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Abstract

This thesis develops new nonparametric Bayesian hidden Markov models
(HMM) and estimation methods that address some of the challenges and limita-
tions of existing nonparametric approaches. In chapter 2, we introduce for the first
time a fully Bayesian method for inference in spline-based HMMs where the number
of states may be unknown along with other model parameters including the knot
configuration of the B-splines. Regarding the latter, we propose the use of a trans-
dimensional Markov chain Monte Carlo (MCMC) algorithm, while model selection
regarding the number of states can be achieved based on the estimated marginal
likelihood. Our methodology compares favourably with existing competing methods
in terms of estimation accuracy, stability and efficiency. We then extend the spline-
based HMM proposed in chapter 2 to develop a novel hierarchical conditional HMM
approach, which allows us to analyse the specific state of an HMM at a finer level
with another sub-HMM, achieving inferences that are otherwise not possible with a
single HMM. We apply the proposed method to human activity data from wearable
devices where we can jointly identify and characterise sleep periods, an area of inter-
est to sleep and circadian biology research. In the last part of the thesis, we exploit
the strength of the hierarchical Dirichlet process and a suitable integration with
HMMs to develop new Bayesian nonparametic multivariate HMMs. The resulting
models allow for flexible yet parsimonious modelling of the emission distributions
and automatic learning of the state cardinality, generalising existing models to of-
fer greater modelling flexibility. We develop novel MCMC methods which combine
the slice sampling technique and a dynamic programming algorithm for exact and
efficient posterior inference. Finally, we apply our proposed models to motion and
heart rate data collected from the Apple watch for learning human sleep dynamics
in an unsupervised context.
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Chapter 1

Introduction to hidden Markov

models

Hidden Markov models (HMMs) are arguably one of the most important and pop-

ular class of time series models for extracting information from sequential data,

which are central to many modern statistical and machine learning problems. In-

stead of directly modelling the relationship between consecutive observations, they

explain the patterns in the data by introducing an additional latent structure, with

which complex dependencies between the observations may be handled while retain-

ing a relatively simple and interpretable modelling framework. Since the successful

application in speech recognition [Rabiner, 1989], they have been useful in areas

throughout applied sciences; a few examples are economics [Hamilton, 1989; Kim,

1994], finance [Rydén et al., 1998; Langrock et al., 2012b], pattern recognition [Epail-

lard and Bouguila, 2016; Nguyen et al., 2005], genomics [Yau et al., 2011], biophysics

[Chen et al., 2016], medical sciences [Li et al., 2013] and ecology [McClintock et al.,

2020]. We refer to Cappé et al. [2005], Dymarski [2011] and Zucchini et al. [2016]

for illustrations of various successful applications of HMMs and an extended bibli-

ography. This chapter is not intended to give an extensive review of HMMs but to

introduce the core ideas and basic inference and learning algorithms which will lay

the foundation for the development of the thesis.

1.1 The basic framework

We begin with a introduction to the HMM in its most basic form whereas exten-

sions of the basic model will be introduced in later sections. Suppose we have

a sequence of random variables y(T ) = (y1, . . . , yT ), where yt may be discrete or

1



continuous and take values in an observation space Ω. The basic N-state HMM

for the observed process y(T ) introduces an unobserved finite state space Markov

chain x(T ) = (x1, . . . , xT ) taking values in S = {1, . . . , N}. The Markov chain is

parametrized by the initial distribution δ and a homogeneous transition probability

matrix Γ = (γi,j)i,j=1,...,N such that

P (x1 = i) = δi, i = 1, . . . , N,

P (xt|x(t−1),Γ) = P (xt|xt−1,Γ) = γxt−1,xt , t = 2, . . . , T.
(1.1)

Therefore the joint probability of x(T ) is given by

P (x(T )|δ,Γ) = δx1

T∏
t=2

P (xt|xt−1,Γ).

We assume further that the distribution of an observed data point yt, t = 1, . . . , T ,

given all other observed and latent variables, depends only on the current state xt

f(yt|y(−t), x(T ), ϕ) = f(yt|xt, ϕ) = f(yt|ϕxt) (1.2)

where y(−t) = (y1, . . . , yt−1, yt+1, . . . , yT ), ϕ = (ϕ1, . . . ϕN ) is a stacked vector of

parameters associated with the distributions in (1.2) and here, and throughout this

chapter, we shall use f(·|·) as a generic notation to represent conditional densities as

specified by their arguments. The conditional distribution in (1.2) is referred to as

the state-dependent distribution or the emission distribution in the HMM literature

(denoted as fxt(yt) for short) and is usually assumed to belong to some parametric

family of distributions, such as the normal or gamma family. Equations (1.1) and

(1.2) together form the two basic modelling assumptions in HMMs and they can be

compactly represented by a direct acyclic graph (DAG) as shown in Figure 1.1. A

basic HMM is hence fully specified by the triplet θ = (δ,Γ, ϕ). The joint density of

the observed and hidden variables (also known as the complete data likelihood) takes

a simple form thanks to the Markov and conditional independence assumptions

f(y(T ), x(T )|θ) = f(x(T )|θ)f(y(T )|x(T ), θ) = δx1

T∏
t=2

P (xt|xt−1,Γ)

T∏
t=1

f(yt|ϕxt). (1.3)
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Markov process : X1 X2 X3 · · · XT

Observations : Y1 Y2 Y3 · · · YT

Γ

f

Γ

f

Γ

f

Γ

f

Figure 1.1: Graphical representation of a basic hidden Markov model. The un-
observed variables, i.e. the hidden states, are shown in circles while the observed
variables are shown in boxes.

The marginal likelihood of the observed data with hidden states integrated out

(known as the observed data likelihood) can be obtained as

LT = f(y(T )|θ) =
∑

x1,...,xT

f(y(T ), x(T )|θ). (1.4)

Note that direct evaluation of (1.4) requires O(NT ) steps so the computation would

become infeasible as T grows large (even with N held fixed). An efficient recursive

algorithm to evaluate this likelihood will be introduced in the next section.

1.2 Inference in HMMs

In this section we introduce the main inference problems in the HMM context (with

parameter θ assumed given for now), namely the filtering, smoothing, prediction

and decoding problems. Importantly, the conditional independence assumptions

implied by equations (1.1) and (1.2) permit dynamic programming techniques for

solving these tasks efficiently, regardless of the particular parametric forms of the

emission distributions. For convenience of notation, the dependent parameters θ

will be dropped from the expressions of the (conditional) probability densities from

now onward. The notations and terminology used here closely follow the ones used

in Zucchini et al. [2016].

1.2.1 The filtering problem

The filtering problem concerns inferring the state at time t ≤ T given all observations

up to time t, i.e. solving for P (xt|y(t)). To facilitate computation, we introduce what

is known as the forward probability vector αt = (αt(1), . . . , αt(N)), t = 1, . . . , T ,

3



where

αt(i) = f(y(t), xt = i), i = 1, . . . , N,

which is the unnormalized filtering distribution at time t. Note that for t = 2, . . . , T ,

i = 1, . . . , N , a ”forward” recursion for αt(i) can be derived as

αt(i) =
∑
k∈S

f(y(t−1), yt, xt = i, xt−1 = k)

=
∑
k∈S

f(y(t−1), xt−1 = k)f(xt = i|xt−1 = k, y(t−1))f(yt|xt = i, xt−1 = k, y(t−1))

=
∑
k∈S

f(y(t−1), xt−1 = k)P (xt = i|xt−1 = k)f(yt|xt = i)

= fi(yt)
∑
k∈S

αt−1(k)γk,i,

where α1(i) = f(y1, x1 = i) = δifi(y1). The whole procedure therefore has a compu-

tational complexity of O(TN2) and is summarized in Algorithm 1 using equivalent

matrix expressions, where P(yt) is defined as the diagonal matrix with i-th diagonal

element fi(yt). By Bayes theorem, the HMM filter is obtained as

P (xt = i|y(t)) =
f(xt = i, y(t))∑N
i=1 f(xt = i, y(t))

=
αt(i)∑

k∈S αt(k)
, t = 1, . . . , T, i = 1, . . . , N.

Another by-product from the forward algorithm is the marginal likelihood which

can now be efficiently computed in linear time in sample size T

LT = f(y(T )) =
∑
i∈S

αT (i) = δP(y1)ΓP(y2) · · ·ΓP(yT )1
′
,

where 1 is a row vector of ones of dimension N .

Algorithm 1: The forward algorithm

• Initialize α1 = δP(y1)

• For t = 2, . . . , T , set αt = αt−1ΓP(yt)

1.2.2 The smoothing problem

For the smoothing problem we are interested in computing P (xt|y(T )) for t < T , that

is, the marginal probability of the state at a past time given the entire observations

4



y(T ). To this end, we shall introduce another basic recursive scheme for the HMM,

namely the backward algorithm. We define the vector of ”backward” probabilities

βt = (βt(1), . . . , βt(N)), t = 1, . . . , T , by

βt(i) = f(yTt+1|xt = i), t = 1, . . . , T − 1, i = 1, . . . , N,

βT (i) = 1, i = 1, . . . , N,

where yTt+1 = (yt+1, . . . , yT ). Then a backward recursion for βt(i) can be derived as

follows

βt(i) = f(yTt+1|xt = i)

=
∑
k∈S

f(yTt+2, yt+1, xt+1 = k|xt = i)

=
∑
k∈S

P (xt+1 = k|xt = i)f(yt+1|xt+1 = k, xt = i)f(yTt+2|yt+1, xt+1 = k, xt = i)

=
∑
k∈S

P (xt+1 = k|xt = i)f(yt+1|xt+1 = k)f(yTt+2|xt+1 = k)

=
∑
k∈S

γi,kfk(yt+1)βt+1(k), t = T − 1, . . . , 1, i = 1, . . . , N.

The whole procedure has a computational cost of O(TN2) can be executed indepen-

dently of the forward recursion, and is summarized in Algorithm 2 using equivalent

matrix expressions. The HMM smoother can be obtained as a function of the for-

Algorithm 2: The backward algorithm

• Initialize βT = 1

• For t = T − 1, . . . , 1, set βt = ΓP(yt+1)βt+1

ward and backward probabilities

P (xt = i|y(T )) =
αt(i)βt(i)∑

k∈S αt(k)βt(k)
. (1.5)

To verify (1.5), note that

f(xt = i|y(T )) =
f(xt = i, y(T ))∑
i∈S f(xt = i, y(T ))

5



and

f(xt = i, y(T )) = f(xt = i, y(t), yTt+1)

= f(xt = i, y(t))f(yTt+1|xt = i, y(t))

= f(xt = i, y(t))f(yTt+1|xt = i)

= αt(i)βt(i).

Therefore we have another expression for the marginal likelihood LT =
∑

k∈S(αt(k)

βt(k)) for any given t. Another quantity of interest in the smoothing context is the

pairwise marginal probability P (xt = i, xt+1 = j|y(T )), which is used in applying

the Expectation-Maximization (EM) [Dempster et al., 1977] algorithm for learn-

ing HMM parameters. It can be easily evaluated given the forward and backward

probabilities as

P (xt = i, xt+1 = j|y(T )) =
f(xt = i, xt+1 = j, y(T ))

LT

=
f(xt = i, xt+1 = j, y(t), yt+1, y

T
t+2)

LT

=
f(xt = i, y(t))P (xt+1 = j|xt = i)f(yt+1|xt+1 = j)f(yTt+2|xt+1 = j)

LT

=
αt(i)γi,jfj(yt+1)βt+1(j)

LT
.

(1.6)

1.2.3 The prediction problem

The prediction problem involves predicting the hidden state and the data at a future

time point T + h, where the integer h > 0 is known as the forecast horizon, given

observations up to time T . Therefore there are two conditional distributions of

interest, namely P (xT+h|y(T )) and f(yT+h|y(T )), each of which is easy to compute

given the forward probabilities αT . Starting from state prediction, we have

P (xT+h = i|y(T )) =
f(xT+h = i, y(T ))

f(y(T ))

=

∑
k∈S f(xT+h = i, xT = k, y(T ))

LT

=

∑
k∈S αT (k)P (xT+h = i|xT = k)

LT

=
αTΓhe

′
i

LT
, i = 1, . . . , N,

(1.7)
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where Γh is the h-step transition matrix for the Markov chain and ei = (0, . . . , 1, . . . , 0)

is a row vector of dimension N that has a one in the i-th entry, with the rest be-

ing zero. Note that the standard Markov chain theory indicates that under the

regularity conditions, as the horizon h → ∞,

αT

LT
Γh → π = (π1, . . . , πN ),

where π is the stationary distribution of the Markov chain and thus P (xT+h =

i|y(T )) → πi. Built on (1.7), the forecast distribution f(yT+h|y(T )) can then be

derived as

f(yT+h|y(T )) =
∑
k∈S

f(yT+h, xT+h = k|y(T ))

=
∑
k∈S

f(yT+h|xT+h = k)P (xT+h = k|y(T ))

=

∑
k∈S fk(yT+h)αTΓhe

′
i

LT

=
αTΓhP(yT+h)1

′

LT
.

(1.8)

Note that the last row of (1.8) can be rewritten as a finite mixture of the emission

distributions
∑N

i=1w
h
i fi(yT+h), where the weight wh

i is given by the i-th entry of

αTΓh/LT . As h → ∞, the weights will tend to the stationary probabilities and

thus the limiting forecast distribution is given by the marginal distribution of a

stationary HMM.

1.2.4 The decoding problem

Decoding refers to the process of inferring the hidden state sequence given observa-

tions and is often of central interest in many applied problems. Generally speaking,

there are two different strategies for solving this problem. The first approach, which

is referred to as local decoding, selects the state at each time point by maximizing

its marginal state probability, that is, to find

x̂t = arg max
i=1,...,N

P (xt = i|y(T )),

where P (xt = i|y(T )) is the HMM smoother as given by (1.5). The resulting esti-

mated state sequence is known as the maximum accuracy path. Alternatively, one

can perform global decoding which aims at finding the the most likely sequence of

the hidden states, i.e. the state path (x1, . . . , xT ) that maximizes the conditional

7



probability P (x(T )|y(T )) or equivalently, the joint density P (x(T ), y(T ))

x̂(T ) = arg max
x(T )

P (x(T )|y(T )) = arg max
x(T )

f(x(T ), y(T )).

Clearly, direct optimization by comparing all possible state paths is not a feasible

solution as there would be a total of NT paths to be considered. The Viterbi algo-

rithm [Viterbi, 1967] turns out to be an efficient method of solving this problem, with

computational complexity of the same order as that for the forward and backward

algorithms. Let Vt = (Vt(1), . . . , Vt(N)), t = 1, . . . , T , where V1(i) = f(x1 = i, y1)

and Vt(i) = max
x1,...,xt−1

f(x(t−1), xt = i, y(t)), i = 1, . . . , N . Then V2, . . . ,VT can be

computed in a recursive manner since

Vt(i) = max
x1,...,xt−2

max
xt−1

f(x(t−2), xt−1, xt = i, y(t−1), yt)

= max
x1,...,xt−2

max
xt−1

f(x(t−2), xt−1, y
(t−1))f(xt = i|x(t−2), xt−1, y

(t−1))

f(yt|xt = i, x(t−2), xt−1, y
(t−1))

= max
xt−1

Vt−1(xt−1)γxt−1,ifi(yt).

It then becomes clear that we can reconstruct the most likely state path in a back-

ward manner by first identifying the optimal state at time T as

x̂T = arg max
i=1,...,N

VT (i),

and then recursively recovering the remaining states from

x̂t = arg max
i=1,...,N

Vt(i)γi,x̂t+1fx̂t+1(yt+1) = arg max
i=1,...,N

Vt(i)γi,x̂t+1 , t = T − 1, . . . , 1.

The whole procedure is summarized in Algorithm 3.

Algorithm 3: The Viterbi algorithm

• For i = 1, . . . , N , set V1(i) = f(x1 = i, y1)

• For t = 2, . . . , T , i = 1, . . . , N , set Vt(i) = max
xt−1

Vt−1(xt−1)γxt−1,ifi(yt)

• Set x̂T = arg max
i=1,...,N

VT (i)

• For t = T − 1, . . . , 1, set x̂t = arg max
i=1,...,N

Vt(i)γi,x̂t+1

8



1.3 Learning for HMMs

Parametric estimation theory for HMMs is well established and here we briefly in-

troduce the two basic inferential frameworks for estimating the unknown parameters

θ = (δ,Γ, ϕ) of an HMM, the maximum likelihood and Bayesian estimation methods.

To simplify discussion we shall assume that the cardinality N is known throughout

this section and will discuss its selection as a model selection problem in the next

section.

1.3.1 Maximum likelihood estimation

In this framework the parameters θ are treated as fixed quantities, although un-

known, and we want to find the parameters that maximize the observed data like-

lihood, i.e. solving the constrained optimization problem

θ̂ = arg max
θ∈Θ

f(y(T )|θ), (1.9)

where Θ is the joint parameter space. Consistency and asymptotic normality of the

maximum likelihood (ML) estimator for general HMMs were established in Leroux

[1992] and Bickel et al. [1998], respectively. Although conceptually simple and theo-

retically attractive, its implementation in practice is generally a challenging problem

due to the complicated structure of f(y(T )|θ) induced by the latent process and the

fact that no closed form solution exist. In the literature we may identify two differ-

ent strategies to perform ML estimation, each of which has its relative merits. The

first uses numerical maximisation techniques to directly find solutions to (1.9) and

usually requires little programming effort (see e.g. Langrock et al. [2012a]), thanks

to the ease of evaluating the likelihood with forward algorithm and the existence

of many optimization routines available in many software packages. However, the

approach can suffer from numerical issues or poor convergence properties, especially

for increasing cardinality N . The second method relies on the EM algorithm (known

as the Baum-Welch algorithm [Baum et al., 1970] in the context of HMMs), a gen-

eral yet powerful method for finding ML estimates for models with missing data. It

works with the complete data log-likelihood (CDLL), which takes a much simpler

form

log(f(y(T ), x(T ))) = log(δx1) +

T∑
t=2

log(γxt−1,xt) +

T∑
t=1

log(fxt(yt)).

9



Let us further define Ii(t) = 1 if xt = i, t = 1, . . . , T , and Iij(t) = 1 if xt−1 = i and

xt = j, t = 2, . . . , T , the CDLL can then be rewritten as:

log(f(y(T ), x(T ))) =
N∑
i=1

Ii(1) log(δi)+
T∑
t=2

N∑
i=1

N∑
j=1

Iij(t) log(γi,j)+
T∑
t=1

N∑
i=1

Ii(t) log(fi(yt)).

Given the starting values for the parameter vector θ(0), the EM algorithm proceeds

to create a sequence of θ(i) according to:

θ(i+1) = arg max
θ

E[log(f(y(T ), s(T )))|θ(i), y(T )]

= arg max
θ

( N∑
i=1

Îi(1) log(δi) +
T∑
t=2

N∑
i=1

N∑
j=1

Îij(t) log(γi,j) +

T∑
t=1

N∑
i=1

Îi(t) log(fi(yt))
)

where the conditional expectation is taken with respect to x(T ), θ(i) is the current

parameter estimate, Îi(t) = E[Ii(t)|θ(i), y(T )] = P (xt = i|θ(i), y(T )) and Îij(t) =

E[Iij(t)|θ(i), y(T )] = P (xt−1 = i, xt = j|θ(i), y(T )) are given by the HMM smoother

(1.5) and (1.6), respectively, computed conditional on θ(i). It can be shown that the

observed data log-likelihood is nondecreasing at each iteration of the algorithm

log f(y(T )|θ(i)) ≤ log f(y(T )|θ(i+1))

and will converge at least to a local maximum (proof is omitted here). Compared

with the direct maximization approach, the EM algorithm enjoys better theoretical

guarantees but can suffer from slow convergence and usually requires higher pro-

gramming effort and thus can be more costly to implement. We refer to Altman

and Petkau [2005], Bulla and Berzel [2008] and Cappé et al. [2005] (chapter 10)

for more comparative discussions on the use of the EM and direct numerical ap-

proach for learning HMMs. It should be pointed out that the initialization of the

parameters is a subtle and challenging issue for both approaches and can have a

significant impact on the final results, see Maruotti and Punzo [2021] and references

therein for a more detailed discussion and related strategies. For such ML based

methods, standard errors (and approximate confidence intervals) for the parameter

estimates are usually estimated either from the approximate covariance matrix for

the parameter estimates or by parametric bootstrap technique. We note however

that various issues exist with these approaches. Particularly, with respect to the

former approach, the estimated standard error can be unreliable when some of the

parameters are close to (or on) the boundary of their parameter space. The lat-

ter approach avoids relying on asymptotics, but the computations are usually very
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time-consuming [Zucchini et al., 2016].

1.3.2 Bayesian estimation

In a Bayesian paradigm, the model parameters θ = (δ,Γ.ϕ) are treated as random

variables, for which prior distributions are introduced to express our beliefs before

seeing the data. After obtaining the observations we update our beliefs on the

parameters via Bayes theorem and our inference on θ can be performed based on

its posterior distribution. In the HMM context we are typically interested in the

posterior over the parameters and hidden variables

f(θ, x(T )|y(T )) ∝ f(x(T ), y(T )|θ)f(θ) (1.10)

where f(θ) is the joint prior distribution. Direct inference on this joint posterior

is, however, intractable in general and we need to resort to approximate inference

techniques. One option is to use Bayesian variational method, an optimization-

based deterministic approach that is originally introduced to HMMs in MacKay

[1997]. The basic idea is to approximate the target posterior in by a tractable fam-

ily of distributions q that is usually assumed fully factorizable in its components, i.e.

q(θ, x(T )) = qδ(δ)qΓ(Γ)qϕ(ϕ)qx(x(T )) (known as the mean field approximation). The

approximating density q can then be optimized (in the sense of minimizing the dis-

crepancy between q(θ, x(T )) and f(θ, x(T )|y(T ))) in an iterative manner by defining

and optimizing a variational free energy, using a so-called variational Bayes EM al-

gorithm which is guaranteed to converge to a stationary point. We refer to MacKay

[1997], Beal [2003] and McGrory and Titterington [2009] for more theoretical and

implementational details. Another more popular solution is to use Markov chain

Monte Carlo (MCMC) method; some pioneer works include, for instance, Robert

et al. [1993], Chib [1996], Robert and Titterington [1998] and Scott [2002]. It is a

simulation-based approach that yields a stochastic representation of a potentially

complex posterior distribution. Various quantities of interests, such as the poste-

rior means of the parameters, can be easily approximated using their sample-based

averages. Uncertainty quantification of the parameter estimates can be achieved by

studying the variability of their posterior samples. The most popular MCMC algo-

rithm for HMMs is perhaps the block Gibbs sampler based on data augmentation

[Frühwirth-Schnatter, 2006]. In outline, the sampler switches between the following

two steps until ”convergence”

• draw x(T ) ∼ P (x(T )|θ, y(T ))
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• draw θ ∼ f(θ|x(T ), y(T ))

An important fact is that we can efficiently simulate x(T ) from its posterior using a

dynamic programming algorithm, known as a forward filtering backward sampling

(FFBS) algorithm (see e.g. Scott [2002]), at a cost of O(TN2) regardless of any

particular parametric form for the emission distribution fxt(yt). The key insight

here is that the joint posterior of the hidden states can be factorized as

P (x(T )|y(T )) = P (xT |y(T ))
T−1∏
i=1

P (xT−i|xTT−i+1, y
(T ))

= P (xT |y(T ))

T−1∏
i=1

P (xT−i|xT−i+1, y
(T )),

where the second equality follows from the basic assumptions (1.1) and (1.2). There-

fore we can jointly sample x(T ) by first sampling xT ∼ P (xT |y(T )), and then for

t = T − 1, . . . , 1, sampling xt ∼ P (xt|xt+1, y
(T )) ∝ f(xt, y

(t))P (xt+1|xt), where xt+1

is the most recent sampled state at t + 1. Note that to implement this procedure

we need to compute the forward probabilities αt, t = 1, . . . , T , in advance, which

explains the first part of the name ”forward filtering”. The whole process is summa-

rized in Algorithm 4. Conditional on the sampled state sequence and the observed

Algorithm 4: The forward filtering backward sampling algorithm

• For t = 1, . . . , T , compute αt using the forward algorithm

• Sample xT ∼ P (xT = i|y(T )) ∝ αT (i)

• For t = T − 1, . . . , 1, sample xt ∼ P (xt = i|xt+1, y
(T )) ∝ αt(i)γi,xt+1

data, model parameters θ = (δ,Γ, ϕ) can, depending on the model setting, be easily

sampled in blocks using Gibbs sampling steps. We refer to Frühwirth-Schnatter

[2006] and Rydén [2008] for more details and some examples. An alternative to the

above Gibbs sampler is to use Metropolis-Hastings Algorithm, with the hidden state

sequence integrated out via the forward algorithm, see Cappé et al. [2005] (chapter

13.1) for an example. Notably, MCMC methods are asymptotically exact as opposed

to variational methods, in the sense that it will sample from the exact posterior of

interest as the number of iterations goes to infinity, and the algorithm can be easily

adapted and applied to almost arbitrary models. On the other hand, they can be

more computationally intensive to implement and it may take excessive time for the

sampler to converge that is also hard to justify. There is also an unidentifiability
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issue we need to take care of - the posterior in (1.10) would be invariant to permu-

tations of the state labels (i.e. has N ! symmetric modes) if the priors are invariant

to relabelling of the states. This potential label switching problem means that the

samples generated by MCMC cannot be directly used for state-specific inference as

the state labels can permute during the MCMC iterations. A number of strategies

has been proposed to deal with this issue, see for instance Marin et al. [2005] and

Spezia [2009]. We will discuss this issue in more details in later chapters.

1.4 Model selection

Up to now we treated the number of states N as given. This is the case in certain

scenarios where we have sufficient prior information regarding the underlying phys-

ical process that generated the data or we may fall into a classification task with

pre-defined categories to be allocated. In many other applied problems, determining

the cardinality N is of scientific interest in itself as it conveys important information

regarding the underlying process, and thus it needs to be estimated from the data

along with other model parameters. Informally speaking, we would like to select

the cardinality N , neither overly high (i.e. danger of overfitting) nor overly low (i.e.

danger of underfitting), that best explains the key features of the data and allow us

to extract as much information as possible from the limited data at hand. We note

that for the special case of finite-alphabet HMMs (observed data have a finite sup-

port), this order selection problem is well studied, see e.g. Rydén [1995] and Gassiat

and Boucheron [2003]. However, for more general HMMs this remains a challenging

task. Under the frequentist estimation framework, it has been shown that the likeli-

hood ratio statistic for HMMs has a nonstandard behaviour and is unbounded even

in some simple parametric cases [Gassiat and Keribin, 2000]. Penalized likelihood

methods such as the Akaike information criterion (AIC) or Bayesian information

criterion (BIC) are popular in practice to compare HMMs with varying complexity

[Rydén et al., 1998; Punzo and Maruotti, 2016], however, there is a lack of theoreti-

cal guarantees and they can be problematic, as for instance, the former may favour

HMMs with an undesirably large number of states while the latter may over-penalize

the larger models [Scott, 2002; Pohle et al., 2017; Li and Bolker, 2017]. Alternative

methods based on the cross-validated likelihood are proposed in Celeux and Durand

[2008] and were found to be strong competitors to the information criteria based

approaches. However, no consensus has been made to date regarding the optimal

selection criterion. For the special case of univariate Gaussian HMMs, Hung et al.

[2013] developed a double penalized likelihood method for model selection and estab-
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lished consistency and good finite sample performance. In the Bayesian framework,

the cardinality N is treated as an additional model parameter and its value can be

inferred according to its posterior distribution

P (N |y(T )) ∝ f(y(T )|N)P (N),

where P (N) expresses our prior belief on the number of states with support usually

defined over a finite set {2, . . . ,M}, and

f(y(T )|N = k) =

∫
f(y(T )|, θk, N = k)f(θk|N = k)dθk, (1.11)

where θk denotes the parameter set for a k-state HMM. The quantity in (1.11) is

known as the evidence or the integrated likelihood, which can be informally regarded

as the averaged fit of the model to the data conditional on the cardinality N and it

automatically penalizes models with larger number of parameters (principle of Oc-

cam’s razor, see e.g. Jefferys and Berger [1992] and MacKay [1992]). The evidence

(1.11) therefore plays an important role in Bayesian model selection, although it is

generally difficult to estimate [Scott et al., 2005]. Various techniques (mostly Monte

Carlo methods) have been proposed to approximate this evidence (or the ratios

between two models), a few examples include the importance sampling of Geweke

[1989], the annealed importance sampling of Neal [2001], the harmonic mean of

Gelfand and Dey [1994], the serial methods of Chib [1995] and Chib and Jeliazkov

[2001], the bridge sampling of Meng and Wong [1996] and Frühwirth-Schnatter [2004]

and the variational method of Corduneanu and Bishop [2001]. We will continue our

discussion on its estimation in chapter 2. Instead of directly targeting (1.11), we

can estimate the cardinality N jointly with other unknown parameters using Trans-

dimensional MCMC methods, see Frühwirth-Schnatter [2006] for an overview. A

notable example is the use of the reversible jump MCMC of Green [1995] for in-

ference in HMM with Gaussian emission distributions [Robert et al., 2000; Spezia,

2010; Spezia et al., 2011], where model parameters are updated via Gibbs sam-

pling or Metropolis-Hastings algorithm and the dimension of the model changes in

split/merge and birth/death moves. However, such algorithms can be computation-

ally costly to implement and require careful algorithmic design depending on model

settings, and thus such methods are not widely used [Boys and Henderson, 2001;

Murphy, 2012]. Another possible solution to tackle this model selection problem is

to specify the hidden state process nonparametrically using Bayesian nonparametric

techiniques to allow for an unbounded number of states a-priori, and the cardinality

N can be determined a-posterori in a fully data-driven manner [Beal et al., 2002;
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Teh et al., 2006]. Of course, given the observed data only a finite number of states

will be initiated (i.e. have at least one allocated observation). We will come back

to this topic to investigate it further in chapter 4.

1.5 Model checking

Model checking is an important latter stage in the model development process,

after one ”best” model is selected using some criteria. We need to examine if the

modelling assumptions are met and if the selected model can adequately explain the

patterns observed in the data to assure that we can make trustful and meaningful

inferences with the fitted model. For parametric HMMs estimated with ML-based

approaches, the so-called pseudo residuals provide an effective way to examine the

overall goodness-of-fit of the estimated model and detect possible outliers in the

data [Zucchini et al., 2016]. They are motivated from the simple fact that if a

random variable Y is distributed according to a distribution FY , i.e. Y ∼ FY ,

then the random variable Z = Φ−1(FY (Y )) ∼ N(0, 1), where Φ is the cumulative

distribution for a standard normal distribution. For HMMs, two versions of pseudo

residuals, namely ordinary pseudo residuals (OPR) and forecast pseudo residuals

(FPR), are popularly used. Here we restrict ourselves to the case of continuous

observations. For the discrete counterpart the OPR or FPR need to be modified

accordingly, see Zucchini et al. [2016]. The OPR for a realisation yt = yOt is based

on the conditional distribution of yt given all other observations, and is defined as:

zt = Φ−1
( ∫ yOt

−∞
f(yt = y|y(−t))dy

)
, t = 1, . . . , T,

where the integrand f(yt|y(−t)) = f(y(T ))/f(y(−t)) and simple algebra shows that

f(y(−t)) =
∑
x(−t)

f(x(−t), y(−t))

= δP(y1)ΓP(y2) · · ·ΓP(yt−1)Γ
2P(yt+1) · · ·ΓP(yT )1

′
,

(1.12)

where P(yt) denotes the diagonal matrix with i-th diagonal element fi(yt). Note

that (1.12) takes the same form as (1.4) except that P (yt) is replaced by the identity

matrix. The FPR for a realisation yt = yOt is based on the conditional distribution

of yt given all preceding observations and is defined as:

zt = Φ−1
( ∫ yOt

−∞
f(yt = y|y(t−1))dy

)
, t = 2, . . . , T,
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where f(yt|y(t−1)) = f(y(t))/f(y(t−1)). Note that f(y(t)) can be evaluated via the

forward algorithm as in (1.4) (with T replaced by t). If the model is adequate, the

computed pseudo residuals should have an approximate standard normal distribu-

tion, which can be easily checked using quantile-quantile plots or various normality

tests. Extreme values in OPR or FPR would indicate that the corresponding obser-

vations are unlikely to occur given the fitted model and other observations. More

details regarding the theory, construction and application of these pseudo residu-

als can be found in Zucchini and MacDonald [1999] and Zucchini and MacDonald

[2009]. An alternative strategy to model checking is to simulated data conditional

on the point estimate of model parameters, and to check if they can reproduce the

key features presented in the empirical data, for instance in terms of the marginal

distribution and the correlation structure of the data [Langrock et al., 2014; Touron

et al., 2018; Adam et al., 2019b]. This is less formal than the residual-based method

but has proved to be useful in identifying lack of fit and may be able to provide

useful insights into potential ways to improve the model. We also note the re-

cent work of Buckby et al. [2020] who proposed new residual-based model checking

methods following results from point process models, which have advantages over

previous methods in checking more complicated extensions of the basic HMMs. We

omit the details here and refer the reader to their paper and references therein for

additional information. In a Bayesian estimation framework, model checking is typ-

ically performed based on the posterior samples (e.g. obtained via MCMC) for the

parameters and the hidden state sequence For instance, we can check the Markov

assumption of the latent state process by analyzing the transition/waiting patterns

at each state from the posterior samples of x(T ) [Chen et al., 2016]. The predictive

distribution of the data, f(y|y(T )), provides another valuable diagnostic for model

adequacy [Scott, 2002]. Note that

f(y|y(T )) =

∫
f(y|θ)f(θ|y(T ))dθ,

therefore, we can simulate from f(y|y(T )) by simulating data from the marginal

distribution of the HMM conditional on each θ(i) with θ(i) ∼ f(θ|y(T )). More detailed

posterior predictive check can be performed by simulating the entire data set from

the HMM conditional on each simulated parameter set θ(i), and compare summaries

from the simulated data set to those from the empirical data [Gelman et al., 1995].

