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Abstract 

In recent years, Structural Health Monitoring (SHM) has attracted significant attention 

due to its potential in providing effective maintenance strategy for infrastructure. 

However, interpreting the SHM data remains a challenging task. Model-based 

interpretation which utilises a behaviour model in the interpretation, requires experts 

in both developing the model and understanding the change in the model. On the other 

hand, data-based/model-free interpretation methods reduce the complexity since no 

physical model is utilised. However, expertise is required in performing data-based 

interpretation methods due to the need of feature extraction. This thesis is motivated 

to develop a deep learning-based data interpretation method that can learn features 

automatically, thereby minimising the required expertise. 

In this thesis, a deep learning-based method for estimating load capacity of bridges 

from bridges’ images is developed. Data labelling is performed using information 

from National Bridge Inventory (NBI) database. Parametric study is performed to 

further investigate the method.  

A deep learning-based method that utilises correlation between two or more sensor 

measurements is proposed. This method employs raw measurement data from sensors. 

The proposed method is implemented for estimating structural responses by using 

measurements from other sensor as the input. The proposed method is compared with 

other machine learning methods and the method outperforms the other methods. 

Two damage detection approaches utilising deep learning techniques are discussed: 

novelty detection and multiclass classification. Both frameworks successfully predict 

the presence of the damage that could not be detected by a frequency-based method. 

An approach that combines deep learning with Moving Principal Component Analysis 

(MPCA) as an existing damage detection method is introduced. Experimental data 

collected from a laboratory-scale bridge are employed as a case study to validate the 

method. A series of investigation on parameters used in both MPCA and deep learning 

architecture are conducted in order to observe the method.   

 

key words: Structural Health Monitoring, Deep learning, Convolutional neural 

network, Data-based data interpretation, Damage detection, Machine learning, 

Moving Principal Component Analysis
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Chapter 1 Introduction 

 

1.1 Motivation 

Infrastructure systems such as bridges, are valuable assets that play a critical role in 

the economy of regions by providing connections between communities. Currently, 

many in-service bridges have been operating for several decades, and they might have 

experienced deterioration that could reduce their service lives. Bridge failures might 

affect the economy severely as well as threaten public safety. Hence, it is important to 

maintain and recognise the structures’ condition in keeping the economy running and 

public safe. Traditionally, visual inspections were performed for condition assessment. 

However, this approach is expensive, both on time and resources, as well as subjective. 

As a potential solution, Structural Health Monitoring (SHM) has attracted remarkable 

attention in recent years due to its capability in providing efficient framework for 

monitoring structures [1], [2]. In SHM, structures are equipped with a number of 

sensors thus the structures’ condition can be monitored continuously, allowing early 

damage detection. Therefore, maintenance strategy can be timely performed in the 

initial stage of damage to prevent further damage on the structure. 

Aside from providing effective maintenance strategy, SHM also offers long term 

economic benefits as a result from the reduced maintenance and operational cost. 

According to [3], implementing SHM on bridges approaching near the end of their 

service lives provides an annual return of 5:1 in respect to the investment cost of SHM. 

In addition, Carrión et al. [4] estimated that the implementation of SHM might provide 

total economic benefit between 37,333 USD and 51,667 USD annually. Moreover, 

according to Comisu et al. [5], SHM might decrease the maintenance cost and overall 

life cycle cost of a bridge by 25% and 10% respectively. The promising operational 

and economic benefits provided by SHM lead to the wide implementation of SHM in 

various structures all over the globe. However, despite having numerous data from 

SHM, interpreting the data still remains a challenging task. 

Based on the presence of a behaviour model, data interpretation for SHM can be 

categorised into model-based and data-based interpretation approaches. In model-

based data interpretation, a physical model representing the monitored structure, 
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usually a Finite Element Method (FEM) model, is employed to estimate structural 

responses. Data interpretation is then performed by comparing the actual data obtained 

from sensors and the estimation from the model. In this approach, deviation from the 

model prediction indicates anomaly from normal condition thus the deviation is then 

employed using inverse method to further analyse the structure’s condition. This 

approach suffers from the fact that creating a model that can perfectly mirror a 

structure is challenging and requires high level of expertise.  

On the other hand, the data-based interpretation methods reduce the complexity in the 

interpretation since no physical model is involved in the process. The methods require 

no information about the structure’s geometry or material since the interpretation is 

made by analysing the statistical pattern generated from the data.  Generally, the data-

based interpretation approach involves three main steps: data collection, feature 

extraction, and interpretation. In data collection, data, consisting of both structural 

responses and measurements of surrounding environment, are collected using a sensor 

system installed on a structure. Then, feature extraction is performed on the data to 

extract important information that can be useful for interpretation. Finally, based on 

the comparison on the extracted features, interpretation on the structure’s condition is 

performed. 

Despite the promising potential for SHM application, the data-based interpretation 

method also has a limitation. In applying this method, feature extraction might be 

considered as one of the most important steps as the selection of features might affect 

the accuracy of the interpretation. However, high level of domain knowledge is 

required in determining the important information to be extracted from raw data. 

Furthermore, the feature extraction steps are often performed based on the researcher’s 

professional experience. 

Therefore, the following research questions arise:  How can we develop a method that 

can automatically learn features from data which might improve the data-based 

interpretation for SHM? How can we further enhance the existing data-based 

interpretation methods? 
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1.2 Objectives 

This thesis aims to establish and develop a method for data-based interpretation of 

SHM, that can automatically learn important information from the data. Therefore, it 

can contribute in SHM field by reducing the level of knowledge required in performing 

data-based interpretation on SHM data. The objectives of the thesis are as follows: 

• Develop a method for data interpretation on SHM data, either in the form of 

visual (images) or time history data. 

• Develop a method that can automatically learn important information from 

SHM data. 

• Improve existing data-based interpretation methods by incorporating deep 

learning. 

• Test and validate the methods using laboratory and full-scale case studies. 

1.3 Outline 

The outline of the thesis is as follows: 

Chapter 2 presents a review of literature on SHM including the data interpretation 

methods. In addition, a review of methodologies for data-based interpretation 

employing various approaches is presented. 

Chapter 3 introduces a deep learning-based method for estimating bridges' load 

capacity. The method employs images of bridges as the input and generate estimation 

of bridge capacity in the form of load rating and design load.  

Chapter 4 presents a data-based approach that implements deep learning for 

interpretation of time-series data. The method utilises correlation between sensor 

measurements and can be implemented for damage detection, sensor calibration, and 

estimation of missing data. The method is validated using data obtained from a a full-

scale bridge. 

Chapter 5 presents two damage detection frameworks employing deep learning. The 

first framework is based on novelty detection in detecting damage and it utilises a deep 

learning model that is trained in unsupervised way. On the other hand, the second 

framework employs deep learning models that are trained through supervised learning 
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in order to predict both the presence and severity of damage on a bridge. In addition, 

parametric study on the model parameters is discussed in this chapter. 

Chapter 6 presents a data-based interpretation method that combines deep learning 

and an existing methodology for damage detection purpose. This chapter includes the 

investigation on the impact of parameters to the damage detection performance. 

Chapter 7 outlines a summary of conclusions on the thesis. This chapter also provides 

an assessment of how well the research objectives are achieved. Finally, areas of future 

works are also detailed in this chapter.
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Summary 

 

In this chapter, a review of literature on SHM a is presented (section 2.1). 

The data interpretation methods for SHM that consist of model-based and 

data-based interpretation approaches are then discussed in section 2.2. 

Section 2.3 discusses further the methodologies that are used in data-based 

interpretation method including principal component analysis, moving 

principal component analysis, random forest, artificial neural networks, and 

multiple linear regression. The limitations of the data-based interpretation 

method are summarised in section 2.4 and deep learning techniques that 

provide potential solution for the limitation on current data-based method are 

reviewed in section 2.5. Section 2.6 reviews the convolution neural network 

and its implementation in the application of SHM. Finally, section 2.7 

provides the summary and identifies the research gaps in the implementation 

of deep learning for SHM application. 

 

 

  



Chapter 2. Literature Review 

6 
 

2.1 Structural Health Monitoring (SHM) 

There are some definitions on SHM. According to Housner et al. [6], SHM is the 

process utilising both sensing technologies and structural characteristics analysis for 

damage detection on structures. In addition, according to Aktan et al. [7], SHM should 

be considered within the field of condition assessment. SHM is also often defined as 

the process of utilising advanced damage detection strategy for civil, mechanical, and 

aerospace engineering structures [8]. Radzienski et al. referred SHM as the process of 

employing damage detection methods by using structural features [9]. To sum up, the 

main objectives of SHM lie in both damage detection and structural assessment.  

There are three main areas of research on SHM such as damage identification, 

structural identification, and measurement system design. Generally, damage refers to 

the change in material, and/or structural geometry which might influence the structural 

performance [8]. Hence, the damage identification task involves performing 

comparison between two different conditions, one is generally representing the 

undamaged state. According to Rytter [10], the damage identification steps conducted 

using SHM system can be categorised as: 

• Detection – identify the presence of damage. 

• Location – verify the location of the damage. 

• Classification – identify the type of damage. 

• Assessment – collect information on the damage extent. 

• Prognosis – estimate the residual life and asses the structural safety. 

On the other hand, Structural identification is aimed to provide structural parameters 

and numerical models of the monitored structures [11]. The main objective of 

structural identification is to reduce the gap between the behaviour model and the real 

system in order to create a model that can help in assessing the structure’s condition 

reliably. Structural identification task involves creating/updating a structure’s 

numerical model based on actual response collected using SHMs. 

Measurement system design deals with the optimal selection and placement of sensors 

[12]. The main aim of the measurement system design is to provide a cost-effective 

monitoring system while maintaining the accuracy of the system. Although it is 

beneficial to have a large number of sensors installed on a structure, installing these 
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sensors and the supporting devices (i.e., cable, construction material, and data 

acquisition) requires high level of investment especially for the implementation on 

large structures. Therefore, optimal number of sensors have to be decided in order to 

minimise the installation cost. Moreover, in some scenarios, the sensors might even 

need to be installed inside the structure (i.e., embedded inside the concrete). Thus, in 

some cases, relocating sensors are not feasible hence careful planning is required in 

deciding where to install the sensors. On the other hand, the accuracy of modal 

parameter identification relies heavily on the sensors’ placement in the structure. In 

this case the number of sensors have to be sufficient enough to obtain data that can 

accurately represent the structures. Therefore, measurement system design is 

necessary to find the optimal sensor number and location in order to provide efficient 

and accurate monitoring system.  

According to [13], the process in SHM consists of four main steps: operational 

evaluation, data collection and cleansing, feature extraction, and interpretation using 

the extracted features. The operational evaluation is performed to gather information 

including the damage definition, the operational and environmental condition of the 

monitored structures, the challenges in data collection considering the surrounding 

environment, and the feasibility in implementing the system [13]. Data collection step 

is conducted by using sensors that are installed permanently on the structure. At 

present, SHM gain advantages from the advance of sensor and data technologies, 

allowing the possibility to deploy numerous sensors on structures for obtaining 

monitoring data. Various types of instruments such as accelerometer [14]–[17], strain 

gauges [18], fibre optic sensor [14], Global Positioning System (GPS) [19], video 

camera [20], elastomagnetic (EM) sensor [21], and laser-based sensor [22] have been 

employed for bridge monitoring application.  

After data collection step, data cleansing is performed on the collected data to remove 

corrupt data before conducting feature extraction step. Feature extraction refers to the 

process of generating useful information from raw data. This process is aimed to 

retrieve damage sensitive parameters that can be used to identify the change in the 

structural condition. Finally, in the last step, the extracted features are utilised for the 

data interpretation. This step requires the use of behaviour or/and statistical models 

depending on the interpretation method that is applied.  
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In recent years, SHM has grown rapidly for monitoring long-span bridges as numerous 

SHM systems have been deployed on bridges all around the world. Some well-known 

bridges that have been installed with SHM system are Tamar Bridge [17], [23] and 

Humber Bridge [23] in the UK; Tsing Ma Bridge [18] and Stonecutters Bridge [24] in 

Hong Kong; Rainbow Bridge [25], Yokohama Bay Bridge [15], [25], and Higashi 

Kobe Bridge [26] in Japan; and Sutong Bridge [27] and Jiangyin Bridge [19] in China. 

While the aforementioned bridges employ wire-based SHM, some bridges such as 

Jindo Bridge [28], Yongjong Grand Bridge [29], Golden Gate Bridge [16], Caihong 

Bridge [30], and Jinzhou Bridge [30] adopt wireless sensor network technology for 

SHM. The wireless sensor network removes the need of cable installation since the 

data transmission is performed using wireless communication. Hence, the cost for the 

sensor installation required for cable installation can be reduced. In civil engineering 

application, the implementation of SHM is not only limited for bridge monitoring, but 

also for monitoring of dams [31]–[33], [33]–[36], tunnels [37]–[41], stadiums [42]–

[46], and buildings [47]–[53]. In addition, apart from civil engineering application, 

SHM systems have been widely adopted in broad range of applications including 

mechanical [54]–[60], and aerospace engineering [61]–[69].  

The data generated by SHM systems can be in the form of measurement data or 

images. The advance of computer vision field has opened great opportunity for vision-

based SHM. Vision-based SHM combines sensors, image processing, and computer 

vision for SHM application. Vision-based SHM involves non-contact measurement 

thus offering simple installation, potentially providing a cost-effective alternative from 

conventional sensors. In vision-based SHM, visual data can be processed individually 

or in combination with measurement data. This is generally performed by analysing 

the pixels from the images. Previous research has implemented vision-based SHM for 

a broad range of application including defect detection and structural response 

monitoring. 

The purpose of defect detection using vision-based SHM is to find structural damage 

such as for crack, spalling, rust, and loose bolt from images. Most research and 

application utilising vision-based SHM for bridge monitoring utilises zoomed images 

of a bridge part (i.e., bridge’s deck, connection, and tower) as the input. The images 

are generally obtained by using a camera that can either be installed in the site or 

attached to a moving vehicle (i.e., car, unmanned aerial vehicle, etc). Traditionally, 
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the method requires extraction of features using hand-crafted technique from the 

image pixels. Then analysis is performed on the extracted information to determine 

the presence of damage. Various hand-crafted feature extraction methods have been 

employed. For example, Abdel-Qader et al. extracted PCA data from images of 

concrete deck from different condition for detecting the crack on the concrete surface 

[70]. Liu et al. utilised the edges from images as features for crack detection on 

concrete structures [71]. The author then utilised the features to train an SVM model 

in supervised way. In addition, Abdel-Qader et al. investigated four edge detection 

methods such as Fast Fourier Transform (FFT), fast haar transform, Canny detector, 

and Sobel [72]. In the research, edges were extracted from images of concrete and the 

information was employed for crack detection. It was shown that the fast Haar 

transform outperformed the other hand-crafted techniques. Hu et al. employed the 

textures and shape descriptors extracted from pavement images for crack detection 

[73]. In the research, SVM models were trained using the extracted features, and 

comparison with traditional edge-based methods was performed. It was shown that the 

proposed method managed to detect all cracks while tackling the illumination 

problem.  

In addition to defect detection, vision-based SHM has been implemented for 

monitoring structural responses. For this type of application, generally the method is 

initiated by performing calibration on the camera. The purpose of the calibration is to 

find the scaling factor for conversion from pixels units to engineering units. The next 

step is performed by selecting Region of Interest (ROI). The ROI can be either a part 

of structures or an additional object installed on a structure (i.e., pre-installed markers, 

LED lamp, or panel). From the ROI, features are extracted, and object tracking is 

performed on the extracted features. In the final step, the movement of the features 

obtained through the visual tracking are translated into engineering units using the 

scale factor obtained during the calibration process.  

Some research employing vision-based SHM for monitoring structural response has 

been reported. In 2015, Feng et al. proposed a vision-based method for measuring 

displacement of a bridge structure remotely without using artificial marker [74]. In the 

research, a conventional displacement sensor was used for comparison, and it was 

found that the proposed method achieved comparable measurement accuracy. In 

addition, it was also shown that the proposed method could further be used to measure 
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high-frequency components. In 2018, Lydon et al. developed a multi-point 

displacement monitoring method for SHM using computer vision techniques [75]. In 

this research, multiple cameras were employed for monitoring bridge's displacement 

in several testing points. In addition to measuring displacement data, the method also 

utilised a camera to identify the load. During the field testing, two cameras were used 

to measure displacement and one camera was utilised to identify the vehicle type 

associated with the displacement. The vehicle information might potentially allow the 

calculation of global and local responses of the bridge to a passing vehicle. Feng et al. 

developed a vision-based cable force estimation method in 2017 [76]. In the research, 

cable vibration measurement was initially performed by using vision-based technique 

on images collected from a video camera. Fourier transform was then executed on the 

vibration data, and by using the frequency information, the cable force data were 

estimated. The results obtained from the proposed method were compared with a load 

cell reading and it was found that the proposed method produced maximum 5.6% of 

deviation from the costly conventional sensor. The promising potential of vision-based 

SHM has attracted significant attention for research community. Research on this 

method has been performed further for more advance application such as model 

updating [77], dynamic analysis [78], modal identification [79]–[81], and damage 

detection [82], [83]. 

2.2 SHM Data Interpretation methods 

Currently SHMs have been widely employed for monitoring numerous structures all 

around the world, and from these systems, significant amount of data has been 

generated over time. The next important part of the process is how to gain important 

information from the data to understand the condition of the monitored structures. In 

general, the data interpretation method for SHM can be categorised into model-based 

and data-based methods [8], [84], [85]. The classification is based on the utilisation of 

physical models in interpreting the data. For more detail explanation on the 

weaknesses and strengths of each methods, the reader is referred to [86]. 

2.2.1 Model-based interpretation method 

Model-based method utilises a behaviour model of the monitored structure, typically 

in the form of Finite Element Analysis (FEA) model, that is combined with inverse 

techniques in interpreting the data [87]. The model-based method generally involves 
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two stages. In the initial stage, a model is calibrated by using data from SHM in order 

to increase its accuracy. At this stage, the structure is assumed to be in its healthy 

condition where no damage is present. In the next stage, the new response data 

collected from the SHM are compared with the prediction from the model and the 

deviation from the model is then used to update the model parameters [88]. This 

process is also known as the model updating technique which aims to minimise 

residual between actual data and model predictions [89]. Then, by interpreting the 

updated parameters, the structure’s condition is determined. 

In the initial stage of SHM implementation, the research was focused on model-based 

interpretation. In model-based method, most research has been performed on vibration 

analysis [90]–[93]. In this case, structural conditions are determined by identifying 

changes in stiffness in relation to the change in the vibration characteristic such as 

mode shapes or natural frequencies. In addition, research utilising model-based 

technique that employs static observation has also been reported [94], [95]. In the 

research, model updating has been executed by using displacement and strain 

measurements instead of vibration characteristic. 

Implementing model-based method could be challenging since the method requires a 

model that can perfectly resemble the monitored structure. On the other hand, creating 

such models demands high level of expertise thus could be time and resource 

consuming. Moreover, understanding the updated parameter might also require high 

level of knowledge in the field. In addition, some assumptions are generally taken 

when building the models which might introduce uncertainties leading to inaccurate 

models. Finally, finding the type and optimal number of parameters can be a problem 

in employing model-based interpretation method [96]. The models might require the 

use of large number of parameters since in most scenarios the potential damage type 

and location is unpredictable. 

2.2.2 Data-based interpretation method 

Data-based interpretation methods employs advance statistic techniques on the 

monitoring data in order to learn the pattern from the data [8], [84]. This method 

requires no geometrical or material information of the structure being monitored since 

the features required for the interpretation are learned from the data, removing the 
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need of implementing a behaviour model in the process. In this method, machine 

learning techniques have been widely adopted [84]. 

Data-based methods involve three main steps:  

• data collection - structural responses and several types of loads (i.e. traffic and 

temperature data) are measured and collected using sensors. 

• feature extraction – damage sensitive features that provide useful information 

in determining the health state of the structure are extracted from the data. 

• Prediction – the structure’s condition is determined from either classification 

or regression by using the extracted features as the input.  

In SHM application, machine learning methods can be employed in three ways: 

supervised, unsupervised, and semi-supervised. In supervised learning, each 

observation is given its corresponding label, generally by the structure’s condition 

when the data are collected, and a model is trained to predict the structure’s condition 

based on the input features. On the other hand, unsupervised learning requires no 

labelled data. In general, this method is applied for novelty detection where a threshold 

level is defined by using a statistical technique and anomaly is detected when an 

observation exceeds the threshold. Finally, semi-supervised learning utilises the 

combination of both labelled and unlabelled data in the process. 

2.3 Methodologies for Data-based Interpretation  

2.3.1 Principal Component Analysis (PCA) 

PCA is one useful technique that can be used for data dimensionality reduction while 

preserving the important information from the original datasets [97]–[100]. This is 

achieved by transforming the data into a new and smaller set of uncorrelated variables 

that are generally called as principal components. The principal components are 

formed by a linear combination between the original variables and these components 

orthogonal to each other. 

Consider a dataset 𝑈(𝑡) that contain some time series measurements from S sensors: 
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 𝑈(𝑡) =

[
 
 
 
𝑢1(𝑡1) 𝑢2(𝑡1) ⋯ 𝑢𝑠(𝑡1)

𝑢1(𝑡2) 𝑢2(𝑡2) ⋯ 𝑢𝑠(𝑡2)
⋮ ⋮ ⋱ ⋮

𝑢1(𝑡𝑁𝑚) 𝑢2(𝑡𝑁𝑚) ⋯ 𝑢𝑠(𝑡𝑁𝑚)]
 
 
 
 (2-1) 

 

where 𝑁𝑚 is the total number of data points, 𝑢𝑖 (𝑖 = 1, 2, … , 𝑆) represents the response 

of i-th sensor, and 𝑡𝑗  (𝑗 = 1, 2, … ,𝑁𝑚) denotes the response at time step j. PCA is 

initialised by performing normalisation on the original dataset as follow: 

 𝑈′(𝑡) =

[
 
 
 
 
 
 
 
𝑢1(𝑡1) − µ1

𝜎1

𝑢2(𝑡1) − µ2
𝜎2

⋯
𝑢𝑠(𝑡1) − µ𝑠

𝜎𝑠
𝑢1(𝑡2) − µ1

𝜎1

𝑢2(𝑡2) − µ2
𝜎2

⋯
𝑢𝑠(𝑡2) − µ𝑠

𝜎𝑠
⋮ ⋮ ⋱ ⋮

𝑢1(𝑡𝑁𝑚) − µ1

𝜎1

𝑢2(𝑡𝑁𝑚) − µ2

𝜎2
⋯

𝑢𝑠(𝑡𝑁𝑚) − µ𝑠

𝜎𝑠 ]
 
 
 
 
 
 
 

 (2-2) 

 

where µ𝑖  and 𝜎𝑖  (𝑖 = 1, 2, … , 𝑆) are the mean value and the standard deviation of the 

measurement from i-th sensor, respectively. Normalisation plays an important role in 

PCA to avoid dominant variables because of different measurement units used by the 

variables in a dataset [101]. After the transformation, all variables will be in the same 

scale. The normalisation will produce variables with zero mean and unit variance.  

The next step on the PCA method is computing the 𝑀 ×𝑀 covariance matrix of the 

normalised dataset. the covariance matrix 𝐶 is given by: 

 𝐶 =
1

𝑀
𝑈′𝑇𝑈′ (2-3) 

 

where 𝑀 equals to the number of sensors used in the process. After the covariance 

matrix has been generated, the principal components are then calculated by obtaining 

the eigenvalue and eigenvector from the covariance matrix as follows: 

 (𝐶 − 𝜆𝑖𝐼)𝜓𝑖 = 0 (2-4) 

𝜆𝑖  and 𝜓𝑖  are the eigenvalue and its corresponding eigenvector, respectively. From this 

step, a total of 𝑀 eigenvectors each having its corresponding eigenvalue are extracted. 

The eigenvectors are also called as principal components. These principal components 
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are sorted based on the eigenvalues in descending order where the first principal 

component contains the highest variance from the dataset thus keeping the important 

information from the measurement. The second principal component has the second 

highest variance, and it is orthogonal to the first component. From this process, the 

first few principal components will have the most variance while the remaining 

components might only contain the noise from the measurement [84], [98]. Therefore, 

PCA analysis is generally conducted on the principal components that contain the most 

information. 

Since it is easier to interpret and analyse a small set of uncorrelated variables, PCA 

has been broadly implemented in wide range of domain including engineering, 

biology, chemistry, geology, and social sciences. PCA has been implemented in SHM 

field, mainly for both dimensionality reduction and removal of environmental effects. 

For data dimensionality reduction, Ni et al. [102] proposed a damage detection method 

that combined neural network and PCA-compressed frequency response function 

(FRF) data. In this research, PCA was employed to reduce both the data dimension 

and noise from the FRF data collected from a building model at both undamaged and 

damaged condition. In this study, the performance of the proposed method was 

compared with the performance of a neural network that employed original FRF data 

as the neural network’s input and it was shown that the PCA-based method 

outperformed the latter in term of prediction accuracy and robustness to measurement 

noise. In addition, Kromanis et al. [103] applied PCA for reducing feature dimension 

from dataset containing temperature and structural response measurements. This 

research was aimed to evaluate four machine learning approaches in predicting 

thermal responses. In this research, time histories of temperature and bridge responses 

were processed for noise and outlier removal. Then PCA was employed in the 

processed data for feature reduction and machine learning models were trained using 

the reduced features. The application of PCA managed to reduce the computational 

resource without significantly decreased the prediction accuracy of the prediction 

models. Furthermore, Mao et al. [104] employs PCA for automated modal 

identification. In the research PCA was applied for features reduction as well as noise 

removal. Modal validation criteria were calculated and PCA was utilised to transform 

the multidimensional criteria into a lower dimensional space. Next, k-means clustering 

was used on the first principal component generated from PCA to extract modal 
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parameters. The method was validated using data from a laboratory model and SHM 

data. It was shown that the method successfully removed spurious modes and 

separated the close modes. 

The data dimensionality reduction leads to the needs of smaller computation resources, 

potentially enabling the execution of data processing in the sensor nodes. In 2008, 

Park et al. [105] proposed a wireless micro electro-mechanical sensor that utilised 

PCA for damage detection on structures. The sensor system combined a micro-fibre 

composite patch and a low cost AD5933 data acquisition (DAQ) where the PCA 

operation for dimensionality reduction and noise reduction was executed. The features 

extracted from PCA were then clustered using k-mean algorithm to determine the 

structure’s condition. The proposed sensor was tested on aluminium structure. In the 

experiment, data from both healthy and damaged state were collected, and it was 

shown that the proposed wireless sensor managed to detect the damage by performing 

on-board computation.  

Some research that employed PCA to remove environmental effects from data has also 

been reported. in 2012, Magalhães et al. [106] performed data analysis on two years 

of monitoring data obtained from an arch bridge. The analysis was performed by using 

the natural frequencies derived from accelerometer data and PCA was employed to 

reduce the impact of parameters such as humidity or wind load. Four damage scenarios 

were simulated by using a numerical model, and the proposed method suceesfully 

detected these conditions. Furthermore, Hu et al. [107] implemented PCA on three 

years of monitoring data collected from a footbridge to remove the environmental 

effect on the measurement for damage detection purpose. In this research, a damaged 

state dataset was generated using a behaviour model, and the proposed method 

managed to differentiate between healthy and damaged state data. Similarly, 

Concepcion et al. [108] employed PCA to compensate the temperature effect to the 

acceleration measurement. In this research, a wireless sensor network containing six 

nodes, each equipped with a temperature sensor and accelerometer, was installed on a 

concrete bridge. Temperature and acceleration data were collected on the bridge 

undamaged and damaged condition. Then, PCA was used to remove the temperature 

influence on the acceleration measurements. In 2015, Comanducci et el. [109] utilised 

PCA for removal of wind effects for damage detection purpose. In the research, 

acceleration data were generated using a numerical model by using wind speed data 
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obtained from real measurement data. Modal properties were calculated using 

stochastic subspace identification procedure [110] and 12 frequencies were used in the 

research. PCA was applied to remove the effect of wind load from the time history of 

these frequencies. Damage was simulated by introducing various damage levels on the 

simulation model. Damage detection was performed in both noise-free and noisy 

environment and it was shown that the method could successfully detect the damage 

on different damage levels while producing robust performance even in the presence 

of noise.  

In addition to measurement data, PCA has also been utilised on image processing for 

damage detection. In 2006, Abdel-Qader et al. [70] implemented PCA on images of 

concrete deck for crack detection. In this study, a database containing images of 

bridges obtained from different conditions was used. The PCA method then was 

utilised under three different approaches to detect crack from the image. Furthermore, 

Ho et al. [111] proposed a method based on image processing for detecting damage 

on cable surface of cable-stayed bridges. In the research, image data showing surface 

of cable bridges were collected by using a climbing robot. Initially, images were 

collected and labelled according to the presence of damage for training data. In 

detecting surface damage, PCA was applied on the input image to calculate the 

Mahalanobis distance for pattern classification. This method achieved 75% accuracy 

in detecting 40 damage cases, and the accuracy could be improved by increasing the 

amount of training data. Finally, due to the capability in the dimensionality reduction, 

PCA has also been exploited for data visualisation [112]. In this case, a dataset that 

previously consists of more than two variables can be visualised in 2-D plane by using 

PCA.  

2.3.2 Moving Principal Component Analysis (MPCA) 

PCA has a primary drawback: inclusion of all available data in performing the 

analysis. This drawback could lead to high resources required to perform the 

calculation. In addition, the inclusion of the undamaged and damaged state data when 

performing PCA might affect the capability in damage detection. In a scenario when 

damage just recently occurs, the undamaged state dataset might still heavily affect the 

measurement hence additional time delay is required before the eigenvector will be 

altered due to the damage [99]. To tackle this problem, MPCA that employs a moving 
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window of fixed size in which PCA calculation is performed was introduced by 

Posenato et al. [113] in 2008. Figure 2.1 shows the steps executed in MPCA. 

 

Figure 2.1 Steps performed in MPCA for time series data 

In MPCA, a moving window of a fixed size 𝑁𝑠 is sliding through time series. As the 

window slides, an individual PCA operation is conducted on the time series 

observation inside the window. The process involves normalisation on the data inside 

the window, calculation of covariance matrix from the normalised data, solving the 

eigenvalues and eigenvectors from the covariance matrix, and sorting the eigenvectors 

based on the eigenvalues. This way, the PCA calculation is only executed on the data 

inside the window instead of on the whole dataset. There are two main advantages that 

are achieved from the execution of PCA on the moving window. Firstly, it increases 

the computation efficiency due to the smaller number of data points when compared 

to performing PCA on the whole observations. Furthermore, it is possible to separate 
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the damaged state data from the healthy state data by using the moving window. 

Therefore, MPCA also improves the capability in discriminating between features of 

undamaged and damaged state which results to improved damage detection 

performance. 

MPCA is generally analysed on the first few eigenvectors since they contain most of 

the measurement variance. On the other hand, the remaining eigenvectors hold less 

important information that might be contributed by the measurement noise.  

In the application of structural damage detection, MPCA is usually implemented in 

two phases: training and monitoring phases. In the training phase, it is assumed that 

there is no damage in the structure. The purpose of the training phase is to define a 

threshold level for separating the anomaly, that occurs due to damage, from normal 

measurement. For this purpose, all eigenvectors that are obtained during training phase 

are calculated and stored. Then, the mean value µ𝑖 and the standard deviation 𝜎𝑖 of 

each eigenvector 𝜓𝑖 are collected. The threshold value for eigenvector 𝜓𝑖 is then 

determined as µ𝑖 ± 6𝜎𝑖 [84]. 

During the monitoring phase, by using MPCA, new eigenvectors are obtained as the 

moving window slides through time series. These new eigenvectors are compared with 

the baseline threshold that has been defined in the training phase. Due to the presence 

of damage, the structural responses might be affected thus altering the covariance 

matrix, eigenvalues, and eigenvectors. Therefore, if the new eigenvector exceeds the 

threshold that has been defined in the training phase, then an anomaly that might 

indicate the presence of damage on the structure can be detected. 

The size of the sliding window is considered as one of the most important parameters 

in performing MPCA. In selecting the window size, the periodic variability of the 

measurements has to be taken into account in order to reduce the variation that might 

not be caused by the structural damage. According to Laory et al. [84], [98], at least 

the window size should be the same with the longest periodic behaviour. This way, 

the periodic variability in the principal components obtained from MPCA can be 

avoided. 

Some research that implements MPCA for SHM application has been reported. In 

2008, Posenato et al. [113] utilised MPCA for damage detection using displacement 
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data obtained from a numerical model. In this research, four damage scenarios were 

simulated, and the MPCA-based method was able to detect all scenarios. In 2011, 

Laory et al. [98] compared the performance of damage detection methods utilising 

MPCA and regression analysis. From this research, it was found that MPCA 

outperformed regression analysis in term of damage detectability although the latter 

produced shorter time delay in detecting damage. Cavadas et al. [114] proposed a 

damage detection method using combination between influence line and MPCA 

methods in 2013. Influence lines time histories were simulated using various loading 

data and anomaly was then detected by performing MPCA operation on the generated 

dataset. In this study, regression analysis was also performed as a comparison, and it 

was shown that the MPCA could detect and locate the damage despite requiring higher 

time for detection compared to the regression analysis method. Malekzadeh et al. [115] 

employed MPCA for damage detection using fiber optic sensor. In the research, strain 

data collection was conducted using 12 fibre bragg grating sensors installed on a 

laboratory scale bridge on six scenarios, where five scenarios represent the bridge’s 

damaged state. A Low pass filter was applied to remove frequency above 2Hz and 

MPCA was employed on the filtered data. Damage index of each sensor was 

calculated using the first and second principal components of the corresponding sensor 

and damage detection is performed by monitoring all damage indexes. It was shown 

that the method utilising MPCA successfully detected damage on most damage 

scenarios. 

In addition, MPCA has been combined with other methods for SHM purpose. Laory 

et al. [116] proposed a strategy for monitoring design of SHM system by combining 

MPCA and genetic algorithm methods. The approach was executed by performing 

genetic algorithm as a stochastic search with the objective of optimising multiple 

criteria such as the number of non-detectable damage scenarios, time delay for 

detection, and damage detectability. These criteria were extracted by using MPCA and 

regression analysis and decision was performed by using multi-criteria decision-

making methods. Furthermore, in 2013, Laory et al. [84] combined MPCA with 

regression analysis methods such as Robust Regression Analysis (RRA), Support 

Vector Regression (SVR), and Random Forest to perform damage detection. The 

performances of the combined methods were compared with the performances 

produced when each method was executed individually, and it was shown that the 
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combined methods outperformed the individual method in term of damage 

detectability and detection delay.  

Some research performs data processing before the implementation MPCA. Zhu et al. 

[97] developed a damage detection method that combined Independent Component 

Analysis (ICA) and MPCA to extract thermal-induced strain from strain measurement. 

In this research, PCA was performed initially for feature reduction. Then ICA was 

executed on the reduced dataset to separate between traffic and temperature-related 

strain. MPCA operation was then conducted on the separated thermal-induced strain 

data for damage detection. The proposed method successfully improved the traditional 

MPCA method by reducing the delay in detecting anomaly while increasing damage 

detectability. In addition, Zhang et al. [99] proposed an improved MPCA-based 

damage detection method by combining space window with the traditional MPCA 

method. In the research, all sensors were clustered based on their location. MPCA was 

then operated on these clusters instead of doing on whole sensor data. The proposed 

method was verified using a numerical model and it was found that performing MPCA 

on the sensor cluster located near the damage could improve damage detectability 

compared to performing MPCA on the whole dataset. 

