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1 Introduction and Motivation.

1.1 Introduction to complex Ginibre

The law of a random matrix S can be written as P (S)µ(dS), where µ(dS) is the linear measure

µ(dS) =∏
j,k

S
(0)
jk S

(1)
jk

where S
(0)
jk and S

(1)
jk are respectively the real and imaginary part of the matrix element

Sjk = S
(0)
jk + S

(1)
jk .

For P (S) we take [20, Ginibre (1965)]

P (S) = exp[−tr(S∗S)].

Note that P (S) is invariant under all unitary transformations.

We denote as Gin(n,C), the ensemble of n × n matrices with independent and identically distributed
complex Gaussian entries (complex Ginibre ensemble). If M ∼ Gin(n,C) is a complex Ginibre matrix,
then it has the following properties:

E(Mij) = 0 = E(M̄ij), 1 ≤ i, j ≤ n, (1)

E(MijMkl) = 0 = E(M̄ijM̄kl), 1 ≤ i, j, k, l ≤ n, (2)

E(MijM̄kl) = δikδjl 1 ≤ i, j, k, l ≤ n, (3)

where ‘¯’ stands for complex conjugation. Let Λ(n) = (Λ1,Λ2, . . . ,Λn) be the set of complex eigenvalues
of M . This ensemble was introduced in 1965 in [17] along with its real and quaternionic counterparts.
It was immediately realised in this pioneering paper that the marginal distribution of eigenvalues for
Gin(n,C) can be computed and is a natural generalisation of the corresponding answer for the Gaussian
Unitary Ensemble (GUE), cf. [24], to the case of a complex spectrum:

Pn (Λ
(n)
∈ dλ(n)) =

1

Zn
∣∆(n)(λ(n))∣2e−∑

n
j=1 ∣λj ∣

2

dλ(n) (4)

where dλ(n) = ∏
n
k=1 dλkdλ̄k is the Lebesgue measure on Cn, ∆(n)(λ(n)) = ∏

n
i>j(λi − λj) is the Vander-

monde determinant, and Zn = π
n
∏

n
j=1 j! is the normalisation constant. There is an important difference

between the complex Ginibre ensemble and GUE: even though the marginal distribution of eigenvalues
for Gin(n,C) can be computed analytically, the statistics of eigenvectors do not decouple from the statis-
tics of eigenvalues. Despite this fundamental difference, it was not until the late nineties that Chalker
and Mehlig initiated the study of the joint statistics of eigenvectors and eigenvalues for Gin(n,C).

Two methods can be found in [24, A.33 and A.35], for showing that the eigenvalues’ joined probabilty
density is given by

pn(λ1, λ2, ..., λn) =
1

Zn
∏

1≤i<j≤n

∣λi − λj ∣
2e−∑

n
i=1 ∣λi∣

2

,

but the exact value of Zn is calculated indirectly, through the probability of all eigenvalues lying outside
a circle of radius a. Let said probabilty be Pc(a). This object is interesting on its own, but more
importantly the methods used in the proof are also used in [11] and in this thesis as well. Pc(a) is given
by

Pc(a) = ∫ ⋯∫
∣λi∣>a

pn(λ1, λ2, ..., λn)
n

∏
i=1

dλidλ̄i.
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Re-writing

∏
1≤i<j≤n

∣λi − λj ∣
2
= ∏

1≤i<j≤n

(λi − λj) ∏
1≤i<j≤n

(λ̄i − λ̄j)

= det

RRRRRRRRRRRRRRRRRR

1 ... 1
λ1 ... λn
... ... ...
λn−11 ... λn−1n

RRRRRRRRRRRRRRRRRR

× det

RRRRRRRRRRRRRRRRRR

1 ... 1
λ̄1 ... λ̄n
... ... ...
λ̄n−11 ... λ̄n−1n

RRRRRRRRRRRRRRRRRR

T

= det

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

n ∑
i

λi ... ∑
i

λn−1i

∑
i

λ̄i ∑
i

λ̄iλi ... ∑
i

λ̄iλ
n−1
i

... ... ... ...

∑
i

λ̄n−1i ∑
i

λ̄n−1i λi ... ∑
i

λ̄n−1i λn−1i

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

.

we get

Pc(a) =
1

Zn
∫ ⋯∫

∣λi∣>a

n

∏
i=1

dλidλ̄i exp ( −
n

∑
i=1

∣λi∣
2)

×det

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

n ∑
i

λi ... ∑
i

λn−1i

∑
i

λ̄i ∑
i

λ̄iλi ... ∑
i

λ̄iλ
n−1
i

... ... ... ...

∑
i

λ̄n−1i ∑
i

λ̄n−1i λi ... ∑
i

λ̄n−1i λn−1i

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

.

Because the determinant is symmetric in all λi, we can replace the first line with (1, λ, λ2, ..., λn−1) and
multiply the whole expression with a factor of n. With row and column computation we can then get rid
of z1 from all other lines. Continuing in a similar fashion, the probability of all eigenvalues lying outside
a circle of radius a can be written as

Pc(a) =
n!

Zn
∫ ⋯∫

∣λi∣>a

n

∏
i=1

dλidλ̄i exp ( −
n

∑
i=1

∣λi∣
2)

×det

RRRRRRRRRRRRRRRRRRRRRRRRRRR

1 λ1 ... n−1
1

λ̄2 λ̄2λ2 ... λ̄2λ
n−1
2

... ... ... ...

λ̄n−1n λ̄n−1n λn ... λ̄n−1n λn−1n

RRRRRRRRRRRRRRRRRRRRRRRRRRR

.

Now each row is only dependent on one of the λi. We can integrate them separately, alongside with the
exponential factor, and by passing to polar coordinates we get

∫
∣λ∣>a

e−∣λ∣
2

λ̄jλkdλdλ̄ = πδjkΓ(j + 1, a2).

All the non diagonal elements are zero, thus we have

Pc(a) =
n!πn

Zn

n

∏
j=1

Γ(j, a2)
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where

Γ(j, a2) = ∫
∞

a2
e−xxj−1dx

is the incomplete gamma function. Since Pc(0) = 1, by taking a = 0, Zn is determined to be

Zn = π
n

n

∏
j=1

j!

Another object of great importance to us are the correlation functions between eigenvalues. The k-
point correlation function is given by (see [24])

ρ(n,k)(λ1, λ2, ..., λk) =
n!

(n − k)!
∫…∫ pn(λ1, λ2, ..., λn)

n

∏
i=k+1

dλidλ̄i

= π−k exp ( −
k

∑
i=1

∣λi∣
2
)det[Kn(λi, λj)]

k
i,j=1

where

Kn(λi, λj) =
n−1

∑
l=0

(λiλ̄j)
l

l!
.

Note that the correlation functions tend to well defined limits as n →∞. Two other quantities that are
worthy of mention are the 1-point correlation function, which is the density of the eigenvalues

ρ(n,1)(λ) = π−1e−∣λ∣
2
n−1

∑
l=0

∣λ∣2l

l!
,

which is rotationally invariant and depends only on the distance of the eigenvalue from the origin, and
the limit of the 2-point correlation as n→∞

lim
n→∞

ρ(n,2)(λ1, λ2) = π
2[1 − exp(−∣λ1 − λ2∣

2
)],

which depends only on the distance between the two eigenvalues, λ1 and λ2 .

1.2 Motivation

Stability questions can be hard to justify within a static setting of the complex Ginibre ensemble, but
become very natural if one considers some kind of dynamics (random or deterministic) on the space of
complex matrices. Our own interest in the statistics of eigenvectors for Gin(n,C) was inspired by the
study of the stochastic dynamics of eigenvectors and eigenvalues of complex matrices initiated by Z.
Burda and M. Nowak, their collaborators and students, see [19, 8]. So, in order to motivate the main
subject of this thesis, let us follow [6] and [18] and consider the Brownian motion Mt with values in n×n
complex matrices started from zero. The fixed time t > 0 marginal law for the process (Mt)t≥0 coincides
up to rescaling with the complex Ginibre ensemble.

Let (Λtα,Ltα,Rtα)t≥0,1≤α≤n be the induced processes, describing the evolution of eigenvalues of Mt

and the bi-orthogonal set of corresponding left and right eigenvectors,

L∗tαMt = ΛtαL
∗
tα, 1 ≤ α ≤ n, (5)

MtRtα = ΛtαRtα, 1 ≤ α ≤ n, (6)

⟨Ltα,Rtβ⟩ = δα,β , 1 ≤ α,β ≤ n, (7)

where ‘ ∗ ’ denotes Hermitian conjugation and ⟨⋅, ⋅⟩ stands for the Hermitian inner product on Cn. As
shown in [6] and [18], the process (Λtα)t≥0,1≤α≤n is a complex martingale such that

⟨dΛtαdΛ̄tβ⟩ = Otαβdt, (8)

5



where

Otαβ = ⟨Ltα,Ltβ⟩⟨Rtα,Rtβ⟩, 1 ≤ α,β ≤ n (9)

is the matrix of the overlaps between the left and the right eigenvectors of Mt. (It is worth noticing that
paper [18] derives the full set of stochastic differential equations for the joint evolution of eigenvalues
and eigenvectors of Mt for any matrix size n). Notice that for complex matrices, the matrix of overlaps
is a non-trivial random variable as the left and the right eigenvectors are not orthogonal,

⟨Lα,Lβ⟩ ≠ 0, ⟨Rα,Rβ⟩ ≠ 0, 1 ≤ α < β ≤ n.

To study the evolution of eigenvalues corresponding to (8), it is natural to study conditional expectations

En(dΛtαdΛ̄tα ∣ Λtα = λα) = En(Otαα ∣ Λtα = λα)dt, 1 ≤ α ≤ n,

and

En(dΛtαdΛ̄tβ ∣ Λtα = λα,Λtβ = λβ) = En(Otαβ ∣ Λtα = λα,Λtβ = λβ)dt, 1 ≤ α ≠ β ≤ n,

where En(⋅) denotes expectation with respect to Gin(n,C). These are the conditional expectations of
the diagonal and the non-diagonal overlaps originally studied in [10,11]. Furthermore, if we wish to
understand the influence of a fixed set of eigenvalues on the evolution of a single eigenvalue or a pair of
eigenvalues, it is reasonable to consider general conditional expectations

En(Otα1α2 ∣ Λtαp = λαp , p = 1,2, . . . k), 1 ≤ αp ≤ n, k = 1,2, . . . n.

These are the principal objects studied in the present thesis. An additional motivation for our study
comes from the mathematical structure of the answers: we find that conditional expectations of overlaps
are expressed in terms of determinants of matrices built out of a kernel of some integrable operator.
While this structure is a well-known feature of point processes associated with the statistics of eigen-
values of random matrices, we were unaware of determinantal answers for the statistics of eigenvectors
prior to starting our work.

Our work continues the mathematical study of the statistical properties of eigenvectors of non-Hermitian
matrices, which has become an active research area during the past few years. In [10] and [11], Chalker
and Mehlig showed that for large N , where N is the size of matrix in the complex Ginibre ensemble,
the eigenvalues associated with a pair of eigenvectors are highly correlated if the two of them are close
in the complex plain.

We denote as (Oαβ)
n
α,β=1 the overlap matrix, where Oαβ = ⟨Lα, Lβ⟩⟨Rα,Rβ⟩ is the product of inner

products of inner products associated of the left and right eigenvectors associated with the eigenvalues
λα, λβ . In relations (10) and (11) of [11], Chalker and Mehlig define the local averages of diagonal and
off-diagonal elements of the overlap matrix Oαβ as

O(z) = ⟨σ2
∑
α

Oααδ(z − λα)⟩

O(z1, z2) = ⟨σ2
∑
α≠β

Oαβδ(z1 − λα)δ(z2 − λβ)⟩

which correspond respectively to (22) and (23) of this thesis, for σ = 1. In particular, for σ = 1 we use
the following notation:

O(z) =D
(n,1)
11 (z)

and

6



O(z1, z2) =D
(n,2)
12 (z1, z2).