This is to be compared with the frequentist simulation-based checking approach

described above where the assessment is based on a fixed point estimate of θ, whereas

here the uncertainty regarding θ is appropriately taken into account.

16



1.6 Extensions of the basic HMM

Extensions of the basic HMMs have been broadly explored and applied to allow for

more flexible and accurate modelling of the increasingly complex real data. They

are typically achieved by relaxing the assumptions made in (1.1) and (1.2) and/or

adding more structures to the basic modelling framework. For instance, the Markov

assumption of the state process is mathematically convenient yet can be overly

simple, as it implicitly assumed that the sojourn time at each state is geometri-

cally distributed. One natural extension is to explicitly model the state dwell-time

at each state with more arbitrary distributions while still keeping the Markovian

structure, which leads to the so-called hidden semi-Markov models [Yu, 2015]. We

can also construct HMMs that allow for additional serial dependence structure at

the observation level. For instance, the distribution of yt may depend both on the

current state xt as well as previous observations. Such an extension is known as the

Markov switching autoregressive models which are found useful in financial time se-

ries modelling [Hamilton, 2020]. Covariates can also be incorporated into HMMs by

allowing HMM parameters to depend on them through suitable ”link” functions as

in the generalized linear regression framework. For example, we can make the latent

state process inhomogeneous by assuming that the transition probabilities between

time t and t + 1 (i.e. tγi,j ; i, j = 1, . . . , N) are functions of other covariates. In this

case the standard multinomial logistic link function can be used and by treating

diagonal elements of tΓ as reference variables, the off-diagonal elements of tΓ can

be expressed as

tγi,j =
exp(βijc

′
t)

1 +
∑N

k=1;k ̸=i exp(βikc
′
t)
, i, j = 1, . . . , N, i ̸= j,

where ct represents a row vector of covariates and βij is the transition-specific coef-

ficient vector (see chapter 10 of Zucchini et al. [2016]). Emission distributions can

also be covariate-dependent by using similar strategies, see e.g. Mccallum and Wang

[2013]. We refer to Mor et al. [2021] for a more comprehensive review of various

HMM extensions within the parametric framework and their applications. Another

important direction for extending the basic HMM that has received an increasing

amount of interests is to explore the use of non-parametric techniques for flexible

modelling of the emission and state models, as is the main topic of this thesis. This

is motivated by the fact that the emissions and the cardinality N can be hard to

select and justify in practice, and their misspecification could lead to less accurate

or even erroneous inferences in HMMs. The great potentials of using nonparametric
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methods have already been demonstrated in various real-world applications, see Yau

et al. [2011] and Langrock et al. [2015], and the theory, development and applica-

tion of these methods for HMMs are still under exploration. We will continue our

journey on nonparametric HMMs in the following chapters.
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Chapter 2

Bayesian inference for

spline-based hidden Markov

models

2.1 Introduction

A basic N-state HMM consists of a discrete-time stochastic process (xt, yt) with

xt ∈ {1, . . . , N} and yt|xt ∼ fxt(yt), where the process {xt} is unobserved and

assumed to be distributed as an N-state time-homogeneous Markov chain, and, con-

ditionally on {xt}, the yt’s are independent with state-dependent so called emission

distributions fxt . The latter are usually assumed to belong to some parametric

family of distributions, such as the normal or gamma family. Despite its relatively

simple model structure, the HMM has the ability to handle complex dependencies

between the observations due to the assumption of the hidden state process. Es-

timation theory for parametric HMMs is well established, both in the frequentist

and Bayesian framework, see Douc et al. [2004]; Mevel and Finesso [2004]; Douc

et al. [2011] for the theory on maximum likelihood estimation and De Gunst and

Shcherbakova [2008]; Gassiat et al. [2014]; Douc et al. [2020] for Bayesian inference

methods.

There has been considerable effort in extending the structure of the basic

HMM formulation to introduce more flexibility and to allow for a more realistic

modelling in real data applications. In particular, it is recognized that simple para-

metric choices for the emission distributions are not always well justified where

misspecification can lead to seriously erroneous inference on the number of hidden

states and on the classification of the observations to the states [Yau et al., 2011;

19



Gassiat et al., 2016a; Pohle et al., 2017]. Nonparametric approaches offer much

more flexibility and may serve as exploratory tools to investigate the suitability of a

parametric family of emission distributions [Langrock et al., 2015]. Considerable ef-

fort has been invested in the use of semi- and nonparametric emission distributions

such as proposed in Piccardi and Pérez [2007] for activity recognition in videos,

Yau et al. [2011] for the analysis of genomic copy number variation, Langrock et al.

[2015, 2018] for modelling animal movement data and Kang et al. [2019] for de-

lineating the pathology of Alzheimer’s disease, among many others. Theoretical

properties for inference in such models have been studied in a number of recent

papers. Alexandrovich et al. [2016] proved that model parameters as well as the

order of the Markov chain are identifiable (up to permutations of the hidden states

labels) if the transition probability matrix of {xt} has full rank and is ergodic, and

if the emission distributions are all distinct. These conditions are fairly generic and

in practice they will usually be satisfied. We also refer to Gassiat et al. [2016a,b]

for other useful identifiability results in this context. Based on this building stone,

theoretical results for different kinds of estimation procedures in this nonparametric

setting have been developed in recent works, see for instance Alexandrovich et al.

[2016] for consistency of a maximum likelihood estimator, Vernet et al. [2015] for

posterior consistency of Bayesian procedures, and also Lehéricy [2018] and refer-

ences therein for asymptotic results on spectral and least square estimators. We

also note the work by De Castro et al. [2017] who provided theoretical guarantees

for estimating the filtering and marginal smoothing distributions in nonparametric

HMMs.

Unsurprisingly, the increased flexibility and modelling accuracy obtained by

specifying the emission distributions in a non-parametric way comes at the cost

of a higher computational complexity in terms of model estimation and inference.

For instance, the computational cost of the standard HMM algorithms (e.g. the

forward algorithm introduced in Rabiner [1989]) for kernel-based HMMs [Piccardi

and Pérez, 2007] is subject to a quadratic growth with the data size n and thus

can be prohibitive for long time series data. Also for mixtures of Dirichlet process

(MDP) HMMs [Yau et al., 2011] the increased complexity of the model space poses

challenges to the existing sampling methods [Hastie et al., 2015]. Here, we focus

on spline-based HMMs which are attractive for real applications as they exploit the

strengths of two powerful tools, namely the forward algorithm for efficient and exact

likelihood evaluation, and the flexibility of B-splines for estimating the emission den-

sities, while retaining a relatively simple model formulation. A frequentist approach

for inference based on penalized B-splines (P-splines) was recently introduced by
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Langrock et al. [2015, 2018]. Their methods, however, require pre-specification of

the number and positions of knots which can strongly influence the computational

costs and the convergence results. In practice, a large number of equidistant knots

has to be used to ensure some flexibility, leading to high computational challenges

(e.g. convergence to suboptimal local extrema of the likelihood) and cost. Further-

more, the selection of the state-specific smoothing parameters and the quantification

of uncertainty associated with parameter estimates remain to date challenging infer-

ential tasks in the frequentist framework. Current methods rely on cross-validation

and parametric bootstrap techniques, which are extremely computationally inten-

sive and can be numerically unstable especially for increasing cardinality N . Their

approach is therefore only feasible for models with a small number of states which

may severely limit its applicability.

We note that nonparametric methods such as those in Piccardi and Pérez

[2007]; Yau et al. [2011] and Lehéricy [2018] require the number of states to be known

or fixed in advance. This is the case for certain types of applications of HMMs, such

as classification in a supervised learning context (e.g. speech recognition) where

the states and their interpretation are predefined. In other scenarios, estimating N

is often a question of scientific interest in itself and introduces an additional level

of complexity to HMM inference. The problem of order estimation for parametric

HMMs has been extensively studied in the literature. We refer to Celeux and Durand

[2008]; Costa and De Angelis [2010] and Pohle et al. [2017] for discussions on various

criterion-based methods, and to Barber et al. [2011] (chapter 15) for a review of

relevant Bayesian methods. In contrast, few theoretical or practical results have

been obtained for the nonparametric case. We note that Lehéricy et al. [2019]

recently proposed two different estimators for N which are proved to be consistent

in a fairly general setup. The first method uses model selection techniques that

involves minimization of a penalized least square criterion and the second one relies

on a thresholding method on the singular values of the estimated density of two

consecutive observations. Although theoretically attractive, both estimators suffer

from implementation difficulties. The former requires a separate estimator for the

penalty term and the minimization problem is non-convex so there is a danger

of getting stuck in local minima, while the latter needs custom heuristics to tune

the threshold which is critical in this algorithm. An alternative strategy to tackle

this model selection problem is to use Bayesian nonparametric techniques to allow

for a potentially infinitely large state space, leading to the so-called infinite HMM

(iHMM), see Barber et al. [2011] (chapter 15) for a review of the topic. In this

chapter, however, we will consider HMMs with a finite and fixed state space whose
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cardinality N may be unknown.

To the best of our knowledge, spline-based methods have only been used in

a Bayesian HMM for modelling covariate effects [Song et al., 2018], but not for the

purpose of density estimation. We therefore propose and develop a fully Bayesian

methodology that jointly estimates the spline functions for the emission densities

and other HMM parameters, and provides a consistent and principled framework

for quantifying uncertainties associated with model parameters including the num-

ber of states. We develop an almost ”tuning-free” reversible jump Markov chain

Monte Carlo (RJMCMC) algorithm [Green, 1995] which exploits the use of a for-

ward filtering backward sampling (FFBS) procedure for efficient simulation of the

hidden state process, a stochastic approximation based adaptive MCMC scheme for

automatic tuning, a reparametrization scheme for enhancing the sampling efficiency

and an adaptive knot selection scheme that modifies and extends ideas considered

in different modelling contexts, see for instance DiMatteo et al. [2001] for Bayesian

curve fitting and more recently Sharef et al. [2010] for baseline hazard modelling.

As shown later, the proposed adaptive spline based algorithm has significant advan-

tages over its frequentist P-spline counterpart and also compares favourably to the

Bayesian P-spline [Lang and Brezger, 2004] version which is investigated for the first

time here for density estimation in HMMs. We also address the issue of model selec-

tion of N through a parallel sampling scheme which is straightforward to implement

and computationally efficient as it only involves simultaneous and independent runs

of the proposed algorithm for candidate values of N , from which quantities such

as marginal likelihood for each model can be estimated. A further advantage of a

Bayesian inference framework is that the modularity of its components can be used

to perform inference rigorously in a more complex hierarchical HMM model (as will

be demonstrated in chapter 3).

This chapter is structured as follows: Section 2.2 gives a brief introduction

to B-splines and reviews existing Bayesian estimation strategies, Section 2.3 pro-

vides details of a Bayesian formulation of the spline-based HMM, Section 2.4 details

the structure of the RJMCMC algorithm, Section 2.5 outlines the parallel sampling

method for selecting the number of states and Section 2.6 examines the performance

of the proposed methods in comparison to other related methods in various simula-

tion settings. Section 2.7 illustrates our methods on animal activity data, while the

last section provides a discussion and possible directions of further work.
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2.2 B-splines

Splines have been extensively used for tasks such as interpolation and curve fitting as

they have good approximation properties for a rich class of functions, see De Boor

et al. [1978] and Schumaker [2007] for details on the related theoretical results.

A spline function of order O is a piecewise polynomial function of degree O − 1

where the polynomial pieces are connected at the so-called knot points [De Boor

et al., 1978]. Provided that the knots are distinct, the derivatives of these piecewise

polynomials are (O − 2)-times continuously differentiable at the knots. B-splines

(short for basis splines) of order O provide basis functions for representing spline

functions of the same order defined over the same set of knots. In other words, any

spline function can be uniquely constructed via a linear combination of B-splines

[Prautzsch et al., 2002]. To set up the B-splines, let a and b be the two boundary

knots which define the domain of interest over which the splines are evaluated. Let

K be a positive integer indicating the number of interior knots with location given

by the K-dimensional vector RK = (r1, . . . , rK), with a < r1 < . . . < rK < b (for

simplicity we do not consider knot duplication here). For computational reasons the

knot sequence is usually augmented by introducing additional knots such that

R̄K = (r1−O, . . . , r0, RK , rK+1, . . . , rK+O),

where r1−O ≤ . . . ≤ r0 ≤ a, b ≤ rK+1 ≤ . . . ≤ rK+O and O is the order of

the spline function [Friedman et al., 2001]. The positions of the left and right

external knots are usually arbitrary and for convenience we may set them equal to

the boundary values a and b, respectively. Rewriting the augmented knot vector

as R̄K = (r̃1, . . . , r̃K+2O), where r̃i = ri−O, we can define the i-th B-spline basis

function of order j (j ≤ O) for R̄K , Bi,j(y), using the Cox–de Boor recursion starting

with

Bi,1(y) =

1 r̃i ≤ y < r̃i+1

0 else
, i = 1, . . . ,K + 2O − 1.

Then,

Bi,j(y) =
y − r̃i

r̃i+j−1 − r̃i
Bi,j−1(y) +

r̃i+j − y

r̃i+j − r̃i+1
Bi+1,j−1(y), i = 1, . . . ,K + 2O − j.

The order O and the number and location of the knots thus fully specify the B-splines

of that order. We can see from this construction that the B-spline basis functions are

non-negative over the domain and have compact support (and so does any linear
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combination of them): Bi,j(y) > 0 only when y ∈ (r̃i, r̃i+j). This local property

has important computational consequences, making their computation numerically

stable and efficient even for large values of K. These basis functions can be easily

generalized to bivariate (or higher dimensional) scenarios via a tensor product of the

univariate B-spline basis in each dimension as defined above. The computational

advantages of the univariate B-splines directly carry over to the multivariate case.

The great flexibility and nice computational properties make B-splines (in

the form of
∑K+O

i=1 aiBi,O(y), where the ai are spline coefficients to be estimated)

a popular tool in semi-/nonparametric statistical modelling, especially in nonlin-

ear regression analysis [Denison et al., 2002; Zanini et al., 2020; Michelot et al.,

2016] and density estimation [Koo, 1996; Edwards et al., 2019; Maturana-Russel

and Meyer, 2021]. Inference in spline-based models is available in both frequentist

and Bayesian framework, and here we concentrate on the latter. Broadly speak-

ing, there are two main Bayesian estimation strategies, depending on whether the

number and positions of knots are treated as fixed or not. The Bayesian P-spline

method uses a rather large number of evenly spaced knots over the domain. To bal-

ance against overfitting, suitable smoothness priors, which usually take the form of

random walk priors with roughness parameters, are imposed to the adjacent spline

coefficients [Lang and Brezger, 2004; Brezger and Lang, 2006]. Smooth functions

and roughness parameters can be jointly estimated via MCMC or Laplace approxi-

mation techniques [Gressani and Lambert, 2018, 2021]. A key limitation with this

estimation strategy is that the initial settings on the P-spline parameters (e.g. num-

ber of knots and priors on the roughness parameters) can have a strong impact on

the estimation results. In addition, this method tends to have difficulty in capturing

functions that have locally varying curvatures unless significant modifications are

introduced to allow for spatially adaptive roughness parameters, which may greatly

complicate the inference process [Yue et al., 2012]. The second possibility is the

Bayesian adaptive (regression) spline method which takes the uncertainty regarding

the number and/or positions of knots into account, treating them as unknown pa-

rameters to be inferred from the data along with other parameters. The unknown

function can in principle be estimated in a locally adaptive fashion and additional

regularization is usually not needed as it is indirectly achieved via model choice

strategies [Jeong et al., 2020]. The final functional estimate may be obtained by

model averaging over the functions sampled from a MCMC algorithm. Under this

framework we may further distinguish between two estimation strategies. The first

is based on the idea of Bayesian variable selection, where an adequate subset of ba-

sis functions are selected to be used in the model from a large prespecified number
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of candidate basis functions [Smith and Kohn, 1996, 1997]. A potential drawback

with this route is that the estimation results may rely on the initial choice of the

candidate bases as is for the Bayesian P-splines, and the potentially large model

and parameter spaces may pose computational challenges to MCMC algorithms

(see chapter 20.2 of Gelman et al. [2013]). The alternative Bayesian free knot spline

technique puts priors on both the number and location of the knots and allows for

full modelling flexibility of the splines. RJMCMC algorithms are typically used to

explore different knot configurations in a data-driven manner, following the seminal

works of Denison et al. [1998], Biller [2000] and DiMatteo et al. [2001]. The chal-

lenges with this method lie in the design of efficient trans-dimensional moves of the

MCMC which may be model dependent.

2.3 A Bayesian HMM with spline-based emissions

We assume that the emission densities f1, . . . , fN can be approximated by mixtures

of standardized cubic B-spline basis functions (i.e. order O = 4) with knots located

between boundary knots a and b (assumed fixed) [Langrock et al., 2015]. We use

(K,RK) to denote the interior knot configuration and set r−3 = r−2 = r−1 = r0 = a

and b = rK+1 = rK+2 = rK+3 = rK+4. Note that K = k corresponds to the case of

k+ 4 B-spline basis functions, and we assume K ≥ 2 for identifiability. Under these

settings, fi is formulated as:

fi(y) =
K+4∑
k=1

ai,kBk(y), i = 1, . . . , N, (2.1)

where Bk(y), k = 1, . . . ,K + 4, denotes the k-th normalized (such that it integrates

to one) B-spline basis function of degree 3 for the augmented knot sequence R̄K and

the ai,k are the corresponding coefficients such that
∑K+4

k=1 ai,k = 1 and ai,k ≥ 0,

for all k = 1, . . . ,K + 4. In the time-homogeneous case, i.e. where the transition

probabilities of the Markov chain are constant over time, the resulting class of HMMs

is fully specified by the initial state distribution, δ = (δ1, . . . , δN ), with δi = P (x1 =

i), the transition probability matrix, Γ = (γi,j)i,j=1,...,N , with γi,j = P (xt = j|xt−1 =

i), and the emission densities defined in (2.1). The joint (complete) likelihood of

observations y(n) = (y1, . . . , yn) and the hidden states x(n) = (x1, . . . , xn) is

f(y(n),x(n)|K,RK , δ, AK ,Γ) = δx1

n∏
t=2

f(xt|xt−1,Γ)

n∏
t=1

fxt(yt), (2.2)
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where here, and throughout this chapter, we shall use f(·|·) as a generic notation

to represent conditional densities as specified by their arguments and AK denotes

the set of spline coefficients ai,k, i = 1, . . . , N, k = 1, . . . ,K + 4. The marginal

likelihood integrating out the hidden states can be evaluated in O(N2n) steps using

the forward algorithm (in the form of Zucchini et al. [2016]), via the matrix product

expression

f(y(n)|K,RK , δ, AK ,Γ) =

∫
f(y(n),x(n)|K,RK , δ, AK ,Γ)dx(n)

= δP (y1)ΓP (y2) · · ·ΓP (yn)1,

(2.3)

where P (yt) is a diagonal matrix with i-th diagonal entry given by fi(yt), 1 is a

column vector of ones of dimension N .

To complete the Bayesian formulation of the model, we assume the following

factorization of the complete joint density

f(K,RK , δ, AK ,Γ,y(n),x(n)) = f(K)f(δ)f(Γ)f(RK |K)f(AK |K)

×f(y(n),x(n)|K,RK , δ, AK ,Γ).

The assumption that the parameters associated with the observed and hidden pro-

cess is a-priori independent is commonly adopted in Bayesian HMMs. We use a

uniform prior on {2, . . . ,Kmax} for K, with Kmax fixed to 50 in our examples where

a preliminary study suggested that this was large enough to cover the support of K.

Clearly larger default values, including the sample size n, may be used instead and

the estimation results are insensitive to its choice as long as it is large enough. For

the knot positions, we propose that the rk are taken to be the k-th order statistics of

K independent uniform random variables on [a, b], i.e. f(RK |K) = K!/(b−a)K . The

state-specific spline coefficients (ai,1, . . . , ai,K+4), i = 1, . . . , N , are reparametrized

as

ai,j =
exp(ãi,j)∑K+4

l=1 exp(ãi,l)
, ãi,j ∈ R,

so that the positivity and unit sum constraints will not hinder the design of our

reversible jump moves. The fact that the ãi,j are not identifiable need not be a

concern as we are only interested in the ai,j , which remain identifiable, and in this

way the mixing of the MCMC may also be improved [Cappé et al., 2003]. We

choose to use a log-gamma prior with shape parameter ζ and rate parameter 1 on

the ãi,j , i.e. exp(ãi,j) ∼ Gamma(ζ, 1), giving a symmetric Dirichlet, i.e. Dir(ζ, . . . , ζ)

distribution on the corresponding (ai,1, . . . , ai,K+4). We choose a vague Gamma(1, 1)
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hyperprior on ζ to reflect our uncertainty on its value. For the transition probability

matrix we assume that the rows are a-priori independent, each of which has a vague

Dirichlet prior

(γi,1, . . . , γi,N ) ∼ Dir(1, . . . , 1), i = 1, . . . , N,

and we assume that the initial distribution is fixed and uniform on {1, . . . , N}.

Note that it is not possible to estimate it consistently as there is only one unob-

served variable associated with it. Thus the complete joint density incorporating

the reparametrization can be rewritten as

f(ζ,K,RK , ÃK ,Γ,y(n),x(n)) = f(ζ)f(K)f(Γ)f(RK |K)f(ÃK |K, ζ)

×f(y(n),x(n)|K,RK , ÃK ,Γ), (2.4)

where ÃK represents the set of ãi,k (i = 1, . . . , N, k = 1, . . . ,K + 4). Note that if

we relabel the hidden states and rearrange the state specific parameters, the HMM

likelihood and the joint prior for the parameters remain unchanged, and thus the

joint posterior density corresponding to (2.4) is defined on N ! subspaces, one for

each permutation of the labels of the hidden states.

2.4 The reversible jump MCMC algorithm

Our aim is to obtain realisations from the posterior distribution of (K,RK , AK ,Γ, ζ),

which can be achieved by simulating from the joint posterior density defined through

(2.4). To allow for model searches between parameter subspaces of different dimen-

sionality, we develop a RJMCMC algorithm which combines a Metropolis-within-

Gibbs sampler with birth and death trans-dimensional moves of the knot points

(and the associated spline coefficients). The structure of our algorithm is listed in

Algorithm 5, where bK = I(K = 2) + 0.5 × I(3 ≤ K < Kmax) and I(·) is the indi-

cator function. Steps (a)-(e) propose moves within a dimension while the last step

proposes a birth or death of a knot point which changes the model dimension. We

now give the rules for each of the updating steps while further details regarding the

validity and implementation of the algorithm are provided in the appendix of this

chapter. Throughout this section we assume that the cardinality N is fixed noting

that model selection will be addressed in section 2.5.
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Algorithm 5: Reversible jump MCMC algorithm for spline-based
HMMs

Initialize K, RK , ζ, ÃK , Γ ;
for i=1, . . . , T do

(a) update the hidden state sequence x(n);
(b) update the transition probability matrix Γ;
(c) update the knot location vector RK ;

(d) update the set of B-spline coefficients AK (via ÃK);
(e) update the hyperparameter ζ;
draw U ∼ U(0, 1);
if U < bK then

consider the birth of a knot point in the B-spline representation
in (2.1);

else
consider the death of a knot point in the B-spline representation
in (2.1);

end

end

2.4.1 Within-model moves

The moves in steps (a) and (b) are of Gibbs type whereas those in steps (c) to (e) are

of Metropolis-Hastings (henceforth MH) type. In step (a), x(n) can be simulated ex-

actly and efficiently from its full conditional distribution, f(x(n)|y(n),K, RK , ÃK ,Γ),

via a standard FFBS procedure as introduced in chapter 1, with transition matrix

Γ and emission densities fi(yt) given in (2.1). Step (b) is performed via a stan-

dard Gibbs step as used routinely for basic Bayesian HMMs. Conditional on x(n),

the rows of Γ are conditionally independent and are updated from their conjugate

Dirichlet posterior

(γi,1, . . . , γi,N ) ∼ Dir(1 + ni,1, . . . , 1 + ni,N ), i = 1, . . . , N,

where ni,j denotes the number of transitions from state i to j in x(n). In step (c) a

knot rk∗ is chosen uniformly from the set of existing knots {r1, . . . , rK} and proposed

to be moved to a candidate point, rc, which is generated from a normal distribution

with mean rk∗ and standard deviation τ1, truncated to [a, b] [DiMatteo et al., 2001].

The proposal in step (d) is generated by a random walk on the reparametrized spline

coefficients ãi,j (i = 1, . . . , N ; j = 1, . . . ,K + 4), i.e.

ã
′
i,j = ãi,j + ηi,j ,
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where ηi,j ∼ N (0, τ22 ). In step (e), we update ζ via a log-normal random walk

log(ζ
′
) = log(ζ) + ν,

where ν ∼ N (0, τ23 ). The variance parameters τ1, τ2 and τ3 may be regarded as

tuning parameters that need to be adjusted to achieve a satisfactory mixing of the

chain. Here, we adopt a simple yet well-used adaptive MCMC scheme based on a

stochastic approximation procedure to allow for automatic tuning during the burn-

in period [Atchade et al., 2011], without incurring additional computational burden.

More specifically, the scaling parameter τi is adapted from iteration t− 1 to t as

τ
(t)
i = max

(
τ
(t−1)
i + ϵ(t)sgn

( 1

Ta

t∑
j=t−Ta+1

ρ
(j)
i − ρ∗i

)
, ϵi

)

where ϵ(t) = min(0.01, 1/
√
t) following suggestions in Roberts and Rosenthal [2009]

and Rosenthal [2007], sgn(·) is the sign function, ρ
(j)
i is the MH acceptance rate in

iteration j, ρ∗i is the targeted acceptance rate and ϵi is a sufficiently small positive

number. That is, we adjust the scaling parameter at every iteration by adding or

subtracting a factor ϵ(t) (whose magnitude is diminishing) if the averaged acceptance

rate over the past Ta iterations is below or exceed the target ρ∗i . We refer to Green

et al. [2015] and references therein for an in-depth description of the theory and

methods behind the adaptive MCMC approaches. In our context we set ρ∗1 = ρ∗3 =

0.4 and ρ∗2 = 0.24 based on the optimal scaling results for MH algorithms (see, e.g.

Gelman et al. [1997] and Roberts and Rosenthal [2001]) and set Ta = 10 (inspired

by results in Marshall and Roberts [2012]) and ϵi = 10−6 in our examples. In our

examples, the lower bound ϵi is usually not reached as the algorithm stabilizes well.

2.4.2 Birth and death moves

The birth and death moves allow for increasing or decreasing the number of knots,

or equivalently, the number of B-spline basis elements. Our design extends the ideas

in DiMatteo et al. [2001] and Sharef et al. [2010] to the framework of HMMs defined

in section 2.3. Suppose that the current model has knot configuration (K,RK),

we first make a random choice between birth and death with probabilities bK and

dK = 1 − bK , respectively. In the birth move, we select a knot, rb∗ , at random

from the existing knots and create a candidate new knot, rc, by drawing from

a normal distribution (truncated to [a, b]) with mean rb∗ and standard deviation

τ(RK , b∗), where τ is chosen as a function having the form (rb∗+1 − rb∗−1)
α and α

is a positive real constant. The intuition here is that a new knot is more likely to
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be needed in locations where existing knots are relatively ”dense”. To complete the

birth step we update the corresponding spline coefficients, which now has dimension

K + 5 for each state. Here, our design is guided by the deterministic knot insertion

rule described in De Boor [2001] which allows a new knot to be inserted without

changing the shape of the overall B-spline curve, noting that in our context this

exact relationship becomes approximate as we are working with normalized basis

functions. We extend the scheme by adding more degrees of freedom in order to

meet the dimension matching condition required for the validity of the RJMCMC

algorithm. More specifically, for the birth of a candidate knot point rc ∈ (rn∗ , rn∗+1),

the associated spline parameters ã
′
i,j , for i = 1, . . . , N , are created as

ã
′
i,j =



ãi,j 1 ≤ j ≤ n∗ + 1

cj ãi,j + (1 − cj)ãi,j−1 n∗ + 1 < j < n∗ + 4

uiãi,j + (1 − ui)ãi,j−1 j = n∗ + 4

ãi,j−1 n∗ + 4 < j ≤ K + 5

(2.5)

where cj = (rc − rj−4)/(rj−1 − rj−4) and ui
iid∼ U(0, 1). Here the ã

′
i,j are gener-

ated using the deterministic rule in De Boor [2001], except for ã
′
i,n∗+4 we introduce

one degree of freedom through ui. This way of updating allows us to effectively

use knowledge from current spline parameters, while also allowing for a possible im-

provement on the fit resulting from the introduction of a new knot point. Our design

can also be related to the idea of ”centering” reversible jump proposals proposed in

Brooks et al. [2003] where current and proposed parameters produce similar like-

lihoods. The parameters associated with the state process are unchanged for this

move.

Next, consider the death of a knot point from the current knot configuration

(K,RK). A knot, rd∗ , is chosen at random from the set of existing knots {r1, . . . , rK}
and then deleted. The spline parameters associated with this move are updated

according to the inverse transformation of (2.5):

ã
′
i,j =


ãi,j 1 ≤ j ≤ d∗

ãi,j−(1−cj)ã
′
i,j−1

cj
d∗ < j < d∗ + 3

ãi,j+1 d∗ + 3 ≤ j ≤ K + 3

where cj = (rd∗ − rj−4)/(rj−1 − rj−4). The parameters for the state process re-

main unaltered in this move. We note the difference between our birth and death
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proposals to those in Sharef et al. [2010] (see equation 3.1 therein), who propose

a parameterization where the transformation acts on the exponentials of the spline

coefficients (restricted to be positive). Such a scheme is problematic as the proposed

parameters from the death step based on the deterministic rules are not guaranteed

to be positive.

2.5 Bayesian model selection

Up to now we have taken the cardinality N . Next we address model selection. In

principle we could extend the proposed RJMCMC algorithm, Algorithm 5, by in-

troducing an additional reversible jump step on the number of states, or by working

with a product space search algorithm to sample from the joint posterior of pa-

rameters from all competing models (e.g. Carlin and Chib [1995]). However, in

the present HMM setting with spline-based emissions, efficient and computationally

practical trans-dimensional algorithms are very difficult to design due to the poten-

tially large and complex parameter space. Instead, we propose to perform Bayesian

model selection based on the marginal likelihood (also known as the evidence)

f(y(n)|N = j) =

∫
f(y(n)|θj , N = j)f(θj |N = j)dθj , j = 1, . . . ,M, (2.6)

where θj is the parameter set associated with the j-state model, f(y(n)|θj , N = j) is

the observed likelihood given in (2.3) and M denote the maximum number of states

that we want to consider. Given prior model probabilities p(N = j), the posterior

model probabilities can be computed as

P (N = j|y(n)) =
f(y(n)|N = j)p(N = j)∑M
i=1 f(y(n)|N = i)p(N = i)

, j = 1, . . . ,M, (2.7)

and following Bayesian decision theory we can pick the model that gives the highest

posterior probability, i.e. N∗ = argmaxk=1,...,M P (N = k|y(n)). For most models

of interest (including HMMs), however, the integral in (2.6) has no closed-form

expression and needs to be approximated. We refer to Ardia et al. [2012], Friel and

Wyse [2012] and Llorente et al. [2020] for some recent reviews of various Monte

Carlo based approximation schemes for the evidence (or ratios of two evidences, i.e.

Bayes factors).

