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h i g h l i g h t s

� Pepper Yellow Leaf Curl Virus (PYLCV)
can reduce the productivity of chilli
plants by between 20% and 100%.

� The disease exhibits the same
symptoms as plants with mineral and
water deficiencies so is often not
correctly detected.

� We propose optimized Fourier
Transform Infrared Spectroscopy
spectra pre-processing to detect
PYLCV-infected chilli plants.

� We choose the method from
denoising, normalizing and baseline
correction that delivers the highest
classification accuracy.

� Savitzky-Golay 1st derivative pre-
processing was the best method,
enabling subsequent classification
accuracy of up to 100%.
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Pre-processing is a crucial step in analyzing spectra from Fourier transform infrared (FTIR) spectroscopy
because it can reduce unwanted noise and enhance system performance. Here, we present the results of
pre-processing technique optimization to facilitate the detection of pepper yellow leaf curl virus (PYLCV)-
infected chilli plants using FTIR spectroscopy. Optimization of a range of pre-processing techniques was
undertaken, namely baseline correction, normalization (standard normal variate, vector, and min–max),
and de-noising (Savitzky-Golay (SG) smoothing, 1st and 2 derivatives). The pre-processing was applied to
the mid-infrared spectral range (4000 – 400 cm�1) and the biofingerprint region (1800 – 900 cm�1) then
the discrete wavelet transform (DWT) was used for dimension reduction. The pre-processed data were
then used as an input for classification using a multilayer perceptron neural network, a support vector
machine, and linear discriminant analysis. The pre-processing method with the highest classification
model accuracy was selected for the further use in the processing. It was seen that only the SG 1st deriva-
tive method applied to both wavenumber ranges could produce 100% accuracy. This result was supported
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by principal component analysis clustering. Thus, we have demonstrated that by using the right pre-
processing technique, classification success can be increased, and the process simplified by optimization
and minimization of the technique used.

� 2022 Published by Elsevier B.V.
1. Introduction

Various plant viruses threaten worldwide food security because
they can cause significant yield losses [1,2]. The global annual eco-
nomic losses caused by such viruses alone has reached more than
USD 30 billion [3]. The spread of a virus is very difficult to control
in the field because it can only grow and reproduce inside the host
cell

therefore, curative treatment cannot be performed. Virus
attacks must therefore be addressed by applying reliable early
diagnostic tests so that the infected plants can be rapidly eradi-
cated and spread of the virus minimized [3]. Spectroscopic tech-
niques have been developed as a plant disease detection system
because they are faster, less expensive and more and accurate than
serological, biomarker, molecular, or imaging techniques [4,5].

Plant diseases can cause changes in plant physiological develop-
ment and transpiration rate, change plant tissue colour, and alter
leaf shape [6]. These modifications affect the optical characteristics
of plant tissues [7]. Hence, physiological changes in diseased plants
can be detected by spectroscopy [8], which is thus a powerful tool
for chemical analysis, characterization and identification of plant
samples and biomaterials [6,9,10]. The technique presents an inex-
pensive method and does not require solvent extraction for sample
preparation, thus reducing analysis time. Spectroscopy generates
biochemical compound information from the samples and hence
allows identification of major functional groups [9–11]. It has been
developed in recent years as a plant disease detection tool with
notable successes in detecting soil-borne fungi [12], Geotrichum
candidum infection in tomato fruit [13], Magnaporthe oryzae infec-
tion in rice [14], and Huanglongbing in citrus leaves [15] in addi-
tion to the turnip yellow mosaic virus [16] and wheat streak
mosaic virus [17].

Spectroscopy works by exposing a sample to polychromatic
light in the infrared region, which causes molecular vibration as
a result of the chemical composition of the sample and is then
excited to a higher energy level due to the absorption of chemical
bonds [18]. Then, backscattered light with a certain intensity
becomes an indicator of the state of the plant [5]. In Fourier trans-
form infrared (FTIR) spectroscopy, the raw interferogram data are
converted into an energy transmission or absorption spectrum
via the Fourier transform [18]. Important information about the
character of the sample can be obtained by analyzing the differ-
ences in the area, bandwidth and intensity of the inteferogram
[19]. The FTIR spectrum is large and has a complex data set so
requires multivariate data processing, dealing with more than
one variable at once to uncover relationships between the vari-
ables. The range of multivariate analysis methods includes classifi-
cation models and cluster analysis [20]. By using such models, data
patterns can be elucidated and used for future prediction [21,22].