They obtain exact formulas in the form of determinants, and in the diagonal case of O(z) they simplify
the expression further by computing the determinant recursively. Another main focus of their work, is
the derivation of expressions for O(z) and O(z1, z2), see relations (7) and (8) in [10].

There are a lot of similarities between their computations and the ones in sections 4.1 and 4.2, where we
re-derive some of their result, and we also faced some of the same issues. For the diagonal overlaps, the

expression for O(z) = D
(N,1)
11 (z) could be further simplified, because we have in our hands a 3-diagonal

determinant which is easy to compute. But working with the off-diagonal overlaps, we come across a
5-diagonal determinant which is no longer manageable. Chalker and Mehlig assumed translation invari-
ance, which is a universal argument applying to more than just the Ginibre ensembles, and by taking
z1 = 0 and z2 = z they were able to get an exact formula for O(z1, z2) as N goes to infinity. Not only we
wanted to avoid using the above argument, we also wanted to study more general cases, which, working
the same way, would produce increasingly harder determinant. So we abandoned our original approach
and focused on the determinantal structure of the overlaps. In Theorem 1, we find exact formulas of

D
(n,k)
11 (λ(k)) and D

(n,k)
12 (λ(k)) as defined in (18) and (19). Having expressions for finite n and following

the footsteps of Chalker and Mehlig, in Corollary 1 and 2 we proceed to compute the bulk and edge
scaling limits of both diagonal and off-diagonal cases, see (37)-(40).

1.3 Other works

In [32], Walters and Starr extend the answers of [10, 11] for the conditional expectation of the diagonal
overlap at n < ∞ to any conditioned value of the corresponding eigenvalue. This allows the authors to
calculate the edge scaling limit for the conditional expectation of the diagonal overlap. It is worth stress-
ing that our own calculations are based on the same analysis of recursion relations for the determinants
of certain 3-diagonal moment matrices as in [32]. We complement it by an exact correspondence between
diagonal and off-diagonal overlaps, which allows us to avoid difficulties associated with the analysis of
the 5-diagonal moment matrices. Also, even though they find Chalker and Mehlig’s approach to be beau-
tiful and believe they give a very good argument which is highly plausible on the basis of mathematical
reasoning, Walter and Starr do not consider the proof of (8) in [10] to be fully rigorous. As expected
of course, the conditional overlaps are indeed transitionally invariant and our results in Corollary 1 do
correspond with their answer.

In [15] Fyodorov studied the following object

P (t, z) = ⟨∑
α

δ(Oαα − 1 − t)δ(z − λα)⟩

which can be interpreted as the joint probability function of the diagonal orthogonality factor t = Oαα−1
and the corresponding eigenvalue. He derived expressions for matrices of finite size N in the real Ginibre
ensemble for a real eigenvalue, and in the complex Ginibre ensemble for a complex eigenvalue, and then
analysed the bulk and edge scaling limits for said expressions.

In a related paper [6], Bourgade and Dubach prove that the law of the diagonal overlap conditioned
on the corresponding eigenvalue is given in the bulk scaling limit by the inverse Gamma-distribution
with parameter 2. This is a significant generalisation of the results of Chalker and Mehlig who managed
to calculate this distribution for the matrix size n = 2 only. The statement follows from a representation
of the diagonal overlap conditioned on all eigenvalues as a product of independent random variables. The
authors also obtain new results for the variance of the off-diagonal overlaps and the two-point function
of diagonal overlaps, establishing in particular the algebraic decay of the latter as a function of the
distance between the corresponding eigenvalues. Other work in this field include [12], where Crawford
and Rosenthal study high order moments of the overlap matrix (9), and [9], where Burda and Spisak
studied the statistics of overlaps of products of Ginibre matrices.
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Finally, we must mention the work of the Krakow School, which is at least partially responsible for
the current renaissance of research into the joint statistics of eigenvectors and eigenvalues for random
non-Hermitian matrices. Among its recent contributions most relevant to the present work is the deriva-
tion of the system of stochastic evolution equations for eigenvalues and eigenvectors, [18], which allowed
its authors to express the rate of change of eigenvalue correlation functions in terms of conditional
expectations of overlaps. These are the objects studied in here.

1.4 Structure of Thesis

The thesis is split in two parts. First part focuses on conditional overlaps and the contents of our paper.
Section 2 presents our main results concerning conditional expectations of overlaps: the determinantal
representation for n < ∞, the bulk and the edge scaling limits, exact algebraic asymptotic in the bulk
for well separated eigenvalues. Section 3 contains the proofs as presented in our paper [2]: 3.1, 3.2 is
the derivation of the determinantal representation for the conditional expectations of diagonal and off-
diagonal overlaps in terms of bi-orthogonal polynomials in the complex plane; 3.3 a heuristic calculation
of the correlation kernels, which shows how the result of rather complicated calculations of the following
sections can be easily guessed using the assumption of the extended translational invariance; 3.4 a rig-
orous evaluation of correlation kernels for n < ∞ in terms of the exponential polynomials; 3.5 - 3.7 the
calculation of various scaling limits as n→∞. The methods used in these proofs are rather classical: the
determinantal structure is a consequence of Dyson’s theorem reviewed in [24] and the product structure
of the overlap expectations conditioned on all eigenvalues; the computation of the correlation kernel for
the diagonal overlaps reduces to the inversion of the tri-diagonal moment matrix using the recursions
already encountered in [10], [11] and [32]; the calculation of the kernel for the off-diagonals overlaps
uses a relation between diagonal and off-diagonal overlaps established in Lemma 1 and determinantal
identities, which we explore more thoroughly in Section 5. More results can be found in both [2] and our
follow up paper [1].

In Section 4 we go and explore alternate approaches and proof. We show that some of the tri-diagonal
can be computed directly, we present different ways of finding the kernel and the orthogonal polynomials,
a different proof of Theorem 1 using contour integrals and a more detailed version of the bulk and edge
limits computations of the kernel. These alterantive methods were explored at the same time as the
methods that eventually were included in the paper. We hope that both sets of methods may prove
useful in generalisations of these results.

The second part of the thesis revolves around a parallel research on the conditioning of determinan-
tal and pfaffian point processes. It is general results, which I illustrate through Ginibre, but otherwise
unrelated. In Section 5 we use a presumably known, but long forgotten determinantal identity, and use
it to compute explicitly the kernel of conditioned determinantal and pfaffian p.p. on occupied points,
empty sets or the combination of the two. We explore the discrete determinantal case, the discrete
pfaffian case by finding an analogue of said identity, but for pfaffians using Tanner’s identity [21] and
finally the continuous determinantal point processes with the assistance of Campbell and Palm measures.
Unfortunately the continuous pfaffian remains for the time being unfinished. A more detailed account
of the work can be found in Section 5.
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2 Statements of Results

2.1 Definitions and notation

Let Gin(n,C) be an ensemble of N ×N matrices with independent complex Gaussian entries (complex
Ginibre ensemble): if M ∼ Gin(n,C) is a complex Ginibre matrix, then

E(Mij) = 0 = E(M̄ij), 1 ≤ i, j ≤ N, (10)

E(MijMkl) = 0 = E(M̄ijM̄kl), 1 ≤ i, j, k, l ≤ N, (11)

E(MijM̄kl) = δikδjl 1 ≤ i, j, k, l ≤ N, (12)

We will be interested in the joint statistics of the overlaps and eigenvalues of M ∼ Gin(n,C). Namely,
we will study the following conditional expectations:

EN(Oαα ∣ Λm = λm,m ∈ I), I ⊂ {1,2, . . . ,N}, α ∈ I (13)

EN(Oαβ ∣ Λm = λm,m ∈ J), J ⊂ {1,2, . . . ,N}, α, β ∈ J. (14)

In other words , we consider the expectation of the overlaps with respect to Gin(n,C)measure conditioned
on a set of eigenvalues. To be more concrete, if M ∼ Gin(n,C) is parametrised using Schur coordinates
(see section4.1 for more details), we compute the expected overlaps with respect to the product measure
whose factors are the Haar measure for the unitary conjugation, a Gaussian measure for the upper
triangular degrees of freedom, and the eigenvalue measure obtained by conditioning

Pn (Λ
(n)
∈ dλ(n)) =

1

Zn
∣∆(n)(λ(n))∣2e−∑

n
j=1 ∣λj ∣

2

dλ(n). (15)

on a set of eigenvalues (see [24]). Due to the permutation symmetry of Gin(n,C) measure, it is sufficient
to consider the following expectations:

En(O11 ∣ Λ1 = λ1,Λ2 = λ2, . . .Λk = λk), k = 1,2, . . . , n, (16)

En(O12 ∣ Λ1 = λ1,Λ2 = λ2, . . .Λk = λk), k = 2, . . . , n. (17)

Closely associated with these expectations are the following weighted multi-point intensities of the eigen-
values:

D
(n,k)
11 (λ(k)) ∶= En(O11 ∣ Λ1 = λ1, . . . ,Λk = λk)ρ

(n,k)
(λ(k)), (18)

k = 1,2, . . . , n,

and

D
(n,k)
12 (λ(k)) ∶= En(O12 ∣ Λ1 = λ1, . . . ,Λk = λk)ρ

(n,k)
(λ(k)), (19)

k = 2, . . . , n,

where λ(k) = (λ1, λ2, . . . , λk) and ρ(n,k) is the k-point correlation function (Lebesgue density for factorial
moments) for Gin(n,C) eigenvalues. Recall from Mehta [24] that

ρ(n,k)(λ(k)) ∶=
n!

(n − k)!
∫
Cn−k

n

∏
m=k+1

dλmdλ̄mpn(λ
(n)
) = det

1≤i,j≤n
(K(n)ev (λi, λj)) , (20)

where

K(n)ev (x, y) =
1

π
e−∣x∣

2
n−1

∑
m=0

(x̄y)m

m!
(21)

9



is the kernel of the determinantal point process corresponding to the distribution of Gin(n,C) eigenvalues,
see [17] and [24] for the derivation of (20) and (21). 1

For the sake of brevity, we will refer to the expectations (18) and (19) as conditional overlaps. Notice
that

D
(n,1)
11 (λ) = En (

n

∑
α=1

Oααδ(Λα − λ)) , (22)

D
(n,2)
12 (λ,µ) = En

⎛

⎝

n

∑
α≠β=1

Oαβδ(Λα − λ)δ(Λβ − µ)
⎞

⎠
, (23)

coincide with the expectations of diagonal and off-diagonal elements of the overlap matrix studied by

Chalker and Mehlig: compare D
(n,1)
11 (λ) and D

(n,2)
12 (λ,µ) with equations (10) and (11) of [11] evaluated

at σ = 1.

Our starting point is the fundamental result of [10, 11] for the overlaps conditioned on all eigenval-
ues:

D
(n,n)
11 (λ(n)) = n!

n

∏
k=2

(1 +
1

∣λ1 − λk ∣2
)pn(λ

(n)
), (24)

D
(n,n)
12 (λ(n)) = −

n!

∣λ1 − λ2∣2

n

∏
k=3

⎛

⎝
1 +

1

(λ1 − λk) (λ̄2 − λ̄k)

⎞

⎠
pn(λ

(n)
), (25)

see equations (43) and (46) of [11]. How we re-derived these results will be presented in Chapter 4.1.