We propose to approximate the evidence of a spline-based HMM by using a

harmonic mean estimator originally proposed in Gelfand and Dey [1994], although

modifications of other popular estimators such as the method by Chib and Jeliazkov
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[2001] may also be applicable in this context. The main advantage of the former

approach is that it allows direct estimation of the evidence using the simulation

output and thus is straightforward to implement, while the latter requires additional

simulation runs and calibrations during the estimation process, leading to more

computational costs. Our chosen estimator relies on the simple fact that for any

proper density function h, we have for the expectation

Eθj |y(n)

[
h(θj)

f(θj)f(y(n)|θj)

]
=

∫
h(θj)

f(θj)f(y(n)|θj)
f(θj |y(n))dθj =

1

Mj
,

where Mj =
∫
f(θj)f(y(n)|θj)dθj . A Monte Carlo approximation of the evidence

is thus obtained as

M̂j =

{
1

T

T∑
i=1

h(θ
(i)
j )

f(θ
(i)
j )f(y(n)|θ(i)

j )

}−1

where θ
(i)
j is the i-th sample simulated from the posterior f(θj |y(n)). This estimator

enjoys a finite variance if
∫
h2(θ)/(f(θ)f(y(n)|θ))dθ < ∞, i.e. h(θ) must have

lighter tails than f(θ)f(y(n)|θ) [DiCiccio et al., 1997]. We follow Robert and Wraith

[2009] and Marin and Robert [2009] to construct such an appropriate density h

based on truncated highest posterior density (HPD) regions derived from the MCMC

samples. The resulting estimator is known as a truncated harmonic mean estimator

and has been successfully used in various model settings, see for instance Durmus

et al. [2018] and Acerbi et al. [2018]. More specifically, we define a sample-based

100β% HPD region as (omitting the dependence on the index of state j for clarity)

H̃β = {θ(i) : f(θ(i))f(y(n)|θ(i)) > q̃β},

where q̃β is the empirical upper β quantile of the (f(θ(i))f(y(n)|θ(i))) produced in

the output of the MCMC. We then construct the density h as

h(θ) =
1

V (ξ)βT

∑
j:θ(j)∈H̃β ,dim(θ(j))=dim(θ)

I(d(θ(j),θ) < ξ),

where V (ξ) is the volume of a ball centered at θ with radius ξ (small), dim(·) is

the dimensionality of the argument and d(·, ·) is a suitable distance measure. It is

easy to check that h is a proper density function and has a finite support, noting

that the parameter space of θ = (K, ζ,RK , ÃK ,Γ) is a union of subspaces of varying

dimension. Our proposal h may be interpreted as a histogram-like nonparametric
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estimator of the posterior f(θ|y(n)) based only on samples in the HPD regions.

Notice also that V (ξ) does not need to be computed as it will be cancelled out in

(2.7), as long as we fix ξ across models.

We would like to comment further on two appealing alternatives in the lit-

erature which attempt to perform model selection using only independent MCMC

outputs from each candidate model, thus also permitting a parallel sampling frame-

work as for the harmonic mean estimator proposed here. The first one is Congdon’s

estimator [Congdon, 2006] which is inspired by the product space approach of Car-

lin and Chib [1995], and is advocated in popular HMM textbooks [Bartolucci et al.,

2019; Zucchini et al., 2016] and few research papers such as Chen et al. [2011]. Let

Θ = (θ1, . . . ,θM ) and Θ(i) = (θ
(i)
1 , ...,θ

(i)
M ), i = 1, ..., T , represent the i-th paral-

lel draw from f(θk|y(n)), k = 1, ...,M . With the simplifying assumptions that (i)

f(y(n)|Θ, N = k) = f(y(n)|θk, N = k), (ii) f(Θ|N = k) =
∏M

i=1 f(θi|N = k) and

(iii) f(θj ̸=k|N = k) ∝ constant, Congdon [2006] propose to estimate P (N |y(n)) by

the ensemble average

P̂ (N = k|y(n)) =
1

T

T∑
i=1

P (N = k|y(n),Θ(i)), (2.8)

where P (N = k|y(n),Θ(i)) ∝ f(y(n)|θ(i)k , N = k)f(θ
(i)
k |N = k)P (N = k) (see Con-

gdon [2006] for more details). However, as pointed out in Robert et al. [2008],

the estimator in (2.8) is biased (and not valid in a strict sense) as the aggregated

chain Θ(i) is essentially simulated based on
∏M

i=1 f(θi|y(n)), and not the ”correct”

joint posterior f(Θ|y(n)) ∝
∑M

i=1 p(N = i)f(Θ|N = i)f(y(n)|θk, N = i). In

fact, assumption (iii) makes f(Θ|y(n)) undefined noting that it can be expressed

as
∑M

i=1 p(N = i|y(n))f(θi|y(n)) (see Robert et al. [2008] for further discussions).

Although we found it to perform accurately when testing it in our simulation ex-

periments, it should be used with caution as the theoretical underpinnings of the

estimator are problematic.

The second approach, that we also tested in our simulations, is based on the

deviance information criterion (DIC) which is originally developed in Spiegelhalter

et al. [2002] and may be regarded as a Bayesian version of the Akaike information

criterion (AIC). For latent variable models including HMMs, we may distinguish

between the observed likelihood DIC and the conditional likelihood DIC, depending

on whether the latent variables are integrated out or not [Celeux et al., 2006]. The

latter version has several issues from both practical and theoretical viewpoints and

the former is generally preferred as long as the observed likelihood can be easily
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computed (see Li et al. [2020b] and references therein), which is indeed the case for

HMMs. Adopting the form used in Chan and Grant [2016], the observed likelihood

DIC is defined as

DIC(m) = Eθm [D(θm)|y(n)] + PD(m), (2.9)

where D(θm) = −2 log(f(y(n)|θm)) is the deviance for model m, PD(m) =

Eθm [D(θm)|y(n)] − D(θ̂m) is a measure of effective number of parameters and θ̂m

is the posterior mode of θm. A sample-based approximation of (2.9) is obtained as

D̂IC(m) = − 4

T

T∑
i=1

log(f(y(n)|θ(i)
m )) + 2 log(f(y(n)|θ̂m),

where θ̂m = argmax
θ
(i)
m :i=1...T

f(y(n)|θ(i)
m )f(θ

(i)
m ). The model with the lowest D̂IC is

favoured. In our simulation study described below, however, we observe consistent

poor performance of the DIC criterion, with a tendency towards overfitting. In

addition, there are general criticisms of the DIC in the context of Bayesian model

comparison, including, for instance, the use of a plug-in predictive approach instead

of a proper predictive distribution and the fact that it may not be invariant with

respect to reparametrization [Maity et al., 2021; Spiegelhalter et al., 2014].

2.6 Simulation studies

We conduct four simulation experiments to thoroughly evaluate the feasibility of the

proposed Bayesian methodology (adSP method), and to compare its performance

mainly with alternative spline-based methods for the HMM emissions, including a

Bayesian P-spline approach (bpSP) which is investigated for the first time in this

context (see below for further descriptions) and the frequentist P-spline approach

of Langrock et al. [2015] (fpSP). Our comparison is mainly based on the following

two criteria

1. Ability to recover the true emission distributions: This is quantified

by the average Kullback-Leibler divergence (KLD):

(KLD(f̂i||fi) + KLD(fi||f̂i))/2, i = 1, . . . , N,

where KLD(f̂i||fi) =
∫
f̂i(y) log(f̂i(y)/fi(y))dy and f̂i is the estimated emis-

sion density for state i. In Bayesian MCMC, used with adSP and bpSP meth-

ods, we estimate the unknown emission densities (pointwise) through the pos-

terior expectation E[fi(y)|y(n)], which is the Bayes estimator of fi(y) under
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posterior mean squared error loss and can be approximated by the Monte

Carlo average

f̂i(y) =
1

T

T∑
j=1

f
(j)
i (y), i = 1, . . . , N,

where f
(j)
i (y) is the emission density arising from the j-th MCMC sample (as

a function of the knot configuration and spline coefficients) and y is a fixed

point in the domain of the observed data. Density estimates for the fpSP

method are constructed as in Langrock et al. [2015] where a single set of the

penalized maximum likelihood estimates of the spline coefficients is plugged

into equation (2.1). In our implementations we used the KLD function in the

R package LaplacesDemon [Statisticat and LLC., 2021] for approximating the

average KLD.

2. Decoding accuracy: Decoding is to infer the hidden state process x(n) based

on the observed y(n) and is one of the key inference tasks in HMMs. We

quantify the discrepancy/agreement between the estimated and true state se-

quences via the normalized Hamming distance/decoding accuracy as com-

monly used in the HMM context [Fox et al., 2011], which essentially measures

the proportion of the incorrectly/correctly classified states. For the adSP and

bpSP methods we estimate the states by first estimating the marginal state

probability based on the MCMC samples of x(n)

P̂ (xt = k|y(n)) =
1

T

T∑
j=1

I(x
(j)
t = k), t = 1, . . . , n, k = 1, . . . , N,

where x
(j)
t is the value of xt from the j-th MCMC draw. We then determine the

value of xt such that its posterior state probability is maximized (also referred

to as local decoding in the HMM literature). Note that a more elaborate

Rao–Blackwellized estimator may be used for P (xt = k|y(n)), see Scott [2002].

However, it requires additional computational effort for running the forward-

backward recursion at each MCMC iteration, and in our studies no accuracy

gains have been found in terms of the final decoding performance. For the

fpSP method we follow Langrock et al. [2015] to perform decoding via the

Viterbi algorithm, conditional on the point estimates of the model parameters

[Zucchini et al., 2016].
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2.6.1 Description of experiments

We now describe in detail the 4 simulation models used for testing and compar-

ing the estimation performance of the competing methods. Model 1 is a 2-state

HMM (see Figure 2.1) originally considered in Langrock et al. [2015] with emission

distributions:

yt|xt = 1 ∼ N (−15, 112),

yt|xt = 2 ∼ 0.35N (−5, 92) + 0.65N (30, 102),

where the states of the underlying Markov chain were generated from δ = (1/2, 1.2)

and γ12 = γ21 = 0.1 and n = 800. For Model 2, we consider a 3-state HMM with a

unimodal positively skewed emission distribution in state 1, a bimodal distribution

in state 2 and a unimodal negatively skewed distribution in state 3 (see Figure 2.2).

We use B-splines to construct these densities and the details of the spline parameters

are omitted here. The states were generated using δ = (1/3, 1/3, 1/3) and

Γ =

 0.85 0.1 0.05

0.075 0.85 0.075

0.05 0.1 0.85

 ,

from which n = 1500 observations were simulated from the corresponding emission

distribution using the inverse transform sampling scheme [Devroye, 1986]. Model 3

is motivated and modified from the bimod model considered in Yau et al. [2011]. We

construct the emissions using a mixture of a Laplace and a generalized Student’s t

distribution (see Figure 2.3):

yt|xt = 1 ∼ 0.5Laplace(−1, 0.2) + 0.5t3(2, 2),

yt|xt = 2 ∼ 0.5Laplace(0.5, 0.2) + 0.5t3(3.5, 2),

where Laplace(µ, σ) denotes a Laplace distribution with location parameter µ and

scale parameter σ and tν(µ, σ) denotes a generalised t distribution with ν degrees

of freedom (assume ν > 2), mean µ and standard deviation σ. By construction one

of the emission can be obtained by translating the other emission horizontally, and

the emissions have varying degree of smoothness across the domain, which can be

expected to pose challenges to P-spline based inference methods. For this model

we set δ = (0.5, 0.5), γ12 = γ21 = 0.05 and n = 2000. The last model, Model 4,

is a 2-state HMM considered in Yau et al. [2011] (the trimod case) with emissions
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specified as a mixture of three well-separated normal distributions (see Figure 2.4):

yt|xt = 1 ∼ 1

3
N (−4, 1) +

1

3
N (0, 1) +

1

3
N (8, 1),

yt|xt = 2 ∼ 1

3
N (−3, 1) +

1

3
N (1, 1) +

1

3
N (9, 1),

and the same Markov chain parameters as in Model 3. For this model we consider

a relatively large data set of length n = 5000. In each of our chosen simulation

scenarios, the emissions exhibit a subset of the features such as multi-modality,

skewness, heavy-tailedness and excess kurtosis, and the number or the structure

of the emissions are not directly identifiable by visually inspecting the empirical

marginal distributions (e.g. histogram). Models 3 and 4 pose the most serious

computational challenges even when the correct number of states is assumed to be

known as in Yau et al. [2011].

2.6.2 Settings and results

We first present the settings for implementing the methods mentioned above. For

our proposed algorithm the unspecified constants are set to a = min(y(n)) − 10,

b = max(y(n)) + 10 and α = 0.65 in all scenarios (experiments suggest that our

results are not very sensitive to these specific choices). For the fpSP method we select

the number of equidistant knots K and the state-specific smoothing parameters λ =

(λ1, . . . , λN ) either based on the original choices in Langrock et al. [2015] (for Model

1) or on pre-experiments of our own (for Models 2-4), and the details are summarized

in Table 2.1. To set up the Bayesian P-spline model for the emissions, we use the

same knot configuration (prefixed) as for the frequentist P-spline counterpart to

facilitate comparison. We follow Lang and Brezger [2004] to use a second order

random walk prior on the reparametrized spline coefficients, which is translated to

a multivariate normal prior on the ãi,j

ãi = (ãi,1, . . . , ãi,K+4)|τ̃i ∼ NK+4(0, (τ̃iP )−1), i = 1, . . . , N, (2.10)

where τ̃i is regarded as the state-specific roughness parameter, P = DT
2 D2 + ϵ̃IK+4

is the penalty matrix with D2 ∈ R(K+2)×(K+4) the second order difference matrix

defined as

D2 =


1 −2 1 0 0 · · · 0

0 1 −2 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 −2 1

 ,
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Table 2.1: Settings for the fpSP method.
Parameters Model 1 Model 2 Model 3 Model 4

K 27 47 71 51
λ (2048, 1024) (2800, 1600, 2400) (1, 1) (600, 600)

ϵ̃ is a small positive quantity and IK+4 is the identity matrix of dimension K + 4.

Note that the addition of ϵ̃IK+4 makes P a full rank matrix and here we take

ϵ̃ = 10−6 as in Lambert and Bremhorst [2020] and Maturana-Russel and Meyer

[2021]. For τ̃i a conjugate Gamma prior is commonly used [Lang and Brezger,

2004]. Here, to address the impact of the prior parameters on the smoothness of the

spline fit, we adopt a robust specification by introducing the following hyperpriors

[Jullion and Lambert, 2007]

τ̃i|τ̃
′ ∼ Gamma(ατ̃ , ατ̃ τ̃

′
), i = 1, . . . , N,

τ̃
′ ∼ Gamma(ατ̃ ′ , βτ̃ ′ ).

We choose ατ̃ ′ = βτ̃ ′ = 10−3 following the suggestion in Jullion and Lambert [2007].

The choice of ατ̃ is not influential and we set ατ̃ = 1 as in Bremhorst and Lambert

[2016] and Maturana-Russel and Meyer [2021]. Details for the associated MCMC al-

gorithm are provided in the appendix. Clearly more sophisticated Bayesian P-spline

methods exist, such as those permitting spatially adaptive smoothing parameters,

but our aim here is to compare with the ”standard” approach as commonly used in

practice.

To take care of the variability in the simulated data set, for each of the

four simulation models 10 random replications of the data were generated and the

three methods were implemented for each replications. For Models 1-3 our poste-

rior samples (for the adSP and bpSP methods) are based on 25k iterations of the

corresponding MCMC samplers after a burn-in of 25k iterations, and for Model 4

the burn-in period is increased to 35k iterations. We monitored convergence of the

parameters as well as the likelihood of the models generated by the Markov chain

and found that the chosen burn-in periods are generally sufficient to obtain reli-

able results. Further details regarding the performance of the proposed RJMCMC

algorithm are discussed in the Appendix.

Model selection

For each simulation model, we first implement the marginal likelihood based ap-

proach described in section 2.5 to examine its performance in recovering the true
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number of states, when applied in conjunction with the Bayesian MCMC algorithms

for the spline-based HMM. In each repetition we collect MCMC samples using both

the adSP and bpSP methods where we place a uniform prior on N over the can-

didate set {2, 3, 4, 5}. Throughout we set β = 0.2 and ξ = 0.01 and experiments

suggest that the results are robust to these choices provided that they are chosen to

be relatively small as specified here. For the adSP method, the correct number of

states is identified in all repetitions of all simulation scenarios, with averaged pos-

terior probability of the correct model equal to one (rounded to 3 decimal places).

The bpSP method, however, suffered from an overestimation of the number of states

in most repetitions. We hypothesize that this may be due to the specific structure

of the prior in (2.10), which is ”almost improper” (becomes improper as ϵ̃ → 0).

It is well known that improper priors can cause troubles in the evaluation of the

marginal likelihood.

Comparison with fixed N

We now report results obtained for each of the three methods, conditional on the

true value of N for each simulation model. Figure 2.1 (top and bottom left panels)

shows the true as well as estimated emission densities obtained in the 10 repetitions

for Model 1 and these agree reasonably well in general for all methods. K = 6 (i.e.

10 basis elements) or 7 are suggested by the adSP method as the posterior mode

with an equal frequency of 50%. This is to be compared with the bpSP and fpSP

methods where 31 basis elements are used for the estimation. We can see that fitted

models obtained by our proposed method are considerably more parsimonious but

still achieve comparable or even slightly better (for state 1) density fits in terms of

the average KLD (see bottom right panel of Figure 2.1). In terms of decoding, the

adSP, bpSP and fpSP methods yielded accuracy of 94.3%, 94% and 93.6% (averaged

over the 10 repetitions), respectively, indicating a slightly better performance of the

adSP method. For the second simulation model, K = 9 or 10 are suggested by

the adSP method as the posterior mode with an equal frequency of 50%, and our

algorithm gives reasonable appearing estimates for the emissions in all 10 repetitions

(see top left panel of Figure 2.2). By contrast, due to inefficient knot placements, the

two P-spline-based approaches use a much larger K = 47 to prevent underfitting yet

still give generally poorer fits compared with our adSP (see bottom right panel of

Figure 2.2), with the fpSP method performing worst in modelling both the smooth

and non-smooth parts of the densities. The average decoding accuracy over the 10

replicates is 90.7%, 90.5% and 90.5% for models estimated using the adSP, bpSP

and fpSP methods, respectively (see Figure 2.5 for more details) and thus relatively
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similar for all 3 approaches.

Figure 2.1: Estimation results for 10 simulations of Model 1. Top left, top right
and bottom left panels show the true (solid curves) and estimated (dashed curves)
densities of the emission distributions obtained in each replication using the adSP,
bpSP and fpSP methods, respectively. Bottom right panel shows the average KLD
for each state obtained in each replication with the three methods (methods 1, 2
and 3 correspond to the adSP, bpSP and fpSP methods, respectively).

Models 3 and 4 are, by design, more challenging simulation scenarios, where

we see the adSP performs well in both cases but the other two methods suffer from

numerical and convergence issues. For model 3, K = 13 or 14 is suggested by our

algorithm with an equal frequency of 50%, and we can see from Figure 2.3 (top left

panel) that the estimated emissions capture both the sharp peak and the smooth

parts reasonably well. The fpSP method, however, even with careful selection of the

initial parameter values, failed to converge (or converged to sub-optimal solutions) in

50% of the simulation runs. Within the convergent repetitions, both bpSP and fpSP
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Figure 2.2: Estimation results for 10 simulations of Model 2. The settings are the
same as in Figure 2.1.

methods lead to significantly larger average KLDs for the emissions (see bottom right

panel of Figure 2.3). These results are not very surprising since both methods assume

global smoothing parameters whereas the true densities are subject to significantly

differing degree of smoothness over the domain. Regarding decoding, the adSP and

bpSP methods perform roughly equally well, whereas results from the fpSP method

exhibits much higher variability (see Figure 2.5).

For model 4, the tri-modal nature of the emissions is successfully identified

with the adSP method in all 10 replicates despite the vague prior information, where

K = 16 is suggested by our algorithm in 60% of the simulation runs. The bpSP

and fpSP methods, however, fail to converge for 2 and 3 of the repetitions, respec-

tively. Restricting to the convergent repetitions, we see (Figures 2.4 and 2.5) a

slight advantage of the bpSP method over the adSP method, which is in some sense
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Figure 2.3: Estimation results for 10 simulations of Model 3. The settings are the
same as in Figure 2.1 (for the fpSP method only the 5 convergent cases are included).

understandable given the smooth nature of the emissions and the fact that a much

larger number of basis elements (K = 51) are employed in the P-splines. In this sce-

nario, we additionally compare our adSP method with the Bayesian nonparametric

approach of Yau et al. [2011] on retrieving the transition dynamics of the hidden

Markov chain, which is one of the main foci in their work. The average posterior

means (±1 standard deviation) of the transition probabilities obtained from our

method are γ1,2 = 0.056 (±0.009) and γ2,1 = 0.057 (±0.01), which is consistent with

the true value γ1,2 = γ2,1 = 0.05, and is comparable to those reported in Table 2

(case when T=5000) of Yau et al. [2011]. However, it should be pointed out that

in contrast to Yau et al. [2011] who assume the translation nature of the emission

and that γ1,2 = γ2,1 is known a-priori, here we estimate the model structure from

the data.
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Table 2.2: Average computational time (in seconds) for generating 10k MCMC
samples for the adSP and bpSP methods.

Method Model 1 Model 2 Model 3 Model 4

adSP 113 230 294 679
bpSP 109 227 274 619

Overall, we may conclude that the adSP and bpSP methods have roughly

comparable performance in more ”regular” settings (see e.g. model 1) and the

advantages of using the adSP method are more significant in more complicated

scenarios (see, e.g. model 3), where both bpSP and fpSP methods become very sen-

sitive to the initial parameter settings and may suffer from poor density fits and/or

convergence issues. In general, fpSP is the least accurate and reliable method. In

terms of computational efficiency, the adSP and the bpSP approaches are roughly

comparable, see Table 2.2 for a comparison of the computational time for each

model (based on a PC computer having Intel(R) Core(TM) i7-6700 CPU, at 3.4

GHz and 16 GB RAM). The computational cost required for the fpSP method is

more difficult to quantify as it is hugely influenced by the initial knot settings and

the grid search strategy adopted for the smoothing parameters, not to mention that

non-ignorable (and often significant) additional computational effort is needed for

performing uncertainty quantification for the parameters (which we did not perform

here).

2.7 Analysis of oceanic whitetip shark acceleration data

HMMs provide a useful tool for modelling animal movement metrics to study the

dynamical patterns of an animal’s behavioural states (e.g., resting, foraging or trav-

elling) in ecology [Patterson et al., 2009; Langrock et al., 2012a, 2018]. Here we

consider a time series of the overall dynamic body acceleration (ODBA) collected

from an oceanic whitetip shark at a rate of 16 Hz over a time span of 24 hours

noting that a larger replicate data set was analyzed in Langrock et al. [2018]. For

our analysis, the raw ODBA values are averaged over non-overlapping windows of

length 15 seconds and log transformed (lODBA), resulting in a total of 5760 obser-

vations. The marginal distribution of the transformed data is illustrated in Figure

2.6.

We first model the lODBA values using our proposed spline-based HMM

with N fixed to three states as in Langrock et al. [2018], who present potential

biological interpretations of these three states. The constants used in our algorithm
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Figure 2.4: Estimation results for 10 simulations of Model 4. The settings are the
same as in Figure 2.1 (for the bpSP and fpSP methods only 8 and 7 convergent
cases are included).

are specified as a = −5.5, b = −1 and α = 2. Our posterior inference was based on

25k sweeps of the RJMCMC algorithm after a burn-in of 25k sweeps. The whole

sampling process took about 70 minutes in R (for the same hardware specification

as above). Figure 2.6 (top left panel) shows the estimated emission densities. The

posterior modal number of knots is 10, with P̂ (K = 10|data) = 0.741, followed by

K = 11, with P̂ (K = 11|data) = 0.245. Our posterior summaries for the entries of

the transition probability matrix are

Γ̂ =

0.941(0.006) 0.059(0.006) 0.001(0.001)

0.031(0.003) 0.96(0.004) 0.009(0.002)

0.006(0.004) 0.048(0.009) 0.946(0.01)

 ,
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Figure 2.5: Summary of decoding results obtained for each replication of each model,
where methods 1, 2 and 3 correspond to the adSP, bpSP and fpSP methods, respec-
tively (for the bpSP and fpSP methods only convergent cases are included).

where the point estimates are the posterior means and the associated standard

deviations are shown in brackets. In particular, the diagonal entries of Γ̂ are all close

to 1 highlighting the serial dependence. The estimated state sequence (indicated

in colours) obtained via local decoding is shown in the top right panel of Figure

2.6. Note that, as was pointed out in Langrock et al. [2018], there could be a

potential lack of fit if one chooses to model this type of data by some common

parametric HMMs. To illustrate this, we fit a Gaussian HMM with N = 3 to

the lODBA data using the standard MLE approach and the resulting estimates of

the emissions are shown in the bottom left panel of Figure 2.6, which exhibits a

certain level of underfitting (e.g. fails to accurately capture the spikiness and the

slight right tail of the emission of the middle state). The corresponding diagonal

entries of the transition matrix are estimated as γ̂1,1 = 0.941, γ̂2,2 = 0.952 and

γ̂3,3 = 0.915, indicating an underestimation of the state persistency in states 2

and 3. To further demonstrate the advantage of our approach, we also fitted a

B-spline HMM using Langrock et al.’s (2015) method, where we have set K =

39 to ensure enough flexibility and selected λ = (300, 1, 400) for the smoothing

parameters based on our experiments. While the resulting transition probability

estimates and the density fits seem to be comparable to our results (see bottom

right panel of Figure 2.6), their fitted 3-state HMM uses a total of 129 parameters

for estimating the emissions, for which we experienced numerical stability issues

in the process of estimation and the results are found to be very sensitive to the

initial parameter setting (as we observed in the simulation studies). It can thus
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be expected that their bootstrap-based uncertainty quantification approach would

be challenging and costly to implement as well. In contrast, our method used 52

parameters if conditional on the posterior modal number of knots and we obtained

posterior uncertainties for the parameters at no extra computational cost.

To verify if the shark data support a model with N = 3, we also proceed

to performing model selection using the marginal likelihood based approach as de-

scribed in section 2.5. Our posterior estimates are based on 30k draws after a burn-in

of 30k iterations. Interestingly, with a discrete uniform prior over {2, . . . , 9}, the

posterior modal number of states is estimated to be N = 8, with a posterior prob-

ability of 1, thus strongly indicating that the data support a considerably larger

number of states than originally assumed in Langrock et al. [2018]. This is perhaps

not surprising given the expected complexity of shark’s behavior in reality and the

potential rich information contained in this high-resolution signal [Bres, 1993]. Fig-

ure 2.7 displays the estimated emission densities (left panel) and the corresponding

decoded times series (right panel). We can see that the estimated hidden states

roughly correspond to 8 different levels of activity which resolves the multimodality

seen in the 3-state model (state 1) into a mixture of unimodal emission densities.

The posterior means of the transition probabilities are

Γ̂8 =



0.861 0.121 0.006 0.003 0.003 0.003 0.002 0.002

0.071 0.778 0.126 0.008 0.005 0.01 0.002 0.001

0.013 0.118 0.682 0.144 0.02 0.018 0.003 0.001

0.001 0.004 0.061 0.785 0.136 0.009 0.005 0.001

0.002 0.004 0.012 0.103 0.831 0.041 0.007 0.001

0.004 0.03 0.046 0.041 0.062 0.723 0.087 0.006

0.007 0.009 0.03 0.026 0.032 0.256 0.494 0.147

0.002 0.002 0.003 0.003 0.003 0.01 0.05 0.927


.

Almost all of the estimated states are persistent in the sense that there usually is

a large probability of staying in the current state (see diagonal entries of Γ̂8). In

comparison to the 3-state model, the diagonal entries are naturally lower as the

shark’s movement is now sub-divided into more states. The fitted model with 8

states indicates, for example, that the lower and middle activity mode of the 3-state

model can each be associated to several separate states, while the higher activity

mode mainly corresponds to a single state, state 8, whose onset typically occurs

following state 7. To assign biologically meaningful interpretations to these states,

however, additional ecological information is required and we shall not pursue it

further here. Nevertheless, our analysis demonstrates the ability of our method
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to deal with model selection in an HMM with a relatively large number of states,

while Langrock et al.’s approach can be expected to be severely challenged with

increasing N . Our nonparametric approach could also be used in an explorative

way to identify a suitable parametric model. We can see from Figure 2.7 that most

of the emission densities of the 8-state model have a relatively regular shape. An

interesting further question would be whether the 3-state nonparametric model can

be replaced by a 8-state parametric approach, assuming for instance a mixture of

Gaussian emission densities, which can capture a higher degree of multimodality in

the marginal distribution.

Figure 2.6: Histogram of 15s-averaged lODBA values along with the estimated emis-
sion densities (weighted according to their proportion in the stationary distribution
of the estimated Markov chain) obtained from our method (top left), the Gaussian
HMM (bottom left) and Langrock et al’s method (bottom right); top right panel:
15s-averaged lODBA series, where colour indicates the locally decoded state at each
time obtained with our method. Here the state labels are sorted according to their
mean lODBA levels.
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Figure 2.7: Left panel: histogram of 15s-averaged lODBA values along with the
eight estimated emission densities (weighted according to their proportion in the
stationary distribution of the estimated Markov chain) obtained from our method;
right panel: the corresponding locally decoded time series of the 8-state model. Here
the state labels are sorted according to their mean lODBA levels.

2.8 Discussion

In this chapter we focus on spline-based HMMs which are attractive in comparison

to alternative nonparametric HMMs due to their simplicity in model interpretation

and their modelling flexibility. We propose and develop a Bayesian methodology for

inference in B-spline-based HMMs where the number of hidden states, N, may be

unknown along with all other model parameters including the spline knot configura-

tion. With N fixed, we introduce a RJMCMC algorithm that allows for a parsimo-

nious and efficient positioning of the spline knots as we were able to demonstrate in

simulations and the case study. It further appears that the implied computational

efficiency allows us to realistically conduct model selection on N which is a notori-

ously difficult problem due to challenging convergence problems even in - or perhaps

because of - parametric approaches and when dealing with more states and larger

data sets. Here we propose to estimate the marginal likelihood of a spline-based

HMM via a truncated harmonic mean estimator, under a parallel sampling scheme.

Our simulation studies demonstrate the resulting effectiveness of the approach in

selecting the correct model.

We have demonstrated that within the spline-based modelling framework,

our proposed method has significant advantages over the frequentist P-spline-based

approach proposed by Langrock et al. [2015], and compares favourably to a Bayesian

P-spline approach which is investigated for the first time. Our method circumvents
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the challenging problems such as the selection of smoothing parameters and the

quantification of uncertainty on model parameters, and allows for more stable and

also more parsimonious estimation of the emission densities while achieving compa-

rable or even better performance. These advantages also mean that we are able to

estimate an HMM where N may potentially be higher. Langrock et al. [2018] didn’t

approach model selection on N but we were able to estimate a B-spline based HMM

where N could be, and was indeed estimated to be, considerably higher for the same

kind of animal movement data. This comparison highlights the advantages gained

from being able to address model selection on N and the use of a nonparametric ap-

proach for explorative data analysis. Comparing with the Bayesian nonparametric

model developed in Yau et al. [2011], our approach does not assume the translation

nature of the emissions and thus can be applied for more general data sets. Even

restricted to the class of translation HMMs our method is still a strong competitor

as it enjoys a relatively simple model formulation and the ability to address the case

when N is unknown.

The modelling framework may be extended in other ways, with appropriate

modifications of the proposed algorithm. For instance, the homogeneous assumption

on the hidden Markov chain of our spline-based HMM can be relaxed to allow for

a covariate dependent transition probability matrix. One way to achieve this is to

employ the standard multinomial logistic link function for the transition probabil-

ities [Zucchini et al., 2016] to reparametrize Γ in terms of the covariates. Efficient

MCMC inference can be achieved by incorporating the Polya-Gamma data aug-

mentation approach of Polson et al. [2013] into the present modelling framework,

as was successfully applied in Holsclaw et al. [2017] for parametric nonhomogeneous

HMMs. A generalization to a multivariate observation process also is straightfor-

ward - at least in principle. In particular, assuming contemporaneous conditional

independence among the M observed variables, i.e. fxt(y1, . . . , yM ) =
∏M

i=1 fxt,i(yi),

one can model the state-dependent joint density by assuming univariate B-splines

used here for the corresponding marginal densities. In this case multiple birth and

death moves are required for the RJMCMC to update the knot configuration for

each component of (y1, . . . , yM ) in a deterministic or random manner. However, de-

signing an efficient MCMC methodology for spline-based HMMs with more general

multivariate distributions is beyond the scope of this chapter.
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2.A Further details of the reversible jump MCMC al-

gorithm

In this section, we give further computational and implementational details related

to the reversible jump MCMC algorithm presented in Section 2.4 and establish the

validity of the algorithm.

2.A.1 Acceptance probabilities for the Metropolis-Hastings moves

Moves (c) and (d) in Algorithm 5 are standard Metropolis-Hastings updates. For

(c), the acceptance probability for relocating the knot rk∗ to the candidate point rc

is:

min
(
1,

f(y(n),x(n)|K,R
′
K , ÃK ,Γ)fN,[a,b](rk∗ |rc, τ21 )

f(y(n),x(n)|K,RK , ÃK ,Γ)fN,[a,b](rc|rk∗ , τ21 )

)
,

where R
′
K differs from RK only in the replacement of rk∗ by rc, and fN,[a,b](·|µ, σ2)

denotes the density of the truncated normal distribution with mean µ, standard

deviation σ and bounded on [a, b]. For move (d) since the proposal is symmetric the

acceptance probability is:

min
(
1,

f(y(n),x(n)|K,RK , Ã
′
K ,Γ)f(Ã

′
K |K, ζ)

f(y(n),x(n)|K,RK , ÃK ,Γ)f(ÃK |K, ζ)

)
,

where the set of ã
′
i,j is denoted by Ã

′
K . In step (e) we used a log-normal random

walk to update the parameter due to the positivity constraint, and the corresponding

acceptance probability after adjusting for the log-transformation is

min
(
1,

f(ÃK |K, ζ
′
)f(ζ

′
)ζ

′

f(ÃK |K, ζ)f(ζ)ζ

)
.