Classification and clustering models work optimally when the
FTIR spectrum is pre-processed, so that important information
from the data can be separated from unwanted noise [23]. The pur-
pose of pre-processing is thus to minimize noise and correct issues
related to spectral data acquisition for multivariate analysis accu-
racy and improve data interpretability [20,24]. Noise can come
from the scattering of light from the irradiated particles, an effect
that usually appears in solid samples [23]. In addition, the diverse
nature of the samples can make the identification of components in
2

biological instances difficult. Furthermore, bio-systems consist of
complex biomolecules so that under different pathological condi-
tions, the differences from one sample to another are very small
and difficult to observe in the raw spectrum [21]. These problems
can be overcome by pre-processing [25]. The technique employs
baseline spectral correction, de-noising, normalization and other
manipulations [20,23,26]. In addition, the large volume of spectral
data should also be reduced so that they can be easily analyzed by
pattern recognition techniques. The data reduction techniques
commonly used are wavenumber selection in spectral analysis by
reducing the data to only include the most informative spectra
[20] or use of principal component analysis (PCA), the discrete
wavelet transform (DWT) and the fast Fourier transform (FFT) [27].

The choice of pre-processing method greatly affects the inter-
pretability and accuracy of the classification model [22]. Several
spectrum pre-processing methods for spectroscopy are often com-
bined to get the optimal results [20]. Liaghat et al. [28] used FTIR
spectroscopy to detect oil palm basal stem rot. The spectra were
pre-processed using baseline correction, normalization, and
Savitzky-Golay (SG) smoothing to obtain the first and second
derivatives. After that, data reduction was achieved by using PCA,
following which the results were then classified using several mul-
tivariate classification algorithms. Meanwhile, Salman et al. [10]
investigated Colletotrichum, Fusarium oxysporum, Rhizoctonia and
Verticillium fungi attacking plants using FTIR spectroscopy. They
used the baseline correction and pre-processing normalization
technique and applied Ward’s algorithm [14] for clustering. For
detecting the four fungi, they had to select a specific wavelength
region for sample clustering. In addition, Sankaran et al. [25] used
a pre-processing combination of visible-near infrared spectra data
for the detection of Huanglongbing in citrus orchards. The spectra
were normalized, then the spectral values were averaged every
25 nm to reduce the dimensions. The spectra were then pre-
processed again by using first derivatives and second derivatives.
Three datasets of first, second derivatives and combined datasets
were then reduced using PCA. The results of pre-processing were
classified using quadratic discriminant analysis (QDA), linear dis-
criminant analysis, soft independent modelling of classification
analogies (SIMCA), and k-nearest neighbour.

Although pre-processing can be achieved by combining various
methods, Gerretzen et al [29] suggested that the best approach is to
use the simplest and the least complicated method. Hence the pre-
processing selection process becomes fast and unbiased [30].
Therefore, the main objective of this study is to minimize the num-
ber of pre-processing methods used to process spectral data of
Pepper Yellow Leaf Curl Virus (PYLCV)-infected chilli plants and
PYLCV-undetected plants. PYLCV is the main virus that attacks
chilli plants in Indonesia, and this virus can reduce the productivity
of chilli plants by from 20% to some 100% [31]. This virus causes
curling and interveinal yellowing of the chilli leaves, and the plants
become stunted [32–34]. However, lack of water or minerals also
causes yellowing leaves and stunted growth [35,36]. Moreover,
changes in water content can also cause the leaves to curl [37].
Hence, the disease is often not detected, leading to catastrophic
mishandling of the disease. Therefore, the best possible inexpen-
sive and reliable PYLCV-infected plant detection method is needed.
Until now, there have been no research reports that have investi-
gated the detection of PYLCV by using FTIR spectroscopy. Thus,
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we have proposed a novel method to achieve this by optimizing
the pre-processing technique to simplify the process and shorten
the analysis time. In addition, to reduce the spectral dimension,
the DWT was used to reduce the dimension of the data. Optimiza-
tion of the pre-processing technique was achieved by choosing one
method from denoising, normalizing and baseline correction,
delivering classification models with the highest accuracy value.
The classification models used were a supervised support vector
machine (SVM), an artificial neural network (ANN) and linear dis-
criminant analysis (LDA). The unsupervised clustering method,
PCA, was also applied to observe the separation between the sam-
ples. In this way, a suitable pre-processing method was sought to
provide optimal classification model results.
2. Materials and methods