2.3.3 Random Forest 

In 2001, Breiman et al. proposed a computationally efficient technique for large 

datasets [117]. The approach is one of ensemble learning methods in which several 

randomly generated tree predictors are employed either for classification or regression 

problem. In Random Forest, each of the tree predictor produces output and the final 

output is made by aggregating. In regression problem where the prediction value is 

continuous, the final output is obtained by taking average value from the output of all 

tree predictors. On the other hand, for classification problem where the output is 

grouped into a categorical response, the output is produced by voting from the 

predictions made by the tree predictors. The use of multiple predictors instead of only 

one predictor offers higher performance and robustness to noise. 

For regression problem, ensemble regression trees are utilised as the predictors in 

Random Forest. A single regression tree is constructed by splitting a dataset (root 

node) recursively into more homogeneous groups, which are called as nodes. Each 

node will either splits to create two descendant nodes or forms an end point which is 



Chapter 2. Literature Review 

21 
 

referred to as terminal node as illustrated in Figure 2.2. For regression problem, at 

each node, the value of one input variable will be compared with a certain point. 

generally, if the input value is less than the split-point, then go to the left node. 

Otherwise, the right node is picked when the input value is higher. In the regression 

tree, each observation will take the appropriate path down until it arrives at the 

respective terminal node which determine the prediction result. 

 

Figure 2.2 Example of a basic regression tree 

Consider an original dataset 𝐿(𝑡) = (𝑥𝑗(𝑡), 𝑦(𝑡)), where 𝑥 is the input containing 

explanatory variable(s), 𝑦 is the dependant variable, 𝑡 = 1,2, . . , 𝑁 is the number of 

data points, and 𝑗 = 1,2, … , 𝑝 is the number of input variables. Random Forest 

approach is initiated by generating 𝐵 sub-datasets that are randomly created from 

copying random data points from the original dataset 𝐿 until each sub-dataset has equal 

number of samples as the original dataset. Due to the random sampling process, some 

data points might be copied more than once, while some might never be used in each 

sub-dataset. The samples which are not copied into a sub-dataset is employed as 

validation set of the corresponding sub-dataset.  

The next step in the Random Forest is constructing 𝐵 regression trees based on the 𝐵 

sub-dataset. Each generated sub-dataset will be employed in training its corresponding 

regression tree and performance evaluation of each tree is conducted using the 

corresponding validation set. As mentioned above, when given input data, each 

individual regression tree will generate prediction by following the path of the input 
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data until it reaches the terminal node. Then, the final output of the Random Forest 

regression is obtained by averaging the output values from all regression trees as 

described in (2-5). 

 𝑦(𝑥) =
1

𝐵
∑𝑦𝑏(𝑥) + 𝑒

𝐵

𝑏=1

 (2-5) 

 

On the other hand, for random forest classifiers, the output is obtained differently. 

Each tree votes for a category and the Random Forest model picks a category with the 

highest number of votes as the output.  

In designing Random Forest, some parameters should be taken into consideration such 

as the number of trees, the minimal node size, the number of randomly sampled 

variables considered at each split (generally referred to as mtry), and the splitting rule 

[118]. These parameters are also called as hyperparameters. Similar to 

hyperparameters on other machine learning techniques, the optimal values of these 

hyperparameters are problem dependent and the choice might affect the performance 

of the Random Forest model. In addition, the hyperparameter optimisation often 

involves trade-off between two or more objectives. Therefore, it is necessary to find 

the best value of hyperparameters that yields the lowest prediction error while 

avoiding overfitting. 

The application of Random Forest technique for SHM field has been reported. The 

technique has been utilised to solve both regression and classification problems. In 

2013, Laory et al. [84] combined MPCA with three regression analysis including 

Random Forest, SVR, and RRA. The Random Forest method was employed to 

perform regression between two elements in an eigenvector extracted from original 

dataset through MPCA. Furthermore, in 2014 Laory et al. [119] compared five 

machine learning approaches such as Random Forest, SVR, Artificial Neural Network 

(ANN), Multiple Linear Regression (MLR), and regression tree using monitoring data 

from Tamar Bridge as the case study. In this research, prediction models based on 

these five methods were trained to estimate the bridge’s natural frequency using 

traffic, temperature, and wind loading as the predictors. In the research, both the 

Random Forest and SVR outperformed the other techniques. In addition, it was also 

found that both traffic and temperature loading affected the natural frequencies 
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significantly thus having these parameters is important when utilising frequency-based 

damage detection method. In addition, Xu et al. [120] compared ANN and Random 

Forest techniques for estimating structural responses. In the research, monitoring data 

from Forth Road Bridge were utilised. In the research PCA was used for data 

dimensionality reduction and Autoregressive Integrated Moving Average was 

employed to estimate the traffic condition. The traffic loading along with other data 

were employed as predictors to train machine learning models for estimating strain 

measurements. It was shown that the Random Forest model produced higher accuracy 

compared to the ANN model. 

In performing classification function, Random Forest technique involves supervised 

learning where labelled data are utilised in the training. The data are firstly categorised 

into a number of classes and each data point is labelled according to its corresponding 

class. In 2018, Huang et al. [121] utilised Random Forest Algorithm for damage 

detection on benchmark data. This study employed American Society of Civil 

Engineers (ASCE) benchmark data which contained accelerometer measurements that 

were collected from seven conditions. Initially, feature extraction from the labelled 

acceleration data was performed using Cross Correlation Function (CCF) and Wavelet 

Packet Decomposition (WPD) and by using PCA, the extracted features were filtered 

based on the importance. The filtered features were then fed into Random Forest 

model for supervised training. The result was then compared with the result from an 

SVM model as a non-ensemble machine learning technique. The Random Forest 

algorithm produced significant increase in prediction accuracy compared to the SVM 

model. In 2020, Lei et al. [122] proposed a method for bridge evaluation utilising 

Random Forest classifier. Measurement data from a real bridge were collected and 

used to calibrate a behaviour model. Then, in total 672000 bridge models were created 

using Latin Hypercube Sampling (LHS) from the calibrated model. The data that were 

generated from these models were labelled into three classes including “Open”, 

“Restrict”, and “Close”, and then divided into 70% training and 30% testing dataset 

for supervised learning of Random Forest classifier. It was shown that the proposed 

method successfully achieved prediction accuracy between 89% and 97%, depending 

on the bridge component and system. Finally, Wang et al. proposed a method 

implementing Random Forest classifier for monitoring bolt connection on structures 

[123]. In the research, Random Forest models were utilised for classification of joint 
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condition using features extracted from vibration data. In total, eight scenarios 

including the healthy state were implemented in the research and the random forest 

classifier generated prediction accuracy higher than 90%.  

In addition to processing measurement data, Random Forest classifier has also been 

implemented to process visual data for damage detection. Van Der Horst et al. [124] 

developed a Random Forest-based road damage detection method using laser scan 

data. In this research, data were collected using a laser scanner installed on a car. By 

using K-means clustering, features were extracted from the images and these features 

were used as inputs for the Random Forest classifier that determined if damage has 

occurred on the road.  

Aside from being implemented as either a classifier or regressor, Random Forest has 

also been implemented for feature extraction. In 2014, Zhou et al. [125] implemented 

Random Forest for feature selection in performing damage detection. In this research, 

WPD was initially applied on acceleration data to generate features. Then, by using 

Random Forest model, these features were ordered according to the variables’ 

importance and the less important variables were omitted. The remaining features 

were then applied on K-nearest neighbour model to classify the structure’s condition. 

In this research, the model with fewer features produced higher prediction accuracy. 

Another application of Random Forest in SHM field was also reported in 2019 [126]. 

Unlike the previously mentioned research that detected damage on structures, this 

research proposed a fault detection method on wireless sensors. There are some 

problems that might occur on the wireless sensor network such as data loss fault, gain 

fault, offset fault, and spike fault. In this research, Random Forest was implemented 

to detect the type of fault on the sensor. In total, six different types of failure were 

studied and six classifiers including Random Forest, Convolutional Neural Network 

(CNN), ANN, Support Vector Machine (SVM), Probabilistic Neural Networks 

(PNN), and Stochastic Gradient Descent (SGD) were implemented. It was shown that 

in all fault conditions, the Random Forest classifier managed to achieve the highest 

performance metric. 

2.3.4 Artificial Neural Networks (ANNs) 

Artificial neural networks (ANNs) are one of the computational models that are 

inspired biologically from how human brain process information [127]. The aim of 
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the implementation of ANN models is to formulate the nonlinear relation between 

input and output variables by utilising layers of connecting neurons. In ANNs, the 

nodes in one layer are fully connected to the nodes in both previous and next layers. 

Each connection has its own associated weigh which is iteratively updated during the 

training step. Generally, ANNs consist of input layer, hidden layer(s), and output layer 

as it can be seen in Figure 2.3. 

 

Figure 2.3 General architecture of ANNs consisting of one hidden layer between the 

input and output layers 

In ANNs, the output of each neuron can be expressed as:  

 𝑞𝑗 = 𝑓1(∑𝑃𝑖𝑤𝑖𝑗
1

𝑖=𝑟

𝑖=1

+ 𝑏𝑗
1) , (𝑗 = 1,2,… , 𝑠) (2-6) 

 

where 𝑃 is the input of the neuron from the previous layer, 𝑞 is the output of the 

neuron, 𝑤 is the scaled weigh of the neuron, 𝑏 is the bias, and 𝑓 is the activation 

function adopted in the layer. The activation function introduces non-linearity to the 

model. Commonly used activation functions for ANNs are sigmoid and tanh that are 

given by (2-7) and (2-8) respectively. 

 𝑓(𝑥) =
1

1 + 𝑒−𝑥
 (2-7) 

 

 𝑓(𝑥) =
1 − 𝑒−2𝑥

1 + 𝑒−2𝑥
 (2-8) 
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Sigmoid activation function uses a real-valued function as an input and produces an 

output in the range between 0 and 1 [128]. The outputs obtained from sigmoid are not 

zero-centred which might slow down the optimisation process. In addition, sigmoid 

also suffers from vanishing gradient. On the other hand, tanh produces zero-centred 

outputs in the range of -1 and 1 [129]. Similar to sigmoid, tanh also suffers from 

vanishing gradient problem. 

During the training process, the training parameters, including the weighs and biases 

on ANN models, are modified iteratively to reduce the error that is produced from the 

discrepancies between the prediction and actual values. Commonly, backpropagation 

algorithm is implemented to minimise the error. In each training step, a set of inputs, 

also known as a mini batch, is feed into the models and the outputs are compared to 

the desired values. When there is small difference between these values, then no 

adjustment is performed on the training parameters on the models. On the other hand, 

when large error is produced, this error will propagate backward to modify the training 

parameters. The iterative training process will be finished either when the model has 

achieved a predefined level of error or when the training process has reached a 

predefined number of training iterations. 

ANN has been broadly implemented in wide range of domains and for SHM 

application, some research utilising ANN has been performed for solving both 

regression and classification problems. In 2006, Lam et al. [130] employed ANN for 

identifying as well as locating damage on a structure. In the research, data were 

collected from a steel truss finite element model and Ritz vector changes were 

calculated from the data in the feature extraction stage. The features were utilised as 

the input of the ANN model, and it was shown that the ANN model could accurately 

predict all three damage scenarios. Furthermore, in 2008 Li et al. [131] utilised ANN 

for damage detection on a simulated three-span continuous beam. In the research, 

beams containing single and multi-damage cases were simulated and displacement 

data at the mid-point of each beam were collected. In the research the changes of 

variance produced from structural displacement were employed as the input for the 

ANN model. The ANN model produced identification accuracy between 80-88% by 

using the developed method. In 2019, Finotti et al. [132] proposed damage detection 

method using combined machine learning and statistical analysis. In the research 10 

statistical indicators including signal peak, mean, kurtosis, standard deviation, 
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skewness, crest factor, mean square, root mean square, K-factor, and variance were 

extracted from raw vibration measurement and used as features for training SVM and 

ANN classifier. Three case studies were implemented to validate the method and it 

was found that the ANN model generated prediction accuracy above 87.1% on all 

cases.  

In addition to the implementation in wired-based SHM, ANNs have been implemented 

on wireless sensor networks. Xie et al. [133] investigated the implementation of ANN 

on a wireless sensor network for damage detection on a bridge. In the experiment, 400 

wireless sensors were installed to measure acceleration on a bridge. Then, the data 

were grouped into four classes: healthy, damage level 1, damage level 2, and damage 

level 3. In the feature extraction stage, the natural frequency on each accelerometer 

was derived from the accelerometer measurement and the data were fed into an ANN 

model. Comparison was performed with other machine learning methods such as 

SVM, Decision Tree, and Logistic Regression and it was found that the ANN model 

produced the highest performance in term of prediction accuracy, recall, and noise 

robustness. Moreover, in 2019, Concepcion et al. [108] combined PCA and ANN for 

detecting damage on a reinforced concrete bridge. In the research, a wireless sensor 

network containing six rechargeable sensor nodes, each composed of a Raspberry Pi 

3 Model B, temperature sensor and accelerometers, was deployed on a bridge platform 

to collect acceleration and temperature data. PCA was employed on the collected data 

to remove the influence of the temperature on the vibration. The compensated 

acceleration data were then utilised as the input of ANN models and the data were 

divided into 70% training, 15% validation, and 15% testing sets. Supervised learning 

with three labels each representing the structure’s condition was performed using the 

training set. In this research, prediction accuracy up to 99.8% was produced by 

implementing the ANN model. 

In addition, research implementing ANN regressor for damage detection has been 

reported. Jeyasehar et al. [134] utilised ANN for damage detection on prestressed 

concrete beams. In the research, some parameters including natural frequency, 

deflection, crack width, and ultimate load were utilised as damage sensitive features. 

In total five ANNs each having various type of input features were trained using 

backpropagation algorithm. It was found that all trained ANN models could predict 

expected damage level with deviation below 10%. Neves et al. [135] performed 
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unsupervised learning using ANN for damage detection on a railway bridge. In the 

research, a numerically simulated railway bridge was used for the investigation. Six 

acceleration measurements were conducted and train passages with various load and 

speed were simulated. Six ANN models were trained to predict acceleration 

measurements in six locations. The input features of each ANN model consisted of the 

acceleration measurements from all locations, each having five datapoints, the train 

axle load, and the train speed. The output of these models was the prediction of future 

acceleration measurements. The output from the prediction model was then compared 

with the actual value to calculate the root mean square error (RMSE). Threshold level 

was determined using Gaussian process and anomaly was detected when the RMSE 

was exceeding the threshold. In addition, Mousavi et al. [136] performed damage 

localisation and quantification by using an ANN regressor. In the research, vibration 

data were collected from a laboratory truss bridge under an excitation. Features were 

extracted using Complete Ensemble Empirical Mode Decomposition with Adaptive 

Noise (CEEMDAN) [137] and the extracted features were further transformed using 

Hilbert-Huang Transform (HHT) [138]. ANN models were trained using data from 

the healthy state. The model employed the features extracted using CEEMDAN as the 

input and the data transformed using HHT as the output. The proposed method 

detected damage by measuring the residuals generated between the output of ANN 

models and the actual data that were transformed using HHT. By comparing the 

residuals created from the sensors installed on different locations, the method was able 

to both quantify and localise the damage.  

Research in compensating environmental effects to structural responses using ANNs 

has been reported. The reported research was mostly performing regression using 

ANN. In 2010, Zhou et al. [139] implemented ANN to find the correlation between 

natural frequencies and temperature using measurement data from Ting Kau Bridge 

SHM. In the research, some ANN models were trained by using combination of 

temperature data including the mean temperatures, the effective temperatures, and the 

principal components obtained from PCA application. Results showed that, given 

sufficient principal components, the model trained using the principal components 

generate the highest prediction accuracy. In 2014, Kromanis et al. [103] evaluated four 

machine learning techniques such as ANN, MLR, SVR, and robust regression for 

estimating thermal response. In the research, regression models were utilised to predict 
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structural responses from the variation in the temperature data. In this study, all data 

were initially processed to remove the noise and outliers. Then PCA was performed 

for dimensionality reduction purpose. From the reduced features, pairs that consist of 

measurement from one temperature sensor and one tiltmeter/strain gauge were 

generated. These pairs were then used for the regression model that used temperature 

measurement as the input and the other measurement as the output. Furthermore, in 

2018, Zhang et al. [140] developed a method for temperature compensation on cable 

force measurement. In this research, cable force measurement was conducted by using 

EM sensors. Each cable force measurement was accompanied by a temperature 

measurement and the actual force was obtained from the load cell reading on the 

hydraulic jack used to stretch the cable. The uncompensated EM sensor and 

temperature sensor readings were then used in the supervised training of ANN models 

and during the training process, the output of the ANN model was compared with the 

load cell measurement. Comparison was performed with temperature compensation 

based on polynomial fitting, and it was shown that higher performance was achieved 

by using the ANN model.  

2.3.5 Multiple Linear Regression (MLR) 

Linear regression offers powerful statistic tools for data analysis. The basic principle 

of linear regression is employing the linear relationship between a dependant variable 

𝑦 and an explanatory variable 𝑥 [84], [103], [141]. MLR represents linear regression 

with two or more explanatory variables. The linear regression is formulated as: 

 𝑦(𝑥) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑝𝑥𝑝 (2-9) 

where 𝛽 (𝛽1, 𝛽2, …, 𝛽𝑝) are the regression coefficients that correspond to the 

explanatory variables 𝑥 (𝑥1, 𝑥2, 𝑥3, …, 𝑥𝑝). The regression coefficients are also known 

as weights. These coefficients are obtained by using the least squares method to 

minimise the error function, generally the mean square error. In a simple regression 

with one explanatory variable, only 𝛽0 and 𝛽1 are employed. 

The weights in linear regression model determine the impact of the explanatory 

variables to the prediction [142]. As shown in (2-9), each explanatory variable 𝑥𝑖  (𝑥1, 

𝑥2, 𝑥3, …, 𝑥𝑝) is multiplied by its corresponding weight 𝛽𝑖 (𝛽1, 𝛽2, …, 𝛽𝑝) before 

producing a prediction of 𝑦(𝑥). When a variable 𝑥𝑖 is connected to a positive 𝛽𝑖, the 

variable contributes positively to the prediction. On the other hand, if a variable is 
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connected to a negative weight, then it will decrease the prediction value. The 

magnitudes of the weights define the influence of the corresponding explanatory 

variables. If a variable has a corresponding weight with a large magnitude, then the 

variable affects the prediction greatly. On the other hand, the variables whose 

corresponding weights have zero magnitude, produce no impact to the prediction.  

In many engineering scenarios, a dependant variable is usually predicted using 

multiple parameters hence MLR is generally employed instead of linear regression 

[103]. MLR has been widely used for SHM application mainly for damage detection 

and environmental effects removal. Sohn et al. [143] proposed MLR-based damage 

detection using monitoring data from Alamosa Canyon Bridge. In the research, MLR 

models were trained to predict natural frequencies of the bridge using thermometer 

readings as the predictors. Observation collected from a test performed in 1996 was 

utilised for training data while dataset obtained in 1997 was used as the testing data. 

A threshold level was defined using 95% confidence interval and the measurements 

outside the interval were detected as abnormal data. In addition, Peeters et al. [144] 

also applied linear regression analysis in order to detect the presence of damage using 

data from Z24-Bridge (Switzerland) as the case study. In the research, data from the 

bridge were collected for one year before damage was introduced to the bridge. Linear 

regression models were trained to generate eigenfrequencies as the output by using 

temperature measurements as the input. In this research, simulation errors that were 

produced from the discrepancies between the actual and prediction values were 

compared with a threshold defined using 95% confidence interval. The method 

successfully detected the introduced damage from the presence of abnormal data 

exceeding the threshold. Furthermore, Deng et al. [145] implemented linear regression 

for condition assessment of Runyang Bridge. Similar to the previously mentioned 

research, in this research, linear regression models were trained using temperature data 

as the input to predict structural responses such as natural frequencies and 

displacement. For each prediction models, a threshold level defined using 95% 

interval was set for detecting anomaly.   

On the other hand, MLR has also been implemented for investigating the 

environmental influence on the structural responses. Liu and DeWolf [146] observed 

the influence of temperature on natural frequencies of a concrete bridge in 2006. In 

this research, estimation of the first three natural frequencies of a curved concrete box 
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girder bridge was generated using linear regression models that employed temperature 

measurements as the input.  It was concluded that natural frequencies are sensitive to 

temperature hence temperature should be taken into consideration in performing 

damage detection. Ding and Li [147] investigated the environmental effects including 

wind and temperature loading on the variation of displacement measurement on 

Runyang Bridge. In the research linear regression was applied to analyse the 

correlation between the environmental effects and the bridge response. It was shown 

that for Runyang Bridge, temperature influences displacement measurement 

significantly while the wind loading has weak correlation with the displacement. 

Furthermore, In 2014, Kromanis et al. [103] compared four machine learning 

techniques including MLR, ANN, SVR, and robust regression for compensating 

thermal effect from measurement of structural responses. In this study, regression 

models were employed to estimate structural responses by using temperature data as 

the input of the models. Initially, data were processed to remove outlier and noise. 

This process was followed by performing PCA on the processed data for feature 

reduction. Using the selected features, regression models were trained in supervised 

way with the objective of estimating structural response using temperature data. 

Other applications of MLR in SHM is for identifying correlation between monitored 

parameters. In 2003, Li et al [148] employed MLR for fatigue assessment of a bridge. 

In the research, strain gauge data collected from Tsing Ma Bridge monitoring system 

were used for the analysis. In total six strain gauge measurements were picked in the 

analysis. Initially, all time histories were transformed into frequency domain data by 

using FFT. Then, MLR was applied on the transformed data. In this case, the 

regression model estimated one strain gauge measurement in frequency domain using 

the other five transformed strain data. Other statistical methods including the median, 

mean, and mode methods were utilised as a comparison and it was shown that the 

MLR produced the closest response to the original data. Mata et al. [149] also 

implemented MLR to observe correlation between the structural response and 

temperature. In this research MLR models were trained to estimate the value of 

displacement and temperature using water height data as the input. The residuals 

obtained from the differences between the predictions and the actual values for these 

two parameters were then calculated. The time-frequency analysis was then performed 

on the residuals in order to identify the correlation between these parameters.  
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2.4 Limitation on conventional methodologies for data-based interpretation 

Despite the potential, there are some challenges in implementing the data-based 

interpretation methods. In the method, feature selection is one of the most important 

aspects and the quality of the features could significantly influence the interpretation 

results. However, finding the useful features for one problem requires high level of 

knowledge on the problem under investigation. In addition, most of the conventional 

methods relies on hand-crafted features where useful information from the data is 

extracted manually based on the researchers’ experience. This could result in biased 

estimates or losing important information from the data. In addition, it might be 

difficult to explore new features that might improve the interpretation. 

In addition, the data-based interpretation methods might suffer from the sensitivity of 

the hand-crafted features. In damage detection, some features might be sensitive to 

other parameters aside from damage. For example, some research employs data-driven 

method that utilises manually extracted natural frequencies [134], [150]–[152]. 

However, it has been reported that the parameter is also sensitive both to the traffic 

condition and surrounding environmental condition. It has been shown that the 

temperature could cause daily frequency variation of 5%, and over 10% seasonal 

frequency variation [18], [153], [154]. The temperature induced shifts in the 

frequencies are often falsely identified as damage in the structure [155], [156]. In 

addition, frequencies might also be affected by the traffic loading. The variation in 

daily traffic loading could cause daily frequency shift over 5% [157]. Therefore, using 

natural frequencies as features without considering the sensitivity to other parameters 

might affect the accuracy of damage detection. It is desirable to develop a feature 

extraction method that can adaptively extract useful information by considering 

impact from other measurements. 

Furthermore, modern SHMs generally employ large number of sensors and cameras 

in monitoring the structure’s condition comprehensively. As a result, the system 

generates large amount of data over time. Due to the huge size of monitoring data, it 

is extremely challenging to perform feature extraction from the monitoring data 

manually. In addition, the more sensors/cameras applied in the system the larger the 

data dimension which might provide further obstacle in implementing conventional 



Chapter 2. Literature Review 

33 
 

feature-based interpretation. This might impact the quality of the extracted features 

which might further influence the interpretation results. 

2.5 Deep Learning 

During the past decade, scalable machine learning techniques that can process large 

amounts of high-dimensional data have transformed many sectors, such as automated 

driving, medical imaging, and natural language processing. In particular, deep learning 

methods have replaced conventional feature-based machine learning by automating 

the feature extraction process and reducing the requirement of human domain 

expertise [158], [159]. Deep learning achieves this by employing many layers of 

processing stages hierarchically [142], [158], [160]. There are some deep learning 

architectures that have been reported such as CNN, restricted Boltzmann machine, 

deep belief network, and autoencoder. Among the architectures, CNNs are considered 

as the most successful deep learning model [158], [160]. 

2.6 Convolutional Neural Networks (CNNs) 

Currently, deep learning has gained popularity in the image processing field, 

particularly due to the rise of Convolutional Neural Networks (CNNs). CNNs have 

architectures which are inspired by part of mammalian brain which is known as the 

primary visual cortex in processing visual input [142]. Introduced in the early 1990’s, 

CNN rose into prominence in 2012 when a CNN-based prediction model produced the 

best performance in ImageNet competition. Following this success, CNN has 

revolutionised the field of computer vision and become a state of the art for recognition 

and detection purpose [158]. In addition, it has been utilised in a wide range of 

applications such as image classification for a large number of classes [161]–[163], 

traffic sign recognition [164], medical object classification [165]–[167], face 

recognition [168], [169], and damage detection in structures [170]–[174]. In addition 

to automatic feature extraction, CNN can produce excellent performance for complex 

image recognition task due to the capability of CNN in exploiting the local spatial 

correlation between pixels in the image [158]. Unlike other image recognition 

algorithm, CNN depends on the spatial separation instead of the spatial position, 

hence, combination of local features is more important than the location of features 

which might be varied on images.  
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In general, the CNN architecture combines both feature extraction and classifier into 

one body as it can be seen in Figure 2.4. In the feature extraction stage, a series of 

combinations between convolution and pooling layers is generally applied. 

 

Figure 2.4 General architecture of CNNs that combines both feature extraction and 

classification in one body 

2.6.1 Convolution Layers 

In the convolution layer, a number of filters are moving around the input data while 

performing convolution to extract features from the data. This convolution operation 

sums the products obtained from element-by-element multiplication between the 

kernel and input array and is explained in (2-10): 

 𝑓(𝑖) = ∑𝑆(𝑖 + 𝑛)𝐾(𝑛)

𝑣𝑘

𝑛=1

 (2-10) 

 

where 𝑆 is the input array, 𝐾 is the kernel, and 𝑣𝑘 is the kernel size. Every filter 

employs kernel of equal weight to extract features from the input data. This is also 

known as weight sharing that provides efficient computation due to the use of fewer 

parameters. Depending on the type of the dimension on the input data, either two two-

dimensional (2-D) CNN or one-dimensional (1-D) CNN is implemented. 2-D CNN is 

usually employed for processing images. This technique employs two-dimensional 

filters that move in two directions. On the other hand, 1-D CNN is primary utilised for 

time-series data or texts. This technique utilises one-dimensional filters that move in 

one direction. Figure 2.5 illustrates the operation performed in 2-D convolution layers. 
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Figure 2.5 Illustration of 2-D convolution operation on a 5x5 input using a 3x3 filter. 

The red square in the results matrix represents the product of convolution operation 

between the filter and the red area in the input matrix.  

There are some parameters that are involved in the utilisation of convolution layers 

such as filter size, filter number, stride, and padding. The filter size corresponds to the 

size of the receptive fields that are used to extract features. This parameter determines 

the number of weighs inside a filter. The filter number controls the number of filters 

utilised in each convolution layer. Each filter produces its own feature map which 

represents unique information from the input. 

As it has been mentioned previously, CNNs employ filters that convolve around the 

input. Stride defines how far the filter moves over the input matrix. Figure 2.6 

describes an example of the implementation of stride in the convolution layers. As 

shown in Figure 2.6 (a), when stride of 1 is implemented, the kernel only shifts for one 

unit over the input matrix. As shown in Figure 2.6 (a), initially, the filter performs 

convolution on the green area in the input matrix resulting to the green square in the 

output matrix. Then, the filter moves to the blue area in the input matrix and the 

product of the convolution operation is shown as the blue square at the output matrix. 

On the other hand, when stride of 2 is implemented, the filter directly moves to the red 

area in the input after performing convolution operation on the green area as described 

in Figure 2.6 (b). This results to smaller size of output matrix compared to the size of 

the output matrix when stride of 1 is implemented.  
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(a) 

 

(b) 

Figure 2.6 Example of stride implementation in 2-D convolutional layers utilising 

2x2 filter; (a) Stride of 1; (b) stride of 2. 

 

Padding is applied to increase the effective size of the input before entering the 

convolution layers. In CNN architecture, the first convolution layer reduces the size 

of the original input and the successive convolution layers might further decrease the 

size. Padding can be used to tackle this problem by adding fillers around the boundary 

of the input. In general, zero padding which adds zero on the boundary of the input is 

utilised. Figure 2.7 shows the utilisation of zero padding on a 3x3 input matrix. As it 

can be seen from the figure, padding increases the size of the input matrix from 3x3 

into 5x5. 
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Figure 2.7 Example of zero padding implementation on a 3x3 input. Additional 

fillers (green boxes) are added on the boundary of the input. 

2.6.2 Activation Functions 

After completing the convolution process, non-linear activation function such as 

sigmoid, tanh, ReLU (Rectified Linear Unit), or LReLU (Leaky Rectified Linear Unit) 

is applied. The implementation of activation function in neural networks is crucial 

since it introduces non-linearity to the CNN models.  

Figure 2.8 shows the comparison of activation functions that can be implemented for 

CNNs. Initially, sigmoid and tanh activation functions were commonly used in neural 

networks. Figure 2.8 (a) and Figure 2.8 (b) illustrates the sigmoid and tanh activation 

functions, respectively. As it has been mentioned in section 2.3.4, both the sigmoid 

and tanh activation functions suffer from vanishing gradient problem. In 

backpropagation algorithm, the error is transmitted backward, and the gradient 

information in each layer is employed in updating the weighs on the corresponding 

layer. Due to the vanishing gradient problem that occurs on both sigmoid and tanh 

activation functions, it is challenging to retrieve the gradient information. This 

situation becomes more severe when implementing deep learning models that employ 

many processing layers. As a result, it is challenging for the deep models to determine 

the direction where the parameters should be updated to reduce the error. To tackle 

this problem, ReLU activation function can be implemented. ReLU has been widely 

adopted as an activation function for deep learning models recently, due to the 

efficiency and simplicity [175]. The function is given as: 

 𝑓(𝑥) =  {
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

 (2-11) 
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As it can be seen in Figure 2.8 (c), ReLU activation function retains gradients for those 

in the right side of the function. This property helps in tackling the vanishing gradient 

problem that occurs in the sigmoid and tanh activation function. In addition, it also 

offers better training speed and cheaper computation compared to both sigmoid and 

tanh activation functions [161]. However, as it can be seen in the figure, in ReLU 

activation function, the gradient of those in the left side of the function is always zero. 

As a result, those on the left side of the function will never get activated. The Leaky 

ReLU is one of the improvements of ReLU. Unlike ReLU that produces output of 0 

when x<0, LReLU still gives a small amount of information for the given input [175]: 

 𝑓(𝑥) =  {
𝑥, 𝑥 ≥ 0
𝑥

𝑎
, 𝑥 < 0

 (2-12) 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2.8 Comparison of activation function for CNNs; (a) Sigmoid function; (b) 

Tanh function; (c) ReLU function; (d) LReLU function. 

As it can be seen in Figure 2.8 (d), the LReLU activation function keeps the gradients for 

those in the right side of the function while maintaining small bits of information for those 

in the left side of the function.  
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2.6.3 Pooling Layers 

The pooling layers are typically included in CNN architectures. This layer performs 

sub-sampling operation that reduces the dimension of feature maps generated from the 

previous layer. Pooling layer operates by replacing regions in the feature maps with a 

summary statistic value that represents the regions. By implementing pooling layers, 

CNN architectures can produce more efficient computation. Figure 2.9 illustrates the 

operation performed on the pooling layer.  

 

Figure 2.9 Example of 2x2 max pooling on a 4x4 input matrix. After the pooling 

layer, the dimension of the input is reduced into 2x2. 

In general, there are two methods that are used for pooling: max pooling and average 

pooling [176]. Max pooling replaces a region in the feature maps with a maximum 

value of that region. On the other hand, average pooling modifies a region in the 

feature maps with the average value of that region. Parameters involved in the pooling 

layers include stride and filter size.  

Finding the pooling method that works better for a new problem is still a subject of 

research interest. In addition, for civil engineering application, research investigating 

the comparison of pooling methods has not been yet reported. However, research 

implementing max pooling on CNN models for civil engineering application has been 

conducted [170], [174], [177], [178]. In the feature extraction stage of CNN 

architectures, generally the combination between convolution layer and pooling layer 

is repeated depending on the problem complexity. 

2.6.4 Regression/Classification Stage 

After the feature extraction stage, all extracted features are flattened and fed into a 

classifier or regressor. Typically, this stage consists of a standard Multi-layer 

Perceptron (MLP) which is made of a number of fully connected layers as it can be 
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seen from Figure 2.4. The process performed in the fully connected layers is similar 

to the process in ANN that has been mentioned in (2-6). Activation functions such as 

sigmoid, tanh, ReLU, and LReLU can be implemented in the hidden layer of the 

regressor or the classifier. 

In the example described in Figure 2.4, the output layer consists of four nodes, each 

of which represents the number of classes for a problem under study. By utilising the 

features extracted from the previous layer, the CNN model will generate output 

depending on whether regression or classification is performed. The regression layer 

generates continuous values as the output. On the other hand, the classification layer 

produces probabilistic values in the output layer. For this purpose, softmax activation 

function is implemented as shown in (2-13):  

 𝑦𝑖 =
exp(𝑢𝑖)

∑ exp (𝑢𝑖)
𝑛
𝑖=1

 (2-13) 

 

2.6.5 Implementation of CNN in Structural Health Monitoring 

Most of the research implementing CNNs for SHM is aimed to perform damage 

detection on structures. Recent research efforts have been made in automatic defect 

detection by utilising CNNs in image processing. In 2017, Cha et al. employed CNN 

technique for crack detection on concrete surfaces [174]. In this research, 40,000 

images were used to train a CNN model and 55 testing images were utilised to observe 

the model performance. Comparative study with the traditional Canny and Sobel edge 

detection method was conducted to observe the performance of the proposed method. 

The proposed system produced better capability in sensing thin crack compared to the 

conventional method. Furthermore, Protopapadakis et al. proposed an automatic 

robotic inspector for tunnel condition monitoring in 2016 [173]. In his work, CNN 

was employed for visual inspection of the robot. By utilising CNN, high-level 

discriminative features for complex non-linear pattern classification were produced. 

These features later were used to calculate real-time 3D information to identify the 

crack position and orientation. In addition, studies for crack detection on pavement 

using CNN have been conducted [170]–[172]. In these studies, pavement images were 

employed to train neural networks. However, unlike [171], [172] which trained the 

neural networks from scratch, in [170] transfer learning using a pre-trained VGG 16 
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network was performed. Therefore, in the research a pre-trained model was finetuned 

for the new prediction task. Both studies managed to detect the presence of crack in 

the pavement images. 

Recently, research utilising transfer learning using pre-trained CNN models for 

damage identification in structures using visual data has been attempted. In 2021, Ali 

et al. evaluated the performance of five CNN-based models for crack detection on 

concrete structures [179]. In this research, the performance of a CNN model trained 

from scratch was compared with other pre-trained models including VGG-16, VGG-

19, ResNet-50, and Inception V3 models, that were fine-tuned using transfer learning 

technique. It was found that compared to the other models, the proposed model 

managed to produce comparable accuracy with the least processing time. In addition, 

Kim et al. proposed a crack detection method utilising a shallow CNN model [180]. 