2.A.2 Acceptance probabilities for the birth and death moves

Using the notation of Green [1995], the birth move regarding spline parameters is

accepted with probability min(1, A), where A could be expressed in the form

likelihood ratio × prior ratio × proposal ratio × Jacobian.

In our context the likelihood ratio is:

f(y(n),x(n)|K + 1, RK+1, Ã
′
K+1,Γ)

f(y(n),x(n)|K,RK , ÃK ,Γ)
,
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where Ã
′
K+1 stands for the set of proposed ã

′
i,j and the complete data likelihood

f(y(n),x(n)|·) is given by equation (2.2). The prior ratio is given by the product of

the ratio of the priors on each block of parameters that are involved in this update:

fU (K + 1)

fU (K)

(K+1)!
(b−a)K+1

K!
(b−a)K

∏N
i=1

∏K+5
j=1 fLG(ã

′
i,j |ζ, 1)∏N

i=1

∏K+4
j=1 fLG(ãi,j |ζ, 1)

,

where fU (·) denotes the probability mass function of a uniformly distributed random

variable on {2, . . . ,Kmax}, and fLG(·|ζ, 1) stands for the log-gamma density with

shape parameter ζ and rate parameter 1. The proposal ratio is given by

dK+1

(K + 1)

{
bK

∑K
i=1 fN,[a,b](rc|ri, τ(RK , i)2)

K

}−1
,

where fN,[a,b](·|µ, σ2) denotes the density of a truncated normal distribution with

mean µ, standard deviation σ and bounded on [a, b]. Lastly, the Jacobian corre-

sponding to the transformation from (RK , ÃK ,Γ, rc, u1, . . . , uN ) to (RK+1, Ã
′
K+1,Γ)

is

|(rn∗+2rn∗+3)
N

N∏
i=1

(ãi,n∗+4 − ãi,n∗+3)|.

After simplification A is thus given by

A =
f(y(n),x(n)|K + 1, RK+1, Ã

′
K+1,Γ)

f(y(n),x(n)|K,RK , ÃK ,Γ)

1

(b− a)

∏N
i=1

∏n∗+4
j=n∗+2 fLG(ã

′
i,j |ζ, 1)∏N

i=1

∏n∗+3
j=n∗+2 fLG(ãi,j |ζ, 1)

×dK+1

bK

{∑K
i=1 fN,[a,b](rc|ri, τ(RK , i)2)

K

}−1
|(rn∗+2rn∗+3)

N
N∏
i=1

(ãi,n∗+4 − ãi,n∗+3)|.

Since the birth and death moves are defined in a symmetric way, the acceptance

probability for this death move is min(1, A−1), where K is replaced by K − 1 and

n∗ = d∗ − 1.

2.A.3 Tackling label switching

A practical consequence of the properties of the model and its prior is that samples

generated by the reversible jump MCMC algorithm are subject to the label switching

problem, i.e. the state labels can permute during the MCMC iterations without

changing the posterior density [Scott, 2002]. As a result, the MCMC output cannot

be directly used for inference about the state specific parameters. To tackle this issue

we choose to use the Kullback–Leibler relabelling algorithm developed in Stephens
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[2000], which has been successfully applied for both parametric HMMs [Rodŕıguez

and Walker, 2014] and nonparametric HMMs [Hadj-Amar et al., 2020a]. The basic

ideas are as follows. For each of the T collected MCMC samples, we first construct

a n × N dimensional classification probability matrix whose (i, k)-th entry in our

context is given by

P
(t)
i,k =

π
(t)
k f

(t)
k (yi)∑N

j=1 π
(t)
j f

(t)
j (yi)

, t = 1, . . . , T,

where f
(t)
k (·) is the emission density for state k constructed from the t-th MCMC

sample and (π
(t)
1 , . . . , π

(t)
N ) is the stationary distribution associated with the transi-

tion matrix Γ(t). The algorithm then involves iteratively searching a specific per-

mutation of state labels to minimize the KLD between classification probabilities

averaged over MCMC iteration, qi,k = (
∑B

t=1 P
(t)
i,k )/B, and the classification proba-

bilities obtained in each MCMC iteration. In other words, we make the state labels

associated with each MCMC draw agree on the classification probabilities [P
(t)
i,k ].

The ”optimized” permutation searched for each MCMC sample can then be used

to relabel the samples to achieve a consistent ordering of the labels. We refer to

Stephens [2000] and Rodŕıguez and Walker [2014] for more details of the algorithm.

In our implementations, we use the R package Label.switching of Papastamoulis

[2016b] to perform this minimization procedure.

2.A.4 Validity of the algorithm

When the adaptive tuning scheme ceases after a period of burn in, the validity of

the proposed reversible jump MCMC algorithm can be established following stan-

dard Markov chain theory as presented in Tierney [1994] and Robert and Casella

[2013]. First note that the Markov transition kernel for each of the move steps

admits the target posterior distribution, f (defined through equation (2.4)), as in-

variant distribution, so a concatenation of these kernels also admits f as invariant

distribution. Irreducibility of the constructed chain can be deduced as the chain can

move from one value of K to any other possible value by increasing or decreasing

its value by one at a time, with positive probability. In step (a) all possible state

allocations have positive probability, In steps (b), (d) and (e) the full conditional

distribution/proposal density is positive on the natural parameter space and the

same holds true for step (c) if we consider several consecutive sweeps. The chain is

also aperiodic as there is a strictly positive probability that the chain remains in a

neighbourhood of the current state after one sweep of the MCMC procedure. With
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the above properties the chain is guaranteed to converge to the posterior distribu-

tion from almost all initial states (except for a set of posterior probability zero).

To replace ”almost all” by ”all” we require a stronger condition called Harris recur-

rence, which is generally difficult to verify in the trans-dimensional MCMC set-up

[Roberts and Rosenthal, 2006; Hastie and Green, 2012]. However in practice we

could tackle this issue by drawing the initial state using a continuous distribution

centered around the posterior mode (or other approximations to that such as the

maximum likelihood estimate). This strategy is employed in our initialization pro-

cess. To accelerate the convergence of the chain we initialize the knot points at the

empirical quantiles of the data so that more knots are initially placed at data-rich

regions. For the remaining parameters the initial values are drawn from appropri-

ate truncated normal distributions centered at their respective maximum likelihood

estimates computed given the initial knot configuration.

2.B Further details for the simulation study

In this section we present the MCMC algorithm used for inference in the Bayesian

P-spline-based HMM (the bpSP method) described in section 2.6 and discuss in

more detail the performance of the proposed RJMCMC algorithm in the simulation

study.

2.B.1 MCMC details for the Bayesian P-spline-based model

For the Bayesian P-spline-based model the knot configuration (K,RK) is prefixed,

and the parameter set is (Ã, Γ, τ̃ , τ̃
′
), where τ̃ = (τ̃1, . . . , τ̃N ) and Ã = (ã1, . . . , ãN ).

We assume that the joint posterior distribution of the state sequence and model

parameters takes the form

f(x(n),Γ, Ã, τ̃ , τ̃
′ |y(n)) ∝ f(Γ)f(τ̃

′
)f(τ̃ |τ̃ ′

)f(Ã|τ̃ )f(y(n),x(n)|Ã,Γ),

where f(τ̃ |τ̃ ′
) =

∏N
i=1 f(τ̃i|τ̃

′
), f(Ã|τ̃ ) =

∏N
i=1 f(ãi|τ̃i) and the complete likelihood

(last term) is given by (2.2) with spline coefficients derived from Ã. We use the

same prior distribution for Γ as for our proposed spline-based HMM and the priors

f(τ̃
′
), f(τ̃i|τ̃

′
) and f(ãi|τ̃i) are specified as described in section 2.6.2. Posterior

simulation for the resulting model can be achieved using a Metropolis-within-Gibbs

sampler as outlined in Algorithm 6. Steps (a) and (b) can be performed exactly as

in our RJMCMC algorithm (see steps (a) and (b) of Algorithm 5), and the details

are omitted here. For step (c), we update the state-specific spline coefficients ãi in
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Algorithm 6: MCMC algorithm for Bayesian P-spline-based HMMs

Initialize ÃK , Γ, τ̃ , τ̃
′
; for i=1, . . . , T do

(a) update the hidden state sequence x(n);
(b) update the transition probability matrix Γ;

(c) update the set of reparametrized B-spline coefficients Ã;
(d) update the roughness parameters τ̃ ;

(e) update the hyperparameter τ̃
′

end

blocks via a random walk MH step as used in step (d) of Algorithm 5 due to the

potential high-dimensionality of Ã. For each state a separate variance parameter is

used for the MH update and they are tuned adaptively as described in section 2.4.

For step (d), note that the full conditional distribution of τ̃i is

f(τ̃i|rest) ∝ τ̃ατ̃−1
i exp(−ατ̃ τ̃

′
τ̃i)τ̃

K+4
2

i exp(− τ̃i
2
ãTi P ãi), i = 1, . . . , N.

Therefore we update τ̃i by drawing from

τ̃i|rest ∼ Gamma(
K + 4

2
+ ατ̃ , ατ̃ τ̃

′
+

1

2
ãTi P ãi), i = 1, . . . , N.

Step (e) is also a Gibbs step. The full conditional distribution of τ̃
′

is

f(τ̃
′ |rest) ∝ (τ̃

′
)ατ̃

′−1 exp(−βτ̃ ′ τ̃
′
)

N∏
i=1

(τ̃
′
)ατ̃ exp(−ατ̃ τ̃iτ̃

′
),

and thus we draw:

τ̃
′ |rest ∼ Gamma(Nατ̃ + ατ̃ ′ , ατ̃

N∑
i=1

τ̃i + βτ̃ ′ ).

For the same reason stated before, here MCMC inference is subject to the label

switching problem, which can be tackled using the Kullback-Leibler relabelling al-

gorithm described above.

2.B.2 Performance details of the proposed RJMCMC algorithm

Here we give more details and discuss the performance of the proposed algorithm

for our simulation models presented in Section 2.6. Some diagnostic plots that are

related to the mixing and convergence of the sampler are shown in Figure 2.8, where

the results for each model are obtained for a randomly selected replication of the
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simulated data set.

For adaptive MCMC steps (steps (c)-(e) of Algorithm 5), the empirical ac-

ceptance rates are closed to the pre-specified desired levels. We analyzed the traces

and running averages for selective parameters (including the tuning variance param-

eters) across MCMC iterations and found acceptable mixing patterns in most cases.

Step (c) may mix slower than MH steps due to the relatively high dimension of the

spline coefficients vector. To further improve sampling efficiency, a Metropolis ad-

justed Langevin algorithm (MALA) [Roberts and Tweedie, 1996] may be employed,

which is a specific class of MH algorithms where the proposal distribution exploits

the local information of the target

q(Ã
′
K |ÃK) = NK+4(ÃK +

h

2
Σ∇ÃK

log f, hΣ),

where h is a positive real number, Σ is a symmetric positive definite matrix and

∇ÃK
log f = ( ∂

∂ãi,j
log f)i=1,....N ;j=1,...,K+4, with

∂

∂ãi,j
log f =

∑
t:xt=i

∂

∂ãi,j
log fi(yt) +

∂

∂ãi,j
log fLG(ãi,j |ζ, 1).

Both h and Σ are tuning parameters that need to be selected using pilot runs or

tuned on-the-fly using adaptive MALA techniques, see, e.g. Atchadé [2006]. On

the other hand, the potential gain in efficiency is counterbalanced by an increase

in the computational cost in evaluating the gradients at each iteration and the

tuning is more subtle yet important than that for the random walk MH algorithm

[Christensen et al., 2005]. In our experiments, the MALA algorithm did not offer

noticeable advantage over the random walk MH in terms of mixing and the final

estimation accuracy.

For the dimension changing moves, the averaged acceptance rates for mod-

els 1-4 are 0.32%, 0.17%, 0.37% and 0.38%, respectively. While it is lower than

desired in our simulation cases, we did not detect any apparent convergence issues

(see Figure 2.8). For Model 2 the acceptance rate can be expected to be lower than

for the others as it has a larger number of states whose emission distributions have

quite different characteristics. In general, a new knot is more likely to be accepted

if it contributes to the fit of all the emission densities. On the other hand, the

degree of precision in the posterior distribution of K is limiting the achievable ac-

ceptance rates for the dimension changing moves. For instance, as n increases, the

posterior for K is expected to be more concentrated, leading to a generally lower

acceptance rate. From the algorithmic perspective this rate may be mildly affected
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by the standard deviation τ of the truncated normal distribution used to generate

the new knot or the proposal distribution for ui used in the birth move. In our ex-

periments, with the functional form of τ fixed, the results are not very sensitive to

the value of α, provided that it is chosen in a reasonable way. For instance we prefer

to set 0 < α < 1 when the averaged distance between knots is much larger than

1 and vice versa. The use of other potential proposal distributions for ui within

the Beta family was also investigated, but no clear evidence was found in terms

of their superiority over the noninformative choice U(0, 1). We also compare our

algorithm with the one that integrates out the latent state sequence x(n) (via the

forward algorithm in (2.3)), and draw x(n) afterwards at each iteration via FFBS

conditional on the simulated model parameters. Although the latter strategy gives

a slightly higher acceptance rate, which is not unexpected as the dimensionality of

the parameter space is greatly reduced, there is no noticeable gain in terms of the

overall computational cost and the estimation accuracy. A higher acceptance rate

for the dimension changing move may be achieved by modifying the current model

or the proposal mechanism. For instance, one might consider using a separate knot

configuration for each emission density and propose state-specific jump moves, or

generating the random variables ui used in equation (2.5) from a more informative

proposal distribution such as a truncated normal distribution centred at its maxi-

mum likelihood estimate (approximated via some numerical optimization routines).

However, in either scenario the model complexity or the computational effort may

increase significantly, which may prevent a successful application of the algorithm

in some settings. Though not presented here, we also investigated the estimation

performance of the algorithm with other simulation settings. Our preliminary find-

ings indicate that the performance generally improves as serial correlation and/or

sample size increases, while it declines as the number of states and/or the overlap

of the emission distributions increases.
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Figure 2.8: Selected simulation outputs for the four simulation models (conditioned
on the true value of N). Panels 1-4 show trace of K for the complete MCMC run
including burn-in (left) and the corresponding observed data log-likelihood of the
model generated by the algorithm (right) for models 1-4, respectively.

.
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Chapter 3

A conditional hidden Markov

model for inferring circadian

and sleep patterns

3.1 Introduction

The human circadian (approximately 24 hours) timing system (CTS) is an innate

clock formed by a complex hierarchical network of molecular clocks, which are gov-

erned by specific clock genes in most cells of the body [Zhang and Kay, 2010; Partch

et al., 2014]. The suprachiasmatic nucleus (SCN), the central pacemaker of the CTS,

is primarily entrained by external light-dark cycles via visual afferents as well as in-

puts from other molecular oscillators, and it regulates and synchronizes downstream

cellular clocks in peripheral tissues and organs via signals such as hormone secretion.

The CTS as a whole plays an important role in coordinating diverse physiological

processes including core body temperature, heart rate, blood pressure, among many

others, and behavioural processes such as sleep/wake, with the geophysical time

[Ruben et al., 2019; Dunlap et al., 2004]. Recent research illustrated the close asso-

ciation between the function or the status of our CTS and our physical and mental

health. In particular, it is revealed that disruptions and perturbations of the CTS

are reliably linked to mental health related problems, greater risk of developing

numerous diseases such as cancer and psychiatric disorder and the worsening of

pre-existing pathologies [Roenneberg and Merrow, 2016; Ortiz-Tudela et al., 2010;

Evans and Davidson, 2013; Ortiz-Tudela et al., 2016; Lyall et al., 2018]. Regarding

cancer it has also been shown that optimal circadian timing of the administration

of medication based on an individual’s circadian rhythm, termed chronotherapy,
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could enhance tolerance and efficacy to some extent in both experimental and clin-

ical situations [Lévi et al., 2010; Lévi and Okyar, 2011; Ortiz-Tudela et al., 2013,

2014]. There is now a great deal of interest in assessing and monitoring an indi-

vidual’s CTS, with the aim for timely interventions and more effective personalized

treatments.

Measurements of circadian rhythms can be achieved by recording and ana-

lyzing the rhythmicity of the ”circadian biomarkers”, which serve as indicators of

the CTS [Hofstra and de Weerd, 2008; Abdullah et al., 2017]. Among the most com-

monly recognized biomarkers are core body temperature and certain hormones (e.g.

melatonin, cortisol), but also physical activity (PA), with the last one receiving a lot

of attention in recent research on chronobiology and chronotherapeutic healthcare.

Measuring the CTS with PA relies on the fact that there is increased movement

during wake periods and reduced movement during sleep periods, and that it can be

easily and objectively measured from wearable computing devices (e.g. accelerom-

eters) in a non-invasive way under normal living conditions. The reliability and

validity of this approach have been established in numerous studies, see, e.g. Jean-

Louis et al. [1996] and Hofstra and de Weerd [2008]. However, extracting clinically

relevant and interpretable summaries from high volume and complex PA data for

the purpose of long-term monitoring and assessing the circadian rhythmicity of an

individual is a challenging task. The most widely used summary statistics, which

attempt to evaluate the function of an individual’s CTS from different perspectives,

are often open to different suggestions for estimators and, moreover, their uncertain-

ties, which are important information for medical decisions, are often challenging or

impossible to estimate. For instance, to calculate the dichotomy index I < O used

in the oncological literature [Minors et al., 1996], which measures the proportion of

epochs during time in bed when activity is lower than the median activity during

time out of bed, we usually need to subjectively determine the sleep-period time for

the target subject.

More sophisticated statistical approaches have been used to develop more

insights from PA data. Functional and smoothing based approaches allow for ex-

tracting further parameters of interest and direct modelling of the effects of external

covariates on PA [Xiao et al., 2015; Morris et al., 2006]. However, these methods

usually don’t provide explicit classification of activity levels/modes and struggle

to capture stochastic and abrupt transitions in activity levels (e.g. from inactive

to active states; see Huang et al. [2018] for further discussion). Here, HMMs of-

fer an attractive probabilistic modelling framework as they naturally account for

the temporal dependence and variability in the data by employing a discrete la-
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tent variable, distributed according to a Markov chain. Using simulated data sets,

Witowski et al. [2014] established the advantages of the HMM method over tra-

ditional threshold-based methods in terms of activity classification. Huang et al.

[2018] investigated the PA using a nonhomogeneous HMM and proposed a novel

model-derived circadian parameter for monitoring and quantifying a subject’s circa-

dian rhythm. de Chaumaray et al. [2020] use a mixed HMM with discrete random

effects for characterizing the activity pattern of a subject in a longitudinal setting.

A potential limitation with the current HMM based methods is that they usually

rely on parametric assumptions of the distribution of the PA data which may not

always be unproblematic.

While modelling the sleep-wake cycles is of important interest, the sleep it-

self, as a vital physiological process that recharges our energy and rejuvenates the

body, deserves additional attention. Our current knowledge indicates that sleep

homeostat impacts the sleep-wake cycle together with the circadian clock, and sleep

is strongly affecting a person’s physical and mental well-being and plays a crucial

role in adverse health conditions such as, for example, diabetes, cardiovascular dis-

ease and depression [Foster, 2020]. Monitoring sleep could be essential to gaining

insight into a subject’s circadian rhythm and health status. Conventionally, sleep

is monitored and evaluated under laboratory settings using the polysomnography

(PSG), a multi-sensor approach that collects multiple physiological signals with re-

gards to brain activity, muscle and eye movements, respiratory and cardiac activity,

from which the sleep stage in each epoch (typically in 30-s intervals) of the moni-

toring period can be evaluated [Berry et al., 2012]. Whilst being considered as the

gold standard for measuring sleep, it is of very limited use to investigate daily sleep

rhythms in practice due to its high cost, cumbersomeness and intrusiveness of mea-

surement settings. Instead, actigraphy has become increasingly popular in (large

scale) sleep research for similar reasons stated above and received extensive valida-

tion against the PSG [Ancoli-Israel et al., 2003, 2015; Quante et al., 2018]. We note

however that statistical methods for analysing accelerometer data, such as func-

tional data analysis and HMM based methods, mainly focused on studying physical

activity and/or the sleep-wake cycle of a subject, with little attention being paid to

analysing the sleep periods. We noticed the works of Li et al. [2020a] and Lüdtke

et al. [2021] who developed parametric HMMs for sleep analysis and demonstrate

the superiority of HMM methods over alternative state-of-the-art algorithms when

restricting to 2-stage sleep/wake identification. In another work, Winnebeck et al.

[2018] demonstrated the potential of accelerometer recordings taken at the wrist for

extracting more detailed patterns of sleep physiology by analyzing the ”Locomotor
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Inactivity During Sleep” (LIDS), a simple ad-hoc inverse transformation of the PA

which enhances non-movement during sleep. They found that LIDS oscillate in

phase (low activity) with markers of ”deeper” sleep, and out of phase (high activ-

ity) with markers of ”lighter” sleep as well as rapid eye movement (REM) sleep,

and they were able to establish some systematic relationships between PSG sleep

parameters and LIDS-derived parameters. While their findings are very promising,

their approach did not allow them to systematically quantify the sleep periods or

analyse the stochastic dynamics of the sleep process on an individual basis.

Here, we focus on retrospectively analyzing the PA data collected over multi-

ple days/weeks with a two-fold objective: (i) characterize the sleep-wake patterns in

the entire activity data set and (ii) analyze overnight sleep patterns of an individual.

We would like to have a probabilistic approach that jointly achieves these two tasks

in a principled and coherent manner, with as little human intervention into tuning

the estimation process as possible. To this end, we develop a hierarchical conditional

hidden Markov modelling approach building on the spline-based inference method

for HMMs proposed in chapter 2. More specifically, we assume that sleep periods

are contained within the state (State 1) that is associated with the lowest activity

level of a HMM on the entire PA data (main-HMM). We then insert a second or

”sub-HMM” which is invoked conditional on State 1 of the main-HMM and aims

at refining the activity behaviour within State 1. Both main and sub models are

specified nonparametrically by using spline-based emission densities. The strength

of our approach comparing to existing methods will be that, firstly, it gives a very

flexible stochastic model from which we can systematically estimate many impor-

tant parameters that characterize an individual’s circadian rhythm, such as duration

and center of rest times, amount and regularity of activity etc. (see Huang et al.

[2018]) and, secondly, it allows us to model the individual stochastic dynamics of the

rest state activity which does not appear strictly periodic as seen on the aggregate

level in Winnebeck et al. [2018]. By conditioning on the rest state alone there is no

need to apply any ad-hoc transformation to the data and also our likelihood for the

sub-model will not be influenced by the relatively large values and variability of the

activity observed during the day. Another feature of our method is that the whole

algorithm operates in an unsupervised manner, i.e. it does not require PSG labels

for learning the model, which is desirable in applied settings as these labels are very

costly or even impossible to acquire [Li et al., 2020a].

Note that the method developed here can be applied in much more general

settings where we may be interested in analyzing specific state(s) of an HMM at a

finer level with separate hidden Markov process(es), achieving inferences that are
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otherwise not possible with a single HMM. Also, our conditional HMM approach

should not be confused with what is called the hierarchical HMM (HHMM) [Fine

et al., 1998], which is originally developed in the field of machine learning for pat-

tern recognition tasks and has later been used in different contexts such as animal

movement modelling [Leos-Barajas et al., 2017; Adam et al., 2019a; Sacchi and

Swallow, 2021]. The fundamental difference is that in the HHMM, a joint model is

formulated for multiple observed processes at different temporal resolutions, each of

which is modelled via a hidden Markov process and the process at the coarser level

determines the onset of a specific finer level process for each epoch (see Adam et al.

[2019a] for more details). In contrast, our method by default operates on a single

time scale and our focus is to refine specific states of an HMM. The term HHMM

may also refers to the scenario where a hierarchical prior model is employed on top

of multiple HMMs (see e.g. Chen et al. [2016]), which is different to our context as

well.

This chapter is organised as follows. Section 3.2 gives a brief introduction

and description of the sleep dataset from the Multi-Ethnic Study of Atherosclerosis

(MESA) and the cohort used in our analysis. Section 3.3 introduces our proposed

conditional HMM modelling approach in a general set-up and outlines the associated

Bayesian inference procedure. In section 3.4 we apply our method to the selected

MESA cohort and present relevant results and we close this chapter with a brief

discussion.

3.2 MESA data description

MESA is a multisite collaborative longitudinal study aimed at investigating the

progression of subclinical to clinical cardiovascular disease [Chen et al., 2015; Zhang

et al., 2018]. In the initial stage (2000-2002), a total of 6814 individuals free of

clinically apparent cardiovascular diseases, aged from 45 to 84 and with diverse

ethnic backgrounds, participated in the study. Between 2010-2012 about one third

of the participants were enrolled in the MESA sleep study (MESA Exam 5) where

each participant wore an actigraph (Actiwatch Spectrum) on the non-dominant

wrist for one week and underwent a full unattended home-based PSG session for

one night. In this sleep study the activity is measured in each 30-s epoch by counting

the number of times movement intensity crosses a threshold and its value reflects

the overall activity intensity in that epoch. Figure 3.1 gives an example of the raw

PA data collected for an example subject over the monitoring period of 7 days. In

addition, wake and four sleep stages, namely N1, N2, N3 and REM, are identified for
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every 30-s epoch from PSG recordings for one night using the criteria set out by the

American Academy of Sleep Medicine. Among sleep stages, N1 and N3 correspond

to light and deep sleep, respectively, while N2 is the intermediate stage. N1, N2 and

N3 are collectively referred to as the non-REM stages of sleep [Berry et al., 2012].

The REM stage is associated with dreaming and is physiologically very different

from the other stages of sleep [Stein and Pu, 2012].

Figure 3.1: Example of raw PA data (MESA subject 2243). Activity counts are
recorded per 30-s over 7 days.

In our analysis we considered a sub-cohort of 44 subjects, which are ran-

domly selected from the overall cohort conditioned on having an equal number of

males and females, a spread of age covering a span from 55 to 82 years, and top

quality scores for both PSG and PA data, i.e. excellent or outstanding actigraphy

quality (scored as 6 or 7) and outstanding PSG quality (scored as 7). More de-

tails including the demographic characteristics of the selected subjects are shown in

Table 3.1. Note that most subjects in our cohort do not have sleep related medi-

cal conditions according to their self reports. Table 3.2 gives a summary of some

parameters related to the circadian rhythm and sleep for our cohort. All quanti-

ties are obtained from the MESA database except for the dichotomy I < O and

rhythm indices, which are parameters associated with the rest-activity rhythm and

are computed based on the actimetry data using the methods developed in Huang

et al. [2018]. The chronotype score is a summary score based on the modified

Horne-Ostberg Morningness-Eveningness Questionnaire (MEQ) which reflects the

sleep-wake behaviour of an individual [Horne and Östberg, 1976]. A higher value

indicates a stronger tendency towards the morning type. The proportions of the
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sleep stages are evaluated based on the PSG data, conditional on the PSG-derived

sleep period (from sleep onset to offset). We refer to the online MESA website 1 for

more information on these variables. It is worth noting the big differences in the

duration of the sleep stages during the sleep period (identified based on PSG) in

that stage N2 accounts on average for nearly half of an individual’s total sleep time,

while stages N1 and N3 on average only account for about 10% of the sleep time

(see Table 3.2 and Figure 3.2). Note that the PSG also recorded wake epochs that

occurred during the PSG session, which can happen, for instance, during periods of

sleep interruptions. We will refer to these as intermittent wake (IW). Some results

on the relationships between activity and PSG-derived sleep stages are shown in

the bottom panel of Figure 3.2. We can see that, as expected, the mean PA levels

conditional on the PSG stages tend to decrease with increasing sleep depth, with

the deep sleep stage N3 having the overall lowest activity level. But on the other

hand, the empirical distributions of PA conditional on each PSG stage (including

IW) are all highly skewed to the right, indicating that all stages spent a high pro-

portion of time in very low activity levels, including zero counts. For instance, as

shown in bottom right panel of Figure 3.2, the proportions of zero activity counts

are high for all sleep and also the IW stages. Therefore it can be hypothesised that

PA alone may be insufficient for distinguishing between all four sleep stages, which

is in agreement with findings from previous studies [Zhai et al., 2020; Boe et al.,

2019]. However, we can identify a general trend in terms of averaged PA levels

for deeper and lighter sleep (and wake) as found in Winnebeck et al. [2018]. The

temporal dependence in the sleep stages is moderate to high, with the intermittent

wake and N2 states being the most stable stages followed by REM. This can be

derived from the empirical transition probabilities of the four sleep and IW stages

for the PSG data of all individuals (details not shown here). We also investigated

the correlations between sex/age and the circadian and sleep parameters listed in

Table 3.2, and the results are shown in Table 3.3. Regarding sleep, we found that

compared to males, females tend to have a higher sleep duration (p=0.005), larger

proportions of N3 (p=0.044) and REM sleep (p=0.022) and a smaller proportion

of intermittent wake (p=0.041). We did not find significant differences in gender

between the circadian-related parameters (i.e. the chronotype score, the dichotomy

I < O and rhythm indices) as the p-values are all greater than 0.5 (see Table 3.3), in-

dicating that females and males in our cohort may have roughly similar rest-activity

rhythms. In terms of age, elderly subjects tend to have weaker circadian rhythms in

activity, i.e., they have smaller values in the dichotomy I < O and rhythm indices

1https://sleepdata.org/datasets/mesa
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Table 3.1: Characteristics of the MESA cohort
Variables Subjects (D = 44)
Gender, counts (proportion)
Male 22 (50%)
Female 22 (50%)
Race/ethnicity, counts (proportion)
White, Caucasian 19 (43.2%)
Chinese American 5 (11.4%)
Black, African-American 10 (22.7%)
Hispanic 10 (22.7%)
Sleep-related conditions, counts (proportion)
Sleep apnea 2 (4.5%)
Insomnia 1 (2.3%)
Restless legs syndrome 1 (2.3%)
Age, mean (SD) 67.5 (8.7)

Table 3.2: Circadian and sleep statistics for the MESA cohort. For each subject, the
choronotype score is obtained from their sleep questionnaire, the dichotomy I < O
and rhythm indices are computed from the PA data using the method of Huang
et al. [2018] and the remaining sleep related parameters are computed from the
PSG data.

Variables mean ± SD
Chronotype score 17.81 ± 3.91
Dichotomy index I < O 98.7% ± 1.4
Rhythm index 0.687 ± 0.129
Sleep efficiency 79.3% ± 11.6
Total sleep time (TST) 380.4 min ± 69.5
Wake after sleep onset (WASO) 75.3 min ± 58.7
Wake proportion 16.1% ± 11.2
N1 proportion 11.1% ± 6.3
N2 proportion 45.6% ± 10.3
N3 proportion 11.0% ± 7.0
REM proportion 16.4% ± 5.8

(both significant at 10% level), which is consistent with the fact that elderly people

have lower sleep efficiency (p=0.032), a larger percentage of IW (p=0.01) and light

sleep N1 (p=0.031) during their sleep. The chronotype is also age-related to some

extent where elderly people are more likely to be morning-type (p=0.054).

3.3 The conditional HMM methodology

In this section we introduce the proposed conditional HMM approach under a general

set-up and then present the sampling scheme for performing Bayesian inference of

the resulting model. Additional details regarding the MCMC algorithm are provided
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Table 3.3: Gender and age effects in the circadian and sleep parameters. t represents
the t statistics in the Welch two-sample t-test (between female and male) and r
denotes the Spearman correlation coefficient (corresponding p-values are indicated
in the bracket). Significant effects (at 10% level) are highlighted in red.

Variables Gender (Female/Male) Age
Chronotype score t = −0.07 (0.944) r = 0.296 (0.054)
Dichotomy index I < O t = 0.569 (0.572) r = −0.448 (0.002)
Rhythm index t = 0.047 (0.963) r = −0.264 (0.084)
Sleep efficiency t = 1.62 (0.113) r = −0.324 (0.032)
Total sleep time (TST) t = 2.98 (0.005) r=−0.244 (0.111)
Wake after sleep onset (WASO) t = −1.62 (0.114) r = 0.358 (0.017)
Wake proportion t = −2.12 (0.041) r = 0.383 (0.01)
N1 proportion t = −0.728 (0.471) r = 0.326 (0.031)
N2 proportion t = 0.069 (0.945) r = −0.298 (0.049)
N3 proportion t = 2.08 (0.044) r = −0.169 (0.273)
REM proportion t = 2.37 (0.022) r = −0.397 (0.008)

in the appendix.