2.1. Sample preparation

The samples for the experiment were Capsicum Annuum L chilli
plants taken from three commercial plantations in different
regions in Indonesia, namely Bantul, D.I. Yogyakarta, Sleman, D.I
Yogyakarta, and Purworejo, Central Java. The distance between
commercial plantations in Cangkringan and Bantul was approxi-
mately 39 km, between Bantul to Purworejo was around 64 km,
and between the plantations in Purworejo and Bantul was approx-
imately 38 km. The difference in the location of the sample origin
was intended to test whether FTIR spectroscopy can still detect
PYLCV attacks on chilli plants even though the plants come from
different regions. Eight samples were taken from one plantation
area, four from plants with no symptoms of PYLCV attack, and four
from those that indicated infection by PYLCV. The infection status
of the plants was confirmed by polymerase chain reaction (PCR)
testing by using pepper yellow leaf curl Indonesian virus species-
specific primers [31]. Samples were taken from two different trees
from each type of PCR PYLCV-undetected plant and PYLCV-infected
plant in one area (eight samples came from four trees two samples
were taken from the same tree for repetition). Hence, the total
sample size for the three areas was 8 � 3 samples (24 samples).
Each sample was named based on the infection status and the sam-
ple origin for example, infected leaves from Cangkringan had the
name character IC, while the healthy ones were UC. For one sam-
pling process, three leaves were taken. Samples from Cangkringan
are depicted in Fig. 1. The leaves in Fig. 1 (a) and (b) were taken
from the same tree, while (c) was from the same tree as (d), (e)
the same as (f), and finally (g) the same tree as (h). The fresh sam-
ple was then added to 100 mg Potassium bromide (KBr) and
crushed using an agate mortar to make it fine and well mixed. After
that, the sample was put in the sample holder, compressed into a
pellet and then tested with the FTIR spectrometer.
2.2. Fourier transform infrared (FTIR) spectroscopy

The FTIR spectroscopy used the Thermo Scientific Nicolet iS10
spectrometer with a beam splitter (KBr/Ge mid-infrared). This
had a Deuterated TriGlycine Sulfate (DTGS) detector and was
equipped with Smart Omni Transmission accessories. During the
reading process, the room temperature was 25 �C, and the humid-
ity was 75%. The spectral resolution of the measurements recorded
was 8 cm�1 and this produced a data spacing of 0.964 cm�1, so that
3736 data points were generated. However, the first and last points
were of consistently zero amplitude, hence were eliminated to
leave 3734 data points for further analysis. Measurements were
made in the transmittance mode with the transmittance spectrum
of airborne KBr used as the background. For each sample, 32 scans
3

were performed to provide the sample transmittance spectrum in
the wavenumber range 4000 – 400 cm�1 for pre-processing, fea-
ture extraction and multivariate analysis techniques.
2.3. Data analysis

The FTIR spectra were then analyzed, as shown in Fig. 2. First,
the spectra of raw data in the wavenumber range of 4000 –
400 cm�1 were sent to the classification model establish the clas-
sification performance without pre-processing. Afterwards, the
spectra were pre-processed by using baseline correction, normal-
ization, and denoising methods. These approaches were then opti-
mized by using the multilayer perceptron neural network
(MLPNN), SVM and LDA classification models. In the next step,
the data were cut into the biofingerprint region, 1800 –
900 cm�1, and the spectra passed through the same process as
the 4000 – 400 cm�1 spectra. The spectra selection in the biofinger-
print area was intended to remove the CO2 and water absorption
spectra and also eliminated any effects of baseline distortion that
may exist [38]. In addition, the biofingerprint region contained
absorption bands caused by axial symmetric deformation of car-
bonyl such as ketones, aldehydes and esters, and also axial and
angular symmetric deformation of alcohols and esters [10]. In
our previous study [31], by using GC–MS to detect PYLCV-
infected plants and PYLCV-undetected plants, there were differ-
ences in the composition of ketones, aldehydes, alcohols and
esters. Therefore, the biofingerpint region’s spectra were an area
of interest in finding the differences between PYLCV-undetected
and PYLCV-infected chilli plants. The pre-processing method with
the highest accuracy was then analyzed by PCA to prove that the
methods were also successful in clustering analysis. The flowchart
of the spectral analysis and data processing is depicted in Fig. 2.
3. Theory

3.1. Pre-processing

Pre-processing of raw data helps remove noise or unwanted sig-
nals, improves the accuracy of chemometric analysis in the next
step, improves data interpretation capabilities, and increases the
desired signal information [38,39]. A properly applied pre-
processing method can affect the system classification results, so
in this research, several methods were applied. The pre-
processing techniques that were used were baseline correction,
normalization (standard normal variate, vector, and min–max),
and de-noising with SG smoothing, and 1st and 2nd derivatives.
The pre-processed data were then compared by applying them to
the classification models. Each of the methods was optimized.
For example, normalization had three methods and that with the
highest classification result was chosen for comparison with other
methods. The pre-processing method selection was made by
choosing the best method of baseline correction, normalization
and de-noising that delivered the highest accuracy of classification
models.
3.2. Baseline correction

The baseline correction technique used was obtained from the
baseline correction tool from Thermo ScientificTM OMNICTM FTIR
Software. The baseline-corrected spectra were then analyzed by
using pre-processing techniques. For optimization, the baseline-
corrected of the raw data in the 4000 – 400 cm�1 wavenumber
spectral range were compared to the baseline-corrected spectra
in the biofingerprint region.



