Proof. Suppose ν < δϑ and define ε = δϑ − ν > 0. Then, the candidate optimal

strategy (π̂, η) satisfies the transversality condition e−νtE[V ∆
t ] → 0 if and only if it

satisfies eεtE[e−δϑtV ∆
t ] → 0, which in turn is equivalent to Hδϑ(π̂, η) > ε. Suppose

the market parameters are such that η ∈ (0, εϑ). Then, Hδϑ(π̂, η) = ϑη < ε and the

candidate optimal utility process fails to satisfy the transversality condition.

In general the larger the value of ν, the weaker the admissibility condition and

the more processes which will satisfy the transversality condition. However, for

the Epstein–Zin aggregator, there is a point where increasing ν further makes no

difference to the set of evaluable consumption streams.

Lemma 5.13. Fix C and suppose that Hypothesis 1 holds. If there exists a solution

V ∆ to (5.5), then V ∆ satisfies (5.10) for ν = δϑ.
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Proof. Let V ∆ be a solution to (5.5). Then, by Lemma 5.9, V 0 solves (5.9). Since

V ∆ ∈ V and there are no bubble solutions, ϑ > 0 and E[V 0
t ] → 0. Hence,

e−δϑtE[V ∆
t ]→ 0.

The final hypothesis says that we choose the smallest possible value for ν which

allows us to evaluate all the strategies that we want.

Hypothesis 3. The transversality parameter should be the smallest parameter ν such

that every solution to (5.5) satisfies (5.10).

Proposition 5.14. Under Hypotheses 1, 2 and 3, the parameter ν in the transver-

sality condition (5.10) must take the value ν = δϑ.

Remark 5.15. By construction there cannot be any bubble solutions in the infinite-

horizon discounted version. If E[|
∫∞
t g(s, Cs, Vs) ds|] < ∞ then E[VT ] → 0. Then,

since g has one sign, V and g must have the same sign.

Remark 5.16. For ϑ > 1, Melnyk et al. [MMKS20] take the transversality condition

to be (5.10) with ν = δ < δϑ. For some parameter values, the candidate optimal

strategy may not be admissible because it fails the transversality condition. How-

ever, these parameter combinations are ruled out by the extra parameter restrictions

imposed in [MMKS20]. In particular, the authors restrict attention to financial mod-

els for which η > δρ. This is precisely enough to ensure that e−δtE[X1−R
t ] → 0 for

the candidate optimal strategy. For 0 < η ≤ δρ, the utility process for the candidate

optimal strategy would fail the transversality condition. Further, both in the case

η > δρ ≥ 0 and in the case 0 < η ≤ δρ, many reasonable strategies are unnecessarily

excluded because they fail the transversality condition, and not because they are

suboptimal.

For ϑ < 0 (and R > 1), Melnyk et al. [MMKS20] define candidate solutions V ∆

as solutions to (5.5). It follows that V = (Vt)t≥0 given by Vt = e−δϑtV ∆
t solves the

family of finite-horizon problems given in (5.9). However, relative to the aggregator

g0, the solution V is a bubble and would be ruled out by Hypothesis 2.
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The same bubble feature can be observed without the switch in accounting units.

For ϑ < 0, Melnyk et al. [MMKS20] define candidate solutions V ∆ of the form

V ∆
t = −B 1

R−1X
1−R
t where B = B(π, ξ) solves (5.6). Since Hδϑ(π̂, ξ̂ = η) = ηϑ,

the condition η > 0 implies that ϑHδϑ(π̂, ξ̂) = ηϑ2 > 0. Furthermore, the condition

η < δρ ensures that Hδ(π̂, ξ̂) = ηϑ+ δ(1− ϑ) = ϑ(η − δρ) > 0. Then, for Cs = ηXs,

the proposed solution does indeed solve

V ∆
t = E

[∫ T

t
g∆
EZ(Cs, V

∆
s ) ds+ V ∆

T

∣∣∣∣Ft] (5.11)

for all 0 ≤ t ≤ T <∞ together with the transversality condition e−δtE[X1−R
t ]→ 0.

However, [MMKS20] impose the additional admissibility condition V ∆
s ≤ −C1−R

s
R−1 ≤ 0

(which for the optimal strategy amounts to the condition η > δ). This is precisely

the condition under which g∆
EZ(Cs, V

∆
s ) = δC1−S

s
1−S ((1 − R)V ∆

s )ρ − δϑV ∆
s ≥ 0 (recall

that [MMKS20] take δ = b). Therefore, if (Cs, Vs) is the candidate optimal strategy,

it follows that g∆
EZ and V ∆ have the opposite sign, and so corresponds to a bubble,

even in the original units.

Due to the results in this section, we make the following standing assumption for

the remainder of the thesis.

Standing Assumption 2. (Positive ϑ Assumption) The parameters R and S are

such that ϑ = 1−R
1−S > 0.

5.4 The dual approach

Dual methods have proved spectacularly successful for the Merton problem with

additive utility. They work for general utility functions, and in principle they make

it possible to move beyond the setting of constant parameter financial markets to

non-Markovian settings and incomplete markets. However, it is not immediately

clear how to extend dual methods to the SDU setting. One promising idea is based

on stochastic variational utility as formulated by Dumas, Uppal and Wang [DUW00].

Building on work of Geoffard [Geo96] for deterministic consumption streams,
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Dumas et al.[DUW00] define the felicity function G to be the Fenchel–Legendre

transform of the aggregator g(c, v) in v, so that for c > 0 and (1− ϑ)ν > 0, G(c, ν) =

inf(1−R)u>0(g(c, u)+νu). ([DUW00] assume that g is convex in its second argument,

but a similar argument works if g is concave.) Then, the stochastic variational utility

(SVU) is given by

UCt := sup
(1−ϑ)ν>0

E
[∫ T

t
e−
∫ s
t νu duG(Cs, νs) ds+ UT (XT )

∣∣∣∣Ft] , (5.12)

where UT (·) is a bequest function. [DUW00] consider consumption streams C that

satisfy E[
∫ T

0 C2
t dt] < ∞ and aggregators g(c, v) that have linear growth in c and

are Lipschitz in v. Then, under these conditions, they show that U is the stochastic

variational utility associated to the pair (g, c), if and only it is the finite-horizon

stochastic differential utility associated to the pair (g, c).

Matoussi and Xing [MX18] take the approach of [DUW00] and extend it to the

case of Epstein–Zin SDU in the finite-horizon case. They show that if ϑ < 1 and the

consumption stream is such that a utility process exists and is uniformly integrable,

then the solution to (5.11) is equal to the solution to (5.12) for G the Fenchel–

Legendre transform of g∆
EZ and VT = UT (XT ).

Exploiting the equivalence of [DUW00] between SDU and SVU, [MX18] show

that if the bequest function is of an appropriate power law form, the maximisation

problem of finding supC∈C (x)∩Eu(g) V
C

0 where V C solves (5.11) becomes that of finding

supC∈C (x)∩Eu(g) U
C
0 , where UC solves (5.12). Exchanging the order of suprema, the

problem becomes to find

sup
(1−ϑ)ν>0

sup
C∈C (x)∩Eu(g)

E
[∫ T

t
e−
∫ s
t νu duG(Cs, νs) ds+ UT (XT )

∣∣∣∣Ft] . (5.13)

For EZ-SDU both G(·, ν) and UT are power law functions, and hence standard

duality techniques can be applied to the inner problem in (5.13) with fixed ν. Finally,

by taking the dual with respect to the second argument again, the dual stochastic

variational problem can be transformed back into what Matoussi and Xing call the
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stochastic differential dual. They then prove that

sup
C∈C (x)∩Eu(g)

V C
0 ≤ inf

k>0

(
inf
D∈Da

Y kD
0 + xk

)
. (5.14)

where Da is the class of state-price densities and Y kD is the stochastic differential

dual associated to a state-price density D and a positive real number k. Matoussi

and Xing show that under certain restrictions on the financial market (for example,

bounded market price of risk) there is no duality gap and that (5.14) is satisfied with

equality. Finally, they show that the optimal strategy is defined in terms of a BSDE

and in particular it exists.

The papers of Dumas et al. [DUW00] and especially Matoussi and Xing [MX18]

provide great insights and a potential route-map describing how dual methods might

be extended to the investment-consumption problem for SDU. However, there are

several obstacles which make it difficult to apply these ideas to the infinite-horizon

problem. First, at present, the dual method has little to say about existence of

solutions, and typically for existence it relies on results from the primal approach—

in turn these have traditionally involved imposing restrictive assumptions on the

consumption stream which are not satisfied in the infinite-horizon problem. Second,

the equivalence between the SDU and SVU formulations may be challenging to prove

in the infinite-horizon setting, without imposing substantive technical assumptions.

Third, we shall see that there are major issues of non-uniqueness when ϑ > 1; these

issues do not disappear simply by a change of viewpoint.

5.5 Summary

The conclusions from Chapter III are twofold.

First, for Epstein–Zin stochastic differential utility over the infinite horizon, com-

bined with a constant parameter Black–Scholes–Merton frictionless financial model,

certain restrictions on the parameters are necessary to have a well-founded prob-

lem. In particular, in addition to b > 0, for the problem to make sense it must the
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case that the coefficient of relative risk aversion and the coefficient of elasticity of

intertemporal complimentarity both lie on the same side of unity, i.e. ϑ > 0. (How-

ever, the condition that the discount parameter δ must be positive can sometimes

be weakened. Indeed, since this parameter depends on the accounting units it is

sometimes natural to consider a case where it takes a negative value.)

Second, for the infinite-horizon problem, it is preferable to consider a discounted

aggregator rather than a difference aggregator. The one-sign property of the dis-

counted form of the EZ-SDU aggregator means that the integral
∫∞

0 g(s, Cs, Vs) ds

and its expectation are always well defined in [−∞,∞] whereas this is not always

the case for the difference aggregator. Then, in addition to the fact that the dis-

counted aggregator is the natural generalisation of the standard form of the Merton

problem for additive utility, for the discounted aggregator there are no issues over

bubble solutions. In Chapter IV we shall strengthen this result further by showing

that, at least when ϑ ∈ (0, 1), for the aggregator of discounted form it is possible to

define a (generalised) utility process for every consumption stream. This means that

we can prove the optimality of the candidate optimal strategy within the class of

all admissible investment-consumption strategies, and not just a subclass satisfying

certain integrability properties.
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III.A Proof of Proposition 5.5

Proof of Proposition 5.5. Let V ∆ be a (δϑ,JMMS)-utility process associated to

consumption stream C and aggregator g∆
EZ . Then, V

∆ ∈ S1
T∩IT (g∆

EZ , C), limt→∞ e
−δϑtE[V ∆

t ] =

0, and V ∆ solves (5.1) with aggregator g∆
EZ for all 0 ≤ t ≤ T <∞.

Define the process V = (Vt)t≥0 by Vt := e−δϑtV ∆
t . Then, V ∈ S1

T and Vt
L1

−→ 0 by

the transversality condition of V ∆. We proceed to show that V ∈ IT (gEZ , C) and V

satisfies

Vt = E
[∫ T

t
be−δu

C1−S
u

1− S
((1−R)Vu)ρ du+ VT

∣∣∣∣Ft] (1.1)

for all T > 0. So, fix T > 0. Using that V ∆ ∈ S1
T ∩ IT (g∆

EZ , C) and e−δt|Vt|ρ ≤

eδϑT |V ∆
t |ρ for t ∈ [0, T ], we obtain

E
∫ T

0

∣∣∣∣be−δsC1−S
s

1− S
((1−R)Vs)

ρ

∣∣∣∣ ds

≤ eδϑTE
[∫ T

0

∣∣∣∣bC1−S
s

1− S
((1−R)V ∆

s )ρ − δϑV ∆
s

∣∣∣∣ ds

]
+ eδϑTT |δϑ|E

[
sup
s∈[0,T ]

|V ∆
s |

]
,
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where the right hand side is finite. Thus, V ∈ IT (gEZ , C). Next, define the martin-

gale M = (Mt)t∈[0,T ] by

Mt = E
[∫ T

0

[
b
C1−S
s

1− S
((1−R)Vs)

ρ − δϑVs
]

ds+ VT

∣∣∣∣Ft]

As V ∆ satisfies (5.1), it satisfies the BSDE

V ∆
t = V ∆

T +

∫ T

t

(
b
C1−S
u

1− S
((1−R)V ∆

u )ρ − δϑV ∆
u

)
du−

∫ T

t
dMu.

Applying the product rule to Vt = e−δϑtV ∆
t we find that

Vt = VT +

∫ T

t
be−δu

C1−S
u

1− S
((1−R)Vu)ρ du−

∫ T

t
e−δϑu dMu.

Since E[(1 − e−δϑT )|MT |] < ∞, Nt =
∫ t

0 e
−δϑs dMs is a martingale by [HMK19,

Lemma A.1.]. Now taking expectations gives (1.1).

Next, using that V and the integrand in (1.1) have the same sign, it follows from

the monotone convergence theorem and limT→∞ E [VT ] = 0 that V satisfies (3.2).

Since V0 is finite, this also gives V ∈ I(gEZ , C).

Finally, if ϑ > 1 then δϑ > δ and any (δ,JMMS)-utility process is automatically

a (δϑ,JMMS)- utility process. Hence EMMS(g∆
EZ) ⊆ E (gEZ).
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CHAPTER

IV

STOCHASTIC DIFFERENTIAL

UTILITY: EXISTENCE AND

UNIQUENESS RESULTS

This chapter is concerned with rigorously proving well-posedness of the investment-

consumption problem under Epstein–Zin stochastic differential utility and verifying

that the candidate optimal investment-consumption strategy which we derived in

Section III.3.3 is optimal. To do this, there are three main issues which we must

address: first, the existence of a utility process associated to a general consumption

stream; second, the uniqueness of such a utility process; and third, optimality of the

candidate optimal investment-consumption strategy over all attainable consumption

streams.
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Stochastic Differential Utility: Existence and Uniqueness Results

We mainly consider parameter combinations leading to ϑ := 1−R
1−S ∈ (0, 1). (The

combinations of R and S satisfying this condition are illustrated in Figure I.1.2 on

page 8.) Importantly, we will show in this chapter that when ϑ ∈ (0, 1), if the utility

process exists then it is unique.

Our results and approach are as follows. From the arguments in Section III.3

(page 58), we have existence of a utility process for proportional investment and

consumption strategies Π = π ∈ R and C = ξX for ξ ∈ R++ (provided that

Hδϑ(π, ξ) > 0) in a Black–Scholes–Merton financial market. The first major con-

tribution is an extension of this existence result to all strictly positive consumption

streams C = (Ct)t≥0 which satisfy kC1−R
t ≤ E

[∫∞
t e−δϑ(s−t)C1−R

s ds
∣∣Ft] ≤ KC1−R

t ,

for some constants 0 < k ≤ K < ∞. In particular, we may evaluate strategies that

are, in a very precise sense, within a multiplicative constant of a constant propor-

tional investment-consumption strategy. Moreover, for each such C there is a unique

utility process V = (V C
t )t≥0 such that kV e−δϑtC1−R

t ≤ (1 − R)Vt ≤ KV e
−δϑtC1−R

t

for a different pair of constants (kV ,KV ). (Note that this does not preclude the ex-

istence of other utility processes which do not satisfy such bounds.) The proof relies

on the construction of a contraction mapping and a fixed point argument.

To make further progress, we assume that ϑ ∈ (0, 1). In this case, we can show

that any utility process is unique (in fact we show uniqueness for a wide class of

aggregators, the main restriction being that they are decreasing in v). The key idea

is to use concepts from the theory of BSDEs to extend the concept of a solution to

(III.2.4) to include subsolutions and supersolutions, depending (roughly speaking)

on whether the equality in (III.2.4) is replaced by ≤ or ≥. Then, again under the

assumption that the aggregator is decreasing in v, we prove a comparison theorem

which tells us that any subsolution always lies below any supersolution. Uniqueness

of solutions follows—any solution is simultaneously both a sub-solution and a super-

solution so if V 1 and V 2 are solutions then V 1 ≤ V 2 and V 2 ≤ V 1 and hence

V 1 = V 2.

For EZ-SDU, when ϑ > 1 the comparison argument fails and the uniqueness
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argument does not hold. Note that it is not merely that we need to look for a

different strategy of proof—instead, it is simple to give examples for which there are

multiple solutions to (III.2.4). In this case, a different comparison theorem and a

modification of the definition of the utility process is required. For these reasons, we

defer discussion of this case to Chapter V.

Returning to the case of ϑ ∈ (0, 1), in order to remove the constraints k > 0 and

K <∞ we again exploit the comparison theorem to obtain a monotonicity property

for solutions. Provided we allow utility processes to take values in the extended

real line, we can exploit the fact that the aggregator takes one sign to show that

it is possible to define a unique, possibly infinite, utility process for any admissible

consumption stream. Here we make use of the notion of generalised supermartingales.

Finally, still under the assumption that ϑ ∈ (0, 1), we turn to the verification

argument. By the arguments of the previous paragraphs, for any attainable con-

sumption stream C = (Ct)t≥0, we can define a utility process V C = (V C
t )t≥0 and

time-zero value J(C) = V C
0 . Our goal is to find supC∈C (x) J(C). Note that here the

supremum is taken over all admissible consumption streams; not just over consump-

tion streams for which there exists a finite value function, or consumption/utility

process pairs lying in some special set as is common in much of the literature. (In

many cases, the only strategy known to lie in this special set is the candidate optimal

strategy.)

From the results of Section III.3.3, we have candidates for the optimal strategy

and value function, but several issues remain. The key is proving that V̂ (XΠ,C) =

(V̂ (XΠ,C
t ))t≥0 is a supersolution for any admissible C, where XΠ,C is the wealth

process arising from the investment-consumption strategy (Π, C). Then, by the

comparison theorem, V C
t ≤ V̂ (XΠ,C

t ) and J(C) = V C
0 ≤ V̂ (x). (Further, for

(Π̂, Ĉ) the candidate optimal investment-consumption strategy, V Ĉ
0 = V̂ (x) and

so supC∈C (x) J(C) = V̂ (x).) However, as in the case of rigorous primal verification

arguments for the Merton problem, there are several challenges to overcome. First

XΠ,C ∈ P+ but is not necessarily a member of P++ and so we cannot naively
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Stochastic Differential Utility: Existence and Uniqueness Results

apply Itô’s formula to V̂ (XΠ,C). Second, for general (Π, C), V̂ (XΠ,C) does not (al-

ways) satisfy a transversality condition (and we do not want to artificially restrict

the class of admissible C by requiring that it does). Third, the local martingale term

arising from applying Itô’s formula to V̂ (XΠ,C
t ) is in general not a true martingale

and cannot be assumed to have constant expectation. Nonetheless, as we show, these

challenges can all be overcome by using a similar perturbation to that used in Section

II.5. Where proofs are not given in the main text, they are given in the appendix.

The structure of this chapter is as follows. In Section 1, we prove existence of

EZ-SDU for a wide class of consumption streams, including all constant proportional

consumption streams for which the problem is well-posed, and any strategies which

are ‘close’ to constant proportional streams, in a sense to be made precise. Still,

this is not all consumption streams, so in Sections 2 and 3, we show how the utility

process for an arbitrary consumption stream can be obtained by approximation and

taking limits. Finally, in Section 4, we prove optimality of the candidate optimal

strategy (Theorem 4.1) first derived in Section III.3.3, where the optimisation is

taken over all attainable consumption streams and not just those satisfying regularity

and integrability conditions. Key results along the way include a comparison result

(Theorem 2.8), existence and uniqueness results (Theorem 1.6, Theorem B.2) and a

result that generalises the utility process by approximation (Theorem 3.4).

1 Existence of Epstein–Zin SDU

For the Epstein–Zin aggregator gEZ , we showed in Section III.3.3 that the candi-

date optimal strategy—along with many other proportional consumption streams—

is evaluable. The goal of this section is to prove existence for a much larger class

of consumption streams. The author is not aware of any results on the existence

of infinite-horizon Epstein–Zin stochastic differential utility, so this is an essential

result that is currently missing from the literature.

A transformation of the coordinate system leads to a simplified problem. Define
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1 Existence of Epstein–Zin SDU

the [0,∞]-valued processes W = (Wt)t≥0 and U = (Ut)t≥0 by1

Wt = (1−R)Vt and Ut = u(t, C) = bϑe−δtC1−S
t . (1.1)

Let hEZ(u,w) : [0,∞)× (0,∞)→ [0,∞) be defined by hEZ(u,w) = uwρ and extend

the definition of hEZ to the domain [0,∞]2 and co-domain [0,∞] as follows:

hEZ(u,w) :=


uwρ, (u,w) ∈ (0,∞)× (0,∞),

wρ, (u,w) ∈ (0,∞)× {0,∞},

u, (u,w) ∈ {0,∞}× [0,∞],

with the standard convention 0ρ :=∞ and∞ρ = 0 for ρ < 0. The motivation behind

the definition on the boundary is to ensure continuity in w for fixed u.

Note that V ∈ I(gEZ , C) if and only if W ∈ I(hEZ , U). Consequently, V C is a

utility process associated to consumption stream C with aggregator gEZ if and only

if WU is a utility process associated to consumption stream U with aggregator hEZ .

We next define an operator FU from an appropriate subset of P++ to itself

satisfying2

FU (W )t := E
[∫ ∞

t
hEZ(Us,Ws) ds

∣∣∣∣Ft] . (1.2)

Note that V is a solution to (III.1.1) with aggregator gEZ and consumption C if and

only W is a fixed point of the operator FU for the transformed consumption U . In

particular, every fixed point of the operator FU has càdlàg paths.

Definition 1.1. Suppose that X = (Xt)t≥0 and Y = (Yt)t≥0 are nonnegative pro-

gressive processes. We say that X has the same order as Y (and write X O
= Y , noting

that O= is an equivalence relation) if there exist constants k,K ∈ (0,∞) such that

0 ≤ kY ≤ X ≤ KY. (1.3)

1Here, we agree that Ut :=∞ if Ct = 0 and S > 1.
2Here, we always choose a càdlàg version for the right-hand side of (1.2).
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Stochastic Differential Utility: Existence and Uniqueness Results

Denote the set of progressive processes with the same order as Y by O(Y ) ⊆ P+.

Further, denote by O(Y ; k,K) the set of processes such that (1.3) holds for a pre-

specified k and K.

Definition 1.2. Let SO be the class of positive progressively measurable processes

of self-order, i.e. such that X is of the same order as JX = (JXt )t≥0, where JXt =

E
[∫∞
t Xsds

∣∣Ft]. More precisely, define

SO :=

{
X ∈P++ : E

[∫ ∞
0

Xt dt

]
<∞ and X O

= JX
}
.