3.3.1 The Bayesian model

Let y(n) = (y1, . . . , yn) be the observed data of interest, here activity counts. The

main model employs a N -state spline-based HMM introduced in Chapter 2 of the

thesis for characterizing the general pattern of the data at a relatively coarse level

which takes the whole series into account, where the cardinality N may be estimated

via the marginal likelihood based approach as described in chapter 2. Details for

setting up the main-HMM are omitted here (see Chapter 2). Here we shall focus on

the sub-HMM, which is introduced for characterizing a specific state i of the main

model in more detail by assuming NS sub-states of state i (without loss of generality,

we set i = 1 and for clarity omit this subscript in what follows). We assume that

f(θS |y(n)) =

∫
f(θS |x(n),y(n))f(x(n)|y(n))dx(n), (3.1)

where θS is the parameter set for a NS-state sub-HMM (with hidden state variables

integrated out), x(n) is the hidden state sequence associated with the main-HMM

and

f(θS |x(n),y(n)) ∝ f(θS)f(y(n)|θS ,x(n)). (3.2)

We refer to the second term in (3.2) as the ”conditional likelihood” for the sub-

HMM. We further assume that by conditioning on state 1 of the main-HMM, only

observations that are associated with {t : xt = 1} will contribute to this likelihood,
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Figure 3.2: Characteristics of sleep and IW stages during PSG sessions for 44 sub-
jects. Top panel shows the proportions of the time spent in each stage; bottom left
panel shows mean PA levels conditional on each PSG stage and bottom right panel
shows the percentage of zero activity in each stage. All panels use the boxplots,
where the dot superimposed represents the corresponding value computed for each
subject.

whereas the remaining observations {yt : xt ̸= 1} are treated as ”missing data”. The

advantage of such a conditioning concept is that the resulting conditional likelihood

can be easily handled in the HMM framework. More specifically, let (t1, . . . , tT1) be

the collection of time points in ascending order such that xtj = 1, j = 1, . . . , T1.
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Then, using the notation of chapter 2, we have

f(y(n)|θS ,x(n)) = f(yt1 , . . . , ytT1 |θ
S)

=
∑

xt1 ,...,xtT1

f(yt1 , . . . , ytT1 , xt1 , . . . , xtT1 |θ
S)

= δP (y1)ΓP (y2) · · ·ΓP (yn)1

, (3.3)

where P (yt) = INS
, the identity matrix of dimension NS , for t ̸= t1, . . . , tT1 . Note

that the last row of (3.3) takes exactly the same form as a marginal likelihood of a

standard HMM and thus the standard forward algorithm applies for efficient evalua-

tion of the conditional likelihood [Zucchini et al., 2016]. To facilitate illustrating the

distinctive roles that the main and sub-HMMs play, let’s consider a specific mod-

elling context as follows. Supposing that the overall trajectory of a physiological

process is well described by a 3-state HMM and that the sub-process corresponding

to a specific state, say state 1 (in our application this state is related to the sleep

process), is of particular interest where we would like to analyze the sub-dynamics

associated with this process with 2 sub-states. In this context, the main HMM would

have 3 states, aiming at capturing the main patterns for the overall trajectory while

identifying the observations that are relevant to the sub-HMM (i.e. observations al-

located to state 1) based on the posterior samples of the state sequence of the main

HMM. A 2-state sub-HMM is introduced focusing explicitly on the observations re-

lated to state 1 by conditioning on the underlying state process of the main HMM.

In particular, given a realisation of the state process, the conditional likelihood de-

scribed in (3.3) effectively removes the influence of irrelevant observations (assigned

to states 2 or 3) on the sub-HMM while automatically respecting the temporal pat-

terns of the observations that are of interest (bypass the issue of manually handling

the small (e.g. interruptions during sleep) or large (e.g. wake period during the

day) time gaps between these observations). To appropriately take the uncertainty

of the state classification into account, we further integrated out the state sequence

to obtain the marginal posterior for the sub model as defined in (3.1), on which

our inference for the sub-HMM will be based. It is important to note that fitting

the main HMM with 4 states will not necessarily split state 1 of the original model

into 2 states as desired, whereas in our framework we have direct control over this

due to the aforementioned conditioning set up. Note also that while the marginal

distribution of the data associated with the sub-HMM (defined through a mixture

of the emission densities for the sub-states) is expected to be similar to the emission

distribution of state 1, there is no explicit analytical relationship between the two
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as the former and latter are inferred based on partial and full data, respectively.

When modelling accelerometer data, a large number of zeros are typically

observed during a rest or sleep state [Ae Lee and Gill, 2018], causing problems to

the estimation of continuous valued emission densities (irrespective of whether they

are parametric or spline-based). To address this issue we assume a zero inflation of

the spline-based emission distributions at both HMM levels as follows

fxt(yt) = wxt,1δ0 + wxt,2f
B
xt

(yt),

where xt indicates the underlying state at time t, wxt,1 represents the state-specific

zero weight such that 0 ≤ wxt,1 ≤ 1 and wxt,1 + wxt,2 = 1, δ0 is the Dirac delta

distribution and fB
xt

(yt) is a spline-based emission density as defined in chapter 2.

Following Gassiat et al. [2016a] we can establish identifiability of the resulting HMM

provided that at most one wxt,1 is equal to one and that {δ0, fB
1 , . . . , fB

N } are linearly

independent. In our analysis these conditions are always satisfied. The proposed

emission model can easily be adapted and used in wider applications where the

data may be modelled as a mixture between a point mass (or multiple point passes,

if necessary) and a continuous distribution. The priors for parameters involved

in the sub-HMM are specified as follows. For the knot configuration and spline

coefficients, we employ the same priors as in chapter 2. Note that there is no

conjugate prior for Γ for the sub-HMM as the associated hidden state process is

not simulated. Following the reparametrization scheme used in chapter 2, here we

reparametrize each row of the transition probability matrix as γi,j = γ̃i,j/
∑N

l=1 γ̃i,l,

γ̃i,j > 0, and place a vague gamma prior on the γ̃i,j , i.e. f(γ̃i,j)=gamma(1, 1), which

gives a Dir(1, . . . , 1) distribution on (γi,1, . . . , γi,N ). Similarly, we reparameterize

the weights as wi,j = w̃i,j/(w̃i,1 + w̃i,2), w̃i,j > 0, i = 1, . . . NS , j = 1, 2. We choose

a vague gamma prior on the w̃i,j , i.e. f(w̃i,j)=gamma(1, 1), leading to a Dir(1, 1)

distribution on (wi,1, wi,2). Using the notation of chapter 2, we assume the following

factorization of the joint distribution in (3.2) with all the reparametrizations

f(θ̃S |y(n),x(n)) ∝ f(ζ)f(K)f(W̃ )f(Γ̃)f(RK |K)f(ÃK |K, ζ)f(y(n)|θS ,x(n)) (3.4)

where the reparamatrized parameter vector θ̃S = (ζ,K, W̃ , Γ̃, RK , ÃK), Γ̃ =

(γ̃i,j)i,j=1,...,NS
, W̃ = (w̃i,k)i=1,...,NS ; k=1,2, and the w̃i,k and γ̃i,j are assumed to be

a-priori independent.
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3.3.2 Markov chain Monte Carlo methodology

Posterior inference for the main and sub-HMMs can be achieved by sequentially

sampling from f(θ,x(n)|y(n)) and f(θS |y(n)), where θ represent the parameter set

of the main-HMM. The MCMC methodology described in chapter 2 (Algorithm 5)

can be used to simulate from f(θ|y(n)). In cases where the emission are specified as a

mixture of point masses and splines (e.g. zero-inflated emissions), an additional MH

step is needed to update the state-specific weights for the point mass and the details

for this update are given in the appendix. For the sub-HMM, we simulate from

f(θS |y(n)) according to (3.1) by first generating samples from f(x(n)|y(n)), which

are obtained as a by-product from the posterior simulation for the main-HMM.

Conditional on each realisation of x(n), we then simulate from f(θS |x(n),y(n)) by

drawing a sample for θS from the joint density defined in (3.4) using essentially the

same sampling scheme as used for the main-HMM, where the RJMCMC updates

are run for several iterations and the last sample is kept. Tuning of the MH scaling

parameters was achieved via a separate pilot run using the same adaptive procedure

as described in chapter 2, where the conditioning variable x(n) may be fixed at a spe-

cific realisation from its posterior distribution or the local decoding result obtained

from the simulation output for the main-HMM. Posterior simulation regarding the

hidden state process associated with the sub-HMM for a given segment(s) of the

time series can be achieved by running a standard FFBS algorithm, conditional on

each simulated parameter set θS . Note that data points that were assigned to the

higher active states (states 2 or 3) by the local decoding result of the main-HMM

are treated as ”missing” when implementing the forward procedure. Mathematically

this corresponds to replacing the emission densities by the constant of one for the

associated time points. In running the backward simulation procedure, the whole

sub-state sequence associated with the given series will be simulated. However, only

sub-states that correspond to the ”non-missing” data points (assigned by state 1 of

the main-HMM) are of interest.

3.4 Application to the MESA cohort

In this section we present our results for analysing the MESA data set introduced

in section 3.2. For the main-HMM, the number of states N is fixed at 3 as in Huang

et al. [2018] which is found to achieve a good balance between model complexity and

interpretability for all individuals in the cohort, with the lowest activity state (State

1) corresponding to rest/sleep periods that mostly occurred during night-time. To

save computational time inference for the main-HMM is based on the transformed

70



PA data obtained by first averaging PA over 5-min windows as in Huang et al. [2018]

(this resolution was found to be useful in identifying sleep-wake patterns), followed

by a log transformation as used in Li et al. [2020a], i.e. log(1 + PA) to handle high

variability observed in the MESA data. For the emission model we put a second

point mass at log(1.1) (the second smallest possible value for 5-min averaged PA

after the log-transformation) in addition to the point mass on zero to handle its

high occurrence. For the sub-HMM we assume 2 sub-states, 1.1 and 1.2, of State 1

to potentially capture the ultradian oscillations between higher and lower intensity

of movement during sleep such as identified by Winnebeck et al. [2018] who alluded

to the possibility that these oscillations might be due to the approximately 120-min

periodic transitions between the Non-REM and REM stages of sleep. Inference for

the sub-HMM is based on the raw 30-s PA counts rather than the 5-min aggregates

to better focus on the detail of activity during sleep, and we introduced point masses

at the first four lowest values including 0 in specifying the emissions for the sub-

states. Throughout we use two example subjects from the cohort (subjects 921

and 3439), both free from diagnosed sleep related diseases, to facilitate illustrating

our proposed method. Some additional estimation results are postponed to the

appendix.

3.4.1 Results for the main-HMM

Our results for the main-HMM was based on 25k iterations of the proposed algo-

rithm, of which the first 25k were discarded as burn-in. Figures 3.3 and 3.4 (top

panel) depict the 5-min averaged PA data along with the locally decoded states

(indicated by colors) and, in the panel underneath, the cumulative probabilities of

the three states at each time point conditioned on the set of all observations (i.e.

P (xt ≤ i|θ,y(n)); i = 1, 2, 3) are plotted for subjects 921 and 3439, respectively. It

is apparent that for both subjects, State 1 (in blue) of the fitted main-HMMs is

characterized by relatively long periods of immobility which typically occurred at

night time. Other states (in pink and red shades) usually correspond to day-time

activities of varying intensity which will depend on the subject’s lifestyle, but also to

potential interruptions of sleep such as seen for subject 3439. Thus the main-HMM

suggests that in comparison to subject 3439, subject 921 appears to have an overall

more active lifestyle and a more regular sleep-wake routine with no significant sleep

disruptions during the monitoring period, whereas subject 3439 seems to suffer from

a more disturbed circadian rhythm. Our visual impressions are backed by the lower

dichotomy I < O and rhythm indices for subject 3439, which are 96.4% and 0.553,

respectively, than those for subject 921, which are 99.4% and 0.774. They are also in
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line with their sleep questionnaires where subject 3439 reported to have a generally

restless sleep and sometimes have trouble falling asleep. To obtain more evidence in

support of our interpretations on the states, we compare our sleep (State 1)/wake

(states 2 and 3) decoding results with the corresponding PSG-derived sleep/wake

labels (available during the first night) in an epoch-by-epoch manner, where the

PSG stages in each 5-min epoch are summarized by the most frequent stage of

the corresponding ten 30-s bins in the raw PSG labels. The sleep/wake classifi-

cation performance of the main-HMM in terms of overall accuracy, sensitivity for

sleep (proportion of true sleep epochs identified correctly) and specificity for wake

(proportion of true wake epochs identified correctly) are 88.2%, 100%, 70.7% and

89.1%, 93.3%, 79.5% for subjects 921 and 3439, respectively, indicating reasonably

good agreement for both subjects. The relatively lower accuracy for detecting wake

is understandable as there are usually the in-bed time before falling asleep or gentle

sleep interruptions, which are characterized by low/no activity (see also bottom right

panel of Figure 3.2). Our main-HMM also provides useful quantitative summaries

of an individual’s rest-activity profile. Our posterior summaries for the entries of

the transition probability matrix for subjects 921 and 3439 are

Γ̂ =

 0.98(0.006) 0.009(0.005) 0.011(0.005)

0.012(0.006) 0.914(0.014) 0.074(0.014)

0.008(0.004) 0.077(0.013) 0.915(0.014)

 ,

and

Γ̂ =

0.913(0.016) 0.08(0.016) 0.006(0.004)

0.088(0.017) 0.862(0.019) 0.05(0.01)

0.004(0.004) 0.087(0.016) 0.908(0.016)

 ,

respectively, where the point estimates are the posterior means and the associated

standard deviations are shown in brackets. A particular transition of interest is

γ̂1,1 where low values may be indicative of a higher tendency of transiting from

sleep to wake, and thus a more interrupted sleep and a more disrupted circadian

rhythm [Huang et al., 2018]. We can see that as expected, subject 3439 has a

lower value for γ̂1,1. The time spent at the three different activity levels can be

estimated according to the stationary distribution associated with the estimated

transition matrix, which are (0.328, 0.336, 0.336) and (0.392, 0.375, 0.232) for states

(1, 2, 3) for subjects 921 and 3439, respectively. We can see that subject 3439 tends

to have a higher proportion of time spent in states of lower activity levels and thus

a more sedentary lifestyle, although noting that the interpretations of the active

states (states 2 and 3) may not always be directly comparable across subjects due
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to the individualized nature of the model [de Chaumaray et al., 2020]. We can

nevertheless always compare activity level associated with each state based on the

estimated emission distributions for each subject.

We now summarize some of our estimation results for the entire cohort of 44

subjects. Figure 3.5 shows the performance of our main-HMM in terms of sleep/wake

classification with the PSG labels as reference. We see an overall high sensitivity

for sleep, i.e. almost all sleep epochs are correctly decoded as State 1, with a

mean percentage of 98.5%. By contrast, the specificity for wake is generally lower

(with a mean of 56.9%) and exhibits high inter-subject variability, ranging from

10% to 100%. This can be understood from the fact that small or no activity is

not synonymous to sleep. Revealed by a Spearman correlation analysis, we found

that the specificity decreases with wake after sleep onset (WASO) (p=0.068) and

the proportions of IW (p=0.086) and N1 (p=0.085) during sleep, indicating that

subjects with a lighter and more disturbed sleep are more likely to have undetected

wake epochs in the main-HMM. The overall classification accuracy has a mean of

86% and a standard deviation of 9.8%. Altogether, our main-HMM achieves the

state-of-the-art performance in comparison to related HMM-based studies in terms

of sleep/wake identification [Li et al., 2020a; Lüdtke et al., 2021]. To extract further

understanding of the potentially useful parameter estimate γ1,1, we assessed its

association with other circadian and sleep parameters discussed above using the

Spearman correlation. Significant correlations were found between γ1,1 and the

dichotomy (r = 0.33, p = 0.027) and rhythm indices (r = 0.64, p < 0.01), both of

which are in agreement with the findings of Huang et al. [2018] and therefore suggest

its potential in providing insights into an individual’s circadian rhythm. However,

we did not detect significant and interpretable associations between γ1,1 and the

PSG-derived sleep related parameters (as defined in Table 3.2), which motivates the

need of a sub-HMM as will be discussed below. We found a significant age effect in

γ1,1 that is consistent with our previous findings, in that elderly people tend to have

a lower value of γ1,1, while there was no discernible gender effect within the cohort.

3.4.2 Results for the sub-HMM

For inference in the sub-HMM, our proposed algorithm was run for 25k updates

(based on the last 25k posterior samples of x(n) obtained from the main-HMM

analysis), 10k of which are discarded as burn-in. The bottom panel of Figures 3.3

and 3.4 show the locally decoded time series of the 30-s PA data during the PSG

monitoring period along with the cumulative probability of the two sub-states at

each time point for subjects 921 and 3439, respectively. The graphs clearly show
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Figure 3.3: Results for subject 921. Top row upper panel: 5-min averaged PA data
over a monitoring period of 7 days, where colour indicates the locally decoded state
at each time under the estimated main-HMM; top row lower panel: the cumulative
posterior probability of the state at each time under the estimated main-HMM (i.e.
P (xt ≤ i|θ,y(n)); i = 1, 2, 3). The Bottom row displays the 30-s PA data during the
PSG monitoring period of 1 night, with colours indicating the locally decoded state
at each time (top) and the corresponding cumulative probability of each sub-state
at each time (bottom) under the estimated sub-HMM for sleep bout identified by
the main-HMM (i.e. State 1). Data in red are those that are assigned to more active
states outside state 1 by the local decoding result for the main-HMM.

that for both subjects the transitions between and the times spent in the sub-states

are subject to stochasticity. State 1.1 is characterized by a large probability of

observing zero, with posterior mean of zero weight ŵ1.1,1 of 0.913 and 0.962 for

subjects 921 and 3439, while State 1.2 corresponds to a moderately higher level of

activity where the posterior mean ŵ1.2,1 for the two subjects are 0.36 and 0.474,
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Figure 3.4: Results for subject 3439. The settings are the same as in Figure 3.3.

respectively. To obtain a clearer interpretation of the two sub-states, for each sub-

ject we compute the proportion of the five PSG stages, namely wake, N1, N2,

N3 and REM, conditional on each sub-state, and the results are shown in Table

3.4. We can see that state 1.1 is highly mixed with respect to all sleep stages

including wake, which is unsurprising as this sub-state is dominated by zero ac-

tivity, which in turn accounts for a moderate to high proportion in all five stages.

This can also be seen by looking at the percentage of the PSG stages to be de-

coded as State 1.1, which are (22.6%, 74.4%, 94.8%, 100%, 91.8%) for subject 921

and (26%, 67.4%, 77%, 100%, 67.9%) for subject 3439 for (wake,N1,N2,N3,REM).

On the other hand, State 1.2 has a relatively clearer tendency to be associated with

lighter sleep stages as well as disruptions into wake which were not identifiable by the

main-HMM. We therefore expect it to provide additional useful information regard-

ing the sleep quality of a subject that can not be extracted from the main-HMM.
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Figure 3.5: Boxplot showing sleep/wake classification performance of the main-
HMM in terms of the overall accuracy, sensitivity for sleep and specificity for wake.
The dot superimposed represents the corresponding value computed for each subject.

An analysis of the estimated parameters, in particular the transition probabilities

of the fitted sub-HMM will provide a systematic quantitative summary which could

be used, for example, to compare sleep behaviour between subjects. For subject

921, the posterior means (±1 standard deviation) of the diagonal entries of Γ are

γ̂1.1,1.1 = 0.961 (±0.01) and γ̂1.2,1.2 = 0.668 (±0.053), and those for subject 3439

are γ̂1.1,1.1 = 0.909 (±0.009) and γ̂1.2,1.2 = 0.733 (±0.046). The latter individual

has a lower value of γ̂1.1,1.1 and higher value of γ̂1.2,1.2, meaning that the subject

has a higher probability of leaving state 1.1 and a larger expected staying time in

state 1.2 which may be associated with poorer sleep quality during the monitoring

period. Indeed, subject 3439 has a slightly lower sleep efficiency compared to the

other subject, which is 63.15% and 66.37%, respectively. Our results are also in ac-

cordance with what we see in table 3.5, which shows that subject 3439 spent a larger

proportion of sleep time in wake and N1 stages while having a lower proportion of

time in the deep and REM stages. The results of decoding and state probabilities

for the sub-HMM further allow us to investigate the variation within and between

courses of a sleep bout. For instance, it appears that subject 921 seems to experience

more interruptions and/or lighter sleep during the initial period of the sleep bout

(defined by state 1), whereas subject 3439 suffers from more frequent sleep interrup-

tions/transitions to lighter sleep throughout the night as we see a more fragmented

blue region in the state probability plot. These observations are in line with their

own reports in the sleep questionnaire and match reasonably well with the PSG

recordings. It is important to note that these are detailed patterns that allow us
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Table 3.4: Composition of the states of the sub-HMM with respect to PSG stages
Subject sub-state Wake N1 N2 N3 REM
Subject 921 1.1 0.151 0.091 0.576 0.039 0.142

1.2 0.516 0.198 0.198 0 0.088
Subject 3439 1.1 0.174 0.168 0.529 0.051 0.078

1.2 0.262 0.222 0.401 0 0.114

Table 3.5: Proportions of time spent in different PSG stages during sleep for the
example subjects

Subject Wake N1 N2 N3 REM
Subject 921 0.21 0.105 0.519 0.035 0.132
Subject 3439 0.369 0.143 0.394 0.03 0.066

to focus on studying rest or sleep periods which are not (fully) discernible from the

main-HMM. The hierarchical modelling approach by means of a conditional HMM

is also justified noting that an unconditional HMM with number of states fixed

to four is rarely likely to assign two sleep-related states as for most subjects the

higher values and variability of day-time activity will dominate the likelihood and

the assignment of states.

To further support our findings for the example subjects, we computed the

composition of the two sub-states with respect to the PSG stages for each subject

in the cohort (see Figure 3.6). It can be seen that in general state 1.1 is domi-

nated by the intermediate N2 stage, followed by REM, wake and N3 stages, with

the latter two accounting for similar proportions. State 1.2, by contrast, tends to

have a relatively higher proportion of wake, followed by N2, with the deep sleep

N3 occupying the least proportion. We can also see that, as expected, the rank-

ing observed in the bottom panel of Figure 3.6 is consistent with the ordering in

activity levels/percentage of zero PA as seen in Figure 3.2 (bottom panel), where

the percentages of state 1.1 decoding conditional on each PSG stage increase with

the sleep depth. Table 3.6 examines the correlations between the key parameters

of the sub-HMM, namely γ1.1,1.1, γ1.2,1.2, w1.1,1 and w1.2,1, and the circadian and

sleep parameters. It is interesting to note that γ1.2,1.2 is positively correlated with

WASO, wake and N1 proportions, while negatively correlated with REM propor-

tion, the dichotomy index and sleep efficiency. The zero weight for state 1.1, w1.1,1,

is significantly positively associated with the dichotomy index and REM proportion

and negatively associated with wake and N1 proportion, which are of opposite sign

to those for γ1.2,1.2. All these significant correlations are comprehensible and in line

with our previous findings. For γ1.1,1.1 and w1.2,1, however, no significant correlations

were found for this cohort. We also found an age effect on w1.1,1 with r = −0.396
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and a p-value of p = 0.008, which is consistent with elder people experiencing more

lighter sleep and sleep interruptions. We did not detect any significant gender effect

on the sub-HMM parameters.

Figure 3.6: Top panel: composition of the five PSG stages conditional on state 1.1
(left) and 1.2 (right); bottom panel: percentage of the PSG stages to be decoded as
state 1.1. All panels use the boxplots, where the dot superimposed represents the
corresponding value computed for each subject.

3.5 Discussion

In this chapter, we extend the spline-based nonparametric HMM introduced in chap-

ter 2 to develop a Bayesian conditional HMM modelling approach where a sub-HMM

(or multiple sub-HMMs) can be introduced within an overall HMM for more detailed

characterizations of the dynamics within states of the main model. We illustrate the

potential usefulness of the proposed method by analysing a cohort from the MESA

data set which has simultaneous recordings of the accelorometer and the PSG data.

The main novelty and advantage of our modelling approach lies in the hierarchi-
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Table 3.6: Spearman correlation between parameters of sub-HMM and circadian
and sleep parameters. P-values are indicated in brackets and significant correlations
(at 10% level) are highlighted in red.

Variables γ1.1,1.1 γ1.2,1.2 w1.1,1 w1.2,1

Chronotype score 0.031 (0.845) −0.202 (0.194) −0.056 (0.723) −0.127 (0.416)

Dichotomy index −0.173 (0.263) −0.287 (0.059) 0.395 (0.008) 0.123 (0.427)

Rhythm index 0.035 (0.82) −0.048 (0.758) −0.029 (0.852) −0.202 (0.189)

Sleep efficiency 0.042 (0.787) −0.255 (0.095) 0.169 (0.272) 0.019 (0.904)

TST −0.024 (0.875) 0.012 (0.936) 0.233 (0.128) 0.164 (0.287)

WASO 0.064 (0.679) 0.33 (0.028) −0.245 (0.108) 0.05 (0.749)

Wake proportion 0.061 (0.696) 0.295 (0.052) −0.267 (0.079) 0.029 (0.849)

N1 proportion 0.169 (0.274) 0.273 (0.073) −0.377 (0.012) −0.053 (0.733)

N2 proportion −0.133 (0.389) −0.222 (0.147) 0.097 (0.53) −0.093 (0.548)

N3 proportion 0.128 (0.408) −0.015 (0.925) 0.173 (0.261) 0.121 (0.434)

REM proportion −0.03 (0.848) −0.267 (0.079) 0.447 (0.002) −0.034 (0.827)

cal framework that allow us to analyse retrospectively the time-varying features of

a person’s sleep–wake cycle and quantify the sleep periods in a coherent and sys-

tematic way, and to model directly the PA during sleep which would otherwise be

problematic with a standard HMM as the emission distributions would be highly

positively skewed. What’s more, as supported by an analysis with the PSG data,

our method allow us to systematically quantify an individual’s stochastic dynamic

behaviour of transitions between, and sojourn times within, sub-states that may

be associated with deeper and lighter or interrupted sleep stages. We also found

interesting associations between parameters derived from the main and sub-HMMs

and key PSG parameters and circadian parameters. The method developed here is

thus of high interest to sleep and circadian biology research.

We recognize that there are still limitations with the current study. For in-

stance, the cohort we consider here is still relatively small in size, and our model only

considers a univariate time series (PA) and assumes a homogeneous Markov chain.

In future, it would be of interest to exploring the potential benefits of integrating

other sleep related biomarkers such as heart rate and skin temperature (e.g. by

considering multivariate emissions), and to incorporate the possible covariate infor-

mation (e.g. introducing a generalized linear model on the transition probabilities)

into our HMM-based modelling approach for a finer sleep stage analysis. Another

interesting perspective is considering a longitudinal extension of the current mod-

elling framework that jointly analyses the heterogeneity and homogeneity among
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subjects to allow for comparison between subjects and information pooling across

subjects when making predictions. However, developing computationally feasible

Bayesian inference methods for these tasks is non-trivial and is beyond the scope of

this chapter.

3.A Further details of the MCMC algorithm

In this section we give additional computational details for updating the zero weights

in the zero-inflated emission distributions. For cases where multiple point masses are

used (as in our MESA application) the scheme described here can be easily adjusted

in a similar fashion. More specifically, we update the reparametrized state-specific

zero weights w̃i,j , i = 1, . . . N , j = 1, 2, via a log-normal random walk

log(w̃
′
i,j) = log(w̃i,j) + ϕi,j ,

where ϕi,j ∼ N (0, τ2w). The acceptance probabilities of this move for the main and

sub-HMM are

min

(
1,

f(y(n),x(n)|θ′
)f(W̃

′
)

f(y(n),x(n)|θ)f(W̃ )

N∏
i=1

2∏
j=1

w̃
′
i,j

w̃i,j

)
and

min

(
1,

f(y(n)|x(n),θS′
)f(W̃

′
)

f(y(n)|x(n),θS)f(W̃ )

N∏
i=1

2∏
j=1

w̃
′
i,j

w̃i,j

)
,

respectively, where W̃
′

denotes the vector of proposed w̃
′
i,j and θ

′
and θS′

denote

the corresponding updated parameter set for the main and sub-HMM, respectively.

3.B Further details of the MESA application

In this section we present additional implementation details and estimation results

for applying the proposed conditional HMM approach on the example subjects. For

the main-HMM we have chosen a = 0.1, b = max(log(1 + PA)) + 3 and α = 0.65

(defined as in chapter 2). Figure 3.7 (left panel) displays the estimated emission

densities (on the positive domain) obtained by averaging over the emissions gener-

ated across MCMC iterations for subject 921 and 3439, respectively. The posterior

modal number of knots is 8 and 10 for subject 921 and 3439, respectively. The

posterior means for the state specific weights of the point masses at 0 (wi,1) and

log(1.1) (wi,2) are shown in table 3.7. For the sub-HMM we set a = 4.5, b = where

is the 30-s PA data corresponding to state 1 of the main-HMM and α = 0.65. The

80



Table 3.7: Posterior means for the state specific weights of the point masses at 0
(wi,1) and log(1.1) (wi,2)

Subject w1,1 w1,2 w2,1 w2,2 w3,1 w3,2

Subject 921 0.314 0.155 0.002 0.002 0.002 0.001
Subject 3439 0.317 0.133 0.009 0.012 0.003 0.002

estimated emission densities (on the positive domain) for the two subjects are dis-

played in the right panel of Figure 3.7. We can clearly see that these emissions are

highly skewed to the right.

Figure 3.7: Left panel: histogram of 5-min transformed PA data along with the
estimated emission densities (weighted according to their proportion in the station-
ary distribution of the estimated Markov chain) for the main-HMM; right panel:
estimated emission densities for the sub-HMM. The weights for the point masses
are not shown in the graph.
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Chapter 4

Bayesian inference for

nonparametric hidden Markov

models with hierarchical

Dirichlet process priors

4.1 Introduction

Bayesian nonparametric (BNP) models are playing an increasingly important role

in modern statistical learning due to their great representation power and mod-

elling flexibility, and also the development of relatively efficient learning algorithms.

Equipped with an infinite dimensional parameter space, such models allow the so-

phistication of a stochastic system to scale automatically with the complexity of the

data in a Bayesian framework, eliminating the need of performing tedious model

selection. We refer to Xuan et al. [2019] for a state-of-the-art review of different

variants and extensions of the BNP models and their applications. In this chapter,

our interests lie in the use of an important class of BNP models, namely the hi-

erarchical Dirichlet process (HDP) [Teh et al., 2006], for constructing multivariate

hidden Markov models (HMM) that permit flexible emission distributions and a

potentially unbounded number of hidden states. HDP has been successfully used

to define nonparametric priors in probabilistic graphical models for a wide range of

modelling tasks. For instance, it is used in mixture models for learning the latent

cluster structures among groups of data [Sohn et al., 2009; Savage et al., 2010], and

in HMMs and partially observable Markov decision processes, for automatic learn-

ing of the number of hidden states as well as the corresponding transition dynamics

82



[Hines et al., 2015; Doshi-Velez et al., 2013]. Here, by exploiting the strengths of the

HDP and a suitable integration with HMMs, we will develop a new Bayesian hid-

den Markov modelling framework that generalize existing nonparametric Bayesian

HMMs to offer greater modelling flexibility.

As discussed in earlier chapters, in many scenarios choosing appropriate emis-

sion distributions for an HMM is important yet challenging. This may particularly

be the case for multivariate HMMs where the observed variable is multi-dimensional

(we restrict our focus on the continuous case here). A convenient and widely used

choice in the parametric multivariate setting is the multivariate normal distribution

[Phillips et al., 2015; Maruotti et al., 2017]. Alternatively, conditional independence

of the observed variables given the underlying state is often assumed and thus the

joint emission distributions can be specified based on the corresponding marginal

distributions [Choo-Wosoba et al., 2020; DeRuiter et al., 2017]. Unsurprisingly, these

modeling assumptions can be overly simplistic and inadequate in some cases. More

flexible parametric models, such as the multivariate t distribution [Scott et al., 2005],

Gaussian mixture models [Volant et al., 2014] and copulas [Härdle et al., 2015] have

been introduced to HMMs to address distributional features like heavy-tailedness,

multi-modality and non-linearity within state dependence. However, estimation in

such models usually involves non-trivial model selection problems (e.g. selection

of the number of mixture components and choice of the copula) and due to lim-

ited flexibility, a particular model may only work for certain types of data. More

recently, a few nonparametric estimation procedures have been developed, see for

instance Yau et al. [2011] for a Bayesian nonparametric method, Alexandrovich et al.

[2016] and Gassiat et al. [2016a] for various maximum likelihood based methods and

Lehéricy [2018] for spectral and least squares estimators. While these methods seem

to offer promising practical or theoretical results, their implementation can be quite

challenging in practice and they are of very limited use.