Fig. 1. Leaf samples from Cangkringan chilli plantation (a) – (b) PYLCV-infected leaves taken from infected tree 1. (c) – (d) PYLCV-infected leaves taken from infected tree 2 (e)
– (f) leaves taken from PYLCV-undetected tree 1. (g) – (h) leaves taken from PYLCV-undetected tree 2.
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3.3. Normalization

For normalization, three techniques were used, namely stan-
dard normal variate (SNV), vector and min–max normalization.
The SNV normalization value (xSNV ) was obtained by subtracting
4

for each spectral intensity value by subtracting its mean and then
dividing by the standard deviation [38,40],

xSNV ¼ xi � x
�

r
ð1Þ



Fig. 2. Flowchart of the spectral analysis and data processing.
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where xi was the spectral data point with i = 1, 2, . . .., j, x
�
was the

mean spectral value, and r was the standard deviation of the spec-
tral data value. Meanwhile, vector normalization (xvec) was
obtained from equation (2) below [38].

xvec ¼ xiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

x2i

s ð2Þ

For min–max normalization, the maximum xmaxð Þ and mini-
mum xminð Þ of the spectral intensities were first found, and then
normalization values were calculated by using equation (3) [38].

xmin�max ¼ xi � xmin

xmax � xmin
ð3Þ
3.4. Savitzky-Golay (SG) smoothing, first and second derivative

In the SG method, signal smoothing was achieved by a least
squares polynomial fit to the set of input data points in a window
of �M data points. Here, we took M ¼ 10, giving a window length
of 2M þ 1 ¼ 21 and a fourth order polynomial was selected to
obtain the least squared fit polynomial coefficients. Further analy-
sis used the polynomial value at the window midpoint [41], which
moved repeatedly by one data point to deliver the filter output the
consecutive points. The SG filter process by fitting polynomials to
data points was thus the same as convolving samples in a window
with a fixed impulse response [41,42]. In addition, the first and sec-
ond derivatives, obtained by differentiating the smoothed SG spec-
tral curves, were also used as pre-processing techniques. The
smoothed SG, first and second derivatives were applied to the
spectral ranges of 4000 – 400 cm�1 and 1800 – 900 cm�1, and then
optimized by selecting the method that generated the highest clas-
sification model accuracy.

3.5. Dimension reduction

Since raw data in the spectral range 4000 – 400 cm�1 generated
3734 data points, this relatively large number could complicate the
5

pattern recognition process. Therefore, the dimension of the data
needed to be reduced by using DWT multiresolution analysis. In
the analysis, the sensor response signal x tð Þ can be described as a
linear combination of scaling and base functions,

x tð Þ ¼
X
k

aj0 kð Þuj0;k tð Þ þ
X
k

XN�1

j¼j0

dj kð Þwj;k tð Þð4Þ

aj0 is the approximation coefficient of the scaling basis vector
uj0;k tð Þ, which represents the approximate original signal x tð Þ and
dj is the detail coefficient of the wavelet vector base wj;k tð Þ for
the DWT [43]. The approximation component represents the orig-
inal signal, while the detail component is what is lost by high-
frequency filtering. The former can be passed to the next filter to
obtain more higher-level components. In the process there will
be a decrease in the sampling rate because some components
(samples) of the signal are removed, known as downsampling.
The number of samples at the output of this process is a fraction
of the number of samples input. In the context of signal compres-
sion, a subsignal (signal approximation in subspace) is used to rep-
resent the original signal [44].

In the analysis, level 5 Haar (db1), daubechies2 (db2), daube-
chies4 (db4), and symlet2 (sym2) wavelets were used to provide
pairs of scaling and wavelet functions. Each approximation and
detail decomposition coefficients were summed to reconstruct
the FTIR spectra. Reconstruction results generally enable mean
squared error (MSE) calculations between original and recon-
structed signals to be made [45,46]. In this study, the spectra came
from 24 samples, then to find the best wavelet, the average MSE
value of each wavelet was calculated and then compared to deter-
mine the most suitable wavelet for the FTIR spectra.
3.6. Classification models

3.6.1. SVM
These are kernel-based learning models [47,48] that employ a

decision plane, known as a hyperplane, to separate classes between
samples. In the SVM process, the data obtained from the measure-
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ment results are divided into training data and test data. The for-

mer set comprises pairs L ¼ xi; yið Þf gji¼1

i ¼ 1;2; � � � ; j for inputs xi with sample class labels yi to.

Minimize
1
2
kwk2 þ C

Xj

i¼1

ni ð5Þ

Subject toxi < w; yi >ð Þ þ b � 1� ni; ni � 0

C is the cost, which is the regularization parameter and is the
trade-off between margin maximization (achieved by minimizing

kwk2=2) and constraint relaxation. The optimal hyperplane can
be found by using a Lagrange multiplier with the Karush-Kuhn-
Tucker (KKT) conditions, to produce classification of the test data-
set when,

f xð Þ ¼ sign < w�:x > þb�ð Þ ¼ sign
Xn
i¼1

a�
i yi xi:xð Þ þ b�

 !
ð6Þ

where a�
i is the KKT multiplier. The inner product in the equa-

tion (6) can be replaced by the kernel function K xi;xð Þ, which is
a transformation function that maps inputs xi and � to some fea-
ture space. Here, we used Radial Basis Function (RBF) kernels for
the SVM analysis.