For arbitrary α ∈ R, let SOα = {X ∈P++ : Xα ∈ SO}.

Remark 1.3. If Y ∈ SOα then KY ∈ SOα for all K > 0.

Example 1.4. Geometric Brownian motion raised to a power remains a geometric

Brownian motion. Let Z = (Zt)t≥0 be a geometric Brownian motion such that

E[Zϑt ] = Z0e
−γt, where γ > 0. Then, Zϑ = 1

γJ
Zϑ . Hence, Z ∈ SOϑ.

If η > 0 and if Ĉ is the candidate optimal strategy, then Û = u(t, Ĉ) is a geometric

Brownian motion, and Ûϑ has drift −ηϑ < 0. Hence, Û ∈ SOϑ. Similarly, all the

constant proportional investment-consumption strategies (π, ξ) with Hδϑ(π, ξ) > 0

lie in SOϑ (after a suitable transformation). Roughly speaking, the same holds

true for any strategy which is close to a constant proportional strategy (for which

Hδϑ(π, ξ) > 0).

Lemma 1.5. Let U ∈ SOϑ. Then, FU (·) maps from O(Uϑ) to itself.

Proof. This follows from the more general Lemma B.1 in Appendix IV.B.

We may now state a first existence result. Whilst it is not the strongest existence

result we prove in this chapter (Theorem 1.6 is a special case of Theorem B.2),

it forms the backbone of further existence arguments. The idea of the proof is to

transform the problem to an alternative space where the transformed form of FU is

a contraction mapping. The existence of a fixed point then follows from the Banach

Fixed Point Theorem.

94



1 Existence of Epstein–Zin SDU

Theorem 1.6. Let U ∈ SOϑ. Then, FU defined by (1.2) has a unique fixed point

W
O
= Uϑ, which has càdlàg paths.

Proof. This is a specific version of the more general Theorem B.2. For a stand-alone

proof, one just needs to set ε = 0 and Λ = U in the proof of Theorem B.2.

The following theorem is a direct corollary to Theorem 1.6 and the definitions of

W and U in terms of V and C given in (1.1).

Theorem 1.7. Suppose C ∈P++ satisfies E[
∫∞

0 e−δϑsC1−R
s ds] <∞, and for some

0 < k < K <∞,

kE
[∫ ∞

t
e−δϑsC1−R

s ds

∣∣∣∣Ft] ≤ e−δϑtC1−R
t ≤ KE

[∫ ∞
t

e−δϑsC1−R
s ds

∣∣∣∣Ft]

for all t ≥ 0. Then, there exists a utility process V = (V C
t )t≥0 associated with

gEZ and C. Moreover this utility process is unique in the class of processes with

the property that Vt/E
[∫∞
t e−δϑs C

1−R
s

1−R ds
∣∣∣Ft] is bounded above and below by strictly

positive constants.

Proof. Take Ut = Λt = e−δtC1−S
t . Then, U satisfies the conditions of Theorem 1.6

and so there exists a utility process W associated to (hEZ , U) which is unique in

O(Λϑ). Therefore, V = W
1−R is a utility process associated to (gEZ , C); uniqueness

in the appropriate class is also inherited.

Relative to the extant literature, Theorem 1.7 massively expands the set of con-

sumption streams which are known to be evaluable (the only consumption stream

known in the literature to have a utility process associated to it is the candidate opti-

mal consumption stream Ĉ). However, it still does not allow us to assign a utility to

every consumption stream. For example, the zero consumption stream is excluded.

Note also that Theorem 1.7 does not exclude the possibility of other utility processes

which do not satisfy the condition that Vt/E
[∫∞
t e−δϑs C

1−R
s

1−R ds
∣∣∣Ft] is bounded.

Finally, note that no restriction on ϑ has been imposed apart from ϑ > 0 due to

Standing Assumption 2 on page 83.
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2 Subsolutions and supersolutions

The aim of this section is to introduce the notions of subsolutions and supersolutions

and then to prove a comparison theorem for aggregators that take only one sign and

are nonincreasing in v. As a consequence, all evaluable consumption streams for such

aggregators are uniquely evaluable.

Let V ⊆ [−∞,∞] denote the set in which V may take values. For EZ-SDU

we have that either V ⊆ R+ or V ⊆ R−. This one-sign property ensures that

integrals are always well defined. For the rest of this thesis, we make this a standing

assumption.

Standing Assumption 3 (One-sign property of the aggregator). Either V ⊆ R+

or V ⊆ R−.

The following definition extends the notion of an aggregator, allowing it also to

depend on the state of the world ω ∈ Ω.

Definition 2.1. An aggregator random-field g : [0,∞) × Ω × R+ × V → V is a

product measurable mapping such that g(·, ω, ·, ·) is an aggregator for fixed ω ∈ Ω,

and for progressively-measurable processes C = (Ct)t≥0 and V = (Vt)t≥0, the process

(g(t, ω, Ct(ω), Vt(ω)))t≥0 is progressively-measurable.

Example 2.2. Let G : R+ × V × R → V be continuous and Y : [0,∞) × Ω → R a

progressively measurable process. Then, g(t, ω, c, v) := G(c, v, Yt(ω)) is an aggregator

random field.

Let g be an aggregator random field. The definitions of I(g, C), UI(g, C), the

utility process associated to the pair (g, C), and the sets of evaluable and uniquely

evaluable consumption streams E (g) and Eu(g) follow verbatim from Definitions

III.1.1 and III.1.3 on page 51.

We now introduce the notion of subsolutions and supersolutions.

Definition 2.3. Let C ∈ P+ and g be an aggregator random field. A V-valued,

làd, optional process V is called
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2 Subsolutions and supersolutions

• a subsolution for the pair (g, C) if lim supt→∞ E [Vt+] ≤ 0, and for all bounded

stopping times τ ≤ σ,

Vτ ≤ E
[
Vσ+ +

∫ σ

τ
g(s, ω, Cs, Vs) ds

∣∣∣∣Fτ] . (2.1)

• a supersolution for the pair (g, C) if lim inft→∞ E [Vt+] ≥ 0, and for all bounded

stopping times τ ≤ σ,

Vτ ≥ E
[
Vσ+ +

∫ σ

τ
g(s, ω, Cs, Vs) ds

∣∣∣∣Fτ] . (2.2)

• a solution for the pair (g, C) if it is both a subsolution and a supersolution and

V ∈ I(g, C).

Remark 2.4. (a) V is a supersolution associated to the pair (g, C) if and only if

Ṽ := −V (which is valued in Ṽ := −V) is a subsolution for the pair (g̃, C), where

g̃(t, ω, c, ṽ) = −g(t, ω, c,−ṽ).

(b) While we do not to require sub- or supersolutions to be in I(g, C), we require

this integrability for solutions.

(c) It might be expected that the definition would require subsolutions and super-

solutions to be càdlàg. However, we will construct the utility process for a general

consumption stream by taking limits and the monotone limit of càdlàg processes is

not necessarily càdlàg. In contrast, optionality is preserved in the limit.

If V is a solution for the pair (g, C), then V ∈ I(g, C) by definition. By Remark

III.1.2 it then follows that V is uniformly integrable. Similar results hold for sub-

and supersolutions by the following lemma.

Lemma 2.5. Suppose that V ⊆ R+ and V is a subsolution or V ⊆ R− and V is a

supersolution for the pair (g, C). If V ∈ I(g, C) then V ∈ UI(g, C).

Proof. We only consider the case that V ⊆ R+ and V ∈ I(g, C) is a subsolution.

The other case is symmetric. Define the UI martingale M = (Mt)t≥0 by Mt :=

97



Stochastic Differential Utility: Existence and Uniqueness Results

E
[∫∞

0 g(s, ω, Cs, Vs) ds
∣∣Ft]. Since V ⊆ R+, setting τ := t and σ := u in (2.1) and

taking the limsup as u → ∞ gives 0 ≤ Vt ≤ E
[∫∞
t g(s, ω, Cs, Vs) ds

∣∣Ft] ≤ Mt.

Hence, V is uniformly integrable.

It is useful to introduce two monotonicity conditions on an aggregator random

field.

Definition 2.6. Let g : [0,∞) × Ω ×R+ ×V → V be an aggregator random field.

Then, g is said to satisfy

• (c↑) if it is nondecreasing in c, its third argument, P⊗ dt-a.e.

• (v↓) if it is nonincreasing in v, its fourth argument, P⊗ dt-a.e.

Remark 2.7. For EZ-SDU, (v↓) is satisfied if and only if ϑ ∈ (0, 1]; if ϑ > 1 then the

aggregator is increasing in its fourth argument.

The following result shows that under condition (v↓), a comparison result holds

for sub- and supersolutions.

Theorem 2.8 (Comparison Theorem for Subsolutions and Supersolutions). Let

C ∈P+ and let g be an aggregator random field satisfying (v↓). If V 1 is a sub-

solution and V 2 is a supersolution to the pair (g, C), and V 1 or V 2 is in UI(g, C),

then V 1
τ ≤ V 2

τ P-a.s. for all finite stopping times τ .

We deduce two simple but important corollaries. The first one shows that under

condition (v↓), all g-evaluable strategies are g-uniquely evaluable. The second one

shows that for aggregators g satisfying (c↑) and (v↓), the utility associated to (g, C)

is increasing in g and C.

Corollary 2.9. Let g be an aggregator random field satisfying (v↓). Then, E (g)=Eu(g).

Proof. Clearly, E (g) ⊇ Eu(g). For the converse inclusion, fix C ∈ E (g). Suppose

there are two utility processes V 1 and V 2 for the pair (g, C). Since V 1 and V 2

are both solutions, they are in UI(g, C) by Lemma 2.5. Since they are both sub-

and supersolutions, we may apply Theorem 2.8 twice to show V 1
τ ≥ V 2

τ P-a.s. and
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3 Removing the bounds on evaluable strategies when ϑ ∈ (0, 1)

V 2
τ ≥ V 1

τ P-a.s. for all finite stopping times τ ≥ 0. Thus, V 1
τ = V 2

τ P-a.s. for all

finite stopping times τ . Since V 1 and V 2 are both optional, this implies that they

are indistinguishable (see e.g. [Nik06, Theorem 3.2]).

Corollary 2.10. Let C1, C2 ∈ P+ and g1, g2 : [0,∞) × Ω × R+ × V → V be

aggregator random fields satisfying (c↑) and (v↓). Suppose that C2 ≥ C1 P ⊗ dt-

a.e. and g2(·, ·, c, v) ≥ g1(·, ·, c, v) P⊗ dt-a.e. for (c, v) ∈ R+ ×V. Moreover suppose

there exists a utility process V i ∈ I(gi, Ci) for the pair (gi, Ci), i ∈ {1, 2}. Then,

V 1
τ ≤ V 2

τ for all finite stopping times τ .

Remark 2.11. If g1, g2 are both nonincreasing rather than nondecreasing in c but

otherwise the hypotheses of the corollary are unchanged, then V 1
τ ≥ V 2

τ .

3 Removing the bounds on evaluable strategies when

ϑ ∈ (0, 1)

The goal of this section will be to show that if ϑ ∈ (0, 1) we may: first, remove the

lower bound restriction from Theorem 1.6; and second, generalise the notion of a

utility process, allowing us to evaluate the Epstein–Zin stochastic differential utility

of any consumption stream. The following assumption holds for the remainder of

this chapter.

Standing Assumption 4. Henceforth we assume that ρ < 0, or equivalently ϑ ∈ (0,1).

Theorem 3.1. Suppose that U ∈P+ is such that U ≤ Λ ∈ SOϑ. Then, FU defined

by (1.2) has a unique fixed point W ∈ I(hEZ , U).

Recall that X̂ = XĈ,Π̂ is the candidate optimal wealth process—the solution

to (I.4.2) under the candidate optimal strategy Π̂ ≡ µ−r
σR and Ĉ = ηX̂—and that

Ĉ = ηX̂ is the associated candidate optimal consumption.

Corollary 3.2. Suppose that C ∈P+ is such that there exists K ∈ R+ with C1−S ≤

K(Ĉ)1−S. Then, C ∈ Eu(gEZ).
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Proof. Since, C1−S ≤ K(Ĉ)1−S , it follows that U = u(t, Ct) ≤ Ku(t, Ĉt) = KÛt

where Ût := u(t, Ĉt). Furthermore, KÛ ∈ SOϑ by Example 1.4 and Remark 1.3.

Finally, using Theorem 3.1 we may deduce that U ∈ Eu(hEZ) and consequently that

C ∈ Eu(gEZ).

Corollary 3.2 gives us a large class of evaluable consumption streams. The rest of

this section is dedicated to generalising the notion of a utility process. In particular,

for any aggregator g satisfying (c↑) and (v↓), the results of this section make it

possible to assign a utility to any process C ∈ P+ that we can express as the

monotone limit of processes Cn ∈ Eu(g). For the Epstein–Zin aggregator this includes

all consumption streams.

Definition 3.3. For a general aggregator g : [0,∞) × Ω × R+ × V → V, let E (g)

denote the set of consumption streams C ∈ P+ that are monotone limits of a

sequence (Cn)n∈N of processes in E (g) and either

1) V ⊆ R+ and (Cn)n∈N is nondecreasing, or

2) V ⊆ R− and (Cn)n∈N is nonincreasing.

We now state the central result of this section—that we may extend the notion

of a utility process and evaluate processes in E (g).

Theorem 3.4. Let g be an aggregator random field satisfying (c↑) and (v↓), and let

C ∈ E (g). Let (Cn)n∈N be a monotone approximating sequence. Let V n be the utility

process associated to Cn for each n ∈ N. Then, there exists a càdlàg adapted process

V † = limn→∞ V
n that is independent of the approximating sequence. Moreover, if

V ⊆ R+, then V † is the minimal supersolution and if V ⊆ R−, then V † is the

maximal subsolution.

Definition 3.5. We call the unique process V † = (V †t )t≥0 constructed in Theorem

3.4 the generalised solution or the generalised utility process associated to (g, C).

The following theorem tells us that the notion of a generalised solution extends

the notion of a solution, in the sense that if a solution exists, then it is equal to the

generalised solution.
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Theorem 3.6. Let g satisfy (c↑) and (v↓). If there exists a solution V associated

to the pair (g, C) then it agrees with the generalised solution V †.

Proof. We only prove the result in the case V ⊆ R+. The case V ⊆ R− follows by

a symmetric argument. By Theorem 3.4, V † is the minimal supersolution. Let τ

be an arbitrary finite stopping time. Since V ∈ UI(g, C) is a subsolution and V †

is a supersolution, Vτ ≤ V †τ by Theorem 2.8. Since V is a supersolution and V † is

minimal in the class of supersolutions, V †τ ≤ Vτ . Hence, V †τ = Vτ . Since V † and V

are both optional (V † by Theorem 3.4, and V by definition) and they agree for all

bounded stopping times, V † is equivalent to V up to indistinguishability (see, for

example, [Nik06, Theorem 3.2]).

We therefore drop the superscript † and denote the generalised utility process by

V . The next proposition shows that the generalised solution is increasing in C.

Proposition 3.7. Let g be an aggregator random field satisfying (c↑) and (v↓) and

let C1, C2 ∈ E (g). Suppose further that C2 dominates C1 P ⊗ dt-a.e. For i = 1, 2,

let V i be the generalised solution associated to the pair (g, Ci). Then, V 2
τ ≥ V 1

τ for

all bounded stopping times τ .

If we consider Epstein–Zin aggregator gEZ , we may assign a generalised utility

process to any consumption stream.

Theorem 3.8. Let C ∈P+. There exists a unique generalised utility process asso-

ciated to the pair (gEZ , C).

Proof. Suppose that V ⊆ R+. We therefore want to find a nondecreasing sequence of

consumption streams (Cn)n∈N such that Cn ∈ Eu(gEZ) for all n ∈ N and Cn ↗ C.

Let Ĉ = ηX̂ be the candidate optimal strategy. Let Cn = C∧nĈ. Then, (Cn)n∈N ∈

Eu(gEZ) by Corollary 3.2 and Cn ↗ C. Therefore, by Theorem 3.4, there exists a

unique generalised utility process associated to C.

The proof in the case V ⊆ R− goes through in exactly the same manner if we

consider the sequence of processes Cn = C ∨ 1
n Ĉ.
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We can now extend the definition of Epstein–Zin utility to any consumption stream.

Definition 3.9. Let C ∈ P+. Define the Epstein–Zin utility process associated to

C to be the generalised utility process V C,gEZ associated to the pair (gEZ , C). Define

the Epstein–Zin utility of the consumption stream to be JgEZ (C) := V C,gEZ
0 .

This allows us to consider the infinite-horizon investment-consumption problem

for EZ-SDU over all admissible strategies:

sup
C∈C (x)

JgEZ (C) = sup
C∈C (x)

V C,gEZ
0 .

This definition of the stochastic control problem is different to that considered by

Schroder and Skiadas [SS99], Xing [Xin17], Matoussi and Xing [MX18], Melnyk et

al. [MMKS20] and the rest of the literature on the Merton problem for Epstein–Zin

SDU in the fact that it optimises over all consumption streams and does not impose

any regularity or integrability conditions beyond attainability.

4 The verification argument for the candidate optimal

strategy

The goal of this final section is to verify that the candidate optimal strategy is indeed

optimal. The general structure of a primal verification argument for recursive optimal

investment problems is as follows: first, apply Itô’s lemma to V̂ (XΠ,C) for a general

strategy (Π, C); next, use the HJB equation to show that V̂ (XΠ,C) is a supersolution

associated to the pair (gEZ , C); finally, the Comparison Theorem (Theorem 2.8) for

sub- and supersolutions implies V̂ (x) ≥ V C
0 for any admissible strategy C ∈ C (x).

Optimality follows since we showed in Section III.3.3 that V Ĉ
0 = V̂ (x).

Unfortunately, there are at least three difficulties with this approach. The first

difficulty is that the candidate value function V̂ (x) defined in (III.3.7) does not

have a well-defined derivative at zero, meaning that we cannot apply Itô’s lemma

to V̂ (XΠ,C
t ) for a general admissible wealth process XΠ,C

t . The second difficulty is
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that for a general strategy (Π, C), the standard proof that V̂ (XΠ,C
t ) corresponds

to a supersolution involves showing that the local martingale part of V̂ (XΠ,C) is

a supermartingale, and in the case R > 1 this is not true in general. The third

difficulty is that a utility process V C might fail to exist.

The first two issues arise also in the case of CRRA utility and we showed in

Chapter II that they may be overcome using a stochastic perturbation of the value

function. We now extend the ideas in Chapter II to the setting of EZ-SDU. The

third issue has been dealt with in Section 3.

Theorem 4.1 (Verification Theorem). Suppose that η > 0 and ϑ ∈ (0, 1). If V C

is the (generalised ) utility process associated to the pair (gEZ , C) and V̂ (x) is the

candidate optimal utility given in (III.3.7) then supC∈C (x) V
C

0 = V Ĉ
0 = V̂ (x), and the

optimal investment-consumption strategy is given by (Π̂, Ĉ).

To prove this theorem, we will use the following lemma. In its assumptions, we

assume without loss of generality that δ = 0.

Lemma 4.2. Let ε > 0 and let X̂ = XΠ̂,Ĉ be the wealth process under our candidate

optimal strategy. If X = XΠ,C is the wealth process associated to an admissible

strategy (Π, C), then V̂ (X + εX̂) is a supersolution for the pair (fEZ , C + ηεX̂).

We may now prove Theorem 4.1

Proof of Theorem 4.1. We showed in Section III.3.2 that supC∈C (x;r,µ,σ) V
gEZ ,C

0 =

supC∈C (x;r̃,µ̃,σ) V
fEZ ,C

0 for r̃ = r− δ
1−S and µ̃ = µ− δ

1−S . Hence, without loss of gen-

erality we may assume δ = 0. It follows from Section III.3.3 that V fEZ ,Ĉ
0 = V̂ (x), so

it only remains to prove that V̂ (x) ≥ supc∈C (x) V
fEZ ,C

0 .

Suppose R < 1. Then, by Lemma 4.2 and since C + ηεX̂ > C and fEZ is

increasing in its first argument, V̂ (X + εX̂) is a supersolution for the pair (fEZ , C).

Furthermore, the (generalised) utility process V fEZ ,C associated to (fEZ , C) is the

minimal supersolution by Theorem 3.4. Consequently, V̂ (X + εX̂) ≥ V fEZ ,C .

Suppose R > 1, and hence also S > 1 by Standing Assumption 2. Then, since

(C + ηεX̂)1−S ≤ (ηε)1−SX̂1−S , C + ηεX̂ ∈ Eu(fEZ) by Corollary 3.2. Hence, there
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exists a utility process V fEZ ,C+ηεX̂ ∈ UI(fEZ , C + ηεX̂) associated to C + ηεX̂.

Since also V̂ (X + εX̂) is a supersolution associated to (fEZ , C + ηεY ), applying

Theorem 2.8 and then Proposition 3.7 gives V̂ (X + εX̂) ≥ V fEZ ,C+ηεX̂ ≥ V fEZ ,C .

In both cases, taking the supremum over attainable consumption streams at time

zero gives V̂ (x(1 + ε)) ≥ supc∈C (x) V
fEZ ,C

0 . Letting ε↘ 0 gives the result.

We conclude this section by showing that the correct well-posedness condition of

the investment-consumption problem is η > 0.

Corollary 4.3. Suppose that ϑ ∈ (0, 1). Then, the infinite-horizon investment con-

sumption problem for EZ-SDU is well-posed if and only if η > 0.

In particular, suppose that η ≤ 0 and let V C be the (generalised) utility process

associated to the pair (gEZ , C). If R < 1, then supC∈C (x) V
C

0 = ∞. If R > 1, then,

supC∈C (x) V
C

0 = −∞.

Proof. When η > 0 the problem is well-posed by Theorem 4.1.

Now suppose η ≤ 0. Since ϑ ∈ (0, 1), the utility process is unique, and if

H(π, ξ) > 0 then V given by (III.3.8) is the utility process for a constant proportional

strategy.

Suppose R < 1 and then also S < 1. Let h(π, ξ) = ξ1−R

1−R

(
bϑ

Hδϑ(π,ξ)

)ϑ
and D =

{(π, ξ) ∈ R × (0,∞) : Hδϑ(π, ξ) > 0}. Note that ϑ(Hδϑ(π̂, ξ))−1 = (ηS + (1 −

S)ξ)−1. Letting ξ ↘ −η S
1−S yields ϑ(Hδϑ(π̂ = µ−r

σR , ξ))
−1 ↗ ∞. It follows that

h(π, ξ)↗∞ and the supremum of V C
0 over constant proportional strategies is +∞.