2.2 Results

The study of conditional expectations of overlaps is simplified due to a simple relation between D11 and
D12. In order to state this simple relation, we will treat {λi, λ̄i}1≤i≤k as independent complex variables
and therefore treat conditional overlaps as functions on C2k. To obtain the final answer we will specialize
to the real surface Ck ⊂ C2k by treating λi as the complex conjugate of λ̄i for 1 ≤ i ≤ k. As a slight abuse

of notation, we will always refer to the value of the overlap at a point as D
(n,k)
12 (λ(k)). Let T̂ be the

following transposition acting on functions on C2k, k ≥ 2:

T̂ f(λ1, λ̄1, λ2, λ̄2, . . .) = f(λ1, λ̄2, λ2, λ̄1, . . .), (26)

leaving the remaining variables λ3, λ̄3, . . . λk, λ̄k untouched. We have the following:

Lemma 1 (Exact relation between diagonal and off-diagonal overlaps for n <∞.) For any 2 ≤ k ≤ n <∞,

the functions D
(n,k)
11 and D

(n,k)
12 are entire functions on C2k. Moreover,

D
(n,k)
12 (λ(k)) = −

e−∣λ1−λ2∣
2

1 − ∣λ1 − λ2∣2
T̂D

(n,k)
11 (λ(k)). (27)

To state the main result we need to introduce some notations. Let

ep(x) =
p

∑
k=0

xk

k!
, p = 0,1,2, . . . (28)

be the exponential polynomial of order p considered as functions on C. Let

fp(x) = (p + 1)ep(x) − xep−1(x), p = 0,1, . . . , (29)

1The kernel (21) can be re-written in a more symmetric form 1
π
e−

1
2
(∣x∣2+∣y∣2)

∑
N−1
m=0

(x̄y)m

m!
by the conjugation Kev(x, y)→

e
1
2
x2

Kev(x, y)e
−

1
2
y2

, which does not change the correlation functions.
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where we define e−1(x) ≡ 0. The polynomials fp are closely related to the bi-orthogonal polynomials
in the complex plane associated with conditional overlaps, as we will see in a later section. Finally, let
Fn ∶ C3 → C be the following polynomial in three variables:

Fn(x, y, z) = en(xy) ⋅ en(xz) − en(xyz) ⋅ en(x) ⋅ (1 − x(1 − y)(1 − z)) (30)

+
(1 − y)(1 − z)

n!
⋅
(xyz)n+1en(x) − x

n+1en(xyz)

1 − yz
, n = 0,1, . . .

The following is the main result:

Theorem 1 (Determinantal structure of conditional overlaps) For any 1 ≤ k ≤ n <∞,

D
(n,k)
11 (λ(k)) =

fn−1(∣λ1∣
2)

π
e−∣λ1∣

2

det
2≤i,j≤k

(K
(n−1)
11 (λi, λ̄i, λj , λ̄j ∣ λ1, λ̄1)) , (31)

where the kernel

K
(n)
11 (x, x̄, y, ȳ ∣ λ, λ̄) = ω(x, x̄ ∣ λ, λ̄)κ

(n)
(x̄, y ∣ λ, λ̄), (32)

is a function on C6, which is built out of the weight

ω(x, y ∣ λ,µ) =
1

π
(1 + (x − λ)(y − µ))e−xy, (33)

a function on C4, and the reduced kernel

κ(n)(x̄, y ∣ λ, λ̄) =
((n + 1)Fn+1 (λλ̄,

x̄

λ
, y
λ
) − λλ̄Fn (λλ̄,

x̄

λ
, y
λ
))

(x̄ − λ)
2
(y − λ)

2
fn (λλ)

. (34)

Furthermore, for k ≥ 2,

D
(n,k)
12 (λ(k)) = −

e−∣λ1∣
2
−∣λ2∣

2

π2
fn−1(λ1λ̄2)κ

(n−1)
(λ̄1, λ2 ∣ λ1, λ̄2)

× det
3≤i,j≤k

(K
(n−1)
12 (λi, λ̄i, λj , λ̄j ∣ λ1, λ̄1, λ2, λ̄2)) , (35)

where

K
(n)
12 (x, x̄, y, ȳ ∣ u, ū, v, v̄) =

ω(x, x̄ ∣ u, v̄)

κ(n)(ū, v ∣ u, v̄)
(36)

×det(
κ(n)(ū, v ∣ u, v̄) κ(n)(ū, y ∣ u, v̄)

κ(n)(x̄, v ∣ u, v̄) κ(n)(x̄, y ∣ u, v̄)
) .

The finite-n answer stated above enables an easy study of the large-n limits of conditional overlaps.
It is well known that the global spectral density of complex eigenvalues approaches the circular law,
limn→∞ ρ

(n,1)(
√
nz) = 1

π
Θ(1 − ∣z∣), where Θ is the Heaviside step function, [20]. Therefore, we will

consider two such local, microscopic limits: the local bulk scaling limit,

D
(bulk, k)
11 (λ(k)) = lim

n→∞

1

n
D
(n,k)
11 (λ(k)), (37)

D
(bulk, k)
12 (λ(k)) = lim

n→∞

1

n
D
(n,k)
12 (λ(k)), (38)

i.e. we fix λ1, . . . , λk and take the large-n limit, which places us in the vicinity of the origin2, and the
local edge scaling limit,

D
(edge, k)
11 (λ(k)) = lim

n→∞

1
√
n
D
(n,k)
11 (eiθ(

√
n +λ(k))), (39)

D
(edge, k)
12 (λ(k)) = lim

n→∞

1
√
n
D
(n,k)
12 (eiθ(

√
n +λ(k))), (40)

2To access the general bulk we would have to scale z = reiθ
√

n + λ, with r < 1 and fixed λ.
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i.e. we shift to the vicinity of the spectral edge at ∣z∣ =
√
n, fix λ1, . . . , λk and then take the N →∞ limit.

In the bulk, the conditional overlaps scale as n, which we already know from [11] and can be seen by
averaging over all eigenvalues. It is common in random matrices for the bulk and edge to scale differently,
and in this case, when the eigenvalues are on the edge the overlaps scale as n1/2. Thus the overall rescal-
ing of conditional overlaps used for the bulk and edge limits are factors of n−1 and n−1/2 respectively.
Notice also that our notations for the edge scaling limit reflect the independence of the final answer on
the point at the edge of the spectrum around which we expand.

Corollary 1 (Local bulk scaling limit of conditional overlaps)

D
(bulk, k)
11 (λ(k)) = lim

n→∞

1

n
D
(n,k)
11 (λ(k)) =

1

π
det

2≤i,j≤k
(K

(bulk)
11 (λi, λ̄i, λj , λ̄j ∣ λ1, λ̄1)) , (41)

where K
(bulk)
11 ∶ C6 → C is the limiting kernel:

K
(bulk)
11 (u, ū, v, v̄ ∣ λ, λ̄) = ω(bulk)(u, ū ∣ λ, λ̄)κ(bulk)(ū, v ∣ λ, λ̄), (42)

where

ω(bulk)(u, ū ∣ λ, λ̄) =
1

π
(1 + (u − λ)(ū − λ̄))e−(u−λ)(ū−λ̄) (43)

is the weight and

κ(bulk)(ū, v ∣ λ, λ̄) =
d

dz
(
ez − 1

z
)∣

z=(ū−λ̄)(v−λ)
, (44)

is the reduced kernel. Moreover,

D
(bulk, k)
12 (λ(k)) = −

1

π2
κ(bulk)(λ̄1, λ2 ∣ λ1, λ̄2) det

3≤i,j≤k
(K

(bulk)
12 (λi, λ̄i, λj , λ̄j ∣ λ1, λ̄1, λ2, λ̄2)) , (45)

where

K
(bulk)
12 (λi, λ̄i, λj , λ̄j ∣ λ1, λ̄1, λ2, λ̄2) =

ω(bulk)(λi, λ̄i ∣ λ1, λ̄2)

κ(bulk)(λ̄1, λ2 ∣ λ1, λ̄2)
(46)

× det(
κ(bulk)(λ̄1, λ2 ∣ λ1, λ̄2) κ(bulk)(λ̄1, λj ∣ λ1, λ̄2)

κ(bulk)(λ̄i, λ2 ∣ λ1, λ̄2) κ(bulk)(λ̄i, λj ∣ λ1, λ̄2)
) .

As expected, conditional overlaps in the bulk are translationally invariant, meaning that D
(bulk, k)
11 and

D
(bulk, k)
12 are invariant with respect to a simultaneous shift of the arguments,

λi → λi + µ, λ̄i → λ̄i + µ̄, 1 ≤ i ≤ k, µ ∈ C.

Finally, let us verify that the statement of Corollary 1 agrees with Chalker and Mehlig’s answer for

D
(bulk,2)
12 (λ1, λ2) obtained in [10, 11] . Specialising (45) to the particular case k = 2 and denoting

λij = λi − λj , λ̄ij = λ̄i − λ̄j , 1 ≤ i, j ≤ N, (47)

we find that

D
(bulk, 2)
12 (λ1, λ2) = −

1

π2
κ(bulk)(λ̄1, λ2 ∣ λ1, λ̄2)

= −
1

π2

d

dz
(
ez − 1

z
) ∣z=−∣λ12∣2= −

1

π2

1

∣λ12∣4
(1 − (1 + ∣λ12∣

2) e−∣λ12∣
2

) ,

which corresponds to Eqn. (9) of [10] for fluctuations at the origin (z+ = 0 in [10]).
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The finite-N results stated in Theorem 1 are also well suited for studying the statistics of overlaps
at the edge. For a ∈ C, let

F (a) =
1
√

2π
∫

∞

a
e−x

2
/2dx ≡

1

2
erfc(

a
√

2
) , (48)

where erfc is the complementary error function, analytically continued to the complex plane. For any
a, b, c, d, f ∈ C, let

H(a, b, c, d, f) = −

√
2π

(1 −
√

2πae
a2

2 F (a))
(49)

×
d

dx
[e

(a+x)2
2 (e−fF (b + x)F (c + x) − F (d + x)F (a + x) + fF (d)F (a + x))]∣

x=0
.

Corollary 2 (Local edge scaling limit of conditional overlaps)

D
(edge, k)
11 (λ(k)) = lim

n→∞

1
√
n
D
(n,k)
11 (eiθ(

√
n +λ(k))) =

1
√

2π3
(e−

1
2 (λ1+λ̄1)

2

−
√

2π(λ1 + λ̄1)F (λ1 + λ̄1))

× det
2≤i,j≤k

(K
(edge)
11 (λi, λ̄i, λj , λ̄j ∣ λ1, λ̄1)) , (50)

where K
(edge)
11 ∶ C6 → C is the limiting kernel:

K
(edge)
11 (x, x̄, y, ȳ ∣ λ, λ̄) = ω(edge)(x, x̄ ∣ λ, λ̄)κ(edge)(x̄, y ∣ λ, λ̄), (51)

where

ω(edge)(x, x̄ ∣ λ, λ̄) =
1

π
(1 + (x − λ)(x̄ − λ̄))e−xx̄ (52)

is the weight and

κ(edge)(x̄, y ∣ λ, λ̄) = ex̄y
H (λ + λ̄, λ + x̄, y + λ̄, y + x̄, (λ − y)(λ̄ − x̄))

(λ − y)2(λ̄ − x̄)2
(53)

is the reduced kernel. Moreover,

D
(edge, k)
12 (λ(k)) = −

1
√

2π5
(1 −
√

2π(λ1 + λ̄2)e
1
2 (λ1+λ̄2)

2

F (λ1 + λ̄2))

×
e−∣λ1−λ2∣

2
− 1

2 (λ1+λ̄2)
2

λ212λ̄
2
12

H(λ1 + λ̄2, λ1 + λ̄1, λ2 + λ̄2, λ2 + λ̄1,−λ12λ̄12)

× det
3≤i,j≤k

(K
(edge)
12 (λi, λ̄i, λj , λ̄j ∣ λ1, λ̄1, λ2, λ̄2)) , (54)

where

K
(edge)
12 (λi, λ̄i, λj , λ̄j ∣ λ1, λ̄1, λ2, λ̄2) =

ω(edge)(λi, λ̄i ∣ λ1, λ̄2)

κ(edge)(λ̄1, λ2 ∣ λ1, λ̄2)
(55)

× det(
κ(edge)(λ̄1, λ2 ∣ λ1, λ̄2) κ(edge)(λ̄1, λj ∣ λ1, λ̄2)

κ(edge)(λ̄i, λ2 ∣ λ1, λ̄2) κ(edge)(λ̄i, λj ∣ λ1, λ̄2)
) .