In this research, Lenet-5, a shallow pre-trained CNN model that was originally built 

for handwritten digit recognition, was fine-tuned in order to be used for crack 

detection. For this purpose, two convolutional layers were added to the original LeNet-

5 and all activation functions in the original model were replaced by ReLU function. 

For comparison, transfer learning was conducted on other pre-trained models such as 

VGG16, Inception, and Resnet. The proposed model achieved prediction accuracy of 

99.8% while requiring the minimum computing time compared to the other models 

trained using transfer learning approach.  

In addition to processing image data, CNN has shown promising capabilities in 

processing one dimensional signals. In 2017, Jing et al. [181] proposed a 1-D CNN-

based gearbox fault detection method. Seven labels representing seven conditions 

were implemented in the research. The proposed method was compared with other 

machine learning methods such as ANN, SVM, and Random Forest and the proposed 

network outperformed other methods. In addition, in 2018, Zhang et al. [182] proposed 

a CNN-based fault detection method to detect bearing fault by using vibration data. 

Comparison was made between the proposed method and other machine learning 

methods such as SVM, MLP, and ANN. To improve the robustness and stability of 

the method, ensemble learning was applied. It was shown the proposed method 

outperformed other methods both in noisy and noise-free environments. Abdeljaber et 

al. [177] utilised a steel frame stadium structure to experimentally verify the CNN-

based damage detection method employing vibration data that was proposed in their 
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research. The proposed method achieved a high level of generalisation in damage 

detection. Moreover, Abdeljaber et al. [183] employed CNN technique for damage 

detection on four story steel structure in 2018. Out of nine damage scenarios 

considered, they utilised only two datasets representing the structure in its healthiest 

and most damaged condition in the training step. By implementing a metric called 

“Probability of Damage”, the proposed method managed to quantify the severity of 

damage in all damage scenarios.  

While all the above-mentioned research utilises raw measurement data for damage 

detection, research implementing CNN for damage detection by using compressed 

data has also been reported. In 2020, Azimi and Peckan investigated the applicability 

of damage detection on structures using extremely compressed data [184]. Some types 

of sensor store data in a compressed form rather than in the form of raw measurement 

signals. The research was carried out in two stages. In the first stage, a CNN model 

was trained to detect damage by using compressed data in the form histogram of 

events. In the next stage, more compressed data were extracted from the histogram. 

This was performed by calculating the mean, standard deviation, and scale factor from 

the histogram. By using these data, new histograms were reconstructed, and transfer 

learning was performed CNN model that was previously trained by using the original 

histograms. The method was validated using data from a benchmark dataset and it was 

shown that the CNN model trained using the reconstructed histograms might achieve 

prediction accuracy of 91.9%. 

For damage detection on bridge structures, numerous studies employing 1-D CNN 

have been reported. Lin et al. [178] implemented 1-D CNN for damage detection using 

data collected from a numerical model of a simply supported beam. In this study, 

damage assessment was conducted using the numerical model only.  The numerical 

model was split into 10 parts and damage was simulated at one part at a time by 

reducing its stiffness. A CNN model was then trained using simulated acceleration 

data. It was shown that the prediction model successfully detected the damage and its 

location. In addition, Zhang et al. proposed a vibration-based damage detection 

method utilising CNN [185]. In this research, acceleration data were utilised as the 

input of CNN model. Three case studies were investigated, and in each case study, 

acceleration data were collected from the structure's undamaged and damaged 

condition. In each case study, the data were labelled based on the location of damage 
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and CNN models were trained to predict the damage location. The proposed method 

managed to achieve high prediction accuracy in determining the damage location on 

all case studies. 

Most of the above-mentioned research relies heavily on the availability of labelled 

data to perform supervised training on CNN models. However, in practice, these 

labelled data might not be available. One potential solution that has been performed 

to tackle this problem is to train CNN models using labelled data generated from a 

calibrated physical model. In 2020, a damage detection method combining Gapped 

Smoothing Method (GSM) and 2-D CNN was proposed [186]. The main idea of this 

research is to train a CNN model by using labelled data collected from a calibrated 

FEM model of a structure and apply real monitoring data on the trained CNN model. 

This study utilised Bo Nghi Bridge for the case study. In this research, an FEM model 

of a single bridge girder was employed to generate training data. In the model, the 

girder was divided into 50 elements and various damage scenarios were introduced by 

applying several levels of stiffness reduction for each element in the model. From 

these scenarios, acceleration data were generated, and the GSM method was employed 

to extract the damage indices from the first three vibration modes. The extracted data 

were labelled based on the damage location and the labelled data were used to train a 

CNN model. For generating testing data, a more complex FEM model of the bridge 

consisting of four girders was used. 100 damage scenarios were utilised in the testing 

data and the CNN model trained using data generated from an FEM of a single girder 

might produce average detection accuracy of 82% on data generated from a more 

complex model. Despite the promising potential, this method requires developing a 

behaviour model of the monitored structure, leading to the need of structural 

engineering expertise. 

Aside from the implementation of CNN for damage detection method, CNN has also 

been implemented for data compression in SHM application. In 2020, Ni et al. 

proposed a data compression method to reduce the size of SHM data by using CNN 

[187]. In this research, data compression method was carried out in two stages such as 

anomaly detection and signal reconstruction. In the first stage, a CNN model was 

trained to differentiate between normal data and anomalies. This step is crucial since 

abnormal data might affect the reconstruction of the data significantly. In this research, 

a CNN-based model was trained to detect the anomalies in supervised way by using 



Chapter 2. Literature Review 

44 
 

data that were labelled based on the normality. In the first stage, the CNN model was 

evaluated based on how accurate the model in differentiating between normal and 

abnormal data. In the second stage, only normal data were used both to train a CNN-

based autoencoder and to evaluate the compression method. In this research, the 

autoencoder consisted of an encoder and a decoder, both having five convolutional 

layers. In evaluating the compression method, the correlation coefficient between the 

actual and reconstructed signal was employed. The method was applied on four sensor 

measurements obtained from a real bridge monitoring system. In the first stage, the 

CNN model managed to accurately predict the normality of data with prediction 

accuracy of 99.5%. In addition, for the second stage, the CNN-based autoencoder 

produced coefficient correlation in the range between 0.843 to 0.95. 

2.7 Summary and Conclusion 

In this chapter, a literature review on SHM and the current methodologies for SHM 

data interpretation has been presented. In particular, existing methodologies for data-

based interpretation have been discussed in this chapter. Data-based interpretation 

approaches interpret the structure’s condition based on the pattern of the data, 

therefore they require no behaviour model of the monitored structure. However, 

conventional data-based interpretation methods require feature extraction which 

involves high level of understanding in the related domain. In addition, feature 

extraction might be challenging in SHM due to the high dimensionality of data as a 

result of the implementation of numerous sensors to monitor large structures. Deep 

learning techniques that have the potential in tackling the feature extraction problem 

as well as improving the current data-based interpretation approaches have been 

employed in some literatures. These literatures have been reviewed in this chapter and 

the research gaps have been identified as follows: 

• Most studies on the utilisation of deep learning techniques for SHM that 

employ images as the input are limited to damage detection application. 

Further research is required in order to explore the potential of deep learning 

in processing images for SHM application. 

• No research has provided comparison between the performance of deep 

learning-based damage detection method and the performance of damage 

detection approaches implementing conventional machine learning 
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techniques. Most studies have only provided the results from the deep learning 

implementation for SHM without providing the comparison with other 

machine learning methods. 

• No work has been found on implementing deep learning method using 

different types of sensors. Most previous research implementing deep learning 

models only employ a single type of sensor as the input. On the other hand, 

generally various types of sensors are deployed in SHM and it is challenging 

to combine these sensors in performing data interpretation. 

• No study has investigated the impact of hyperparameters of the deep learning 

models in the implementation of deep learning for SHM. Most research only 

presents results from a single model architecture without performing 

observation on the effect of the hyperparameters. 

• Limited research is available on combining deep learning with existing damage 

detection for SHM. Further works are required to observe the potential of 

combining deep learning techniques with existing approaches. 

• Most previous studies of the utilisation of deep learning in SHM have not been 

validated using real monitoring data. 
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Summary 

 

In this chapter, A deep learning-based method for estimating the load 

carrying capacity of bridges is proposed and evaluated. Section 3.2 presents 

the methodology performed including the data collection (section 3.2.1), the 

prediction model training and testing (section 3.2.2), the performance 

evaluation (section 3.2.3), and the parametric study carried out in the 

research (section 3.2.4). Section 3.3 provides the result and discussion on the 

parametric study conducted in the research. In addition, an optimisation 

approach that enhances the performance of the proposed method is discussed 

in section 3.3. Finally, section 3.4 provides conclusions and summary of the 

chapter. 
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3.1 Introduction 

3.1.1 Bridge Load Testing 

Although government agencies generally manage database of infrastructure such as 

bridges, many unprecedented scenarios such as disaster or conflict might result to the 

loss of this information. It is important to understand the bridges condition to ensure 

public safety and improve the maintenance efficiency especially since many bridges 

are aging and deteriorating. One parameter that can be utilised for bridge assessment 

is the load carrying capacity. This parameter defines the load level that can be safely 

applied to a bridge during its lifetime [188]. The importance of this parameter in the 

bridge maintenance is inevitable since the presence of overweight vehicles might 

reduce the bridge service life [189].  

There are two parameters that represent the load carrying capacity of a bridge such as 

load rating and design load. According to American Association of State Highway and 

Transportation Officials (AASHTO) “Manual for condition evaluation and load and 

resistance factor rating (LRFR) of highway bridges”, load rating is generally 

implemented as a parameter which defines the load carrying capacity of a bridge. 

Eurocode also provides guidelines on the load rating for steel (EN 1993-1-1: Eurocode 

3), concrete (EN 1992-1-2: Eurocode 2), and composite structures (EN 1994-1-2: 

Eurocode 4). On the other hand, design load can be employed as another parameter 

which illustrates a bridge’s load carrying capacity. According to [188], design load 

represents the assumption of live load used when a bridge is designed. The design load 

is not affected by the bridge’s condition since this load level is only implemented in 

the design phase of a bridge.  

In general, load rating is collected from visual inspection and load testing [95]. 

Although visual inspection can be performed rapidly, it suffers from subjectivity 

heavily thus load test involving the use of loaded trucks are generally conducted. 

However, the test is both time and resource consuming as the test often requires a pre 

weighed truck, instrumentation, and bridge closure. The challenges in the load test are 

summarised in Figure 3.1. 
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Figure 3.1 Challenges of visual inspection and load test 

As it can be seen in Figure 3.1, there are clear limitations related to the aforementioned 

activities such as availability of resources, subjectivity, cost, and time. This is 

exasperated in post-disaster zones, where expertise is expensive and sparse, and the 

need to rapidly understand the capacity of bridges is critical for recovery. In this 

situation, end users (i.e., aid workers and military) have to prioritise which bridges to 

inspect with limited resources. Therefore, we are motivated to classify broad bridge 

capacity values as a precursor to closer condition inspection. 

3.1.2 Summary of Novelty and Contribution 

This chapter is based on a published work [184]. This study is primarily aimed at 

addressing the global development challenges where bridge capacity data are missing 

and hindering reconstruction. Current methods rely on human expertise through either 

visual inspection or testing. However, this is expensive, slow, and reliant on the 

availability of expertise. In this chapter, by utilising deep learning as an automatic 

structure identification method, we have created a cheap, scalable, transparent, and 

verifiable bridge load identification tool. In time, this method can be standardized and 

used on smartphones by non-experts. The propose method will require no physical 

model of a bridge and thus can provide solution for countries that are lacking in civil 

engineering experts or bridge documentation. In addition, the trained CNN can benefit 

other researchers through transfer learning. 
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3.2 Methodology 

In this research an alternative method for estimation of load carrying capacity of 

bridges is proposed. This method utilises bridge images obtain via crowdsourcing as 

the input and provide an estimation about the load carrying capacity in the form of 

either load rating or design load. The main activities that have been performed in this 

project include: 

1. Data collection of bridge images and load ratings of the bridges  

2. CNN training and testing 

3. Evaluation of performance and optimisation 

3.2.1 Data collection  

In this part of our study, a bridge database and corresponding crowdsourced bridge 

images were collected. Figure 3.2 shows the data collection steps performed in this 

study. As it can be seen in the figure, there are two data sources employed in this study: 

The National Bridge Inventory (NBI) Database published by American Federal 

Highway Administration (FHWA) [190] and a website called Bridgehunter [191]. The 

NBI database provides information such as inventory number, location, features, 

design load, construction, condition, and load rating about all bridges in the U.S. Both 

the load rating and design load information provided by the NBI database is employed 

for labelling purpose.  
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Figure 3.2 Details of data collection steps consisting of database collection and 

images collection through web scraping 

 

On the other hand, bridge images were collected through web scraping on a website 

called www.bridgehunter.com [191]. For this purpose, an interface program for 

collecting images from the site was developed using Python. In this research, 54458 

bridge images from 6753 bridges have been successfully collected and stored. Figure 

3.3 shows the images obtained from web scraping. In addition, inventory number and 

the state ID of these bridges were also collected and stored in a new database (referred 

to as the bridgehunter database).  
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Figure 3.3 Some bridge images collected from web scraping 

 

The next step performed in the data collection is combining the NBI database with the 

bridgehunter database. This step is essential especially for labelling purpose. As it has 

been previously mentioned, the both the NBI and bridgehunter database contains both 

the inventory number and the state ID of the bridges. As it can be seen in Figure 3.2, 

this information was employed as matching information to combine the databases. 

State ID was used since different bridges from different states, might have similar 

inventory number in the database. Hence, by using this method, information about 

load rating and design load for each image has been obtained from NBI database. From 

this step a combined database consisting of the load rating, design load, and bridge ID 

has been generated. In addition, an additional ID number was assigned on each bridge 

as an identifier of the crowdsourced images. From this step, all bridge images were 

stored in their respective folders that have been named according to this additional ID 

number.  
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Due to the difference in the database formatting among states, it is challenging to 

directly use the information from the NBI database on the bridgehunter database. In 

this case, the data in the NBI database has to be processed before it can be used as a 

matching information with the data from the bridgehunter database. For example, in 

NBI database, each bridge from state 10 is assigned with 8-9 characters as the bridge 

ID. These IDs match perfectly with the corresponding IDs in the bridgehunter 

database. In this case, the load carrying capacity information might be collected 

directly from the NBI database. On the other hand, the bridge ID from state 13 consists 

of 15 characters where the first seven characters are zero. However, in the bridgehunter 

database, the first seven zero characters in the bridge ID are removed. Therefore, data 

processing was performed to remove the first seven zero characters from the bridge 

IDs on the NBI database so they can match the bridge IDs in the bridgehunter database.  

In addition, some bridges in the bridgehunter website have no information about the 

bridge ID which make it difficult to obtain the information of the load carrying 

capacity from the NBI database. Table 3.1 shows the number of samples according to 

the availability of the load carrying capacity information. Notice from Table 3.1, there 

are some samples that have no label. This condition occurs due to the unavailability 

of either load rating or design load data for the corresponding bridges in NBI database. 

Due to this problem, some samples can only be used for developing either load rating 

or design load prediction model. 

Table 3.1 Summary of image attributes used for load rating and design load 

prediction 

Remark 

Total 

Number of 

images 

Images showing a 

full picture of a 

bridge 

images showing 

only parts of a 

bridge 

All Data 54458  N/A  N/A 

Images for Design 

Load Estimation 
18821 7837 10984 

Images for Load 

Rating Estimation 
43180 13510 29670 
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Figure 3.4 shows the proposed load carrying capacity estimation method. First, each 

image is labelled using the information of either the load rating or the design load. 

Then, the labelled images are fed into the CNN model that has been trained using 

supervised training process. The CNN model then produces an output of load rating 

or design load estimation of the bridge. The output of the prediction is then compared 

with the actual value for validation purpose.  

 

Figure 3.4 Proposed method for estimation of bridge's load capacity from images 

3.2.2 CNN model training and testing 

Instead of training a CNN model from scratch, in this research transfer learning 

method was performed. In this way, a pre-trained CNN model is finetuned in order to 

suit our application. The implementation of transfer learning using pre-trained models 

such as AlexNet, VGG-16, and GoogLeNet has shown a great potential in solving 

wide domain of image classification purpose [166]. It has been shown that, certain 

models created using transfer learning technique can produce better performance than 

models that are built from scratch [165], [166]. In this research AlexNet [161] was 

utilised as a pre-trained model for transfer learning. Table 3.2 shows the architecture 

of AlexNet. 

AlexNet is a CNN-based pre-trained model that has been trained to classify 1000 

objects. The model combines both feature extraction and classification function in one 

body. The feature extractor, from layer 1 to layer 8 in Table 3.2, automatically obtains 

important features for load capacity prediction and the classifier part of the model, 

from layer 9 to layer 12 on Table 3.2, performs prediction of load capacity using the 

extracted features. For the purpose of transfer learning, the output layer of the CNN 

model was modified according to the number of classes in the dataset we were working 

with. It was performed by modifying the number of connections at the last fully 
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connected layer to match the number of classes in the dataset. For example, when 

performing classification of five classes, then the output layer is changed from the 

original 1000 nodes into five nodes. 

Table 3.2 Details of layers in AlexNet architecture 

Layer Type 

Number 

of 

Kernel 

Kernel 

Size 
Stride  Padding Activation 

0 Input 3 227 x 227 - - - 

1 Convolution 96 11 x 11 x 3 4 0 Relu 

2 Max Pooling - 3 x 3 2 0 - 

3 Convolution 256 5 x 5 x 48 1 2 Relu 

4 Max Pooling - 3 x 3 2 0 - 

5 Convolution 384 3 x 3 x 256 1 1 Relu 

6 Convolution 384 3 x 3 x 192 1 1 Relu 

7 Convolution 256 3 x 3 x 192 1 1 Relu 

8 Max Pooling - 3 x 3 2 0 - 

9 
Fully 

Connected 
4096 - - - 

Relu + 

Dropout 

10 
Fully 

Connected 
4096 - - - 

Relu + 

Dropout 

11 
Fully 

Connected 
1000 - - - - 

12 Softmax - - - - - 

 

To obtain training and testing data, the original dataset was randomly split into 80% 

and 20% for training and testing data respectively. In addition, pre-processing of 

images was conducted to modify the size of these images so they might be fed into the 

CNN model. After this pre-processing step, the size of all images was altered to 227 x 

227 x 3 to match the input size of AlexNet. 

In this research, the transfer learning process was performed using the pre-trained 

Alexnet model provided in Matlab. The transfer learning step was performed by 

modifying the last layer of the model using Matlab. The training process for one model 

took approximately one day. This computation time was reduced into only 10 minutes 

by implementing Nvidia GTX 1060 for GPU computation. 

3.2.3 Performance evaluation 

To evaluate the performance of the CNN models, common performance metrics for 

classification problem such as accuracy, precision, recall, and F1 score were measured 
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for each prediction model. The accuracy, precision, recall, and F1 score are given by 

(3-1), (3-2), (3-3), and (3-4) respectively [192]: 

 accuracy =
TP + TN

TP + FP + TN + FN
 (3-1) 

 

 precision =
TP

TP + FP
 (3-2) 

 

 recall =
TP

TP + FN
 (3-3) 

 

 F1 score = 2 ×
precision . recall

precision + recall
 (3-4) 

where 𝑇𝑃 is true positive, 𝐹𝑁 is false negative, 𝑇𝑁 is true negative, and 𝐹𝑃 is false 

positive. Accuracy defines the proportion of the samples that can be correctly 

predicted by the model. In addition, precision and recall improve the assessment of 

the model performance. Precision provides information on the proportion of the true 

detection reported by the models. It shows how accurate the model on predicting the 

relevant events. According to (3-2), the precision shows the proportion of the samples 

that are actually positive out of those that are predicted as positive. On the other hand, 

recall represents the fraction of relevant events that can be correctly predicted. As 

illustrated in (3-3), recall gives information about the number of positive samples that 

can be correctly predicted as positive. Out of those samples that are actually positive, 

recall represents the fraction of samples that are correctly predicted as positive. 

Finally, F1 score is a parameter that combines both precision and recall metrics as it 

is shown in (3-4). 

3.2.4 Dataset Modification 

In this research, dataset variation and its impact to the prediction performance was 

studied. Variations investigated in this research were the variation in number of 

classes, bridge images completion, and colour. The performance of the prediction 

model trained using these datasets was investigated.  

3.2.4.1 Variation in Prediction Class  

As it has been mentioned previously, the proposed system utilises a bridge image to 

provide estimation about either its load rating or design load and this estimation is 
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given in range of loading. This range of loading is defined by prediction classes and 

classification task is performed by training prediction models. In this part of the 

research, CNN-based prediction models were trained by varying the number of classes 

for classification. This was performed to find dataset configuration which produces 

the highest performance in predicting either load rating or design load of bridges. In 

addition, the effect of imbalanced dataset was also investigated. For this purpose, a 

number of datasets were generated. In our study, LRx represents datasets that are 

labelled with load rating information while DLx represents datasets that are labelled 

using design load information. 

Data distribution of samples according to their load rating can be seen in Figure 3.5. 

In this research, estimation of load rating was performed by first discretising the load 

rating value to obtain class labels. By using these labels, multiclass classification was 

performed for the estimation. To create dataset variation for load rating prediction, the 

class range was modified. In addition, the class interval modification took into account 

the number of samples obtained in each class. If one class was only formed by small 

number of images, this class was combined with the class adjacent to this class. As an 

example, in both dataset LR1 and LR2, due to small number of samples with 0-5 ton 

of load rating, the 0-5 ton class was merged with the 5-10 ton class. From this 

modification, datasets were created and can be seen in Table 3.3. 

 

Figure 3.5 Distribution of samples based on the bridge's load rating 
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Table 3.3 Description of datasets for load rating prediction. In total, eights datasets 

are generated. 

Dataset Total Number of Classes Class Description 

LR1 and 

LR2 
7 

1. 0-10 ton 

2. 10-15 ton 

3. 15-20 ton 

4. 20-25 ton 

5. 25-30 ton 

6. 30-35 ton 

7. >35 ton 

LR3 and 

LR4 
5 

1. 0-10 ton 

2. 10-20 ton 

3. 20-30 ton 

4. 30-40 ton 

5. >40 ton 

LR5 and 

LR6 
3 

1. 0-15 ton 

2. 15-30 ton 

3. >30 ton 

LR7 and 

LR8 
3 

1. 0-20 ton 

2. 20-40 ton 

3. >40 ton 

 

As it is shown in Figure 3.5, the data obtained for this research creates an imbalanced 

dataset. Therefore, for each dataset in Table 3.3, a balanced dataset is produced by 

having a down-sampling process of the majority class in the respective imbalanced 

dataset. These balance and imbalanced dataset were used to train prediction model and 

the impact was observed. 

Unlike the load rating data, the design load information has already been discretised 

in the NBI database according to [193]. In developing design load prediction model, 

several datasets were utilised by varying the number of classes used for the prediction. 

These datasets are shown in Table 3.4. Dataset A was obtained as the original dataset 

for design load prediction. The class number was slightly modified from the class 

number given in [193]. It was done to sort these classes in an ascending order. This 

dataset consists of 12 classes and as it is shown in Table 3.4, this dataset is imbalanced 

where a lot of samples are obtained for class 2, 3, and 5 and only few samples obtained 

in other classes especially for class 7, 8, and 11 which only have less than 100 samples. 

Hence, this dataset was not utilised in the research and other datasets were generated 

to overcome this problem. In DL1, class 7, 8, 11, and 12 were removed from the 
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dataset due to the limited number of samples. Therefore, this dataset only classified 8 

classes. In addition, to deal with data imbalance, in DL2 down-sampling of majority 

classes was performed. In this dataset, 1000 of samples from each majority classes 

(category 2, 3, and 5) were randomly picked. Due to this process, this dataset only had 

5774 samples. 

Unlike DL1 and DL2 that removed samples from class 7, 8, 11, and 12, both DL3 and 

DL4 combined these samples into one class. Therefore, these datasets were used to 

classify 9 classes. DL3 utilised all samples while down-sampling process was applied 

on DL3 to generate DL4 in order to create more balanced dataset. Finally, both 

datasets DL5 and DL6 were created by combining samples from class 5, 6, and 9 into 

one class. It was performed due to the similar load level applied to these classes. 

Similar to previous datasets, DL5 had imbalanced sample distribution while DL6 was 

generated as the balance version of DL5. 

Table 3.4 Description of datasets for design load prediction. Due to the small number 

of samples in some classes such as class 7, 8, 11, and 12, six datasets are generated 

(DL1, DL2, DL3, DL4, DL5, and DL6) from the original dataset A. 

Class Remark 
Dataset 

A DL1 DL2 DL3 DL4 DL5 DL6 

1 10 ton 928 928 928 928 928 928 928 

2 
15 ton (3000 front 

12000 rear) 
4674 4674 1000 4674 1000 4674 1000 

3 
20 ton (4000 front 

16000 rear) 
1913 1913 1000 1913 1000 1913 1000 

4 
27 ton (3000 front 

12000 mid & rear) 
460 460 460 460 460 460 460 

5 
36 ton (4000 front 

16000 mid & rear) 
3991 3991 1000 3991 1000 5067 1000 

6 

Equal to HS20 with 

the inclusion of 

military loading  

491 491 491 491 491 0 0 

7 Pedestrian  3 0 0 0 0 0 0 

8  Railroad 56 0 0 0 0 0 0 

9 

Equal to HS20 with an 

addition of road 

calculation 

585 585 585 585 585 0 0 

10 45 ton or greater 310 310 310 310 310 332 332 

11 Greater than HL93  22 0 0   0 0 0 

12 
Other bridges outside 

AASHTO standard 
107 0 0 188 188 0 0 

Total   13540 13352 5774 13540 5962 13540 5962 
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3.2.4.2 Design Load Prediction and Load Rating Prediction Models Comparison 

In order to create a fair comparison between load rating prediction model and design 

load prediction model, proprietary datasets were generated. In these datasets, the load 

rating class intervals were modified to match those in the design load. These generated 

datasets can be seen in Table 3.5. In both DL7 and LR9, all images which can be 

labelled for either load rating or design load prediction were used. However, it can be 

seen in the table that there is a discrepancy between the number of images available 

for load rating prediction and the number of images applicable for design load 

prediction. In addition, it can be seen that both DL7 and LR9 are imbalanced dataset. 

Therefore, both DL8 and LR10 which have equal number of samples in every class 

were created. In order to reduce a prediction bias toward a majority class in imbalanced 

dataset, both DL9 and LR11 were generated. As it can be seen from Table 3.5, these 

datasets only have 300 samples on each class due to small number of samples in class 

6 available for design load prediction. 

Table 3.5 Description of datasets for comparison of load rating and design load 

prediction models 

Class 

Number of samples 

DL7 LR9 
Both DL8 

and LR10 

Both DL9 

and LR11 

1 496 2098 496 300 

2 2496 1153 1153 300 

3 1201 1358 1201 300 

4 287 2483 287 287 

5 3171 2802 2802 300 

6 186 920 186 186 

 

3.2.4.3 Image Completion Variation 

The images obtained from bridgehunter website contain both images showing a 

complete view of bridges and images showing incomplete bridge (only shows bridge 

connection, bridge railing, bridge deck, or bridge column). These variation in the 

samples could affect the performance of the prediction model therefore in this part of 
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the research this impact was studied. Figure 3.6 shows samples that insufficiently 

represent a bridge. In order to filter these images, a CNN-based prediction was trained 

to classify whether or not an image is showing view of a bridge completely. From 

Table 3.1, it can be seen that the number of images which shows complete bridges is 

lower than the number of samples which shows incomplete bridge. This can be seen 

as one of the limitations of this research since these images were obtained from the 

web thus it is challenging to control their quality. Several datasets were created: 

dataset which only contained samples showing complete bridges, dataset which only 

contained images showing incomplete bridge, and dataset which contained all bridge 

images. To make a fair comparison, these datasets were configured to have similar 

number of samples hence down-sampling process was implemented. Table 3.6 shows 

the generated datasets. 

 

Figure 3.6 Images that only capture part of bridges 

In Table 3.6, datasets A (DL10, DL11, and DL12) represent datasets which consist of 

both images showing complete and incomplete bridges, datasets B (DL13, DL14, and 

DL15) only include images showing complete bridges, and datasets C (DL16, DL17, 
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and DL18) only consist of images with incomplete view of bridge. The number 

described in each dataset shows data distribution on the datasets. Dataset DL10, DL13, 

and DL16 were datasets created directly from image filtering process based on the 

perspective of the images. However, as it can be seen in Table 3.6, there is a variation 

in the number of images inside these datasets. To create a fair comparison, the number 

of images in dataset A, B, and C had to be equal therefore DL11, DL14, and DL17 

were generated. As it can be seen in Table 3.6, these datasets have imbalanced sample 

distribution and due to the equal number of samples in DL13 and DL14, basically 

DL14 is similar to DL13. To prevent prediction bias in imbalanced datasets, dataset 

DL12, DL15, and DL18 were produced. As it is shown in Table 3.6, these datasets 

have almost equal number of samples in each class. 

Table 3.6 Description of datasets for investigation of image completion to the 

performance of prediction model 

Class 

Dataset consisting of 

all images (A) 

Dataset consisting of 

only image with full 

view of bridges (B) 

Dataset consisting 

only images of 

incomplete bridge 

(C) 

DL10 DL11 DL12 DL13 DL14 DL15 DL16 DL17 DL18 

1 1456 496 300 496 496 300 960 496 300 

2 6389 2496 300 2496 2496 300 3893 2496 300 

3 2635 1201 300 1201 1201 300 1434 1201 300 

4 706 287 287 287 287 287 419 287 287 

5 5406 2460 300 2460 2460 300 2946 2460 300 

6 641 312 300 312 312 300 329 312 300 

7 962 399 300 399 399 300 563 399 300 

8 379 186 186 186 186 186 193 186 186 

 

3.2.4.4 Image Colour Variation 

This section was conducted in order to investigate the effect of image colour to the 

performance of prediction model. The grayscale images were obtained by simply 

converting colourful images into their grayscale versions. Colourful images are 

formed by a number of pixels and each colour pixel has combination of RGB colour 
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space. In this research, Luminance was implemented as the grayscale algorithm. 

Luminance is the standard grayscale algorithm, and it has been utilised frequently by 

image processing software for computer vision tasks [194]. In addition, it has been 

implemented in other studies [195]–[197]. In MATLAB, this algorithm is performed 

using "rgb2gray" function. Grayscale conversion was performed by calculating the 

luminance which is defined by [198]: 

 Y = 0.299R + 0.587G + 0.114B (3-5) 

where Y is the grayscale value, R, G, and B are the red, green, and blue intensity 

respectively. From these grayscale images, a new dataset was created. This dataset 

was then employed to train a CNN-based prediction model. Finally, comparison 

between this prediction model and a prediction model created in the previous section 

was made to observe the effect of image colour to the prediction performance. 

3.3 Results and Discussion 

3.3.1 Variation in number of classes 

3.3.1.1 Load Rating 

Figure 3.7 shows the performance of CNN models for load rating prediction trained 

using eight datasets with modification in class interval. From the figure, it can be seen 

that an increase in the class interval yields a better performance. Maximum accuracy 

of 68.26% and precision of 60% is achieved on prediction model trained using dataset 

LR7. However, the recall and F1 score produced by this network is slightly lower than 

those achieved by networks trained using dataset LR5, LR6, and LR8. In the figure, 

the minimum accuracy is obtained from prediction model trained using dataset LR2. 

In addition, balancing the data using down-sampling method yields to lower accuracy 

and precision. This decrease in accuracy from the effect of balanced dataset can be 

seen from Figure Figure 3.7. In the figure, it can be seen that for every imbalanced 

dataset (LR1, LR3, LR5 and LR7), the corresponding balanced dataset (LR2, LR4, 

LR6, and LR8) always produced lower accuracy. On the other hand, in term of recall 

and F1 score no similar trend occurs. However, the number of classes should be taken 

into account when evaluating the network performance. In the figure, accuracy higher 

than 60% are achieved on models trained using datasets that only have 3 classes. 

Therefore, accuracy higher than 60% is only achieved for three-classes prediction. 
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(a) 

(b) 

 

(c) 

Figure 3.7 Performance metrics of models trained for load rating or design load 

prediction; (a) accuracy; (b) precision; (c) recall; (d) F1 score. 
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(d) 

Figure 3.7 Continued. 

3.3.1.2 Design Load 

Figure 3.7 shows the performance of models for design load prediction which are 

trained using various datasets. In the figure, it can be seen that for imbalanced dataset 

scenario, prediction model trained using DL5 produces the highest performance. 

Compared to networks trained using DL1 and DL3, this model achieves higher 

accuracy, precision, recall and F1 score. On the other hand, on balanced dataset 

scenario, model trained using DL6 performs best. It can be seen from the higher 

accuracy, precision, recall, and F1 score that are produced by this model compared to 

those produced by models trained using DL2 and DL4. In Figure 3.7, the effect of 

balanced dataset can also be observed. From the figure, it can be seen that balancing 

the dataset have negative relation with both accuracy and precision. This can be seen 

from every pair of balanced and imbalanced data (DL1-DL2, DL3-DL4, and DL5-

DL6). However, it is also shown in Figure 3.7 that balancing data can improve both 

the recall and F1 score. 

In order to observe the effect of balanced dataset to the model’s prediction, the 

prediction made by the networks was investigated. For this purpose, models trained 

using DL5 and DL6 were investigated. Figure 3.8 shows the prediction of samples in 

every category which is made by CNN models trained using these datasets. From the 

figure, it can be seen that although models trained using DL6 produces lower accuracy 

than those trained using DL5, the bias toward majority classes is minimised. In the 

figure, it can be seen that in imbalanced dataset, most prediction for samples from 
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minority class is made toward majority class. On the other hand, for balanced dataset, 

almost in every class, maximum prediction on one class is made in the true class. 

 

(a) 

 

(b) 

Figure 3.8 Error distribution generated by prediction models trained using (a) 

imbalanced dataset and (b) balanced dataset 
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The higher accuracy obtained from models trained using DL5 might be affected by 

the number of samples in the majority class. Although some misprediction produced 

in the minority classes, the number of samples in majority class is much larger than 

the number of samples in minority classes as shown in Table 3.4. Therefore, the true 

prediction made in the majority class contributes more than the misprediction hence 

higher accuracy can be achieved. In addition, unlike misprediction that is produced 

toward majority class in imbalanced dataset scenario, from Figure 3.8 it can be seen 

that for balanced dataset, misprediction mostly occurs to the adjacent category. In this 

case, the prediction does not deviate too much from the true class. There are exceptions 

such as for samples in 15, 20, and 45 tons classes. This might occur due to the data 

distribution. Although down-sampling has been performed to balance the dataset, the 

number of samples in the down-sampled classes is still twice as much as the number 

of samples in some categories such as the 27 tons, 36 tons with military inclusion, and 

45 tons classes. Therefore, the bias prediction toward majority classes still occurs. 

3.3.1.3 Comparison Between Models for Design Load Prediction and Models for 

Load Rating Prediction 

The performance of prediction models for comparison between the performance of 

models for design load estimation and load rating estimation can be seen in Figure 3.7. 

In the figure, it can be seen that for equal number of samples in the dataset, the models 

created for design load prediction perform better compared to models trained for load 

rating prediction. Comparisons are made between DL7 and LR9 (case 1), between 

DL8 and LR10 (case 2), as well as between DL9 and LR11 (case 3). 

In case 1, all images available for either load rating prediction or design load prediction 

are utilised. In Figure 3.7, it can be seen that DL7 produce higher accuracy and 

precision compared to LR9 and significant differences on these parameters are 

produced between these models. However, in case 1 the load rating prediction model 

produces slightly higher recall which leads to a slightly higher F1 score compared to 

the design load prediction model.  