Hence, supC∈C (x) V
C

0 =∞.

Now suppose R > 1 and fix an arbitrary C ∈ C (x; r, µ, σ) with associated

wealth process X. Denote by V the generalised utility process associated to the pair

(gEZ , C). It suffices to show that V0 = −∞. For n ∈ N, let αn := S
S−1( 1

n − η) > 0,

rn := r + αn and µn := µ + αn. Consider the modified consumption stream Cn,

given by Cnt := eαntCt. Then, by calculating the dynamics of Xn
t := eαntXt

as in Section III.3.2, it can be shown that Cn ∈ C (x; rn, µn, σ). Furthermore,

ηn = 1
S [δ− (1−S)(rn + λ2

2R)] = 1
n > 0. Then, considering the Black–Scholes–Merton
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financial market with parameters (rn, µn, σ) and applying Theorem 4.1 gives V n
0 ≤

V̂ n(x) = η−ϑSn bϑ x
1−R

1−R . It follows from Proposition 3.7 that if V n is the (generalised)

solution associated for the pair (gEZ , C
n), then C ≤ Cn implies V ≤ V n. Combining

the inequalities and taking limits yields V0 ≤ limn→∞ n
ϑSbϑ x

1−R

1−R = −∞.
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APPENDIX TO CHAPTER IV

IV.A Proof of the Comparison Theorem

Lemma A.1. Let −∞ < a < b < ∞. Every uncountable set U ⊆ [a, b) contains at

least one of its right accumulation points.

Proof. Seeking a contradiction, suppose U contains none of its right accumulation

points. Then, for each x ∈ U , we may find εx > 0 such that [x, x + εx) ∩ U = {x}.

Let Un := {x ∈ U : εx >
1
n}. Then, each Un is finite since the pairwise disjoint

union
⋃
x∈Un [x, x + 1

n) is contained in the interval [a, b + 1
n). Hence, U =

⋃
n∈N Un

is countable, and we arrive at a contradiction.

Proof of Theorem 2.8. We prove the result when V ⊆ R+. The case V ⊆ R− is

symmetric.

Suppose for contradiction that there exists a finite stopping time τ and a set A ∈

Fτ of positive measure with V 1
τ (ω) > V 2

τ (ω) for ω ∈ A. Then, E
[
1A
(
V 1
τ − V 2

τ

)]
> 0.

Since V 1 and V 2 are làd, the processes (V 1
t+)t≥0 and (V 2

t+)t≥0 exist and are right-
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continuous. Moreover, σ := inf{s ≥ τ : V 1
s+−V 2

s+ ≤ 0} is a stopping time. The right

continuity of (V 1
t+)t≥0 and (V 2

t+)t≥0 gives (V 1
σ+ − V 2

σ+)1{σ<∞} ≤ 0 P-a.s.

For each ω ∈ A, we have V 1
s (ω) ≥ V 2

s (ω) for almost all s ∈ [τ(ω), σ(ω)). Indeed,

seeking a contradiction suppose there is ω ∈ A and a set of positive Lebesgue measure

U such that V 1
s (ω) < V 2

s (ω) for s ∈ U ⊆ [τ(ω), σ(ω)). Since U is uncountable,

it has a right accumulation point q ∈ U by Lemma A.1. Then, q < σ(ω) and

V 1
q+(ω) ≤ V 2

q+(ω), and we arrive at a contradiction.

Next, fix n ∈ N. By subtracting (2.2) from (2.1) for the bounded stopping times

τ := τ ∧ n and σ := σ ∧ n, noting that the expectations are well defined since

either V 1 or V 2 is in UI(g, C), and using the fact that g is a.s. decreasing in v and

V 1
s (ω) ≥ V 2

s (ω) for almost all s ∈ [τ(ω), σ(ω)) for ω ∈ A, we obtain

E
[
1A1{τ≤n}

(
V 1
τ − V 2

τ

)]
≤ E

[
1A1{τ≤n}

(
V 1

(σ∧n)+ − V
2

(σ∧n)+ +

∫ σ∧n

τ∧n
g(s, ω, Cs, V

1
s )− g(s, ω, Cs, V

2
s ) ds

)]
≤ E

[
1A1{τ≤n}

(
V 1

(σ∧n)+ − V
2

(σ∧n)+

)]
.

Finally, taking the limsup as n→∞, monotone convergence, the fact that (V 1
t+)t≥0

and (V 2
t+)t≥0 are R+-valued, the transversality condition for subsolutions and (V 1

σ+−

V 2
σ+)1{σ<∞} ≤ 0 P-a.s. give

E
[
1A(V 1

τ − V 2
τ )
]

≤ lim sup
n→∞

E
[
1A1{τ≤n<σ}(V

1
n+ − V 2

n+)
]

+ lim sup
n→∞

E
[
1A1{σ≤n}(V

1
σ+ − V 2

σ+)
]

≤ lim sup
n→∞

E
[
V 1
n+

]
+ E

[
1A1{σ<∞}(V

1
σ+ − V 2

σ+)
]
≤ 0.

We arrive at a contradiction.

Proof of Corollary 2.10. Suppose that V = R+; the proof for V ⊆ R− is sym-

metric. As g2(·, ·, c, v) ≥ g1(·, ·, c, v) P⊗ dt-a.e. and g1 and g2 are increasing in c, we

have g2(s, ω, C2
s , V

2
s ) ≥ g1(s, ω, C2

s , V
2
s ) ≥ g1(s, ω, C1

s , V
2
s ) ≥ 0 for dt ⊗ P-a.e. (s, ω).
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It then follows that, for all bounded stopping times τ ≤ σ,

V 2
τ = E

[
V 2
σ+ +

∫ σ

τ
g2(s, ω, C2

s , V
2
s ) ds

∣∣∣∣Fτ] ≥ E
[
V 2
σ+ +

∫ σ

τ
g1(s, ω, C1

s , V
2
s ) ds

∣∣∣∣Fτ] .
Since limt→∞ V

2
t+ = 0 P-a.s., V 2 satisfies the definition of a supersolution associated

to the pair (g1, C
1). As V 2 ∈ UI(g2, C

2) ⊆ UI(g1, C
1) and V 1 is a (sub)solution

associated to (g1, C
1), it follows that V 1

τ ≤ V 2
τ for all finite stopping times τ by

Theorem 2.8.

IV.B Proving Existence and Uniqueness of a Utility Pro-

cess

For Λ ∈ SOϑ, define the ε-perturbed operator F εU,Λ : I(hEZ , U)→P+ by3

F εU,Λ(W )t = E
[∫ ∞

t
(UsW

ρ
s + εΛϑs ) ds

∣∣∣∣Ft] . (2.1)

A key property of F εU,Λ is, when ε > 0 and Λ ∈ SOϑ, F ε0,Λ is bounded away from

zero. Another property is the following.

Lemma B.1. Let ε ≥ 0, Λ ∈ SOϑ and U O
= Λ. Then, F εU,Λ(·) maps from O(Λϑ) to

itself.

Proof. Fix arbitrary W
O
= Λϑ. It follows that there exist kW ,KW ∈ (0,∞) such

that kWΛϑ ≤ W ≤ KWΛϑ. Similarly, since U O
= Λ and Λϑ

O
= JΛϑ , there exist

kU ,KU , kΛ,KΛ ∈ (0,∞) such that kUΛ ≤ U ≤ KUΛ and kΛJ
Λϑ ≤ Λϑ ≤ KΛJ

Λϑ .

We only prove that F εU,Λ(W ) ≥ κΛϑ for ρ < 0; the argument for ρ > 0 involvesW ρ ≥

(kWΛ)ϑρ and the argument for the upper bound is symmetric. By the definition of

F εU,Λ(·) in (2.1) and since U ≥ kUΛ, W ≤ KWΛϑ and Λϑ ≤ KΛJ
Λϑ , and 1 +ϑρ = ϑ,

3Here, we always choose a càdlàg version for the right-hand side of (2.1).
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we see that

F εU,Λ(W )t ≥ E
[∫ ∞

t
kUΛs(KWΛϑ)ρ + εΛϑs ds

∣∣∣∣Ft]
= (kUK

ρ
W + ε)E

[∫ ∞
t

Λϑs ds

∣∣∣∣Ft] ≥ (kUKρ
W + ε

KΛ

)
Λϑ.

The subsequent theorem is the preliminary existence result and includes Theo-

rem 1.6 as a special case.

Theorem B.2. Let ε ≥ 0, Λ ∈ SOϑ and U O
= Λ. Then, F εU,Λ defined by (2.1) has a

unique fixed point W O
= Λϑ ⊆ I(hEZ , U), which has càdlàg paths.

Let Prog denote the progressive σ-algebra on Ω × R+ and set B := L∞(Ω ×

R+,Prog,P ⊗ dt). For the proof of Theorem B.2, we use the following sufficient

condition for an operator T : B → B to be a contraction.

Lemma B.3 (Blackwell’s sufficient conditions for a contraction). Let B be a Banach

space of bounded functions and T : B → B an operator that is nonincreasing.

Suppose there exists β ∈ (0, 1) with

T (X + a) ≥ T (X)− βa for all X ∈ B, a > 0. (2.2)

Then, T is a contraction with Lipchitz constant β. Similarly, T is a contraction if it is

monotonely nondecreasing and there exists β ∈ (0, 1) such that T (X+a) ≤ TX+βa

for all X ∈ B, a > 0.

Proof. We only prove the case when T is monotonely decreasing and (2.2) holds.

The other case follows by a symmetric argument.

For any X,Y ∈ B, X ≤ Y + ||Y − X||∞. Since T is monotonely decreasing,

TX ≥ T (Y + ||Y −X||∞). Furthermore, using (2.2) yields

T (Y + ||Y −X||∞) ≥ TY − β||Y −X||∞.

so that TY − TX ≤ β||Y −X||∞. By reversing the roles of Y and X one can show
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that TX −TY ≤ β||Y −X||∞ and consequently that ||TX −TY ||∞ ≤ β||Y −X||∞.

Thus, T is a contraction mapping with Lipschitz constant β.

Proof of Theorem B.2. Consider the change of variables

Pt = log(Ut)− log (Λt) , Qt = log(Wt)− ϑ log (Λt) .

Then, U O
= Λ if and only if P ∈ B and W O

= Λϑ if and only if Q ∈ B.

The fixed point conditionW = F εU,Λ(W ) is equivalent to the fixed point condition

Q = GεP,Λ(Q) where

GεP,Λ(Q)t := log

(
E
[∫ ∞

t
Λϑs exp(Ps + ρQs) + εΛϑs ds

∣∣∣∣Ft])− ϑ log (Λt) . (2.3)

Note that since the first term on the right-hand side of (2.3) has càdlàg paths, every

fixed point Q to (2.3) corresponds to a W with càdlàg paths.

Since GεP,Λ(Q) is the difference of two continuous functions of progressive pro-

cesses, it is progressive. Furthermore, as a consequence of Lemma B.1, GεP,Λ maps

B to itself.

Suppose ρ ∈ (−1, 0) and let a > 0. Then, GεP,Λ(Q) is decreasing. Furthermore,

GεP,Λ(Q+ a)t

= log

(
exp(ρa)E

[∫ ∞
t

Λϑs exp(Ps + ρQs) + ε
Λϑs

exp(ρa)
ds

∣∣∣∣Ft])− ϑ log (Λt)

≥ log

(
E
[∫ ∞

t
Λϑs exp(Ps + ρQs) + εΛϑs ds

∣∣∣∣Ft])− ϑ log (Λt) + ρa

= GεP,Λ(Q)t + ρa.

By Lemma B.3, this implies that GεP,Λ is a contraction with constant ρ. Hence, by

the Contraction Mapping Theorem, there exists a unique Q ∈ B satisfying (2.3).

If ρ ∈ (0, 1), then GεP,Λ(Q) is increasing and one can show that GεP,Λ(Q + a)t ≤

GεP,Λ(Q)t + ρa. Again, existence of a fixed point follows from Lemma B.3 and the

Contraction Mapping Theorem.
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Finally, to extend the result to ρ ∈ (−∞,−1], we borrow an idea from Schroder

and Skiadas [SS99] and show by induction that the following holds for each k ∈ N:

For 0 > ρ > −k and P ∈ B, there exists a unique fixed point Q ∈ B of GεP,Λ(Q).

(2.4)

The induction hypothesis (k = 1) holds by the above. For the induction step, suppose

that (2.4) holds true for some k ≥ 1. In order to show that (2.4) holds true for k+ 1,

it suffices to consider ρ ∈ (−(k+ 1), k]. So fix ρ ∈ (−(k+ 1), k] and choose χ ∈ (0, 1)

small enough that −k < ρ+ χ < 0. Now define the map G̃εP,Λ : B ×B → B by4

G̃εP,Λ(Q,Z)t = log

(
E
[∫ ∞

t
Λϑs exp(Ps − χQs + (ρ+ χ)Zs) + εΛϑs ds

∣∣∣∣Ft])−ϑ log (Λt) .

(2.5)

It suffices to show that there exists a unique Q ∈ B such that Q = G̃εP,Λ(Q,Q). Note

that since the first term on the right-hand side of (2.5) has càdlàg paths, every Q ∈ B

satisfying Q = G̃εP,Λ(Q,Q) corresponds to a W with càdlàg paths. By the induction

hypothesis, for each fixed Q ∈ B, and since P − χQ ∈ B, there exists a unique

Z ∈ B such that Z = G̃εP,Λ(Q,Z). So, we can define the operator ZεP,Λ : B → B

implicitly by

ZεP,Λ(Q) = G̃εP,Λ(Q,ZεP,Λ(Q)). (2.6)

If we can show that ZεP,Λ has a unique fixed point, we are done. To this end, arguing

as above, it suffices to show that ZεP,Λ is nonincreasing and satisfies (2.2) for β := χ.

To argue that ZεP,Λ is nonincreasing, let Q1, Q2 ∈ B with Q1 ≤ Q2 P ⊗ dt-a.e.

For i ∈ {1, 2}, set C̃i := Λϑ exp(Qi) and Ṽ i := Λϑ exp(ZεP,Λ(Qi)). Then, (2.6) implies

that

Ṽ i
t = E

[∫ ∞
t

(
Λϑs

(
Us
Λs

)(
C̃is
Λϑs

)−χ(
Ṽ i
s

Λϑs

)ρ+χ

+ εΛϑs

)
ds

∣∣∣∣∣Ft
]

= E
[∫ ∞

t

(
Us

(
C̃is

)−χ (
Ṽ i
s

)ρ+χ
+ εΛϑs

)
ds

∣∣∣∣Ft] .
4Here, we always choose a càdlàg version for the conditional expectation in (2.5).
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Since h̃(t, ω, c, v) = Ut(ω)c−χvρ+χ+ε(Λt(ω))ϑ satisfies (c↓) and (v↓), by Remark 2.11

it follows that Ṽ 1 ≥ Ṽ 2, and consequently Z1 ≥ Z2.

Finally, to show that ZεP,Λ satisfies (2.2) for β := χ, let a > 0 and set Ψ =

(ZεP,Λ(Q + a) − ZεP,Λ(Q))/a ≤ 0. It suffices to show that Ψ ≥ −χ. Let L :=

Λϑ exp(ZεP,Λ(Q)). Then

Lt exp(Ψta)

= Λϑt exp(ZεP,Λ(Q)t) exp(Ψta) = Λϑt exp(ZεP,Λ(Q+ a)t)

= E
[∫ ∞

t

(
Λϑs exp(Ps − χ(Qs + a) + (ρ+ χ)ZεP,Λ(Q+ a)s) + εΛϑs

)
ds

∣∣∣∣Ft]
= Et

[∫ ∞
t

(
Λϑs e

−χa+(ρ+χ)aΨsePs−χQs+(ρ+χ)ZεP,Λ(Q)s + εΛϑs

)
ds

]
≥ Lt exp(−χa),

where in the last line we have used that (ρ+ χ)Ψ ≥ 0. Hence, exp(Ψa) ≥ exp(−χa)

and consequently Ψ ≥ −χ.

We may now prove Theorem 3.1.

Proof of Theorem 3.1. The proof is formed of two parts. The first part removes

the lower bound on U for ε > 0; the second part shows that we may remove the

restriction ε > 0.

Let Un = max{U, 1
nΛ}. Then, Un O

= Λ for every n ∈ N. Hence, by Theorem B.2,

for each n ∈ N, there existsWn that satisfiesWn
t = E

[∫∞
t Uns (Wn

s )ρ + εΛϑs ds
∣∣Ft] .

Since Λ ∈ SOϑ, there exists κ such that Λϑ ≤ κJΛϑ . Hence, Wn ≥ εJΛϑ ≥ ε
κΛϑ and

Un(Wn)ρ ≤ Λ(ερκ−ρΛϑ−1) = κ−ρερΛϑ. (2.7)

Since ρ < 0, g satisfies (v↓). Hence, by Corollary 2.10, the sequence (Wn)n∈N is de-

creasing (and positive) so it converges almost surely. Therefore, applying the Domi-

nated Convergence Theorem with the bound in (2.7) and the condition Λ ∈ SOϑ, we
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find that W ∗ := limn→∞W
n satisfies

W ∗t = lim
n→∞

E
[∫ ∞

t
Uns (Wn

s )ρ + εΛϑ ds

∣∣∣∣Ft] = E
[∫ ∞

t
Us(W

∗
s )ρ + εΛϑs ds

∣∣∣∣Ft] ,
so that W ∗ is a fixed point of F εU,Λ(·). Uniqueness follows from Corollary 2.9 since

hε,ΛEZ(t, ω, u, v) = uvρ + ε(Λ(t, ω))ϑ satisfies (v↓). This concludes the first part of the

proof.

Let U ∈P+ be such that U ≤ Λ ∈ SOϑ and define the aggregator random field

hε,ΛEZ by hε,ΛEZ(t, ω, u, v) = uvρ + ε(Λ(t, ω))ϑ. By the preceding argument, for each

ε > 0 there exists a utility process associated to the pair (hε,ΛEZ , U).

It follows from Corollary 2.10 that the fixed pointW ε to the operator F ε(·) given

in (2.1) is decreasing as ε↘ 0. Define Wt = limε→0W
ε
t . Then,

Wt = lim
ε→0

E
[∫ ∞

t
Us(W

ε
s )ρ + εΛϑs ds

∣∣∣∣Ft]
= lim
ε→0

E
[∫ ∞

t
hEZ(Us,W

ε
s ) ds

∣∣∣∣Ft]+ lim
ε→0

E
[∫ ∞

t
εΛϑs ds

∣∣∣∣Ft]
= E

[∫ ∞
t

hEZ(Us,Ws) ds

∣∣∣∣Ft] ,
where the last line follows from the Monotone Convergence Theorem and the fact that

hEZ was chosen so that limw→w0 hEZ(u,w) = hEZ(w,w0) even for (u,w0) = (0, 0)

and (u,w0) = (∞,∞). Furthermore, W ∈ I(hEZ , U) since E
[∫∞

0 UsW
ρ
s ds

]
= W0 ≤

W ε
0 <∞. Uniqueness follows from Corollary 2.9 since hEZ satisfies (v↓).

IV.C Existence and Uniqueness of a Generalised Utility

Process

To prove Theorem 3.4 we must first introduce generalisations of some well-known

concepts. We focus on the supermartingale case, but the submartingale case is

symmetric.
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Definition C.1 (Generalised supermartingale, Doob [Doo53], Snell [Sne52]). A

stochastic process M = (Mt)t≥0 taking values in (−∞,∞] is called a generalised

supermartingale if, M−t ∈ L1 for all t ≥ 0, M is adapted and Ms ≥ E [Mt | Fs] for all

t ≥ s ≥ 0.

Remark C.2. Since M−t ∈ L1 (Mt is quasi-integrable), the conditional expectation

E [Mt | Fs] exists and is unique, even if Mt /∈ L1.

Compared to an (ordinary) supermartingale, a generalised supermartingale does

not require Mt ∈ L1 for all t ≥ 0. So it is possible to have Ms = +∞ ≥ E [Mt | Fs].

We now need to generalise this notion even further.5

Definition C.3 (Generalised Optional Strong Supermartingale, Mertens [Mer72]).

A generalised supermartingale is called a generalised optional strong supermartingale

if it is optional and for all bounded pairs of stopping times τ ≤ σ, M−σ ∈ L1 and

E [Mσ | Fτ ] ≤Mτ .

Remark C.4. Note that every càdlàg supermartingale is a (generalised) optional

strong supermartingale by the Optional Sampling Theorem.

Proposition C.5. A generalised optional strong supermartingale M that is either

bounded above or below is almost surely làdlàg and for a.e. ω, the path t 7→ Mt(ω)

is right-continuous outside a countable set.

Proof. Suppose first that M is bounded below by a constant K and define the con-

tinuous bijection f : [K,∞] → [1 − e−K , 1] by f(x) := 1 − e−x with the conven-

tion that e−∞ = 0. It follows from Jensen’s inequality (note that f−1 is convex)

that Mτ ≥ E [Mσ | Fτ ] = E
[
(f−1 ◦ f)(Mσ)

∣∣Fτ ] ≥ f−1(E [f(Mσ) | Fτ ]). Conse-

quently, if M̃ = f(M), then for all bounded pairs of stopping times τ ≤ σ we

have M̃τ = f(Mτ ) ≥ E [f(Mσ) | Fτ ] = E
[
M̃σ

∣∣∣Fτ] and M̃ is a bounded optional

strong supermartingale. Hence, it is làdlàg (see for example [DM82, Theoreom

5In [Mer72], Mertens referred to the processes in the definition that follows simply as super-
martingales.
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A1.4]). Moreover, it has a Mertens decomposition (see, for example [DM82, Theorem

A1.20]) given by M̃ = Ñ − Ã, where Ñ = (Ñt)t≥0 is a càdlàg local martingale and

Ã = (Ãt)t≥0 is a nondecreasing adapted làdlàg process. Since a noncreasing làdlàg

function is (right-)continuous up to a countable set, it follows that for for a.e. ω,

the path t 7→ M̃t(ω) is right-continuous outside a countable set. Then, using that

f−1 is continuous, it follows that M is làdlàg and for a.e. ω, the path t 7→ Mt(ω) is

right-continuous outside a countable set.

For the case whenM is bounded above, we use the concave function g(x) = 1−ex.

The following results are generalised versions of the Backwards Martingale Con-

vergence Theorem (BMCT) and Hunt’s Lemma.

Proposition C.6 (Generalised Backwards Martingale Convergence Theorem). Sup-

pose that X is a [0,∞]-valued random variable and let F ⊇ F0 ⊇ F−1 ⊇ F−2 ⊇ · · ·

be a decreasing sequence of sub-σ-algebras and F−∞ :=
⋂∞
k=1F−k. Then,

lim
n→∞

E [X | F−n] = E [X | F−∞] , P-a.s.