As expected, the translational invariance is lost at the edge. However, it is easy to check that D
(edge, k)
11

and D
(edge, k)
12 are invariant with respect to a global shift along the edge of the spectrum,

λm → λm + iµ, λ̄m → λ̄m − iµ, 1 ≤m ≤ k, µ ∈ R.
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It follows from the statement of Corollary 2, that for k = 1,

D
(edge, 1)
11 (λ1) =

1
√

2π3
(e−

1
2 (λ1+λ̄1)

2

−
√

2π(λ1 + λ̄1)F (λ1 + λ̄1)) , (56)

which coincides with the answer for the edge scaling limit of the diagonal overlap obtained in [32,
Corollary 4.3]. For k = 2, we find that

D
(edge, 2)
12 (λ1, λ2) = (57)

1

π2

e−∣λ1−λ2∣
2
− 1

2 (λ1+λ̄2)
2

λ212λ̄
2
12

d

dx
[e

(λ1+λ̄2+x)2
2 (eλ12λ̄12F (λ1 + λ̄1 + x)F (λ2 + λ̄2 + x)

−F (λ2 + λ̄1 + x)F (λ1 + λ̄2 + x) − λ12λ̄12F (λ2 + λ̄1)F (λ1 + λ̄2 + x))]∣
x=0

,

which is apparently a new expression for the off-diagonal overlap at the edge.

There is also a different kind of relation between the scaling limits of overlaps: as we have already re-
viewed, the typical magnitude of the overlap in the bulk is O(N), near the edge - O(

√
N). This is consis-

tent with the fact that the prefactor in (50) diverges as we move back into the bulk: if Re(λ) = Re(λ̄) = R,

lim
R→−∞

(e−(λ+λ̄)
2

−
√

2π(λ + λ̄)F (λ + λ̄)) = −
√

2π lim
R→−∞

(λ + λ̄) = +∞.

Therefore, there is no a priori reason for any relation between conditional overlaps in the bulk and at
the edge. However, simple analysis of the answers presented in Corollaries 1 and 2 reveals the following
relations:

Corollary 3

lim
R→−∞

D
(edge, k)
11 (R1(k) +λ(k))

D
(edge, 1)
11 (R + λ1)

=
D
(bulk, k)
11 (λ(k))

D
(bulk, 1)
11 (λ1)

, k = 1,2, . . . , (58)

lim
R→−∞

D
(edge, k)
12 (R1(k) +λ(k))

D
(edge, 2)
12 (R + λ1,R + λ2)

=
D
(bulk, k)
12 (λ(k))

D
(bulk, 2)
12 (λ1, λ2)

, k = 2,3, . . . , (59)

where 1(k) = (1,1, . . . ,1) ∈ Rk.
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3 Proofs

3.1 Bi-orthogonal Polynomials

Recall expressions (24) and (25) for the overlaps conditioned on N eigenvalues. Averaging over all the
eigenvalues but λ1, . . . , λk, we get

D
(n,k)
11 (λ(k)) =

1

Zn

n!

(n − k)!
∫
Cn−k

n

∏
i=k+1

dλidλ̄i∣∆
(n)
(λ1, λ2, . . . , λn)∣

2e−∑
n
j=1 ∣λj ∣

2

×
n

∏
ℓ=2

(1 +
1

∣λ1 − λℓ∣2
) , (60)

D
(n,k)
12 (λ(k)) =

1

Zn

n!

(n − k)!
∫
Cn−k

n

∏
i=k+1

dλidλ̄i∣∆
(n)
(λ1, λ2, . . . , λn)∣

2e−∑
n
j=1 ∣λj ∣

2

×
1

∣λ1 − λ2∣2

n

∏
ℓ=3

⎛

⎝
1 +

1

(λ1 − λℓ) (λ̄2 − λ̄ℓ)

⎞

⎠
, (61)

where Zn = π
n
∏

n
j=1 j! is the normalisation constant. Therefore,

D
(n,k)
11 (λ(k)) =

e−∣λ1∣
2

Zn

n!

(n − k)!
∫
Cn−k

n

∏
i=k+1

dλidλ̄i∣∆
(n−1)

(λ2, . . . , λn)∣
2

×
n

∏
m=2

πω(λm, λ̄m ∣ λ1, λ̄1), (62)

D
(n,k)
12 (λ(k)) = −

e−∣λ1∣
2
−∣λ2∣

2

Zn

n!

(n − k)!
∫
Cn−k

N

∏
i=k+1

dλidλ̄i∆
(n−1)

(λ2, λ3, . . . , λN)

×∆(n−1)(λ̄1, λ̄3, . . . , λ̄n)
n

∏
m=3

πω(λm, λ̄m ∣ λ1, λ̄2), (63)

where the integration measure is defined in both cases by the following function on C3:

ω(z, z̄∣u, v) =
1

π
(1 + (z − u)(z̄ − v))e−zz̄, z, u, v ∈ C. (64)

How we go from (60) and (61) to (62) and (63) is presented in detail in chapter 4.2 and also [24, chapter
15].

In order to determine D
(n,k)
12 using Lemma 1, proved in Section 3.2 below, we need to calculate D

(n,k)
11

treating the complex variables λ(k) and λ̄
(k)

as independent. This helps, because from a purely no-

tational standpoint, when going from D
(n,k)
11 to D

(n,k)
12 , λ̄1 and λ̄2 change places. The first steps are

standard, see e.g. [24], but we will go through them anyway in chapter 3. Using elementary linear
algebra,

∣∆(n−1)(λ2, . . . , λn)∣
2

n

∏
m=2

ω(λm, λ̄m ∣ λ1, λ̄1)

=
n−2

∏
q=0

⟨Pq,Qq⟩ det
2≤i,j≤n

(K
(n−1)
11 (λi, λ̄i, λj , λ̄j ∣ λ1, λ̄1)) , (65)

where K
(n)
11 is the following kernel (of an integral operator):

K
(n)
11 (x, x̄, y, ȳ ∣ λ1, λ̄1) =

n−1

∑
k=0

Pk(x)Qk(y)

⟨Pk,Qk⟩
ω(x, x̄ ∣ λ1, λ̄1), (66)

and {Pi,Qi}
∞
i=0 are holomorphic monic polynomials on C, bi-orthogonal with respect to the weight

ω(⋅, ⋅ ∣ λ1, λ̄1):

⟨Pi,Qj⟩ ∶= ∫
C
dzdz̄ω(z, z̄ ∣ λ1, λ̄1)Pi(z)Qj(z) = ⟨Pi,Qi⟩δi,j , 0 ≤ i, j <∞. (67)
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Note that it is not necessary to find explicit expressions for the polynomials themselves, only the kernel.
Notice also that the bi-orthogonal polynomials depend on λ1 and λ̄1 as parameters, but we will suppress
this dependence in order to simplify the notation. We will establish the existence of the bi-orthogonal
polynomials and the associated kernel (66) for the concrete weight ω by constructing them explicitly. For
a general discussion see [3], where Akemann and Vernizzi present a way of finding orthogonal polynomials
with respect to more complex weights than ω.

In what follows it will be convenient to define the reduced kernel κ(n) via

K
(n)
11 (x, x̄, y, ȳ ∣ λ1, λ̄1) = κ(n)(x̄, y ∣ λ1, λ̄1)ω(x, x̄ ∣ λ1, λ̄1),

κ(n)(x̄, y ∣ λ1, λ̄1) =
n−1

∑
k=0

Pk(x)Qk(y)

⟨Pk,Qk⟩
. (68)

Notice that the kernel K
(n)
11 is self-reproducing,

K
(n)
11 ∗K

(n)
11 =K

(n)
11 .

Therefore, Dyson’s theorem (see [24, chapter 5]) is applicable to the calculation of the integral in (62).
3 Substituting (65) into (62) and applying the theorem, we find that

D
(n,k)
11 (λ(k)) =

πn−1n!

Zn

n−2

∏
q=0

⟨Pq,Qq⟩ ⋅ e
−∣λ1∣

2

× det
2≤i,j≤k

(K
(n−1)
11 (λi, λ̄i, λj , λ̄j ∣ λ1, λ̄1)) . (69)

Observe the emergence of the determinantal structure for the diagonal conditional overlaps. The off-

diagonal overlap D
(n,k)
12 as a function on C2k can now be computed using Lemma 1:

D
(n,k)
12 (λ(k)) = −

πn−1n!

Zn

e−λ12λ̄12−λ1λ̄2

1 − λ12λ̄12
T̂
⎛

⎝

n−2

∏
q=0

⟨Pq,Qq⟩
⎞

⎠

×det

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

K
(n−1)
11 (λ2, λ̄1, λ2, λ̄1 ∣ λ1, λ̄2) K

(n−1)
11 (λ2, λ̄1, λj , λ̄j ∣ λ1, λ̄2),

3 ≤ j ≤ k

K
(n−1)
11 (λi, λ̄i, λ2, λ̄1 ∣ λ1, λ̄2), K

(n−1)
11 (λi, λ̄i, λj , λ̄j ∣ λ1, λ̄2),

3 ≤ i ≤ k 3 ≤ i, j ≤ k

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(70)

It is worth stressing that ∏
n−2
q=0 ⟨Pq,Qq⟩ is a function of λ1, λ̄1, therefore the action of T̂ on this product

is non-trivial. Recall also that λij ∶= λi −λj , λ̄ij ∶= λ̄i − λ̄j . The determinant in the above formula can be
re-written using the following determinantal identity

det
1≤i,j≤n

(aij) = a11 det
2≤i,j≤n

(a−111 det(
a11 a1j
ai1 aij

)) , a11 ≠ 0. (71)

This follows from a well known identity for block determinants, see e.g. [27]:

det(
A B
C D

) = det(A)det (D −CA−1B) , (72)

valid for invertible matrices A. Namely, choosing for A = a11 ≠ 0 in (71) we have

det
2≤i,j≤n

(
a11 a1j
ai1 aij

) = det(a11) det
2≤i,j≤n

(aij − ai1a
−1
11a1j) = a11 det

2≤i,j≤n
(a−111(a11aij − ai1a1j)) . (73)

3The self-adjointness of a kernel is not necessary for the applicability of Dyson’s theorem.
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Eq. (71) can be seen as the simplest of Tanner’s identities for determinants and Pfaffians, see [21] for a
review. More about this identity can also be found in appendix 6.1. Applying (71) to (70) results into

D
(n,k)
12 (λ(k)) = −

πn−2n!

Zn
T̂
⎛

⎝

n−2

∏
q=0

⟨Pq,Qq⟩
⎞

⎠
e−λ1λ̄1−λ2λ̄2κ(n−1) (λ̄1, λ2∣λ1, λ̄2)

× det
3≤i,j≤k

⎛

⎝

ω(λi, λ̄i ∣ λ1, λ̄2)

κ(n−1) (λ̄1, λ2∣λ1, λ̄2)
det(

κ(n−1)(λ̄1, λ2 ∣ λ1, λ̄2) κ(n−1)(λ̄1, λj ∣ λ1, λ̄2)

κ(n−1)(λ̄i, λ2 ∣ λ1, λ̄2) κ(n−1)(λ̄i, λj ∣ λ1, λ̄2)
)
⎞

⎠
,

(74)

which explains the structure of the claim (35), (36) of Theorem 1. The final answers for the conditional
overlaps are obtained by evaluating (69) and (74) on the real surface Ck ⊂ C2k, specified by the equations

λ(k) = λ̄
(k)

.