K xi;xð Þ ¼ exp
�kxi;xk2

2r2

 !
¼ exp �ckxi; xk2

� �
ð7Þ

where r is the standard deviation of the Gaussian distribution,
with c ¼ 1=2r2. Kernel function performance may result in over-
fitting, reducing SVM accuracy. This was avoided by using K-fold
cross-validation on a grid search method [49] to optimize the
hyperparameters C in equation (5) and c in equation (7).

3.6.2. MLPNN
ANNs are supervised learning classification techniques that can

approximate functions after a proper training process and one of
the most frequently used ANN architectures is the MLPNN. This
model consists of an input layer, where input data are received, a
hidden layer, which oversees recognizing system patterns, and an
output layer generated from the previous neuron processing layer.
An output target is previously determined and the system com-
pares the outcome of the learning process with this [50]. One of
the algorithms in MLPNN that is often used is backpropagation
(BP), where the training data provide learning rules so that the
weights are adjusted to make the output y closer to the target t.
The training data formed in the matrix x are the input to the neu-
rons in the input layer. Furthermore, each node in a layer, both
input and hidden layers, is connected to each node in the next layer
with a certain weight. [51].

In this research, the MLPNN used consisted of an input layer,
one hidden layer with ten nodes, and an output layer with one
node. The training process for each data set was carried out 10
times, then the weights of the network with the smallest MSE were
saved for the testing process.

3.6.3. LDA
This classification technique separates sample classes by using

the their respective variances [52]. In LDA, the data are trans-
formed to a low-dimensional space by maximizing the variance
between classes and minimizing the variance within the same
class [53], resulting in dimensionality reduction. Here, the data
from the FTIR results formed a matrix x that could be divided into
two classes (PYLCV-undetected and -infected plants), each class
had mean of li; while the total mean of all classes was l. The aver-
age distance between li and l was calculated to obtain the vari-
6

ance between classes,. Meanwhile, the variance in each class, was
obtained from the difference between the mean and element of
that class. Data transformation into new dimensions was carried
out based on the Fisher criterion [54,55].

The calculation of classification models accuracy of MLPNN,
SVM and LDA was carried out on the training, testing, and overall
data to determine the performance of the classification models
[56],

%Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

� 100% ð8Þ

where TP is true positive, TN is true negative, FP is false positive,
and FN is false negative.

3.6.4. Principal component analysis (PCA)
PCA is an unsupervised learning technique that reduces the

dimensions of the data, without losing important information, it
may even find hidden information in the data, and find data pat-
terns by extracting important information from within them
[57]. PCA transforms data by reducing redundancy so it can be
more easily interpreted. The matrix data input has a covariance
matrix that can be manipulated. The variance of each measure-
ment variable is depicted on the diagonal component, and this
component describes the characterization of the data. Meanwhile,
the off-diagonal component describes data redundancy. Matrix
manipulation is achieved by finding the eigenvalues and eigenvec-
tors of covariance matrix. The eigenvectors, sorted from highest to
lowest, represent the variability of the system. The component PC1
contains the maximum data variance or the largest sample disper-
sion [58].
4. Results and discussion

4.1. FTIR spectra

PYLCV-infected and -undetected plants exhibit different physi-
ological parameters, and in this research, we utilised transmission
mode FTIR spectroscopy to investigate the differences between
these plant conditions. This approach generated 3734 points for
one spectrum over the wavenumber range 4000–400 cm�1. There
were 24 spectra comprising 12 of PYLCV-infected plants and 12
from PYLCV-undetected plants. As a representative, four spectra
of PYLCV-infected and -undetected chilly plants from Bantul and
Cangkringan are plotted in Fig. 3.

As can be seen in Fig. 3, the FTIR spectroscopy for the PYLCV-
infected and -undetected chilli plants produced spectral curves
that were quite similar, differing only in a sharp downward peak
at 1385 cm�1 for PYLCV-infected plants. This wavenumber corre-
sponds to C-H bending in the alkane functional group [59]. In our
previous research [31], alkane, which is part of hydrocarbon, was
one of the functional groups with the highest variability that dis-
tinguished the PYLCH-infected and the PYLCV-undetected samples.
However from GC–MS analysis, the compound group that had the
largest contribution in discriminating the samples is the primary
amine, and not the alkane. The different result in this work was
caused by the sampling procedure. In our previous research, Gas
Chromatograph-Mass Spectrometry detected the VOCs emitted
by the plants when fresh leaf samples were taken directly from
the trees without any sample preparation. Meanwhile, in the FTIR
spectroscopy here, the leaf samples were processed into pellets by
using KBr.

The peaks at 1385 cm�1 for the infected samples from Bantul
and Cangkringan had different amplitudes. Meanwhile, other peak
differences are not large and thus the spectra from the PYLCV-
infected and -undetected plants alone are not sufficient to demon-



Fig. 3. Averaged spectra of PYLCV-infected and -undetected chilli plants.