In this chapter we first investigate the use of HDP-based mixture models for

flexible yet parsimonious modelling of the emission distributions in a multivariate

HMM with finite state space. We propose to specify the emission distributions

via infinite mixture models, where the mixing measure associated with each state

is induced and coupled via the HDP. The Dirichlet process (DP) mixture models,

which may be regarded as a special case of HDP mixture models, have been identified

as an attractive nonparametric approach to density estimation since the seminal

work of Escobar and West [1995]. They provide flexible priors that have dense

support over the entire class of continuous distributions, and strong asymptotic

results exist on the posterior consistency and convergence rates in both univariate
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and multivariate settings (see Ghosal and Van Der Vaart [2001]; Tokdar [2006]; Shen

et al. [2013]; Canale et al. [2017] and references therein). In our context it is natural

to consider a collection of DP mixture models, one for each hidden state. To achieve

a parsimonious model representation and higher efficiency in parameter estimation,

we propose to introduce a further hierarchy on top of these DP mixtures to encourage

sharing of mixture components and therefore data points across states. Our model is

in contrast to the approach in Yau et al. [2011] where the focus is restricted to finite

translation HMMs [Gassiat et al., 2016b] and the emission distributions are specified

based on a single DP mixture model. We also note the work of Torbati and Picone

[2015] who considered using HDP mixture models for the emission distributions;

however, operationally they are approximated by hierarchical finite mixture models

with a pre-fixed number of mixture components. We develop a novel Markov chain

Monte Carlo (MCMC) methodology for asymptotically exact posterior simulation

in such HMMs, without resorting to finite truncated approximations of HDP prior.

The algorithm effectively combines an efficient dynamic programming algorithm for

HMMs, which jointly samples the state sequence conditional on the observations,

with the slice sampling technique [Neal, 2003], which efficiently samples from the

HDP mixture model. With minor adaptations the proposed algorithm can also be

used for inference in HMMs where each emission distribution is modelled separately

by a DP mixture model (if more appropriate), extending Yau et al. [2011] to a more

general HMM framework.

Our second goal of this chapter is to build a fully nonparametric HMM that

allows the number of hidden states to be automatically inferred from data when

this information is unavailable a-priori. In our HMM setting where the emission

distributions are specified via HDP mixtures, commonly used information criteria

and the parallel sampling approach of Congdon [2006] that we described in Chapter

2 are not applicable here for model selection since the parameter space is now in-

finitely dimensional and exact evaluation of the joint posterior density is not possible

(unless using some sort of truncated approximations). The marginal likelihood with

respect to the number of states would also be difficult to estimate accurately and

computationally intensive simulations are often required for approximating integrals

involved. Therefore, instead of trying to pick a single ”best” value for the number

of states, we propose to make further use of the HDP to model the transition matrix

nonparametrically. In this direction, the use of the HDP was originally introduced

by Teh et al. [2006] (known as the HDP-HMM) to define a prior on infinite dimen-

sional transition matrices and allow the number of states to be unbounded a-priori.

An improvement of the HDP-HMM, known as the sticky HDP-HMM, was proposed
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in Fox et al. [2011] in the framework of an application to speaker diarization. This

model introduced an additional ”sticky” parameter to encourage more self transi-

tions in the state process and thus provide a more realistic modelling of the temporal

persistence, guarding against the generation of redundant states and unrealistically

rapid state transitions. Since then, the sticky HDP-HMM is almost regarded as the

default version of the Bayesian nonparamtric HMM and has enjoyed varying degrees

of success in a wide range of real world tasks, such as speech recognition [Torbati

and Picone, 2015], motion pattern learning [Hu et al., 2017], financial time series

modelling [Song, 2014], and physiological data modelling [Hadj-Amar et al., 2020a],

among many others. However, as pointed out in Zhou et al. [2021], the sharing of

the sticky parameter across states induces an undesirable coupling effect between

the prior on transition probabilities and that on self persistence probabilities. For

instance, when the transition probabilities are expected to be similar across states,

so are the self persistence probabilities, which limits the expressiveness of the prior.

To address this issue, we propose to reformulate the prior on the transition matrix

as in Zhou et al. [2021] (termed as the disentangled sticky HDP model) to disentan-

gle this intrinsic correlation, thus offering extra flexibility to capture more complex

transition dynamics in real data. The new model admits the original sticky HDP

model as a special case. However, our model further extends over Zhou et al. [2021]

as we also model the emission distributions nonparametrically in a general multi-

variate setting. Furthermore, we develop a MCMC methodology for fully Bayesian

inference in the resulting nonparametric HMM. The algorithm exploits the beam

sampling technique developed in Van Gael et al. [2008] for efficient simulation of the

state sequence while avoiding the truncated approximation to the HDP prior for the

transition matrix (see e.g. Fox et al. [2011]; Zhou et al. [2021]), which can lead to

misleading posterior samples (when truncation level is small) or significant compu-

tational burden (when truncation level is large). To the best of our knowledge, this

is the first Bayesian methodology developed for HMMs with fully nonparametric

HDP priors without relying on such approximations, and our proposed modelling

framework is still computationally accessible despite being remarkably flexible.

The structure of this chapter is organized as follows. In section 4.2 we will

introduce the building blocks for constructing the Bayesian nonparametric HMMs,

the DP and HDP. In section 4.3 we introduce the use of HDP mixture models for

nonparametrically modelling the emission distributions in a multivariate HMM with

fixed number of states and develop the associated MCMC methodology for posterior

inference. In section 4.4 we extend the model developed in section 4.3 to allow

automatic learning of the number of states and we develop the simulation strategy
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for the resulting model. In section 4.5 we apply our proposed model to motion and

heart rate data collected from Apple watch [Walch, 2019] for unsupervised learning

of sleep macrostructure. Lastly, in section 4.6, we conclude with a brief discussion.

4.2 Dirichlet processes and hierarchical Dirichlet pro-

cesses

In this section we introduce the DP and its extension HDP that will lay the foun-

dation of our nonparametric inference methods. We will also review sampling based

algorithms available for inference in such models.

4.2.1 Dirichlet processes

We begin by giving a formal definition of DP that is due to Ferguson [1973]. Let

Θ be a measurable parameter space, H be a probability distribution defined over

Θ and α be a positive real number. We say a random measure G is distributed

according to a DP with base measure H and concentration parameter α, denoted

as DP (α,H), if for any finite partition {A1, . . . , AK} of Θ

(G(A1), . . . , G(AK)) ∼ Dir(αH(A1), . . . , αH(AK)), (4.1)

where Dir(·) denotes the Dirichlet distribution. Equivalently speaking, given any fi-

nite partition of Θ, the measure of a random probability distribution G ∼ DP (α,H)

on this partition set is Dirichlet distributed according to (4.1). From the properties

of the Dirichlet distribution we see that E[G(Ai)] = H(Ai), which is independent

of α, and V ar(G(Ai)) = H(Ai)(1−H(Ai))/(α+ 1). Therefore the base measure H

can be understood as the ”mean” of the DP while the concentration parameter α

controls the variability (or level of concentration) of a random draw G from the DP

around its mean. In particular, as α → ∞, V ar(G(Ai)) → 0 and thus G converges

weakly to H. On the other hand when α → 0, V ar(G(Ai)) → H(Ai)(1 −H(Ai)),

which indicates that G(Ai) becomes a Bernoulli random variable and G assigns

either full mass or no mass in Ai.

We now turn to a more direct and constructive definition of the DP, known

as the stick-breaking construction [Sethuraman, 1994], which gives us a way to draw
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a single distribution from it. Let

β
′
i ∼ Be(1, α), i = 1, . . . ,∞,

β1 = β
′
1, βi = β

′
i

i−1∏
j=1

(1 − β
′
j), i = 2, . . . ,∞,

θi ∼ H, i = 1, . . . ,∞,

G =
∞∑
k=1

βkδθk ,

(4.2)

where Be denotes the Beta distribution, H is the base measure as defined above

and δθi denotes the Dirac delta measure centred at θi. Then it is shown that with

probability 1,
∑∞

k=1 βk = 1 and G ∼ DP (α,H) [Sethuraman, 1994]. The construc-

tion of the weights β = {βi}∞i=1 via the first two rows of (4.2) is often denoted by

β ∼ GEM(α) for convenience (GEM is short for Griffiths, Engen, and McCloskey;

see e.g. Pitman [2002]), where the expectation of βk decreases exponentially in k.

An important observation from this definition of the DP is that a random draw from

a DP is discrete (with probability one), even if H is a continuous distribution. We

can also recognize the role α plays in the DP as controlling the relative magnitude

of the weights {βi}∞i=1. As α → 0, E[β
′
i] → 1 and G will reduce to a point mass,

while as α → ∞, E[β
′
i] → 0 and the infinite weights {βi}∞i=1 in G tends to be evenly

distributed.

The polya urn representation proposed in Blackwell et al. [1973] provides

another defining property of the DP that makes inference with DP priors computa-

tionally tractable and it has been used to establish the existence of the DP. More

specifically, if G ∼ DP (α,H), where α and H are defined as above, and let θ1, θ2, . . .

be a sequence of random variables that are independently distributed according to G,

i.e. θ1, θ2, . . . |G
iid∼ G. Then the predictive distribution of θn+1 given the preceding

draws θ1, . . . , θn (with G integrated out) can be expressed as:

θn+1|θ1, . . . , θn ∼ 1

α + n
(αH +

n∑
i=1

δθi) =
1

α + n
(αH +

Kn∑
j=1

njδθ∗j ) (4.3)

where {θ∗1, . . . , θ∗Kn
} represent unique values of {θ1, . . . , θn} and nj :=

∑n
i=1 I(θi =

θ∗j ), with I(·) denoting the indicator function that assumes a value of one when the

argument is true. Therefore (4.3) provides a way to draw observations (the θi) di-

rectly from a DP prior without first constructing the infinite dimensional probability

measure G in (4.2). If we additionally introduce a cluster assignment variable Si
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such that Si = k if θi = θ∗k, then it can be shown that the process described by (4.3)

can also be characterized by the predictive distribution for the Si:

P (Sn+1 = k|S1, . . . , Sn) =
1

α + n
(αI(k = Kn + 1) +

Kn∑
j=1

njI(k = j)), (4.4)

where Kn + 1 represents an empty new cluster. A key observation from both (4.3)

and (4.4) is the clustering property of the DP, which lays the foundation of using

DP for constructing mixture models. That is, we tend to see observations that we

have seen before, and they are more likely to join existing larger clusters (the θ∗i
with larger ni). This is the so-called ”richer get richer” property of the DP. On the

other hand we can see the nonparametric nature of DP: there is always a positive

probability to introduce a new cluster, whose magnitude is controlled by α. A larger

value of α will lead to an a-priori larger number of clusters. The expressions in (4.3)

and (4.4) are often explained in the metaphors of the ”polya urn scheme” or the

”Chinese restaurant” process (CRP), and we refer to Blackwell et al. [1973] and

Pitman [2006] for more details and their implications.

Since the DP can be regarded as a prior distribution over distributions, we

are able to talk about the posterior distribution associated with the DP, which has

nice structure that makes it computationally convenient. Based on the conjugacy

between the Dirichlet prior and the multinomial likelihood and the definition of DP

given in (4.1), we can easily see that if G ∼ DP (α,H) and {θi}ni=1|G
iid∼ G, then

G|{θi}ni=1 ∼ DP (α + n, (αH +

n∑
i=1

δθi)/(α + n)). (4.5)

That is, the DP prior for G is conjugate with respect to i.i.d. sampling from G.

It is important to note that the posterior base measure is exactly the predictive

distribution given in (4.3), taking the form of a weighted average between the base

measure H and the empirical distribution of {θi}ni=1. As the sample size n gets

larger (i.e. n >> α), the posterior DP will have a large concentration parameter

and a base measure that is dominated by the empirical distribution, which exhibits

a kind of posterior consistency property. Moreover, the posterior of G in (4.5) can
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be explicitly constructed as

G
′ ∼ DP (α,H),

β0, . . . , βKn ∼ Dir(α, n1, . . . , nKn),

G|{θi}ni=1 = β0G
′
+

Kn∑
i=1

βiδθ∗i ,

(4.6)

where the θ∗i is defined as before representing the unique values of the θi. We refer

to Pitman [1996] for more details. This posterior representation proved to be very

useful in the development of inference algorithms in DP and HDP, see, e.g. Teh

et al. [2006].

4.2.2 Dirichlet process mixture models

The discrete and clustering nature of the DP makes it useful for defining a nonpara-

metric prior for the components in a mixture model, leading to a so-called Dirichlet

process mixture model (DPMM). Using the notation of section 4.2.1, the generative

process of the DPMM can be specified as:

G|α,H ∼ DP (α,H),

θi|G ∼ G, i = 1, . . . , n,

yi|θi ∼ f(yi|θi), i = 1, . . . , n,

(4.7)

where f(·|θ) denotes a generic probability distribution parameterized by θ. The

resulting distribution of yi induced by the DP prior is thus

F (yi) =

∫
f(yi|θ) dG(θ) =

∞∑
j=1

βjf(yi|θj),

where G =
∑∞

k=1 βkδθk ∼ DP (α,H). Therefore the DPMM can be seen as an ex-

tension of the finite mixture model with an infinite number of components, where

great flexibility is allowed. On the other hand, it can be derived by considering

a Dir(α/K, . . . , α/K) prior for the mixture weights in a finite mixture model,

(β1, . . . , βK), and then taking the limit as K → ∞ (see e.g. Rasmussen et al.

[1999]). A useful representation alternative to (4.7) can be obtained by making use
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of the stick-breaking representation of the DP and the cluster assignment variables:

β|α ∼ GEM(α), θi|H ∼ H, i = 1, . . . ,∞,

Si|β ∼ β, i = 1, . . . , n,

yi|{θi}∞i=1, Si ∼ f(yi|θSi), i = 1, . . . , n.

(4.8)

Note that clustering of data is implicitly achieved through sharing of the same cluster

assignment variable across data points, a key property of the DP that we introduced

earlier in section 4.2.1.

4.2.3 Hierarchical Dirichlet process

The HDP is useful for problems concerning data from multiple related groups, each

of which could be modelled via a DP and we want to tie these individual DPs

together in an appropriate way for modelling purposes and to enhance statistical

strength. A (2-layer) HDP is built from two levels of DPs as follows (generalization

to a higher number of layers follow the same rationale):

G0|γ,H ∼ DP (γ,H),

Gj |α,G0 ∼ DP (α,G0), j = 1, . . . , J,
(4.9)

where γ is the concentration parameter for the top-level DP and J denotes the num-

ber of groups that we want to consider jointly. We see that the random probability

measures Gj from the bottom layer are connected as they share the same base mea-

sure G0, which is itself distributed according to a DP given by the top layer. An

important consequence of this construction is that {Gj}Jj=1 will share the same set

of atoms as G0 (viewed as an atomic measure) due to the discrete nature of G0, and

this would not be the case if G0 is continuous. The concentration parameters γ and

α govern the variability of G0 around H and Gj around G0, respectively.

Analogous to the DP, draws from a HDP can be obtained by its stick-breaking

construction. Since G0 ∼ DP (γ,H), we know that it can be expressed as G0 =∑∞
k=1 βkδθk , where β = {βi}∞i=1 ∼ GEM(γ) and {θi}∞i=1

iid∼ H. Similarly, each Gj

can be constructed as Gj =
∑∞

k=1 π̃jkδθ∗jk , where π̃j = {π̃jk}∞k=1 ∼ GEM(α) and

{θ∗jk}∞k=1
iid∼ G0. Note that the θ∗jk can take the same value for different values of k

since G0 is discrete. Using the definition of the DP and properties of the Dirichlet

distribution, Teh et al. [2006] showed that Gi can be constructed using unique atoms
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as

πj = {πjk}∞k=1|α, β ∼ DP (α, β), {θk}∞k=1|H
iid∼ H,

Gj =

∞∑
k=1

πjkδθk , j = 1, . . . , J,
(4.10)

where πj can be constructed via stick-breaking as

π
′
jk ∼ Be(αβk, α(1 −

k∑
i=1

βi)), k = 1, . . . ,∞,

πj1 = π
′
j1, πjk = π

′
jk

k−1∏
l=1

(1 − π
′
jl), k = 2, . . . ,∞.

(4.11)

It follows that E[πjk] = βk and V ar(πjk) = V ar(βk) + E[βk(1 − βk)/(1 + α)] for

j = 1, . . . , J . An alternative representation of the HDP that integrates out the

random measures G0 and Gj can be obtained in terms of the Chinese restaurant

franchise (CRF), which is a direct generalisation of the polya urn scheme or the

CRP for the DP. Since our inference algorithms introduced in later sections do not

require an explicit instantiation of the CRF, we shall not discuss this further and

we refer to Teh et al. [2006] for more details.

The posterior distribution of HDP is more complicated than that of the

DP due to the hierarchical structure and the discreteness of the globally shared

base measure G0. For each j = 1, . . . , J , consider {tji}
Nj

i=1
iid∼ π̃j , where Nj is

a positive integer representing the number of observations in group j, and let t∗j

denote the number of unique values among {tji}
Nj

i=1 and let {kjt}
t∗j
t=1

iid∼ β. Let KJ

denotes the number of unique values of {kjt} = {kjtji}j=1,...,J ;i=1,...,Nj and {θ∗∗} =

{θ∗∗1 , . . . , θ∗∗KJ
} be i.i.d. samples from H. Then it follows from the stick breaking

construction of the HDP that θ∗jt = θ∗∗kjt ∼ G0 and θji = θ∗jtji ∼ Gj . Here the

observations {θ∗jt} and {θji} are implicitly described via {θ∗∗}, {tji} and {kjt} so

that the effect of β and π̃j on the resulting clustering behaviour of the θji can be

decoupled. Let us further define mjk = |{{θ∗jt}
t∗j
t=1 : θ∗jt = θ∗∗k }| and njk = |{{θji}

Nj

i=1 :

θji = θ∗∗k }| where | · | denotes the cardinality of the argument. Observing that G0

depends on {θ∗∗}, {tji} and {kjt} only via θ∗jt which are themselves i.i.d. draws

from G0, the posterior of G0 takes the usual form of the posterior of a DP:

G0|γ,H, {θ∗jt} = DP (γ + m.., (γH +

KJ∑
k=1

m.kδθ∗∗k )/(γ + m..)) (4.12)

where m.k =
∑J

j=1mjk and m.. =
∑KJ

k=1m.k. Using the standard result of DP (see
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(4.6)), G0 can be explicitly constructed as

G
′
0 ∼ DP (γ,H),

β0, . . . , βKJ
∼ Dir(γ,m.1, . . . ,m.KJ

),

G0|γ,H, {θ∗jt} = β0G
′
0 +

KJ∑
i=1

βiδθ∗∗i .

(4.13)

Conditional on α and G0, the posterior for the Gj are independent and depend

on {θ∗∗}, {tji} and {kjt} only via θji, which are themselves i.i.d. draws from Gj .

Therefore we have

Gj |α,G0, {θji} = DP (α + nj., (αG0 +

KJ∑
k=1

njkδθ∗∗k )/(α + nj.)), (4.14)

where nj. =
∑KJ

k=1 njk and G0 is specified as in (4.13). An explicit representation of

a draw from (4.14) can thus be obtained as:

G
′
j ∼ DP (αβ0, G

′
0),

πj0, . . . , πjKJ
∼ Dir(αβ0, αβ1 + nj1, . . . , αβKJ

+ njKJ
),

Gj |α,G0, {θji} = πj0G
′
j +

KJ∑
k=1

πjkδθ∗∗k .

(4.15)

The posterior structure of HDP can also be explained in the metaphor of the CRF

and we refer to Hjort et al. [2010] for a detailed discussion.

4.2.4 Hierarchical Dirichlet process mixture models

The HDP mixture model (HDPM) extends the DPMM to jointly model multiple

DPMMs, one for each group, where the clusters underlying the data in one group

can be reused for data from another group. To help better illustrate the essence of

the HDPM, we introduce three different but equivalent specifications of the HDPM,

each of which uses a different representation of the HDP prior and can be useful in

certain inference settings. Using the definition in (4.9) the generative process of the
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HDPM can be specified as

G0|γ,H ∼ DP (γ,H),

Gj |α,G0 ∼ DP (α,G0), j = 1, . . . , J

θji|Gj ∼ Gj , j = 1, . . . , J, i = 1, . . . , Nj ,

yji|θji ∼ f(yji|θji), j = 1, . . . , J, i = 1, . . . , Nj .

(4.16)

Note that this is a direct extension of the construction of the DPMM in (4.7), where

here we have J instead of one group of observations and the hierarchical prior (4.9)

is used to define the base measure in (4.7) (first row) for each group. Alternatively,

we can represent the HDPM using the stick-breaking construction given in (4.10)

and the cluster assignment variables:

β|γ ∼ GEM(γ),

πj |α, β ∼ DP (α, β), j = 1, . . . , J,

Sji|πj ∼ πj , j = 1, . . . , J, i = 1, . . . , Nj , {θk}∞k=1|H
iid∼ H,

yji|{θk}∞k=1, Sji ∼ f(yji|θSji), j = 1, . . . , J, i = 1, . . . , Nj .

(4.17)

This specification is analogous to (4.8) for the DPMM. A third way to define a

HDPM is by using the auxiliary variables tji and kjt introduced in the previous

section

β|γ ∼ GEM(γ), π̃j |α ∼ GRM(α),

tji|π̃j ∼ π̃j , {kjt}
t∗j
t=1|β ∼ β, j = 1, . . . , J, i = 1, . . . , Nj , {θk}∞k=1|H∼H,

yji|{θk}∞k=1, {tji}, {kjt} ∼ f(yji|θkjtji ), j = 1, . . . , J, i = 1, . . . , Nj .

(4.18)

This representation is particularly useful for CRF-based inference algorithms (see

e.g. Teh et al. [2006]).

4.2.5 Posterior inference via Markov chain Monte Carlo

Posterior inference for DP (DPMM) and HDP (HDPM) commonly relies on two

classes of methods: sampling-based, i.e. MCMC, or optimization based, i.e. vari-

ational inference. Here we focus on the former approach and refer to Xuan et al.

[2019] and references therein for more details regarding the latter.

Most existing MCMC methods for DP/HDP adopted a Gibbs sampling

framework, where we may distinguish three different types of sampling strategies.

The first strategy, which we refer to as the collapsed or marginal method, makes use
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of the CRP/CRF representation of the DP/HDP and/or conjugacy of the observa-

tion distribution f(·) and the base distribution H to infer the clustering structure

of the data, with the infinite dimensional random measure G (or G0 and {Gj}) inte-

grated out. Representative works in this context are Neal [2000] and Teh et al. [2006],

who provide fundamental implementations for inference in DPMM and HDPM, re-

spectively. While these algorithms are relatively easy to implement for conjugate

models, generalization to the non-conjugate scenario can be very difficult. Moreover,

they can suffer from poor convergence of the MCMC in complex models [Chang and

Fisher III, 2013; Chang and III, 2014].

The second strategy, which we refer to as the uncollapsed or conditional

method, works with the stick-breaking representations of the DP/HDP and retains

the random measure G (or G0 and {Gj}) as the state of the Markov chain. The

key methodological challenge arises from the infinite dimensional nature of these

random measures and the fact that we can only keep a finite number of parameters

in the sampling process. Several MCMC methods that admit the correct posterior

under the DP/HDP prior have been developed in this context. For DPMMs, a slice

sampling scheme is proposed in the seminal work of Walker [2007] and in parallel,

Papaspiliopoulos and Roberts [2008] proposed an alternative MCMC method known

as the retrospective sampling method. Papaspiliopoulos [2008] combines the ideas of

the slice and retrospective sampling to develop a more efficient block Gibbs sampler

which is implemented in Yau et al. [2011]. More recently, building on earlier works

of Walker [2007] and Kalli et al. [2011], Ge et al. [2015] derived an improved slice

sampling method by exploiting the posterior structure of the DP which also admits

parallel inference and scales well with large data set. For HDPMs, an efficient dis-

tributed slice sampling scheme is developed in Ge et al. [2015] which extends that for

the DPMM. We also note that exact parallelized MCMC methods that incorporate

an uncollapsed Gibbs sampler and split-merge moves have been developed for both

DPMMs [Chang and Fisher III, 2013] and HDPMs [Chang and III, 2014]. While

the split-merge moves significantly increase the sampling complexity, no apparent

advantages in terms of sampling efficiency could be observed in comparison to the

alternative slice sampler developed in Ge et al. [2015].

The uncollapsed framework can also be approached by using some kind of

finite truncation of the DP prior such that it generates probability measures of

the form GK =
∑K

k=1 βkδθk where K is a predetermined truncation point (see e.g.

Ishwaran and Zarepour [2000]; Ishwaran and James [2001, 2002]; Ishwaran and Zare-

pour [2002]). With this approximation standard MCMC methods can be used for

posterior simulation and in certain scenarios theoretical guarantees are available
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regarding the accuracy of the approximation. However, an appropriate truncation

point can still be difficult to choose in practice and the error implied by the approx-

imation is hard to quantify in general (see Hjort et al. [2010] for more comments).

The third strategy, which we refer to as partially collapsed methods, emerges

in more recent works. It utilizes both the CRP/CRF and the stick-breaking repre-

sentations in an attempt to improve sampling efficiency in high dimensional settings

while enabling parallel and distributed inference. Implementation of such samplers

for DPMMs and HDPMs can be found in Yerebakan and Dundar [2017] and Dubey

et al. [2020], respectively. However, the computational efficiency of these algorithms

comes at a cost: they require approximations when simulating the cluster assignment

variables and moreover, they rely on conjugate priors which can be too restrictive.

4.3 Nonparametric modelling in multivariate hidden

Markov models using HDP mixtures

In this section we will describe the proposed nonparametric HMM based on the HDP

mixtures that enables flexible modelling of the emission distributions in a general

multivariate setting. In the following, we first describe the generative process of

the model, and then introduce the associated sampling and inference methods, and

finally present a simulation study to illustrate the effectiveness of the approach.

4.3.1 Model formulation

To set up the HMM, let y = (y1, . . . , yT ) denote the observed process with yt ∈ Rp,

let x = (x1, . . . , xT ) denote the corresponding state process distributed as an N-

state time-homogeneous Markov chain with transition matrix Π = [πi,j ]i,j=1,...,N

and initial distribution δ. Then the proposed model is specified hierarchically as

follows
πi = {πi,j}Nj=1|ρ ∼ Dir(ρ, . . . , ρ), i = 1, . . . , N,

x1 ∼ δ, xt|xt−1, {πk}Nk=1 ∼ πxt−1 , t = 2, . . . , T,

β|γ ∼ GEM(γ),

ϕk = {ϕk,i}∞i=1|α, β ∼ DP (α, β), k = 1, . . . , N,

st|{ϕk}Nk=1, xt ∼ ϕxt , t = 1, . . . , T, {θk}∞k=1|Hλ
iid∼ Hλ,

yt|{θk}∞k=1, st ∼ f(yt|θst), t = 1, . . . , T,

(4.19)

where ρ, γ and α > 0, ϕk = (ϕk,1, ϕk,2, . . .), Φ = (ϕ1, . . . , ϕN ), s = (s1, . . . , sT ),

Θ = (θ1, θ2, . . .), Hλ is a distribution indexed by some hyperparameters λ, f(·|θ) is
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a generic density parameterized by θ. Following earlier works (e.g. Zhou et al. [2021])

we additionally assign gamma hyperpriors to the concentration parameters γ and

α, i.e. γ ∼ Ga(aγ , bγ) and α ∼ Ga(aα, bα), and prefix ρ and λ in a noninformative

and data driven way, respectively. The initial distribution δ may also be fixed in

advance. The first two lines in the hierarchy of equations stated in (4.19) defines

the hidden state Markov chain process which is the same as that in a parametric

Bayesian HMM. The nonparametric part lies in lines 3-6 of (4.19) where we make use

of the stick-breaking representation of the HDP to specify the emission distribution

as a HDP mixture models. By integrating out the cluster assignment variable st we

can see that the emission distributions take the form

f(yt|xt) =

∞∑
k=1

ϕxt,kf(yt|θk),

where the mixture component parameters are shared across states and the weights

are state-specific and coupled via the HDP. It is worth noting the similarities and

differences of the construction of the HDPM in (4.17) and that in (4.19). The

number of groups J in a HDPM now plays the role of the number of states N ,

which is pre-fixed. However, the ”group membership” of yt in (4.19) is now random

and is determined by the unobserved latent variable xt, whereas in (4.17) this is

known a-priori. The representation of the HMM given in (4.19) facilitates a flexible

yet parsimonious specification of the model, and moreover, permits an efficient and

exact posterior simulation scheme which will be introduced in the next subsection.

4.3.2 Markov chain Monte Carlo methodology

Here we introduce the MCMC algorithm for simulating from the joint posterior

density of (γ, β, α,Φ,Π,x, s,Θ), which can be written as

f(γ, β, α,Φ,Π,x, s,Θ|y) ∝ f(γ|aγ , bγ)f(α|aα, bα)f(β|γ)

×
N∏
k=1

f(ϕk|α, β)

N∏
k=1

f(πk|ρ)

∞∏
k=1

Hλ(θk)δx1

T∏
t=2

πxt−1,xt

T∏
t=1

ϕxt,stf(yt|θst).
(4.20)

There are two key facts from (4.19) and (4.20) which underlie the design of our

algorithm: (i) we can jointly update the state sequence x using an efficient dy-

namic programming algorithm available for standard HMMs, namely the FFBS,

conditioned on the rest of the parameters; (ii) conditioned on the simulated state

sequence the model is reduced to a HDPM where a state-of-the-art slice sampling

scheme for the HDP can be modified and used [Ge et al., 2015]. Note that despite
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the infinite dimensional nature of the parameter space, for given data only finitely

many mixture components in the emission distributions will ever be ”activated”

(have at least one allocated observation) and required for simulation. To enable the

use of the slice sampling technique, we augment the parameter space by introducing

auxiliary variables (slice variables) u = (u1, . . . , uT ) such that the joint posterior

becomes

f(γ, β, α,Φ,Π,x, s,Θ,u|y) ∝ f(γ|aγ , bγ)f(α|aα, bα)f(β|γ)

×
N∏
k=1

f(ϕk|α, β)

N∏
k=1

f(πk|ρ)

∞∏
k=1

Hλ(θk)δx1

T∏
t=2

πxt−1,xt

T∏
t=1

I(ut < ϕxt,st)f(yt|θst),

(4.21)

It is easy to check that by integrating out u we recover the original target distribution

in (4.20). Importantly, these variables will play the role of dynamically truncating

the number of HDP mixture components required for sampling. Let K∗ denotes the

number of currently activated mixture components, which is given by the number of

distinct values in the current HDP cluster assignment variables s. The structure of

one sweep of the proposed algorithm (Algorithm 4.1) for simulating from (4.21) is

outlined below. Where possible, we shall remove variables in the conditioning set of

a conditional distribution based on conditional independence or explicit integration.

• sample x|s,Π,Φ, δ,

• sample Π|x,

• sample Φ, u|α, β, s,x,

• sample s|Θ,y, u,x,Φ,

• sample {mj,k}j=1,...,N ;k=1,...,K∗ |α, β, s,x

• sample β|{mj,k}j=1,...,N ;k=1,...,K∗ , γ,

• sample {θk}K
∗

k=1|y, s,

• sample α|{mj,k}j=1,...,N ;k=1,...,K∗ , s,x,

• sample γ|{mj,k}j=1,...,N ;k=1,...,K∗ ,

where the {mj,k} are another set of auxiliary variables introduced to facilitate sam-

pling parameters associated with the HDP. More details regarding each of the sam-

pling steps are provided as follows.
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Step 1: sampling x. This is achieved by using the standard FFBS pro-

cedure (see Chapter 1), which is shown to be more efficient than a element-wise

update [Scott, 2002]. Let

α1(k) := f(x1 = k, s1|Φ, δ) = δkϕk,s1 , k = 1, . . . , N,

αt(k) := f(xt = k, {si}ti=1|Φ,Π)

= ϕk,st

∑
xt−1

αt−1(xt−1)πxt−1,k, t = 2, . . . , T, k = 1, . . . , N.

Then we can simulate x from its full conditional distribution by first sampling xT

from

f(xT = k|{si}Ti=1,Φ,Π) ∝ αT (k), k = 1, . . . , N,

and then iteratively sampling xt, t = T − 1, . . . , 1, from

f(xt = k|xt+1, {si}Ti=1,Φ,Π) ∝ αt(k)πk,xt+1 , k = 1, . . . , N.

Step 2: sampling Π. Conditional on the state sequence, the rows of the

transition matrix {πk} are conditionally independent and

(πi,1, . . . , πi,N )|x ∼ Dir(ρ + ni,1, . . . , ρ + ni,N ), i = 1, . . . , N,

where ni,j denotes the number of transitions between state i and j in x. This result

follows from the conjugacy between the Dirichlet prior and a multinomial likelihood.

Step 3: jointly sampling Φ,u. This is motivated by the fact that by

integrating out the slice variables u, we have, for j = 1, . . . , N ,

(ϕj,1, . . . , ϕj,K∗ , ϕ∗
j )|α, β, s,x ∼ Dir(αβ1 + n

′
j,1, . . . , αβK∗ + n

′
j,K∗ , α(1 −

K∗∑
i=1

βi)),

where ϕj,1, . . . , ϕj,K∗ are the mixture weights associated with the activated mixture

components in the emission distribution for state i, ϕ∗
j = 1−

∑K∗

i=1 ϕj,i which collapses

the weights associated with the inactive mixture components and n
′
i,j =

∑T
t=1 I(xt =

i, st = j). We can then sample the slice variables u conditioned on Φ

ut|Φ,x, s ∼ U(0, ϕxt,st), t = 1, . . . , T,

where U(a, b) denotes a uniform distribution with support (a, b).