The proof of Theorem 1 is therefore reduced to the calculation of the reduced kernel κ(n) and the
inner products of the bi-orthogonal polynomials ⟨Pq,Qq⟩ for q = 0,1,2, . . . The bi-orthogonal polynomi-
als themselves are not the subject of our current investigation, therefore it is reasonable to follow the
approach of [4] and derive expressions for κ(n) and ⟨Pq,Qq⟩ directly in terms of the moment matrix M
defined as

Mij = ⟨z
i, zj⟩, i, j ≥ 0. (75)

Let (L,D,U) be the LDU-decomposition of M . That is D is the diagonal matrix, L and UT are the
lower triangular matrices with the diagonal entries equal to 1 such that

M = LDU. (76)

Therefore, L−1MU−1 =D. Re-writing this identity in components we find that

⟨Pk,Ql⟩ =Dkkδk,l, k, l ≥ 0, (77)

where

Pk(z) =
k

∑
m=0

(L̄−1)kmz
m,

(78)

Qk(z) =
k

∑
m=0

zm(U−1)mk,

for k ≥ 0. We see that {Pq,Qq}k≥0 is the set of holomorphic monic polynomials bi-orthogonal with respect
to the weight ω(⋅, ⋅ ∣ λ1, λ̄1). Comparing (77) with (67) we find that

⟨Pk,Qk⟩ =Dkk, k ≥ 0. (79)

Substituting (79) and (78) into the expression (68) for the reduced kernel we also find that

κ(n)(z̄, z ∣ λ1, λ̄1) =
n−1

∑
i,j=0

ziC
(n−1)
ij z̄j , (80)

where

C
(n)
ij =

n

∑
k=0

(U−1)ik
1

Dkk
(L−1)kj , i, j ≥ 0. (81)

At least formally, the semi-infinite matrix C(n) converges to M−1 as N → ∞. Perhaps less trivially,
as a consequence of the Gram-Schmidt orthogonalisation procedure, it can be also characterised as the
inverse of the (n + 1) × (n + 1) moment matrix (⟨zi, zj⟩)0≤i,j ≤ N , see [4].
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Now the proof of Theorem 1 has been reduced to the calculation of the LDU decomposition of the
moment matrix M .

Remark. We see that the expression for the off-diagonal overlap D
(N,k)
12 is determinantal with the

kernel expressed as the 2× 2 determinant of a matrix built out of the kernel corresponding to the weight
ω(x, x̄ ∣ λ, λ̄). Such a structure is to be expected from the general theory of orthogonal polynomials in
the complex plane developed in [3]. Really, relation (63) can be re-written as

D
(n,k)
12 (λ(k)) = −

e−∣λ1∣
2
−∣λ2∣

2

Zn

n!

(n − k)!
∫
Cn−k

N

∏
i=k+1

dλidλ̄i∣∆
(N−2)

(λ3, λ4, . . . , λN)∣
2

×
N

∏
m=3

π(λ2 − λm)(λ̄1 − λ̄m)ω(λm, λ̄m ∣ λ1, λ̄2).

By Dyson’s theorem, the right hand side of this expression is proportional to the (k − 2) × (k − 2)
determinant of the kernel associated with holomorphic polynomials, which are bi-orthogonal with respect
to the weight

(u − z)(v̄ − z̄)ω(z, z̄ ∣ v, ū).

Such a kernel can be expressed in terms of a 2 × 2 determinant of the kernel associated with the weight
ω(⋅, ⋅ ∣ λ, λ̄), see formula (3.10) of [3]. Our present calculation can be therefore regarded as a short
re-derivation of the general expression of [3] in the particular context of integration weights associated
with the overlaps. The main tools used in our calculation are the analyticity and determinant identities.

3.2 Lemma 1

It follows from (62) and (63) that both D
(n,k)
11 (λ(k))e∑

k
m=1 λkλ̄k and D

(n,k)
12 (λ(k))e∑

k
m=1 λkλ̄k are polyno-

mials in λ(k), λ̄
(k)

. Therefore D
(n,k)
11 and D

(n,k)
12 are entire functions on C2k.

Recall the definition of the transposition T̂ acting on functions on C2k:

T̂ f(λ1, λ̄1, λ2, λ̄2, . . .) = f(λ1, λ̄2, λ2, λ̄1, . . .) (82)

Comparing (62) and (63), we see that for k ≥ 2,

D
(n,k)
12 (λ(k)) = −

e−∣λ1−λ2∣
2

1 − ∣λ1 − λ2∣2
T̂D

(n,k)
11 (λ(k)), (83)

for any (λ(k), λ̄
(k)
) ∈ C2k. Lemma 1 is proved. This is just an observation one can make by looking at

the expressions (62) and (63). The transformation T̂ switches λ̄1 and λ̄2 places, and then all that’s left

in order to go from D
(n,k)
11 (λ(k)) to D

(n,k)
12 (λ(k)), is a factor of − e−∣λ1−λ2 ∣2

1−∣λ1−λ2∣2
.

3.3 Heuristic derivation of N =∞ results in the bulk assuming T-invariance

The calculations below are rather simple, but non-rigorous - they rest on the assumptions of the extended
translational invariance of conditional overlaps in the bulk and the validity of Lemma 1 at N =∞. We
could try justifying these assumptions using analysis, but as it turns out, it is possible to obtain a fairly
simple explicit expression for the kernel at N < ∞, thus enabling the study of conditional overlaps not
only in the bulk of the spectrum, but also near the spectral edge.

The task of calculating bi-orthogonal polynomials (67) is considerably simpler at the special point
λ1 = λ̄1 = 0. In this case the weight function reduces to

ω(z, z̄ ∣ 0,0) =
1

π
(1 + ∣z∣2)e−∣z∣

2

. (84)

The bi-orthogonal polynomials associated the weight (84) are just the monomials,

Pk(x) = Qk(x) = x
k, k ≥ 0. (85)
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Their inner products can also be computed explicitly,

⟨Pk,Qk⟩ = k!(k + 2), k ≥ 0, (86)

leading to the following kernel:

K
(N)
11 (x, x̄, y, ȳ ∣ 0,0) =

1

π
(1 + ∣x∣2)e−∣x∣

2
N−1

∑
k=0

(x̄y)k

(k + 2)k!
. (87)

As N →∞ , the limiting kernel in the bulk is

K
(bulk)
11 (x, x̄, y, ȳ ∣ 0,0) =

1

π
(1 + ∣x∣2)e−∣x∣

2

κ(bulk)(x̄, y ∣ 0,0), (88)

where

κ(bulk)(x̄, y ∣ 0,0) =
1

(x̄y)2
+ (

1

(x̄y)
−

1

(x̄y)2
) ex̄y. (89)

Alternatively, we can write

κ(bulk)(x̄, y ∣ 0,0) =
d

dz
(
ez − 1

z
)∣

z=x̄y
. (90)

The N -dependent pre-factor in the right hand side of (69) is N/π, which leads to the following answer
for the conditional overlap in the bulk:

D
(bulk, k)
11 (0, λ2, . . . , λk) =

1

π
det

2≤i,j≤k
(K

(bulk)
11 (λi, λ̄i, λj , λ̄j ∣ 0,0)) (91)

Let us assume the extended translational invariance for the diagonal overlaps regarded as functions

on C2k, which means that D
(bulk, k)
11 is invariant under the shift λm → λm+ϵ, λ̄m → λ̄m+ ϵ̄, m = 1,2, . . . , k,

where ϵ, ϵ̄ are independent complex variables. Then

D
(bulk, k)
11 (λ(k)) = D

(bulk, k)
11 (0, λ2 − λ1, . . . , λk − λ1)

=
1

π
det

2≤i,j≤k
(K

(bulk)
11 (λi − λ1, λ̄i − λ̄1, λj − λ1, λ̄j − λ̄1 ∣ 0,0)) . (92)

We conclude that

D
(bulk, k)
11 (λ(k)) =

1

π
det

2≤i,j≤k
(K

(bulk)
11 (λi, λ̄i, λj , λ̄j ∣ λ1, λ̄1)) , (93)

where

K
(bulk)
11 (x, x̄, y, ȳ ∣ λ, λ̄) =

1

π
(1 + ∣x − λ∣2)e−∣x−λ∣

2

κ(bulk)(x̄, y ∣ λ, λ̄), (94)

and the reduced kernel is

κ(bulk)(x̄, y ∣ λ, λ̄) =
d

dz
(
ez − 1

z
)∣

z=(x̄−λ̄)(y−λ)
, (95)

which agrees with the statement (41) of Corollary 1.

To calculate the off-diagonal conditional overlaps, let us assume that the relation (27) remains valid
at N =∞ as well. Then

D
(bulk, k)
12 (λ(k)) = −

1

π

e−∣λ1−λ2∣
2

1 − ∣λ1 − λ2∣2
T̂ det

2≤i,j≤k
(K

(bulk)
11 (λi, λ̄i, λj , λ̄j ∣ λ1, λ̄1)) . (96)

Applying the determinant identity (71), we find

D
(bulk, k)
12 (λ(k)) = −

1

π2
κ(bulk)(λ̄1, λ2 ∣ λ1, λ̄2) det

3≤i,j≤k
(K

(bulk)
12 (λi, λ̄i, λj , λ̄j ∣ λ1, λ̄2)) , (97)

19



where

K
(bulk)
12 (λi, λ̄i, λj , λ̄j ∣ λ1, λ̄2) =

ω(bulk)(λi, λ̄i ∣ λ1, λ̄2)

κ(bulk)(λ̄1, λ2 ∣ λ1, λ̄2)
(98)

×det(
κ(bulk)(λ̄1, λ2 ∣ λ1, λ̄2) κ(bulk)(λ̄1, λj ∣ λ1, λ̄2)

κ(bulk)(λ̄i, λ2 ∣ λ1, λ̄2) κ(bulk)(λ̄i, λj ∣ λ1, λ̄2)
) ,

which agrees with the statement (45) of Corollary 1. The step of applying (71) is needed, because in
(96) we do not yet have the kernel we want, we still need to get rid of the first row and column which
correspond to i or j equal 2. Only in (97) do we finally have the kernel for the off-diagonal case.

3.4 The kernel for N <∞

3.4.1 The LDU decomposition of the moment matrix.

We will use the relation between the kernel and the moment matrix established in Section 3.1. An
explicit computation of ⟨zi, zj⟩ with the weight ω(⋅, ⋅ ∣, λ, λ̄) defined in (64) gives

Mij = i! [δij ((1 + λλ̄) + (i + 1)) − δi+1,jλ(i + 1) − δi,j+1λ̄] , i, j ≥ 0. (99)

Crucially, the moment matrix is tri-diagonal, which makes explicit calculations leading to the kernel
possible. The recursive formulae for computing the LDU decomposition and the inverse of a tri-diagonal
matrix are well-known. What makes our case special however, is that the recursions we get can be solved
exactly in terms of the exponential polynomials. At some point it would be interesting to understand
the algebraic reasons for the exact solvability of our problem, but in the mean time we adopt a tour de
force approach.

Let µ be the following tri-dagonal matrix:

µij = δij ((1 + λλ̄) + (i + 1)) − δi+1,jλ(i + 1) − δi,j+1λ̄, i, j ≥ 0. (100)

As M is the product of of µ and the diagonal matrix with entries i!, the LDU decomposition of M is
easy to construct from the LDU decomposition of µ. If

µ = LDU, (101)

where Dpq = dpδpq, Lpq = δpq + lpδp,q+1, Upq = δpq + uqδq,p+1, p, q ≥ 0, then

up+1 = −
(1 + p)λ

dp
, p ≥ 0, (102)

lp+1 = −
λ̄

dp
, p ≥ 0, (103)

dp = −dp−1lpup1p≥1 + 2 + λλ̄ + p, p ≥ 0, (104)

defining d−1 ≡ 0. Let x = λλ̄. To determine the LDU decomposition of µ we have to solve the first order
non-linear recursion for dp’s:

dp = 2 + x + p −
px

dp−1
, p ≥ 1,

(105)

d0 = 2 + x.

This recursion can be linearised via the substitution dp =
rp+1
rp

, which, upon choosing r0 = 1, gives

rp+1 + pxrp−1 = (2 + x + p)rp, p ≥ 1,

(106)

r1 = 2 + x.
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The unique solution of (106) is

rp(x) = p!
p

∑
m=0

(p + 1 −m)

m!
xm = (p + 1)!ep(x) − p!xep−1(x), (107)

where ep(x) = ∑
p
k=0

xp

p!
is the exponential polynomial of degree p.

Therefore,

rp(x) = p!fp(x), p = 0,1, . . . , (108)

where fp’s are the polynomials defined in (29). Converting the LDU decomposition of µ to the LDU
decomposition of M and updating notations, we find that M = LDU , where

Lpm = δpm − λ̄
fp−1(λλ̄)

fp(λλ̄)
δp,m+1, p,m ≥ 0, (109)

Dmm = (m + 1)!
fm+1(λλ̄)

fm(λλ̄)
, m ≥ 0, (110)

Umq = δmq − λ
fm−1(λλ̄)

fm(λλ̄)
δq,m+1, m, q ≥ 0. (111)

Using the relation (77) between the LDU decomposition and the inner products of the bi-orthogonal
polynomials, we conclude that

⟨Pp,Qp⟩ = (p + 1)!
(p + 2)ep+1(x) − xep(x)

(p + 1)ep(x) − xep−1(x)
, (112)

which coincides with (86) at the point x = 0, as it should.