Proof. For n ∈ N, set Z−n := E [X | F−n], and let Z−∞ := E [X | F−∞]. Since

F−∞ ⊂ F−n for all n ∈ N, it suffices to show that limn→∞ Z−n = Z−∞ P-a.s. on

{Z∞ ≤ k} for all k ∈ N and limn→∞ Z−n = Z−∞ P-a.s. on {Z∞ =∞}. The case of

finite k follows from the standard BMCT via

lim
n→∞

Z−n1{Z∞≤k} = lim
n→∞

E
[
X1{Z∞≤k}

∣∣F−n]
= E

[
X1{Z∞≤k}

∣∣F−∞] = Z−∞1{Z∞≤k}, P-a.s.

For the other case, by the standard BMCT for fixed k ∈ N,

lim inf
n→∞

Z−n ≥ lim
n→∞

E [X ∧ k | F−n] = E [X ∧ k | F−∞] , P-a.s.

Now taking the monotone limit as k →∞ gives lim infn→∞ Z−n ≥ E [X | F−∞] P-a.s.
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Finally, on {Z−∞ =∞} the liminf trivially coincides with the limsup.

Lemma C.7. Let (Ω,F ,P) be a probability space and (Xn)n∈N a nondecreasing

sequence of [0,∞]-valued random variables with limn→∞Xn = X P-a.s. Let F ⊇

F0 ⊇ F−1 ⊇ F−2 ⊇ · · · be a decreasing sequence of sub-σ-algebras and F−∞ :=⋂∞
k=1F−k. Then, limn→∞ E [Xn | F−n] = E [X | F−∞] P-a.s.

Proof. For n ∈ N, let Yn = E [Xn | F−n]. Then, E [Xm | F−n] ≤ Yn ≤ E [X | F−n] for

m ≤ n. Now taking taking the limit as n→∞ and applying Proposition C.6 gives

E [Xm | F−∞] ≤ lim inf
n→∞

Yn ≤ lim sup
n→∞

Yn ≤ E [X | F−∞] P-a.s.

Taking the limit as m → ∞, the result follows from the Monotone Convergence

Theorem.

We may now prove Theorem 3.4, the central result of Section 3.

Proof of Theorem 3.4. We only prove the case that (Cn)n∈N is an increasing

sequence and V ⊆ R+. For the case when (Cn)n∈N is a decreasing sequence and

V ⊆ R−, the proof goes through by a symmetric argument. Since (Cn)n∈N is

increasing, so is (V n)n∈N by Corollary 2.10. Then, V † = limn→∞ V
n exists and

V n ≤ V † for each n ∈ N. Further, for any bounded stopping times τ and σ with

τ ≤ σ P-a.s.,

V †τ = lim
n→∞

E
[∫ σ

τ
g(s, ω, Cns , V

n
s ) ds+ V n

σ

∣∣∣∣Fτ]
≥ lim
n→∞

E
[∫ σ

τ
g(s, ω, Cns , V

†
s ) ds+ V n

σ

∣∣∣∣Fτ]
= E

[∫ σ

τ
g(s, ω, Cs, V

†
s ) ds+ V †σ

∣∣∣∣Fτ] (3.1)

It follows that V †τ ≥ E[V †σ |Fτ ] so that V † is a nonnegative generalised optional

strong supermartingale. Hence, by Proposition C.5, it is làdlàg. Since E[V †σ |Fτ ] ≥
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E[V †σ+|Fτ ], (3.1) becomes V †τ ≥ E
[∫ σ
τ g(s, ω, Cs, V

†
s ) ds+ V †σ+

∣∣∣Fτ]. Furthermore,

since V ⊆ R+, lim inft→∞ V
†
t+ ≥ 0 a.s. and V † is a supersolution.

Now, take any other arbitrary monotone sequence (C̃n)n∈N whose limit is equal

to C. Let Ṽ n be the utility process associated to C̃n and Ṽ † := limn→∞ Ṽ
n. Then,

since Ṽ n ∈ UI(g, C) is a subsolution associated to (g, C) because g satisfies (c↑), we

may apply Theorem 2.8 and deduce that V †τ ≥ Ṽ n
τ for all finite stopping times τ .

Taking limits gives that V †τ ≥ Ṽ †τ . Repeating the argument with the roles of V † and

Ṽ † reversed, we find that Ṽ †τ ≥ V †τ for all finite stopping times τ . Therefore, since

V † and Ṽ † are optional processes that agree for all finite stopping times, they agree

up to indistinguishability (see, for example, [Nik06, Theorem 3.2]).

Next, we show that V † is the minimal supersolution for C. Let V be any super-

solution. Then, since V n ∈ UI(g, C) is a subsolution associated to (g, C), V t ≥ V n
t

for all t ≥ 0 by Theorem 2.8. Taking limits gives V t ≥ V †t .

Finally, we show that V † is càdlàg. To this end, it suffices to show that the

right-continuous process (V †t+)t≥0 is also a supersolution. Then, by the supermartin-

gale property of V † it follows that V †τ+ = E[V †τ+|Fτ ] ≤ E[V †τ |Fτ ] = V †τ for each

bounded stopping time, and thus by the minimality of V †, (V †t )t≥0 = (V †t+)t≥0 up to

indistinguishability.

To show that (V †t+)t≥0 is indeed a supersolution, fix bounded stopping times τ

and σ with τ ≤ σ. We first assume that there is δ > 0 such that τ + δ ≤ σ. Then,

for each ε < δ, by the fact that V † is a supersolution,

V †τ+ε ≥ E
[∫ σ

τ+ε
g(s, ω, Cs, V

†
s ) ds+ V †σ+

∣∣∣∣Fτ+ε

]
.

Taking the limit as ε → 0, and using the fact that for a.e. ω, the path t 7→ V † is

right-continuous outside a countable set by Proposition C.5, we get by Hunt’s lemma

in the form of Lemma C.7,

V †τ+ ≥ E
[∫ σ

τ
g(s, ω, Cs, V

†
s+) ds+ V †σ+

∣∣∣∣Fτ] . (3.2)
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Now if σ is general, for δ > 0 set σδ := σ ∨ (τ + δ). Then, applying (3.2) for σδ gives

V †τ+1{σ≥τ+δ} ≥ E

[∫ σδ

τ
g(s, ω, Cs, V

†
s+) ds+ V †

σδ+

∣∣∣∣∣Fτ
]
1{σ≥τ+δ}

= E
[∫ σ

τ
g(s, ω, Cs, V

†
s+) ds+ V †σ+

∣∣∣∣Fτ]1{σ≥τ+δ}

Taking the limit as δ → 0 gives by monotone convergence,

V †τ+1{σ>τ} ≥ E
[∫ σ

τ
g(s, ω, Cs, V

†
s+) ds+ V †σ+

∣∣∣∣Fτ]1{σ>τ}.
Since trivially, V †τ+1{σ=τ} = E

[∫ σ
τ g(s, ω, Cs, V

†
s+) ds+ V †σ+

∣∣∣Fτ]1{σ=τ}, we con-

clude

V †τ+ ≥ E
[∫ σ

τ
g(s, ω, Cs, V

†
s+) ds+ V †σ+

∣∣∣∣Fτ] .

IV.D Additional proofs omitted from the main text

Proof of Proposition 3.7. Suppose V ⊆ R+; the case of V ⊆ R− follows by a

symmetric argument.

Let C2,n be a nondecreasing sequence of processes in E (g) with limit C2 and

let C1,n := C2,n ∧ C1. Then, C1,n is a monotone sequence which approximates C1.

Furthermore, let V 1,n ∈ UI(g, C1,n) ⊆ UI(g, C2,n) and V 2,n ∈ UI(g, C2,n) be the

utility processes associated to C1,n and C2,n respectively. Then, if V 1,† and V 2,† are

the generalised solutions associated to C1 and C2, it follows from Theorem 3.4 that

V 1,† = limn→∞ V
1,n and V 2,† = limn→∞ V

2,n.

Since C2,n ≥ C1,n and g satisfies (c ↑), g(t, ω, C2,n
t , V 2,n

t ) ≥ g(t, ω, C1,n
t , V 2,n

t ) for

almost all (t, ω). Hence, for all bounded stopping times τ ≤ σ,

V 2,n
τ = E

[
V 2,n
σ+ +

∫ σ

τ
g(s, ω, C2,n

s , V 2,n
s ) ds

∣∣∣∣Fτ]
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≥ E
[
V 2,n
σ+ +

∫ σ

τ
g(s, ω, C1,n

s , V 2,n
s ) ds

∣∣∣∣Fτ] .
Since also limt→∞ E

[
V 2,n
t+

]
= 0 a.s., V 2,n satisfies the definition of a supersolution

associated to the pair (g, C1,n). Hence, by Theorem 2.8 it follows that V 2,n
τ ≥ V 1,n

τ

for all finite stopping times τ . Taking the limit as n→∞ gives the result.

Proof of Lemma 4.2. The dynamics of X̂ are given by

dX̂t

X̂t

=
λ

R
dBt +

(
r +

λ2

R
− η
)

dt, X̂0 = 1.

Fix ε > 0, and let f εEZ(c, y, v) = fEZ(c + εy, v) = b (c+ηεy)1−S

1−S ((1 − R)v)ρ. Fix an

arbitrary admissible strategy (Π, C) ∈ C (x). The dynamics of X+εX̂ = XΠ,C +εX̂

are given by

d(Xt+εX̂t) =
(
σΠtXt + λε

R X̂t

)
dBt +

(
Xt

(
r + Πt(µ− r))− Ct + (r + λ2

R − η
)
εX̂t

)
dt.

Let L π,c denote the infinitesimal generator of the diffusion X + εX̂ when the in-

stantaneous rates of investment and consumption are, respectively, π and c: for

h = h(x, y),

L π,ch :=

[
x (r + πσλ)− c+

(
r +

λ2

R
− η
)
εy

]
h′ +

1

2

(
σπx+

λ

R
εy

)2

h′′.

The first aim is to show that V̂ satisfies a perturbed HJB equation

sup
c∈R+,π∈R

[
L π,cV̂ (x+ εy) + f εEZ(c, y, V̂ (x+ εy))

]
= 0. (4.1)

This follows from the fact that for general c ∈ R+ and π ∈ R

L π,cV̂ (x+ εy) + f εEZ(c, y, V̂ (x+ εy)) = A1(c, x, y) +A2(π, x, y) +A3(x, y),
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where (noting that the argument of V̂ and its derivatives is (x+ εy) throughout),

A1(c, x, y) = b
(c+ ηεy)1−S

1− S
((1−R)V̂ )ρ − V̂x

(
c+ ηεy + η

S

1− S
(x+ εy)

)
,

A2(π, x, y) = V̂x

(
xπσλ+

λ2

R
εy

)
+

1

2
V̂xx

(
πσx+

λ

R
εy

)2

+
λ2

2

(V̂x)2

V̂xx
,

A3(x, y) = (x+ εy)rV̂x −
λ2

2

(V̂x)2

V̂xx
+ η

S

1− S
(x+ εy)V̂x,

and the trio of inequalities A1 ≤ 0, A2 ≤ 0, A3 = 0. Taking the derivative

with respect to c we find that the maximum of A1(c, x, y) is attained when c =(
b((1−R)V̂ (x+εy))ρ

V̂x(x+εy)

) 1
S − ηεy and then using the explicit form of V̂ we find that the

maximising value of c is c = ηx and that A1(ηx, x, y) = 0. Similarly, by tak-

ing the derivative with respect to π, the maximum of A2(π, x, y) is attained when

π = λ
σx

(
εy
R −

V̂x(x+εy)

V̂xx(x+εy)

)
= λ

σR and then A2( λ
σR , x, y) = 0. Finally, by using the

definition of V̂ and η we find that A3(x, y) = 0. Consequently, (4.1) is satisfied

and the supremum is attained. Note that, since εX̂ is just a scaling of the wealth

process under the optimal strategy, it follows that (V̂ (εX̂t))t≥0 ∈ UI(fEZ , ηεX̂)

is the utility process associated to the consumption stream ηεX̂. Consequently,

limt→∞ E[V̂ (εX̂t+)] = 0.

Fix arbitrary bounded stopping times τ ≤ σ, define N = (Nt)t≥0 by

Nt =

∫ t

0
V̂x(Xu + εX̂u)

(
σΠuXu +

λ

R
εX̂u

)
dWu

and for n ∈ N, set ζn := inf{s ≥ τ : 〈N〉s − 〈N〉τ ≥ n}. It follows by Itô’s lemma,

(4.1) and the definition of f εEZ that

V̂ (Xτ + εX̂τ )

= V̂ (Xσ∧ζn + εX̂σ∧ζn)−
∫ σ∧ζn

τ
L Cs,Πs V̂ (Xs + εX̂s) ds+Nτ −Nσ∧ζn

≥ V̂ (Xσ∧ζn + εX̂σ∧ζn) +

∫ σ∧ζn

τ
f εEZ(Cs, X̂s, V̂ (Xs + εX̂s)) ds+Nτ −Nσ∧ζn
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= V̂ (Xσ∧ζn + εX̂σ∧ζn) +

∫ σ∧ζn

τ
fEZ(Cs + ηεX̂s, V̂ (Xs + εX̂s)) ds+Nτ −Nσ∧ζn .

Taking conditional expectations and using that (Nt∧ζn −Nt∧τ )t≥0 is an L2-bounded

martingale, the Optional Sampling Theorem gives

V̂ (Xτ + εX̂τ )

≥ E
[
V̂ (Xσ∧ζn + εX̂σ∧ζn) +

∫ σ∧ζn

τ
fEZ(Cs + ηεX̂s, V̂ (Xs + εX̂s)) ds

∣∣∣∣Fτ] .
Since V̂ is increasing and wealth is nonnegative, V̂ (Xσ∧ζn + εX̂σ∧ζn) ≥ V̂ (εX̂σ∧ζn).

Using that (V̂ (εX̂t))t≥0 is uniformly integrable, taking the liminf as n → ∞, the

generalised conditional version of Fatou’s Lemma and the conditional Monotone

Convergence Theorem yield

V̂ (Xτ + εX̂τ ) ≥ E
[
V̂ (Xσ + εX̂σ) +

∫ σ

τ
fEZ(Cs + ηεX̂s, V̂ (Xs + εX̂s)) ds

∣∣∣∣Fτ] .
Furthermore, lim inft→∞ E[V̂ (Xt+ + εX̂t+)] ≥ limt→∞ E[V̂ (εX̂t+)] = 0. Conse-

quently, V̂ (X + εX̂) is a supersolution associated to the pair (fEZ , C + ηεX̂).
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CHAPTER

V

STOCHASTIC DIFFERENTIAL

UTILITY: PROPER SOLUTIONS

WHEN ϑ > 1

Epstein–Zin stochastic differential utility is parametrised by two coefficients, R and

S, taking values in (0, 1)∪ (1,∞) and corresponding to the agent’s risk aversion and

their elasticity of intertemporal complementarity. A detailed explanation of the roles

of R and S is provided in Chapter III. The parameter ϑ := 1−R
1−S is critical.

First, it is argued in Chapter III that ϑ > 0 is necessary for the EZ-SDU equation

to have a meaningful solution over the infinite horizon. Second, the mathematics of

the problem is vastly different depending on whether ϑ ∈ (0, 1) or ϑ ∈ (1,∞). The

boundary case of ϑ = 1 (corresponding to CRRA utility) was studied in Chapter II

and the case ϑ ∈ (0, 1) was studied in Chapters III and IV. This chapter will be
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dedicated to parameter combinations leading to ϑ > 1, a case that has been neglected

in the literature.

One of the desirable properties of EZ-SDU when ϑ ∈ (0, 1] is that all evaluable

consumption streams are uniquely evaluable—if there exists a solution to the EZ-

SDU equation (I.1.7), then it is necessarily unique. This follows from a comparison

theorem (Theorem IV.2.8) which shows that a subsolution to the EZ-SDU equa-

tion always lies below a supersolution; since a solution is both a subsolution and a

supersolution, applying the comparison theorem twice to two such solutions yields

uniqueness (Corollary IV.2.9). In the case ϑ > 1, however, the requirements of the

comparison theorem are not met since the EZ aggregator fEZ is increasing in v.

One might hope that this is a technical issue and that, by being smarter, it is

possible to adapt the comparison theorem to the case ϑ > 1, thus resolving issues of

uniqueness. However, this is not the case—the problem with ϑ > 1 is fundamentally

different to the problem with ϑ < 1, and when ϑ > 1 it is not just that the comparison

theorem fails but rather that nonuniqueness is endemic to the problem. Note that

the same issue of nonuniqueness arises in finite-horizon EZ-SDU unless a nonzero

bequest function is added at the terminal time.

The main goals of this chapter are to illuminate how nonuniqueness may occur

and to provide an economically motivated criterion for selecting the “true” solution

before finally solving the investment-consumption problem.

We begin by studying the utility process associated to constant proportional

investment-consumption strategies. In this case, an explicit, time-homogeneous util-

ity process is provided in Proposition III.3.2 (on page 63) which is valid in the case

ϑ > 1. However, we show in Section 1 that this solution is not the only solution, and

there exists an infinite family of (equally explicit but time-inhomogeneous) utility

processes.

It is clear that to formulate Merton’s optimal investment-consumption problem

for EZ-SDU, there must be a rule that assigns a particular utility process to each

consumption stream over which we maximise. Various candidates for this assignation
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rule are plausible. Perhaps the most obvious choice is the maximal utility process.

The rationale behind this would be that the agent gets to choose which utility pro-

cess they associate to a given consumption stream, naturally choosing the best one.

However, when R > 1, the maximal utility process associated to any consumption

stream is the zero process, rendering the problem degenerate. An alternative choice

might be the “game theoretic” or minimax version of the Merton problem, where the

agent maximises the worst utility process associated to each consumption stream.

However, when R < 1, the minimal utility process associated to any consumption

stream is the zero process, again rendering the problem degenerate. Instead, one of

the main contributions of the chapter is to introduce the notion of a proper solution.

It will follow from the discussion of constant proportional investment-consumption

strategies in Section 1 below that if C is the consumption stream which arises from a

constant proportional strategy (and if E[
∫∞

0 C1−R
s ds] <∞), then for each T ∈ [0,∞]

there exists a utility process associated to C which is strictly positive for t < T and

zero for t ≥ T . (In particular, zero is a solution and corresponds to T = 0). Eco-

nomically, this may be interpreted as saying that the amount consumed after time

T has no effect on the agent’s utility. It is hard to justify that this represents a

meaningful version of the utility process, and motivates the definition of a proper

solution: a solution V = (Vt)t≥0 (of the EZ-SDU equation, given below in (1.2)) is

proper if E
[ ∫∞

t C1−R
s ds

∣∣ Ft] > 0 implies that (1−R)Vt > 0.

We also introduce other notions of a solution of a more mathematical nature,

namely the concepts of an extremal solution (which corresponds either to the maximal

solution or the minimal solution, depending on the sign of V = (1−R)R+) and the

CRRA-order solution (a solution such that (1 − R)V
O
= JC

1−R, where the order

relation O
= is given in Definition IV.1.1).

The main results of the chapter are the following—and more precise statements

follow as Theorems 3.3, 3.5, 3.6 and 3.8 respectively.

Main Result 1. For a very wide class of consumption processes C, there exists a

proper utility process V associated to C.

125



Stochastic Differential Utility: Proper Solutions When ϑ > 1

Main Result 2. For a wide class of consumption processes, the proper utility process

is unique.

Main Result 3. For a wide class of consumption processes, the three solution con-

cepts agree.

Main Result 4. In the constant parameter financial model, if we maximise over

attainable consumptions streams which have an associated unique proper utility pro-

cess, then the investment-consumption problem is solved by a constant proportional

investment-consumption strategy (whose parameters may be identified in terms of the

parameters of the EZ-SDU and the financial market ).

The remainder of the chapter is structured as follows. In Section 1, we introduce

EZ-SDU and Merton’s investment consumption problem under EZ-SDU. We show

that we may associate to each constant proportional investment-consumption strat-

egy a family of EZ-SDU processes indexed by T ∈ [0,∞], each of which corresponds

to ignoring consumption from time T onwards. In Section 2, we define the notions

of a proper solution, an extremal solution and a CRRA-order solution. The main

results are restated precisely in Section 3.

Section 4 shows how a change of coordinates can simplify the problem—and

until we consider the verification theorem we work in this new coordinate system.

Section 5 is dedicated to proving the existence of a CRRA-order solution. It relies

heavily on the existence results of Chapter IV.

In Section 6, we recall the definition of subsolutions and supersolutions to the

EZ-SDU equation from Chapter IV. We then prove a comparison theorem that pro-

vides a sufficient criterion under which subsolutions are dominated from above by

supersolutions.

In Section 7, we prove existence and uniqueness of the extremal solution for a

class of consumption streams.

Section 8 considers existence and uniqueness of proper solutions. Furthermore,

we show that all three solution concepts agree for consumption streams that are
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1 Infinite-horizon Epstein–Zin stochastic differential utility and the
Merton investment-consumption problem

bounded above and below by constant multiples of constant proportional strategies.

Finally, in Section 9 we verify that the candidate solution we propose in Section 1

is optimal over the class of right-continuous attainable consumption streams to which

we may assign a unique proper solution.

Throughout this chapter we make the following additional assumption.

Standing Assumption 5. The filtration F = (Ft)t≥0 is continuous.1

1 Infinite-horizon Epstein–Zin stochastic differential util-

ity and the Merton investment-consumption problem

The Merton investment-consumption problem that we consider in this chapter will

be similar to that outlined in Chapter III on page 58. In particular, the goal of the

Merton investment-consumption problem is (for some as yet undefined set U ) to

find

V ∗(x) = sup
C∈C (x)∩U

V C
0 , (1.1)

where V C = V = (Vt)t≥0 solves

Vt = E
[∫ ∞

t

C1−S
s

1− S
((1−R)Vs)

ρ ds

∣∣∣∣Ft] , for t ≥ 0. (1.2)

Remark 1.1. It is worth noting here that we have set b = 1 and δ = 0 in the Epstein–

Zin aggregator gEZ (given in (III.2.2) on page 53) without loss of generality. We can

set b = 1 because of the scaling properties of EZ-SDU (see Remark III.2.2 on page

55) and we can set δ = 0 by absorbing the discount factor into the financial market

as in Section III.3.2.