Step 4: sampling s. Let β∗ = 1−
∑K∗

i=1 βi. Using the stick-breaking repre-

sentation in (4.2) and (4.11), we first create new mixture components by recursively
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splitting the residual atoms until ϕ∗
j < mint:xt=j ut for ∀j = 1, . . . , N , by proceeding

as follows

K∗ := K∗ + 1,

β
′
K∗ ∼ Be(1, γ),

βK∗ = β∗β
′
K∗ , θK∗ ∼ Hλ, β∗ := β∗(1 − β

′
K∗),

ϕ
′
j,K∗ ∼ Be(αβK∗ , α(1 −

K∗∑
i=1

βi)), j = 1, . . . , N,

ϕj,K∗ = ϕ∗
jϕ

′
j,K∗ , ϕ∗

j := ϕ∗
j (1 − ϕ

′
j,K∗), j = 1, . . . , N.

We then sample the HDP cluster assignment variables using

f(st = i|Θ, yt, ut, xt,Φ) ∝ f(yt|θi)I(ut < ϕxt,i).

Note that by ensuring ϕ∗
j < mint:xt=j ut for ∀j = 1, . . . , N , it is guaranteed that

ϕxt,k < ut for ∀k > K∗. Therefore the resulting K∗ effectively provides an upper

limit on the number of mixture components that need updating at each sweep and

it can also be shown that it would be finite almost surely [Walker, 2007; Ge et al.,

2015]. After sampling s, we further update the K∗ (as the number of distinct values

in s) and accordingly relabel s, Φ and {θk}K
∗

k=1, and then reconstruct ϕ∗
j by collapsing

the non-active mixture weights.

Step 5: sampling β. This is achieved using the theory of HDP pre-

sented in Teh et al. [2006]. We first sample a set of auxiliary random variables

{mj,k}j=1,...,N ;k=1,...,K∗ described in section 4.2.3 from the following conditional dis-

tributions

f(mj,k = m|s, α, β) ∝ S(n
′
j,k,m)(αβk)m,

where S(·, ·) denotes the unsigned Stirling numbers of the first kind. Conditional

on mj,k, we use the result from (4.13) to sample

(β1, . . . , βK∗ , β∗) ∼ Dir(m.1,, . . . ,m.K∗ , γ)

where m.k =
∑N

j=1mj,k. In this way we can bypass the need to introduce the

variables {tji} and {kjt} described in section 4.2.3 into our state space.

Step 6: sampling {θk}K
∗

k=1. Note that we only need to update the param-

eters that are associated with the active mixture components as the full conditional

distributions for the remaining mixture component parameters are given by their
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priors. The full conditional distribution of θk is given by

f(θk|y, s) ∝ Hλ(θk)
∏

t:st=k

f(yt|θk), k = 1, . . . ,K∗.

For illustration consider the case where f is a multivariate normal density pa-

rameterized by the mean vector µ and covariance matrix Σ (i.e. θk = (µk,Σk))

and Hλ is a Np(µ0,Σ0) × IW (∆, V ) product measure with hyperparameters λ =

(µ0,Σ0,∆, V ), where IW stands for the inverse Wishart distribution with density

given by IW (Σ|∆, V ) ∝ |Σ|−
(V +p+1)

2 exp(−1
2 tr(∆Σ−1)). Of course more general non-

conjugate models can be applied here. Let Yk = {yt : st = k}, then using standard

results in multivariate statistics we have that for each k

µk|Σk, YK ∼ Np(µ̃k, Σ̃k),

where Σ̃k = (Σ−1
0 + |Yk|Σ−1

k )−1, µ̃k = Σ̃k(Σ−1
0 µ0 + Σ−1

k

∑
yt∈Yk

yt), and

Σk|µk, Yk ∼ IW (∆̃k, Ṽk),

where Ṽk = V + |Yk| and ∆̃k = ∆ +
∑

yt∈Yk
(yt − µk)(yt − µk)T .

Step 7: sampling α. This is achieved using the auxiliary variable sampling

scheme proposed in Teh et al. [2006]. First note that the conditional distribution of

α given the rest of parameters can be derived as

f(α|{mi,j}, {n
′
i,j}) ∝ αaα+m..−1 exp(−αbα)

N∏
j=1

Γ(α)

Γ(α + n
′
j,.)

,

where {n′
i,j} and {mi,j} are computed from steps 3 and 5, respectively, Γ is the

gamma function and n
′
j,. =

∑K∗

i=1 n
′
j,i. We introduce additional auxiliary variables

w = (w1, . . . , wN ) and e = (e1, . . . , eN ) such that the augmented joint density

becomes

f(α,w, e|{mi,j}, {n
′
i,j}) ∝ αaα+m..−1 exp(−αbα)

N∏
j=1

wα
j (1 − wj)

n
′
j,.−1(

n
′
j,.

α
)ej .

100



Then samples of α can be obtained as follows

α|w, e ∼ Ga(aα + m.. −
N∑
j=1

ej , bα −
N∑
j=1

log(wj)),

wj |α ∼ Be(α + 1, n
′
j,.), ej |α ∼ Ber(

n
′
j,.

α + n
′
j,.

), j = 1, . . . , N,

where Ber(p) denotes a Bernoulli distribution with parameter p.

Step 8: sampling γ. This is achieved using the result of Escobar and West

[1995]. Let f(γ) denotes the prior for γ (i.e. Ga(aγ , bγ)). We know from Teh et al.

[2006] that γ is independent of the rest of the parameters given K∗ and m.., and we

have

f(γ|K∗,m..) ∝ f(K∗|γ,m..)f(γ) =
γK

∗
Γ(γ)f(γ)

Γ(γ + m..)
,

which is the marginal of f(γ, η|K∗,m..) ∝ f(γ)γK
∗−1(γ + m..)η

γ(1 − η)m..−1. We

can thus sample γ via

η|γ,K∗,m.. ∼ Be(γ + 1,m..),

γ|η,K∗,m.. ∼ πηGa(aγ + K∗, bγ − log(η)) + (1 − πη)Ga(aγ + K∗ − 1, bγ − log(η)),

where πη = (aγ + K∗ − 1)/(m..(bγ − log(η)) + aγ + K∗ − 1). We refer to Escobar

and West [1995] and Teh et al. [2006] for more details.

4.3.3 Model identification

Here we discuss two potential identifiability issues associated with the proposed

model. The first one is related to the emission distributions which are specified via

HDPM. Clearly the mixture component parameters, weights and also the cluster

assignment variables are not identifiable as the ”labelling” of mixture components

can change from iteration to iteration. However, this indeterminacy does not pose a

special problem to our inference as these mixture component themselves don’t have

substantive interpretations and merely serve as a tool to provide sufficient flexibility

in modelling the emission density.

The second identification issue, known as the label switching problem, oc-

curred in general Bayesian HMMs and it is important to address it as it can directly

impact the reliability of the posterior inference results. It arises due to the fact

that we can arbitrarily permute the state labels of a Bayesian HMM resulting in

the same joint posterior density of model parameters. In the literature of Bayesian
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nonparametric HMMs, however, this issue is sometimes overlooked or left undis-

cussed (see, e.g. Sgouralis and Pressé [2017]). It is not a concern only if the objects

of interest are label invariant [Geweke, 2007]. Otherwise, some postprocessing of

the posterior samples is needed prior to making inference. Here, we propose to use

the Kullback–Leibler (KL) relabelling algorithm developed in Stephens [2000] which

has been successfully applied for spline-based HMMs in chapter 2, and is also well-

suited to the model proposed here. More specifically, for each of the B collected

MCMC samples, we construct a T ×N dimensional classification probability matrix

whose (i, k)-th entry in our context is given by P
(t)
i,k = (π̃

(t)
k ϕ

(t)
k,si

)/(
∑N

j=1 π̃
(t)
j ϕ

(t)
j,si

),

t = 1, . . . , B, where (π̃
(t)
1 , . . . , π̃

(t)
N ) is the stationary distribution associated with the

transition matrix Π(t). The algorithm then involves iteratively searching a specific

permutation of state labels to minimize the KL divergence between classification

probabilities averaged over the B MCMC iterations, qi,k = (
∑B

t=1 P
(t)
i,k )/B, and the

classification probabilities obtained in each MCMC iteration. The ”optimized” per-

mutation identified for each MCMC sample can then be used to relabel the samples

to achieve a consistent ordering of the labels. See chapter 2 and references therein for

more details of the algorithm. In our implementation we make use of the R package

Label.switching of Papastamoulis [2016a] to perform this minimization procedure.

4.3.4 Simulation study

We demonstrate the performance of the proposed inference algorithm using a simu-

lation study where we prefix the number of states N at its true value and evaluate

the estimation performance with regard to the following three aspects:

1. Retrieval of true model parameters: The parameters of the HDP-based emis-

sion models are not identifiable so we focus on the parameters associated with

the hidden state process, the transition probabilities πi,j . We report point and

interval estimates for the πi,j which are based on the posterior mean and 95%

credible interval, respectively.

2. Decoding accuracy: We employ the commonly used normalized Hamming dis-

tance between the inferred and true state sequence as the metric for quan-

tifying the decoding accuracy (see Fox et al. [2011]; Zhou et al. [2021]). To

infer the state sequence, we first estimate the posterior state probability from

MCMC draws as

P̂r(xt = k|y) ≈ 1

B

B∑
i=1

I(x
(i)
t = k), t = 1, . . . , T, k = 1, . . . , N,
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where x
(i)
t denotes the simulated value of xt from the i-th MCMC draw. We

then estimate the state at time t via local decoding as

x∗t = argmax
k=1,...,N

P̂r(xt = k|y),

which is the most probable state at time t given all observations. In our ex-

periments we found that this local decoding approach gives superior decoding

results compared to directly selecting a simulated state sequence from MCMC

samples based on other criteria (e.g. maximize the complete data likelihood).

3. Recovery of the true emission distributions: We estimate each emission density

via its posterior predictive density, fi(·|y), i = 1, . . . , N , which is a natural den-

sity estimate in the Bayesian setting and can be easily evaluated by simulation.

More specifically, for each {ϕ(j)
k } and {θ(j)k } drawn by the MCMC algorithm,

we use the posterior decomposition property of the HDP introduced in section

4.2.3 to first generate the mixture component parameter usingθnew = θ
(j)
k w.p. ϕ

(j)
i,k , k = 1, . . . ,K∗(j)

θnew ∼ Hλ w.p. ϕ∗
i
(j)

where K∗(j) denotes the number of activated mixture components in the j-th

iteration, and then sample ynew ∼ f(ynew|θnew).

In our example we place a noninformative Ga(1, 1) prior on the HDP concentration

parameters γ and α. The hyperparameters µ0 and Σ0 in the Gaussian prior are

set to the empirical mean and covariance of the data, respectively. For the inverse

Wishart prior we set the degree of freedom V = 5 and let the expected covariance to

be equal to the empirical covariance of the data (i.e. ∆ = (V −p−1) times the sam-

ple covariance). Our results are based on 30k iterations of the algorithm, with the

first 10k samples discarded as burn in. Convergence of the sampler is examined by

monitoring the traces of the number of the activated mixture components, the con-

centration parameters, the complete data likelihood and the normalized Hamming

distance between the simulated and the true state sequence.

We simulate a data set of length T = 2000 from a 3-state bivariate HMM

such that the emission densities exhibit multimodality and non-linear within state

dependence structures. We specify the emission distributions using mixtures of two
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bivariate normal distributions:

yt|xt = 1 ∼ 0.6N2(

(
−15

10

)
,

(
100 60

60 140

)
) + 0.4N2(

(
10

40

)
,

(
100 30

30 110

)
),

yt|xt = 2 ∼ 0.35N2(

(
−5

35

)
,

(
70 −50

−50 100

)
) + 0.65N2(

(
20

10

)
,

(
100 −55

−55 130

)
),

yt|xt = 3 ∼ 0.5N2(

(
0

0

)
,

(
60 −5

−5 40

)
) + 0.5N2(

(
30

30

)
,

(
60 35

35 80

)
),

and transition matrix

Π =

 0.85 0.1 0.05

0.075 0.85 0.075

0.05 0.1 0.85

 .

We run the proposed MCMC algorithm as described earlier. Figure 4.1 presents

some trace plots that are helpful in assessing the convergence of the sampler. We can

see that the chain reaches stationarity within the first 5k iterations and no apparent

convergence issue is detected. Posterior summaries for entries of the transition

probability matrix is 0.85(0.816,0.881) 0.117(0.088,0.148) 0.033(0.017,0.053)

0.08(0.058,0.105) 0.833(0.8,0.862) 0.087(0.064,0.113)

0.053(0.032,0.077) 0.088(0.062,0.117) 0.859(0.826,0.89)

 .

where the point estimates are the posterior means of the parameters and the asso-

ciated credible intervals (shown in brackets) are obtained from the 2.5% and 97.5%

empirical percentiles of the corresponding posterior samples. Clearly the intervals

for all estimates contain their respective true values. Using our proposed local de-

coding approach, we also achieved a reasonably good match between the inferred

and the true state sequences, with a normalized Hamming distance of 0.071, which

is equivalent to a decoding accuracy of 92.9%. Our density estimates for the emis-

sion distributions along with their empirical counterparts are displayed in Figure

4.2, where the posterior predictive distributions are able to accurately reproduce

the key features of the emission distributions in each state.
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Figure 4.1: Convergence diagnostics for simulation model 1. Top left, top right,
bottom left and bottom right panels show the trace plots for the the number of
the activated mixture components, the concentration parameter α, the transition
probability π3,3 and the normalized Hamming distance between the simulated and
the true state sequence, respectively.
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Figure 4.2: Estimate of the posterior predictive density and the simulated data.
Left panel: contour plots obtained based on 20k samples of ynew for each state;
right panel: contour plots obtained based on the simulated data allocated to each
state (ground truth). All contour plots were obtained using the R function kde2d
with default bandwidths, where darker shades representing higher density regions.
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4.4 Toward fully nonparametric hidden Markov models

with HDPs

In this section we extend the HDP based HMM developed in section 4.3 to specify

the transition matrix nonparametrically via the HDP prior, permitting the number

of states to be simultaneously inferred from the data along with other model pa-

rameters. We shall first review earlier attempts in this direction and then present

our model and inference algorithms, whose performance is shown via a simulation

study.

4.4.1 HDP-HMM and its extensions

The HDP-HMM proposed in Teh et al. [2006] provides a basic and useful framework

for constructing Bayesian nonparametric HMMs with an a-priori unbounded number

of states. It makes use of the HDP to define a prior over the rows of the transition

matrix, the state-specific transition distributions, so that the state space becomes

infinite-dimensional and the transition distributions are coupled by sharing the same

set of atoms. The resulting hidden state process can be defined hierarchically as

π0 = {π0,i}∞i=1|σ ∼ GEM(σ),

πj = {πj,i}∞i=1|π0, c ∼ DP (c, π0), j = 1, . . . ,∞,

xt|xt−1, {πj} ∼ πxt−1 , t = 2, . . . , T,

(4.22)

where c, σ > 0 and the initial distribution of the Markov chain is usually assumed to

be prefixed or set to π0. Here, π0 can be understood as a global transition distribu-

tion that ties the state-specific transition distributions πj such that E[πj,k|π0] = π0,k,

while the concentration parameter c controls the variability of the πj around π0.

From (4.22) we may identify a potential limitation of this model: the probabilities

of self-transitions are not distinguished from those of out of state transitions, which

can lead to state processes that have unrealistically rapid switching between states

and generation of redundant states (see Fox et al. [2011] for more detailed investi-

gations). Fox et al. [2011] proposed a remedy for this issue by modifying the DP

prior for the transition distributions as

πj |π0, c, κ ∼ DP (c + κ,
cπ0 + κδj
c + κ

), j = 1, . . . ,∞, (4.23)

where κ is a positive ”sticky” parameter for augmenting the prior probability of

self-transitions. In particular, (4.23) implies that the expected self-transition prob-
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abilities are now given by

E[πj,k|π0, κ, c] =
c

c + κ
π0,k +

κ

c + κ
I(k = j),

which is strictly greater than π0,k when k = j for any positive values of κ. When

κ = 0 this model reduced to the original HDP-HMM. The sticky model is, however,

still inflexible to some extent due the sharing of the sticky parameter in (4.23)

across states, which induces an undesirable coupling effect between the prior on

state transition probabilities and that on self-persistence probability (see Zhou et al.

[2021] for more detailed discussions and illustrations).

More recently, Zhou et al. [2021] propose a new prior for the transition ma-

trix, termed as the ”disentangled” sticky HDP (d-sHDP) prior, to simultaneously

address the aforementioned limitations with the HDP and sticky HDP prior. The

key modification lies in the replacement of the prior in (4.23) by

κj |ρ1, ρ2 ∼ Be(ρ1, ρ2), πj |π0, c ∼ DP (c, π0),

πj = κjδj + (1 − κj)πj , j = 1, . . . ,∞,
(4.24)

where ρ1, ρ2 > 0 are hyperparameters. It is important to note that the sticky HDP

prior in (4.23) is a special case of the d-sHDP prior in (4.24) with (ρ1, ρ2) = (κ, c).

This can be seen by reexpressing the DP in (4.23) using the DP decomposition

property as in (4.6). Under this specification we can see that for sticky HDP prior

parameter c appears both in the priors for πj and in those for κj whereas for the d-

sHDP prior the sticky parameter is modelled with two free parameters, implying the

extra expressive power offered by the d-sHDP prior. By introducing additional latent

indicator variables w = (w1, . . . , wT ), the resulting hidden state process defined

under (4.24) can be equivalently specified as

wt|{κj}∞j=1, xt−1 ∼ Ber(κxt−1), t = 1, . . . , T,

xt|wt, {πj}∞j=1, xt−1 ∼ wtδxt−1 + (1 − wt)πxt−1 , t = 2, . . . , T,
(4.25)

where the κj and πj are defined as in (4.24). Clearly by integrating out the wt

we recover the d-sHDP prior in (4.24). This later formulation would facilitate the

design of the associated posterior simulation algorithms.

Posterior inference for the HDP-HMM and its variants generally relies on

sampling based methods, where we may distinguish three different MCMC sampling

strategies. The first relies on the CRF representation of the HDP and conjugate

priors for the emission model where the infinite dimensional transition matrix and
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the emission parameters are integrated out, focusing explicitly on inferring the state

sequence. The direct assignment samplers developed in e.g. Teh et al. [2006],

Fox et al. [2011] and Zhou et al. [2021] all belong to this category. However, this

method is relatively restrictive in its setting (i.e. require conjugacy) and also in the

inference outputs (e.g. samples for the transition probabilities are not available).

In addition, it can suffer from slow mixing as the states are sampled one-at-a-time.

A more popular alternative is the degree-K weak limit sampler which relies on a

finite approximation of the DP/HDP prior [Fox et al., 2011; Bauwens et al., 2017;

Zhou et al., 2021]. With relatively large choices of K (in our context it refers

to an upper bound of N) the truncated model is able to offer a reasonably good

approximation and it converges to the DP/HDP prior as K → ∞ [Ishwaran and

Zarepour, 2002]. This approximation permits joint sampling of the state sequence

via the FFBS and the resulting sampler usually has a much better mixing rate

than the first approach. On the other hand, the need to pre-specify the degree

K may pose a limitation as it directly controls the approximation error which is

difficult to quantify in practice [Hjort et al., 2010]. The third method is the so-

called beam sampler originally developed in Van Gael et al. [2008] for inference in

HDP-HMMs, and was later extended in Song [2014], Dufays [2016] and Hou [2017]

to the case of sticky HDP-HMM/infinite Markov-switching models but is not yet

available for the d-sHDP HMM variant. It uses a slice sampling technique to sample

from the exact posterior distribution, where the number of activated regimes (have

at least one allocated observation) is stochastically and dynamically truncated to

be finite at each MCMC iteration thanks to the introduction of the slice variables

and the FFBS routine is available to jointly update the hidden states. Although it

may have a relative slower mixing rate compared with the weak limit sampler, it

is usually computationally much more efficient as the number of activated regimes

during the course of MCMC simulation is usually much less than in the case where a

relatively large truncation level K is used. Simple adaptation of this beam sampler

for enhancing the mixing rate also exists [Dufays, 2016]. We refer to Mouchet et al.

[2019], Song and Woźniak [2020] and references therein for related discussions on

these different sampling methods.

4.4.2 Model formulation

We can now build a fully nonparametric HMM by an effective combination of the

HDPM based emission model introduced in section 4.3 and the d-sHDP prior de-

scribed in section 4.4.1, generalizing the state-of-the-art sticky HDP-HMM to offer

greater modelling flexibility. The generative process for the resulting full model can
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be described as

π0|σ ∼ GEM(σ),

κj |ρ1, ρ2 ∼ Be(ρ1, ρ2), πj = {πj,k}∞k=1|π0, c ∼ DP (c, π0), j = 1, . . . ,∞,

wt|{κj}∞j=1, xt−1 ∼ Ber(κxt−1), t = 2, . . . , T,

xt|wt, {πj}∞j=1, xt−1 ∼ wtδxt−1 + (1 − wt)πxt−1 , t = 1, . . . , T,

β|γ ∼ GEM(γ),

ϕk = {ϕk,i}∞i=1|α, β ∼ DP (α, β), k = 1, . . . ,∞,

st|{ϕk}∞k=1, xt ∼ ϕxt , t = 1, . . . , T, {θk}∞k=1|Hλ∼Hλ,

yt|{θk}∞k=1, st ∼ f(yt|θst), t = 1, . . . , T.

(4.26)

For notational and computational convenience we assume that the hidden Markov

chain starts at a dummy state x0 = 1 and we prefix w1 = 0. The first four lines in

(4.26) specify the hidden state process via the d-sHDP as defined in (4.24) and (4.25)

while the last four lines in the hierarchy define the HDPM-based emissions as in

(4.19) (lines 3-6), except that here the number of states N is a-priori unbounded. As

for γ and α, we further assign Gamma hyperpriors to the concentration parameters

σ and c associated with the state process, i.e. σ ∼ Ga(aσ, bσ) and c ∼ Ga(ac, bc),

and we assume that ρ1 and ρ2 are a-priori independent, each of which is assigned a

vague Gamma prior Ga(1, 1).

4.4.3 Posterior inference

We now describe an asymptotically exact MCMC method that extends existing

beam samplers for simulating from the joint posterior density of (ρ1, ρ2, σ, c, γ, β, α,

π0, {πj}, {κj}, {ϕj},x, s, {θj}), avoiding any finite truncated approximations to the

DP/HDPs underlying the model. Our modelling structure facilitates a block Gibbs

sampler that alternates between updating the parameters for the emission model

(γ, β, α, {ϕj}, s, {θj}) and those for the state process (ρ1, ρ2, σ, c, π0, {πj}, {κj},w,x).

The key computational challenge in this fully nonparametric scenario lies in the ef-

ficient simulation of the state sequence x, given the potentially unbounded state

space and the nonparametric nature of the emission distributions. Once a sample of

x is obtained, the HDPM-based emission parameters can be updated in essentially

the same way as the MCMC algorithms described in section 4.3, with N now being

random but for each MCMC iteration N is determined by counting the number of

activated regimes in the sample x.

Here, we extend the idea of beam sampling to simulate parameters associated
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with the state process conditional on the emission parameters. We augment the

model in (4.26) by introducing auxiliary variables ũ = (ũ1, . . . , ũT ) such that the

conditional density of ũt given the rest of parameters is

f(ũt|{πj}, xt, xt−1, wt) =

I(0 < ũt < 1) wt = 1
I(0<ũt<πxt−1,xt})

πxt−1,xt
wt = 0

t = 1, . . . , T. (4.27)

Clearly the inclusion of ũ does not alter the marginal distribution over the other

model parameters as by integrating out ũ we return to the original model. Impor-

tantly, conditional on ũ (and other model parameters) the number of state trajec-

tories with positive probability is finite since

f(xt|ũt, xt−1, {πj}, wt) ∝ f(xt, ũt|xt−1, {πj}, wt)

= (wtδxt−1(xt) + (1 − wt)πxt−1,xt)(wtI(0 < ũt < 1) + (1 − wt)
I(0 < ũt < πxt−1,xt)

πxt−1,xt

).

(4.28)

When wt = 1, the right-hand side of (4.28)= δxt−1(xt)I(0 < ũt < 1), enforcing

xt = xt−1. When wt = 0, the right-hand side of (4.28)= I(0 < ũt < πxt−1,xt)

where there are only finitely many xt satisfying πxt−1,xt > ũt due to the con-

straint that
∑∞

k=1 πxt−1,k = 1. Therefore the FFBS is applicable here for jointly

updating the state sequence and moreover, only parameters that are associated

with the currently active states (have at least one allocated observation) need to

be updated at each MCMC iteration. Let N∗ denote the number of currently

active states, πN∗
0 = (π0,1, . . . , π0,N∗ , π∗

0) and πN∗
j = (πj,1, . . . , πj,N∗ , π∗

j ), where

π∗
0 = 1 −

∑N∗

k=1 π0,k and π∗
j = 1 −

∑N∗

k=1 πj,k, j = 1, . . . , N∗. Our proposed sam-

pling steps for (ρ1, ρ2, σ, c, π0, {πj}, {κj},x) (conditional on the state of the emission

model) has the following structure:

• sample ũ|{πN∗
j }N∗

j=1,x,

• sample x|s, ũ,w, {πN∗
j }N∗

j=1, {κj}N
∗

j=1, {ϕj}N
∗

j=1,

• sample w|x, {πN∗
j }N∗

j=1, {κj}N
∗

j=1,

• sample {κj}N
∗

j=1|x,w,

• sample {mj,k}N
∗

j,k=1|x,w, c, πN∗
0 ,

• sample πN∗
0 , {πN∗

j }N∗
j=1|c, σ,w, {mj,k}N

∗
j,k=1,

• sample c|{mj,k}N
∗

j,k=1,x,w
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• sample σ|{mj,k}N
∗

j,k=1

• sample ρi|{κj}N
∗

j=1, i = 1, 2,

where the {mj,k} are another set of auxiliary variables introduced to facilitate the

sampling process that allow us to bypass the need to additionally invoke the CRF

representation. More details regarding each of the sampling steps are provided as

follows.

Step 1: sampling ũ. For each t = 1, . . . , T we sample ũt according to

(4.27).

Step 2: sampling x. We first expand πN∗
0 , πN∗

j , {ϕj}N
∗

j=1 and {κj}N
∗

j=1,

by sampling the ”unoccupied” parameters from their respective prior in a similar

fashion to step 4 of Algorithm 4.1 until π∗
j < mint:wt=0 ũt for ∀j = 1, . . . , N∗:

N∗ := N∗ + 1, ϵ ∼ Be(1, σ),

π0,N∗ = ϵπ∗
0, π∗

0 := (1 − ϵ)π∗
0, κN∗ ∼ Be(ρ1, ρ2),

(ϕN∗,1, . . . , ϕN∗,K∗ , ϕ∗
N∗) ∼ Dir(αβ1, . . . , αβK∗ , α(1 −

K∗∑
i=1

βi))

ϵj ∼ Be(cπ0,N∗ , cπ∗
0), j = 1, . . . , N∗ − 1,

πj,N∗ = ϵjπ
∗
j , π∗

j := (1 − ϵj)π
∗
j , j = 1, . . . , N∗ − 1,

(πN∗,1, . . . , πN∗,N∗) ∼ Dir(cπ0,1, . . . , cπ0,N∗ , cπ∗
0).

We proceed to jointly update x via a FFBS procedure. Omitting model parameters

{πj}, {κj} and {ϕj} in the conditioning set for notational simplicity, we define

α1(k) := f(x1 = k, s1|ũ1, w1, x0) ∝ f(x1 = k, ũ1|w1, x0)f(s1|x1 = k)

= w1(δx0(k)ϕk,s1) + (1 − w1)I(0 < ũt < πx0,k)ϕk,s1), k = 1, . . . , N∗,

and for t = 2, . . . , T ; k = 1, . . . , N∗,

αt(k) := f(xt = k, {si}ti=1|{ũi}ti=1, {wi}ti=1)

∝
∑
xt−1

f(xt−1, xt = k, {si}ti=1, ũt, wt|{ũi}t−1
i=1, {wi}t−1

i=1)

=

ϕk,st

∑
xt−1

αt−1(xt−1)κxt−1δxt−1(k) if wt = 1

ϕk,st

∑
xt−1:ũt<πxt−1,k

αt−1(xt−1)(1 − κxt−1) if wt = 0
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Then we simulate x by first sampling xT from

f(xT = k|{si}Ti=1, {ũi}Ti=1, {wi}Ti=1) ∝ αT (k), k = 1, . . . , N∗,

and then iteratively sample xt, t = T − 1, . . . , 1, from

f(xt = k|xt+1, {si}Ti=1, {ũi}Ti=1, {wi}Ti=1)

∝ f(xt = k, {si}ti=1|{ũi}ti=1, {wi}ti=1)f(wt+1|xt = k)f(xt+1, ũt+1|xt = k,wt+1)

= wt+1αt(k)κkδk(xt+1) + (1 − wt+1)αt(k)(1 − κk)I(0 < ũt+1 < πk,xt+1)

Note that here N∗ provides an upper bound on the number of unique states that

can be generated via the FFBS since it is guaranteed that πi,j < mint:wt=0 ũt for

∀i = 1, . . . , N∗ and j > N∗ (by construction maxi=1,...,N∗ π∗
i < mint:wt=0 ũt). After

sampling x, we update N∗ as the number of active states in x, and relabel and

reconstruct x, πN∗
0 , {πN∗

j }N∗
j=1, {ϕj}N

∗
j=1 and {κj}N

∗
j=1 accordingly where parameters

associated with the non-active states are either discarded (in the case of {ϕj}N
∗

j=1

and {κj}N
∗

j=1) or collapsed (in the case of πN∗
0 and {πN∗

j }N∗
j=1).

Step 3: sampling w. Since wt is binary, we can directly sample wt, t =

2, . . . , T , from its full conditional distribution which is given by

Pr(wt|xt, xt−1, ũt) ∝ f(wt|xt−1)f(xt, ũt|wt, xt−1),

with

Pr(wt = 1|xt, xt−1, ũt) ∝ κxt−1δxt−1(xt),

Pr(wt = 0|xt, xt−1, ũt) ∝ (1 − κxt−1)I(0 < ũt < πxt−1,xt).

Step 4: sampling {κj}N
∗

j=1. Using the Beta-Binomial conjugacy property,

the full conditional distribution for κj is given by

κj |x,w ∼ Be(ρ1 +
∑

i:xi−1=j

wi, ρ2 +
∑

i:xi−1=j

(1 − wi)), j = 1, . . . , N∗.

Step 5: sampling {mj,k}j,k=1,...,N∗ . We follow Fox et al. [2011] to sample

these auxiliary variables (in the CRF context mj,k corresponds to the number of

tables in restaurant j that serve dish k). For each pair (j, k) ∈ {1, . . . , N∗}2, initialize

mj,k = 0 and let nj,k =
∑T

t=1 I(xt−1 = j, xt = k,wt = 0). Then for i = 1, . . . , nj,k:

sample m ∼ Ber(cπ0,k/(i− 1 + cπ0,k)), and update mj,k := mj,k + 1 if m = 1.

Step 6: sampling πN∗
0 and {πN∗

j }N∗
j=1. Conditional on the mj,k, we can
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sample πN∗
0 and {πN∗

j }N∗
j=1 following the theory of HDP [Teh et al., 2006; Fox et al.,

2011] as

(π0,1, . . . , π0,N∗ , π∗
0) ∼ Dir(m.1, . . . ,m.N∗ , σ),

(πj,1, . . . , πj,N∗ , π∗
j ) ∼ Dir(cπ0,1 + nj,1, . . . , cπ0,N∗ + nj,N∗ , cπ∗

0), j = 1, . . . , N∗.

Steps 7 and 8: sampling σ, c. Sampling for the DP concentration param-

eters σ and c can be achieved by the same auxiliary sampling scheme used in steps

7 and 8 of Algorithm 4.1, where K∗, {mj,k} and {n′
i,j} are replaced by N∗, {mj,k}

and {ni,j} defined above in step 5, respectively (with slight abuse of notation). We

therefore omit the details here.

Step 9: sampling ρ1, ρ2. We employ a random walk Metropolis-Hasting

algorithm to update each of the hyperparameters as their associated full conditional

distributions do not have standard distributional forms. We first update ρ1 via a

log-normal random walk

log ρ
′
1 = log ρ1 + ϵρ1 , ϵρ1 ∼ N(0, λρ1),

where λρ1 is a tuning parameter adjusted to achieve a satisfactory sampling efficiency

with an acceptance rate of around 0.5 [Gelman et al., 1997]. The candidate ρ
′
1 is

accepted with probability

min
(

1,

∏N∗

i=1 f(κi|ρ
′
1, ρ2)f(ρ

′
1)f(ρ1|ρ

′
1)∏N∗

i=1 f(κi|ρ1, ρ2)f(ρ1)f(ρ
′
1|ρ1)

)
,

where the proposal ratio f(ρ1|ρ
′
1)/f(ρ

′
1|ρ1) = ρ

′
1/ρ1. We update ρ2 analogously,

conditional on the updated value of ρ1.