3.4.2 The inner products of the bi-orthogonal polynomials and the pre-factor in (69)

Now we can calculate the factor in front of the determinant in the r. h. s. of (69). Using the relation
(112) we find

n−2

∏
q=0

⟨Pq,Qq⟩ =
n−2

∏
q=0

Dqq =
n−1

∏
q=1

q! ⋅ fn−1(λλ̄). (113)

Therefore,

πn−1 n!

Zn

n−2

∏
q=0

⟨Pq,Qq⟩ ⋅ e
−λλ̄
=
fn−1(λλ̄)

π
e−λλ̄, (114)

which allows us to make the operation of T̂ on the inner product explicit.

3.4.3 Inversion of the L and U factors, the bi-orthogonal polynomials and the kernel

The inverse of the lower-triangular matrix L (resp. upper triangular matrix U) is a lower (resp. upper)
triangular matrix. The corresponding matrix elements can be computed directly from the relations
LL−1 = I, UU−1 = I using the explicit expressions (109) for the decomposition factors. The answer is

(L−1)pq =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 q > p,
1 q = p,

λ̄p−q
fq(x)

fp(x)
q < p,

(U−1)pq =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

λq−p
fp(x)

fq(x)
q > p,

1 q = p,
0 q < p.

(115)

Substituting (115) and (110) into the formula (80) we find that

κ(n+1)(µ̄, ν ∣ λ, λ̄) = G(n) (λλ̄,
µ̄

λ̄
,
ν

λ
) , (116)
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where

G(n)(x, y, z) =
n

∑
m,n=0

fm(x)fn(x)y
mzn

n

∑
k=m∨n

xk

(k + 1)!fk(x)fk+1(x)
(117)

is a function on C3 and a ∨ b ∶= max(a, b). Even though we do not use explicit expressions for the
bi-orthogonal polynomials in the paper, we record them here for future use:

Pk(z ∣ λ, λ̄) = Qk(z ∣ λ, λ̄) =
k

∑
m=0

λk−m
fm(λλ̄)

fk(λλ̄)
zm. (118)

3.4.4 Simplification of the reduced kernel for N <∞.

The above form of the reduced kernel is not well suited for studying the large-N asymptotic of the
overlaps. In particular, we do not see how to calculate the large-N limit of the kernel directly from
(116). Fortunately, it can be considerably simplified via a sequence of cancellations yielding formula
(34). The inner sum in (116) can be simplified as follows: Let Φn ∶ C→ C be such that

Φn(x) ∶=
n

∑
k=0

xk

(k + 1)!fk(x)fk+1(x)
, (119)

where we define Φ−1 ≡ 0. Then

G(n)(x, y, z) =
N

∑
m,n=0

fm(x)fn(x)y
mzn (Φn(x) −Φ(m∨n)−1(x)) . (120)

We have the following key technical result:

Lemma 3.1:

Φn(x) =
(n + 2 − x)

x2fn+1(x)
+
x − 1

x2
, n = 0,1, . . . (121)

Proof:
For a fixed value of x, the sequence

Φn(x) =
n

∑
k=0

xk

(k + 1)!fk(x)fk+1(x)
(122)

satisfies the following difference equation:

Φn+1(x) = Φn(x) +
xn+1

(n + 2)!fn+1(x)fn+2(x)
, (123)

Φ0(x) =
1

2 + x
. (124)

Using f1(x) = 2 + x, it is easy to check that the expression (121) satisfies the initial condition (124).
Assuming that Φn is given by (121), we find from the equation (123) that

Φn+1 =
x − 1

x2
+
(n + 2 − x)fn+2(x) +

xn+3
(n+2)!

x2fn+1(x)fn+2(x)
. (125)

A direct calculation based on the definitions (28) for the exponential polynomials en and (29) for the
polynomials fn confirms that

(n + 2 − x)fn+2(x) +
xn+3

(n + 2)!
= (n + 3 − x)fn+1(x). (126)
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Therefore,

Φn+1 =
x − 1

x2
+
(n + 3 − x)

x2fn+2(x)
, (127)

and Lemma 2.1 is proved by induction. □

Substituting (121) into (120), we find

G(n)(x, y, z) =
(n + 2 − x)

x2fn+1(x)
(

n

∑
m=0

fm(x)y
m
)(

n

∑
s=0

fs(x)z
s
)

+
1

x2

n

∑
m,s=0

(x − (m ∨ s) − 1)
fm(x)fs(x)

fm∨s(x)
ymzs. (128)

Let

αn(x, y) ∶=
n

∑
m=0

fm(x)y
m,m = 0,1, . . . . (129)

Then, the first term in the r.h.s. of (128) is equal to

(n + 2 − x)

x2fn+1(x)
αn(x, y)αn(x, z). (130)

The second term can be also be expressed in terms of αn’s:

1

x2

n

∑
m,n=0

(x − (m ∨ n) − 1)
fm(x)fn(x)

fm∨n(x)
ymzn =

1

x2

n

∑
s=0

(x − s − 1)fs(x)(yz)
s

+
1

x2

n

∑
m>s≥0

(x −m − 1)fs(x)y
mzs +

1

x2

n

∑
0≤m<s

(x − s − 1)fm(x)y
mzs

=
1

x2
((x − ω

∂

∂ω
− 1)αn(x,ω) ∣ω=yz +ψx(y, z) + ψx(z, y)) , (131)

where

ψx(y, z) =
n

∑
s>m≥0

(x − s − 1)fm(x)y
mzs. (132)

Next,

ψx(y, z) = (x − z
∂

∂z
− 1)

n

∑
s>m≥0

fm(x)y
mzs

= (x − z
∂

∂z
− 1)

n

∑
m=0

fm(x)y
m

n

∑
s=m+1

zs

= (x − z
∂

∂z
− 1)

n

∑
m=0

fm(x)y
m
(
zn+1 − zm+1

z − 1
)

= (x − z
∂

∂z
− 1)

1

(z − 1)
(zn+1αn(x, y) − zαn(x, yz)) . (133)

Substituting (133) into (131) and then substituting the result and (130) into (128), we find that

G(n)(x, y, z) =
(n + 2 − x)

x2fn+1(x)
αn(x, y)αn(x, z) +

1

x2
(x − ω

∂

∂ω
− 1)αn(x,ω) ∣ω=yz

+
1

x2
(x − z

∂

∂z
− 1)

z

z − 1
(znαn(x, y) − αn(x, yz))

+
1

x2
(x − y

∂

∂y
− 1)

y

y − 1
(ynαn(x, z) − αn(x, yz)) . (134)
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To simplify the expression for G(n) further, we need an expression for αn in terms of the exponential
polynomials:

αn(x, y) =
n

∑
s=0

fn(x)y
s
=

n

∑
s=0

((s + 1)es(x) − xes−1(x)) y
s

= (
∂

∂y
y − xy)

n

∑
s=0

es(x)y
s
+ xyn+1eN(x)

= (
∂

∂y
y − xy)

en(yx) − y
n+1en(x)

1 − y
+ xyn+1en(x). (135)

Explicitly,

αn(x, y) =
en(yx)

(1 − y)2
−

yx

(1 − y)

(yx)n

n!
− ((n + 2 − x) − (n + 1 − x)y)

yn+1en(x)

(1 − y)2
. (136)

Substituting (136) into (134), computing the derivatives and grouping the terms according to the de-
nominators we arrive at

x2G(n)(x, y, z) =
T
(n)
A (x, y, z)

(1 − y)2(1 − z)2
+
T
(n)
B (x, y, z)

(1 − y)(1 − z)
+

T
(n)
C (x, y, z)

(1 − y)2(1 − z)
+

T
(n)
C (x, z, y)

(1 − z)2(1 − y)
, (137)

where

T
(n)
A (x, y, z) =

(n + 2 − x)

fn+1(x)
en(yx)en(zx) − en(xyz) (138)

+
(n + 2)

fn+1(x)(n + 1)!
((zx)n+1en(yx) + (yx)

n+1en(zx) − (xyz)
n+1en(x)) ,

T
(n)
B (x, y, z) =

(n + 2 − x)

fn+1(x)

(yx)n+1

n!

(zx)n+1

n!
+ xen(xyz) + (n + 1 − x)

(xyz)n+1

n!
(139)

−
(n + 2)(n + 1 − x)

fn+1(x)(n + 1)!

×(
(zx)n+1(yx)n+1

n!
+
(yx)n+1(zx)n+1

n!
+ (n + 1 − x)(xyz)n+1en(x)) ,

T
(n)
C (x, y, z) = −

(n + 2 − x)

fn+1(x)
en(yx)

(zx)n+1

n!
+
(xyz)n+1

n!
+

(n + 2)

fn+1(x)(n + 1)!
(140)

×((n + 1 − x)(zx)n+1en(yx) −
(yx)n+1(zx)n+1

n!
− (n + 1 − x)en(x)(xyz)

n+1
) .

A straightforward simplification of each of the T -terms gives:

fn+1(x)T
(n)
A (x, y, z) = (n + 2)(en+1(yx)en+1(zx) − en+1(xyz)en+1(x)) (141)

−x(en(yx)en(zx) − en(xyz)en(x)),

fn+1(x)T
(n)
B (x, y, z) = x

(yx)n+1(zx)n+1

n!(n + 1)!
+ x(n + 1 − x)en(x)

(xyz)n+1

(n + 1)!
(142)

+xen(xyz)((n + 2 − x)en(x) + (n + 2)
xn+1

(n + 1)!
) ,

fn+1(x)T
(n)
C (x, y, z) = x

(xyz)n+1

(n + 1)!
en(x) − xen(yx)

(zx)n+1

(n + 1)!
. (143)
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Substituting (141), (142) and (143) into (137) we arrive at

x2fn+1(x)G
(n)
(x, y, z) =

(n + 2)Wn+1(x, y, z) − xWn(x, y, z)

(1 − y)2(1 − z)2

+x
(xyz)n+1en(x) − (xz)

n+1en(xy)

(n + 1)!(1 − y)2(1 − z)

+x
(xyz)n+1en(x) − (xy)

n+1en(xz)

(n + 1)!(1 − z)2(1 − y)

−x
(xyz)n+1

(n + 1)!

en+1(x) + xen(x)

(1 − y)(1 − z)
, (144)

where

Wn(x, y, z) ∶= en(xy)en(xz) − (1 − x(1 − y)(1 − z))en(xyz)en(x), n ∈ N. (145)

This answer is already well-suited for the calculation of the kernel for the bulk and the edge scaling limits
of the overlaps, but it still looks rather complicated. Fortunately, it can be re-written in a shorter form:

Observing that en(x) = en+1(x) −
xn+1
(n+1)!

, we find that

Wn(x, y, z) = Wn+1(x, y, z) − en+1(xy)
(xz)n+1

(n + 1)!
− en+1(xz)

(xy)n+1

(n + 1)!

+(en+1(xyz)
(x)n+1

(n + 1)!
+ en+1(x)

(xyz)n+1

(n + 1)!
)(1 − x(1 − y)(1 − z))

+x(1 − y)(1 − z)
(yzx2)n+1

((n + 1)!)2
. (146)

Expressing Wn+1 and Wn in (144) in terms of Wn+2 and Wn+1, using (146) one finds

x2fn+1(x)G
(n)
(x, y, z) =

(n + 2)Wn+2(x, y, z) − xWn+1(x, y, z)

(1 − y)2(1 − z)2

−
x

(1 − y)(1 − z)

(xyz)n+2

(n + 1)!
en+2(x). (147)

It is straightforward to check that

−x(1 − y)(1 − z)
(xyz)n+2

(n + 1)!
en+2(x) = (n + 2)Hn+2(x, y, z) − xHn+1(x, y, z), (148)

where

Hn(x, y, z) ∶=
(1 − y)(1 − z)

n!

xn+1en(xyz) − (xyz)
n+1en(x)

(yz − 1)
. (149)

It follows from (147, 148), that

x2fn+1(x)G
(n)
(x, y, z) =

(n + 2)Fn+2(x, y, z) − xFn+1(x, y, z)

(1 − y)2(1 − z)2
, (150)

where

Fn(x, y, z) ∶=Wn(x, y, z) +Hn(x, y, z), n ∈ N, (151)

is a function on C3 defined in (30). Finally, substituting (150) into (116) we arrive at the expression (34)
for the reduced kernel. Theorem 1 is proved.