With equal number of images in each class (case 2), it can be seen that the design load 

prediction model produces higher performance than the load rating prediction model. 

This can be seen in Figure 3.7 from the higher accuracy, precision, recall, and F1 score 

obtained from the design load prediction model. Another interesting feature that can 
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be observed in this figure is the higher accuracy achieved by the load rating prediction 

model compared to its performance on case 1. This event might occur due to the more 

imbalanced dataset used in case 2 compared to the dataset for case 1 which can be 

seen in Table 3.6. In imbalanced dataset scenario, more predictions tend to be made 

on a majority class which can lead to the increase in accuracy. However, the increase 

in accuracy doesn’t represent a better performance since in case 2, the load rating 

prediction model produce lower precision, recall, and F1 score. 

In balanced datasets scenario (case 3), it can be seen that the design load prediction 

model achieves higher accuracy, precision, recall, and F1 score compared to the load 

rating prediction model. In this case, with similar number of data and minimum bias 

from imbalanced dataset, the design load prediction model still manages to outperform 

the load rating prediction model. Note that lower performance is produced in this 

scenario due to the small number of samples utilised in the datasets for case 3. 

Therefore, in all scenarios the design load prediction models outperform the load 

rating prediction models. 

3.3.2 The Impact of Image Completion to the Prediction Performance 

The performance of the prediction models trained using datasets with various image 

quality on three different scenarios can be seen from Figure 3.7. For case 1 (DL10, 

DL13, and DL16), it can be seen that the models trained using dataset consisting of 

images which represent a bridge (DL13) perform the best among all. This can be seen 

from the highest accuracy, precision, recall, and f1 score produced by this prediction 

model compared to the values from the other models. This performance is achieved 

using fewer number of samples in the dataset compared to other datasets. The number 

of data samples used in the training process might explain the slight difference 

between the accuracy achieved by model trained using dataset DL10 and model 

trained using dataset DL13. In this case dataset DL10 has more images compared to 

dataset DL13 as shown in Table 3.6. 

In case 2 (DL11, DL14, and DL17) where all datasets have equal number of data 

samples in every class, it can be seen that prediction models trained using good quality 

images (DL14) produce the highest performance among all. Furthermore, since all 

datasets have equal number of data samples, significant difference in the models’ 

performance can be identified in this scenario. In addition, it is also shown that by 
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using equal number of data samples, the model trained using images that do not 

completely show bridges achieves the lowest performance in term of accuracy, 

precision, recall, and F1 score. 

In case 3 (DL12, DL15, and DL18) which is balanced datasets scenario, it can be seen 

that the model trained using images with full view of bridges (DL15) also achieves the 

highest accuracy, precision, recall, and F1 score among all prediction models. Similar 

with the previous section, decrease in performance is found in these prediction models. 

This might be due to the decrease of images number that are used to train these models 

because of down-sampling process used to create balanced datasets. 

In this comparison, the result shows that in all 3 cases the models trained using good 

quality data (DL13, DL14, and DL15) produce the highest performance. From this 

comparison, it can be concluded that to obtain satisfactory performance, image quality 

plays an important role. This can be one factor that limits this research since it is 

challenging to obtain images with the right angle from web scraping. 

3.3.3 The Impact of Image Colour to the Prediction Performance 

Performances of prediction model trained using colourful images (DL6) and the 

performance of grayscale trained prediction model (GR) are provided in Figure 3.7. It 

can be seen that the implementation of grayscale images can worsen the performance 

of the load rating or design load estimation model. All parameters achieved by the 

model trained using grayscale image are lower than the parameters of prediction model 

trained using colourful images. This can be described by the effect of colour in 

detecting a material where colourful image can give more information about the 

material that forms an object. Hence, it is more suitable to use colourful images for 

this kind of application. 

The impact of colour to the bridge classification has not been specifically reported 

from previous research. However, some research has reported a decrease in detection 

accuracy when implementing grayscale images for object classification. For example, 

in 2014, Chatifled et al. [199] reported a 3% decrease in the model accuracy after 

converting all input images into grayscale. In addition, another research on object 

detection utilising CIFAR dataset found that removing colour from images leads to 

12% increase in the error rate [200]. Furthermore, for building classification 
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application, McKee and Weber [201] showed that worse performance is produced by 

classifier trained using grayscale images as the input compared to the performance of 

models trained using colourful images. Therefore, despite reducing the data dimension 

that leads to cheaper computation as well as reducing variance in the data, eliminating 

colour might not always be beneficial in every application since it might discard useful 

information. 

3.3.4 Proposed Optimisation Method for Performance Improvement 

The result from prediction model shows unsatisfactory performance which can be 

inferred from the low accuracy. In order to analyse this condition, a prediction model 

for design load prediction trained using DL6 is taken as a case study. Figure 3.9 

describes the training and validation process on a model trained using this dataset. 

From the figure, it can be seen that although the training accuracy reach 97% during 

the training process, overfitting occurs where no increase in the validation accuracy is 

produced after several iterations. Improvement of validation accuracy only occurs in 

the first 500 iteration before fluctuating validation accuracy is achieved. This leads to 

a significant difference between training and testing accuracy of the prediction model. 

This condition happens on all prediction models. Due to this situation, early stopping 

is implemented to stop the training process whenever no increase in validation 

accuracy is achieved. In iterative algorithm, Early stopping offers regularisation to 

combat overfitting by determining whether to stop ongoing iteration [202]. However, 

no significant improvement is obtained only by using early stopping method. As it can 

be seen in Figure 3.9, early stopping can only slightly improve the accuracy into 41%, 

which is only 3% improvement from 38% produced without early stopping. 
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Figure 3.9 Training and validation accuracy of neural network for design load 

prediction 

In order to observe the prediction error made by the model, an error probability 

distribution from the prediction is created. This error distribution is created by 

comparing the actual class and the prediction made using testing data. This error 

probability distribution for the design load prediction model is shown in Figure 

3.10(a). From the figure, it can be seen that the error follows normal distribution. In 

this case, most predictions are made into the true class (40%) and most error occurs 

when predicting a bridge into a class adjacent to the true class (13.35% of the 

predictions are one class lower than the true classes). Both design load and load rating 

prediction models produce similar trend in the error distribution as it is shown in 

Figure 3.10. 
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(a) 

 
(b) 

Figure 3.10 Error distribution from (a) design load prediction trained using DL6 and 

(b) load rating prediction using LR10 

From this error distribution, it is possible to increase the performance by merging two 

classes adjacent to each other. The simplest way is by converting the multiclass 

classification into binary classification. In this case, the model is not predicting the 

exact value of either load rating or design of a bridge in the image. However, the model 

is used to predict whether a bridge load rating or design load is higher or lower than a 

certain value. This conversion for DL6 can be seen in Figure 3.11.  
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(a) 

 

(b) 

Figure 3.11 Conversion from (a) multiclass classification into binary classification 

(b) to detect if a bridge load rating is lower than 27 tons. 

Using binary classification conversion, the network is now used to predict: 

• If a bridge has design load lower than 10 ton (LV1) 

• If a bridge has design load lower than 15 ton (LV2) 
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• If a bridge has design load lower than 20 ton (LV3) 

• If a bridge has design load lower than 27 ton (LV4) 

• If a bridge has design load lower than 36 ton (LV5) 

Notice from Figure 3.11 (a), before conversion, true prediction only occurs on the 

diagonal part of the confusion matrix that is identified in the green region. After the 

conversion, there are some regions that become either true positive or true negative 

that are identified with green regions in Figure 3.11 (b).  By performing this 

conversion, improvement on prediction model can be obtained. The accuracy, 

precision, recall, and F1 score produced by the system on each low level after 

conversion can be seen in Figure 3.12. Following the conversion, it can be seen in 

Figure 3.12 that an increase in the performance is produced. In addition, it is shown 

that the maximum accuracy, precision, recall, and F1 score are produced when 

predicting in level 5. In this level the accuracy, precision, recall, and F1 score are 

90.89, 95.21, 94.99, and 95.10 respectively. 

 

Figure 3.12 Performance of prediction models measured in accuracy, precision, 

recall, and F1 Score after conversion to binary classification 

As shown in Figure 3.12, after conversion, accuracy has different trend compared to 

other metrics. From the figure, all metrics experience positive trend from LV1 to LV5. 
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On the other hand, the accuracy falls between LV1 and LV3 and it then rises until 

LV5. As explained in equation (3-1), accuracy is affected by both the true positive and 

true negative values. On the other hand, both precision and recall are only influenced 

by the true positive as given in (3-2) and (3-3) respectively. Therefore, high accuracy 

does not indicate high recall and precision as having large number of true negatives 

might increase the accuracy yet both recall and precision are unaffected.  

As previously mentioned, after the conversion, the model is used to predict whether a 

bridge’s design load is lower than a value. In this case, ‘positive’ class represents the 

bridge whose design load is lower than the value while ‘negative’ class are bridges 

with design load higher than the value. In LV1, the model produces prediction 

accuracy of 80.61% from 105 true positives and 656 true negatives out of 944 testing 

data. When LV2 conversion is performed, the number of true positive becomes higher 

and the increase in the true positive is higher than the increase in the false prediction. 

As a result, both the precision and recall of the model rise as illustrated in Figure 3.12. 

On the other hand, the number of true negative decreases thus the accuracy of the 

model drops between LV1 and LV2. Similar result also occurs between LV2 and LV3 

where the accuracy of the model decreases while other metrics such as precision, 

recall, and F1score increases. However, between LV3 and LV4 as well as between 

LV4 and LV5, the number of false predictions decreases while the true positive rises, 

raising all prediction metrics including accuracy, precision, recall, and F1score as 

depicted in Figure 3.12. 

3.3.5 Analysis on the Model’s Uncertainties 

Certain factors might limit the applicability of our proposed method. Although this 

method might predict the bridge load rating using the features that are extracted from 

images, it might be challenging to extract some important features from images. First 

of all, according to [203], one of the factors that influences load rating is the 

superstructure type. Therefore, successful identification of the superstructure might 

improve the prediction accuracy. One of the key points of CNNs is the capability in 

identifying various shapes from images. Hence, given good quality dataset for training 

and testing, CNNs will be able to obtain the superstructure information from the 

images. 
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The next factor that affects the load rating is the number of lanes. This information 

can be obtained visually from images depending on the angle where the images are 

taken. Therefore, it is possible that a CNN model fails to gather this information from 

bridge images that are not sufficiently taken, leading to uncertainty to the prediction. 

As it has been discussed in section 3.3.2, the perspective of a bridge in the image might 

influence the prediction result. This view might help in the extraction of features such 

as the bridge type, length, and span. Hence, the view of the image should be taken into 

consideration when implementing this method.  

In addition, there are other features which can be difficult to extract using images. This 

can be seen from the result in section 3.3.1.3. In this section, it has been shown that 

predicting design load from bridge images is more achievable compared to predicting 

load rating from bridge images. Load rating of a bridge is affected by its condition 

thus the bridge’s condition is one important feature for load rating estimation. 

However, it is a challenging task to quantify a bridge’s condition from its image, 

especially from an image that is taken remotely from the bridge. This situation might 

introduce error since the prediction models are unable to obtain this information from 

images. On the other hand, bridge’s condition provides no effect on the capacity which 

the bridge is designed for. This might lead to a better performance in design load 

prediction model.  

The bridge material also influences the load rating. In section 3.3.3, it has been shown 

that eliminating colour results to decrease in prediction accuracy. This might be caused 

by the loss of information in obtaining material information of the bridge when 

implementing grayscale images. On the other hand, CNN model has limitation in 

gathering the material information especially the material inside the bridge. For 

example, it is possible for the CNN model to differentiate between steel and concrete 

bridges by using image processing. On the other hand, determining whether a structure 

is a reinforce concrete structure or a pre-stressed concrete structure is a challenging 

task. The limitation of image processing in extracting this feature might introduce error 

for the proposed method. Therefore, to tackle this limitation, in our future work we 

are planning to incorporate the features that are difficult to extract using image 

processing as additional inputs to the prediction models. Hence, along with the 

bridges’ images, these features will be utilised as input data.  
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3.4 Conclusions and summary 

In this research, novel CNN-based prediction models for estimating the load rating 

and design load of bridges have been trained based on crowdsourced image data. The 

conclusions are as follows: 

• By using equal number of samples, the models trained for design load 

prediction produce higher performance than the models for load rating 

prediction. This can be seen from the higher accuracy, recall, precision and F1 

score of the models trained for design load prediction compared to those of the 

load rating prediction models.  

• The image quality affects the performance of prediction models. Therefore, in 

order to improve the performance, the quality of images used to train models 

should be taken into account.  

• It was found that the implementation of colourful images for this application 

is more suitable than using grayscale images.  

• Converting multiclass classification into binary classification can improve the 

prediction performance. 
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Summary 

 

This chapter presents a deep learning-based data interpretation method that 

employs correlation between sensor measurements for estimating structural 

responses. The method employs CNN architecture to process raw 

measurement data. The method can be implemented for handling missing 

data problem or calibration purposes. Section 4.2 explains the methodology 

performed in this work including the data collection, data processing, 

model training and testing, and evaluation. Section 4.3 presents the case 

study employed to validate the proposed approach. In this study, the 

method is validated by using real monitoring data. Section 4.4 presents the 

result and discussion from the validation of the proposed method. Finally, 

section 4.5 provides the summary and concluding remarks of the chapter. 
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4.1 Introduction 

In Chapter 3, a deep learning-based method which employs image data for SHM 

application has been presented. In addition to image data, SHMs also utilise time series 

data collected from sensor measurements in monitoring structures condition. In 

addition to measurement of structural responses, the time histories often consist of 

measurements of surrounding environment such as temperature or wind speed. The 

next crucial step in SHM is how to interpret the data to better understand the structure’s 

condition. 

The data interpretation methods for SHM have been presented in section 2.2. The data-

based interpretation method offers promising potential for SHM application. This 

method requires no geometrical or material information of the monitored structure and 

data interpretation is performed based on the statistical trend extracted from the data. 

In general, this method employs machine learning techniques which might require 

high level of domain expertise especially in feature extraction step as it is mentioned 

in section 2.2.2. Deep learning techniques that have capability in learning feature 

automatically can be seen as a potential solution for data-based interpretation. 

Maintaining continuous data collection is one of the main challenges in implementing 

SHM. Many factors might impact the monitoring activity such as sensor malfunction, 

the need of sensor calibration, hardware problems, network faults, and so on. These 

problems might lead to the loss of important monitoring data and while some problems 

might be solved directly, others can be time consuming. In the emergency scenario 

where continuous monitoring is necessary, this condition might potentially harm the 

structure. Therefore, implementing a method that can recover the missing data might 

help improving the monitoring system. 

In this research, we propose a framework based on 1-D CNN to predict structural 

response of bridges. The proposed approach is validated through a full-scale case study 

of Suramadu Bridge in Indonesia. The CNN model estimates the cable force measured 

by a sensor using other measurement time series from other sensors. This approach 

might be beneficial for the monitoring activity by providing solution for missing data 

(e.g., due to individual sensor fault). In addition, the estimation can be further 

employed for determining threshold for anomaly detection. 
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4.1.1 Summary of Novelty and Contribution 

The work in this chapter is based on a published research [204]. This work 

investigates, for the first time, how cable stress can be estimated using temperature 

variations. The study presents the first application of 1-D CNN regressor on data 

collected from a full-scale bridge. This work also evaluates the comparison between 

CNN regressor and other techniques such as ANN and linear regression in estimating 

bridge cable stress which has not been performed previously. 

4.2 Methodology 

Figure 4.1 shows the activities conducted in this project. There are four main activities 

performed in this research such as: 

1. Data collection 

2. Data processing 

3. Prediction models training and testing 

4. Evaluation  

Data collection is performed by using a sensor system that is deployed on a bridge. 

The sensor system gathers both response and environmental data from the monitored 

bridge. Then, data pre-processing is carried out to generate dataset that can be used by 

the prediction model. There are two steps performed on the data processing: 

normalisation and data conditioning.  

Normalisation is performed on all measurement signals. For this purpose, statistical 

normalisation that yields zero mean and unit variance is conducted as follow [205]: 

 𝑥𝑡 =
𝑥 − µ

𝜎
 (4-1) 

 

where 𝑥, µ, and 𝜎 are the original data, mean, and the standard deviation of the data 

respectively. Normalisation is important especially if the method is applied on dataset 

consisting of measurements from different types of sensors. In this case, each type of 

sensor has its own unit of measurement thus normalisation might avoid the dominance 

of extreme value. 
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Figure 4.1 Schematic of the methodology performed in this research 

The next step is to generate data frames from the dataset. This step is necessary when 

using CNN architectures since the models require data in the form of sequences. 

Consider a prediction model trained to perform a regression using the measurements 

from sensor 𝑆 to estimate the measurements of sensor 𝑂. If the dataset consists of 𝑛𝑑 

measurement points, the sensor data used for the input and the output can be 

represented as: 

 𝑆𝑖 = [𝑆1, 𝑆2, 𝑆3, … . , 𝑆𝑛𝑑] (4-2) 

 

 𝑂 = [𝑂1, 𝑂2, 𝑂3, … . , 𝑂𝑛𝑑] (4-3) 
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where 𝑆 and 𝑂 represent the sensor data utilised as the input and output in the 

prediction model respectively. In this step, these sensor signals are divided into a 

number of data frames each having a fixed length 𝑛𝑠 as it is described in Equation 

(4-4) and (4-5). 

 𝑆𝑛 = [𝑆𝑛, 𝑆𝑛+1, 𝑆𝑛+2, … . , 𝑆𝑛−1+𝑛𝑠] (4-4) 

 

 𝑂𝑛 = [𝑂𝑛, 𝑂𝑛+1, 𝑂𝑛+2, … . , 𝑂𝑛−1+𝑛𝑠] (4-5) 

 

After the processing step, the dataset is divided into three sets: training, validation, 

and testing. The prediction models are trained by employing the training and validation 

sets. In the training process, early stopping is performed in order to avoid overfitting. 

In iterative algorithm, Early stopping offers regularisation to combat overfitting by 

determining whether to stop ongoing iteration.  It is performed by monitoring training 

parameter, usually validation loss, that is generated when feeding validation set into 

the model on each epoch of the training process. When no improvement is produced 

by the model after a predefined number of epochs, known as early stopping patience, 

then the training is finished. 

Finally, the testing set is utilised to evaluate the trained model. This set represents new 

data that has not been seen by the model. In this research, the models are evaluated by 

measuring the prediction error from applying the testing set on the trained models. The 

prediction is then compared with the actual value and the regression error metrics such 

as mean absolute error (MAE), mean absolute percentage error (MAPE), and RMSE 

are collected. The MAE, MAPE, and RMSE are calculated as follows: 

 𝑀𝐴𝐸 =
1

𝑛
∑|ŷ𝑖 − 𝑦𝑖|

𝑛𝑠

𝑖=1

 (4-6) 

 

 𝑀𝐴𝑃𝐸 =
100%

𝑛
∑|

ŷ𝑖 − 𝑦𝑖
𝑦𝑖 

|

𝑛𝑠

𝑖=1

 (4-7) 

 



Chapter 4. Estimation of Structural Response using Convolutional Neural Network: Application to 

Suramadu Bridge 

82 
 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(ŷ𝑖 − 𝑦𝑖)

2

𝑛𝑠

𝑖=1

 (4-8) 

 

where ŷ𝑖  (𝑖 = 1,… , 𝑛𝑠) is the prediction at i-th position in the sequence, 𝑦𝑖 is the 

actual value at the i-th position in the sequence, and 𝑛𝑠 is the total data points in a 

sequence. 

For comparison purpose, other data-based interpretation methods such as linear 

regression and ANN are employed in this research. As it is shown in Figure 4.1, these 

models are also trained using the training and validation sets and evaluated using the 

testing set. However, while early stopping is conducted in the ANN model, this 

method is not applied on the linear regression model. The trained models are then used 

on the testing set to obtain the regression error metrics such as MAE, MAPE, and 

RMSE from the discrepancies between the predictions and the actual values. Finally, 

comparison of these error metrics from the prediction models adopting CNN, ANN, 

and linear regression, are made in order to evaluate the effectiveness of the CNN 

framework. 

4.3 Case Study: Suramadu Bridge SHM 

The Suramadu Bridge is a cable-stayed bridge which is part of a 5.4 km long 

connection between Madura Island and Surabaya on the island of Java in Indonesia. 

The bridge consists of 3 parts. The first one is the fly-over on both sides, covering 

1458 m from Surabaya and 1818 m from Madura. The second part is a pair of 

connectors (i.e. approach bridge) of 627 m each. The last part is a central bridge which 

consists of two 192 m side-extensions and a 434 m main span. Figure 4.2 shows the 

schematic representation of the central Suramadu Bridge alongside with the pylons. 

The bridge consists of two symmetrical cable-stayed cantilever sections. The deck is 

30 m wide and comprises two longitudinal steel girders, approximately 2.8 m deep, 

stringers and floor beams and a reinforced concrete slab with 250 mm in depth. The 

cable plane is aligned with the central line of the main girders. There are 70 stay cables 

in each cable plane and 140 cables in total. The longitudinal spacing of cables is set to 

be 12 m for standard girders segments and for two segments under both towers is set 



Chapter 4. Estimation of Structural Response using Convolutional Neural Network: Application to 

Suramadu Bridge 

83 
 

to be 18.5 m. In the pylon tower, the distance between the intersecting points of the 

central lines of stay cables and the central line of the pylons tower is all 2.2 m. 

 

 

(a) 

 

(b) 

Figure 4.2 Schematic representation of the central bridge (a) side view and (b) 

pylons (all dimensions are in meter) 

To improve the earthquake-resistance performance of the main bridge, 4 sets of 

longitudinal viscous dampers were installed on lower pylon cross beams under the 

main deck. In the lateral direction (across the bridge deck), concrete stoppers 

connected to lower cross beam suppress the bridge deck movement in this direction. 
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The longitudinal slope from one end to the mid-span is 1%, and the vertical circular 

curve with a radius of R=18000 m is set at the mid-span, whose tangent length is 180 

m and vector height is 0.9 m. This vertical curve can enhance the comfort feeling when 

driving and also brings aesthetic appearance to the bridge. Expansions gaps and 

vertical bearings are located at both ends to allow the longitudinal elongation of the 

bridge due to change in temperature. The bridge foundation is made of a cast-in-situ 

group of piles with a diameter of 2.4 m and a depth of 100 m below the pile cap. The 

pile's foundation is set to be quincunx in plan, and the minimum distance between 

piles from centre to centre is 6 m. The external diameter of steel pile casing is 2.7 m 

and wall thickness is 20 mm. After finishing the construction, the steel pile casing 

becomes a part of the permanent structure, however, the contribution of the pile 

casings to the bearing capacity of piles was not taken into account in the design. The 

pile cap is an octagonal cube with a thickness of 6 m. 

4.3.1 Suramadu Bridge Cable Force Monitoring 

After construction of the Suramadu Bridge, the Indonesian Ministry of Public Works 

and Housing (IMPWH) invested in monitoring and maintenance of the bridge due to 

the importance of the bridge for the economy of the region. The bridge is the longest 

cable-stayed bridge in Indonesia and an essential part of transportation system for 

eastern Java. In order to continuously monitor the bridge, an extensive set of sensors 

were installed on some parts of the bridge. Among these sensors, elasto-magnetic 

(EM) sensor is employed to monitor the cable force. In particular, for cable-stayed 

bridges, monitoring the cable stress is important in assessing the health of the 

structures [21], [206], [207]. For example, in the collapse of Genoa bridge, the 

combination of fatigue and corrosion of the cable stays might be one of the possible 

reasons leading to the collapse of the bridge in 2018 [208]. 

In cable force measurement, EM sensors have gained remarkable attention since offer 

noncontact measurement, corrosion resistance, actual-stress measurement, and long 

service life [140] compared to conventional cable force measurement method. EM 

sensors exploit the change in magnetic permeability of a ferromagnetic material due 

to applied stress. By utilising this relation, it is possible to obtain cable stress applied 

to the material by measuring the change in the magnetic field [21]. EM sensors work 

by measuring the change in the magnetic field and convert it into voltage unit which 
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later is further translated into cable stress. EM sensors have been widely employed in 

some bridges all over the world [209]–[212]. 

In Suramadu Bridge monitoring system, in total 32 cables have been equipped with 

elasto-magnetic (EM) sensors. The sensors measure force cable and temperature of 

the cable simultaneously. Figure 4.3 shows the EM sensor and location of EM sensors 

deployed in Suramadu Bridge. From these sensors, some cable force measurement 

data have been generated for Suramadu Bridge monitoring system. 

 

(a) 

 

(b) 

Figure 4.3 Details of EM sensors in Suramadu Bridge monitoring system; (a) EM 

sensors location; (b) Photograph of EM sensor. 

4.3.2 Data Processing and conditioning 

To validate the CNN framework, this research employs six months monitoring data 

that have been collected from 24th April 2014 to 4th October 2014. In total, 

measurement data from six EM sensors (EM2, EM4, EM6, EM8, EM10, and EM12) 

from Suramadu Bridge monitoring system are utilised. As it has been mentioned in 

the section 4.3.1, Each EM sensor is equipped with its own temperature sensor and the 
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sensor is sampled once in an hour. Figure 4.4 shows the temperature versus cable force 

graph from six EM sensors. 

 

Figure 4.4 Temperature vs Cable Force from six EM sensors 

In this work, temperature data are selected to learn cable force due to the bridge 

structural properties. Temperature variation causes bridge deformation, potentially 

affecting the cable stress measurement. In addition, previous research has shown that 

for cable-stayed bridges, it has been reported that temperature influences bridge 

response significantly [27]. In this research, estimation of cable force is performed by 

using the temperature data as it is illustrated in Figure 4.5. 

 

Figure 4.5 Schematic of the cable force estimation framework using temperature 

variance as the input 
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As illustrated in Figure 4.5, the prediction models utilise a data frame with a window 

size of 24 temperature data points T(t) that represent one daily measurement, to 

estimate a sequence of cable force measurements F(t). This is performed by splitting 

the measurement signals into a number of data frames each having a window size of 

24 measurement points. For data augmentation purpose, data frames are generated by 

sliding the fixed window with overlap of 23 points between one frame to the next 

frame. The data augmentation step is illustrated in Figure 4.6. From this step, in total 

six sensor datasets have been generated. 

 

Figure 4.6 Production of data frames from Suramadu Bridge dataset 

The next step is performed by splitting each dataset into training, validation, and 

testing sets. Both the training and validation datasets are employed in the training step. 

The former is used in the supervised training while the latter is employed for early 

stopping method. On the other hand, the testing set serves as new unseen data for the 

model. This way, the models are evaluated based on the accuracy of their prediction 

on completely new data. Therefore, it is important to avoid overlap between the 

training and testing set. In this research, the dataset is divided as follows: the first 60% 

of the time series for training set, the next 20% for validation set, and the last 20% of 

the time series for testing set. Table 4.1 shows the number of data frames for each set. 

As it can be seen in Table 4.1, the data training, validation, and testing sets contain 

data collected from different months. Therefore, the operational and environmental 

conditions between these sets might be varying. However, the temperature in 
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Indonesia is stable around the year hence the variation between the sets will not affect 

the CNN model significantly. 

Table 4.1 Detail of training, validation, and testing sets for the implementation of 

CNN framework on Suramadu Bridge monitoring data 

EM 

number 

Sampling 

rate 

Training Validation Testing 

Number Period Number Period Number Period 

2 Hourly 2052 
April-

July 
684 

July-

August 
684 

August-

October 

4 Hourly 2052 
April-

July 
684 

July-

August 
684 

August-

October 

6 Hourly 2052 
April-

July 
684 

July-

August 
684 

August-

October 

8 Hourly 2052 
April-

July 
684 

July-

August 
684 

August-

October 

10 Hourly 2052 
April-

July 
684 

July-

August 
684 

August-

October 

12 Hourly 2052 
April-

July 
684 

July-

August 
684 

August-

October 

4.3.3 CNN Model Training and Testing 

The CNN architecture adopted in this research is presented in Table 4.2. The 

architecture refers to CNN architecture proposed by Zhang et al. [185] where only a 

single convolution layer is adopted. However, some hyperparameters are configured 

to suit the investigated problem. 

Table 4.2 CNN architecture for cable force estimation 

Layer Input Output Parameter Activation 

Convolutional 24×1 24×32 Filter number: 32, size: 16; 

stride: 1; padding: same 

LReLU 

Batch 

Normalisation 

24×32 24×32 None None 

Max Pooling 24×32 12×32 Pooling size: 2; stride: 1 None 

Dropout 384 384 Dropout rate: 0.4 None 

Fully Connected 384 50 None LReLU 

Fully Connected 50 24 None None 

 

As described in Table 4.2, the architecture employs a single CNN layer that utilises 

32 filters each having a size of 16. The activation function implemented in this 

research for the CNN layer is LReLu with α equals to 0.05. The convolution layer is 
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followed by a batch normalisation layer. Generally, in the training process of deep 

learning, mini batches containing some training data are utilised. Batch normalization 

offers training acceleration by minimising internal covariate shift that occurs due to 

the change in the batch distribution [213]. It is achieved by calculating the mean and 

variance of the batch to normalise the batch distribution before feeding the batch to 

the next layer. 

After the batch normalisation layer, a pooling layer is employed in the architecture. 

This layer halves the dimension of the data by utilising pooling size of 2 and stride of 

1. Max pooling layer is utilised for the architecture. The output of the pooling layer is 

flattened to form an array containing 384 elements that are connected to a dropout 

layer. Deep learning models might suffer from overfitting where the models learn the 

training data too well yet providing poor generalisation when given completely new 

data. In this research, dropout layer is employed to combat overfitting. Dropout is one 

of regularisation techniques for deep neural networks that works by removing network 

nodes randomly during training process, thus combining some deep architectures 

[214]. No rule is specified on where to apply the dropout layer due to its stochastic 

nature. In this research, dropout layer with 0.4 dropout rate is adopted between the 

feature extraction and regressor. 

The dropout layer is connected to a fully connected layer with 50 nodes. Similar to the 

convolution layer, this layer utilises LReLU as the activation function with α equals 

to 0.05. This layer is connected to another fully connected layer that serves as the 

output layer of the architecture. The last layer is a fully connected layer with 24 nodes 

representing the 24 measurement points of cable force. In this research, the early 

stopping patience is set to be 200. 

4.3.4 Comparison with other Machine Learning Models 

In this research, ANN models that utilise up to four hidden layers are trained to map 

the relation between the temperature and the cable force. The ANN models adopt 24 

nodes at the input layer, up to four hidden layers, and 24 nodes at the output layer. 

Hyperparameter tuning is carried out by varying the number of nodes in the hidden 

layers. The hidden layer configurations can be seen in Table 4.3. By utilising these 

various hyperparameters, in total 96 models are generated and trained using training 

data. Similar to the training step that is conducted for CNN architecture, early stopping 
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is employed by monitoring the validation loss using the validation dataset. All the 

trained models are tested using testing data and the model that produced the lowest 

testing error is selected as the optimised model. 

Table 4.3 Details of hyperparameters for optimisation of ANN models 

Hyperparameter Possible value 

Number of nodes in hidden layer 1 5, 10, 20 

Number of nodes in hidden layer 2 0, 5, 10, 20 

Number of nodes in hidden layer 3 0, 5, 10, 20 

Number of nodes in hidden layer 4 5, 10 

 

On the other hand, the training step performed for the linear regression model is 

straightforward. All testing data are fed to the model and evaluation is performed by 

employing the testing dataset to the model. 

4.4 Results and Discussion 

After the training process, in total 18 prediction models based on CNN, ANN, and 

linear regression for six EM sensors have been picked for evaluation. As mentioned 

in the previous section, these models are tested using the testing set to assess their 

performances on unseen data. Figure 4.7 illustrates the comparison between the actual 

measurements of EM12 from the testing set and the prediction from three models 

adopting various data-based interpretation methods. 

In Figure 4.7, it is shown that all of the prediction models manage to capture the trend 

of the actual measurement In order to evaluate these prediction models, for every data 

point in each sequence, the residual from the discrepancy between the actual value and 

the prediction is calculated. For this purpose, the metrics we use are the MAE, MAPE, 

and RMSE. In each data sequence, the error metrics on all data points are calculated. 

From this process, the error metrics representing each data sequence are obtained. In 

order to further investigate the effectiveness of the CNN-based prediction model, the 

average values of the MAE, MAPE, and RMSE of six cable force measurements are 

also calculated. Table 4.4 shows the Average of MAE, MAPE, and RMSE generated 

from prediction models utilising CNN, linear regression, and ANN models. 
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Figure 4.7 Comparison between the actual and the prediction values of EM12 

In Table 4.4, it is shown that among the three models, the CNN-based models produce 

the lowest average value of MAE for all six sensors. Significant differences between 

the CNN-based model and the linear regression model are obtained in sensor EM6 and 

EM12. On these sensors, improvement higher than 1 KN of average MAE can be 

obtained by implementing CNN over linear regression. Furthermore, despite the small 

difference on other sensors, the CNN-based models still manage to yield lower average 

MAE compared to the linear regression model. In addition, the CNN-based model 

significantly outperforms ANN-based model on sensor EM6 and EM10. In these 

sensors, difference of higher than 1KN of average MAE values are obtained between 

the CNN-based and ANN-based models. In other sensors, lower average MAE values 

are still produced by the CNN-based model. 

In term of MAPE and MSE, it can be seen from Table 4.4 that the CNN-based models 

also provide higher performance than the ANN-based and linear regression models. 

As shown in the table, the CNN models manage to yield lower MAPE and MSE 

compared to the other models for all sensors. From comparison of the average value 

of MAE, MAPE, and RMSE, it is obvious that the performance of CNN-based models 

is more superior than the other prediction models. 
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Table 4.4 Average MAE, MAPE, and RMSE from various prediction models 

Sensor 
MAE (kN) MAPE (%) RMSE (kN) 

CNN LR ANN CNN LR ANN CNN LR ANN 

EM2 10.23 10.28 10.49 0.469 0.470 0.480 13.38 13.47 13.62 

EM4 10.47 11.12 10.65 0.472 0.502 0.480 13.64 14.48 13.80 

EM6 13.17 17.03 15.22 0.434 0.559 0.500 16.94 21.62 19.55 

EM8 16.19 16.81 16.41 0.516 0.535 0.523 21.14 21.68 21.21 

EM10 18.39 18.56 19.48 0.460 0.464 0.488 23.27 23.60 24.73 

EM12 19.82 21.24 19.84 0.536 0.574 0.537 25.32 27.51 25.62 

 

In addition to the average value of the MAE, MAPE, and RMSE, the maximum values 

of those metrics are also calculated as presented in Table 4.5. From the table, it is 

shown that in term of maximum MAE, the CNN-based models also outperform both 

the linear regression and ANN-based models. This can be seen from the lowest 

maximum MAE in all six sensors generated by the CNN-based models. The low 

maximum MAE value can be beneficial when implementing threshold-based anomaly 

detection method since it can reduce the number of false positives that occurs when 

prediction is higher than the threshold defined by a certain confidence level. 

On the other hand, there are cases when the CNN-based models are outperformed by 

the ANN-based models when observing the maximum MAPE and RMSE. As 

described in Table 4.5, in sensor EM2, CNN-based model produces maximum MAPE 

of 0.737%, higher than the 0.731% from the ANN-based model. In addition, in sensor 

EM8, the ANN-based model manages to produce lower RMSE than the CNN-based 

model. This might be caused by the lack of hyperparameter optimisation performed 

on the CNN-based models. As mentioned previously in section 4.3.4, the ANN model 

architectures for each sensor datasets are selected through a grid search process where 

a number of ANN architectures are constructed and the performance of these models 

on testing sets are collected and compared to find the best architecture for the given 

problem. In contrast, each CNN-based model only adopts a single architecture without 

involving hyperparameter optimisation. As a result, the CNN structure might not be 

the most suitable architecture in some problems hence higher error might be produced. 