When ϑ > 1, (1.2) may not possess a unique solution, so the problem in (1.1)
1This is slightly stronger than the right-continuity assumed in the usual conditions. However,

it is a necessary assumption for the existence arguments in Appendix V.A to go through. Whilst
we do not believe that left-continuity of the filtration is a necessary assumption for existence of
a proper solution to hold in general, it is a pragmatic and convenient assumption, and it does
cover the main application of a Brownian filtration and a constant parameter Black-Scholes-Merton
financial market.
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is not well formulated until we have decided which utility process to assign to each

consumption and which consumption streams we want to optimise over. Section 1.2

illustrates what can go wrong by providing a family of utility processes associated

to the constant proportional investment-consumption strategies. We will then ex-

plain in Section 2 how to select the economically meaningful utility process from the

many available and how this impacts the control problem (1.1). We reformulate the

problem in Section 9.

1.1 A time-homogeneous utility process for constant proportional

strategies

We recall from Section III.3.3 on page 61 that we may find explicit (time-homogeneous)

solutions associated to constant proportional strategies. This will provide useful in

illustrating what can go wrong when ϑ > 1.

Consider the proportional investment-consumption strategy Π ≡ π ∈ R and C =

ξX for ξ ∈ R+. Fixing (π, ξ), and using Itô’s lemma and the dynamics of the wealth

processX given in (I.4.2), we findX1−R
t = x1−Re

πσ(1−R)Bt+(1−R)
(
r+(µ−r)π−ξ−π

2σ2

2

)
t
.

In particular, for s ≥ t, E
[
X1−R
s

∣∣Ft] = X1−R
t e−H(π,ξ)(s−t), where

H(π, ξ) = (R− 1)

(
r + λ(µ− r)π − ξ − π2σ2

2
R

)
.

Furthermore, by Proposition III.3.2 (on page 63), one EZ-SDU process V = (Vt)t≥0

associated to the strategy (π, ξX) such that H(π, ξ) > 0 is given by

Vt = h(π, ξ)X1−R
t , where h(π, ξ) =

ξ1−R

1−R

(
ϑ

H(π, ξ)

)ϑ
. (1.3)

However, the next section shows that it is far from being the unique utility process.

Remark 1.2. For future reference note that, providedH(π, ξ) > 0, if C is the constant

proportional consumption stream associated with parameters (π, ξ), then C1−R is a

geometric Brownian motion and E
[∫∞
t C1−R

s ds
∣∣Ft] = 1

H(π,ξ)C
1−R
t .
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1 Infinite-horizon Epstein–Zin stochastic differential utility and the
Merton investment-consumption problem

1.2 A family of utility processes indexed by absorption time for

constant proportional strategies

In this section, we show that for each proportional consumption stream (π, ξX),

where π ∈ R, ξ ∈ R++ satisfy H(π, ξ) > 0, the utility process given in (1.3) is

not the only associated utility process. In particular, there exists a family of utility

processes—which we can write in explicit form—parametrised by the first time they

hit zero (and are absorbed).

We postulate a time-dependent form of the utility process V = (Vt)t≥0 given

by Vt = A(t)ξ1−R

1−R X1−R
t . Finding a solution associated to the constant proportional

investment-consumption strategy with parameters (π, ξ) then becomes that of solving

A(t)ξ1−R

1−R
X1−R
t = Vt = E

[∫ ∞
t

ξ1−S

1− S
X1−S
s

(
A(s)ξ1−RX1−R

s

)ρ
ds

∣∣∣∣Ft]

Using the expression for E
[
X1−R
s

∣∣Ft] given above we find thatA solvesA(t)e−H(π,ξ)t =

ϑ
∫∞
t e−H(π,ξ)sA(s)ρ ds and taking derivatives with respect to t yields the ODE for

A(t)
dA

dt
= H(π, ξ)A(t)− ϑA(t)ρ. (1.4)

Note that one solution is the constant solution A(t) =
(

ϑ
H(π,ξ)

)ϑ (which leads to

(1.3)). More generally, the ODE (1.4) is separable and can be solved to give

A(t) =

(
ϑ−

(
ϑ−H(π, ξ)A(0)1/ϑ

)
e
H(π,ξ)
ϑ

t

H(π, ξ)

)ϑ

If we assume that A(0) ∈
(
0,
(

ϑ
H(π,ξ)

)ϑ), then A hits zero at t = T where T =

ϑ
H(π,ξ) ln

(
ϑ

ϑ−H(π,ξ)A(0)1/ϑ

)
. Since (A(t))t≥T ≡ 0 is a solution on [T,∞) we can define

a family of solutions to (1.4) and hence to (1.2), indexed by A(0) such that

A(t) =


(
ϑ−(ϑ−H(π,ξ)A(0)1/ϑ)e

H(π,ξ)
ϑ

t

H(π,ξ)

)ϑ
t < T = ϑ

H(π,ξ) ln
(

ϑ
ϑ−H(π,ξ)A(0)1/ϑ

)
0 t ≥ T
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(Note that if A(0) >
(

ϑ
H(π,ξ)

)ϑ then A diverges to plus infinity, but this is not

consistent with the fact that E[Vt] → 0.) Alternatively, the family of solutions can

be thought of as indexed by T where T = inf{t ≥ 0 : Vt = 0}. Effectively, for the

solution indexed by T , consumption after T does not yield any utility, and the utility

process is zero thereafter.

It is hard to argue that, when considering the infinite time horizon, this represents

an economically meaningful reduction of the problem. Hence, intuitively the “correct”

utility process should correspond to T =∞ and be given by (1.3).

Remark 1.3. This issue also arises when trying to evaluate finite-horizon EZ-SDU.

A variant of the Merton problem for finite-horizon EZ-SDU and ϑ > 1 is considered

by [MX18, SS99, SS16, Xin17], among others. In [MX18, SS16, Xin17] the issue of

uniqueness is finessed by incorporating a strictly positive bequest function Uε(CT ) =

ε
C1−R
T

1−R with ε > 0 at the finite time horizon T (and either restricting to consumption

streams that are strictly positive or only considering the case R > 1), so that the

EZ-SDU equation in this case becomes

Vt = E
[∫ T

t

C1−S
s

1− S
((1−R)Vs)

ρ ds+ Uε(CT )

∣∣∣∣Ft] , for all 0 ≤ t ≤ T. (1.5)

This is not a viable approach in the infinite-horizon case, as a bequest “at infinity”

has no meaning. In [SS99], the authors claim that EZ-SDU processes are unique

by finding a solution to (1.5), letting ε ↘ 0, and then claiming that the limiting

process—which is an EZ-SDU process for (1.5) with zero bequest—is the unique

EZ-SDU process. As we have seen in this section, this is not the case.

The approach taken in this chapter is to embrace the multiple utility processes

and distinguish the proper utility process (which we introduce in the next section)

from other utility processes. The aim of the proper utility process is to rule out

solutions which ignore the utility gained from consumption from some finite time

onwards.
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2 Three solution concepts and three spaces of consumption streams

2 Three solution concepts and three spaces of consump-

tion streams

2.1 Solution concepts

The following definition of a proper solution to the EZ-SDU equation is motivated

by the arguments of the previous section.

Definition 2.1. Let C ∈P+ and suppose that V = (Vt)t≥0 is a solution to (III.2.4).

V is a proper solution if, for all t ≥ 0, (1− R)Vt > 0 when E
[∫∞
t C1−R

s ds
∣∣Ft] > 0

up to null sets.

The notion of a proper solution immediately excludes the time-inhomogeneous

utility processes found in Section 1.2.

Remark 2.2. Note that the reverse implication automatically holds, i.e. (1−R)Vt > 0

implies that E
[∫∞
t C1−R

s ds
∣∣Ft] > 0 up to null sets. Suppose instead that there

were D ∈ Ft such that 1D(1 − R)Vt > 0 but 1DE
[∫∞
t C1−R

s ds
∣∣Ft] = 0. Then,

E
[
1D
∫∞
t C1−S

s ds
]

= 0 and (Cs(ω))1−S = 0 for dt× dP almost all (s, ω) in [t,∞)×D.

Consequently, E[1DVt] = E
[
1D
∫∞
t f(Cs, Vs) ds

]
= 0. Since (1 − R)Vt > 0 on D, it

must follow that the set D has zero measure.

We also define the extremal solution. This corresponds to either the maximal

solution or the minimal solution depending on the sign of V = (1 − R)R+. Such

solutions frequently appear in BSDE theory (see [DHK13, DKRGT16, Pen99]).

Definition 2.3. Let C ∈ P+ and suppose that V = (Vt)t≥0 is a solution to (1.2).

V is an extremal solution if (1−R)V ≥ (1−R)Y for any other solution Y = (Yt)t≥0.

Remark 2.4. If there exists a proper solution, then extremal solutions are proper.

This follows from Definitions 2.1 and 2.3; if Y is a proper solution and V is an

extremal solution, then up to null sets

{
ω : E

[∫ ∞
t

C1−R
s ds

∣∣∣∣Ft] > 0

}
⊆ {ω : (1−R)Yt > 0} ⊆ {ω : (1−R)Vt > 0}.
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The third solution concept that will be useful is a CRRA-order solution. It relies

on the order equivalence relation given in Definition IV.1.1 on page 93. We also

recall the notation JX = (JX)t≥0 for X ∈P+, where JXt = E
[∫∞
t Xsds

∣∣Ft].
Definition 2.5. Let C ∈ P+ and suppose that V = (Vt)t≥0 is a solution to (1.2).

We say that V is a CRRA-order solution if (1−R)V
O
= JC

1−R .

Remark 2.6. If V is a CRRA-order solution, then V is a proper solution.

2.2 Spaces of consumption streams

Let BCπ,ξ be the class of consumption streams that are the same order as a constant

proportional strategy with parameters (π, ξ), BCπ,ξ :=
{
C ∈P++ : C

O
= ξXπ,ξX

}
,

and set BC = ∪π,ξ:H(π,ξ)>0BC
π,ξ. Then, BC is the set of consumption streams which

are the same order as a constant proportional strategy with a finite utility process.

Another useful class of consumption streams will be those of self-order. We recall

from Definition IV.1.2 that the space of self-order processes is given by

SO :=

{
X ∈P++ : E

[∫ ∞
0

Xt dt

]
<∞ and X O

= JX
}
.

Furthermore, define SO(k,K) =
{
X ∈ SO : kJX ≤ X ≤ KJX

}
. On some occasions

we need a slightly stronger condition. Define

SOν :=
{
X ∈ SO :

(
eνtXt

)
t≥0
∈ SO

}
for ν ≥ 0, and SO+ = ∪ν>0SOν .

For arbitrary α ∈ R, let SOα, SOαν and SOα+ be the sets of processes X such that

Xα is in SO, SOν and SO+ respectively.

Remark 2.7. If Y ∈ SO, then KY ∈ SO for any K > 0.

The following two lemmas provide some set inclusions.

Lemma 2.8. For 0 ≤ µ ≤ ν, SOµ ⊇ SOν .
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3 Main theorems

Proof. Suppose that X ∈ SOν and µ ≤ ν. Then, there exists k > 0 such that

Xt ≥ kE
[∫ ∞

t
eν(s−t)Xs ds

∣∣∣∣Ft] ≥ kE [∫ ∞
t

eµ(s−t)Xs ds

∣∣∣∣Ft] . (2.1)

Furthermore, since X ∈ SO,

Xt ≤ KE
[∫ ∞

t
Xs ds

∣∣∣∣Ft] ≤ KE
[∫ ∞

t
eµ(s−t)Xs ds

∣∣∣∣Ft] .
Remark 2.9. For ν ≥ 0, let (k(ν),K(ν)) be the tightest interval such that (eνtXt)t≥0 ∈

SO(k(ν),K(ν)). Then, k(ν) is decreasing in ν by (2.1). Furthermore, since X ∈ SO,

k(ν) ≤ k(0) <∞. By a symmetric argument, one can show that K(ν) is decreasing

in ν as well.

Lemma 2.10. BC ⊆ SO1−R
+ ⊆ SO1−R.

Proof. Take C ∈ BC. Then, there exists π ∈ R and ξ ∈ R++ and C† = ξXπ,ξX

such that C O
= C†. Note that Z(ν) defined by Z

(ν)
t = eνt(C†t )

1−R is a geometric

Brownian motion and E
[
Z

(ν)
t

∣∣Fs] = Z
(ν)
s e(ν−H(π,ξ))(s−t) for s ≥ t. Let ν < H(π, ξ)

and Z = Z(ν). Then, Z O
= JZ by Remark 1.2.

Define Y by Yt = eνtC1−R. Then, Y O
= Z since C O

= C†. By integrating

from time t onwards and taking conditional expectations JY O
= JZ . Since O

= is an

equivalence relation, combining these gives Y O
= Z

O
= JZ

O
= JY and Y ∈ SO. Thus,

C ∈ SO1−R
ν ⊂ SO1−R

+ .

3 Main theorems

The four theorems in this section correspond to the four main results presented in

the introduction. Proving the results in this section will constitute the majority of

the rest of this chapter.

The first proposition states that all consumption streams such that C1−R is a

self-order process have a CRRA-order solution associated to them.

133



Stochastic Differential Utility: Proper Solutions When ϑ > 1

Proposition 3.1. Suppose that C1−R ∈ SO. Then, there exists a unique CRRA-

order solution to (1.2).

The next result says that we may relax the lower bound on the consumption

streams in Proposition 3.1 and still find a solution V . In particular, we may evaluate

consumption streams such that C1−R is bounded above by a process in SO. We find

an extremal solution in these cases.

Proposition 3.2. For each C ∈ P+ such that C1−R ≤ Y ∈ SO+, there exists a

unique extremal solution V C to (1.2). Furthermore, V C is increasing in C.

We now turn to proper solutions. The following result shows that we may find a

proper solution associated to a large class of consumption streams.

Theorem 3.3. Suppose that C ∈P+ is a right-continuous consumption stream such

that C1−R ≤ Y ∈ SO+. Then, there exists a proper solution to (1.2).

Proper solutions are an economically meaningful concept that allow us to choose

from the many solutions to the EZ-SDU equation and Theorem 3.3 provides a large

class of consumption streams which have proper solutions. However, we have not

yet discussed their uniqueness. If the property of being proper does not provide a

criteria for selecting a unique solution, then it does not help to overcome the issues of

nonuniqueness intrinsic to EZ-SDU when ϑ > 1. The following definition is therefore

of great importance.

Definition 3.4. We say that C ∈ P+ is uniquely proper if there exists a unique

proper solution to (1.2). Let UP denote the set of uniquely proper consumption

streams.

Theorem 3.5. SO1−R
+ ⊆ UP.

Theorem 3.6. Suppose that C ∈ SO1−R
+ . Then, the following three solutions to

(1.2) all coincide:

1. the CRRA-order solution associated to C given in Proposition 3.1;
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4 A change of coordinates

2. the unique extremal solution;

3. the unique proper solution.

Finally, in Section 9, we prove a verification theorem that shows that the can-

didate optimal proportional investment-consumption strategy given in Proposition

III.3.2 (on page 63) is optimal over all attainable and uniquely proper right-continuous

consumption streams.

Definition 3.7. Let UP∗ be the restriction of UP to the right-continuous processes.

Theorem 3.8 (Verification Theorem). Let initial wealth be x > 0 and suppose that

ϑ > 1 and η > 0 where η is defined in (III.3.6). If V C is the unique proper utility

process associated to C and V̂ (x) = η−ϑS x
1−R

1−R is the candidate optimal utility, then

sup
C∈C (x)∩UP∗

V C
0 = V Ĉ

0 = V̂ (x)

and the optimal investment-consumption strategy is given by (Π̂, Ĉ).

4 A change of coordinates

In this section we make a similar change of coordinates to that used in Section IV.1.

Define the nonnegative processes W = (1 − R)V and U = U(C) = ϑC1−S and the

aggregator

hEZ(u,w) = uwρ. (4.1)

Further define J = JU
ϑ by

Jt = E
[∫ ∞

t
Uϑs ds

∣∣∣∣Ft] , for all t ≥ 0. (4.2)

Remark 4.1. Note that V ∈ I(fEZ , C) if and only if W ∈ I(hEZ , U(C)). Hence, V C

is a utility process associated to consumption stream C with aggregator fEZ if and
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only if W = WU(C) is a utility process associated to consumption stream U(C) with

aggregator hEZ .

V = (Vt)t≥0 is a proper solution associated to (fEZ , C) if and only ifW = (Wt)t≥0

is a solution associated to (hEZ , U) such that {ω : E
[∫∞
t Uϑs ds

∣∣Ft](ω) > 0} \ {ω :

Wt(ω) > 0} is a null set for all t ≥ 0. In a slight abuse of the definition, we then also

refer to W as being proper.

Furthermore, V is a CRRA-order solution if and only if W is solution such that

W
O
= J and V is an extremal solution if and only if W is a maximal solution.

We will work in this coordinate system until Section 9 and prove existence and

uniqueness results in these coordinates; translation to the original coordinate system

is immediate.

5 The CRRA-order solution

This section will be dedicated to proving the existence and local uniqueness of CRRA-

order solutions, as well as giving some explicit bounds on the associated utility

process. The main result has already been proved and is given by Theorem IV.B.2.

Since it is crucial to this section and Section 7, we restate it. The original theorem

states that W O
= Λϑ, but since Λϑ

O
= JΛϑ O

= JU
ϑ

=: J , the result holds with W O
= J .

Theorem 5.1. Let ε ≥ 0 and let U O
= Λ ∈ SOϑ. Let J = (Jt)t≥0 be defined by (4.2).

Then, F εU,Λ : I(hEZ , U)→P+, defined by

F εU,Λ(W )t = E
[∫ ∞

t
UsW

ρ
s + εΛϑs ds

∣∣∣∣Ft] ,
has a fixed point W ∈ I(hEZ , U) which has càdlàg paths. It is the unique fixed point

such that W O
= J .

Remark 5.2. Often this theorem will be applied with Λ = U and ε = 0. In that case

if Uϑ ∈ SO then there exists a fixed point W of the operator FU and W
O
= J . In

particular, Proposition 3.1 holds.
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6 Subsolutions and supersolutions

The following Corollary gives explicit bounds k̂, K̂ > 0 such that the fixed point

W found in Theorem 5.1 satisfies k̂J ≤W ≤ K̂J .

Corollary 5.3. Let ε ≥ 0 and suppose that Uϑ ∈ SO
(
k,K

)
. For ε > 0, suppose that

A and B solve

A = K−1(Aρ + ε) B = k−1(Bρ + ε) (5.1)

and, if ε = 0, set A = K−ϑ and B = k−ϑ (the positive solution to (5.1)). Then, the

fixed point W of F εU,U found in Theorem 5.1 is in O(J ; kA,KB).

Proof. We first show that F εU,U maps from O(Uϑ;A,B) to itself. We only prove the

upper bound as the lower bound is symmetric. Suppose that W ≤ BUϑ. Then,

F εU,U (W )t = E
[∫ ∞

t
UsW

ρ
s + εUϑs ds

∣∣∣∣Ft]
≤ E

[∫ ∞
t

UsB
ρUϑρs + εUϑs ds

∣∣∣∣Ft]
= (Bρ + ε)E

[∫ ∞
t

Uϑs ds

∣∣∣∣Ft]
= (Bρ + ε) Jt ≤

1

k
(Bρ + ε)Uϑt = BUϑt .

The proof of Theorem 5.1/Theorem IV.B.2 given on page 111 first shows that

F εU,U : O(Uϑ) → O(Uϑ) is a contraction mapping and then uses Banach’s fixed

point theorem. Hence, if we choose an initial process W 0 ∈ O(Uϑ;A,B), then re-

peated application of F εU,U yields a fixed point W ∗ ∈ O(Uϑ;A,B). Since the fixed

pointW found in Theorem 5.1 is unique in the class O(Uϑ),W = W ∗ ∈ O(Uϑ;A,B).

Finally, since Uϑ ∈ SO(k,K), O(Uϑ;A,B) ⊆ O(J ; kA,KB).

6 Subsolutions and supersolutions

In this section we prove comparison results for subsolutions and supersolutions which

we defined in Chapter IV. We recall the definition for the reader’s benefit.

Definition 6.1. Let C ∈ P+ and g be an aggregator random field. A V-valued,
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Stochastic Differential Utility: Proper Solutions When ϑ > 1

làd, optional process V is called

• a subsolution for the pair (g, C) if lim supt→∞ E [Vt+] ≤ 0, and for all bounded

stopping times τ ≤ σ,

Vτ ≤ E
[
Vσ+ +

∫ σ

τ
g(s, ω, Cs, Vs) ds

∣∣∣∣Fτ] .
• a supersolution for the pair (g, C) if lim inft→∞ E [Vt+] ≥ 0, and for all bounded

stopping times τ ≤ σ,

Vτ ≥ E
[
Vσ+ +

∫ σ

τ
g(s, ω, Cs, Vs) ds

∣∣∣∣Fτ] .
• a solution for the pair (g, C) if it is both a subsolution and a supersolution and

V ∈ I(g, C).

Remark 6.2. By taking the limit as σ → ∞ and using the transversality condi-

tion, it is clear that a solution V for the pair (g, C) satisfies (III.1.1). We then

choose a càdlàg version of V so that V is a utility process associated to (g, C).

Similarly, since utility processes are càdlàg, Vτ = E
[∫∞
τ g(s, ω, Cs, Vs) ds

∣∣Fτ ] =

E
[∫ σ
τ g(s, ω, Cs, Vs) ds+ Vσ+

∣∣Fτ ] and the converse is also true.

6.1 Comparison of subsolutions and supersolutions

It was shown in Theorem IV.2.8 on page 98 that when g is decreasing in its last

argument, if V 1 is a subsolution and V 2 is a supersolution (both associated to g

and some C ∈ P+) and either V 1 or V 2 is in UI(g, C), then V 1
σ ≤ V 2

σ for all

finite stopping times σ. However, when ϑ > 1, the Epstein–Zin aggregator fEZ is

increasing in its last argument so this theorem does not hold.

The next proposition shows that we may weaken the condition that the aggregator

has a negative derivative with respect to its last argument, and instead assume that

it has a derivative which is bounded above by some positive decreasing exponential.
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The two corollaries that follow then amount to providing conditions under which the

assumptions of the theorem are met.

We introduce the following condition on a pair (V 1, V 2) of stochastic processes

which will be a requirement for our comparison theorems.

Condition A. Let g : [0,∞)× Ω×R+ ×V→ V be an aggregator random field and

C ∈P+. The pair (V 1, V 2) satisfies Condition A for the pair (g, C) if either V 1 or

V 2 is in UI(g, C) and (V 1 − V 2)+ is L1 bounded.