Remark. The final part of the proof following (144) is not very satisfying as it is both non-obvious and
reliant on unexpected cancellations. A more direct route to (150) is to substitute the partition of unity
1 = 1m<n + 1m≥n into the double sum in (120), represent the indicator functions as a contour integral,

1m<n = ∮
dz

2πi

zm−n

1 − z
,
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and analyse the resulting expression for GN(x, y, z) as a sum of two contour integrals. The integrands
of each of the integrals contain poles of order N as well as poles of order 1 and 2. It turns out that
the contributions from the high order poles cancel, and the sum of contributions from the poles of low
order gives (150). Even knowing the final answer beforehand, it took us close to 2 months to match the
results. The alternative proof will be presented in detail in chapter 4.

3.5 Corollary 1

The proof is based on the following elementary remark: for any fixed x ∈ C

lim
n→∞

en(x) = e
x. (152)

Consequently,

fn(x)

n
= (1 + n−1)en(x) − n

−1xen−1(x)
n↑∞
Ð→ ex. (153)

Therefore, the factor in front of the determinant in the r.h.s. of (31) divided by n converges for ∣λ1∣
2 < n

to

lim
n→∞

fn−1(∣λ1∣
2)

nπ
e−∣λ1∣

2

=
1

π
, (154)

as is well known from the Ginibre ensemble [24]. The large-N limit of the reduced kernel defined in
(34) is most easily taken when fixing all arguments of the kernel, that is remaining in the vicinity of the
origin, as the spectral edge is located at

√
N . The same bulk limit close to the origin was taken already

in Ginibre’s original paper for the complex eigenvalue correlations [17]. For our kernel we thus have

lim
n→∞

κ(n)(x̄, y ∣ λ, λ̄) = e−λλ̄
limn→∞ Fn+1 (λλ̄,

x̄
λ̄
, y
λ
)

(x̄ − λ̄)2(y − λ)2

=
ex̄y

(x̄ − λ̄)2(y − λ)2
(e−(x̄−λ̄)(y−λ) − 1 + (x̄ − λ̄)(y − λ))

=
ex̄y

(x̄ − λ̄)2(y − λ)2
e(2)(−(x̄ − λ̄)(y − λ)), (155)

where e(m)(x) ∶= ∑
∞
s=m

xs

s!
, m = 0,1, . . . In the second equality we used the definition (30) of the polyno-

mials Fn. Therefore, the bulk scaling limit of the kernel K
(n)
11 defined in (32) is

lim
n→∞

K
(n)
11 (x, x̄, y, ȳ ∣ λ, λ̄) =

e−xx̄+yx̄

π
(1 + (x − λ)(x̄ − λ̄))

e(2)(−(x̄ − λ̄)(y − λ))

(x̄ − λ̄)2(y − λ)2

= e(y−x)λ̄
1

π
(1 + (x − λ)(x̄ − λ̄))e−(x−λ)(x̄−λ̄)

×
d

dz
(
ez − 1

z
)∣

z=(x̄−λ̄)(y−λ)
. (156)

Notice that the factor e(y−x)λ̄ in the r.h.s. of (156) corresponds to the conjugation of the kernel
K(λi, λj) → ϕ(λi)K(λi, λj)ϕ

−1(λj), which does not change the value of the determinant in the ex-
pression (31) for the conditional overlap. This remark allows us to write the bulk scaling limit of the
kernel as

K
(bulk)
11 (x, x̄, y, ȳ ∣ λ, λ̄) =

1

π
(1 + (x − λ)(x̄ − λ̄))e−(x−λ)(x̄−λ̄)

d

dz
(
ez − 1

z
)∣

z=(x̄−λ̄)(y−λ)
.

(157)

Expressions (154), (157) solve the problem of computing the large-n limit of (31), thus proving claims
(41), (42), (43) and (44) of Corollary 1.
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It remains to calculate the bulk scaling limit of D
(n,k)
12 starting with its determinantal representation

(35). Using (155) and (156), one finds that the large-n limit of the pre-factor in (35) divided by n is

lim
n→∞

e−∣λ1∣
2
−∣λ2∣

2

nπ2
fn−1(λ1λ̄2)κ

(n−1)
(λ̄1, λ2 ∣ λ1, λ̄2) =

κ(bulk)(λ̄1, λ2 ∣ λ1, λ̄2)

π2
, (158)

where κ(bulk) is defined in (44), and

lim
n→∞

K
(n−1)
12 (x, x̄, y, ȳ ∣ u, ū, v, v̄) = e(y−x)v̄

ω(bulk)(x, x̄ ∣ u, v̄)

κ(bulk)(ū, v ∣ u, v̄)

×det(
κ(bulk)(ū, v ∣ u, v̄) κ(bulk)(ū, y ∣ u, v̄)

κ(bulk)(x̄, v ∣ u, v̄) κ(bulk)(x̄, y ∣ u, v̄)
) , (159)

where the weight ω(bulk) is defined by (43). Calculating the large-n limit of (35) with the help of (158)

and (159), and using the fact that conjugation of the kernel by eλiλ̄2 does not change the determinant, we
arrive at the characterisation (45), (46) for the bulk scaling limit of the off-diagonal conditional overlaps.
Corollary 1 is proved.

3.6 Corollary 2

The calculation is based on the following two asymptotic formulae: Let us fix a, b ∈ C. Then

log
(n +

√
na + b)n+1

(n + 1)!
= (n +

√
na + b) −

1

2
log 2πn

−
a2

2
+
a − ab + 1

3
a3

√
n

+O(n−1), (160)

en+k(n +
√
na + b) = en+

√
na+b ⎛

⎝
F (a) +

e−
a2

2

√
2πn
(
a2

3
− b + k +

2

3
) +O(n−1)

⎞

⎠
,

(161)

where k = 0,1,2, . . .. Here F is a rescaling on the complementary error function defined in (48). The
derivation of the above formulae is based on Stirling’s formula and the following well known integral
representation of the exponential polynomials in terms of the incomplete Gamma-function:

en(x) = e
x Γ(n + 1, x)

Γ(n + 1)
=
ex

n!
∫

∞

x
tne−tdt, n = 0,1,2 . . . , (162)

see [25, Chapter 8.11.10 ] for more details. The calculations leading to (160) and (161) are straight-
forward, but lengthy due to the fact that we need to know the asymptotic expansion of en+k and

log (n+
√
na+b)n+1

(n+1)!
up to and including the terms of order n−1/2, see also [25]. My own computations of

this are in 4.6 and are only included so these notes are complete.
As a consequence of (161),

fn+1(n +
√
Na + b) =

√
n

2π
en+

√
na+b− a2

2

×(1 − a
√

2πe
a2

2 F (a)) (1 +O(n−
1
2 )), a, b ∈ C.

(163)

Now we are ready to calculate the edge scaling limit of conditional overlaps. Let

x(n) = eiθ(
√
n + x),

y(n) = eiθ(
√
n + y), (164)

λ(n) = eiθ(
√
n + λ),

27



where x, y, λ ∈ C are of order unity. Then the edge scaling limit of the factor multiplying the determinant
in the r.h.s. of (31) down-scaled by n−1/2 is

lim
n→∞

e−∣λ
(n)
∣
2

π
√
n
fn−1(∣λ

(n)
∣
2
) =

1
√

2π3
(e−

1
2
(λ+λ̄)

2

−
√

2π (λ + λ̄)F (λ + λ̄)) , λ, λ̄ ∈ C2. (165)

The derivation of (165) is based on (161). Note that (165) is valid for any pair of complex numbers

(λ, λ̄), not just on the real surface λ = ¯̄λ, which makes it suitable for the calculation of both the diagonal
and the off-diagonal overlaps.

To find the edge scaling limit of the kernel K
(n)
11 we substitute the expressions (164) into the formula

for the kernel

K
(n)
11 (x

(n), x̄(n), y(n), ȳ(n) ∣ λ(n), λ̄(n)) =
1 + (x(n) − λ(n))(x̄(n) − λ̄(n))

π
e−x

(n)x̄(n)

×G(n−1) (λ(n)λ̄(n),
x̄(n)

λ̄(n)
,
y(n)

λ(n)
) ,

where G(n) is given by formula (147), and compute the large-n asymptotics using (160), (161) and (163).
The result follows from another lengthy computation and is

K
(n)
11 (x

(n), x̄(n), y(n), ȳ(n) ∣ λ(n), λ̄(n)) = e
√
n(y−x) 1 + (x − λ)(x̄ − λ̄)

π
e−xx̄+x̄y

×
H (λ + λ̄, λ + x̄, λ̄ + y, y + x̄, (λ − y)(λ̄ − x̄))

(λ − y)2(λ̄ − x̄)2
(1 +O(n−1/2)) , (166)

where the function H is defined in (49). We see that there the large-n limit of K
(n)
11 at the edge does not

exist, but fortunately, the residual N -dependence can be eliminated by the N -dependent conjugation

K(x, x̄, y, ȳ ∣ λ, λ̄)→ e
√
nxK(x, x̄, y, ȳ ∣ λ, λ̄)e−

√
ny, (167)

which does not change the value of the conditional overlap. Therefore we can conclude that

K
(edge)
11 (x, x̄, y, ȳ ∣ λ, λ̄) ∶= lim

n→∞
e
√
nxK

(n)
11 (x

(n), x̄(n), y(n), ȳ(n) ∣ λ(n), λ̄(n))e−
√
ny

=
1 + (x − λ)(x̄ − λ̄)

π
e−xx̄+x̄y

H (λ + λ̄, λ + x̄, λ̄ + y, y + x̄, (λ − y)(λ̄ − x̄))

(λ − y)2(λ̄ − x̄)2
.

(168)

Substituting (165) and (168) into the edge scaling limit (39) of the conditional overlap D
(n,k)
11 we arrive

at the statement (50), (51), (52) and (53) of the Corollary 2.

To find the edge scaling limit of the off-diagonal overlap D
(n,k)
12 , we need to substitute its expression

(35) into (40) and calculate the large-n limit of the resulting sequence. As before, the calculation reduces
to the evaluation of the scaling limits of the pre-factor in the r.h.s. of (35) and the kernel (36).