In order to further compare the performance of the prediction models, the probability 

distribution of the absolute error generated from these models are investigated. For 

this purpose, the results obtained using EM12 dataset are employed. The probability 
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density functions (PDFs), and the cumulative distribution functions (CDFs) are 

illustrated in Figure 4.8. 

Table 4.5 Maximum MAE, MAPE, and RMSE from various prediction models 

Sensor 
MAE (kN) MAPE (%) RMSE (kN) 

CNN LR ANN CNN LR ANN CNN LR ANN 

EM2 15.74 16.60 15.95 0.737 0.777 0.731 25.27 27.54 25.67 

EM4 16.22 17.85 17.79 0.738 0.805 0.789 21.33 24.02 22.80 

EM6 23.55 32.36 27.91 0.789 1.062 0.895 33.86 45.92 44.63 

EM8 29.19 30.18 34.29 0.947 0.988 1.095 46.64 46.79 45.08 

EM10 27.31 30.46 32.04 0.700 0.779 0.819 35.82 42.87 43.08 

EM12 32.43 36.17 32.84 0.870 0.970 0.892 41.16 46.82 40.41 

 

As it is shown in Figure 4.8(a), the CNN model outperforms the other models in 

predicting the measurement values of EM12. As depicted in the figure, the mode from 

the absolute errors generated by the CNN model is 19.82 kN, lower than those 

produced by the ANN (21.17 kN) and LR models (22.77 kN). Furthermore, 

investigation on the effectiveness of the CNN model is also performed by comparing 

the maximum absolute error from the PDFs as shown in the figure. As it can be seen 

in the figure, maximum absolute error produced by the CNN model is lower than those 

generated by both the ANN and LR models. This result also confirms the result 

presented in Table 4.5. 

From Figure 4.8(b), overall, it can be seen that the CNN model produces the lowest 

absolute error among all three prediction models. As illustrated in the figure, the 

median of the absolute error generated by the CNN model is lower than those produced 

by both the ANN and LR models. This result indicates that 50% of absolute errors 

generated by the CNN model is below 18.9 kN, lower than those of the ANN and LR 

models which are 20.47 kN and 21.8 kN respectively. In addition, among all models, 

the CNN model produces the lowest value for both the lower (16.2 kN) and upper 

quartiles (21.7 kN). In this case, most of the absolute errors generated by the CNN 

model is lower than those produced by both the ANN and LR models. Moreover, it is 

also shown that the CDF of the CNN model has steeper slope compared to both the 

ANN and LR model thus the CNN model produces higher prediction confidence and 

less variation compared to other models.  
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(a) 

 

(b) 

Figure 4.8 PDF (a) and CDF (b) of the absolute errors generated by the CNN, ANN, 

and LR models 

The CNN models manage to outperform both the ANN and LR models due to the 

inherent capability of CNN in processing time history data. As it has been mentioned 

in section 4.3.2, all prediction models including the CNN, ANN, and LR models, 

accept an input consisting of 24 sequential data which correspond to a daily 

measurement. These sequential data form patterns and by using moving kernels on the 

input data, the CNN models extract these trends from the sensor data. On the other 

hand, both the LR and ANN models are unable to obtain sequential information from 

input data and compared to both models, CNNs perform better in finding local pattern 

from the input data. In this case, the CNN models are able to capture the daily pattern 
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from the cable force data thus producing less error compared to the other prediction 

models. 

4.5 Conclusions and Summary 

In this study, a method implementing CNN for cable force estimation from Suramadu 

Bridge monitoring system using temperature data as the input has been evaluated. In 

this research, measurement data from six elasto-magnetic sensors and six temperature 

sensors installed in Suramadu Bridge have been used to train and test CNN-based 

prediction models. In addition, evaluation on these models have been performed by 

calculating the prediction errors in the form of MAE, MAPE, and RMSE. To validate 

the effectiveness of the proposed method, ANN and linear regression models for cable 

force estimation have been trained for comparison. The conclusions are as follows: 

• It is found that the proposed CNN framework manages to capture the trend of 

cable force sensor measurements with the ranges of MAE between 10.23 kN 

and 19.82 kN, MAPE between 0.434 % and 0.536 %, and RMSE between 

13.38 kN and 25.32 kN. 

• From the comparison of error metrics produced by these models, it is found 

that the CNN-based models manage to outperform both the linear regression 

and the ANN-based models. 

• Despite producing the lowest value in all error metrics, the CNN-based method 

does not produce significant improvement compared to the linear regression- 

and ANN-based methods. In this work, there is a strong linear relation between 

cable force and the temperature, hence the linear regression model can be 

implemented. However, in other cases where there is no linear relation 

between the predictor and the output, the linear regression might not be suitable 

thus significant improvement might be detected.  

• The CNN-based method has the potential for both generating estimation of 

cable force measurement in case of missing data and performing anomaly 

detection which can contribute to the SHM application. 
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Summary 

 

This chapter presents deep learning-based damage detection techniques for 

SHM. In this chapter, there are two damage detection approaches discussed: 

novelty detection and multiclass classification. Both methods employ CNN 

models to process raw measurement data in detecting the presence of damage 

in the structure. Section 5.2 explains the methodology performed in this 

research. Section 5.2.1 discusses the methodology for the novelty detection 

employing the correlation between sensor measurements whereas section 

5.2.2 provides the methodology for damage detection using multiclass 

classification. Section 5.3 presents the case study utilised to validate the 

proposed methods. The results from the implementation of the proposed 

methods on the case study are presented in section 5.4. Finally, section 5.5 

summarises and concludes the chapter. 
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5.1 Introduction 

in Chapter 4, a deep learning-based method that is used for estimating structural 

responses for SHM application has been presented. As it has been mentioned in section 

2.1, one of the main research areas of SHM is damage detection. In this chapter, 

methodologies for damage detection on structures utilising deep learning are 

discussed. 

In this chapter, two damage detection approaches implementing deep learning are 

proposed: novelty detection and damage classification through supervised learning. 

The former aims to find abnormalities from the normal condition. In this case, a 

statistical model is trained only using data collected from undamaged state. Then, new 

data are tested on the trained model where deviation between the model prediction and 

the actual measurement is compared with a pre-defined threshold that defines data 

normality. 

There are two monitoring strategies that are generally adopted in structure monitoring: 

dynamic and static monitoring. The dynamic monitoring approach has a main 

drawback whereby significant damage might only result in a small shift in the natural 

frequencies, especially for complex structures [113]. Furthermore, the technique also 

suffers from the presence of noise in the data [113]. On the other hand, static 

monitoring utilises static structural responses (strain or displacement) due to applied 

static loading. Despite the higher sensitivity to structural changes compared to the 

dynamic monitoring, static monitoring requires information about the applied load. 

Correlation-based methods that are not affected by load change are implemented to 

address this problem. The methods can be employed for damage detection based on 

novelty detection approach. 

In addition to the novelty detection approach, damage detection in SHM can also be 

performed in multiclass classification. In multiclass classification, the structure’s 

conditions are categorised into a number of classes including undamaged and damaged 

states. All data are provided their corresponding labels based on the structure’s 

condition when the data are collected. While the undamaged state only has one class, 

the damaged state might consist of one or more classes which might be defined either 

from the types of damage or the locations of damage. Therefore, it might allow 

identification of damage types or damage localisation.  
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In multiclass classification problem, damage detection is conducted as pattern 

recognition problem where a prediction model is trained in supervised learning using 

both the features extracted from the training data and their corresponding labels. Then, 

by applying the features extracted from new data, the trained model predicts the 

condition of the structure. Conventionally, feature extraction is performed manually 

based on the professional experience of the researcher. This step requires high level 

of knowledge in the domain and might potentially reduce the performance of the 

prediction model when unsuitable features are used. 

In this chapter, two damage detection techniques that employ deep learning are 

presented. First, we propose a method that utilises correlation between sensor 

measurements and employs deep learning architecture in detecting damage on the 

structure based on the novelty detection. Then, a deep learning framework that 

performs multiclass classification for damage detection and identification using SHM 

data is presented. Both methods employ raw measurement data from several types of 

sensors as the input without the need of feature extraction. By employing deep learning 

technique, features are learned automatically, effectively reducing the level of 

expertise required in feature extraction. The frameworks are validated using 

experimental data obtained from a laboratory-scale bridge. 

 

5.1.1 Summary of Novelty and Contribution 

There are two damage detection methods presented in this chapter. The first method 

is utilised on experimental data obtained from a laboratory-scale bridge. This research 

is aimed to develop a novel damage detection method employing 1-D CNN regressor. 

The proposed approach performs damage detection using raw data as input without 

the need of feature extraction, potentially reducing the required level of expertise in 

implementing the data-based interpretation for SHM. In addition, the proposed method 

also employs different types of sensors in the interpretation which shows the capability 

of the method for the implementation on real monitoring system that might consist of 

numerous types of sensors. This work also investigates the effectiveness of the method 

by comparing between the method and other approaches such as MLR, ANN, and 

Random Forest. 
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This chapter is also aimed to investigate the damage detection method that adopts 

CNN models that are trained through supervised learning. In this method, all data are 

labelled according to the bridge’s condition when the data are collected. Similar 

research that employed CNN trained in supervised way mostly only utilised one type 

of sensor in the interpretation. On the other hand, this study employs more than one 

types of sensors for damage detection in order to demonstrate the applicability of the 

method in utilising multi-type sensors. This work also presents the investigation on 

the impact of CNN hyperparameters on the damage detection which has not been 

reported previously. For this purpose, two CNN hyperparameters including the 

network depth and the activation function are utilised in the observation. The results 

of the hyperparametric study might benefit other researchers that are employing 

damage detection using CNN model trained using supervised learning. 

 

5.2 Methodology 

5.2.1 Correlation- Convolutional Neural Network (CorCNN)  

Figure 5.1 shows the schematic of the proposed CorCNN. The main idea of the 

proposed method is built on an assumption that when damage occurs, correlations 

between measurements are also affected. Calculating the correlation between sensor 

measurements enables us to estimate signal from one sensor by using measurements 

from other sensors. The intention is to detect damage by monitoring the residuals 

produced from the difference between the actual values of the bridge response and its 

predicted values. The latter is a result of a prediction model that has been trained using 

healthy datasets. In this case, we assume that higher residuals might be produced when 

using the prediction model on damaged state datasets due to the change in sensors 

correlation. 

The next process involves normalisation process on both healthy and damaged 

datasets. In this step, all sensor signals are normalised using statistical normalisation 

(4-1). This process is applied on all data from both healthy and damaged datasets. 
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Figure 5.1 Schematic of the damage detection method using CorCNN 

 

In the next step, all the measurement signals that are used as the inputs are divided 

into data frames. Consider a prediction model trained using 𝑗 number of sensors to 

perform a regression to predict a value of a sensor 𝑂. If all sensors consist of n 

measurement points, the sensor data used for the input and the output can be 

represented as: 

 𝑆𝑖 = [𝑆𝑖.1, 𝑆𝑖.2, 𝑆𝑖.3, … . , 𝑆𝑖.𝑛] (5-1) 

 

 𝑂 = [𝑂1, 𝑂2, 𝑂3, … . , 𝑂𝑛] (5-2) 

 

where 𝑆 and 𝑂 represent the sensor data utilised as the input and output in the 

prediction model, respectively. The 𝑆𝑖 represents the sensor data for the i-th sensor 

(𝑖 = 1, 2, … , 𝑗). The sensor signals are divided into a number of data frames each 

having a fixed length 𝑛𝑠:  

 𝑆𝑖.𝑛 = [𝑆𝑖.𝑛, 𝑆𝑖.𝑛+1, 𝑆𝑖.𝑛+2, … . , 𝑆𝑖.𝑛−1+𝑛𝑠] (5-3) 
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The data frames created from 𝑗 sensors are then employed to predict a single value of 

sensor 𝑂 as: 

 𝑂𝑛 = [𝑂𝑛−1+𝑛𝑠] (5-4) 

 

For damage detection purpose, the strategy in sensor selection is as follows: 

1. Select one sensor that will be used as the target output of the regression model. 

2. Select other sensors for the predictors. These sensors should be located 

relatively far from the sensor selected in the first step. In addition, the sensors 

picked in this step should be close to each other. 

3. Use sensor(s) selected in the second step as an input of CNN regressor to 

estimate the measurement of the sensor selected in the first step. 

After the data frames have been generated, the dataset containing the frames from 

healthy state measurement is further split into testing, validation, and training sets. In 

this research, the supervised training process of the prediction model is only performed 

using data collected in healthy state. Hence, this separation process is only performed 

on the healthy dataset. The training set is utilised for the supervised training of CNN 

models hence it is important that the training data capture all the variance of the 

healthy state data. On the other hand, the validation set is employed for both 

hyperparameter optimisation and defining a threshold level. The hyperparameter 

optimisation is conducted by performing grid search [215] using various CNN 

architectures. These architectures are trained using the training set and tested using the 

validation set and the architecture that yields the lowest validation error is picked as 

the baseline prediction model. 

As shown in Figure 5.1, the optimised prediction model is employed on the testing set 

and the damaged datasets. The testing data represents healthy state measurement that 

has not been seen by the prediction model in the training process. The residuals 

generated from the discrepancies between the actual and prediction values when 

applying the trained model on both healthy and damaged datasets are recorded for 

damage detection.  
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The presence of damage is detected by comparing the residuals with a threshold level. 

Assuming the distribution of the regression residuals from the healthy dataset used as 

the baseline follows normal distribution, then a threshold that defines the interval of 

the distribution can be calculated [84]: 

 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = µ𝑏 + 6𝜎𝑏 (5-5) 

 

where µ𝑏 and 𝜎𝑏 are the mean value and the standard deviation of the regression 

residuals produced from healthy dataset (in this case validation dataset), respectively. 

Anomalous data that might indicate the presence of damage is detected when a 

prediction residual is higher than the threshold value.  

For damage detection application, the performance of the regression model is 

determined by calculating the total number of data detected as anomalies. The number 

of detections is then calculated by comparing the regression residuals with the 

threshold level. In this case, all residuals exceeding the threshold value are considered 

as anomalies. Then, the detection rate is calculated by: 

 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑡
  (5-6) 

 

5.2.2 Damage Detection and Identification Using Supervised CNN 

Figure 5.2 describes the activities conducted in this project. As it can be seen from the 

figure, there are four main activities performed in this research such as: 

1. Data collection 

2. Data processing and labelling 

3. Prediction models training and testing 

4. Evaluation 

Data collection is carried out by measuring and storing the bridge’s responses using 

sensor system deployed on the bridge. In data processing step, normalisation is 

performed on all measurement signals. For this purpose, statistical normalisation as 

explained in (4-1) is executed. In this research, normalisation plays an important role 

since the proposed method might combine measurement signals from various sensors. 

Each type of sensor has unique measurement unit hence combining these signals 
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requires normalisation to avoid the dominance of extreme values and enhance data 

quality. This step is applied on all sensor signals on both the healthy and damaged 

state datasets. 

 

Figure 5.2 Framework for CNN-based damage detection method using supervised 

learning 

Consider a sensor 𝑆𝑖 consisting of n measurement points as written in (5-1). The sensor 

signals are then divided into data frames each having a fixed length of 𝑛𝑠 points. When 

𝑗 sensors are employed as the input of the prediction model, then a number of data 

frames 𝐷(𝑡) each consists of 𝑛𝑠 × 𝑗 data as it is shown in (5-7): 
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 𝐷(𝑡) =  

{
 
 

 
 
[𝑆1.𝑡, 𝑆1.𝑡+1, … , 𝑆1.𝑡+𝑛𝑠]

[𝑆2.𝑡, 𝑆2.𝑡+1, … , 𝑆2.𝑡+𝑛𝑠]
..

[𝑆𝑗.𝑡, 𝑆𝑗.𝑡+1, … , 𝑆𝑗.𝑡+𝑛𝑠]

 (5-7) 

 

Each frame generated in this process is annotated with its corresponding label. The 

label corresponds to the bridge’s condition when the data are collected. For example, 

the frames generated from the data collected in the bridge initial state is labelled as 

‘healthy’. On the other hand, the data frames produced using data obtained from 

damaged state are labelled as ‘damaged’. Furthermore, for the damaged state data, 

depending on the number of the damage types, multiple labels can be implemented. 

The prediction models are trained to predict these labels using raw measurement data 

of sensors as the input. Therefore, by predicting these labels, the presence and severity 

of damage in the bridge is detected. All frames from the healthy and damaged state 

are collected into one dataset. 

The next step is dividing the dataset containing data frames into training, testing, and 

validation sets. In this step, any overlap between training, validation, and testing sets 

should be avoided so that the testing set consists of new data frames that are 

completely unseen from the training process. Training data are employed to train 

prediction models. On the other hand, validation data are also utilised in the training 

process. However, unlike the training data that are only use in the supervised learning 

process, the validation data are adopted for both hyperparameters optimisation and 

early stopping method. The explanation of early stopping method implemented in this 

study is provided in the next section. Finally, testing data serve as new data that have 

not been seen by the prediction models. Hence the prediction models are evaluated 

based on their performances on unseen data. 

In this research, supervised learning is implemented hence the class label of each 

sample needs to be provided in the training process. The labels are converted into 

vectors using one-hot encoding method. The number of elements in the vector depends 

on the number of class labels adopted in the case study and each element represents 

the probability of a data frame belonging to a particular class. In this way, a data frame 

with healthy label should have 100% in the healthy class and 0% on the other classes. 
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Hyperparameter optimisation is performed by using the training and validation sets. 

In general, the simplest method for the optimisation is conducted by performing trial 

and error on architectures adopting a number of combinations of hyperparameters. The 

training set is employed to iteratively train prediction models while the validation set 

is utilised to obtain a prediction score in the form of validation accuracy. Finally, the 

combination of hyperparameter that yields prediction model with the highest 

validation accuracy is picked as the optimised hyperparameter.  

In the training process, early stopping is employed in order to combat overfitting. For 

classification problem, the method is executed by monitoring either the validation loss 

or validation accuracy generated from applying the validation sets on the prediction 

model on every epoch of the training process. When no decrease in validation loss or 

no increase in accuracy is achieved after a predefined number of epochs, which is also 

known as early stopping patience, the training process is finished. Finally, the 

prediction model performance is evaluated by calculating the prediction accuracy 

obtained using (3-1). 

5.3 Case Study: Warwick Bridge 

The deep learning-based approaches proposed in this research are validated using 

experimental data that have been collected from Warwick Bridge experiment. This 

section provides information about Warwick Bridge, the sensor system deployed in 

the bridge, the description of the tests performed on the bridge, and the implementation 

of both the CorCNN and supervised CNN for damage detection.  

Warwick Bridge (Figure 5.3) is a simply supported bridge (with overhangs) located in 

the Structures Laboratory at the University of Warwick [216]. The deck is 20 m long 

and 2 m wide and is constructed using class 40/50 concrete. In addition, two steel I-

profiles that are 1.1 m apart from each other are placed longitudinally below the 

concrete deck. The steel-concrete composite structure has structural mass of 16500 kg. 

The bridge has two adjustable supports with 16 m distance between each other during 

the test. Detailed information about the bridge is available elsewhere [216]. 
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Figure 5.3 Photograph of Warwick Bridge in University of Warwick 

In this study, measurements were performed for both healthy and damaged states of 

the bridge. The healthy state represents the state of the bridge at the start of the 

experimental work. In addition, three damage scenarios were implemented by 

introducing artificial damage to the bridge. The damage location can be seen in Figure 

5.4. In the first damaged state, six circular holes with 2.5 cm diameter were drilled on 

the concrete deck (circled in Figure 5.5). In the second damaged state, six holes with 

the same diameter were added, as represented by remaining holes in Figure 5.5. 

Finally, in the third damaged state, 5 cm cut was added on the lower flange of the steel 

beam. The cut was only performed at one half of the flange on one beam located at the 

lab side as illustrated in Figure 5.4. Figure 5.4 also describes information on sensor 

installation on Warwick Bridge. The sensor system deployed in this study is explained 

in section 5.3.1. 

The damage location was selected by taking into account both the expected 

displacement in the deck and the sensor location. The middle span of the bridge is 

expected to have the highest displacement thus damage might potentially occur in the 

middle span compared to other location. However, in the experiment, it was 

challenging to introduce damage in the middle span since some sensors were installed 

in the middle span area. As a result, the location illustrated in Figure 5.4 was selected. 

Most importantly, due to the safety issue, only one damage location was employed in 

the experiment.



 

Figure 5.4 Detail of sensors and damage location at Warwick Bridge experiment. All dimensions are in m.



 

 

 
(a) 

 
(b) 

Figure 5.5 Artificial damage introduced to Warwick Bridge. (a) 12 holes in concrete 

deck. (b) 5 cm cut on the I-beam. 

5.3.1 Structural Health Monitoring (SHM) Configuration 

In this section, the sensor system employed in Warwick Bridge experiment is 

explained. This section presents all sensors and their corresponding DAQ utilised in 

the sensor system. In addition, the installation and calibration steps for each sensor are 

presented. Finally, the configuration used in the interface program is discussed. 

To collect measurement data from the bridge, a wired-based SHM system consisting 

of 18 strain gauges (10 to measure strain in steel, 8 in concrete), three displacement 

transducers and eight accelerometers (to measure shaker force and bridge 

accelerations) was deployed. Details of the sensors and their exact roles are listed in 

Table 5.1. In addition, the sensor location is described in Figure 5.4. Table 5.2 

describes the notation used in Figure 5.4. 

Table 5.1 Details of instrumentation utilised in Warwick Bridge experiment 

Sensor Quantity measured Type Quantity 

Strain gauge Strain in steel YEFLA-5-3LJC 10 

Strain gauge Strain in concrete PL-60-11-1LJC 18 

Displacement 

transducer 
Displacement of the bridge 

LSC HS50 2 

Celesco SP1-50 1 

Accelerometer 
Acceleration of the bridge 

and shaker’s moving mass 
QA750 (Honeywell) 8 
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Table 5.2 Description of notations used in Figure 5.4 

Notation Remark 

CST Strain gauges on the top side of the concrete deck 

CSB Strain gauges installed at the bottom side of the concrete deck 

SSB Strain gauges installed at the side of the concrete deck 

SST Strain gauges installed at the upper flange of the steel beam 

SSB Strain gauges installed at the bottom flange of the steel beam 

SSS Strain gauges installed at the web of the steel beam 

DT Displacement transducer 

 

5.3.1.1 Strain Gauge  

As shown in Figure 5.4, each of 18 concrete strain gauges was installed on the concrete 

deck in one of the three candidate positions: on the top of the concrete deck (denoted 

as CST in Figure 5.4), at the side of the deck (denoted as CSS), and below the deck 

(denoted as CSB). The steel strain gauges were also installed in one the three possible 

locations: at the upper flange of the I-beam (denoted as SST in Figure 5.4), at the lower 

flange (denoted as SSB), and at the web (denoted as SSS).  

There are four steps required in strain gauge installation: surface preparation, sensor 

installation, connecting sensor to DAQ, and sensor calibration. Among these, only the 

first step is different depending whether the strain gauge is installed on the concrete 

or on the steel beam. The other three steps are similar for both types of strain gauges. 

Surface preparation for concrete strain gauge installation is performed to provide the 

required base to install the gauge. This step is crucial since the sensor performance 

depends heavily on the base condition. The process is started by filing the concrete 

surface using sandpapers in order to provide a flat surface for the strain gauge. The 

process is then followed by dust removal using acetone. In this step, the dust scattered 

due to the filing process is wiped so the base can be attached on the surface. Lastly, 

pressure sensitive (PS) adhesive is applied on the prepared surface as the base for 

strain gauge installation. In this step, a ruler can be used to help developing a flat base. 

After the PS adhesive has been applied in the concrete, 5-6 hours are required to cure 
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the adhesive. The surface preparation process for concrete strain gauge installation can 

be seen in Figure 5.6. 

Unlike the concrete strain gauge installation, no additional base is required in steel 

strain gauge installation. The surface preparation for this type of sensor is performed 

by filing the steel beam using sandpapers. After the filing process, dust is removed by 

using acetone. 

 

(a) 
 

(b) 

 

(c) 

 

(d) 

Figure 5.6 Surface preparation process for strain gauge installation on concrete deck; 

(a) Filing the surface with sandpaper; (b) Dust removal using acetone; (c) Pouring 

PS Adhesive on the concrete surface; (d) Installation base for strain gauge. 

The installation methods for both concrete and steel strain gauges are similar. The only 

different part in this step is the types of glue for attaching the sensor. For this purpose, 

the YEFLA-5-3LJC [217] and PL-60-11-1LJC [218] use CN-Y adhesive and CN 

adhesive, respectively. Figure 5.7 illustrates the strain gauges that have been installed 

in the experiment. 
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(a) 

 

(b) 

Figure 5.7 Installed strain gauges on Warwick Bridge. (a) Concrete strain gauge. (b) 

Steel Strain Gauge. 

After the sensors have been attached to the structure, connections between these 

sensors and the DAQ were made using wires. In the experiment, awg24 wires of four 

different colours (red, black, yellow, green) were used as a connection between sensor 

and DAQ. Each strain gauge has two terminals. In the experiment, one terminal of the 

sensor was connected to the red and green cables while the other was connected to the 

black and yellow cables. 

In this research, four NI 9235 cards from National Instrument were utilised for 

collecting data from both the concrete and steel strain gauges [219]. These cards were 

selected due to the resistance of the strain gauges which is 120Ω. Each card has eight 

inputs for quarter-bridge measurement. To connect the strain gauges with the cards, 

three-cable configuration was implemented. Table 5.3 shows the wiring configuration 

for strain gauges implemented in this research. 

Table 5.3 Wiring configuration for strain gauges in Warwick Bridge experiment 

Cable Colour Port in NI 9235 

red EXC 

green not connected 

black AI 

yellow RC 

 

In the research, the calibration step for strain gauges was only performed once before 

any test was conducted. It was performed in order to remove the offset from the strain 

measurement. It was performed when no load was applied on the bridge using the 

internal calibration function provided by the NI 9235 cards. In this experiment, 
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calibration is performed for every strain gauge by using the 50kΩ internal shunt 

resistor in the card. From the calibration step, the initial voltage parameters for each 

individual strain gauges were obtained. The parameters employed for strain gauges 

are illustrated in Table 5.4.  

Table 5.4 LabView configuration for strain gauges data collection by using NI 9235 

card 

Parameter 
Strain Gauge 

Concrete Steel 

Max range 

Min range 

1m 

-1m 

Scaled Units Strain 

Gage Factor 2.08 2.11 

Gage Resistance 120.3 119.8 

Initial Voltage from calibration 

Vex Source Internal 

Vex Value 2 

Strain Configuration Quarter Bridge I 

 

5.3.1.2 Displacement Transducer 

In addition to the strain gauges, three displacement transducers (denoted as DT) were 

deployed to monitor the bridge displacement as it is described in Figure 5.4. Two types 

of displacement sensors are utilised to measure the displacement produced in vertical 

direction in this research. This is due to the possibility of getting displacement higher 

than 10 cm in the mid span of the bridge. In order to ensure the safety of the sensor, a 

string gage displacement sensor (denoted as DT2 in Figure 5.4) with high operational 

range is installed for measuring the displacement in the mid span. On the other hand, 

two strain-based displacement transducers (denoted as DT1 and DT3) with lower 

operational range are employed as it is shown in Figure 5.4. 

The string gauge sensor used in the measurement is SP1-50 [220]. The sensor has 

voltage divider output where voltage output will be determined by the length of string. 

The sensor can work up to 1270mm with 0.25% of accuracy. The string gauge sensor 

was mounted at a construction material that was built below the bridge as shown in 

Figure 5.8. In addition, to provide connection with the bridge, a bracket was glued at 
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the bottom of the concrete deck and the string was connected to the bracket as 

illustrated in Figure 5.8. 

 

(a) 

 

(b) 

Figure 5.8 installation of string-based displacement transducer on Warwick Bridge; 

(a) Sensor body mounted on a supporting material; (b) Sensor eyelet attached on the 

bottom of the concrete deck. 

 

To collect data from this sensor, an NI 9219 card [221] from National Instrument was 

employed. This card has four channels which can be used for voltage, current, 4-wire 

resistance, 2-wire resistance, thermocouple, 4-wire Resistance Temperature Detector 

(RTD), 3-Wire RTD, Quarter-Bridge, Half-Bridge, Digital input, and open contact 

measurement. The SP1-50 utilises voltage divider as the output. Therefore, the voltage 

measurement function provided by this card was implemented to obtain data from this 

sensor.  

The sensor has four cables: signal, ground for signal, power, and excitation ground. In 

order to operate the sensor, an external power supply providing 30V excitation was 

utilised. The cable configuration for this sensor is provided in Table 5.5. 
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Table 5.5 Wiring configuration for string-based displacement transducer 

Cable Colour 
NI 9219 Power 

Pack Number Port 

Red -  - + terminal 

Black (tangled with red cable) -   - - terminal 

White 4 HI  - 

Black (tangled with white cable) 5 LO  - 

 

In addition to the string-based displacement transducer, two strain-based displacement 

transducers HS-50 from LSC Transducer [222] were utilised to measure displacement 

as shown in Figure 5.4. The sensor has full-bridge configuration with 350Ω bridge 

resistance. It can be used to measure up to 53.5mm of displacement with 0.35% 

accuracy. The sensor has a moveable spindle which serves as a sensing element. The 

sensor was mounted using a material construction with the sensing element touching 

the concrete deck as described in Figure 5.9. In order to measure displacement when 

the bridge is moving upside, the sensing element was initially positioned at 20mm 

stroke. 

 

Figure 5.9 Installation of strain-based displacement transducer in Warwick Bridge 

experiment 
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The NI 9237 from National Instrument [223] was implemented to collect data from 

the strain-based displacement transducers. This card was selected due to its capability 

in performing a full bridge measurement. This card has four RJ50 inputs hence a 

connector is required to provide interface between the displacement transducer and the 

DAQ. The wiring configuration between the strain-based displacement transducer and 

DAQ is provided in Table 5.6. 

Table 5.6 Wiring configuration for strain-based displacement transducers 

Cable Colour 
NI9237 

Number Port 

Red 6 EX+ 

Blue 3 AI- 

Green 2 AI+ 

Yellow 7 EX- 

 

In this research the calibration process was conducted for all three displacement 

sensors. The DAQs for the displacement transducers still produce measurement 

outputs in voltage (for NI 9219) and strain (for NI 9237) hence they need to be 

converted into displacement. Equation describes the relation between the displacement 

and the measurement output from the DAQ. 

 𝑑 = 𝑚 × 𝑜 + 𝑐 (5-8) 

  

where 𝑑  is the displacement (mm), 𝑜 is the reading from the DAQ, 𝑚 is the slope, 

and 𝑐 is the offset. The calibration process aims to obtain the linear relation between 

the sensor output and the displacement. The slope and the offset obtained from the 

linear expression are then used to measure the displacement. 

Firstly, the calibration was performed on the strain-based displacement transducer. To 

apply a certain level of displacement on the sensor, gauge blocks were used. In this 

step, an NI 9237 card was utilised as the DAQ. In the calibration, displacement was 

applied gradually in steps from 0 mm to 40mm with an increment of 10mm. During 

this process, data were collected using the NI 9237 card and from this process, the 

linear relation between the DAQ output and the displacement was obtained. 
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The string-based displacement sensor was then calibrated using the calibrated strain-

based displacement sensor. This was completed by connecting the string of the string-

based sensor with the sensing element of the calibrated displacement sensor. NI 9219 

was employed to collect the voltage output from the string-based displacement 

transducer while NI 9237 was utilised for the calibrated sensor. To supply the string-

based sensor, an external power supply was deployed. By moving the spindle of the 

calibrated strain-based sensor, measurement data for both the string-based and the 

calibrated displacement transducers were recorded. From the collected data, the linear 

expression between the output voltage of the NI 9219 and the actual displacement of 

the string-based sensor was derived. The coefficient for the linear expression obtained 

in the calibration process is provided in Table 5.7. 

Table 5.7 Calibration coefficient for displacement transducers 

Sensor m c Remark 

DT1 27975 2.564  
DT2 45.157 7.788 Obtained using 30.1V Excitation 

DT3 27690 1.759  
 

In the last step of the displacement transducers installation, the calibrated sensors were 

connected to their corresponding DAQ. The configuration for the NI 9219 and NI 9237 

cards can be seen in Table 5.8 and Table 5.9 respectively. 

Table 5.8 LabView configuration for string-based displacement transducer by using 

NI 9219 

Parameter NI 9219 

Max range 32 

Min range 0 

Terminal configuration Differential 

Scaled units Volts 

 

In the Labview programming, a visual instrument (VI) named ‘formula’ was utilised 

to convert the output of DAQ into displacement unit (mm) based on equation (5-8). 

For the strain-based displacement transducer, this process was performed by simply 

using the VI and inserting the calibration constants that have been obtained from the 

calibration step. On the other hand, different method was conducted for the string-
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based displacement sensor. Unlike, the strain-based displacement sensor that was 

powered using the DAQ, the string-based displacement sensor required an external 

power supply as the excitation. The string-based sensor consists of a voltage divider 

circuit as it can be seen in Figure 5.10. 

Table 5.9 LabView configuration for strain-based displacement transducers by using 

NI 9237 

Parameter NI 9237 

Max range 2me 

Min range -2me 

Scaled units Strain 

Gage Factor 2 

Gage resistance 350 

Initial Voltage 0 

Vex source Internal 

Vex Value 2.5 

Strain configuration Full Bridge I 

 

 

 

Figure 5.10 Schematic diagram of string-based displacement transducer used in 

Warwick Bridge experiment 

From Figure 5.10, the 𝑉𝑜𝑢𝑡 of the sensor is given by: 
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 𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 × 𝑅2 (5-9) 

where 𝑉𝑜𝑢𝑡 is the measured output voltage of the sensor, 𝑉𝑖𝑛 is the excitation voltage, 

and R2 is the variable resistance whose value changes with the change in 

displacement. From equation (5-9), it can be seen that the value of 𝑉𝑖𝑛 should be 

constant thus the 𝑉𝑜𝑢𝑡 can only be affected by the value of R2. However, due to the 

unstable power supply utilised in the experiment, the sensor output was also sensitive 

to the variation in the excitation voltage. Therefore, rather than using 𝑉𝑜𝑢𝑡 for 

displacement calculation, 𝑅2 was utilised to tackle this problem. For this purpose, the 

value of 𝑉𝑖𝑛 was also monitored. By using 𝑉𝑜𝑢𝑡 and 𝑉𝑖𝑛, the value of R2 was obtained 

as follows. 

 𝑅2 =
𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

 (5-10) 

 

The relation of displacement and DAQ reading is given in (5-8) where 𝑑 is the 

displacement and 𝑜 is the voltage reading for NI 9219. Substituting (5-8) with (5-10), 

the displacement is given by: 

 𝑑 = 𝑚 × 𝑜 + 𝑐 = 𝑚 × 𝑅2 + 𝑐 = 𝑚 ×
𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

+ 𝑐 (5-11) 

 

where 𝑚 and 𝑐 are the slope and offset obtained from the calibration process. 

5.3.1.3 Accelerometer 

In this experiment, QA 750 accelerometers from Honeywell [224] were installed to 

measure the vibration of the bridge. Unlike the strain gauges and displacement 

transducers, the accelerometers were not installed permanently on the structure, and 

they were only utilised during the walking and the modal tests. During the walking 

test, the accelerometers were placed in fixed location as shown in Figure 5.11. 
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Figure 5.11 Location of accelerometers during walking test. All dimensions are in m. 