Remark 6.3. Note that for a subsolution V 1 and a supersolution V 2 associated to

the pair (g, C), a sufficient condition for the pair (V 1, V 2) to satisfy Condition A

for the pair (g, C) is that V 1, V 2 ∈ UI(g, C). This is because E
[
(V 1 − V 2)+

]
≤

|V 1
0 |+ |V 2

0 |+E
[∫∞

0 |g(s, ω, Cs, V
1
s )| ds

]
+E

[∫∞
0 |g(s, ω, Cs, V

2
s )|ds

]
<∞. However,

Condition A is more general.

Proposition 6.4 (Comparison Theorem). Let g : [0,∞) × Ω × R+ × V → V be

an aggregator random field that is concave and nondecreasing in its last argument.

Let C ∈ P+. Suppose that V 1 is a subsolution and V 2 is a supersolution for the

pair (g, C) and that the pair (V 1, V 2) satisfies Condition A for the pair (g, C). Sup-

pose further that (gv(t, ω, Ct(ω), V 2
t (ω)))t≥0 ≤ (κe−νt)t≥0 for some κ, ν > 0. Then,

V 1
τ ≤ V 2

τ P-a.s. for all finite stopping times τ ≥ 0.

Proof. Seeking a contradiction, suppose there is a finite stopping time τ such that

P[V 1
τ > V 2

τ ] > 0. By replacing τ with τ ∧ T for T sufficiently large, we may assume

without loss of generality that τ is bounded. Set A := {V 1
τ > V 2

τ }. Since V 1 and V 2

are làd, we may define the right-continuous processes (V 1
t+)t≥0 and (V 2

t+)t≥0. Further,

define the stopping time σ := inf{t ≥ τ : V 1
t+ ≤ V 2

t+}. Then (V 1
σ+− V 2

σ+)1{σ<∞} ≤ 0

by the right-continuity of (V 1
t+)t≥0 and (V 2

t+)t≥0.

First, we show that P[A ∩ {τ < σ}] > 0. Indeed, otherwise if 1{τ=σ}∩A = 1A

P-a.s., the definition of sub- and supersolutions yields

1A
(
V 1
τ − V 2

τ

)
≤ E

[
1A
(
V 1
τ+ − V 2

τ+

) ∣∣Fτ ] = E
[
1A
(
V 1
σ+ − V 2

σ+

)
1{σ<∞}

∣∣Fτ ] ≤ 0,
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and we arrive at a contradiction.

Next, by the definition of sub- and supersolutions and by Jensen’s inequality for

the convex function f(x) = x+ = max{x, 0}, for t ≤ T , letting Bt = A∩{τ ≤ t < σ}

1Bt
(
V 1
t − V 2

t

)+
≤ E

[
1Bt

(
V 1

(T∧σ)+ − V
2

(T∧σ)+ +

∫ T∧σ

t
g(s, ω, Cs, V

1
s )− g(s, ω, Cs, V

2
s ) ds

)+
∣∣∣∣∣Ft
]

≤ E
[
1Bt
(
V 1

(T∧σ)+ − V
2

(T∧σ)+

)+
+ 1Bt

∫ T∧σ

t

(
g(s, ω, Cs, V

1
s )− g(s, ω, Cs, V

2
s )
)+

ds

∣∣∣∣Ft]

where the right hand side is well-defined since either V 1 or V 2 is in UI(g, C). Taking

expectations yields

E
[
1Bt

(
V 1
t − V 2

t

)+]
≤ E

[
1Bt
(
V 1

(T∧σ)+ − V
2

(T∧σ)+

)+
+ 1Bt

∫ T∧σ

t

(
g(s, ω, Cs, V

1
s )− g(s, ω, Cs, V

2
s )
)+

ds

]
(6.2)

Taking the lim sup as T →∞ and using the fact that 1Bt1σ≤T
(
V 1
σ+ − V 2

σ+

)+
= 0

P-a.s. for all T ≥ 0 and the transversality condition of sub- and supersolutions gives

lim sup
T→∞

E
[
1Bt

(
V 1

(T∧σ)+ − V
2

(T∧σ)+

)+
]

= lim sup
T→∞

E
[
1Bt1T<σ

(
V 1
T+ − V 2

T+

)+]
+ lim sup

T→∞
E
[
1Bt1σ≤T

(
V 1
σ+ − V 2

σ+

)+]
≤ lim sup

T→∞
E
[(
V 1
T+ − V 2

T+

)+] ≤ lim sup
T→∞

E
[
(V 1
T+)+ + (V 2

T+)−
]
≤ 0,

where the last inequality follows since either V = R+ (and (V 2
T+)− = 0) along with

the transversality condition for supersolutions, or V = R− (and (V 1
T+)+ = 0) along

with the transversality condition for supersolutions. Hence, by taking the lim sup as

140



6 Subsolutions and supersolutions

T →∞ and using the positivity of the integrand, (6.2) becomes

E
[
1Bt

(
V 1
t − V 2

t

)+]
≤ E

[
1Bt

∫ σ

t

(
g(s, ω, Cs, V

1
s )− g(s, ω, Cs, V

2
s )
)+

ds

]
≤ E

[∫ ∞
t

1Bsgv(s, ω, Cs, V
2
s )
(
V 1
s − V 2

s

)+
ds

]
≤ E

[∫ ∞
t

κe−νs1Bs
(
V 1
s − V 2

s

)+
ds

]
,

where in the middle line we have used that g is concave and increasing in its last

argument. If Γ(t) := E
[
1Bt

(
V 1
t − V 2

t

)+], then Γ = (Γ(t))t≥0 is a nonnegative

process such that Γ(t) ≤
∫∞
t κe−νsΓ(s) ds. Note that Γ(t) ≤ E

[
(V 1
t − V 2

t )+
]
≤ γ for

some γ > 0, by the L1-boundedness of (V 1−V 2)+. Therefore, since
∫∞

0 κe−νt dt = κ
ν

and
∫∞

0 κe−νsΓ(s) ds ≤ γκ
ν , we can apply Grönwall’s inequality for Borel functions

([HH17, Theorem 2.5] with y(t) = Γ(−t) and µ(A) =
∫
A∩R− κe

νt dt) to conclude

that Γ(t) = 0 for all t > 0.

Note that 1Bt
(
V 1
t − V 2

t

)+ ≥ 0 for each t ≥ 0. Hence, by Fatou’s Lemma,

0 ≤ E
[
1Bt

(
V 1
t+ − V 2

t+

)+] ≤ lim inf
s�t

E
[
1Bs

(
V 1
s − V 2

s

)+]
= 0. (6.6)

Furthermore, since 1Bt
(
V 1
t+ − V 2

t+

)
= 1Bt

(
V 1
t+ − V 2

t+

)+ ≥ 0 for each t ≥ 0 by the

definition of σ, it follows from (6.6) that Pt = 1Bt
(
V 1
t+ − V 2

t+

)
= 0 P-a.s. for all t ≥ 0.

Since (V 1
t+)t≥0, (V 2

t+)t≥0 and 1Bt are right-continuous, P = (Pt)t≥0 is right continuous

and is therefore indistinguishable from zero. In particular, 1A1τ<σ
(
V 1
τ+ − V 2

τ+

)
=

Pτ = 0 P-a.s. But then the definition of sub-and supersolutions implies that

1A1τ<σ
(
V 1
τ − V 2

τ

)
≤ E

[
1A1τ<σ

(
V 1
τ+ − V 2

τ+

) ∣∣Fτ ] = 0,

and we arrive at a contradiction.

The first corollary will be used in the Verification Theorem later. Hence, it is
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stated in the original coordinate system.

Corollary 6.5. Let fEZ be the Epstein–Zin aggregator and suppose that R < 1.

Let C ∈ P+. Suppose that V 1 is a subsolution and V 2 is a supersolution for the

pair (fEZ , C) and that the pair (V 1, V 2) satisfies Condition A for the pair (fEZ , C).

Suppose further that C1−R
t ≤ Ke−γt(1 − R)V 2

t for some K, γ > 0 and all t ≥ 0.

Then, V 1
τ ≤ V 2

τ for all finite stopping times τ ≥ 0.

Proof. Taking derivatives of fEZ with respect to its second argument gives

∂fEZ
∂v

(c, v) = (ϑ− 1)c1−S((1−R)v)−
1
ϑ (6.8)

∂2fEZ
∂v2

(c, v) = − ρ(1−R)c1−S((1−R)v)−(1+ 1
ϑ

) < 0.

Hence, using (6.8), ∂fEZ∂v (Cs, V
2
s ) ≤ (ϑ−1)K

1
ϑ e−

γ
ϑ
t and the conditions of Proposition

6.4 are met with κ = (ϑ− 1)K
1
ϑ and ν = γ

ϑ .

Remark 6.6. Note that the utility process associated to constant proportional strate-

gies is given in (1.3) by h(π, ξ)X1−R
t . Since Ct = ξX, the conditions of Corollary 6.5

are not met, and we cannot use it to give a uniqueness result (even over constant

proportional strategies). We instead use Corollary 6.5 in the proof of the Verifi-

cation Theorem (Theorem 3.8), in which we perturb the candidate value function

beforehand.

Corollary 6.7. Fix ν > 0. Suppose Λ ∈ SOϑν and define the perturbed aggregator

hε,ν,ΛEZ (t, ω, u, w) = uwρ + εeνtΛϑt (ω), for ε > 0. (6.9)

Fix ε2 > 0 and 0 ≤ ε1 ≤ ε2. Let U1, U2 ∈ P+ satisfy U1 ≤ U2 ≤ Λ. Suppose

that W 1 is a subsolution for the pair (hε1,ν,ΛEZ , U1) and W 2 is a supersolution for

the pair (hε2,ν,ΛEZ , U2) such that W 1,W 2 ∈ [0,∞) and such that (W 1,W 2) satisfies

Condition A for the pair (hε1,ν,ΛEZ , U1). Then, W 1
τ ≤W 2

τ for all finite stopping times

τ ≥ 0.
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7 The extremal solution

Proof. First note that W 2 is a supersolution for (hε1,ν,ΛEZ , U1), since

W 2
τ ≥ E

[∫ σ

τ
hε2,ν,ΛEZ (U2

s ,W
2
s ) ds+W 2

σ+

∣∣∣∣Ft] ≥ E
[∫ σ

τ
hε1,ν,ΛEZ (U1

s ,W
2
s ) ds+W 2

σ+

∣∣∣∣Ft] .
As Λϑ ∈ SOν , there exists KΛ such that W 2

t ≥ E
[∫∞
t ε2eνsΛϑs ds

∣∣Ft] ≥ ε2
KΛ
eνtΛϑt .

Therefore, since U1 ≤ Λ,

∂hε1,ν,ΛEZ

∂w

(
t, ω, U1

t ,W
2
t

)
= ρU1

t (W 2
t )−

1
ϑ ≤ ρ

(
KΛ
ε2

) 1
ϑ
e−

ν
ϑ
t.

Furthermore, ∂
2h
ε1,ν,Λ
EZ
∂w2 (u,w) = −ϑ−1

ϑ2 uw
−(1+ 1

ϑ
) < 0, so that hε1,ν,ΛEZ is concave. Since

(W 1,W 2) satisfies Condition A for the pair (hε1,ν,ΛEZ , U1), the assumptions of Propo-

sition 6.4 are met, and the conclusion follows.

Remark 6.8. The utility process associated to (hε,ν,ΛEZ , U) for U ≤ Λ ∈ SOϑν is unique

when ε, ν > 0. This follows from Corollary 6.7 and the fact that a utility process is

both a subsolution and a supersolution which lies in UI(hε,ν,ΛEZ , U).

7 The extremal solution

In this section, we investigate the extremal solution, from Definition 2.3; in the

changed coordinate system it corresponds to the maximal solution. We first note

that it is unique.

Proposition 7.1. If the maximal solution exists, it is unique.

Proof. Suppose for contradiction that there are two maximal solutions W 1 and W 2.

Then, for all t ≥ 0, W 1
t ≥ W 2

t since W 1 is maximal in the class of solutions and

W 1
t ≥ W 2

t since W 1 is maximal also. Thus, W 1
t = W 2

t for all t ≥ 0. Since both W 1

and W 2 are càdlàg, they are indistinguishable.

We now turn to existence of a maximal solution associated to (hEZ , U).
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Proposition 7.2. Suppose that U ∈P+ satisfies U ≤ Λ for Λ ∈ SOϑ+. Then, there

exists a unique maximal solution associated to (hEZ , U). It is also maximal in the

class of L1-bounded subsolutions.

Proof. Since Λ ∈ SOϑ+, there exists ν > 0 such that Λ ∈ SOϑνϑ. For such ν, let Λ
(ν)
t =

eνtΛt. Then, Λ(ν) = (Λ
(ν)
t )t≥0 ∈ SOϑ. For each n ∈ N, let Un := max

{
U, 1

nΛ(ν)
}
.

Then, Un O
= Λ(ν) as Un ≤ Λ ≤ Λ(ν). Let (εn)n∈N be a positive-valued sequence such

that εn ↘ 0.

By Proposition 5.1, for each n ∈ N, there exists a solution Wn associated to

(hεn,νϑ,ΛEZ , Un), where hεn,νϑ,ΛEZ is defined in (6.9). Furthermore, Wn is decreasing in n

by Corollary 6.7 and Un(Wn)ρ is dominated by U1(W 1)ρ. Hence, by the Dominated

Convergence Theorem, we find that W := limn→∞W
n satisfies

Wt = lim
n→∞

E
[∫ ∞

t
Uns (Wn

s )ρ + εne
νϑsΛϑs ds

∣∣∣∣Ft] = E
[∫ ∞

t
UsW

ρ
s ds

∣∣∣∣Ft] ,
so that W ∈ I(hEZ , U) is a solution associated to (hEZ , U).

Suppose that W ′ ∈ I(hEZ , U) is a solution (or an L1-bounded subsolution) as-

sociated to (hEZ , U). Then, the pair (W ′,Wn) satisfies Condition A for the pair

(hEZ , U), sinceWn ∈ UI(hεn,νϑ,ΛEZ , Un) ⊂ UI(hEZ , U) and (W ′−Wn)+ ≤W ′, where

W ′ is L1-bounded. Hence,Wn ≥W ′ for each n ∈ N by Corollary 6.7 andW ≥W ′ is

a maximal (L1-bounded sub-) solution. Uniqueness in the class of maximal solutions

follows from Proposition 7.1.

Proposition 3.2 is a direct result of the Proposition 7.2 and the following com-

parison result for maximal solutions.

Proposition 7.3. Let hEZ be the aggregator defined in (4.1) and suppose that

U1, U2 ∈ P+ satisfy U1 ≤ U2 ≤ Λ ∈ SOϑ+. If W 1 and W 2 are the maximal so-

lutions associated to hEZ and consumptions U1 and U2 respectively, then W 1
t ≤W 2

t

for all t ≥ 0.

Proof. Let ν be such that Λ ∈ SOϑνϑ. Define Λ(ν) =
(
Λ

(ν)
t

)
t≥0

by Λ
(ν)
t = eνtΛt and,
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7 The extremal solution

for n ∈ N and i ∈ {1, 2}, define U i,n = max
{
U i, 1

nΛ(ν)
}

and εn = 1
n . Then, by

Proposition 5.1, there exists a solution W i,n associated to (hεn,νϑ,ΛEZ , U i,n). Further-

more, for all n ∈ N and t ≥ 0, W 1,n ≤ W 2,n by Corollary 6.7. It is unique by

Remark 6.8.

As in Proposition 7.2, the unique maximal solution associated to U i is given by

W i := limn→∞W
i,n for i ∈ {1, 2}. Thus,W 1

t = limn→∞W
1,n
t ≤ limn→∞W

2,n
t = W 2

t

for all t ≥ 0.

We may also deduce the following Corollary to Proposition 7.2.

Corollary 7.4. Let C ∈ P+ be such that C1−R ≤ Y ∈ SO+. Then, the extremal

solution associated to (fEZ , C) is the maximal L1-bounded subsolution when R < 1

and the minimal L1-bounded supersolution when R < 1.

The final result of this section shows that the solution found by fixed point

argument in Proposition 5.1 is the unique maximal solution.

Proposition 7.5. Let hEZ be the aggregator defined in (4.1). Suppose that U ∈ SOϑ+.

Then the solution associated to (hEZ , U) found in Proposition 5.1 is the maximal

solution.

Proof. Fix ϑ > 1. Since U ∈ SOϑ+, there exists ν̂ > 0 such that U ∈ SOϑν̂ϑ. By

Lemma 2.8, it follows that U ∈ SOϑνϑ for ν ≤ ν̂. For each ν ≤ ν̂, define U (ν)
t = e−νtUt

and J (ν) = (J
(ν)
t )t≥0 by J (ν)

t = E
[∫∞
t eνsUϑs ds

∣∣Ft]. We can then find k(ν),K(ν)

such that
(
U (ν)

)ϑ ∈ SO(k(ν),K(ν)). By Remark 2.9, we may choose k(ν),K(ν)

such that 0 < k(ν̂) ≤ limν→0 k(ν) = k(0) =: k <∞ and 0 < K(ν̂) ≤ limν→0K(ν) =

K(0) =: K <∞, where both limits are decreasing in ν.

For each ε > 0 and 0 < ν ≤ ν̂, there exists a solution W ε,ν associated to

(hε,νϑ,ΛEZ , U (ν)) by Proposition 5.1. Furthermore, by Corollary 5.3,W ε,ν
t ≤ K(ν)Bε,νJ

(ν)
t

where B = Bε,ν solves B = k(ν)−1(Bρ + ε). By Proposition 7.2, the unique max-

imal solution associated to U is given by W := limε→0W
ε,ν . Therefore, since

limε→0B
ε,ν = B0,ν = k(ν)−ϑ, Wt ≤ K(ν)k(ν)−ϑJ (ν) for all ν ≤ ν̂. Taking the

limit as ν ↘ 0, gives Wt ≤ Kk−ϑJ (0) =: Kk−ϑJ .
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Similarly, by maximality of W and the lower bound found in Corollary 5.3,

W ≥ kK−ϑJ . Hence, the maximal solution is in O(J). Since the solution found

in Proposition 5.1 is unique in O(J), it is equal to the maximal solution.

8 The proper solution

We first focus on existence of proper solutions and then turn to uniqueness.

8.1 Existence of proper solutions

The goal of this section is to prove Theorem 3.3. To do this we first prove that

there exists a proper solution W associated to the aggregator hEZ and consump-

tion stream U given by a discounted indicator function of a stochastic interval, i.e.

Ut = e−γt1τ≤t<σ for τ and σ stopping times such that τ < σ. Since any right-

continuous consumption stream can be bounded from below by (a scaled version of)

these processes, we then show by taking limits that there exists a proper solution

associated to right-continuous processes.

Proposition 8.1. Let γ > 0 and τ and σ be stopping times such that τ ≤ σ. Let

U = (Ut)t≥0 be given by Ut := e−γt1τ≤t<σ. Then, there exists a proper solution

W = (Wt)t≥0 associated to U , for which Wt ≥
(

1
γϑE

[
e−γ(t∨τ) − e−γ(t∨σ)

∣∣Ft] )ϑ.
The proof of Proposition 8.1 is long and technical and therefore relegated to the

appendix. To prove Theorem 3.3, we introduce two lemmas.

Lemma 8.2. Suppose that W is a utility process associated to (hEZ , U) and suppose

that there exists t0 ≥ 0 such that Ut = 0 for t < t0. If A ∈ Ft0, and Ũ = (Ũt)t≥0 is

given by Ũt = E [1A | Ft]Ut then W̃t = E [1AWt∨t0 | Ft] is a utility process associated

to (hEZ , (Ũt)t≥0).

Proof. Suppose that t ≥ t0. Then, since W is a utility process associated to U ,

W̃t = 1AWt = 11+ρ
A Wt = E

[∫ ∞
t

1AUs(1AWs)
ρ ds

∣∣∣∣Ft] = E
[∫ ∞

t
ŨsW̃

ρ
s ds

∣∣∣∣Ft] .
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8 The proper solution

Conversely, suppose that t < t0. Then, since Ũs = 0 for s < t0 and both W̃t0 = 1AWt0

and W̃t0 = E
[∫∞
t0
ŨsW̃

ρ
s ds

∣∣∣Ft0],
W̃t = E [1AWt0 | Ft] = E

[∫ ∞
t0

ŨsW̃
ρ
s ds

∣∣∣∣Ft] = E
[∫ ∞

t
ŨsW̃

ρ
s ds

∣∣∣∣Ft] .
Lemma 8.3. Suppose U ∈P+ is right-continuous. Fix t ≥ 0 and let At = {JUϑt > 0}

and Bt =
⋃
T≥t
T∈Q

⋃
ε>0
ε∈Q

{
E
[
1{UT≥ε}

∣∣Ft] > 0
}
. Then, P(At \Bt) = 0.

Proof. Seeking a contradiction, suppose Ct := At \ Bt has positive measure. Then

E[1CtJ
U
t ] > 0 by the definition of At. Moreover, for each rational T ≥ t, the def-

inition of Bt gives E [1CtUT | Ft] ≤ E
[
1BctUT

∣∣Ft] = 0 which yields 1CtUT = 0

P-a.s. Since U is right-continuous, 1CtUT = 0 for all T ≥ t P-a.s. Taking expecta-

tions yields E[1CtJ
U
t ] = E

[∫∞
t 1CsUs ds

]
= 0 and we arrive at a contradiction.

We may now prove Theorem 3.3. To show that W is proper, we must show that

if At = {JUϑt > 0} and Ct = {Wt > 0}, then P(At \ Ct) = 0. By Lemma 8.3, since

At ⊆ Bt up to null sets, we may instead prove that P(Bt \ Ct) = 0.

Proof of Theorem 3.3. Since C1−R ≤ Y for Y ∈ SO+, U := ϑC1−S ≤ ϑY
1
ϑ . As

Y ∈ SO+ and by Remark IV.1.3, ϑY
1
ϑ ∈ SOϑ+. Therefore, by Proposition 7.2 there

exists a maximal solutionW associated to (hEZ , U). We now show thatW is proper.

Fix t∗ ≥ 0. Set At∗ := {JUϑt∗ > 0} and Ct∗ = {Wt∗ > 0}. By Lemma 8.3, it

suffices to show that P(Bε
T \ Ct∗) = 0 for all rational T ≥ t∗, ε > 0, where Bε

T =

{E
[
1{UT≥ε}

∣∣Ft∗] > 0}. So, fix rational T ≥ t∗ and ε > 0. Define the stopping time

σε = inf{t ≥ T : Ut ≤ ε
2} and note that {σε > T} on {UT ≥ ε} by right-continuity

of U . Define the process Ũ = (Ũt)t≥0 by Ũt := ε
2e
−γtE

[
1{UT≥ε}

∣∣Ft]1{t∈[T,σε)}.