The whole MCMC algorithm completes by sampling parameters for the emis-

sion model conditional on N = N∗ and x, using steps 3-7 of Algorithm 4.1. After the

sampling process, posterior samples need to be post-processed to address the label

switching issue, which can be achieved by using the relabelling algorithm introduced

in section 4.3.3 conditioned on a fixed value of N .

4.4.4 Simulation study

We simulate a data set of length T = 2000 from a 3-state trivariate HMM. We pur-

posely choose the parameters such that the emission densities exhibit multimodality

and relatively complex within state dependence structures, where the overlaps be-

tween these densities are moderate-to-high. The emission distribution for the first
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two states are specified as mixtures of two normal distributions

yt|xt = i ∼ wi1N3(µi,1,Σi,1) + (1 − wi1)N3(µi,2,Σi,2), i = 1, 2,

with w11 = 0.55, w21 = 0.35, µ1,1 =

(
−15
10
−10

)
, µ1,2 =

(
10
40
15

)
, µ2,1 =

(
−5
35
10

)
, µ2,2 =(

20
20
−15

)
, Σ11 =

(
100 60 −20
60 140 30
−20 30 100

)
, Σ12 =

(
100 30 −30
30 110 −30
−30 −30 70

)
, Σ21 =

(
70 −50 30
−50 100 −10
30 −10 140

)
and

Σ22 =

(
100 −55 45
−55 130 30
45 30 110

)
, and that for state 3 is a mixture of three normal distributions

yt|xt = 3 ∼
3∑

j=1

w3jN3(µ3,j ,Σ3,j),

with w31 = w32 = w33 = 1/3, µ3,1 =

(
−10
−5
20

)
, µ3,2 =

(
30
30
15

)
, µ3,3 =

(
5

−10
0

)
,

Σ3,1 =

(
60 −5 20
−5 40 −10
20 −10 130

)
, Σ3,2 =

(
60 35 −20
35 80 −40
−20 −40 150

)
and Σ3,3 =

(
100 −35 30
−35 80 −40
30 −40 150

)
. The

transition matrix of this HMM is specified as

Π =

 0.75 0.15 0.1

0.075 0.85 0.075

0.025 0.25 0.95

 ,

where states exhibit different levels of self-persistence and transition patterns.

To implement the proposed MCMC algorithm, we place a slightly informative

Ga(0.5, 1) prior on γ and σ to discourage the generation of overly complex models

(i.e. too many states and large number of mixture components for the emission

distributions) and we use a Ga(10, 2) prior for α and c which encourages some

sort of ”similarity” across states. The Gaussian and inverse Wishart prior for the

emission model are chosen empirically as described in section 4.3.4. Our results are

based on 30k iterations of the algorithm, with the first 10k samples discarded as

burn in. Figure 4.3 displays some diagnostic plots that are helpful for assessing the

convergence of the sampler. The chain seems to reach stationarity within the first 5k

iterations and no apparent convergence issue is detected. The true model with N = 3

is identified as the posterior mode with a posterior probability of 0.767, followed by

N = 4 with a posterior probability of 0.206. Conditional on the number of states

estimated by the posterior mode, the transition probabilities are reconstructed as

π3
j = (πj,1, πj,2, πj,3, π

∗
j ) = κjδj + (1 − κj)π

3
j , j = 1, 2, 3,
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and the posterior means are estimated as π̂3
1 = (0.778, 0.131, 0.09, 0.001), π̂3

2 =

(0.055, 0.885, 0.06, 0) and π̂3
3 = (0.022, 0.016, 0.962, 0). Note that the last entry of

each transition probability vector, the residual probability π∗
j , stands for the prob-

ability of transiting to a new unseen state from state j. Using the proposed local

decoding algorithm, the estimated state sequence matches well with the ground

truth, with a normalized Hamming distance of 0.026, which is equivalent to a very

satisfying decoding accuracy of 97.4%. Figure 4.4 illustrates predictive density es-

timates (in terms of 2-dimensional marginals) for a specific state (state 3) along

with their empirical counterparts, where we observe a reasonably good agreement,

indicating a good fit of the nonparametric model.

4.5 Sleep analysis using acceleration and heart rate data

from the Apple Watch

Activity and heart rate are among the most commonly used physiological signals

for sleep monitoring and evaluation in a free-living condition due to the popularity

of multi-sensory wearable devices and their informativeness regarding certain sleep

stages (see Imtiaz [2021] and references therein). However, existing algorithms for

these data that achieve state-of-the-art classification accuracy for sleep detection

and staging, such as neural networks and gradient boosting decision trees (see e.g.

Walch et al. [2019] and Roberts et al. [2020]), requires extensive tuning and super-

vised training with the the polysomnography (PSG) which is very costly to collect

and label. Therefore the applicability of these supervised methods can be very lim-

ited. In addition, the generalizability of these supervised algorithms can be of con-

cern as different cohorts can exhibit very different sleep and physiological patterns

[Liu et al., 2020]. Here we find that even within the same cohort, the inter-subject

variability can be very large. Self supervised methods that do not require labeled

PSG data have also been proposed recently for sleep recognition with promising

performance on real data [Zhao et al., 2020], however, they require a rather careful

set-up and tuning of an upstream pre-training model, whose performance can have

a big impact on the downstream classification algorithms. Here we investigate the

use of Bayesian nonparametric HMMs for inferring sleep structure in an individual-

ized and unsupervised manner without pre-training. HMMs are naturally capable of

capturing the temporal dependency as well as dynamic patterns in these physiolog-

ical signals, and are superior to alternative clustering-based unsupervised methods

which ignore temporal structure in the data (see e.g. Lüdtke et al. [2021]). To our

knowledge, (parametric) HMMs have been applied for analyzing biological signals
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Figure 4.3: Convergence diagnostics for simulation model in section 4.4.4. Top panel
shows the trace plots for the the number of the active states (left) and mixture
components for the emission densities (right); bottom left and bottom right panels
show the trace plot for the transition probability π1,1 and the histogram of the
normalized Hamming distance between the simulated and the true state sequence,
respectively, both conditional on the modal number of states N = 3.

collected from the PSG [Pan et al., 2012; Langrock et al., 2013] and for actigraphy

based sleep wake classification under a supervised learning framework [Lüdtke et al.,

2021], but have not been investigated in the context of unsupervised sleep staging.

4.5.1 Data description

We considered the Apple Watch data set from Walch et al. [2019], which is openly

available in Walch [2019] from the PhysioNet platform [Goldberger et al., 2000].

It contains raw acceleration (in units of g, i.e. 9.8m/s2, measured by a triaxial
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Figure 4.4: Estimate of the posterior predictive density and the simulated data. Left
panel: marginal contour plots obtained based on 20k samples of ynew for state 3;
right panel: corresponding marginal contour plots obtained based on the simulated
data allocated to state 3 (ground truth). All contour plots were obtained using the
R function kde2d with default bandwidths, where darker shades representing higher
density regions.

accelerometer at about 50 HZ) and heart rate (beats per minute, measured by

photoplethysmography at every several seconds) recorded from the Apple Watch,

as well as labeled sleep stages scored from the co-recorded PSG for one night for a

total of 31 healthy subjects free of sleep disorders. We refer to Walch et al. [2019]
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for more details regarding the data set. In our analysis we exclude 11 subjects

from the original cohort due to incomplete data. For the remaining 20 subjects,

we preprocess the acceleration and heart rate data as follows. We convert the raw

3-dimensional acceleration signal at each time point to its Euclidean norm to obtain

a summary activity metric [Roberts et al., 2020], and the resulting 1-dimensional

signal is further averaged over 30s non-overlapping intervals. The raw heart rate

data is also averaged over 30s windows. We choose this specific resolution since it

agrees with that of sleep staging from the PSG data, and moreover, the data quality

from the Apple Watch at this resolution is established in Roberts et al. [2020] in that

both signals are strongly correlated with data from the reference devices. Figure

4.5 shows the transformed acceleration (AC) and heart rate (HR) data for three

example subjects, with PSG-derived sleep stages indicated in colors.

4.5.2 Sleep modelling with fully nonparametric HMMs

We first analyze the bivariate AC and HR data for each subject using our fully

nonparametric HMM, where we examine the ability of the HMM in retrieving the

true underlying sleep stages determined from the PSG. We notice that the shifts in

the mean levels and trends in the AC and HR signals do not appear to have clear

associations with the sleep stages, and they can cause the algorithm to generate

an excessive number of states that were not interpretable. We hence propose to

”stationarize” both AC and HR signals first before fitting the model by applying

a log transformation, followed by first differencing. The transformed data thus

approximate the percentage changes or growth rates in the original data at each

time point (as log(x/y) ≈ x/y − 1 for x/y close to 1). Unless specified otherwise,

we shall report results for the transformation of the AC and HR. In this analysis

we place a Gamma(0.3, 1) prior for γ and σ and a Gamma(10, 2) prior for α and c.

Hyperparameters of the base measures for the emission model are chosen empirically

as before. Our results are based on 30k iterations of the MCMC sampler, 15k of

which are discarded as burn-in. Postprocessing of the posterior samples for tackling

the label switching issue is achieved as described in section 4.3.3 using the R package

Label.switching.

Figure 4.5 displays the inferred hidden state sequences (piecewise horizontal

line) for our example subjects in the cohort, obtained via local decoding conditional

on the posterior modal number of states. We can see from the upper and middle

panel that the rapid eye movement (REM) sleep stage is linked to 1 or 2 states of

the fitted models which are characterized by relatively high volatility in the signals,

especially HR, with a lower level of persistency, whereas the Non-REM sleep stages,
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which include sleep stages N1, N2 and N3, can be connected to one state with a

higher state persistency. Indeed, the REM sleep stage is usually associated with

fluctuating cardiovascular activity, often resulting in an increase in heart rate with

a high variability [Boe et al., 2019]. The wake epochs are generally characterized

by a large variation in both signals and can be linked to the states estimated with

the most dispersed emission distributions. However, individual sleep stages N1, N2

and N3 were not identified by the current model base on these two signals. This

is not surprising as by visual inspection we cannot identify systematic patterns in

AC and HR during these sleep stages and the empirical distributions conditional on

these sleep stages are highly overlapped. Even in a supervised learning framework,

they have been noted to be generally very challenging or impossible to identify,

depending on the sensor modality, the cohort and also the classification algorithms

used [Imtiaz, 2021].

It should be pointed out that high inter-subject variability and complex

patterns in terms of physiological changes (in AC and HR) in different sleep stages

are observed within the cohort. In particular, the REM and Non-REM sleep may

not be distinguishable on the basis of AC and HR for some subjects. In addition,

there are also shortage and imbalance of sleep samples in certain sleep stages (i.e. a

subject may only spent a little proportion of their sleep in some sleep stages such as

N1 or N3), which can further complicate the inference especially when an HMM is

learned for every individual with only one night’s of data, as is the case here. Sleep

stage N2 is usually much more prevalent than any of the other sleep stages, and

certain sleep stages such as N3 or REM may not even appear during a sleep bout.

In these scenarios the inferred HMM states can be difficult to interpret and the

recognition power regarding the sleep stages can be very low (see bottom panel of

Figure 4.5 for an illustration). In fact, these complications pose challenges to both

existing supervised and unsupervised methods in that a model can work ”well” for

sleep staging some subjects, yet perform poorly for others and it will be important

to understand if the degree of predictability may be linked to covariates such as

age, gender, etc. Therefore there remains scope for further improvement on both

data and modelling sides. Regarding the latter, it may be fruitful to consider a

longitudinal extension to the current modelling approach which would allow sharing

of information across subjects. Nonparametric HMMs combined with semi or self-

supervised learning techniques that require little or no labelled sensor data may also

offer potential in improving the accuracy of sleep staging.
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Figure 4.5: Results for example subjects ID 1818417 (top panel), 4018081 (middle
panel) and 3997827 (bottom panel). For each subject the dots represent the 30s av-
eraged AC and HR data over the monitoring period of 1 night, where color indicates
the PSG-derived sleep stage at each 30s epoch. The piecewise horizontal line de-
notes the state sequence estimated from the fully nonparametric model, conditional
on posterior modal number of states (5,7 and 4, respectively).

4.5.3 Classification of circadian sleep-wake cycle

Results from our fully nonparametric analysis (some are not shown here) indicate

that under the unsupervised framework, wake is generally much more distinguish-
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able than any of the other sleep stages, motivating us to investigate further the

performance of our proposed HMM for the particular task of 2-state sleep/wake

identification (within the sleep bout). Although this is the lowest resolution of sleep

staging, it is of real interest as the classification result is required for the computa-

tion of some key metrics on sleep quality such as sleep efficiency and sleep latency

[Nakazaki et al., 2014]. Here, we consider and compare three different models with a

fixed number of states, namely bivariate HMMs using both AC and HR, with either

2 or 3 states and a 2-state univariate HMM based on AC only. We also investigated

other possible HMM configurations but they tended to be inferior to the models

considered in terms of the classification power and model interpretability. In this

analysis we place a Gamma(1, 1) prior for γ and a Gamma(1, 1) prior for α and

hyperparameters are chosen empirically as before. The inferred state sequence is ob-

tained based on 20k iterations of the MCMC sampler described in section 4.3, with

the first 5k discarded as burn-in. For all models the state with the most dispersed

emission distribution is assigned to represent the wake state while the other state(s)

is interpreted as sleep. We summarize the results for the cohort of 20 subjects in

Figure 4.6, where we compare the classification performance of the three candidate

models in terms of three commonly used performance metrics: overall accuracy, sen-

sitivity for sleep (proportion of true sleep epochs identified correctly) and specificity

for wake (proportion of true wake epochs identified correctly). It is interesting to

note that none of the models was uniformly best regarding the chosen performance

metrics. In general, the 3-state bivariate model achieves the highest overall accuracy

and sensitivity but suffers from very low specificity, while the 2-state bivariate model

has the lowest overall accuracy and sensitivity but achieves the highest specificity.

The performance of the univariate AC-based model with 2 states lies in-between,

indicating that the sleep-wake cycle may well be identified from AC alone. While

in principle heart rate does provide additional useful information on sleep/wake,

its contribution towards sleep/wake classification appeared to be subject-specific

was found to be very subtle under the present modelling framework, which is in

agreement with the findings from Walch et al. [2019]. We also note that our novel

solution of using nonparametric HMMs for sleep/wake identification achieves the

state-of-the-art on this specific data set in comparison to alternative unsupervised

classification methods (see e.g. Ramnath and Katkoori [2020]). Moreover, even

comparing to the best performed supervised, i.e. training with sleep stages from

PSG, neural net classifier in Walch et al. [2019] (accuracy= 90%, sensitivity= 93%,

specificity= 59.6%), our proposed models only perform slightly worse. Our relatively

low specificity and its relatively high variability across subjects is understandable
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as there are wake epochs with little/no movement and therefore less differentiable

from sleep (e.g. occurred when the subject is trying to fall into sleep). Also, the

occurrence of wake during sleep is generally low (on average only accounts for about

10% of the data). We expect that our flexible nonparametric HMM may better

fulfill its potential in situations where the cohort has sleep disorders (more wake

epochs during sleep), and it would be interesting to study if a clearer advantage of

including HR to the model can be obtained in this more challenging scenario.

Figure 4.6: Classification performance of Models 1 (bivariate 2-state HMM), 2 (bi-
variate 3-state HMM) and 3 (2-state HMM based on AC only) in terms of overall
accuracy, sensitivity for sleep and specificity for wake.

4.6 Discussion

In this chapter, we explore the use of Bayesian nonparametric techniques, in particu-

lar the hierarchical Dirichlet processes, as building blocks for constructing nonpara-

metric Bayesian HMMs in a multivariate setting which generalize existing Bayesian

nonparametric HMMs to offer extra flexibility. We first investigate the use of HDP

mixture models for nonparametrically modelling the emission distributions in a mul-

tivariate HMM with fixed number of states, and we make use of the slice sampling

technique to develop an efficient MCMC methodology for asymptotically exact pos-
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terior inference. We then extend the HDPM-based HMM to allow for automatic

learning of the number of states by specifying the hidden state process via the

disentangled sticky HDP, and we develop an exact and computationally accessible

MCMC method for inference in the resulting model via an extension of the beam

sampling technique. The performance of the proposed algorithms are illustrated via

two different simulation studies and we apply our proposed models to motion and

heart rate data collected from Apple watch for learning human sleep dynamics in

an unsupervised context.

It should be pointed out that despite the success and popularity of using

HDP or its variants for specifying the HMM transition matrix, there is still a lack of

theoretical guarantees (e.g. posterior consistency) with regard to the posterior on

number of states implied by such models. When the data is generated from a finite

mixture model, the mixture of finite mixture (MFM) model (i.e. a finite mixture

models with a prior on the number of components), which can be regarded as a

variable-dimension counterpart of the DPMM, is known to be consistent for number

of component and the mixing distribution [Nobile, 1994]. Importantly, as revealed

by Miller [2014]; Miller and Harrison [2018], there are interesting connections be-

tween the properties of the DPMM and MFM that allows efficient sampling-based

inference techniques developed for the former to be adapted for the latter, for which

posterior inference is conventionally achieved by RJMCMC method [Richardson

and Green, 1997]. Therefore an interesting direction of further investigation is to

consider extending the the use of the variable-dimension counterpart of the HDP

for modelling the HMM transition matrix, where efficient sampling algorithms and

theoretical insights may be obtained by extending existing results.
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Chapter 5

Summary and outlook

In this thesis, we explored the use of splines and the DP/HDP, both nonparametric

modelling techniques that enjoy tremendous success in applied statistical modelling

and machine learning, as building blocks to construct nonparametric HMMs in both

univariate and multivariate settings under a Bayesian modelling framework. The

resulting models generalize existing nonparametric methods for HMMs, permitting

greater modelling flexibility for complex real data while largely retaining the inter-

pretability of the conventional HMMs. We developed novel and computationally

feasible MCMC-based methods for learning and inference in such models, and we il-

lustrate their great potential to modelling physiological data from animal movement

and digital health.

In chapter 2, we introduced the first main contribution of the thesis: de-

veloping and investigating the first Bayesian methodology for inference in spline-

based HMMs, where the emission distributions are modelled via Bayesian free-knot

splines. We advocate the use of B-splines due to their nice mathematical proper-

ties, the fact that they can be effectively incorporated into the HMM framework

as they retain an attractively simple model formulation and the computational effi-

ciency of the standard HMM machinery. We introduced use of a trans-dimensional

Markov chain inference algorithm to jointly infer the HMM parameters including the

knot configuration of the B-splines, conditional on the number of states, N . Model

selection regarding the cardinality N can be performed based on the marginal like-

lihood, which can be estimated using a truncated harmonic mean estimator under

a parallel sampling framework. Using an extensive simulation study, we demon-

strated the significant advantages of our proposed approach in terms of estimation

accuracy, parsimoniousness and stability in comparison to alternative spline-based

methods, namely the frequentist P-spline-based approach of Langrock et al. [2015]
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and a Bayesian P-spline approach which is investigated for the first time in this the-

sis. Importantly, a more stable and parsimonious estimation of the nonparametric

model allows the applier to perform model selection to compare model performance

across a different and increasing number of states. The latter has been difficult

to address in the past due to convergence problems and in some relevant previous

work has been essentially avoided by pre-selecting the number of states. Our method

also compares favourably over the Bayesian nonparametric model developed in Yau

et al. [2011] as we are able to model more general emission distributions and address

the model selection problem. We showed how our methodology may be used in an

explorative way in searching for suitable parametric models in modelling animal

movement data

In chapter 3, we built on and extended the spline-based modelling framework

proposed in chapter 2 to develop a hierarchical conditional hidden Markov modelling

approach which allows us to analyse the dynamics within a specific state(s) of a

main-HMM at a finer level with another hidden Markov process(es), referred to as

the sub-HMM. In this way we were able to achieve inferences that are otherwise not

possible with a single HMM. We developed a fully Bayesian framework for jointly

learning the main and sub-HMMs. Regarding the former the MCMC method devel-

oped in chapter 2 can be directly used. For inference in the sub-HMM, we modify

the algorithm in chapter 2 by introducing the key notion of conditional likelihood,

through which the specific state of the main-HMM is conditioned and, moreover, it

can be efficiently computed thanks to the availability of a forward algorithm. We

demonstrated the potential usefulness of the proposed method by analyzing activity

data for a cohort of 44 subjects from the MESA data set. Our flexible hierarchical

framework enables us to retrospectively analyze the time-varying features of a per-

son’s sleep–wake cycle and quantify the sleep periods in a coherent and systematic

way. The sub-HMM further allows us to systematically characterize an individual’s

stochastic dynamic behaviour of transitions between, and sojourn times within, sub-

states that may be associated with deeper and lighter or interrupted sleep stages.

To our knowledge this is the first probabilistic modelling framework which may be

applied to jointly identify and characterise sleep periods on an individual basis.

In chapter 4, we exploited the strengths of the HDP and a suitable inte-

gration with HMMs to develop new Bayesian nonparametic HMMs that generalize

existing models to offer greater modelling flexibility. We first investigate the use of

HDP-based mixture models for flexible yet parsimonious modelling of the emission

distributions in a multivariate HMM with finite state space. The infinite dimen-

sionality of the resulting parameter space was tackled by developing a novel MCMC
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method which combines the slice sampling technique for efficient and exact sampling

from the HDP mixture model, and a dynamic programming algorithm for HMMs

for joint simulation of the hidden states. We then relaxed the assumption of fixed

cardinality N to allow it to be automatically adapted to the sophistication of the

data as there are scenarios when this value is unavailable a-priori. To this end,

we make use of a disentangled sticky HDP prior to specify the transition matrix

nonparametrically, leading to a fully nonparametric HMM that generalize existing

HDP-based HMMs in the literature. An asymptotically exact MCMC method was

developed for the resulting model via an extension of the beam sampling technique

and its feasibility was assessed via a simulation study. Finally, we illustrated the

use of the proposed method for joint analyzing motion and heart rate data collected

from Apple watch for unsupervised learning of sleep macrostructure.

It should be noted that the spline-based HMM developed in chapter 2 and the

HDP-based HMMs developed in this chapter have their own merits and limitations.

The former enjoys a relatively simpler modelling framework (e.g. a finite parame-

ter space) and is naturally capable of modelling complex univariate emissions with

varying degree of smoothness over the domain. Standard HMM inference algorithms

such as the forward algorithm are directly applicable in this context which makes

it convenient to perform various inference tasks and permit an extension as shown

in chapter 3. However, generalization of the spline-based HMM for multivariate ob-

servations is a challenging task without significant simplifying assumptions, and the

resulting algorithm can be computationally prohibitive. In the bivariate scenario

we expect the Bayesian P-spline-based HMM (the univariate case was explored in

chapter 2) that uses tensor product of univariate B-splines (with pre-fixed knot con-

figuration) and spatial smoothness priors to be a potentially feasible solution. On

the other hand, the latter nonparametric HMMs are suitable for modelling multi-

variate data and no adaptation of the algorithm is required when the dimensionality

of the data changes. For the fully nonparametric version of the model the ability to

generate new states that accommodate for previously unseen patterns in the data

may also be an advantage in certain applied problems. However, the relatively com-

plex model structure may result in a loss of interpretability of the model parameters

as compared to the conventional HMMs, and furthermore, convergence diagnostics

can be more difficult to perform.

The works developed here suggest a number of future research directions

that would be interesting to explore. For instance, the Bayesian methodology for

spline-based HMM developed in chapter 2 can be extended in a relatively straight-

forward manner to Markov switching generalized additive models as studied in Lan-
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grock et al. [2017, 2018] using frequentist approaches, where the splines would be

used for modelling the functional effects of the covariates instead of the emissions.

Note that in this context we no longer need to work with standardized spline ba-

sis functions, which would simplify the design of the RJMCMC algorithm and the

efficiency/mixing of the resulting algorithm may be further improved (the knot in-

sertion rule of De Boor (2001) would become exact instead of approximate, see

chapter 2). Such an extension would contribute to the literature by providing the

first Bayesian treatment of such spline-based Markov switching models. We be-

lieve that the advantages of using a Bayesian approach over a frequentist penalized

approach as observed in chapter 2 would be extended to the case here. A longi-

tudinal extension of the HDP-based Bayesian nonparametric HMMs developed in

chapter 4 for jointly analysing multiple multivariate physiological data sets is an-

other interesting future work. While parametric HMMs with continuous/discrete

random effects are commonly used [Altman, 2007; de Chaumaray et al., 2020], their

representation power is limited and significant computational burden arises in the

likelihood evaluation or model selection. It may be useful to consider adopting a

DP mixture of HMM framework, extending earlier attempts (e.g. Qi et al. [2007])

to characterise the heterogeneous behaviour of transition patterns across subjects,

in combination with a HDP prior for flexibly modelling the emission distributions

which are shared globally. The use of Bayesian free knot spline or the Bayesian

penalised spline technique may also be investigated for incorporating subject-level

covariates into the model. Another future work which I would like to consider is to

develop a flexible hidden semi-Markov modelling framework (HSMM) that general-

izes existing parametric HSMMs [Economou et al., 2014; Hadj-Amar et al., 2020b]

to allow for nonparametric emissions and automatic learning of the state complexity,

while being more flexible and computationally efficient than the existing nonpara-

metric version of the HSMM (HDP-HSMM) [Johnson and Willsky, 2013]. To this

end it may be fruitful to consider a reformulation of the HSMM as HMMs with

extended state space following earlier work of Langrock and Zucchini [2011], and

to explore an appropriate use of HDP priors (or their variants) to model the state

transition and emission distributions nonparametrically.
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and Juan Antonio Madrid. Relevance of internal time and circadian robustness

for cancer patients. BMC cancer, 16(1):1–12, 2016.

Shing-Tai Pan, Chih-En Kuo, Jian-Hong Zeng, and Sheng-Fu Liang. A transition-

constrained discrete hidden Markov model for automatic sleep staging. Biomedical

engineering online, 11(1):1–19, 2012.

Omiros Papaspiliopoulos. A note on posterior sampling from Dirichlet mixture

models. manuscript, Department of Economics, Universitat Pompeu Fabra, 2008.

Omiros Papaspiliopoulos and Gareth O Roberts. Retrospective Markov chain Monte

Carlo methods for Dirichlet process hierarchical models. Biometrika, 95(1):169–

186, 2008.

Panagiotis Papastamoulis. label.switching: An r package for dealing with the la-

bel switching problem in MCMC outputs. Journal of Statistical Software, Code

Snippets, 69(1):1–24, 2016a. ISSN 1548-7660. doi: 10.18637/jss.v069.c01. URL

https://www.jstatsoft.org/v069/c01.

Panagiotis Papastamoulis. label.switching: An R package for dealing with the la-

bel switching problem in MCMC outputs. Journal of Statistical Software, Code

Snippets, 69(1):1–24, 2016b. doi: 10.18637/jss.v069.c01.

Carrie L Partch, Carla B Green, and Joseph S Takahashi. Molecular architecture

of the mammalian circadian clock. Trends in cell biology, 24(2):90–99, 2014.

Toby A Patterson, Marinelle Basson, Mark V Bravington, and John S Gunn. Clas-

sifying movement behaviour in relation to environmental conditions using hidden

Markov models. Journal of Animal Ecology, 78(6):1113–1123, 2009.

Joe Scutt Phillips, Toby A Patterson, Bruno Leroy, Graham M Pilling, and Simon J

Nicol. Objective classification of latent behavioral states in bio-logging data using

multivariate-normal hidden Markov models. Ecological Applications, 25(5):1244–

1258, 2015.
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models using pólya–gamma latent variables. Journal of the American statistical

Association, 108(504):1339–1349, 2013.

Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny. Bézier and B-spline

techniques, volume 6. Springer, 2002.

Antonio Punzo and Antonello Maruotti. Clustering multivariate longitudinal obser-

vations: The contaminated gaussian hidden Markov model. Journal of Computa-

tional and Graphical Statistics, 25(4):1097–1098, 2016.

Yuting Qi, John William Paisley, and Lawrence Carin. Music analysis using hidden

Markov mixture models. IEEE Transactions on Signal Processing, 55(11):5209–

5224, 2007.

Mirja Quante, Emily R Kaplan, Michael Cailler, Michael Rueschman, Rui Wang,

Jia Weng, Elsie M Taveras, and Susan Redline. Actigraphy-based sleep estimation

in adolescents and adults: a comparison with polysomnography using two scoring

algorithms. Nature and science of sleep, 10:13, 2018.

Lawrence R Rabiner. A tutorial on hidden Markov models and selected applications

in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

Vishalini Laguduva Ramnath and Srinivas Katkoori. A smart iot system for continu-

ous sleep state monitoring. In 2020 IEEE 63rd International Midwest Symposium

on Circuits and Systems (MWSCAS), pages 241–244. IEEE, 2020.

Carl Edward Rasmussen et al. The infinite gaussian mixture model. In NIPS,

volume 12, pages 554–560, 1999.

147



Sylvia Richardson and Peter J Green. On Bayesian analysis of mixtures with an

unknown number of components (with discussion). Journal of the Royal Statistical

Society: series B (statistical methodology), 59(4):731–792, 1997.

Christian Robert and George Casella. Monte Carlo statistical methods. Springer

Science & Business Media, 2013.

Christian P Robert and DM Titterington. Reparameterization strategies for hid-

den Markov models and Bayesian approaches to maximum likelihood estimation.

Statistics and Computing, 8(2):145–158, 1998.

Christian P Robert and Darren Wraith. Computational methods for Bayesian model

choice. In Aip conference proceedings, volume 1193, pages 251–262. American

Institute of Physics, 2009.

Christian P Robert, Gilles Celeux, and Jean Diebolt. Bayesian estimation of hidden

Markov chains: A stochastic implementation. Statistics & Probability Letters, 16

(1):77–83, 1993.

Christian P Robert, Tobias Ryden, and David M Titterington. Bayesian inference

in hidden Markov models through the reversible jump Markov chain Monte Carlo

method. Journal of the Royal Statistical Society: Series B (Statistical Methodol-

ogy), 62(1):57–75, 2000.

Christian P Robert, Jean-Michel Marin, et al. On some difficulties with a posterior

probability approximation technique. Bayesian Analysis, 3(2):427–441, 2008.

Daniel M Roberts, Margeaux M Schade, Gina M Mathew, Daniel Gartenberg, and

Orfeu M Buxton. Detecting sleep using heart rate and motion data from multisen-

sor consumer-grade wearables, relative to wrist actigraphy and polysomnography.

Sleep, 43(7):zsaa045, 2020.

Gareth O Roberts and Jeffrey S Rosenthal. Optimal scaling for various metropolis-

hastings algorithms. Statistical science, 16(4):351–367, 2001.

Gareth O Roberts and Jeffrey S Rosenthal. Harris recurrence of metropolis-within-

gibbs and trans-dimensional Markov chains. The Annals of Applied Probability,

pages 2123–2139, 2006.

Gareth O Roberts and Jeffrey S Rosenthal. Examples of adaptive MCMC. Journal

of computational and graphical statistics, 18(2):349–367, 2009.

148



Gareth O Roberts and Richard L Tweedie. Exponential convergence of langevin

distributions and their discrete approximations. Bernoulli, pages 341–363, 1996.
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Ioannis Sgouralis and Steve Pressé. An introduction to infinite HMMs for single-

molecule data analysis. Biophysical journal, 112(10):2021–2029, 2017.

Emmanuel Sharef, Robert L Strawderman, David Ruppert, Mark Cowen, Lakshmi

Halasyamani, et al. Bayesian adaptive b-spline estimation in proportional hazards

frailty models. Electronic journal of statistics, 4:606–642, 2010.

Weining Shen, Surya T Tokdar, and Subhashis Ghosal. Adaptive Bayesian multi-

variate density estimation with Dirichlet mixtures. Biometrika, 100(3):623–640,

2013.

Michael Smith and Robert Kohn. Nonparametric regression using Bayesian variable

selection. Journal of Econometrics, 75(2):317–343, 1996.

Michael Smith and Robert Kohn. A Bayesian approach to nonparametric bivariate

regression. Journal of the American Statistical Association, 92(440):1522–1535,

1997.

Kyung-Ah Sohn, Eric P Xing, et al. A hierarchical Dirichlet process mixture

model for haplotype reconstruction from multi-population data. Annals of Applied

Statistics, 3(2):791–821, 2009.

Xinyuan Song, Kai Kang, Ming Ouyang, Xuejun Jiang, and Jingheng Cai. Bayesian

analysis of semiparametric hidden Markov models with latent variables. Structural

Equation Modeling: A Multidisciplinary Journal, 25(1):1–20, 2018.

Yong Song. Modelling regime switching and structural breaks with an infinite hidden

Markov model. Journal of Applied Econometrics, 29(5):825–842, 2014.
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