 

On the other hand, during the modal test, the accelerometers were moved between two 

successive modal tests. The test was repeated until data have been collected from all 

42 testing points as shown in Figure 5.12. In total, there were six sets of accelerometer 

installation.  

 

Figure 5.12 Testing points for accelerometer during modal test. All dimensions are 

in m. 

 

To obtain the acceleration data NI9234 card from National Instruments [225] is 

employed. This card has four BNC input channels which is the output terminal of the 

accelerometer employed in this research. BNC cables were employed to provide the 

connection between the signal conditioner and NI9234 card. The measurement 

performed by NI9234 produces acceleration data on Voltage unit. In order to obtain 

the acceleration in g, the measured values have to be divided by the sensitivity of the 

corresponding sensors. The sensitivity of accelerometers which are implemented in 

Warwick Bridge measurement is provided in Table 5.10. 
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Table 5.10 Accelerometer sensitivity in Warwick Bridge experiment 

Sensor No Serial Number Sensitivity (mv/g) 

1 3988 1320.425 

2 4005 1337.443 

3 4006 1322.14 

4 4007 1329.373 

5 9224 1357.526 

6 9447 1345.645 

7 9448 1347.908 

8 9351 1356.811 

 

5.3.2 Test Description 

Both static and dynamic tests were conducted in both healthy and damaged conditions. 

In the static test, a point load was applied in the mid-span of the bridge. This load was 

applied gradually in steps from 0 kg to 400 kg with an increment of 100 kg. Each 

increment lasted approximately 10 minutes during which the data were collected, and 

the data collected from the formed one dataset. In the static test, sample rate of 10 Hz 

was implemented for data collection. Figure 5.13 shows the displacement measured 

by DT2 from the static test conducted during the healthy and damaged states. 

 

Figure 5.13 DT2 measurement during static test obtained four different bridge's 

states 
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Dynamic tests consisted of walking and modal tests. In the walking test, a test subject 

walked on the bridge back and forth with pacing rate of 2.5 Hz. In this experiment, the 

data were recorded for three minutes. The sampling rate employed in the dynamic tests 

was 100Hz. Hence, one dataset from the walking test consists of approximately 18000 

data points. Figure 5.14 shows the data collected from three sensors including 

displacement transducer (DT2), strain gauge (CST8) and accelerometer (ACC7), 

during the walking test. Figure 5.15 further illustrates the power spectral density (PSD) 

from these measurements. 

 
(a) 

 
(b) 

 
(c) 

Figure 5.14 Data collected from walking test; (a) strain gauge measurement; (b) 

displacement transducer measurement; (c) accelerometer measurement. 
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(a) 

 
(b) 

 
(c) 

Figure 5.15 Power Spectral Density from measurement data obtained during walking 

test; (a) PSD from strain sensor measurement; (b) PSD from displacement transducer 

measurement; (c) PSD from Accelerometer measurement. 
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The described static and dynamic tests were performed in all conditions of the bridge. 

Therefore, for each static and dynamic test, four datasets (healthy, DM1, DM2, and 

DM3) of four conditions were generated. 

In addition to the walking test, modal test utilising an electrodynamic shaker (model 

APS400) was also performed. In this test, the shaker was employed at the quarter-span 

of the bridge (Figure 5.12). The shaker generated a chirp signal in a frequency band 

from 1-25 Hz for 64 s. The DAQ lasted 400 s, including tail period. One accelerometer 

was attached to the shakers’ moving mass to indirectly measure the shaker force while 

the other seven accelerometers were deployed to measure the response of the bridge. 

Initially, the seven accelerometers were deployed at testing points 1-7 (Figure 5.12). 

After recording the data, the accelerometers were moved to the next seven points on 

the measurement grid (Figure 5.12). This process was repeated until the data from all 

the testing points has been obtained. Figure 5.16 shows the measurements from SSB, 

DT, and ACC collected from the modal test. The data from the modal test were 

analysed to enable a comparison between the proposed method and traditional 

frequency-based damage detection method. The PSDs from these measurements are 

depicted in Figure 5.17. 

  

  
Figure 5.16 Sensor signals collected by the accelerometers, displacement transducer, 

and strain gauge during the modal test 
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Figure 5.17 PSD from data collected in modal test 

5.3.3 Damage Detection Using Frequency Response Function 

In order to investigate the effectiveness of the proposed method, a damage detection 

method based on natural frequency is implemented as a comparison. For this purpose, 

damage detection method using FRF is employed. FRF describes the response of a 

structure to an applied force in frequency domain [226]. In the data collection stages, 

modal test was conducted and a dataset containing the measurement result has been 

generated. FRF function is then calculated using both the shaker-induced force as the 

input and the bridge acceleration. The first five modes in the FRF data are identified. 

In this method, the presence of damage might be detected by the shift in the frequency 

modes after damage has occurred. 

Figure 5.18 shows the FRF measurements in the bridge’s healthy and damaged 

condition from an accelerometer that is located at the mid span of the bridge. In the 

figure, it is shown that the damage produces insignificant shift on the FRF 

measurement. Figure 5.19 shows that there is no significant shift in the frequencies for 

the first five vibration models in the healthy and damaged states. Measurable shift in 

the frequency of mode 1 occurs for damaged state 3 only, when a decrease of 0.01 Hz 
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was recorded. This decrease is by 0.43% of the initial frequency only. However, 

measurable change does not occur in damaged state 1 and 2. Figure 5.19 demonstrates 

that the maximum shift of 0.08 Hz occurs for the fifth mode at damage state 3. In 

practical application, this level of shift might be masked by the sensitivity of the bridge 

to other parameter such as temperature that makes it challenging for damage detection 

using frequency-based method. For example, in [227], it has been reported that 

between morning and night measurements, a shift in the measured natural frequency 

up to 0.57% was obtained. Furthermore, it was reported that the shift in the natural 

frequency increased to up to 2.18% between morning and noon time measurements. 

Thus, it might be challenging to detect the presence of damage using frequency-based 

method in the Warwick Bridge due the small frequency shift. 

 

Figure 5.18 FRF measurement calculated on healthy and damaged states 
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Figure 5.19 Comparison of natural frequencies of five vibration modes measured in 

healthy and damaged states 

5.3.4 Damage Detection Using CorCNN 

5.3.4.1 Data Processing for CorCNN 

In this research, the data collected during walking test are employed. Initially, data 

processing using a low-pass filter, with 50 Hz cut-off frequency, is conducted to 

remove high-frequency noise. For this purpose, a Butterworth filter was employed. 

Linear trend from the data was removed using a predefined function “detrend” on 

MATLAB.  

In the second step, a combination of inputs and output is selected. The inputs of the 

prediction model contain measurements obtained from the bridge. These inputs are 

employed to produce an output that is an estimation of sensor measurement at other 

location. In this research, this step is performed manually. As reported in [98], [99], 

[228], the sensors installed near the damage location are more likely to be more 

affected than the sensors further away from the damage. SSB5 that is located near the 

damage location is chosen as the output while DT3, CST10, and SSB6 are selected as 

the input of the prediction model. In this case, we train a prediction model that 

estimates the value of SSB5 by using DT3, CST10, and SSB6 data. After the sensor 
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selection process, time histories of DT3, CST10, SSB6, and SSB5 from healthy and 

damaged state are stored. 

Figure 5.20 illustrates the formatting of input and output employed. In this research, 

each data frame contains 500 measurement points. To obtain large number of samples, 

data augmentation is performed by sliding the fixed frame with a size of one 

measurement point. 

The healthy state dataset is further split into training, testing, and validation sets. To 

avoid any overlap between training sets and testing sets, the testing data are selected 

from the last 20% of whole time series signals of the healthy dataset while the first 

80% are employed as the training data. In addition, the last 20% of data in the training 

data is further divided as the validation data. The residuals obtained from the 

discrepancies between the actual and prediction value on the validation dataset are 

employed as the benchmark of the bridge’s undamaged state. From this process, 8575 

data points for training set, 3175 data points for validation set, and 4750 data points 

for testing set have been generated. In addition, each damaged state dataset consists of 

17500 data frames. 

  

Figure 5.20 Production of data frames from time series measurement obtained from 

Warwick Bridge experiment for CorCNN 
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5.3.4.2 Optimisation for CNN Architecture 

From the previous process, the healthy dataset has been divided into training, 

validation, and testing datasets. In this stage, supervised learning is conducted using 

training data to train a CNN-based prediction model. The basic architecture adopted 

in this research consists of four convolutional layers in the feature extraction stage and 

a fully connected layer in the classification stage. Each of the first three convolutional 

layers is followed by a pooling layer and the last convolutional layer is directly 

connected to the fully connected layer.  The filter size for the first, second, third, and 

fourth convolutional layers is set to 32, 24, 12, and 4. This selection of filter size is 

influenced by popular CNN architectures such as AlexNet and GooogleNet where the 

filter size becomes smaller as the network goes deeper.  

In addition, to obtain the hyperparameters for the prediction model, a grid search using 

varying combination of hyperparameters is performed. The hyperparameters that are 

optimised include the number of filters in each CNN layer, the number of fully 

connected layer, and the optimiser function used in the training process. Table 5.11 

describes the hyperparameters employed in the grid search. In total, there are a total 

of 64 combinations of hyperparameters that are utilised in the grid search. In this 

process, prediction models with varying combination of hyperparameters are trained 

using the training data. Training is performed in 500 iterations using mini batch size 

of 32. Early stopping is employed by monitoring the validation loss in each iteration. 

The early setting patience is set to be 30. Then hyperparameter optimisation is 

conducted by selecting a prediction model that produces the lowest prediction error 

on validation data. 

Table 5.11 Detail of hyperparameters for optimisation of CNN architecture 

Hyperparameter Value 

Number of filters in 1st CNN layer 16 or 48 

Number of filters in 2nd CNN layer 16 or 48 

Number of filters in 3rd CNN layer 16 or 48 

Number of filters in 4th CNN layer 16 or 48 

Number of nodes in fully connected layer 50 or 100 

Optimisation Function Adam or SGD 
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After optimised model has been obtained, the model is employed on the validation set. 

Then the regression residuals from the validation set are utilised to calculate the 

threshold for anomaly detection by using equation (5-5).  

5.3.5 Damage Detection Using Supervised CNN 

5.3.5.1 Data labelling and processing 

This research employs datasets collected from walking and modal tests. Initially, all 

sensor signals are filtered using a 50 Hz low pass filter to remove high-frequency 

noise. In addition, both measurement offset and Linear trend from the data were 

removed using a predefined function “detrend” on MATLAB. The next step is input 

selection. In this research, six strain gauges (SSB4, SSB5, SSB6, CST6, CST8, and 

CST10) and three displacement transducers (DT1, DT2, and DT3) were employed as 

the input of the prediction model. The accelerometers were excluded due to the 

configuration of the sensors on the modal test where these sensors were moved in six 

configurations during the test. By using these signals, the model aims to predict either 

the presence of damage or the severity of damage. 

In order to increase the number of data, data augmentation is performed by having an 

overlap of s second of measurement between one frame and the next frame. This 

augmentation step keeps the nature of information from the data since it does not 

involve any modification of the original data. Figure 5.21  shows the data frames 

employed in the research. 

In this research, sensor signals are divided into data frames each having windows 

length of 500 data points that corresponds to 5 s measurement. Data augmentation is 

performed by having an overlap of 0.1 s between one frame to the next frame. The 

augmentation is performed in order to generate more data since the large amount of 

data can be beneficial for deep learning architecture. All data that are collected during 

the bridge’s initial state are labelled as healthy while the data that are produced from 

the first, second, and third damage scenario of the experiment are labelled as DM1, 

DM2, and DM3 respectively. From this step, four datasets labelled as healthy, DM1, 

DM2, and DM3 each having 35400 data frames are generated. 
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Figure 5.21 Data frames production from time series measurement 

In order to observe the performance of the prediction models in detecting damage 

severity, several data labelling configurations such as two-label, three-label, and four 

label classifications, are adopted. These configurations are presented in Table 5.12. As 

it can be seen from the table, the two-label classification is only aimed to predict the 

presence of damage. For this purpose, only the healthy and DM3 datasets are 

employed thus the prediction models are trained to predict whether the bridge is in 

healthy or damaged condition.  

Table 5.12 Description of data labelling performed on Warwick Bridge dataset 

collected from modal test 

Classification type Datasets employed Number of samples 

training validation testing 

Two-label classification Healthy, DM3 24780 3538 7082 

Three-label classification Healthy, DM2, DM3 37170 5307 10623 

Four-label classification Healthy, DM1, DM2, 

DM3 

49560 7076 14164 

 

On the other hand, in addition to detect the presence of damage, both the three-label 

and four-label classifications are also aimed to predict the damage severity. In the 
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three-label classification, the DM2 dataset is also employed along with the healthy and 

DM3 datasets. In this case, not only are the prediction models trained to detect the 

presence of damage, but also to discriminate between the data obtained from the 

second and third damage scenarios. Finally, in the four-label classification, all datasets 

are employed. 

The last step in the pre-processing step is dividing the datasets into training, testing, 

and validation sets. In this research, the data are split into 70% training, 10% 

validation, and 20% testing sets. The number of frames in each set for all classification 

scenarios can be seen in Table 5.12. 

5.3.5.2 Parametric Study on Network Depth and Activation Function 

In this research, parametric study is performed in order to investigate the impact of 

two hyperparameters, the activation function and the network depth, to the 

performance of prediction models for the investigated problem. This is performed by 

varying the activation function employed in each convolutional layer as well as 

utilising various CNN architectures as illustrated in in. In observing the impact of the 

activation function, four activation functions such as LReLU, ReLU, sigmoid, and 

tanh are implemented. These activation functions are used both in the convolution and 

fully connected layers as seen in Figure 5.22. To observe the impact of a certain 

activation function to the prediction model performance, the activation function is 

applied in these layers. In this case, when investigating the ReLU activation function, 

ReLU is employed in all layers in the architecture as the activation function. 

On the other hand, parametric study on the network depth is performed by altering the 

architecture of the CNN models. For this purpose, five configurations are adopted: 

architectures with 1, 2, 3, 4, and 5 convolutional layers. The detail of architectures 

employed in this study can be seen in Figure 5.22. In the figure, ‘Conv’, ‘Pool’, ‘Drop’, 

and ‘FC’ represent a convolution layer, a pooling layer, a dropout layer and a fully 

connected layer respectively. 
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Figure 5.22 Architectures adopted for parametric study on network depth. ‘Conv’, 

‘Pool’, ‘Drop’, and ‘FC’ represent convolution, pooling, dropout, and fully-

connected layers, respectively. 

As it is illustrated in Figure 5.22, the architecture consists of feature extractor and 

classifier. The feature extractor part of the prediction models consists of combination 

between convolution and pooling layers (denoted as Conv and Pool). The 

convolutional layers employed in this research consist of 32 filters each having filter 

size of 16. As it can be seen in the figure, each convolutional layer is followed by a 

pooling layer. All of the pooling layers perform max-pooling operation with a filter 

size of 2. Between the convolutional layers and poling layers, batch normalisation is 

performed.  

To overcome overfitting, dropout is applied in this study. As mentioned in section 

4.3.3, there is no specific rule in where to insert the dropout layer due to its nature as 

a stochastic method. Each of the neural network architecture employed in this study 

adopts a single dropout layer with dropout probability of 0.5 between the feature 

extraction and the classifier stage as shown in the figure. 

As it is depicted in Figure 5.22, The classifier utilises two fully connected layers 

(denoted as FC). The first fully connected layer has 100 nodes and this layer processes 

all features that have been extracted from the feature extraction stage. The activation 
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function applied in this layer is similar to the activation function in the previous 

convolutional layers. On the other hand, the second fully connected layer serves as the 

output layer of the architecture. The number of nodes in the output layer corresponds 

to the number of class labels. Unlike, the previous fully connected layer, this layer 

employs softmax activation.  

5.3.5.3 Neural network training and testing 

Due to the stochastic nature of deep learning methods, for every combination of 

activation function and network depth, five prediction models are trained using 

training and validation sets. Then, the testing data are employed to evaluate all trained 

models. This step generates prediction accuracy of the models given new data. Finally, 

the average accuracy from these models is recorded. 

5.4 Results and Discussion 

5.4.1 Evaluation on CorCNN method 

The configuration of hyperparameters for the CNN architecture that produces the 

lowest prediction error on validation dataset has been obtained from the optimisation 

process. The hyperparameters (Table 5.13) have been utilised in the CNN architecture 

and the training process is conducted using training data. As it has been mentioned in 

the previous section, the model is trained to predict a single value of SSB5 by using 

DT3, CST10, and SSB6 data frames as the input. The trained model is then tested 

using validation data and the discrepancies between the actual and prediction values 

are used as a benchmark for the bridge’s healthy state. 

Table 5.13 Optimised hyperparameters combination for CNN architecture obtained 

by using the grid search method 

Hyperparameter Value 

Number of filters in 1st CNN layer 16 

Number of filters in 2nd CNN layer 48 

Number of filters in 3rd CNN layer 48 

Number of filters in 4th CNN layer 48 

Number of nodes in fully connected layer 100 

Optimisation Function Adam 
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The trained prediction model is employed to create prediction for both healthy state 

and damaged state datasets and the residuals are recorded. In this case, testing data are 

used as new healthy data that has not been seen by the model. Figure 5.23 and Figure 

5.24 present the comparison of the prediction and actual values when using both 

healthy and damaged state datasets on the trained prediction model. 

 
(a) 

 
(b) 

 
 (c) 

 
(d) 

Figure 5.23 Comparison of predicted and actual values for (a) healthy, (b) DM1, (c) 

DM2, and (d) DM3 datasets 

The model successfully reproduces the time-domain trend for SSB5 data in both 

healthy and damaged states as shown in Figure 5.23. In addition, as shown in Figure 

5.24, the proposed CorCNN manages to produce lower error on the healthy dataset 

compared to the error in the damaged states. In the figure, when damage occurs, the 

differences between the actual and prediction values become compared to the 

differences produced in the healthy dataset. To further compare between the residuals 

produced in the healthy and damage states, the PDF and CDF of the residuals are 

generated as shown in Figure 5.25. 
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Figure 5.24 Scattered plot of the predicted and actual values from four bridge 

conditions 

 
(a) 

 
(b) 

Figure 5.25 PDF (a) and CDF (b) from the residuals on healthy and damaged state 

datasets 
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As depicted in Figure 5.25(a), the distribution of residuals varies depending on the 

bridge condition. In the figure, it can be seen that the residuals from the healthy dataset 

are lower than the residuals from the damaged state datasets. In addition, the healthy 

dataset also produces lower maximum value of residual compared to those calculated 

from the damaged state datasets. Furthermore, by analysing the CDF of the residuals, 

it is found that the residuals increase when damage occurs. For example, as shown in 

Figure 5.25(b), 50% of residuals created in the healthy dataset are lower than 0.057 

µstrain. On the other hand, only 14%, 17%, and 11% of the residuals from DM1, DM2, 

and DM3 datasets respectively, are lower than 0.057 µstrain. Moreover, as illustrated 

in the figure, only 5% of residuals from the healthy dataset are higher than 0.19 µstrain. 

However, more than 50% of the residuals produced from each damage state dataset 

are higher than 0.19 µstrain. Furthermore, the CDF of the residuals from the healthy 

dataset has the steepest slope among all thus it indicates higher prediction confidence 

and less variation compared to other distributions. 

To further analyse the presence of damage in the bridge, the residuals from the model 

for the baseline, healthy state, and damaged states are calculated and shown in Figure 

5.26. In addition, a threshold level for anomaly detection is calculated from the 

residuals of the validation set using equation (5-5).  

 

Figure 5.26 Discrepancies between the actual measurements and regression outputs 

generated on all sets using CorCNN 
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Figure 5.26 suggests that the residuals produced when the prediction model is 

employed on damaged state datasets is higher than the residuals produced for the 

baseline. In addition, some residuals produced from damaged state datasets are higher 

than the threshold value which indicate anomalies of the data that further translate to 

the presence of damage. In contrast, no residual on the testing set is exceeding the 

threshold level as it is shown in Figure 5.26. In this case, the model does not produce 

false positive where healthy data are falsely detected as anomalies. 

Table 5.14 shows the number of data frames producing residuals higher than the 

threshold. From the table, it can be seen that the proposed method successfully detects 

the presence of damage in all damaged scenarios. The detection on the first, second, 

and third damage scenarios are 15.54%, 10.13%, and 23,01% respectively. As these 

numbers are higher than the confidence level employed when defining the threshold 

level, it can be concluded that damage was present in the structure in relation to the 

analysed datasets. On the other hand, no data frames produce anomaly in the healthy 

state datasets. 

Table 5.14 Detection on all datasets using CorCNN 

Condition Total Frames 
Detection 

Total Number Rate (%) 

Healthy 3500 0 0 

DM1 17500 2719 15.54 

DM2 17500 1773 10.13 

DM3 17500 4027 23.01 

 

Figure 5.26 also illustrates that the proposed method is unable to detect the severity of 

the damage. From the figure, it can be seen that there is an increase in the calculated 

residuals as the bridge experiences an increase in the severity of damage from damage 

level 2 to damage level 3. However, the number of residuals exceeding the threshold 

in damage level 2 that represents more severed condition than the damage level 1 is 

lower than the number of exceeding residuals obtained in damage level 1. Table 5.14 

confirms this as the number of detections drops from 15.54% for damage level 1 to 

10.13% for damage level 2, even though the detections are higher than the confidence 

level in both cases. In this case, the severity of damage could not be detected from the 
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number of residuals higher exceeding the threshold value. Nevertheless, the proposed 

method is able to detect all three damage scenarios. as shown in Figure 5.26. 

5.4.2 Comparison of CorCNN with other machine learning techniques 

To further investigate the performance of the CorCNN method, the performance of 

other machine learning models utilising the correlation between sensor measurement 

is observed. For this purpose, three types of machine learning models such as linear 

regression, ANN, and Random Forest are employed.  

The steps performed in this investigation is similar to the steps carried out for the 

proposed CorCNN as depicted in Figure 5.1. The dataset collected from the walking 

test is employed for the comparison. Initially, all sensors’ signals are processed using 

a low pass filter with frequency cut-off of 50 Hz. Then, Matlab function ‘detrend’ is 

applied on the filtered data to remove offset and linear trend. 

In the sensor selection stage, SST6, CST10, and DT3 are selected as the predictors 

while SSB5 is selected as the target value. This combination of sensors is equivalent 

to the one applied for the CorCNN. However, unlike in the implementation of 

CorCNN where tabular data are transformed into data frames, in this investigation this 

transformation is not conducted. Figure 5.27 illustrates the implementation of machine 

learning models utilised in this part of the research. 

 

Figure 5.27 Schematic of prediction model for estimating the measurement from 

SSB5 

Finally, the data from the sensors used for the prediction are split into training, 

validation, and testing sets. Similar to the splitting step performed for the CorCNN, 

20% of data at the end of the time series are used as the testing data while the rest are 

used as the training data. Then the last 20% of data in the training set is employed as 

the validation set. From this process, the training, validation, and testing sets consist 

of 11520, 2880, and 3600 data points, respectively. In addition, each damaged set 

(DM1, DM2, and DM3) consists of 18000 data points. 
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5.4.2.1 Linear Regression Model 

By using the training data, a linear regression model is trained. Then, the validation 

set is applied on the trained linear regression model. In this step, the prediction 

residuals from the validation set are generated and these residuals are employed to 

define the threshold for anomaly detection using equation (5-5). After the threshold 

has been determined, the testing and the damaged sets are applied on the linear 

regression model to calculate the regression error from each set. The regression 

residuals for the validation, testing, DM1, DM2, and DM3 sets produced from the 

linear regression model are illustrated in Figure 5.28. 

 

Figure 5.28 Discrepancies between the actual measurements and regression outputs 

generated on all sets using Linear Regression 

As it can be seen in Figure 5.28, the linear regression model only detects abnormal 

data in both DM1 and DM3 sets. In addition, it is unable to detect the presence of 

damage in the second damage scenario. the model does not produce false positive 

since there is no residual from the testing set that exceeds the defined threshold. Table 

5.15 shows the detection rates on the healthy and damaged sets that are produced by 

the linear regression model.  
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Table 5.15 Detection on all datasets obtained using linear regression model 

Condition Total data points 
Detection 

Total number Rate (%) 

Healthy 3600 0 0 

DM1 18000 32 0.18 

DM2 18000 0 0 

DM3 18000 40 0.22 

 

From Table 5.15, it is shown that the linear regression model is unable to detect the 

presence of damage in all damaged scenarios. The detection rates for DM1 and DM3 

sets are only 0.18% and 0.22% respectively. This might suggest that the anomalies 

detected in these sets are outliers thus they do not indicate the presence of damage in 

the structure. 

5.4.2.2 ANN 

In the training process of the ANN models, grid search is carried out in order to find 

the best hyperparameter combination for the ANN architecture. Table 5.16 shows the 

hyperparameters employed for the grid search. 

Table 5.16 Detail of hyperparameters for the optimisation of ANN architecture 

Hyperparameters Values 

Number of nodes in the first hidden layer 10, 50, and 100 

Number of nodes in the second hidden layer 0, 10, and 50 

Number of nodes in the third hidden layer 0, 10, and 50 

Dropout probability 0, 0.2, and 0.5 

 

As it can be seen from Table 5.16, there are in total 81 combinations of 

hyperparameters utilised in the grid search. The first three hyperparameters define the 

network capacity. In addition, the number of nodes in the second and third hidden 

layer also determines the depth of the model. In this case, when 0 is selected, the 

corresponding hidden layer is not activated. In addition, a dropout layer is employed 

for each hidden layer. The optimisation is performed in order to obtain the optimised 

value for dropout probability. 
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From these combinations, 81 ANN-based prediction models are built. These 

prediction models are trained using the training data on 500 iterations. Early stopping 

technique with patience of 30 is employed in the training process thus in each iteration, 

validation loss is calculated by applying the validation set on the model. After training 

process has been finished on all models, the models are tested on the validation set to 

calculate the validation error. Then, out of 81 trained models, the model with the 

lowest validation error is then selected as the optimised model. Table 5.17 describes 

the optimised hyperparameters obtained from the grid search. 

Table 5.17 Optimised hyperparameters for ANN architecture obtained by using the 

grid search method 

Hyperparameters Optimised Values 

Number of nodes in the first hidden layer 50 

Number of nodes in the second hidden layer 0 

Number of nodes in the third hidden layer 0 

Dropout probability 0.5 

 

After the optimisation process, the threshold for anomaly detection is calculated. This 

is conducted by calculating the residuals produced from applying the validation set on 

the optimised ANN model. From these residuals, the threshold level is defined by 

using equation (5-5). Then, the model is employed to perform prediction on the testing 

and damaged sets. From this process, prediction residuals for each set are generated 

and compared with the defined threshold for anomaly detection. Figure 5.29 depicts 

the prediction residuals produced by ANN model. 

As it is shown in Figure 5.29, the ANN model only manages to detect the anomalies 

in DM1 and DM3 sets. There is no false positive produced on the testing set as it can 

be seen in the figure. However, the ANN model detects no anomaly on the DM2 set 

as this set produce no residual that is higher than the threshold. In order to observe if 

the ANN model manages to predict the presence of damage in the DM1 or DM3 set, 

the detection rate is calculated. The detection rates produced by the ANN model on 

the validation, testing, DM1, DM2, and DM3 sets are provided in Table 5.18. 
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Figure 5.29 Discrepancies between the actual measurements and regression outputs 

generated on all sets using ANN model 

 

Table 5.18 Detection on all datasets generated using ANN model 

Condition Total data points 
Detection 

Total number Rate (%) 

Healthy 3600 0 0 

DM1 18000 28 0.16 

DM2 18000 0 0 

DM3 18000 35 0.19 

  

In Table 5.18, it can be seen that the ANN model only produces detection rate of 0.16% 

and 0.19% on DM1 and DM3 sets respectively. These rates are lower than the 

detection rates generated by the CorCNN method which are 15.54% and 23.01% for 

DM1 and DM3 sets, respectively. Therefore, despite detecting anomalies from DM1 

and DM3 sets, the ANN model might interpret them as outliers rather than the presence 

of damage on structure due to the low detection rates.  
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5.4.2.3 Random Forest 

The step performed in observing the Random Forest model is similar to the step 

performed in the investigation on ANN model performance. Initially, hyperparameter 

optimisation is performed by performing grid search. The details of hyperparameters 

used in the grid search is described in Table 5.19. 

Table 5.19 Detail of hyperparameters for the optimisation of Random Forest 

architecture 

Hyperparameters Values 

Sample size 0.2, 0.5, and 0.7 

Number of trees 200, 500 and 1000 

Maximum depth 80, 90, 100, and 110 

 

In the hyperparameter optimisation, 36 Random Forest-based prediction models are 

developed based on combination of hyperparameters used in the grid search. These 

models are trained using the training data and after the training process, all models are 

utilised to make predictions on the validation set. The optimised model is then picked 

by selecting model with the lowest validation error. Table 5.20 shows the optimised 

configuration of hyperparameters for Random Forest model obtained for this study. 

Table 5.20 Optimised hyperparameters for Random Forest architecture obtained by 

using the grid search method 

Hyperparameters Values 

Sample size 0.2 

Number of trees 1000 

Maximum depth 80 

 

Threshold level is then calculated by applying validation set on the optimised Random 

Forest model. In addition, the model is employed on the testing and damaged sets to 

observe its capability in detecting damage. The residuals generated from applying 

these sets on the Random Forest model can be seen in Figure 5.30. 
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Figure 5.30 Discrepancies between the actual measurements and regression outputs 

generated on all sets using Random Forest model 

As it is illustrated in Figure 5.30, the Random Forest model is able to detect anomalies 

in all damaged set. In both DM1 and DM3 sets, the model manages to detect some 

abnormal data as it can be seen in the figure. However, it only manages to detect one 

anomaly in DM2 set. Moreover, this method also mistakenly predicts a data point in 

the healthy state as an anomaly as depicted in the figure. In order to assess the model 

capability for damage detection, the detection rates of the models on the healthy and 

damaged sets are calculated and these rates are provided in Table 5.21. 

Table 5.21 Detection on all datasets generated using Random Forest model 

Condition Total data points 
Detection 

Total number Rate (%) 

Healthy 3600 1 0.02 

DM1 18000 42 0.23 

DM2 18000 1 0.01 

DM3 18000 69 0.38 

 

From Table 5.21, it can be seen that the Random Forest model only successfully 

detects the presence of damage in the third damaged scenario. As shown in the table, 
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the detection rates produced by this model on both DM1 and DM2 set are only 0.23% 

and 0.01% thus the anomalies detected from these sets might be confused as outliers 

rather than a presence of damage in the structure. In the third damaged scenario, the 

model produces 0.38% of detection rate. However, this rate is lower than the detection 

rate produced by the CorCNN method on DM3 set which is 23.01%. 

5.4.2.4 Summary of comparison between CorCNN and other methods 

From the comparison, it is found that the CorCNN method outperforms the other 

machine learning methods in detecting the presence of damage. CorCNN employs 

CNN architecture which has the capability in extracting useful information from data 

automatically. In this case, the CNN architecture extracts and learn the patterns from 

data collected during the bridge healthy state in before making predictions. When 

damage occurs, it modifies the pattern in the data thus the CNN model produces large 

error when damaged state data are employed on the model. On the other hand, other 

machine learning methods are unable to perform automatic feature extraction. These 

models do not consider the change in data pattern due to the inability in obtaining 

sequential information from the input. As a result, these models produce lower 

detection rates compared to the detection of CorCNN. 

5.4.3 Evaluation on Damage Detection Using Supervised CNN 

5.4.3.1 The impact of Network Depth to the Prediction Performance 

Figure 5.31 illustrates the prediction performance produced by several CNN 

architectures employing various activation function. From the figure, it can be seen 

that for each classification problem, the highest performance is achieved by the 

architecture that consists of one convolution layer. In two-label classification, the 

highest accuracy of 98.82% is achieved by the prediction models that employs one 

convolutional layer with ReLU activation function. Similar to this result, highest 

performance is also produced by architecture employing one convolution layer in both 

three-label and four-label classification. The highest prediction accuracy achieved in 

the three-label and four-label classification are 89.91% and 84.45% respectively. As 

it can be seen in the figure, as the architecture becomes deeper, the performance begins 

to drop. This trend occurs on all classification problem. 
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(a) 

 

(b) 

 

(c) 

Figure 5.31 Prediction model performance for CNN-based damage detection method 

using supervised learning on data collected from modal test; (a) Two-label 

classification problem; (b) Three-label classification problem; (c) Four label 

classification problem. 

To investigate the decrease in the performance due to the increase in the network 

depth, the training accuracy is investigated. For this purpose, the result obtained from 

four-label classification is taken as a case study. Figure 5.32 shows the training 

accuracy produced from all architectures in four-label classification. As it can be seen 

from the figure, the training accuracy increases as the architecture goes deeper. This 
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trend is different than the trend in the testing accuracy where the increase in the neural 

network depth reduces the testing accuracy. This might be caused by overfitting where 

a prediction model learns the training data too well that it produces poor generalisation 

on unseen data. Overfitting tends to occur when employing complex CNN 

architectures, potentially decreasing the testing accuracy. The highest accuracy 

obtained in architecture with one convolution layer implies that for the problem under 

investigation, implementing a single convolution layer is sufficient. 

 

Figure 5.32 Training accuracy obtained from several CNN models adopting different 

number of convolution layer for four-label classification problem 

To further investigate the applicability of CNN on detecting damage severity, a 

confusion matrix for four-label classification is derived. For this purpose, the 

performance of a model utilising single convolution layer that adopts LReLU 

activation function is observed. Figure 5.33 describes the confusion matrix generated 

from the model. In the figure, the columns represent the prediction made by the 

prediction model while the rows represent the actual class. Hence, true prediction 

occurs in the diagonal of the matrix and each value in the diagonal elements illustrates 

the total percentage of correct prediction made into the corresponding class. From the 

figure, it can be seen that 95% of data with healthy labels is predicted correctly with 

the remaining 5% of the data is wrongly predicted as DM1, DM2, and DM3. However, 

it can be seen that the model is unable to discriminate between data from DM2 and 

DM1 sets. It can be seen from the figure that 8% of data with actual label of DM1 is 

wrongly classified as DM2. Moreover, 20% of data labelled as DM2 is predicted as 

DM1. This error might be caused by the small difference between damage level 1 and 

damage level 2 which make it challenging to accurately differentiate between data 

from those conditions. Finally, the model also manages to predict correctly on 89% 
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data in DM3 set where 6% and 5% of the data are classified as DM2 and DM1 

respectively. In addition, no data with actual label DM3 is predicted as healthy data. 

 

Figure 5.33 Normalised confusion matrix produced by the prediction model utilising 

a single convolution layer. True prediction occurs on the diagonal of the matrix. 

In addition, the error distribution generated by comparing the actual class and the 

predicted value is also investigated. This error distribution can be seen in Figure 5.34. 

In the figure, the x axis represents the level of prediction error that illustrates how far 

the prediction deviates from the actual class, the y axis represents the actual class, and 

the z axis shows the number of predictions. From the figure, it can be seen that the 

error distribution for each class label follows normal distribution. In this case, most 

predictions are made to the true class while for each class, most prediction errors occur 

on the class adjacent to the actual class. 