Then Ũ is dominated by U . Moreover, Proposition 8.1 for Ût = e−γt1{T≤t<σε} with

corresponding solution Ŵ , Lemma 8.2 for t0 = T and A = {ÛT ≥ ε} and Jensen’s

inequality show that there exists a solution W̃ associated to Ũ = (Ũt)t≥0 such that
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for all t ≥ 0

W̃t ≥ E

[
1{UT≥ε}

(
ε

2γϑ
E
[
(e−γ(t∨T ) − e−γ(t∨σε))

∣∣∣Ft])ϑ
∣∣∣∣∣Ft
]

≥
(

ε

2γϑ
E
[
1{UT≥ε}

∣∣Ft]E [(e−γ(t∨T ) − e−γ(t∨σε))
∣∣∣Ft])ϑ .

Since {σε > T} on {UT ≥ ε}, it follows that W̃t∗ > 0 on {UT ≥ ε}. Now the claim

follows from the fact that Wt∗ ≥ W̃t∗ by Proposition 7.3.

8.2 Uniqueness of proper solutions

We now turn to uniqueness of proper solutions. The aim of this section will be to

prove Theorem 3.5 and then, as a corollary, Theorem 3.6. The following two lemmas

will be useful.

Lemma 8.4. Fix X ∈ SO, and let JX = (JXt )t≥0 be defined by JXt = E
[∫∞
t Xsds

∣∣Ft].
Then, there exists a martingale M = (Mt)t≥0 such that JXt = Mte

−
∫ t
0 (Xs/JXs )ds.

Proof. Let N = (Nt)t≥0 be the uniformly integrable martingale given by Nt =

E
[∫∞

0 Xs ds
∣∣Ft]. Then JXt = Nt −

∫ t
0 Xs ds. Define the increasing process A by

At =
∫ t

0 (Xs/J
X
s ) ds. Since X ∈ SO we have 0 < Xt ≤ KJXt for some K and hence

0 < At ≤ Kt.

DefineM viaMt = eAtJXt . Then dMt = eAtdJXt +Xte
Atdt = eAtdNt and all that

remains to show is that the local martingaleM is a martingale. Since A is increasing

and At ≤ Kt, we have E[‖eA‖T |NT |] ≤ E[(eKT − 1)|NT |] < ∞ for T ≥ 0, where

‖eA‖T is the total variation of eA = (eAt)t≥0 at time T . Hence, M is a martingale

by [HMK19, Lemma A.1].

Lemma 8.5. Let α > 0, β ∈ (0, 1) and let G = (Gt)t≥0 be a càdlàg submartingale.

Suppose that X = (Xt)t≥0 is is a right-continuous process such that X0 = β and

Xt ≤ 1 for all t ≥ 0. Define σ = inf{t ≥ 0 : Xt = 1} and suppose that

dXt ≥ αXt dt+ dGt, for all t < σ. (8.1)
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Then, there exists ν ∈ (0, 1) and T ∈ (0,∞) such that P(σ < T ) > ν.

Proof. First note that X is a (local) submartingale bounded above by 1 and so

converges almost surely to an F∞-measurable random variable X∞ ≤ 1 by the

Martingale Convergence Theorem.

Fix ξ ∈ (0, β). Let τ = inf{t ≥ 0 : Xt /∈ (ξ, 1)} ≤ σ. From the dynamics of X

given in (8.1),

Xt∧τ ≥ X0 +

∫ t∧τ

0
αXs ds+Gt∧τ −G0 ≥ β + αξ(t ∧ τ) +Gt∧τ −G0.

Then, using that G is a càdlàg submartingale and the Optional Sampling Theorem,

E [Xt∧τ ] ≥ β + αξE [t ∧ τ ] . (8.2)

Since X ≤ 1, taking the lim sup and using the Reverse Fatou’s Lemma on the left

hand side of (8.2) and the Monotone Convergence Theorem on the right hand side

gives

1 ≥ E [Xτ ] = E [1τ<∞Xτ ] + E [1τ=∞X∞] ≥ β + αξE [τ ] ≥ β.

Therefore, E[τ ] ≤ 1−β
αξ and P(τ =∞) = 0. Consequently, sinceX is right-continuous,

Xτ ∈ (−∞, ξ] ∪ {1} P-a.s. and

1− (1− ξ)P(Xτ ≤ ξ) = P(Xτ = 1) + ξP(Xτ ≤ ξ) ≥ E [Xτ ] ≥ β.

In particular, P(Xτ ≤ ξ) ≤ 1−β
1−ξ and P(τ = σ) = P(Xτ = 1) ≥ 1 − 1−β

1−ξ = β−ξ
1−ξ .

Furthermore,

P(τ ≥ T ; τ = σ) ≤ E
[ τ
T
1τ≥T1τ=σ

]
≤ 1

T
E [τ ] ≤ 1− β

αξT
, for all T ≥ 0,

and

P(σ < T ) ≥ P(τ < T ; τ = σ) = P(τ = σ)− P(τ ≥ T ; τ = σ) ≥ β − ξ
1− ξ

− 1− β
αξT

.
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Choose ν = 1
2

(
β−ξ
1−ξ

)
and T = 1−β

αξν . Then, P(σ < T ) ≥ ν.

We may now prove Theorem 3.5 in the (U,W ) coordinates.

Proof of Theorem 3.5. Fix U ∈ SOϑ+ and recall J = (Jt)t≥0 is given by Jt =

E
[∫∞
t Uϑs ds

∣∣Ft]. Suppose that Uϑ ∈ SO(k,K) and let W ∈ O(J) be the solu-

tion associated to (hEZ , U) found in Theorem 5.1 (after setting ε = 0 and U = Λ).

By Proposition 7.5, W is the unique maximal solution, and as we saw in the proof

of Theorem 3.3 it is also proper. We now prove uniqueness.

For contradiction, assume that there exists a proper solution Y = (Yt)t≥0 such

that Y 6= W . Since W is maximal, Y ≤ W . Then, since W is unique in the class

O(J), it follows that Y
O

6= J . Hence, there exists t ≥ 0, B ∈ Ft and ε > 0 such that

P(B) > ε and Yt < kK−ϑJt on B. For ease of exposition, assume that t = 0, B = Ω

and Y0 = y = (1− ε)kK−ϑJ0. The general case is similar.

Define Z = (Zt)t≥0 by Zt = Yt(kK
−ϑJt)

−1 and note that Z is càdlàg by Remark

6.2 and Z0 = (1 − ε). Since kK−ϑJZ ≡ Y is a utility process and since Uϑ ≥ kJ ,

for all t ≤ T ,

kK−ϑJtZt = Yt = E
[∫ T

t
UsY

ρ
s ds+ YT

∣∣∣∣Ft]
≥ E

[∫ T

t
(kJs)

1
ϑ (kK−ϑJsZs)

ρ ds+ kK−ϑJTZT

∣∣∣∣Ft] .
By Lemma 8.4, we find that Jt = Mte

−At for At =
∫ t

0 (Uϑs /Js)ds. Hence, dividing by

kK−ϑMt and collecting terms gives

e−AtZt ≥
1

Mt
E
[∫ T

t
KMse

−AsZρs ds+MT e
−ATZT

∣∣∣∣Ft] .
Define Z̃t = e−AtZt and consider an equivalent measure P̃ defined by dP̃

dP
∣∣
Ft = Mt, so

that

Z̃t ≥ Ẽ
[∫ T

t
Ke−(1−ρ)AsZ̃ρs ds+ Z̃T

∣∣∣∣ Ft] , for all t ≤ T.

If we define O by Ot = Z̃t+
∫ t

0 Ke
−(1−ρ)AsZ̃ρs ds, then O is a càdlàg supermartingale.
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By the Doob-Meyer decomposition, O can therefore be decomposed as O = N + P ,

where N is a local martingale and P is a decreasing process such that P0 = 0, both

of which are càdlàg. In particular, rearranging gives

dZ̃t = −Ke−(1−ρ)AtZ̃ρt dt+ dNt − dPt.

Let τ := {t ≥ 0 : Zt /∈ (0, 1)}. Let Ẑt = Zt∧τ , N̂t =
∫ t∧τ

0 eAs dNs and P̂t =∫ t∧τ
0 eAs dPs. Then, applying the product rule to Ẑt = eAtZ̃t up to t ≤ τ , and noting

that dAt
dt =

Uϑt
Jt
≤ K,

dẐt = Ẑt dAt −KẐρt dt+ dN̂t − dP̂t ≤ K(Ẑt − Ẑρt ) dt+ dN̂t ≤ dN̂t.

Since N̂t ≥ Ẑt − Ẑ0 ≥ −Ẑ0, N̂ is a supermartingale.

Let Xt = 1− Ẑ1−ρ
t ≤ 1. Then, X = (Xt)t≥0 is càdlàg and, for t < τ ,

dXt = −(1− ρ)Ẑ−ρt dẐt +
ρ(1− ρ)

2
Ẑ
−(ρ+1)
t d〈Z〉t

= −(1− ρ)(Ẑ1−ρ
t dAt −K dt) + dLt + dQt

≥ K(1− ρ)Xt dt+ dLt + dQt ≥ dLt

where

Lt := −(1− ρ)

∫ t

0
Ẑ−ρs dN̂s and Qt := (1−ρ)

∫ t

0
Ẑ−ρs dP̂s+

∫ t

0

ρ(1− ρ)

2
Ẑ−(ρ+1) d〈Z〉s.

Since Lt ≤ Xt − X0 ≤ 1, L is a (continuous) submartingale. Hence, G := L + Q

is a continuous submartingale. The result that X explodes to 1 in finite time with

positive probability follows from Lemma 8.5. This implies that Z hits zero in finite

time and, consequently, that Y is not proper.

Proof of Theorem 3.6. Let W be the unique solution such that W O
= J given by

Proposition 3.1 (V = W
1−R is the CRRA-order solution). Since J > 0, W is proper
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and uniqueness in the class of proper solutions follows from Theorem 3.5. Finally,

W is the maximal solution by Proposition 7.5.

9 Verification of the candidate optimal strategy

This section aims to prove that the candidate optimal strategy given in Proposition

III.3.2 is indeed optimal. We will roughly follow the approach detailed in Chapter IV

which goes as follows: first, show that if X̂ = XΠ̂,Ĉ is the wealth process under the

candidate optimal strategy, then V̂ (X + εX̂) is a supersolution for (fEZ , C); next,

use a version of the Comparison Theorem (Corollary 6.5) for sub- and supersolutions

to conclude that V̂ (x(1+ε)) ≥ V C
0 ; finally, let ε↘ 0 to give V̂ (x) ≥ V C

0 . Optimality

follows since V Ĉ
0 = V̂ (x) by Proposition III.3.2.

However, the approach is not quite this simple for two main reasons. The most

pressing reason is that when ϑ > 1 the utility process V C fails to be unique. The

optimisation therefore takes place over the attainable and right-continuous consump-

tion streams for which there exists a unique proper solution to the EZ-SDU equation.

As we have argued in Section 8, the proper solution is the economically meaningful

solution, and we may only consider the consumption streams that have a unique

proper solution associated to them. The assumption of right-continuity, which is

necessary for the proof, is not overly restrictive.

The next issue is that the hypotheses of the relevant comparison theorem (Corol-

lary 6.5) are not satisfied, even for right-continuous consumption streams with a

unique proper solution. To overcome this issue, one must approximate an arbi-

trary consumption stream in UP∗ by a series of consumption streams satisfying the

conditions and then take limits. The requirement of right-continuity ensures that

we may choose right-continuous approximating consumption streams, which then

have an associated proper solution V n by Theorem 3.3. Since the limiting process

V = limn→∞ V
n is a proper solution associated to C, it must agree with the unique

proper solution V C .
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9 Verification of the candidate optimal strategy

To prove Theorem 3.8, we will use Lemma IV.4.2, which we restate for the readers

benefit.

Lemma 9.1. Let ε > 0 and let X̂ = XΠ̂,Ĉ be the wealth process under our candidate

optimal strategy. If X = XΠ,C is the wealth process associated to an admissible

strategy (Π, C), then V̂ (X + εX̂) is a supersolution for the pair (fEZ , C + ηεX̂).

We may then prove Theorem 3.8. Note that V̂ (X̂) is a solution for the pair

(fEZ , ηX̂) and, by scaling, V̂ (εX̂) is a solution for the pair (fEZ , ηεX̂). We expect

that V̂ (XΠ,C) is a supersolution for (fEZ , C) but, when R > 1, the transversality

condition might not hold. Furthermore, the conditions required for Proposition 6.4

to hold may be impossible to verify. However, as we show in the proof below, by

considering the perturbed problem, the transversality condition is guaranteed and

the comparison theorem can be applied.

Proof of Theorem 3.8. It follows from Proposition III.3.2 that V̂ (X̂) is a utility pro-

cess associated to candidate optimal strategy (Π̂, Ĉ). Since V̂ (X̂) is a CRRA-order

solution to (III.2.4), it is the unique proper solution to (III.2.4) by Theorem 3.6.

Hence, V Ĉ
0 = V̂ (x). It therefore only remains to show that V C

0 ≤ V̂ (x) for all

C ∈ C (x) ∩ UP∗. Fix an arbitrary C ∈ C (x) ∩ UP∗ and let Π = (Πt)t≥0 be an

associated investment process.

We first prove the result when R > S > 1. In this case V C is the minimal

solution (since C ∈ UP and the minimal solution is proper). By Lemma IV.4.2, for

each ε > 0, V̂ (XC,Π + εX̂) is a supersolution associated to Cε = C + ηεX̂. Since

(Cε)1−S ≤ (ηε)1−SX̂1−S , there exists an extremal solution V Cε associated to Cε

by Proposition 3.2 which is increasing in ε by Proposition 7.3. It is the minimal

supersolution by Corollary 7.4. Hence, by minimality, V Cε
t ≤ V̂ (XC,Π

t + εX̂t) < 0

for all t ≥ 0 and V Cε is proper.

Let V ∗ = limε→0 V
Cε . Then, V ∗0 ≤ V̂ (x). Consequently, since fEZ is increasing

in both arguments, and Cε and V ε are increasing in ε, fEZ(Cε, V ε) is increasing

in ε, and applying the Monotone Convergence Theorem for conditional expectations
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yields

V ∗t = lim
ε→0

V Cε

t = lim
ε→0

E
[∫ ∞

t
fEZ(Cεs , V

Cε

s ) ds

∣∣∣∣Ft] = E
[∫ ∞

t
fEZ(Cs, V

∗
s ) ds

∣∣∣∣Ft] .
Therefore, V ∗ is a solution associated to (fEZ , C). Since V ∗t = limε→0 V

Cε
t < 0 for

all t ≥ 0, V ∗ is proper. It therefore agrees with the unique proper solution V C so

that V C
0 ≤ V̂ (x).

We now prove the result when R < S < 1. Fix an arbitrary C ∈ C (x) ∩ UP∗

with associated investment process Π = (Πt)t≥0. Let 0 < ζ < η S
1−S and define

X̃t = eζtXC,Π
t , Yt = e

ζ
S
tX̂t and C̃t = eζtCt for t ≥ 0. Note that if rζ = r + ζ and

µζ = µ+ ζ, then

dX̃t = X̃tΠtτ dBt +
(
X̃t(rζ + Πt(µζ − rζ))− C̃t

)
dt

We may think of X̃ = (X̃t)t≥0 as being the wealth process associated to the strategy

(Π, C̃ = (C̃t)t≥0) in a more favourable financial market with risk-free rate rζ , drift of

the risky asset µζ , and well-posedness parameter ηζ = −1−S
S (rζ + λ2

2R) = η− 1−S
S ζ ∈

(0, η). The volatility is unchanged. Furthermore, since

dYt
Yt

=
λ

R
dBt +

((
r +

λ2

R
− η
)

+
ζ

S

)
dt =

λ

R
dBt +

(
rζ +

λ2

R
− ηζ

)
dt,

Y = (Yt)t≥0 is the wealth process under the optimal strategy in the new financial

market with parameters rζ and µζ . Define V̂ ζ(x) = η−ϑSζ
x1−R

1−R . Then, V̂ ζ(X̃ + εY )

is a supersolution for (fEZ , C̃ + ηεY ) by Lemma IV.4.2 and then also for (fEZ , C)

since C̃ + ηεY ≥ C.

Let Cn := C ∧ nX̂. Then, there exists an extremal solution V Cn associated to

Cn by Proposition 3.2 which is monotonely increasing in n by Proposition 7.3. Also,

V̂ ζ = V̂ ζ(X̃ + εY ) is a supersolution for (fEZ , C
n) since C ≥ Cn. Furthermore,

since C is right-continuous, Cn is right-continuous. The extremal solution V Cn
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associated to Cn is therefore proper by Theorem 3.3 and Remark 2.4. In particular,

{Ct > 0} = {Cnt > 0} ⊆ {V Cn
t > 0} for all t ≥ 0 up to null sets.

Note that (Cn)1−R ≤ n1−RX̂1−R. Then,

(1−R)V̂ ζ ≥ η−ϑSζ (εY )1−R = η−ϑSζ ε1−Re
ζ(1−R)

S
tX̂1−R ≥

η−ϑSζ ε1−R

n1−R e
ζ(1−R)

S
t(Cn)1−R.

Furthermore, V Cn ∈ UI(fEZ , Cn) by Remark III.1.2 and E[(V Cn
t −V̂

ζ
t )+] ≤ E[V Cn

t ] =

E[
∫∞
t fEZ(Cns , V

Cn
s ) ds] ≤ E[

∫∞
0 fEZ(Cns , V

Cn
s ) ds] < ∞. Hence, the conditions of

Corollary 6.5 are met and V̂ ζ
t ≥ V Cn

t for all t ≥ 0. In particular, V̂ ζ
0 ≥ V Cn

0 . If

V ∗ = limn→∞ V
Cn is the monotone limit, then

V ∗t = lim
n→∞

V Cn

t = lim
n→∞

E
[∫ ∞

t
fEZ(Cns , V

Cn

s ) ds

∣∣∣∣Ft] = E
[∫ ∞

t
fEZ(Cs, V

∗
s ) ds

∣∣∣∣Ft] .
Hence, V ∗ is a solution. It is a proper solution since {Ct > 0} ⊆ {V Cn

t > 0} ⊆

{V ∗t > 0} up to null sets. Therefore, it must agree with the unique proper solution

V C associated to C. In particular, V̂ ζ
0 = V̂ ζ(x(1 + ε)) ≥ limn→∞ V

Cn
0 = V ∗0 = V C

0 .

Finally, taking ζ, ε↘ 0 gives V̂ (x) ≥ V C
0 .

10 Future directions

In Chapter IV, we showed that when ϑ ∈ (0, 1), we were able to assign a unique

(generalised if nonfinite) utility process associated to any consumption stream. This

meant that we could solve the optimal investment and consumption problem under all

parameter combinations for which it is well-posed, and optimise over all attainable

consumption streams. However, in this chapter, we explained that extra difficulties

arise under parameter combinations leading to ϑ > 1, since uniqueness of solutions

fails. To deal with this, we introduced the economically motivated notion of a proper

solution, which rules out solutions that ignore the agent’s consumption and assign

zero utility from a finite time onwards. This lead us to consider the class UP of
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consumption streams with a unique proper solution associated to them. We showed

that a large class of consumption streams lie in UP. In Theorem 3.3 we showed

that the class of proper solutions is even larger than the class which we proved is

contained in UP.

We only treated parameter combinations leading to η > 0, where η is defined by

(III.3.6), but this was only due to time limitations. We expect that cases leading to

η ≤ 0 lead to an ill-posed investment-consumption problem. In the case R < 1, by

considering a sequence (ξn)n∈N such that H(π̂, ξn)→ 0, one should be able to show

that the problem is ill posed when η ≤ 0; when R > 1, it will be harder.

The first direction for extending the results of the chapter would be to enlarge

the class UP. By Theorem 3.3, all right-continuous consumption streams C ∈ P+

such that C1−R ≤ Y ∈ SO+ have a proper solution associated to them. However, we

only showed (in Theorem 3.5) that this proper solution is unique when C1−R ∈ SO+.

It seems reasonable to believe that, when a proper solution exists, it is unique, but

we have not yet been able to prove this result.

The next direction in which the results could be extended would be to investigate

what we can say about consumption streams for which there does not exist a finite

proper solution. When ϑ ∈ (0, 1) it was shown in Chapter IV that the utility process

may be generalised to consider utility processes that lie in V (which is either R+ or

R− depending on the sign of 1 − R), permitting the evaluation of all consumption

streams. This generalision corresponds to the minimal supersolution when R < 1

and the maximal subsolution when R > 1.

Such a generalisation is a natural extension to the CRRA case, where it is per-

fectly reasonable to talk about consumption streams yielding positive or negative

infinite utilities. To reduce the number of case distinctions we will assume that

R > 1 from this point onwards, so that V = R−; the other case is symmetric. Three

obvious candidates that generalise the utility process come to mind when ϑ > 1: the

natural extension of the minimal solution which is allowed to takes values in R−; a

proper solution which imposes a further restriction at −∞; or, the maximal proper
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solution.

Since the unique proper solution corresponds to the extremal solution when it

is finite-valued, it seems reasonable to believe that—by extending the notion of the

extremal solution to allow it to take infinite values—the extremal solution will help us

evaluate consumption streams for which there is no finite proper solution. However,

an issue arises here, that shares common characteristics with the non-proper solutions

examined in Section 2.5: we may always assign the utility process V ≡ −∞ to any

consumption stream. Since this would be the minimal solution (extended to take

values in R−) associated to every consumption stream, it would render EZ-SDU

degenerate as it does not distinguish between consumption streams. To get around

this, one could further impose a transversality condition, but since there are perfectly

reasonable consumption streams for the CRRA case and the case ϑ ∈ (0, 1) which

do yield negative infinite utilities, this doesn’t seem like a desirable approach.