Table 1
MSE comparison of wavelets employed.

Type of wavelet MSE

db1 (2.06 ± 0.80) � 10-28

db2 (1.13 ± 0.80) � 10-25

db4 (1.23 ± 0.63) � 10-24

sym2 (1.13 ± 0.08) � 10-25

Fig. 4. Raw data accuracy results of MLPNN, SVM, and LDA classification models.
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strate that FTIR spectroscopy can distinguish between the plants.
Moreover, PYLCV-infected samples from Cangkringan and PYLCV-
undetected samples from Bantul overlap and partiall coincide in
the ranges 800–400 cm�1 and 3400–3200 cm�1, making spectra
from the infected and PYLCV-undetected samples hard to distin-
guish. In addition, each spectrum consists of 3734 wavenumber
variables, and there are 24 spectra of PYLCV-infected and -
undetected samples. The large amount of data makes patterns
from raw spectra difficult to identify and use to predict new test
samples. Therefore, multivariate analysis is needed to handle large
data sets, obtain complete information from spectra and model
spectral patterns. This makes the system more reliable for future
tests and we thus applied the steps shown in Fig. 2 to both raw
and pre-processed data. There were three pre-processing methods
used for the analysis baseline correction, normalization, and
denoising. The pre-processing method was optimized by compar-
ing the accuracy results obtained by the various classification mod-
els (SVM, LDA, and MLPNN) following their application. The pre-
processing system with the highest classification model accuracy
was then validated by using principal component analysis (PCA).

4.2. Raw data classification results

The size of the raw spectral dataset was too large for the classi-
fication models hence, dimension reduction was carried out using
a DWT. This was applied to the full raw data spectral range from
4000 to 400 cm�1 utilising level five of the orthogonal wavelets
db1, db2, db4 and sym2. The results of the DWT analysis appear
in Table 1, where it may be seen that wavelet db1 produced the
smallest MSE value, and this shows that the signal reconstruction
with db1 is the most similar to the original signal compared to
the other five wavelets. Therefore, this was used for the next stage
of the processing.

A level five DWT reduced the full spectrum of 3734 data points
to 117

in the biofingerprint area, 934 datapoints were reduced to 30
points. The reduced the spectra were then processed by SVM,
LDA, and MLPNN, with 60% of the data points employed for train-
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ing and 40% for testing, split using the Kennard-Stone algorithm
[49].

First, accuracy was calculated using equation (8) The analysis
was completed for full range of the raw data, then the process
was repeated for the biofingerprint region and the results are
shown in Fig. 4.

From Fig. 4, it can be seen that the highest total accuracy for the
full range of raw data was achieved with MLPNN and LDA, return-
ing overall accuracies of 91.7%, whereas SVM only delivered 50%
accuracy. Meanwhile, using the biofingerprint spectrum, MLPNN
reached an accuracy of 100% but LDA and SVM only achieved
75% and 50%, respectively. The effect of using the 1800–



Fig. 6. Normalized spectra (4000 – 400 cm�1 region) accuracy results of MLPNN,
SVM, and LDA classification models.

Fig. 7. Normalized spectra (biofingerprint region) accuracy results of MLPNN, SVM,
and LDA classification models.
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900 cm�1 spectral range was that the MLPNN achieved 100% accu-
racy, so was the best method in the raw data group.

4.3. Baseline correction Pre-processing classification results

Baseline correction aims to overcome baseline drift caused by
temperature, light, humidity, and other environmental factors that
affect the precision of spectrometer optical components making it
difficult to determine the peak and the peak area of the spectra [60
61]. By using Thermo ScientificTM OMNICTM FTIR Software the raw
data were pre-processed to get baseline corrected spectra. These
were then reduced using level five of the db1 DWT in the spectral
ranges of 4000 – 400 cm�1 and 1800 – 900 cm�1. Both pre-
processed spectra were then classified by using MLPNN, SVM,
and LDA. The classification results of the two resulting spectra
are shown in Fig. 5.

The baseline correction method for the biofingerprint area
reached 100% accuracy using MLPNN for both testing and training
data, while the full spectrum reached 91.7% accuracy, with the
SVM accuracies for both spectra being the same. Meanwhile, using
LDA on the baseline corrected 1800 – 900 cm�1 region gave better
results than for the whole spectral range. Overall, baseline cor-
rected spectra in the biofingerprint region had a better classifica-
tion model accuracy than the full spectral range of 4000 –
400 cm�1.