To further investigate the overfitting, the result from four-label classification is taken 

as a case study.  Figure 5.35 shows the training and validation process of the prediction 

models adopting a single convolution layer and five convolution layers. From the 

figure, it can be seen that the training and validation accuracy for architecture with one 

convolution layer increase with similar trend in the first eight epochs. At 16th epoch, 

the overfitting starts to occur thus increasing the gap between the training and 

validation accuracy. Finally, since the model produces no increase in validation 

accuracy after the 43rd epoch, the early stopping mechanism is activated, and the 

training process is stopped after 63 epochs. On the other hand, the architecture with 

five convolution layers suffers from overfitting since the 5th epoch. In the figure, it 
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can be seen that from the first four epochs, the trained model manages to achieve 

training accuracy higher than 90%. The training accuracy for this model keeps 

increasing with more iteration as it is shown in Figure 5.35. However, this trend does 

not apply on the validation accuracy where fluctuation occurs after four epochs. 

 

 

Figure 5.34 Error distribution from the comparison between the actual class and the 

prediction 

As it is shown in Figure 5.35, the validation accuracy of 91% achieved by the model 

that employs one convolution layer does not reflect the testing accuracy. As it can be 

seen in Figure 5.31, the model only reaches 84.25% of testing accuracy. This might 

be caused by the lack of data used in the validation dataset since the validation set is 

only 10% of the whole data frames. In addition, the prediction model might also overfit 

the validation data where it is unable to produce good generalisation on new data. 

Therefore, it is a good practice to allocate both the validation and testing datasets in 

order to assess the real performance of prediction model on completely unseen data. 
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Figure 5.35 Training and validation accuracy for models adopting one and five 

convolution layers 

 

5.4.3.2 The impact of Activation Function to the Prediction Performance 

The other parameter that is investigated is the effectiveness of a certain activation 

function for the problem under study. As it is shown in Figure 5.31, there is no 

activation function that works best for all cases. In two-label classification, the 

architecture with ReLU activation function yields the highest testing accuracy. 

However, for three-label and four-label classification, the activation functions that 

produce the best performance are LReLU and sigmoid respectively. Similarly, for 

each classification problem (two-label, three-label, and four-label classification), there 

is no activation function that produces the highest prediction accuracy on all model 

architectures. As an example, in three-label classification, the model with one 

convolution layer achieves the highest performance using LReLU as the activation 

function. On the other hand, in three-label classification, the model adopting three 

convolution layers generates the highest prediction accuracy when ReLU activation 
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function is utilised. Therefore, there is no activation function that provides a general 

solution for the problem in the case study. 

Figure 5.36 describes the training and validation accuracy for prediction models 

adopting different activation functions for four-label classification. As it can be seen 

from the figure, the model adopting LReLU activation function produces the highest 

validation and testing accuracy. It achieves a training accuracy higher than 90% in the 

9th epoch, faster than the other models. In this model, the training process is stopped 

in the 57th epoch due to the early stopping. 

 

Figure 5.36 Learning curves of prediction models utilising various activation 

functions 

On the other hand, as shown in Figure 5.36, the prediction model that employs sigmoid 

activation function surprisingly produces faster training process than the model 

utilising tanh activation function. In the training process of the model, early stopping 

occurs at 60th epoch. Although it has lower validation accuracy compared to both 

models with ReLU and LReLU activation function, from Figure 5.31, it can be seen 

that the model with sigmoid activation function yields the highest accuracy on the 

testing set. Therefore, it provides better generalisation compared to the models that 

use LReLU or ReLU. Considering both the level of accuracy and the comparable 
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training time with LReLU activation function, sigmoid activation function should also 

be taken into account when building CNN architecture on the investigated problem or 

other similar problems. 

Finally, in Figure 5.36, it can be seen that model with ReLU activation function has 

the fastest training process. As it can be seen from the figure, the model triggers early 

stopping at 37th epoch, faster than the other models. On the other hand, the model 

utilising tanh activation function has the slowest training process. As it can be seen in 

the figure, the training process of model utilising tanh activation function only stops 

after it reaches 100th epoch, thus early stopping mechanism is not activated on the 

model. 

5.4.3.3 Implementation on walking test data 

The method was also performed on datasets containing measurement from walking 

test. The performance of prediction model produced for all cases can be seen in Figure 

5.37. In the figure, it can be seen that for the walking test, most of the prediction 

models manage to achieve accuracy higher than 99%.  In addition, it is also shown 

that there is no relation between an increase in network depth with the prediction 

accuracy unlike the results obtained when using the datasets from the shaker test. 

However, similar to the previous result, there is no activation function that can yield 

the best performance in all cases. 

Despite the promising results from the multiclass classification approach, the approach 

has a significant drawback which might limit the application in real monitoring 

scenarios. The method requires information regarding the condition of the monitored 

structures. This information is needed in the labelling process so CNN models can be 

trained in supervised manner. In this research, this information is available thus 

performing supervised learning on CNN models can be carried out. However, in real 

monitoring scenarios, labelled data are mostly unavailable therefore damage detection 

is conducted to obtain the structure's condition. Obtaining the labelled data might be 

impractical and time consuming. Furthermore, even when we have labelled data from 

one bridge, it is challenging to apply a supervised model trained using the labelled 

data from the bridge on other bridges due to the different characteristics of bridges.  
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(a) 

 

(b) 

 

(c) 

Figure 5.37 Prediction model performance for CNN-based damage detection method 

using supervised learning on data collected from walking test; (a) Two-label 

classification problem; (b) Three-label classification problem; (c) Four label 

classification problem. 
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5.5 Conclusions and summary 

In this study, two damage detection approaches implementing deep learning have been 

presented. Firstly, CorCNN, a novel damage detection method based on the change in 

correlation between measurements has been validated using data obtained from a 

laboratory-scale bridge. The method employs 1-D Convolutional Neural Networks as 

a regressor. It has been shown that by exploiting the correlation between 

measurements on the bridge, a measurement at one point of the bridge can be estimated 

using sensor signals measured at other points in the bridge. In addition, damage 

detection approach utilising CNN models trained using labelled data has been 

discussed. Parametric study has been performed in order to observe the impact of 

hyperparameters to the damage detection performance. The conclusions from this 

study are as follows: 

• The proposed approach, CorCNN, successfully detects damage that cannot be 

detected using standard vibration-based method (i.e., relying on the shift in 

natural frequencies). 

• The method can be utilised to detect damage in all damage scenarios as it can 

be seen from the prediction residuals that exceeds the threshold on damaged 

state datasets.  

• It has been shown that although the proposed method is unable to provide 

useful information on the severity of damage, it manages to detect the presence 

of damage in all scenarios.  

• Based on the comparison with other machine learning techniques, it has been 

shown that the proposed approach manages to detect the presence of damage 

that can hardly be detected by the other machine learning methods. 

• The parametric study performed in damage detection using multiclass CNN 

has shown that for the implementation of the framework on modal test dataset, 

models with shallow architecture outperform those with deeper architectures. 

This might be caused by overfitting to the training set that occurs on models 

adopting more than two convolution layers. 

• It is important to split the dataset into training, testing, and validation datasets 

when implementing supervised learning. This way, the prediction model is 

assessed based on its performance on unseen data. 
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• It is found that by using the amount of data used in this study, the CNN models 

might achieve prediction accuracy of 98.82%, 89.91% and 84.45% for two-, 

three-, and four-label classification problem. 

• There is no activation function that manages to produce highest performance 

in all cases. However, from the research it is found that tanh activation function 

can be removed in the hyperparameter optimisation due to the slow training 

process obtained from the implementation of the activation function for the 

investigated problem.



Chapter 6 Combined MPCA-CNN for Damage 

Detection on Structures 

 

 

 

 

 

 

 

 

 

Summary 

 

This chapter presents a damage detection method for SHM that combines 

MPCA and CNN. Section 6.2 describes the methodology conducted in the 

research. Section 6.3 explains the validation of the method using 

experimental data from a laboratory-scale bridge. In this section, parametric 

study for MPCA is firstly presented. Following the result of this 

investigation, explanation on parametric study on the CNN model is 

explained in section 6.3.4. Section 6.4 provides the result and discussion on 

the hyperparameter study on the CNN architecture as well as comparison 

between the proposed method and other machine learning techniques. 

Finally, Section 6.5 summarises the chapter. 
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6.1 Introduction 

In Chapter 5, data interpretation methods implementing deep learning technique have 

been performed using both unsupervised and supervised learning. Despite having the 

capability in discriminating between data obtained in healthy and damaged state, the 

supervised learning method requires information on the structures’ condition for data 

labelling which might limit the application of the method in real-life monitoring 

system. On the other hand, unsupervised learning is more applicable in real application 

since it does not require any labelling in the implementation. It is desirable to combine 

deep learning with other existing unsupervised method to further improve the damage 

detection capability. 

MPCA is one of the existing methods that has been implemented for damage detection 

without the needs of data labelling in the application. The method has been applied 

successfully to enhance the distinction between features of undamaged and damaged 

condition. MPCA has been implemented individually and in combination with 

regression analysis such as RRA, MLR, SVR, and Random Forest [84]. It has been 

shown that combining MPCA with regression analysis might improve the performance 

both in detection and time delay. 

In this chapter, a damage detection method that combines MPCA and CNN is 

proposed. This study is aimed in order to improve the existing MPCA-based damage 

detection methods by incorporating deep learning architectures. In this chapter, the 

steps executed in the study is presented. To verify the proposed method, the datasets 

collected from Warwick Bridge experiment are employed in the case study. Parametric 

study is performed to observe the impacts of some parameters for both MPCA and 

CNN methods. Finally, in order to assess the effectiveness of the combined MPCA-

CNN method, comparison between the combined MPCA-CNN method and other 

combined methods is presented. 

6.1.1 Summary of Novelty and Contribution 

This study proposes a novel method combining MPCA and CNN to improve existing 

damage detection method. In addition, this work also observes for the first time the 

impact of parameters employed in both MPCA and CNN to the damage detection 

performance. Moreover, this research for the first time also evaluates the comparison 

between the combined MPCA-CNN and other previously reported combined methods 
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such as combined MPCA-linear regression, MPCA-ANN, and MPCA-Random 

Forest. 

6.2 Methodology 

Figure 6.1 describes the steps conducted in the research. Timeseries 𝑈(𝑡) containing 

measurement of bridge responses are collected using sensor system installed on the 

structure. The next step is performing MPCA analysis by employing a moving window 

with a size of 𝑁𝑠 and a time step of 𝑡. As the window moves through the timeseries, 

an individual PCA operation is performed on the data inside the window to extract the 

principal components. In this stage, the following procedures are conducted:  

• normalisation - data inside the window is normalised using statistical 

normalisation.  

• Covariance - covariance matrix 𝐶 is derived from the normalised data.  

• Eigen - eigenvalues 𝜆𝑖 and eigenvectors 𝜓𝑖  are extracted from the covariance 

matrix.  

• sorting - the eigenvectors are sorted based on the significance of the 

eigenvalues. 

Among all eigenvectors, only the first eigenvector or the first principal component 

𝜓1 is recorded due to its largest variance. As the moving window moves, a new first 

principal component is generated. This operation is repeated until the moving window 

reaches the end of the time series. From this process, a new dataset containing 

timeseries of the first principal component of the measurement is generated. The whole 

MPCA procedures are executed on both healthy and damaged state dataset. The size 

of the new dataset can be calculated as follow: 

 𝑁𝑤 =
𝑁𝑜 − 𝑁𝑠

𝑖
+ 1 (6-1) 

 

where 𝑁𝑠 is the window size, 𝑁𝑜 is the total number of data points in the original 

dataset 𝑈(𝑡), and 𝑖 is the time step. Although the number of data point is reduced, the 

number of variables is constant since the number of elements in the eigenvector is 

equal to the number of sensors. 
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Figure 6.1 Flowchart of the combined MPCA-CNN damage detection method 

 

It has been reported that the presence of damage might influence the structure’s 

responses, thus changing the covariance matrix extracted from the measurement [98], 

[228]. The change in the covariance matrix will modify the eigenvectors and 

consequently, the correlation between the elements in the eigenvectors might be 

affected. Therefore, the sensor selection stage involves identifying pairs of sensors 

that have high correlation. This is executed by calculating the Pearson correlation 

coefficient [229] of the newly created dataset that contains the time history of the first 

principal component from the healthy state measurement. In this study, the correlation 

coefficient is calculated using: 
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𝑟𝑥𝑦 =

(𝑁∑𝑥𝑖𝑦𝑖 − ∑𝑥𝑖 ∑𝑦𝑖)

√𝑁𝑥𝑖
2 − (∑𝑥𝑖)2√𝑁𝑦𝑖

2 − (∑𝑦𝑖)2
 (6-2) 

 

By using the correlation matrix, all sensor pairs that have correlation coefficient higher 

than 0.85 are stored for anomaly detection. By using these pairs, regression functions 

that estimate the value of one variable using the value of its pair as the predictor can 

be generated. For this purpose, new datasets that only contain measurements from 

these pairs are obtained. The correlation coefficient might be affected by the choice of 

window size hence in this research, parametric study in the impact of window size is 

also observed. The pairs that have been identified from the healthy state dataset are 

also utilised on the damaged state dataset. 

As it is illustrated in Figure 6.1, The healthy dataset is then further divided into 

training, validation, and testing sets. Both the training and validation sets are employed 

in the supervised training of regression models. In the training process, the training set 

is utilised in the iterative backpropagation process to update the weights inside the 

prediction model while the validation set is applied for both hyperparameter 

optimisation and early stopping. Early stopping is employed for regularisation 

purpose. In hyperparameter optimisation, a set of models with various architectures 

are trained using the training data. After the training is finished, the validation loss 

from these models is computed. The architecture that yields the lowest validation loss 

is then selected as the optimised model. On the other hand, the testing set is not 

employed in the supervised training. Instead, it serves as new healthy state data that 

have not been seen by the prediction model. This way, the performance of the model 

when given new healthy state data can be observed. 

The next step performed in the research is training the prediction models using various 

techniques such as CNN, linear regression, Random Forest, and ANN. CNN has been 

known for its capability in finding spatial pattern from data. Unlike, some machine 

learning techniques, CNN architectures accept input in form of sequences instead of 

tabular data. Therefore, data processing is required in order to form data frames that 

can be supplied into CNN architectures. For this purpose, another sliding window with 

a fixed size 𝑁𝑑 is employed on the datasets that are generated in the sensor selection 



Chapter 6. Combined MPCA-CNN for Damage Detection on Structures 

161 
 

stage. Consider a dataset 𝐷(𝑡) consisting of time series of two pairing elements from 

the first principal component 𝜓1: 

 𝐷(𝑡) =

[
 
 
 
𝜓1,1(𝑡1) 𝜓1,2(𝑡1)

𝜓1,1(𝑡2) 𝜓1,2(𝑡2)
⋮ ⋮

𝜓1,1(𝑡𝑁) 𝜓1,2(𝑡𝑁)]
 
 
 

 (6-3) 

 

where 𝜓1,1 are 𝜓1,2 the first and second element, respectively. The window moves 

through 𝜓1,1, and the data inside the window forms a data frame. On the other hand, 

for each data frame created by the moving window, a single data point from 𝜓1,2 is 

stored. In this case, the CNN model employs a sequence of data point from the first 

element to estimate a single value of the second element. Figure 6.2 shows the 

construction of data frames that is implemented in this research. 

 

Figure 6.2 Construction of data frames using a pair of sensors for regression analysis 

in combined MPCA-CNN. Each data frames (presented in blue) are used as the input 

of CNN models to predict its corresponding target output (presented in brown).   

From this process, a new dataset that contain data frames and their corresponding 

target output is created. This step is performed on both the healthy and damaged state 

datasets and these newly created sets are only employed on CNN architectures. 

After the hyperparameter optimisation process, the optimised architecture for each 

prediction model is obtained. The validation set is then implemented in defining a 
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threshold level for anomaly detection for each prediction model. Firstly, the validation 

set is employed on the optimised model. Then, the residuals that are produced from 

the discrepancies between the values from the actual measurement and the model 

prediction are computed and stored. From these residuals both the mean value and the 

standard deviation 𝜎𝑟 are calculated. By using these variables, the threshold level is 

defined by ±6𝜎𝑟  [84]. This process is performed on all prediction models. 

As it can be seen in Figure 6.1, the optimised model from the supervised training 

performs regression on the testing and damage state sets. The prediction generated by 

the model is then compared with the actual value to calculate the residual error. The 

previously defined threshold level is then employed for anomaly detection by using 

the residual error. All residual values that exceed the threshold will be detected as 

abnormal data. Following this process, detection rate is calculated using  

 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (%) =
𝑛𝑑
𝑁
× 100 (6-4) 

 

where 𝑛𝑑  is the number of residuals exceeding the threshold and 𝑁 is the total number 

of data points. False positive might occur when healthy state data are detected as 

abnormal data. However, as long as the total number of detections is lower than the 

confidence level that is utilised in defining the threshold, then this condition might be 

considered as outlier. 

6.3 Case Study: Warwick Bridge Experiment 

6.3.1 Data Processing 

Initially, high frequency noise from the data was removed by using a low pass filter 

with 50 Hz cut-off frequency. For this purpose, a Butterworth filter was employed. In 

addition, to remove Linear trend from the data, a predefined function “detrend” on 

MATLAB was employed.  

6.3.2 Parametric Study on MPCA 

As mentioned in section 5.3.2, the modal test in Warwick Bridge experiment was 

performed in six configurations in order to collect vibration data in all testing points. 

From this process, six datasets containing observation from strain gauges and 

displacement transducer have been collected for every condition (healthy, DM1, DM2, 
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and DM3). Each dataset contains 30000 datapoints. The healthy state datasets are 

divided into training, validation, and testing sets. These datasets are assigned to be 

training, testing, and validation sets with following configuration: 

• Datasets 1-4 are utilised as training set. 

• Dataset 5 is employed as the validation set. 

• Dataset 6 is used as the testing set. 

Since the proposed method only employs healthy state data in the training process, the 

damaged state datasets are not split. All damaged state datasets are used along the 

testing set to evaluate the effectiveness of the proposed damage detection method. 

In the investigation on the MPCA parameters, regression analysis using linear 

regression model is performed. This is due to the cheap computation resources 

required in applying linear regression model. The results from the combined MPCA-

linear regression approach also serve as benchmarks for the combined approaches. 

There are three investigations onducted in this research: investigation on the impact 

of MPCA window size, investigation on the sensor type, and investigation on the 

correlation coefficient. 

6.3.2.1 Investigation on the Impact of MPCA Window Size 

The first parametric study performed in this research is investigating the impact of 

MPCA window size. For this purpose, in total 11 window sizes 𝑁𝑠 are used such as 

10, 50, 100, 200, 500, 1000, 5000, 6000, 10000, 15000, and 20000. By performing 

MPCA using various MPCA window sizes, several time series of the first eigenvector 

from all datasets (training, validation, testing, DM1, DM2, and DM3) are generated. 

Due to the variation in the window size, the number of observations in the eigenvector 

time histories after MPCA is also varied according to (6-1).  

The next step is calculating the correlation coefficient on the eigenvector time histories 

in the training set. From this process, pairs of sensors with correlation coefficient 

higher than 0.85 are picked and stored. The total number of pairs stored for various 

MPCA window size can be seen in Table 6.1. 

As it can be seen in Table 6.1, the correlation coefficients between sensor pairs are 

affected by the MPCA window size. When the window size is too small, no sensor 

pair creates correlation coefficient higher than 0.85. On the other hand, it is also found 
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that increasing the window size above a certain value will not increase the correlation 

coefficient between sensors. As it can be seen in Table 6.1, only 51 pairs are having 

correlation higher than 0.85 when window size of 15000 is implemented. This number 

is also decreased to 17 as the window size is increased to 20000. In this parametric 

study, regression analysis using linear regression models is then performed on the 

pairs of sensors having correlation coefficient higher than 0.85 for each MPCA 

window size. 

Table 6.1 The number of pairs having correlation coefficient higher than 0.85 from 

various MPCA window sizes 

MPCA Window Size Number of Pairs Identified 

10 0 

50 41 

100 64 

200 89 

500 148 

1000 246 

5000 445 

6000 465 

10000 464 

15000 51 

20000 17 

 

As it is shown in Table 6.1, the number of sensor pairs having correlation coefficient 

higher than 0.85 is affected by the choice of MPCA window size. Some pairs might 

produce correlation coefficient higher than 0.85 on several MPCA window sizes. 

However, these pairs might also produce correlation coefficient lower than 0.85 on 

other MPCA window sizes. In order to observe the impact of window size to the 

performance, the results from sensor pairs that have correlation coefficient higher than 

0.85 on every MPCA window size are observed. For this purpose, in total, eight pairs 

have been identified and collected for observation. By using these pairs, linear 

regression models have been trained and detection rates from these models have been 

collected. Figure 6.3 shows the detection rate obtained from the regression model 

utilising data generated by using various MPCA window sizes. 



Chapter 6. Combined MPCA-CNN for Damage Detection on Structures 

165 
 

 

(a) 

  

(b) 

 

(c) 

 

(d) 

Figure 6.3 Detection of Anomaly from various MPCA window size; (a) at testing 

set; (b) at DM1 set; (c) at DM2 set; (d) at DM3 set. 

 

From Figure 6.3, it can be seen that be seen that the damage can be successfully 

detected when using MPCA window size of 5000, 6000, and 10000. When smaller 

window sizes are implemented (50, 100, 200, 500, and 1000), most sensor pairs such 

as the SSB2-SSB5, SSB2-DT1, SSB2, DT2, SSB2-DT3, SSB5-DT1, SSB5-DT2, 

SSB5-DT3 pairs are unable to detect the damage. On the other hand, other sensor pairs 

such as DT1-DT2, DT1-DT3, and DT2-DT3 manage to produce detection on these 

window sizes. However, these detections are achieved at the cost of high level of false 

positives. As an example, at MPCA window size of 500, the DT1-DT3 pair manages 

to produce detection rate of 0.87%, 0.79%, and 0.2% on DM1, DM2, and DM3 sets 

respectively. However, the pair also generates 0.83% of false detection on the testing 

set. The false positive occurs when the healthy state data are falsely detected as 
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abnormal data. The number of false positives is calculated from the number of 

residuals from the testing set that exceed the threshold level. Ideally, the model should 

produce low level of residuals on the testing set because the model is trained using 

healthy state data and the testing set contains data from the healthy state. Therefore, 

the anomaly that is generated on the testing set is considered as false detection. 

When the MPCA window size is configured at 5000, 6000, and 10000, some pairs 

manage to perform damage detection from the dataset. As depicted in Figure 6.3, The 

DT1-DT3 pair is able to yield detection on all damage scenarios at these MPCA 

window sizes. Other potential pairs also manage to detect the presence of damage such 

as SSB2-SSB5 and SSB5-DT2. At MPCA window size of 6000, the former generates 

detection rate of 16.14%, 0.38%, and 1.33% on DM1, DM2, and DM3 sets 

respectively While the latter achieves detection rate of 19.41%, 1.75%, and 0.3%. In 

addition, from the figure, it can be seen that some pairs are only able to detect damage 

in one or two scenarios out of three damage scenarios. For example, at window size 

of 10000, the SS2-DT3 pair generates 16.7% detection rate on DM1 set. However, the 

pair does not yield high detection rate on the other damaged set. This result might be 

caused by the selection of sensor pair that is not suitable for detecting the introduced 

damage. 

At MPCA window size of 15000, only the DT1-DT3 pair manages to detect the 

damage with detection rate of 66.9%, 95,88%, and 11.23% for DM1, DM2, and DM3 

sets respectively. In addition, no false positive is produced by the pair when MPCA 

window size of 15000 is implemented. On the other hand, no anomaly is detected by 

other pairs at this MPCA window size. Finally, at window size of 20000, all sensor 

pairs are unable to detect any anomaly from the data. 

In addition, it is also observed that correlation coefficient is affected by the MPCA 

window size. In Figure 6.4, it can be seen that the correlation coefficients of all sensor 

pairs rise as the window size is increased from 50 to 6000. When the window size is 

further increased to 10000, the coefficients in all sensor pairs start to drop and the 

values continue to decrease when the window size is set to 15000 and 20000. This 

result is in good agreement with the information in Table 6.1. 
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Figure 6.4 Correlation coefficient between sensors from various MPCA window 

sizes 

From the observation, it is found that the ideal window size for the problem under 

study is between 5000 to 10000. One factor that might contribute to the result is the 

period of the chirping signal implemented on the shaker. As mentioned in section 

5.3.2, including the free decay period, each excitation from the shaker takes about 64s. 

With a sampling rate of 100Hz, the excitation period corresponds to 6400 data points. 

As it is reported in [84], [98], when periodic variability presents in the dataset, the 

MPCA window size has to be at least the longest periodic behaviour.  

When small window size (50, 100, 200, 500, and 1000) is implemented, the window 

is unable to capture the trend from the dataset.  When the optimal window size (5000, 

6000, or 10000) is applied, the window manages to collect the data pattern thus 

generating high correlation coefficient between sensors as shown in Figure 6.4. In 

these window sizes, the correlation coefficients almost reach 1 which is the maximum 

value of the coefficient therefore producing nearly flat area as it can be seen in the 

figure. On the other hand, configuring the MPCA window size above certain level also 

does not yield better results. This can be seen from the lower detection on DT1-DT3 

pair when the MPCA window size is 15000 and 20000 compared to its detection at 
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window size of 5000, 6000, and 10000. Therefore, further observation is performed 

by applying the MPCA window size of 5000, 6000, and 10000. 

6.3.2.2 Investigation on Sensor Type 

The next parametric study is observing the detection rate based on the sensor type 

selected for the regression model. Data from displacement transducers and strain 

gauges are employed in this study. Furthermore, two types of strain gauges are utilised: 

strain gauges that are installed on concrete deck and strain gauges which are deployed 

at the steel beam. In this part of the research, the sensors are grouped into three 

categories: displacement transducer (DT), concrete strain gauge (CS), and steel strain 

gauge (SS). Then, from these categories, in total six combinations that form sub-

categories are generated: CS-CS, CS-SS, CS-DT, SS-SS, SS-DT, and DT-DT. All 

sensor pairs are further split into these sub-categories. In order to investigate the 

impact of sensor type to the detection, the pair that yields the highest detection rate for 

each sub-category is picked. The sensors pairs selected in this parametric study are as 

follows: 

• CST2-CST4 for CS-CS 

• CST1-SSB3 for CS-SS 

• CST5-DT2 for CS-DT 

• SST1-SSB3 for SS-SS 

• SSB3-DT1 for SS-DT 

• DT1-DT3 for DT-DT 

As mentioned previously, the MPCA window size utilised in this observation is 5000, 

6000, and 10000. Figure 6.5 shows the detection rate generated by the selected sensor 

pairs at MPCA window size of 5000, 6000, and 10000. 

From Figure 6.5, it is shown that most sensor pairs manage to predict between 

undamaged and damaged condition correctly. As shown in Figure 6.5, there are two 

sub-categories that are unable to correctly identify the damage: CS-DT (CST5-DT2) 

and SS-SS (SST1-SSB3). Despite producing high detection on the damaged state sets, 

both pairs produce high false positive rate on MPCA window size of 5000 and 6000. 

However, when the MPCA window size is set to be 10000, both pair manages to 
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correctly differentiate between healthy and damaged data as the false positive rate 

produced by these pairs are reduced to 0. 

 

(a) 

 

(b) 

 

(c) 

Figure 6.5 Maximum detection produced by sensor pairs from six sub-categories; (a) 

at MPCA window size of 5000; (b) at MPCA window size of 6000; (c) at MPCA 

window size of 10000. 

In addition, it is also observed that the best MPCA window size differs among the sub-

categories. As it can be seen in Figure 6.5, the CS-CS sub-category perform best when 

the window size is 6000. For this pair, increasing the MPCA window size to 10000 
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results to a significant drop in detection on DM2 set from 86.7% to 51.4%. In addition, 

For CS-SS sub-category, no significant difference is observed between the detection 

produced at MPCA window size of 6000 and 10000. On the other hand, the rest of the 

sub-categories produce highest detection at MPCA window size of 10000. Hence, 

from this observation, it can be concluded that different sensor types might require 

different value of MPCA window size to successfully detect the damage. 

From this parametric study, it is found that the sensor types are sensitive to the type of 

damage. As it can be seen in Figure 6.5, the SS-SS pair that is formed from two steel 

strain gauges is more sensitive in detecting damage at the DM3 set. In DM3 scenario, 

damage at the steel beam is introduced, while on the previous DM1 and DM2 sets, 

damage only occurs at the concrete deck. Therefore, this pair does not yield high 

detection rate on DM1 and DM2 sets. In addition, it is also found that the pairs from 

CS-CS and CS-SS sub-category manage to achieve high detection in all damaged sets. 

The latter combines sensors that are deployed on both the concrete deck and the steel 

beam thus it is likely to be sensitive on the damage applied on both the concrete deck 

and the steel beam. On the other hand, the pair from CS-CS category is able to produce 

high detection at DM3 set because the scenario also includes damage at the concrete 

deck that has been introduced on the previous damage scenario in addition to the cut 

at the steel beam. Finally, it is observed that the DT-DT pair has shown high sensitivity 

in detecting damage on all damage scenarios. 

6.3.2.3 Investigation on the Correlation Coefficient 

Parametric study on the impact of correlation coefficient to the detection rate is also 

conducted in this study. In the previous part of the research, all sensor pairs have been 

categorised into six sub-categories. In this parametric study, the sensor pair that 

produces the highest correlation coefficient for each sub-category is selected for 

analysis. The MPCA window size is set to be 5000 since most sensor pairs manage to 

perform high detection rate at this window size. The pairs selected in this part of the 

study are as follows:  

• CST4-CST9 for CS-CS 

• CST3-SSS1 for CS-SS 

• CST3-DT2 for CS-DT 

• SSB2-SSB5 for SS-SS 
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• SSB5-DT2 for SS-DT 

• DT1-DT3 for DT-DT 

Aside from the DT1-DT3 pair for DT-DT sub-category, the other pairs selected in this 

parametric study differ from the pairs picked in section 6.3.2.2. Therefore, analysis is 

only performed by comparing the pairs in five sub-categories. Figure 6.6 shows the 

detection on sensor pairs with highest correlation coefficient and sensor pairs with 

highest detection at five sub-categories using MPCA window size of 5000, 6000, and 

10000. 

 
(a) 

 
(b) 

 

Figure 6.6 Comparison of detection produced from sensor pairs from six sub-

categories. (a) detection from CST4-CST9 (Pair A) and CST2-CST4 (Pair B); (b) 

detection from CST3-SSS1 (Pair A) and CST1-SSB3 (Pair B); (c) detection from 

CST3-DT2 (Pair A) and CST5-DT2 (Pair B); (d) detection from SSB2-SSB5 (Pair 

A) and SST1-SSB3 (Pair B); (e) detection from SSB5-DT2 (Pair A) and SSB3-DT1 

(Pair B). 
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(c) 

 
(d) 

 
(e) 

Figure 6.6 Continued. 

As it is illustrated in Figure 6.6, for each sub-category, the pair with highest correlation 

coefficient in the sub-category is not producing the highest detection rate. 

Furthermore, significant differences in the detection rates are also detected as it can 

be seen from the figure. For example, at MPCA window size of 5000 in CS-CS sub-

category, the CST4-CST9 pair achieves 5.84%, 4.6%, and 3.4% detection at DM1, 

DM2, and DM3 sets respectively. On the other hand, the CST2-CST4 pair manages to 

produce 72.8%, 7.2%, and 63.51% detections at those sets. In this sub-category, 

significant differences are also produced at MPCA window size of 6000 and 10000. 

Similar results are also observed at other sub-categories. Therefore, high correlation 
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coefficient does not guarantee high number of detection rate although it is important 

to select the highly correlated sensor pairs for regression analysis purpose. 

Referring to Figure 5.4, the pairs with highest correlation coefficient in each sub-

category are formed by sensors whose location are close to each other. According to 

[98], [99], [228], a sensor that is deployed near the damage location is more affected 

than the sensor that is far from the damage. Since the pairs with the highest correlation 

tend to be made by sensors that are close to each other, these pairs do not experience 

large change in the correlation coefficient due to the damage. On the other hand, by 

referring to Figure 5.4, most sensor pairs that produce high detection rate consist of a 

sensor that is located near the damage and a sensor far from the damage. For these 

pairs, one sensor is greatly influenced by the damage while the other is affected 

insignificantly. Therefore, when damage occurs, the change of correlation in these 

pairs are larger compared the change of correlation of sensor pairs with the highest 

correlation coefficient. Hence, this factor might further result to higher anomaly 

detection. Since the method exploits the change in correlation between sensor due to 

damage, it is more beneficial to select the pair whose correlation coefficient is greatly 

affected by the damage rather than the pair with the highest correlation coefficient. In 

addition, by exploiting the difference in the detection from various sensor pairs, it is 

possible to perform damage localisation. 

6.3.3 Combined MPCA-CNN for Damage Detection 

In the previous parametric study, some sensor pairs that are able to detect the presence 

of damage despite having low detection rate have been identified. As it has been 

mentioned previously, when the detection is higher than 0.3%, than the data can be 

considered to be anomaly. In this research, a novel method that function to elevate the 

number of detections is proposed.  

The proposed method combines MPCA and CNN to detect the presence of damage. 

In the previous investigation, the regressor utilises a linear regression model. The 

proposed method employs CNN architecture as the regression model. In order to 

evaluate the effectiveness of the proposed method, comparison between the result 

from the proposed method and the benchmark is presented. In addition, the 

implementation of other machine learning techniques such as the ANN and Random 

Forest are also investigated for comparison. As a case study, the CST4-CST9 pair with 
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MPCA window size of 5000 is selected. From the previous investigation, the 

combined MPCA-linear regression model produces 5.84%, 4.6%, and 3.4% detections 

rate at DM1, DM2, and DM3 sets, respectively. 

6.3.4 Parametric Study on Combined MPCA-CNN for Damage Detection 

Firstly, MPCA using window size of 5000 is performed on all sets (healthy and 

damaged sets) to extract the first principal component of those datasets. To employ 

CNN architecture, data needs to be transformed into sequences. For this purpose, a 

moving window is used on the data. The size of the CNN window determines the 

amount of data in each sequence. For this study, the CNN window size is considered 

as one of the CNN hyperparameters. The CNN window sizes implemented in this 

study are: 50, 100, 500, 1000, 2000, and 3000. Using these window sizes, data frames 

whose construction is described in Figure 6.2 are generated. This step is conducted on 

all sets: training, validation, testing, DM1, DM2, and DM3 sets.  

The new transformed sets are then employed on CNN architectures. As it has been 

mentioned previously, the prediction model is trained using the training set. The total 

number of epochs is 1000 and the early stopping patience applied in the research is 

200. In each epoch, the model is tested using the validation set and the training process 

is stopped when no decrease in validation loss is achieved after 200 epochs. The batch 

size applied in this research is 512 as high batch size might lead to better accuracy and 

convergence [230]. 

In addition to the CNN window size, the CNN architectures are investigated in the 

parametric study. Figure 6.7 describes the CNN architecture employed in this study. 

 

Figure 6.7 Basic CNN architecture employed in the research 

As it is illustrated in Figure 6.7, the basic architecture used in this research consists of 

five convolution layers at the feature extraction stage and two fully connected layers 

at the regression stage. The first convolution layer is followed by a pooling layer 

whose size is 2. The size and the number of filters in each convolution layer differ as 

it can be seen in Table 6.2. 
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Table 6.2 Detail of filter number and size in each convolution layer implemented in 

the research 

Layer 

number 

Number of 

Filter 

Filter Size 

1st 16 16 

2nd 16 8 

3rd 32 5 

4th 32 3 

5th 32 2 

 

As it can be seen in Table 6.2, the higher the number of convolution layer the larger 

the number of filters and the lower the filter size. This design is influenced by the 

Alexnet architecture [161]. The first and the second fully connected layer consist of 

50 and 25 nodes, respectively. The activation function applied in all layers is ReLU. 

Since the output of the model is a single value, then the output layer only consists of 

one node. For hyperparameter optimisation purpose, variation in the architecture is 

introduced as it is described in Table 6.3. 