The next candidate for the utility process associated to consumption streams

C ∈P+ for which no finite proper solution exists is a modification of the definition

of the proper solution. For example, one could define the proper solutions (which

may take values in R−) to be only those solutions such that

{
ω : E

[∫ ∞
t

C1−R
s ds

∣∣∣∣Ft] <∞} \ {ω : (1−R)Vt(ω) <∞} is a null set. (10.1)

However, one can show that this rules out a large class of deterministic consumption

streams. It is possible to show (by taking derivatives) that an explicit solution

v = (v(t))t≥0 associated to a deterministic consumption stream c = (c(t))t≥0 is given

by

v(t) =
1

1−R

(∫ ∞
t

c(s)1−S ds

)ϑ
. (10.2)

It is also possible to show that the family of improper solutions, indexed by T ≥ 0,

v(t, T ) =
1{t<T}

1−R

(∫ T

t
c(s)1−S ds

)ϑ
(10.3)
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are also all utility processes associated to (fEZ , c). Intuitively, we want to rule out the

utility processes in (10.3) and only consider the utility process in (10.2). However,

the utility process in (10.2) does not satisfy the (extended) definition of a proper

utility process at infinity given in (10.1). Explicitly, let c(t) = t
1

S−1 . Then, for

each t ≥ 0,
∫∞
t c(t)1−R ds =

∫∞
t t−ϑ ds = t1−ϑ

1−ϑ for t > 0. However, (1 − R)v(t) =

( 1
ϑ

∫∞
t t−1 ds)ϑ = ∞. This means that v does not satisfy (10.1). If one wants

to consider such consumption streams, the definition of a proper solution must be

different. It is less clear what the restriction should be.

The final candidate for the solution associated to consumption streams when no

finite proper utility process exists is the maximal proper solution. This definition is

similar to that used in Chapter IV, and is promising for a number of reasons. Firstly,

the maximal proper solution agrees with the unique proper solution for all consump-

tion streams C ∈ UP. Secondly, if we define UP to be the consumption streams C

such that there exists a sequence of consumption streams (Cn)n∈N with Cn ↗ C and

Cn ∈ UP, then if V n is the unique proper utility process associated to Cn for each

n ∈ N, it is simple to see via monotonicity arguments that V ∗ = limn→∞ V
n satisfies

V ∗t = E
[∫∞
t fEZ(Cs, V

∗
s ) ds

∣∣Ft] for all t ≥ 0. Also, since V ∗ is approximated from

above by a monotonely decreasing sequence of supersolutions associated to (fEZ , C),

it corresponds to what we expect is the maximal proper solution—although we cur-

rently have no comparison theorem to confirm this. Finally, having the solution

defined in this way could be extremely beneficial mathematically, since we can show

that V ∗ is increasing in C and prove a verification theorem by using the comparison

theorem on the approximating processes and then taking limits.
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APPENDIX TO CHAPTER V

V.A Existence of proper solutions associated to discounted

indicators of stochastic intervals

This section will be dedicated to proving Proposition 8.1. In this section, we will

emphasise the role that the filtration F = (Ft)t≥0 plays in determining the utility

process V = (Vt)t≥0 associated to a pair (g, C). To this end, if F = (Ft)t≥0 is the

filtration used in Definition III.1.1, then we will refer to V as the utility process

associated to the triple (g, C,F).

Let F = (Ft)t≥0 be a filtration and T = {t0, t1, t2, · · · , tn} be an ordered set. We

assume without loss of generality that t0 = 0 and tn =∞.

Condition B. The pair (F,T) satisfies Condition B if Ft = Fti(t;T)
for all t ≥ 0.

Definition A.1. An (F,T)-stopping time is an F-stopping time σ that can be

written as σ =
∑n

i=0 ti1Ai for some family (Ai)i∈{0,··· ,n} of disjoint sets such that

P(∪ni=0Ai) = 1 and Ai ∈ Fti .
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Throughout this section, we define BT,σi := {σ > ti} = ∪nj=i+1Aj and i(t;T) :=

max{i : ti ≤ t}. When it is clear which T and σ we are referring to, we drop the

subscript and write i(t) = i(t;T) and Bi = BT,σi . Note that {σ > t} = {σ > ti(t;T)}

for all t ≥ 0.

We first prove the existence of a proper solution associated to (hEZ , U,F) where

U = (Ut)t≥0 is given by Ut = e−γt1t<σ. Here γ > 0, and σ is an (F,T)-stopping

time where (F,T) satisfies Condition B.

Proposition A.2. Let F = (Ft)t≥0 be a filtration and T be an ordered set such that

(F,T) satisfies Condition B. Let σ be a (F,T)-stopping time and define U = (Ut)t≥0

by Ut = e−γt1t<σ. Then, there exists a proper solution W = (Wt)t≥0 associated to

(hEZ , U,F) such that

Wt ≥
(

1

γϑ
E
[
e−γt − e−γ(t∨σ)

∣∣∣Ft])ϑ , for all t ≥ 0. (1.1)

The proof of Proposition A.2 relies on the following lemma.

Lemma A.3. Suppose that σ =
∑n

i=0 ti1Ai is a (F,T)-stopping time. Then,

E
[
e−γt − e−γ(t∨σ)

∣∣∣Ft] = 1Bi(t)(e
−γt−e−γti(t)+1) +

n−1∑
j=i(t)+1

E
[
1Bj

∣∣Ft](e−γtj − e−γtj+1
)

Proof. Using the definition of σ and Bj , the fact that Bi(t) ∈ Ft, and rearranging

the telescoping sum gives

E
[
e−γt − e−γ(t∨σ)

∣∣∣Ft]
=

n∑
j=i(t)+1

(e−γt − e−γtj )P(Aj |Ft)

= e−γtP(Bi(t)|Ft)−
n∑

j=i(t)+1

e−γtj (P(Bj−1|Ft)− P(Bj |Ft))

= 1Bi(t)(e
−γt − e−γti(t)+1) +

n−1∑
j=i(t)+1

E
[
1Bj

∣∣Ft](e−γtj − e−γtj+1
)
.
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Proof of Proposition A.2. Define W = (Wt)t≥0 recursively backwards by W∞ = 0

P-a.s. and, for t <∞, Wt = 1Bi(t)w
(
t, ξti(t)+1

)
, where

w(t, y) =

(
y

1
ϑ +

1

γϑ

(
e−γt − e−γti(t)+1

))ϑ
and ξti(t)+1

= E
[
Wti(t)+1

∣∣∣Fti(t)] .
(1.2)

We will first show that W is a solution associated to (hEZ , U,F). We then show that

(1.1) holds and W is proper.

First, note that FU (W )∞ := limt→∞ FU (W )t ≤ limt→∞
∫∞
t e−γs( e

γϑs

γϑ )ρ ds = 0 =

W∞. We will now show that Wt = FU (W )t = E
[∫∞
t UsW

ρ
s ds

∣∣Ft] for all t ≥ 0 by

backwards induction. For the inductive step, fix k ∈ {0, · · · , n− 1} and assume that

W satisfies Wtk+1
= FU (W )tk+1

and that tk ≤ t < tk+1. By the definition of Wtk+1
,

since 1Bk1Bk+1
= 1Bk+1

, and by Condition B, E
[
Wtk+1

∣∣Ft] = E
[
1BkWtk+1

∣∣Ft] =

1BkE
[
Wtk+1

∣∣Ftk] = 1Bkξtk+1
. Hence, combining this with the inductive hypothesis

yields

FU (W )t = E
[∫ tk+1

t
UsW

ρ
s ds+Wtk+1

∣∣∣∣Ft]
= 1Bk

(∫ tk+1

t
e−γs(w(s, ξtk+1

))ρ ds+ ξtk+1

)
.

If ω ∈ Bc
k, then clearlyWt(ω) = 0 = FU (W )t(ω). Assume instead that ω ∈ Bk. Then,

ξ := ξtk+1
(ω) is known. Since limt↗tk+1

w(t, ξ) = ξ and ∂w
∂t (t, ξ) = −e−γt(w(t, ξ))ρ for

tk ≤ t < tk+1, integrating yields w(t, ξ) =
∫ tk+1

t e−γs(w(s, ξ))ρ ds+ ξ. In particular,

Wt(ω) = w(t, ξ) =

∫ tk+1

t
e−γs(w(s, ξ))ρ ds+ ξ = FU (W )t(ω).

Consequently, Wt = FU (W )t for tk ≤ t ≤ tk+1, and hence for all t ≥ 0 by induction.

We now show thatW = (Wt)t≥0 defined in (1.2) is proper by proving the following
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statement recursively backwards for k ∈ {0, · · · , n− 1}: If tk ≤ t < tk+1, then

W
1
ϑ
t ≥

1Bk
γϑ

 n−1∑
j=k+1

E
[
1Bj

∣∣Ft] (e−γtj − e−γtj+1
)

+ e−γt − e−γtk+1

 . (1.3)

Here, we define
∑n−1

n a = 0 for arbitrary a ∈ R. Hence, the statement holds true

for k = n − 1 by the definition of W in (1.2). For the induction step, assume that

it holds true for k + 1 and let tk ≤ t < tk+1 so that i(t) = k. Using the definition

of W given in (1.2), Jensen’s inequality, the inductive hypothesis and the fact that

1BiE
[
1Bj

∣∣Fti] = E
[
1Bi1Bj

∣∣Fti] = E
[
1Bj

∣∣Fti] for i ≤ j,
W

1
ϑ
t = 1Bk

((
E
[
Wtk+1

∣∣Ft]) 1
ϑ +

e−γt − e−γtk+1

γϑ

)

≥
E
[
1Bk+1

∣∣Ft]
γϑ

 n−1∑
j=k+2

E
[
1Bj

∣∣Ft](e−γtj − e−γtj+1
)

+ e−γtk+1 − e−γtk+2


+ 1Bk

e−γt − e−γtk+1

γϑ

=
1

γϑ

n−1∑
j=k+1

E
[
1Bj

∣∣Ft] (e−γtj − e−γtj+1
)

+
1Bk
γϑ

(
e−γt − e−γtk+1

)
.

Hence, (1.3) holds for all t for which tk ≤ t < tk+1, and hence by induction for all

t < tn =∞.

Since the right hand side of (1.3) is equal to 1
γϑE

[
e−γt − e−γ(t∨σ)

∣∣Ft] by Lemma

A.3, Equation (1.1) holds and W is proper.

We now show that for any continuous filtration F and F-stopping time σ, we can

find a proper utility process associated to Ut = e−γt1t<σ by approximating (F,T)

by a monotone sequence of pairs (Fn,Tn) satisfying Condition B.

Lemma A.4. Let F = (Ft)t≥0 be a continuous filtration and let σ be a F-stopping

time. Let Tn = {k2−n : k = 0, 1, · · · , n2n} ∪ {∞} and define Fn = (Fnt )t≥0 by

Fnt = F2−nb2ntc∧n, for t ≥ 0. Then, σn = 1σ≤n2−nd2nσe +∞1σ>n is a (Fn,Tn)-

stopping time. Furthermore, (Fn,Tn) satisfies Condition B for each n ∈ N, σn ↘ σ
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and Fnt ↗ Ft for all t ≥ 0.

Proof. Note that σn takes values in Tn and {σn ≤ t} = {σ ≤ n}∩{2−nd2nσe ≤ t} =

{σ ≤ 2−nb2ntc ∧ n} ∈ Fnt , so that σn is a (Fn,Tn)-stopping time. In addition, for

each n ∈ N and t ≥ 0, ti(t;Tn) = 2−nb2ntc ∧ n. Hence, Fnt = Fti(t;Tn)
= Fnti(t;Tn)

so

that (Fn,Tn) satisfies Condition B. It is easily checked that σn ↘ σ and Fnt ↗ Ft

for all t ≥ 0.

To prove Proposition 8.1, we will need the following lemma, which is a variant of

Hunt’s Lemma and the Reverse Fatou Lemma.

Lemma A.5. Let (Ω,G,P) be a probability space and (Xn)n∈N a sequence of random

variables bounded in absolute value by an integrable random variable Y . Let (Gn)n∈N

be an increasing family of τ -algebras and G∞ :=
⋃∞
n=1 Gn. Then,

lim sup
n→∞

E [Xn | Gn] ≤ E
[
lim sup
n→∞

Xn

∣∣∣∣G∞] , P-a.s.

Proof. Let Zm = supn≥mXn ∈ L1. Then, E [Xn | Gn] ≤ E [Zm | Gn] for n ≥ m.

Taking the lim sup and using the L1-Martingale Convergence Theorem yields

lim sup
n→∞

E [Xn | Gn] ≤ lim
n→∞

E [Zm | Gn] = E [Zm | G∞] . (1.4)

Furthermore, by the conditional version of the Reverse Fatou Lemma (and since

Zm ≤ Y ),

lim sup
m→∞

E [Zm | G∞] ≤ E
[

lim
m→∞

Zm

∣∣∣F∞] = E
[
lim sup
n→∞

Xn

∣∣∣∣G∞] . (1.5)

Combining (1.4) and (1.5) yields the result.

Proposition A.6. Let F = (Ft)t≥0 be a continuous filtration, σ be a F-stopping

time and γ > 0. Let U = (Ut)t≥0 be given by Ut = e−γt1t<σ. Then, there

exists a proper solution W = (Wt)t≥0 associated to (hEZ , U,F) such that Wt ≥(
1
γϑE

[
e−γt − e−γ(t∨σ)

∣∣Ft] )ϑ for all t ≥ 0.
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Proof. By Lemma A.4, we may choose a sequence (Fn = (Fnt )t≥0,T
n)n∈N such that

(Fn,Tn) satisfies Condition B for each n ∈ N and a (Fn,Tn)-stopping time σn

such that σn ↘ σ, and Fnt ↗ Ft for t ≥ 0. Since, for each n ∈ N, the pair

(Fn,Tn) satisfies the conditions of Proposition A.2, for Un = (Unt )t≥0 defined by

Unt = e−γt1t<σn , there exists a proper solution Wn = (Wn
t )t≥0 associated to the

triple (hEZ , U
n,Fn) such that

Wn
t ≥

(
1

γϑ
E
[
e−γt − e−γ(t∨σn)

∣∣∣Fnt ])ϑ . (1.6)

SinceWn is a solution (and is càdlàg by Remark 6.2), for all bounded stopping times

τ ≤ σ,

Wn
τ = E

[∫ σ

τ
Uns (Wn

s )ρ ds+Wn
σ

∣∣∣∣Fnτ ] . (1.7)

Consider u = (u(t))t≥0 defined by u(t) = e−γt for t ≥ 0. Then, by taking

derivatives, one finds that W u = (W u
t )t≥0 defined by W u

t = e−γϑt

γϑϑϑ
is a solution

associated to (hEZ , u) (and any filtration). Furthermore, as Juϑt =
∫∞
t (u(s))ϑ ds =

e−γϑt

γϑ , W u O
= Ju

ϑ
= (Ju

ϑ

t )t≥0 and W u is the maximal solution associated to u by

Proposition 7.5. Therefore, since Unt ≤ u(t) for t ≥ 0, it follows from Proposition

7.3 that Wn
t ≤ W u

t ≤ W u
0 = 1

γϑϑϑ
<∞ for all t ≥ 0 and Wn is bounded. Similarly,

Ut(W
n
t )ρ ≤ u(t)(W u

t )ρ and E[
∫∞

0 u(t)(W u
t )ρ dt] = W u

0 <∞.

Define W ∗t = lim supn→∞W
n
t for each t ≥ 0. We now show that W ∗ = (W ∗t )t≥0

is a subsolution associated to (hEZ , U,F). Taking the lim sup in (1.7) and using

Lemma A.5 gives

W ∗τ = lim sup
n→∞

E
[∫ σ

τ
Uns (Wn

s )ρ ds+Wn
σ

∣∣∣∣Fnτ ] ≤ E
[∫ σ

τ
Us(W

∗
s )ρ ds+W ∗σ

∣∣∣∣Fτ] .
(1.8)

Let Yt = W ∗t +
∫ t

0 Us(W
∗
s )ρ ds. Then, by (1.8), Y = (Yt)t≥0 is an optional strong

submartingale. It is therefore làdlàg (see [DM82, Theorem A1.4]) and, by the strong

submartingale property, Yσ ≤ E [Yσ+ | Fσ] for all stopping times σ. Consequently,
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W ∗ is làdlàg, and

W ∗σ = Yσ −
∫ σ

0
Us(W

∗
s )ρ ds ≤ E [Yσ+ | Fσ]−

∫ σ

0
Us(W

∗
s )ρ ds = E

[
W ∗σ+

∣∣Fσ] .
Thus, W ∗τ ≤ E

[∫ σ
τ Us(W

∗
s )ρ ds+W ∗σ+

∣∣Fτ ]. In addition, the transversality condi-

tion for subsolutions holds since lim supt→∞ E
[
W ∗t+

]
≤ limt→∞W

u
t = 0, so that W ∗

is a subsolution for (hEZ , U,F).

Since W ∗ is nonnegative and P-a.s. bounded above by W u
0 < ∞, it is (L1-)

bounded. Furthermore, by (1.6), the fact that σn ≥ σ for all n ∈ N and the L1-

Martingale Convergence Theorem,

W ∗t ≥ lim
n→∞

(
1

γϑ
E
[
e−γt − e−γ(t∨σn)

∣∣∣Fnt ])ϑ
≥
(

1

γϑ
lim
n→∞

E
[
e−γt − e−γ(t∨σ)

∣∣∣Fnt ])ϑ
=

(
1

γϑ
E
[
e−γt − e−γ(t∨σ)

∣∣∣Ft])ϑ . (1.9)

Let WU = (WU
t )t≥0 be the maximal solution associated to (hEZ , U,F). Then, by

Proposition 7.2, WU is the maximal L1-bounded subsolution. Combining this with

(1.9) gives that WU is a proper solution and

WU
t ≥W ∗t ≥

(
1

γϑ
E
[
e−γt − e−γ(t∨σ)

∣∣∣Ft])ϑ , for all t ≥ 0.

Finally, we remove the assumption that τ = 0 and prove Proposition 8.1.

Proof of Proposition 8.1. Let Ut = e−γt1τ≤t<σ and let Ût = e−γt1t<σ. Then, by

Proposition A.6, there exists a proper solution Ŵ associated to the pair (hEZ , Û)

such that Ŵt ≥
(

1
γϑE

[
e−γt − e−γ(t∨σ)

∣∣Ft] )ϑ. Suppose first that t ≥ τ . Then, since

Us = Ûs for all s ≥ t, the (unique) maximal solutions W and Ŵ associated to U and

Û coincide at t. Hence, Wt = Ŵt ≥
(

1
γϑE

[
e−γt − e−γ(t∧σ)

∣∣Ft] )ϑ.
Suppose now that t < τ and note that Wτ ≥

(
1
γϑE [(e−γτ − e−γσ) | Fτ ]

)ϑ as
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above. Then,

Wt = E [Wτ | Ft] ≥ E
[(

1
γϑE

[
e−γτ − e−γσ

∣∣Fτ ] )ϑ ∣∣∣Ft] ≥ ( 1
γϑE

[
e−γτ − e−γσ

∣∣Ft] )ϑ.
The final inequality follows from Jensen’s inequality and the tower property of the

conditional expectation. Combining the inequalities above yields

Wt ≥
(

1

γϑ
E
[
e−γ(t∨τ) − e−γ(t∨σ)

∣∣∣Ft])ϑ .
V.B Additional results

Lemma B.1. Let ρ ∈ (0, 1) and φ > 0, ε ≥ 0. Then, there is a solution x = x(φ, ε)

to

x = φ(xρ + ε), (2.1)

that is continuous and increasing in ε and φ and is such that x(φ, 0) = φϑ.

Proof. Let gφ(x) = φ−1x− xρ. Then, x solves (2.1) if and only if gφ(x) = ε. To find

x, we must therefore show that gφ(x) has an inverse defined on the nonnegative real

line.

To begin with, note that gφ is twice continuously differentiable, with g′φ(x) =

φ−1−ρxρ−1 and g′′φ(x) = (1−ρ)ρxρ−2 > 0 for x > 0. Since g′′φ(x) > 0 for x > 0, gφ is

strictly convex on [0,∞). There are two zeros of gφ; one at x = 0 and one at x = x0 :=

φ
1

1−ρ = φϑ. These are the only two zeros, since a strictly convex function can have at

most two zeros. Furthermore, for each x ≥ x0, g′φ(x) = φ−1−ρxρ−1 ≥ φ−1(1−ρ) > 0

so that the restriction gφ|[x0,∞) is a strictly increasing function with domain [0,∞).

It is therefore a bijection from [φϑ,∞) to [0,∞). This implies that there exists

an inverse function g−1
φ : [0,∞) → [φϑ,∞). Furthermore, by the Inverse Function

Theorem for differentiable mappings, for all y > 0, (g−1
φ )′(y) = 1

g′φ(g−1
φ (y))

> 0.

Therefore, for all ε ∈ [0,∞), there exists a unique solution x = x(φ, ε) ∈ [φϑ,∞)

that solves (2.1). In addition x(φ, ε) is increasing in ε. We can explicitly calculate
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x(φ, 0) = φϑ.

Finally, by taking derivatives of (2.1) with respect to φ, we find that

∂x

∂φ
= xρ + ε+ ρφxρ−1 ∂x

∂φ
.

Rearranging yields

∂x

∂φ
=

1

1− ρφxρ−1
(xρ + ε) ≥ xρ + ε > 0,

where 1− ρφxρ−1 ≥ 1− ρ > 0 for x ≥ φϑ. Hence, x(φ, ε) is increasing in φ.

Proposition B.2. Let C be a R+-valued progressively-measurable process and let

g : [0,∞) × Ω × R+ × V → V be an aggregator random field. Let W be a càdlàg

adapted processes such that W0 <∞. Then, the following are equivalent:

1. W is a supersolution associated to the pair (g, C).

2. There exists a càdlàg uniformly integrable martingaleM and a càdlàg integrable

decreasing predictable process A such that, for all bounded stopping times σ ≥ t,

Wt = Wσ +

∫ σ

t
g(s, ω, Cs,Ws) ds+Mt −Mσ +At −Aσ.

3. There exists a càdlàg uniformly integrable martingale M such that, for all

bounded stopping times σ ≥ t,

Wt ≥Wσ +

∫ σ

t
g(s, ω, Cs,Ws) ds+Mt −Mσ (2.2)

There is a corresponding result for subsolutions W ∈ I(g, C), provided we replace A

with increasing predictable process and change the direction of the inequality in (2.2).

Proof. We only prove the result for supersolutions. The result for subsolutions is

very similar.
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[1 =⇒ 2] If we define Y by Yt = Wt+
∫ t

0 g(s, ω, Cs,Ws) ds, then Y is a class (D)

supermartingale. By the Doob-Meyer decomposition, Y can therefore be decomposed

as Y = M +A, where M is a uniformly integrable martingale and A is an integrable

decreasing process both of which are càdlàg. Therefore, using the definition of Y ,

we find that for σ ≥ t a stopping time,

Wt −Wσ = Yt − Yσ +

∫ σ

t
g(s, ω, Cs,Ws) ds

=

∫ σ

t
g(s, ω, Cs,Ws) ds+Mt −Mσ +At −Aσ,

and the result holds.

[2 =⇒ 3] This follows directly, since A is a decreasing process.

[3 =⇒ 1] By taking conditional expectations at time t, we see that W is a

supersolution.
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