4.4. Normalization pre-processing classification results

In the next step, the raw data in the 4000 – 400 cm�1 and 1800
– 900 cm�1 wavenumber spectra ranges were pre-processed by
using normalization techniques. Normalization aims to compen-
sate for the effects of scaling and spectrum shifts due to scattering,
the effect of fluctuations in source power, and differences in sam-
ple characteristics such as differences in particle size [38]. The
techniques used for pre-processing in this research were SNV, vec-
tor, and min–maxmethods. These were applied to the spectral data
then the results were fed into the DWT and the classification mod-
els. The classification analysis results for normalized spectra range
of 4000 – 400 cm�1 are depicted in Fig. 6. Next, the normalized
spectra were truncated to the biofingerprint area, and the classifi-
cation models applied, with results as shown in Fig. 7.

Overall, the SNV normalization pre-processing method had the
highest accuracy classification results compared to vector and
min–max normalization, both for the full spectral range and the
truncated version. Accuracy of 100% was achieved by SNV for the
former and by LDA for the latter. However, the overall accuracy
of the classification model for SNV pre-processing in the 1800 –
900 cm�1 range was the highest compared to other pre-
Fig. 5. Baseline corrected spectral accuracy results for MLPNN, SVM, and LDA
classification models.
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processing models. Min-max normalization gave the second-best
accuracy result, with values more than 80% for the MLPNN, SVM,
and LDA models for both wavenumber ranges Meanwhile, the
accuracy of vector normalization was the lowest, even for the
two spectra in the SVM model

training data accuracy did not reach 100%. As SNV normaliza-
tion at for 1800 – 900 cm�1 had the highest classification model
accuracy value, it was thus considered the best model in the nor-
malization group.

4.5. Classification results for SG analysis

The SG pre-processing began with the SG smoothing of raw
data, and then generation of the first and second derivatives of
the smoothing curve. These three options were then applied to
MLPNN, SVM, and LDA, and the results can be seen in the Fig. 8.
The SG pre-processed spectra data were then again cut in the
biofingerprint area and the classification models applied with
accuracy results depicted in Fig. 9.

From Figs. 8 and 9, it can be seen that the SG 1st derivative of
the 4000–400 cm�1 spectral range and biofingerprint region
reached the highest classification accuracy for MLPNN, SVM, and
LDA. Meanwhile, 100% SVM total accuracy was also reached by
the SG 2nd derivative pre-processed spectra of both wavenumber
ranges, although the two other classification models did not show
the same results. Moreover, the smoothing curve in the 4000 –



Fig. 8. De-noising spectra by using SG technique accuracy results of MLPNN, SVM,
and LDA classification models in the spectral range of 4000 – 400 cm�1.

Fig. 9. De-noising spectra by using SG technique accuracy results of MLPNN, SVM,
and LDA classification models in the spectral range 1800 – 900 cm�1.

Table 2
Comparison of classification accuracy between the optimized pre-processing
methods.

Type of pre-processing MLPNN SVM LDA

Raw data (1800–900 cm�1) 100% 50% 75%
Baseline correction (1800–900 cm�1) 100% 50% 70.83%
SNV normalization (1800–900 cm�1) 91.67% 91.67% 100%
SG 1st derivative (4000–400 cm�1) 100% 100% 100%
SG 1st derivative (1800–900 cm�1) 100% 100% 100%

Fig. 10. PCA results of raw data in 4000 – 400 cm�1 spectral range.

Fig. 11. PCA results of pre-processed spectra by using SG 1st derivative for the
range 4000 – 400 cm�1.
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400 cm�1 range shows the lowest accuracy results of the classifica-
tion models compared to the other SG methods.

SG smoothing is used to smooth the signal by attenuating high-
frequency noise, hence the waveform peak shape, amplitude and
width of the desired signal will be maintained [62]. Meanwhile,
the SG derivative is used as a band-pass filter which can also
reduce signals at low frequencies [63,64]. The better classification
results from the SG derivative implies that the noise in the spectra
occurs not only at high frequencies but also at low frequencies.
Therefore, the SG 1st derivative of the 4000–400 cm�1 and 1800–
900 cm�1 wavenumber spectral ranges will be used for optimiza-
tion between the pre-processing methods.
4.6. PCA analysis

The sub-methods of the three methods of pre-processing that
gives the highest accuracy were compared to find which procedure
has the highest accuracy among the classification models. The
highest ones were then processed by PCA to ascertain the degree
of sample separation in the cluster analysis. The best sub-
methods of each pre-processing methods can be seen in Table 2.

From Table 2, the SG 1st derivative results in both wavenumber
ranges reached 100% for all the classification methods and were
thus chosen for PCA analysis. The PCA clusters of the methods were
then compared with the raw spectral data to ascertain the effect of
the pre-processing method on the cluster analysis. The PCA result
for the raw spectral data is shown in Fig. 10. In the figure, the sam-
ples that came from the same trees are overlapping. It is apparent
9

that the PYLCV-infected and -undetected chilli plant regions are
also overlapping, and the distances between the data points of
the groups are too close. Therefore, the applying raw data directly
to the classification models will deliver poor results.