Table 6.3 Detail of hyperparameters employed in the hyperparameter optimisation of 

CNN architecture 

Parameter Possible Values 

Number of convolution layers 1, 2, 3, 4, and 5 

Dropout probability 0, 0.2, and 0.5 

Number of fully connected 

layers 
1 and 2 

 

It has been reported that the accuracy of CNN models could be enhanced by increasing 

the depth of the models [162], [163]. For example, the implementation of CNN model 

with deep architectures for ImageNet dataset have been producing high prediction 

accuracy [162], [163], [231]. However, the increase in the network depth leads to the 

higher number of parameters, which can potentially make the computation slower and 

decrease the testing accuracy because of overfitting [232]. Moreover, the models 

might be more susceptible to vanishing gradient issue as the depth increases [233], 

[234]. Hence the model depth can be seen as an important factor that impact the 

performance. In this research, Variation in the model depth is performed by modifying 

the number of convolution layers. As shown in Figure 6.7, the basic architecture is 
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made of five convolution layers. The model depth in Table 6.3 then determines the 

number of active convolution layers. When the model depth is 5, then all convolution 

layers are utilised on the architecture. On the other hand, when the model depth is 

three, than only the first three convolution layers (denoted as Conv1, Conv2, and 

Conv3 in Figure 6.7) are employed on the architecture.  

The next hyperparameter that is observed in this research is the dropout layer. As 

illustrated in Figure 6.7, there are in total three dropout layers. As it can be seen in 

Table 6.3, there are three possible values for dropout probability: 0, 0.2, and 0.4. When 

the value is 0, the architecture does not implement dropout layer. On the other hand, 

if other value is selected, then that value will be assigned to the three dropout layers 

applied in the architecture as the dropout probability. 

Finally, the impact of the number of fully connected layers utilised in the CNN 

architecture is also investigated. As shown in Table 6.3, there are two options for the 

number of fully connected layers: one and two layers. When the architecture only 

consists of one layer then the FC1 layer on Figure 6.7 is deactivated. Otherwise, both 

FC1 and FC2 are active. In the hyperparameters optimisation, in total 180 

combinations of hyperparameters are observed. 

6.3.5 Comparison with Other Machine Learning Techniques 

In addition to the comparison with the benchmark that employs linear regression as 

the regression model, the combined MPCA-CNN method is also compared with other 

combined methods utilising ANN and Random Forest as the regression model. Unlike 

the CNN modesl, the ANN and Random Forest do not require the input in the form of 

data sequences. In addition, the models are able to process multiple features as the 

input. For comparison purpose, both the ANN and Random Forest will perform 

regression to estimate the measurement value at CST9 by using all other 

measurements. Similar to the case study in combined MPCA-CNN method, the 

MPCA window size implemented for comparison is set to be 5000. For comparison 

purpose, a number of ANN and Random Forest architectures are generated for 

hyperparameter optimisation. The ANN and Random Forest architectures that yield 

the highest detection rate are then picked for comparison with the combined MPCA-

CNN model. 
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6.3.5.1 Optimisation of ANN Architectures 

Hyperparameters optimisation for ANN is also carried out by performing grid search 

on several ANN architectures. Table 6.4 shows the detail of ANN architectures 

investigated in this study. 

Table 6.4 Detail of hyperparameters utilised for optimisation of ANN architecture 

Hyperparameters Possible Values 

Number of nodes in the first hidden layer 10, 50, and 100 

Number of nodes in the second hidden layer 0, 10, and 50 

Number of nodes in the third hidden layer 0, 10, and 50 

Dropout probability 0, 0.2, and 0.5 

Activation function ReLU and Sigmoid 

 

The basic architecture of the ANN employed in this study consists of three hidden 

layers and a single node at the output layer. As shown in Table 6.4, the first three 

parameters determine the number of nodes in the hidden layers. For the second and 

third hidden layers, if 0 is picked, then the corresponding layer is deactivated, reducing 

the number of hidden layers. A dropout layer is implemented on each hidden layer, 

thus in total maximum of three dropout layers are employed. The dropout probability 

is optimised in the hyperparameter optimisation. Three possible values are utilised as 

it can be seen in Table 6.4. These values determine the dropout probability in all 

dropout layers. Finally, the activation function used in all hidden layer is also 

optimised. There are two activation function investigated: ReLU and sigmoid. In this 

part of the study, grid search is performed on combinations. In total there are 162 

combinations of hyperparameters investigated. 

Training is performed for 1000 epochs with mini batch size of 512. This is similar 

configuration that is applied on the training process of the CNN models. In addition, 

early stopping is also conducted using 200 early stopping patience. 

6.3.5.2 Optimisation of Random Forest Architectures 

In this work, there are four hyperparameters which are tuned in the optimisation of 

Random Forest architectures: the number of trees, the maximum number of variables 

at each split, the number of data point for bootstrapping, and the maximum depth of 
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each regression tree. Table 6.5 describes the values implemented for each  Random 

Forest hyperparameter in this study. 

Table 6.5 List of hyperparameters for Random Forest optimisation 

Hyperparameters Values 

Sample size 0.1, 0.3, 0.5, 0.6 and 1 

Number of trees 500 and 1000 

Maximum number of features at a split 5, 10, and 15 

Maximum depth 10, 20, 50, and ‘None’ 

 

The configuration for the random forest hyperparameters tuning is based on the 

suggestion from [118]. According to [118], the number of trees is either 500 or 1000. 

In addition, the maximum number of features is suggested to be p/3 for regression 

where p is the number of variables in the dataset. In this study, the number of input 

features that are used in the regression is 30. Therefore, the value of this parameter is 

chosen to be 5, 10, or 15. The sample size can be set between 0 to 1 and it determines 

the percentage of training dataset collected from the original dataset for training each 

tree. Smaller sample size might result to more diverse trees, decreasing the correlation 

between the trees thus it can potentially increase the accuracy after the ensemble 

process. On the other hand, using high sample size will make the trees more similar. 

Despite the positive impact, using smaller sample size means less data used in the 

training process which might reduce the accuracy of each regression tree [118]. 

Finally, the maximum depth of each regression tree is investigated with possible 

values provided in Table 6.5. The value in the table represents the maximum number 

of levels for each regression tree. When ‘none’ is selected, all regression trees in the 

corresponding model will have no depth limit. In total, 120 combination of 

hyperparameters are observed for Random Forest model. 

6.4 Results and Discussions 

In this section, parametric study on CNN model is presented. First, the result obtained 

from the proposed combined MPCA-CNN damage detection method is explained. 

Then, the result from the parametric study including the investigations on the number 

of data points in the data frame, the number of convolution layer in the architecture, 

the dropout layer probability, and the number of fully connected layer are presented. 

Furthermore, the comparison between the result from combined MPCA-CNN model 
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and other combined MPCA with other regression analysis such as Random Forest, 

ANN, and linear regression is provided.  

In the hyperparameter optimisation, in total 180 CNN models have been trained using 

both training and validation sets. Then, evaluation on these models is performed by 

applying the testing set on the models. Residuals calculated between the prediction 

and actual values are stored and compared with the threshold value calculated from 

the validation set. The detection rate is then measured from the ratio between the 

number of residuals above threshold and the total number of data points. In finding 

the most optimised model, the detection rates in both healthy and damaged state 

datasets are taken into account. While high detection rate in damage state dataset 

shows the sensitivity of the model in detecting the damage, high detection rate in the 

healthy state dataset indicates the model to be susceptible to false detection.  

6.4.1 Hyperparametric Study on CNN Architecture 

This section presents the results on parametric study performed for combined MPCA-

CNN architecture.   

6.4.1.1 Number of data in a sequence 

The first parameter observed in this study is the number of data points in a data frame. 

This number is specified by the size of CNN moving window that is implemented in 

transforming the tabular data into sequences. There are in total six CNN window sizes 

employed in this study: 50, 100, 500, 1000, 2000, and 3000. The Investigation is 

performed in two stages. In the first stage, some combinations of hyperparameters are 

picked for the investigation. The CNN window size is varied while the other 

parameters are kept constant in order to observe the impact of the CNN window size 

to the model performance. In this purpose four combinations of hyperparameters are 

selected as shown in Table 6.6. 

The detection rate produced from these combinations of hyperparameters with varying 

CNN window sizes can be seen in Figure 6.8. From the figure it can be seen that 

different trends are produced from the variation of the CNN window size on four 

hyperparameter combinations. In the first combination, no detection is produced when 

the window size is set from 50 to 500. The combination begins to perform detection 

when the window size is 1000 and reaches the peak when the window size is 2000. 



Chapter 6. Combined MPCA-CNN for Damage Detection on Structures 

180 
 

The detection of the first combination decreases as the window size is increased to 

3000. On the other hand, in combination 2, high detection only occurs when the CNN 

window size is 2000. When other window sizes are implemented, the combination 

produces detection rate lower than 1% in all damage scenarios. In addition, as it can 

be seen in Figure 6.8, on combination 3, high detection rate is only achieved on 

window size of 3000 while low detection rates are generated on other window sizes. 

Finally, on the last combination, the highest detection rate is generated at window size 

of 1000. In this combination, fluctuation in the detection rate is observed when the 

window size is increased to 2000 and 3000. 

Table 6.6 Details of hyperparameter combinations for parametric Study on CNN 

window size 

Combination Network 

Depth 

Dropout 

Probability 

Number of FC 

1 4 N/A 1 

2 4 0.2 1 

3 4 0.4 1 

4 3 N/A 2 

 

Due to the different in the trend obtained from the three combinations, the 

investigation on the effect of CNN window size to the detection rate is performed by 

picking the combination that yields the highest detection rate for each CNN window 

size. Figure 6.9 shows the highest detection rate generated for each window sizes. 

From the figure, it can be seen that high detection rates are produced only when the 

window size is 1000, 2000, and 3000 and increase in detection rate is achieved with 

the increase in window size. In addition, as it can be seen in Figure 6.9, the highest 

detection rate is generated in window size of 3000. However, despite the high 

detection rate on the damaged state dataset, this window size produces detection rate 

higher than 0.3% at the healthy state dataset. In this case, the model falsely predicts 

healthy state data as damaged state data. In this research, the CNN window size also 

affects the number of data frames as it is explained in (6-1). In this case, the higher the 

window size, the lower the number of data frames generated which might leads to the 

low amount of training data, potentially decreasing the performance of the CNN 

models. Furthermore, the implementation of high window size might be resource and 
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time consuming. Because of these factors, the CNN window size of 2000 is picked as 

the optimised solution. 

 
(a) 

 
(b) 

  
(c) 

  
(d) 

Figure 6.8 Detection rates achieved by four combinations of hyperparameters using 

various CNN window sizes 

 

Figure 6.9 Highest detection rate generated for each CNN window size 
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From the investigation, it is found that the CNN window size has a complex relation 

with the detection rate. In some combinations of hyperparameters, the highest 

detection rate is achieved on CNN window size of 2000, while on others, applying the 

window size of 2000 could lead to low detection rate. However, it is found that the 

CNN models perform well in detecting the damage on window size of 1000, 2000, 

and 3000. Therefore, it is possible to narrow down the value of CNN window size in 

performing hyperparameter optimisation for the future work. 

The size of CNN window corresponds to the number of data points in one data frame. 

When small window sizes are implemented, the CNN models are unable to retrieve 

important information from the data which leads to low detection rate on damaged 

state datasets. In this case, similar to the MPCA window size, the CNN window size 

needs to be sufficiently large in order to capture the important pattern from the data. 

Thus, the selection of CNN window size holds an important role in obtaining high 

detection rate and optimisation should be performed in order to obtain the optimal size.  

6.4.1.2 Architecture Depth 

In order to observe the impact of model depth, several models with various number of 

convolution layers have been trained and tested. In the observation, four combinations 

of hyperparameters are selected where all hyperparameters excluding the number of 

convolution layer are kept constant. These combinations are given in Table 6.7. 

Table 6.7 Details of hyperparameter combinations for parametric Study on the model 

depth 

Combination CNN Window 

Size 

Dropout 

Probability 

Number of 

FC 

1 2000 N/A 1 

2 2000 0.2 1 

3 3000 0.4 1 

4 1000 0.2 2 

 

Figure 6.10 presents the detection rates produced by the combinations described in 

Table 6.7, using different number of convolution layers. As it can be seen from the 

figure, it is shown that almost all combinations produce the highest detection rate when 

using four convolution layers. The first three combinations generate highest detection 
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rates with four convolution layers while obtaining low detection rate when other 

numbers of convolution layer are utilised. On the other hand, interesting result is 

obtained from the fourth combination. In this combination, low detection is produced 

when the architecture adopts four convolution layers. However, it should be noted that 

for this combination of hyperparameters, there is no optimal value for the model depth 

as it is shown in Figure 6.10.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.10 Detection rates achieved by four combinations of hyperparameters from 

several model depths 

To further investigate the influence of network depth to the detection rate, for each 

number of convolution layer employed in this work, the combination that yields the 

highest detection rate is selected. The detection rates of these combinations can be 

seen in Figure 6.11. As it is illustrated in the figure, CNN model that implements four 

convolution layers achieves the highest detection rate for the problem under study. 

When lower number of convolution layers is applied on the CNN models, significant 

decrease in the performance is achieved. However, as the number if convolution layers 

is increased to five, the detection rate decreases slightly. In general, low performance 

on the implementation of low network depth occurs due to the incapability of the 

model to extract features from the data. On the other hand, overfitting tends to occur 
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when employing CNN model using high number of convolution layers, potentially 

decreasing the detection rate. In addition, the implementation of deep architecture 

requires high number of parameters to train thus increasing the computational 

resources. Therefore, it is essential to find the suitable value of network depth due to 

its impact to the performance of CNN models. 

 

Figure 6.11 Highest detection rates generated for each model depth 

The result on this investigation is different than the result obtained in the Chapter 5 

where the CNN models achieve the highest classification performance when 

implementing a single convolution layer and increasing the number of convolutional 

layers will cause overfitting. This might be caused by the different in the approaches 

since this study executes the damage detection by using unsupervised learning through 

regression analysis while in the previous chapter, supervised learning for classification 

problem is implemented for damage detection. This result shows that there is no 

general solution when applying deep learning. Despite using the same dataset, the 

optimised hyperparameter on one approach is different from the other. Thus, it is 

essential to perform hyperparameter optimisation when employing deep learning on 

every problem.     
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6.4.1.3 Dropout Layer 

In this study, a number of CNN architectures employing various dropout layers have 

been trained. Dropout layer has been implemented widely in deep architectures to 

combat overfitting. To observe the effect of dropout layer on the problem under 

investigation, four hyperparameters combination are selected. In the study, all 

hyperparameters excluding the dropout probability are unchanged while the dropout 

probabilities are varied. Table 6.8 describes the combinations investigated in this 

study. 

Table 6.8 Details of hyperparameter combinations for parametric study on dropout 

probability 

Combination CNN Window 

Size 

Network Depth Number of 

FC 

1 2000 4 1 

2 1000 4 1 

3 3000 4 1 

4 1000 3 1 

 

The detection rates produced by CNN architectures constructed using the 

combinations of hyperparameters presented in Table 6.8 can be seen in Figure 6.12. 

As it is presented in the figure, there is no clear trend produced between the dropout 

probability and the detection rate from all models. The model built using the fist 

combination generates the highest detection rate when no dropout layer is 

implemented. This model also yields detection on dropout probability of 0.2 and it is 

unable to detect anomaly when the dropout probability is set to 0.5. On the other hand, 

the model constructed using the second combination only manages to produce high 

detection without dropout layer. This model generates low detection rate with the 

addition of dropout layers on the architectures. As it is also described in Figure 6.12, 

the model that employs the third combination only detects anomaly when the dropout 

layer is set to be 0.5. However, no detection is made when no dropout layer is applied 

to the model thus the model generates different trend as opposed to the trends obtained 

from the first two combinations. Finally, the model constructed using the fourth 

combination of hyperparameters only performs detection when the dropout probability 
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is 0.2. The model is unable to detect anomaly both when no dropout layer is 

implemented and at dropout probability of 0.5. 

 
(a) 

 
(b) 

  
(c) 

 
(d) 

Figure 6.12 Detection rates achieved by four combinations implementing various 

dropout probabilities 

Similarly, to the previous investigation on network depth and CNN window size, the 

highest detection rates obtained on various dropout probabilities are collected as it can 

be seen in Figure 6.13. From the figure, it is shown that there is no significant 

difference on the detection rates produced by models implementing various dropout 

probabilities. As it can be seen from the figure, highest detection rate is produced by 

model implementing dropout probability of 0.5. However, despite the highest 

detection on damaged state dataset, this model suffers from high false positive rate, 

due to the detection rate higher than 0.3% on the testing data. In addition, from the 

previous discussion, the optimal value of dropout probability tends to be specific for 

each combination. Therefore, when implementing dropout layer to solve a problem, 

optimisation algorithm should be applied to find the best value of dropout probability 

that works on the problem. 
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Figure 6.13 Highest detection rates generated for each dropout probability 

6.4.1.4 Fully Connected layer 

From the previous feature extraction stage, useful information from the data has been 

extracted and flattened. These features are fed to a regressor that is formed by fully 

connected layers. The architecture of the fully connected layer consists of input layer, 

hidden layer, and output layer. The input layer accepts features extracted from the 

feature extraction stage while the output layer generates regression results from the 

model. As it has been mentioned previously, the impact of fully connected layers is 

investigated by altering the number of hidden layers in the regressor. In this work, the 

investigation is carried out on models constructed using four combinations of 

hyperparameters by changing the number of hidden layers in the regressor while 

keeping the other hyperparameters unchanged. The combination of hyperparameters 

observed in this study is given in Table 6.9. 

As it is illustrated in Figure 6.14, the number of fully connected layers affects the 

detection rates differently. On the first three combinations, the implementation of one 

hidden layer in the model architecture for the problem under study yields higher 

detection rate compared to the detection rate obtained from architectures with two 

hidden layers. In addition, significant difference in the detection rate is generated in 

the first three models. On the other hand, the detection rate for the fourth combination 



Chapter 6. Combined MPCA-CNN for Damage Detection on Structures 

188 
 

is lower when employing one hidden layer compared to using two hidden layers. 

Therefore, the utilisation of a single fully connected layer does not provide a general 

solution on the problem. 

Table 6.9 Details of hyperparameter combinations for parametric study on number of 

hidden layers implemented in the regressor 

Combination CNN Window 

Size 

Network Depth Dropout 

Probability 

1 2000 4 N/A 

2 1000 4 0.2 

3 3000 4 0.4 

4 1000 3 N/A 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.14 Detection rates achieved by four combinations of hyperparameters 

implementing various number of hidden layers on the regressor 

 

To further observe the hidden layer’s impact to the performance of CNN models, for 

each number of hidden layers, the model that produces the highest detection rate is 

selected. The detection rates of these models are presented in Figure 6.15. In the figure, 
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it can be seen that no significant difference on the detection rate is produced from 

implementing one or two hidden layers. In addition, from the previous investigation, 

it is found that finding the optimised value for hidden layer number can be tricky since 

this parameter impacts differently on various CNN architectures. Therefore, 

optimisation is essential in finding the optimal value of hidden layer number. 

 

Figure 6.15 Highest detection rates generated for different regressor architectures 

 

6.4.1.5 Summary of parametric study on combined MPCA-CNN 

From the investigation on the impact of CNN hyperparameters on the detection rate, 

it is found that some hyperparameters such as the dropout probability and the number 

of hidden layers on the regressors have a complex relation with the detection rate.  To 

obtain the optimised combination of hyperparameters, two parameters are taken into 

account: detection rate on the damaged state dataset, and detection rate on the healthy 

state dataset. Detection on the healthy state dataset represents false positive where 

healthy state data are falsely detected as damaged state data. Therefore, the optimised 

model should generate high detection rate on damaged state dataset while producing 

detection rate below 0.3% on the healthy state dataset. Table 6.10 shows, the optimised 

hyperparameter configuration. 
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Table 6.10 Optimised hyperparameters combination for CNN Architectures obtained 

using grid search 

Parameter Possible Values 

Number of data in a sequence 2000 

Number of convolution layers 4 

Dropout probability 0 

Number of fully connected 

layers 

1  

6.4.2 Comparison with other Machine Learning Techniques 

Hyperparameter optimisation has also been performed on the Random Forest and 

ANN architecture. In this research, two parameters including the detection rate and the 

magnitude of error are implemented to compare the combined MPCA-regression 

analysis methods. The first parameter used for the comparison is the detection rate. 

Table 6.11 shows the detection rate produced from linear regression, CNN, ANN, and 

Random Forest models. 

 Table 6.11 Comparison of detection rates generated using several regressors 

Model 
Detection Rate (%) 

Healthy DM1 DM2 DM3 

Linear Regression 0.2 5.84 4.61 3.4 

CNN 0.27 36.8 29.79 25.88 

ANN 0.32 15 17.44 33.90 

Random Forest 0.16 11.30 1.22 2.17 

 

As it is shown in Table 6.11, the CNN model outperforms other machine learning 

models in the detection on DM1, and DM2 datasets. This can be seen from the highest 

detection produced by the CNN model in these damaged state datasets. For DM3 

dataset, CNN model is outperformed by the ANN model despite having higher 

detection rate than both the linear regression and Random Forest models.  

The next parameter for comparison is the magnitude of the absolute error produced by 

the prediction models. In this research, residuals calculated from the difference 

between the prediction and the actual values are calculated in the form of absolute 

error. Figure 6.16 illustrates the absolute error generated by four prediction models on 

the training, validation, testing, DM1, DM2, and DM3 sets.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.16 Residuals generated from Various combined methods; (a) MPCA-CNN; 

(b) MPCA-linear regression; (c) MPCA-ANN; (d) MPCA-Random Forest. 
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As it can be seen in Figure 6.16, the CNN model produces the highest absolute error 

compared to the other machine learning models on damaged state dataset. As it is 

shown in the figure, the CNN model manages to produce residual as high as 15 on the 

DM3 set. On the other hand, the magnitude of all residuals generated from the other 

models are less than 0.06. In this case, the CNN model shows high sensitivity to the 

damage thus when damage occurs, the model manages to produce high residuals 

between the prediction and the actual values. 

On the other hand, as described in Figure 6.16, the CNN model produces false positive 

detection where heathy state data are detected as damaged state data. The false 

detection also occurs on other models as it is illustrated in the figure. However, as 

summarised in Table 6.11, the number of false detection rate generated by the CNN 

model is only 0.27% thus they can be considered as outliers. In the application of 

structure monitoring, the false positive scenario is more preferable than the false 

negative scenario in which the prediction model is unable to detect the presence of 

damage. 

6.5 Conclusions and Summary 

In this study, a novel damage detection approach that combines MPCA and CNN has 

been reported. The method has been validated using measurement on a laboratory-

scale bridge. In this work, parametric study on MPCA method has been performed. 

The parameters investigated are the MPCA window size, the sensor type, and the 

correlation coefficient between sensors for regression analysis. In addition to the 

investigation on the parameters used in MPCA, parametric study on the CNN window 

size, model depth, dropout probability, and number of hidden layers, has also been 

performed on the combined MPCA-CNN method. Finally, the combined MPCA-CNN 

method has been compared with other methods that combine MPCA with other 

machine learning techniques such as linear regression, ANN, and Random Forest. 

Comparison using two parameters such as detection rate and magnitude of error has 

been presented. The conclusions in this chapter are as follows: 

• For MPCA window size, it is found that the method can successfully detect 

anomaly using MPCA window size ranging from 5000 to 10000 and the 

Implementation of MPCA window size outside of the optimal range leads to 
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low detection. This could be due to the period of excitation used in the 

experiment.  

• In addition, parametric study on the sensor type has shown that the optimum 

MPCA window size depends on the sensor types used in the regression 

analysis. In addition, it has been shown that the damage sensitivity is also 

influenced by the type of sensors used in the regression.  

• It is also found that using sensor pairs with high correlation coefficient does 

not guarantee high detection rate. Due to the different impact from the presence 

of damage, it is more beneficial in using a sensor pair formed by a sensor that 

is close to the damage location and a sensor far from the location rather than 

using pair with the highest correlation coefficient. 

• In the observation on the CNN window size, it is found that when small 

window size is implemented, the method is unable to capture the trend from 

the data. On the other hand, the utilisation of large CNN window size reduces 

the number of training data, potentially minimising the performance.  

• In addition, for the problem under study it is found that the models adopting 

four convolution layers generate the highest detection rate. The optimal 

number of CNN layers obtained for this study is different than the optimal 

number of CNN layers obtained in Chapter 5 although both studies employ 

similar dataset. This shows that there is no general solution on the 

implementation of deep learning.  

• It is found that there is no optimal value for both the dropout probability and 

the number of hidden layers. These two hyperparameters affect the detection 

rate differently depending on the other hyperparameters. Therefore, employing 

efficient algorithms for hyperparameter optimisation is necessary to find the 

optimal value for these hyperparameters. 

• In term of detection rate, the MPCA-CNN method outperforms the other 

methods in most of damaged state datasets. It only produces lower detection 

than the MPCA-ANN at DM3 set yet it manages to outperform the other 

methods in DM1 and DM2 sets.  

• In term of magnitude of error, it is found that the MPCA-CNN method is able 

to generate larger amplification on the residuals produced on damaged state 

sets compared to other combined methods.



Chapter 7 Conclusions and Future Works 

 

7.1 Conclusions 

This thesis is aimed to discover the solution for problems in data-based interpretation 

method for SHM where high level of expertise is required in order to retrieve 

important information from raw data, both in the form of visual and time series data. 

In addition, the objective of the thesis is to improve the existing data-based 

interpretation method and perform validation using laboratory- and full-scale case 

studies. For this purpose, some projects implementing deep learning for data-based 

interpretation have been conducted through the research. 

From the case study presented in Chapter 3, it has been shown that the deep learning-

based model manages to provide estimation on load capacity, either in the form of 

load rating or design load, of bridges using their images. It is conducted by processing 

raw visual data without performing feature extraction, thus minimising the required 

level of expertise. From the parametric study conducted in the research, it has been 

found that the models for design load estimation outperform the models for load rating 

estimation. In addition, it has been shown that the angle which the images are taken 

might influence the performance of the prediction models. Moreover, it is observed 

that the use of colourful images is more suitable for the problem under study compared 

to the use of grayscale images. Finally, it has been shown that converting the 

multiclass classification into binary classification can enhance the performance of the 

prediction models. 

In Chapter 4, a deep learning-based method that utilises correlation between sensor 

for SHM data interpretation has been presented. The method employs raw 

measurement data hence it requires no feature extraction. The method has been 

validated using a case study on a full-scale bridge. In this work, the method is 

implemented to estimate cable forces by using raw temperature measurement as the 

input. From this case study, it has been shown that the method is able to capture the 

trend of the cable force time histories with MAE ranging between 10.23 kN and 19.82 

kN, MAPE ranging between 0.434 % and 0.536 %, and RMSE ranging between 13.38 
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kN and 25.32 kN. In addition, it has been shown that the method outperforms other 

regressors that utilise linear regression and ANN techniques.  

In Chapter 5, damage detection approaches for SHM that implement CNN architecture 

have been presented. Two methods utilising CNN are presented: CorCNN that is based 

on anomaly detection and damage identification through supervised CNN. Both the 

CNN-based damage detection frameworks utilise raw measurement data from various 

sensors in detecting the presence of. These approaches have been validated using a 

case study on a laboratory-scale bridge. In this study, it is found that CorCNN manages 

to detect the presence of damage that is challenging to detect using conventional 

vibration-based method. In addition, it has been shown that the method is able to detect 

the presence of damage in all damage scenarios. However, it is found that the method 

is unable to provide information about the damage severity.  

On the other hand, it has been shown that the damage detection framework utilising 

supervised CNN is able to detect both the presence and the severity of damage that 

might be challenging to be detected by using conventional frequency-based approach. 

From the parametric study performed in this research, it has been shown that for the 

case study, the models with shallow architecture produce higher classification 

accuracy compared to those with deeper architectures. In addition, it has been shown 

that there is no activation function that works best for all cases. However, from the 

research it is found that models utilising tanh activation function produces the lowest 

accuracy and require longest training time.  

In Chapter 6, a novel damage detection method combining MPCA and CNN has been 

presented. The validation using measurement on a laboratory-scale bridge has been 

discussed and investigation on both the MPCA and CNN parameters has been 

reported. From the case study, it has been shown that the optimal MPCA window size 

depends on the periodic variability on the data. In addition, it has been shown that 

sensor types influence the sensitivity to certain damage type. On the other hand, 

investigation on CNN parameters has shown that it is necessary to perform 

optimisation in order to find the best configuration of CNN parameters. Finally, 

comparison between the combined MPCA-CNN method and other combined method 

has been presented. The combined MPCA-CNN method produces highest detection 
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rate in most of the damage scenarios while producing the highest magnitude of 

residuals. 

7.2 Future Works  

Several limitations have been established through the course of this thesis. This section 

discusses the limitations of the contributions of this thesis and presents the promising 

areas for future work. 

7.2.1 Deep Learning for Bridge Load Capacity Estimation in Post-Disaster and -

Conflict Zones 

In this thesis, it has been found that the quality of the image affects the performance 

of prediction models in estimating the load capacity (refer to section 3.3.2). In 

addition, the number of available data might also influence the prediction model 

performance (refer to section 3.3.1). However, this research employs images that are 

obtained through web scraping thus it is challenging control both the data quality and 

quantity. These limitations might be remedied by artificially generating bridge data 

and images. 

In addition, it is possible to further the performance by training models from scratch. 

This research employs transfer learning to train prediction models due to the limited 

number of data available. By generating data artificially, more data will be available 

therefore prediction models can be trained from scratch.  

In addition, improvement in the computational efficiency can be achieved by 

improving the hardware/software. As it has been mentioned in section 3.2.2, decrease 

in the computational time was achieved when GPU was implemented. Therefore, the 

computational time can be further reduced by utilising more advance GPU. On the 

other hand, it is possible to minimise the computing time through programming 

especially when the model is trained from scratch. When a model is trained from 

scratch, hyperparameter optimisation is performed to obtain the configuration of 

hyperparameters that work best for a given problem. The optimisation can be 

improved by using a large hyperparameter space. On the other hand, performing grid 

search in a large hyperparameter space can significantly increase the computing time. 

Therefore, efficient algorithm such as random search or genetic algorithm can be 

implemented in the process to minimise the time. 
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Finally, as it has been mentioned in section 3.3.5, limitation of image processing in 

extracting useful features such as bridge’s condition and material is another factor that 

limit the applicability of the method. To address the current limitation of image 

processing in detecting structure’s condition and gaining information about structural 

material, it might be useful to add the information regarding bridge’s condition and 

material along with bridge images as the input of prediction model. 

7.2.2 Estimation of Structural Response using Convolutional Neural Network: 

Application to Suramadu Bridge 

In this thesis, a CNN-based method has also been implemented for generating data 

that can potentially improve SHM by tackling missing data problem as well as 

assisting the calibration process. The proposed method only employs temperature 

measurement as the input of the model (refer to section 4.3.2). However, the bridge 

responses can also be influenced by other factors such as traffic and wind loading. 

Future works are aimed to improve the performance of the CNN-based cable force 

estimation framework by taking into consideration other parameters that might impact 

the cable force measurement such as the wind and traffic loading. In current research, 

these parameters are excluded thus might become the source of uncertainties. 

In addition, the expensive computation resources required in training CNN models is 

one of the limitations of the research. As a result, only a few hyperparameters are 

utilised in the optimisation process. In the optimisation, the impact of parameters such 

as the length of the input frame, the number of convolutional layers, the filter attributes 

including the size and stride, the type of pooling layer, the depth of fully connected 

layer, the type of activation layer are not observed. This is due to the large number of 

possible combinations of hyperparameters that might not be suitable for grid search. 

The future work will focus on employing genetic algorithm or random search for 

hyperparameter optimisation, which will enable the use of more hyperparameters 

without significant increase in the processing time. 

7.2.3 Damage Detection and Identification Utilising Convolutional Neural 

Networks for Structural Health Monitoring 

CorCNN, the first damage detection method presented in this chapter, performs the 

novelty detection based on the change in sensor correlation before and after the 

damage (refer to section 5.4.1). although the method directly utilises raw data for 
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damage detection, the selection of combination for the inputs and output is still 

performed manually. In this case, the combination used in the research is selected 

based on the on the information that damage affects sensor measurements differently 

depending on the location of sensors relative to the damage. Hence, it is picked due to 

the prior understanding on the location of damage. On the other hand, the combination 

selected in the research might not be the best for the problem study. In addition, the 

combination used in this research might not produce high detection when damage 

occurs at a different location, and different combination of sensors might be more 

suitable. The aim of the future work will be to perform measurement system design to 

automatically select the sensors that ensure best performance for any given problem 

especially for real monitoring application that generally employs a large number of 

sensors. 

Another potential approach for sensor selection can be performed by monitoring the 

correlation coefficient between sensors. During the initial step, the correlation 

coefficients from all sensor pairs are recorded. Then, on the monitoring phase, these 

coefficients are compared with the new coefficients. When significant deviation from 

the initial coefficient is detected, then, CorCNN can use the sensor pair for its input 

and output. 

The parametric study for the damage detection method employing supervised CNN 

approach only investigates the impact of model depth and activation function (refer to 

section 5.4.3). To further increase the prediction accuracy, other hyperparameters of 

the CNN architecture can be tweaked. These parameters include the number of filters, 

the size of filter, the dropout probability, the batch size, the learning rate, and the 

window size of the data frame. However, adding more hyperparameters might 

significantly increase the required computing time. The future work will be focused 

on employing efficient algorithm for hyperparameter optimisation such as genetic 

algorithm or random search. By employing the algorithm, more hyperparameters can 

be investigated, thus optimum model architecture can be obtained without significant 

rise in the processing time. Based on the result obtained from this research, the 

implementation of shallow networks is more suitable for the problem. Hence, the 

hyperparameter optimisation will require less parameter to tweak. 
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In addition, due to the nature of the developed method, information detailing the 

condition of a structure is required in the training process. However, in the real-life 

situation, this information will not be available. Therefore, the future work is also 

aimed to generate data from a mathematical model (FEM model) representing the 

monitored structure. This way, damage can be simulated by using the model and 

damaged dataset can be produced for the training purpose CNN-based damage 

prediction model. The CNN-based model will then be validated by using experimental 

data. Finally, damage localisation is also aimed for the future work. By employing the 

FEM, damage can be simulated in various location in the bridge, and by labelling the 

data with information of the damage location, the detection of damage location might 

be achieved. 

7.2.4 Combined MPCA-CNN for Damage Detection on Structures 

The current research is only aimed to detect the presence of damage in the structure. 

Therefore, the investigation is mainly performed to assess if the combined MPCA-

CNN method can detect the presence of damage on the structure. However, it has been 

shown that the combined MPCA-CNN method has the potential in predicting the 

damage location (refer to section 6.3.2.2). Therefore, this potential in locating damage 

can be further studied for future work. 

In addition, the case study employed for validation of the proposed combined MPCA-

CNN method only utilises response data without considering the impact of 

temperature. However, it has been well known that temperature might significantly 

influence the measurement. Thus, the robustness of the method from the impact of 

temperature can be further investigated for the future work. 

Finally, it is possible to enhance the performance of the MPCA-CNN method by 

utilising larger hyperparameters space in the optimisation process. In this research, 

only the impact of model depth, number of data points in a sequence, dropout 

probability, and number of fully connection layers in the regressor are investigated. 

Other hyperparameters such as filter number, filter size, activation function applied in 

each layer, batch size, learning rate, node size, are not included in the optimisation. 

This is caused by significant increase in the processing time when adding these 

hyperparameters for the optimisation. By applying efficient algorithm for 
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hyperparameter optimisation, potential problem related to time and computing 

resources can be avoided.
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