The PCA results of the SG 1st derivative for the 4000–400 cm�1

and 1800–900 cm�1 spectral ranges are shown in Figs. 11 and 12.
It is clear from Figs. 11 and 12, that pre-processing the PYLCV-

infected and -undetected plant groups delivered more distinguish-
able results than employing the raw data in Fig. 10, moreover SG
1st derivatives achieved the highest classification performance of
100% for all three classification models in SG analysis applied over
both wavenumber ranges. In Fig. 10, the position of the PYLCV-
undetected UBs are close to the infected IC ones. Moreover, the
infected IC results are far from the rest of the group of infected
plants. However, when pre-processed by the SG 1st derivative, as
can be seen in Fig. 11, the infected plants of IB appear to be in
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the PYLCV-undetected plants’ cluster region, but there is no over-
lap between the samples. Therefore, with the slack variable and
flexible RBF kernel of SVM, the classification of PYLCV-
undetected and diseased plants for training and testing data was
still 100% successful, and this was reinforced with the MLPNN
and LDA results. On the other hand, pre-processing with the SG
1st derivative in the spectra range of 1800–900 cm�1 gave better
clustering results as can be seen in the Fig. 12, where groups of
PYLCV-infected and -undetected plants were clearly clustered
and could be distinguished by a linear plane.

Overall, SG 1st derivative pre-processing was the best method
when compared to the other techniques investigated. Using it,
the MLPNN, SVM, and LDA classification results were 100% in train-
ing and test data for both wavenumber ranges. Meanwhile, the
clustering analysis of the 1st derivative SG spectra in the range
1800 – 900 cm�1 shows a clearer separation than the same tech-
nique at the 4000 – 400 cm�1 range. However, the MLPNN, SVM,
LDA can still provide 100% classification results for the full spectral
range. Although baseline correction and normalization can over-
come the spectrum shifts and scaling problems, the best classifica-
tion accuracy was achieved when the SG 1st derivative was
applied. This proves that the system will have a better result when
what is effectively a band-pass filter is used to reduce high and low
frequency noise.

For comparison, we also combined several pre-processing sys-
tems with the best classification accuracy of each method (baseline
correction, SNV normalization, and SG 1st derivative) and applied
them to both the 4000–400 cm�1 spectral range and the biofinger-
print area, as shown in Table 3.

From Table 3, the three classification models have 100% accu-
racy for recognizing training and testing data if baseline correction,
SNV normalization, and SG1st derivative are combined together
and applied to the biofingerprint range. The second-best accuracy
of all the models was obtained by the combination of baseline cor-
Fig. 12. PCA results of pre-processed spectra by using SG 1st derivative for the
range 1800 – 900 cm�1.

Table 3
Comparison of classification accuracy between the combination of pre-processing method

Combination of pre-processing method

SNV + SG 1st derivative (4000–400 cm�1)
Baseline correction + SNV (4000–400 cm�1)
Baseline correction + SNV + SG 1st derivative (4000–400 cm�1)
Baseline correction + SG 1st derivative (4000–400 cm�1)
Baseline correction + SNV + SG 1st derivative (1800–900 cm�1)
Baseline correction + SG 1st derivative (1800–900 cm�1)
Baseline correction + SNV (1800–900 cm�1)
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rection and SG 1st derivative, followed by baseline correction com-
bined with SNV normalization both also applied to the
biofingerprint range. Meanwhile, the best classification accuracy
for the full spectra range was achieved by the combination of base-
line correction with the SG 1st derivative and SNV normalization
with the SG 1st derivative. However, these cannot provide 100%
accuracy for all three classification models.

For further analysis of distinguishing PYLCV-infected and -
undetected chilli plants by using FTIR spectroscopy, we suggest
using spectra in the wavenumber range of 4000–400 cm�1 with
the SG 1st derivative because, in this range, all the information
and phenomena that occurred in the signal are included.
5. Conclusions

A novel method to detect PYLCV-infected chilli plants by using
FTIR spectroscopy has been developed and the best pre-processing
method to improve system classification results has been investi-
gated. We optimized the pre-processing methods and then
retained only one for the next analysis step to simplify and shorten
the process. Optimization was undertaken for baseline correction,
normalization, and de-noising methods with the signal processing
applied to both the full spectrum of raw data (4000 – 400 cm�1)
and the biofingerprint region (1800 – 900 cm�1). Considerable
reduction in the spectral dimension was needed and achieved via
the DWT. The pre-processed techniques were then compared by
applying their outputs to MLPNN, SVM, and LDA. As a result, the
SG 1st derivative applied to both spectral ranges obtained 100%
accuracy of training and testing data for the three methods, sup-
ported by PCA cluster analysis. However, the analysis should be
performed on the full wavenumber spectrum of 4000 – 400 cm�1

because this contains all the information and phenomena in the
signal without the inevitable loss by truncating the spectral range.
By selecting the proper pre-processing technique, the analysis of
FTIR spectra data may be simplified by employing just one pre-
processing method and still generate high accuracy classification
results.
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