A straightforward computation based on (163, 168) gives

lim
N→∞

(−1)
e−∣λ

(n)
1 ∣

2
−∣λ

(n)
2 ∣

2

π2
√
n

fn−1(λ
(n)
1 λ̄

(n)
2 )κ

(n−1)
(λ̄
(n)
1 , λ

(n)
2 ∣ λ

(n)
1 , λ̄

(n)
2 )

= −
e−∣λ12∣

2
− 1

2 (λ1+λ̄2)
2

√
2π5λ212λ̄

2
12

(1 −
√

2π(λ1 + λ̄2)e
1
2 (λ1+λ̄2)

2

F (λ1 + λ̄2))

×H(λ1 + λ̄2, λ1 + λ̄1, λ2 + λ̄2, λ2 + λ̄1,−λ12λ̄12). (169)

Similarly, introducing in addition to (164), u(n) = eiθ(
√
n + u), v(n) = eiθ(

√
n + v), we find that

K
(n)
12 (x

(n), x̄(n), y(n), ȳ(n) ∣ u(n), ū(n), v(n), v̄(n))

= e
√
n(y−x)K

(edge)
12 (x, x̄, y, ȳ ∣ u, ū, v, v̄) (1 +O(n−1/2)) , (170)

where K
(edge)
12 is given by (55). Substituting (169) and (170) into the right hand side of (40), performing

the n-dependent conjugation (167) of the kernel inside the resulting determinant and computing the
n→∞ limit, we arrive at the statements (54), (55) of the Corollary 2. Corollary 2 is proved.
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3.7 Corollary 3

It follows from (41), (45), (50) and (54) that

D
(bulk, k)
11 (λ(k)) = D

(bulk, 1)
11 (λ1) det

2≤i,j≤k
(K
(bulk)
11 (λi, λ̄i, λj , λ̄j ∣ λ1, λ̄1)), k ≥ 1, (171)

D
(bulk, k)
12 (λ(k)) = D

(bulk, 2)
12 (λ1, λ2) det

3≤i,j≤k
(K
(bulk)
12 (λi, λ̄i, λj , λ̄j ∣ λ1, λ̄1, λ2, λ̄2)),

k ≥ 2, (172)

D
(edge, k)
11 (λ(k)) = D

(edge, 1)
11 (λ1) det

2≤i,j≤k
(K
(edge)
11 (λi, λ̄i, λj , λ̄j ∣ λ1, λ̄1)), k ≥ 1, (173)

D
(edge, k)
12 (λ(k)) = D

(edge, 2)
12 (λ1, λ2) det

3≤i,j≤k
(K
(edge)
12 (λi, λ̄i, λj , λ̄j ∣ λ1, λ̄1, λ2, λ̄2)),

k ≥ 2, (174)

where the expressions for all the relevant kernels are given in Corollaries 1 and 2. We see that the ratios

D
(edge, k)
11

D
(edge, 1)
11

,
D
(edge, k)
12

D
(edge, 2)
12

,
D
(bulk, k)
11

D
(bulk, 1)
11

and
D
(bulk, k)
12

D
(bulk, 2)
12

(175)

are completely determined by the conjugacy classes of the corresponding kernels. Therefore, the claim
of the Corollary 3 is an immediate consequence of the following relations between the kernels:

lim
R→−∞

e(R+λ̄)xK
(edge)
11 (R + x,R + x̄,R + y,R + ȳ ∣ R + λ1,R + λ̄1)e

−(R+λ̄)y

=K
(bulk)
11 (x, x̄, y, ȳ ∣ λ1, λ̄1),

(176)

lim
R→−∞

K
(edge)
12 (R + x,R + x̄,R + y,R + ȳ ∣ R + λ1,R + λ̄1,R + λ2,R + λ̄2)

=K
(bulk)
12 (x, x̄, y, ȳ ∣ λ1, λ̄1, λ2, λ̄2),

(177)

Both (176) and (177) can be derived from the following asymptotic formula for the H-function (49):

H(−ϵ−1 + a,−ϵ−1 + b,−ϵ−1 + c,−ϵ−1 + d, f) = (e−f − 1 + f) (1 +O (ϵ)) , (178)

where ϵ > 0, (a, b, c, d, f) ∈ C5. This formula follows directly from the standard asymptotic for the
complementary error function (48): for a < 0,

F (a) = 1 +O (e−a
2
/2
) , F ′(a) = O (e−a

2
/2
) . (179)

The proof of (176):

lim
R→−∞

e(R+λ̄)xK
(edge)
11 (R + x,R + x̄,R + y,R + ȳ ∣ R + λ,R + λ̄)e−(R+λ̄)y

= − lim
R→−∞

eλ̄x (
1 + (x − λ)(x̄ − λ̄)

πz2
ex̄(y−x)H (2R + a,2R + b,2R + c,2R + d, z) ∣z=(x̄−λ̄)(y−λ)) e

−λ̄y

=
1 + (x − λ)(x̄ − λ̄)

π
e−∣x−λ∣

2 1 − (1 − z)ez

z2
∣
z=(x̄−λ̄)(y−λ)

=K
(bulk)
11 (x, x̄, y, ȳ ∣ λ, λ̄).

To prove (177), let us first notice that (178) leads to

κ(edge)(R + x̄,R + y ∣ R + λ,R + λ̄) = eR
2
+R(x̄+y)−∣λ∣2+λ̄y+λx̄κ(bulk)(x̄, y ∣ λ, λ̄) (1 +O(R−1)) ,

(180)

where R < 0. Also,

ω(edge)(R + x,R + x̄ ∣ R + λ,R + λ̄) =
1 + (x − λ)(y − λ̄)

π
e−∣R+x∣

2

= e−R
2
−R(x+x̄)+λλ̄−x̄λ−xλ̄ω(bulk)(x, x̄ ∣ λ, λ̄). (181)
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Notice that the last two relations are still valid if κ(edge) and ω(edge) are treated as functions on C4.
Substituting (180), (181) into (55) we find

K
(edge)
12 (R + x,R + x̄,R + y,R + ȳ ∣ R + λ1,R + λ̄1,R + λ2,R + λ̄2)

= e(R+λ̄2)(y−x)K
(bulk)
12 (x, x̄, y, ȳ ∣ λ1, λ̄1, λ2, λ̄2) (1 +O(R

−1
)) . (182)

Therefore

lim
R→−∞

e(R+λ̄2)xK
(edge)
12 (R + x,R + x̄,R + y,R + ȳ ∣ R + λ1,R + λ̄1,R + λ2,R + λ̄2)e

−(R+λ̄2)y

=K
(bulk)
12 (x, x̄, y, ȳ ∣ λ1, λ̄1, λ2, λ̄2).

Equation (177) is established and therefore the Corollary 3 is proved.
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4 Alternative Approaches and Proofs

In this section we are going to go through different approaches and alternate proofs to some of the
results, and with greater detail. It will be a closer look in how we first derived said results. The main
focus will be on Theorem 1. To be more precise, the focus will be on the reduced kernel (34) in particular.

We start with my computation of the weights in (24) and (25), using Eynard’s method, see [14]. I
will go through the computation of (16) and (17) found in 2.1, for k = n, which corresponds to the
expectations of the overlaps conditioned on all eigenvalues.

Then I start slowly working on the orthogonal polynomials. I begin with the formula derivations for

D
(n,1)
11 (λ) and D

(n,2)
12 (λ,µ) with µ = 0. This includes the computation of a few tri-diagonal determinants,

some of which although not directly related, will be of future use. Having the aforementioned formulas, I
will then use a lemma found in Gernot Akemann’s personal notes to re-derive the bi-orthogonal polyno-
mials Pκ(z∣λ, λ̄), Qκ(z∣λ, λ̄) and the reduced kernel κ(n+1)(µ̄, ν∣λ, λ̄) as presented in (116) - (118). From
there I will present a different approach to the simplification of the reduced kernel in 3.4.4, in a lengthy
calculation which includes contour integrals, but does not rely on knowing the final answer, nor depends
on unexpected cancellations.

Final part is just a very detailed and direct computation of the limits in Corollary 1 and 2.

4.1 Overlaps conditioned on all eigenvalues

Eynard [14] found a relation between unitary and triangular integrals of invariant functions, and then
proceeded to calculate such triangular ones y integrating out the elements u1, u2, ..., un−1 of the right
column, reducing the size of the matrix by one and resulting in a recursion formula.
The functions F he works with have a certain 2-variable polynomial structure.
To be more precise they are of the following form.

∏
k

(1 + tr∏
l

(xik,l
−A)−1(yjk,l

−B)−1)tr∏
l

(xik,l
−A)−1(yjk,l

−B)−1.

Such examples would be:

F (A,B) = (1 + tr(x1 −A)
−1
(y1 −B)

−1
)(1 + tr(x2 −A)

−1
(y2 −B)

−1
)

or

F (A,B) = tr[(x1 −A)
−1
(y1 −B)

−1
(x2 −A)

−1
(y2 −B)

−1].

Our cases are of a simpler nature, so we will only borrow the idea of integrating out a column at a time
and finding a recursion formula.

We start with this small lemma:

Lemma 1.2

Let A and B be two n × n random matrices and let c be an n × 1 column vector with iid complex
Gaussians N(0, t), independent of A and B.
Then the following equations hold:

i ) E(c∗Ac) = 2tE(trA)

ii ) E(c∗Ac trB) = 2tE(trA trB)

iii ) E[tr(Acc∗B)] = 2tE(trAB)
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iv ) E[(c∗Ac)(c∗Bc)] = 4t2E(trAB) + 4t2E(trA trB)

Proof

i ) For i ≠ j we have E[c̄i(A)ijcj] = 0

⇒ E(c∗Ac) = E[∑
i,j

c̄i(A)ijcj] = E[∑
i

c̄i(A)iici]

= E[∑
i

(A)ii∣ci∣
2] = 2tE[∑

i

(A)ii] = 2tE(trA)

ii ) Similarly with i) we have

E(c∗Ac trB) = E[trB∑
i,j

c̄i(A)ijcj] = E[trB∑
i

(A)ii∣ci∣
2]

= 2tE(trA trB)

iii )

E[tr(Acc∗B)] = E[tr(BAcc∗)] = E[∑
i,j

(BA)ijcj c̄i]

= E[∑
i

(BA)ii∣ci∣
2
] = 2tE(trBA) = 2tE(trAB)

iv )

ck = xk + iyk where xk and yk are independent real gaussians N(0, t).
First note that even though E(ck

2) is not zero, E(ck
2) = 0. Also

E(∣ck ∣
4
) = E[(x2 + y2)2]

= E(x4) +E(y4) + 2E(x2)E(y2)

= 8t2

E[(c∗Ac)(c∗Bc)] = E[(∑
i,j

c̄i(A)ijcj)(∑
k,j

c̄k(B)klcl)]

The only terms with non zero mean are those where
i = j = k = l , i = j and k = l or (i, j) = (l, k)

⇒ E[(c∗Ac)(c∗Bc)] = E[∑
i

∣ci∣
4
(A)ii(B)ii] +E[ ∑

i, j
i ≠ j

∣c̄i∣
2
∣cj ∣

2
(A)ij(B)ji]

+E[ ∑
i, j
i ≠ j

∣c̄i∣
2
∣cj ∣

2
(A)ii(B)jj]

= 8t2E[∑
i

(A)ii(B)ii] + 4t2E[ ∑
i, j
i ≠ j

(A)ij(B)ji]

+4t2E[ ∑
i, j
i ≠ j

(A)ii(B)jj]

= 4t2E[∑
i

(A)ii(B)ii] + 4t2E[ ∑
i, j
i ≠ j

(A)ij(B)ji]

+4t2E[∑
i

(A)ii(B)ii] + 4t2E[ ∑
i, j
i ≠ j

(A)ii(B)jj]

= 4t2E[tr(AB)] + 4t2E(trA trB)
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□

Remark 1: Part i) actually implies part ii), but I kept it as it commonly appears in this form in
the calculations. Also note that for Gin(n,C), t = 1

2
.

Remark 2:This is an example of the real case being potentially harder. If you look at the analo-
gous real version of this lemma, the first 3 parts remain more or less the same, with the only difference
being that the coefficients will be just t instead of 2t. But the fourth part is quite different. First of all
we have E(∣ci∣

2) = t and E(∣ci∣
4) = 3t2, but that will not actually interferer with the splitting of terms as

we did in the complex case.

Note that not only the terms with (i, j) = (l, k), but also the ones with
(i, j) = (k, l) will survive, hence

E[(c∗Ac)(c∗Bc)] = E[∑
i

∣ci∣
4
(A)ii(B)ii] +E[ ∑

i, j
i ≠ j

∣ci∣
2
∣cj ∣

2
(A)ij(B)ji]

+E[ ∑
i, j
i ≠ j

∣ci∣
2
∣cj ∣

2
(A)ii(B)jj] +E[ ∑

i, j
i ≠ j

∣ci∣
2
∣cj ∣

2
(A)ij(B)ij]

= 3t2E[∑
i

(A)ii(B)ii] + t
2E[ ∑

i, j
i ≠ j

(A)ij(B)ji]

+t2E[ ∑
i, j
i ≠ j

(A)ii(B)jj] + t
2E[ ∑

i, j
i ≠ j

(A)ij(B)ij]

⇒ E[(c∗Ac)(c∗Bc)] = t2E[∑
i

(A)ii(B)ii] + t
2E[ ∑

i, j
i ≠ j

(A)ij(B)ji]

+t2E[∑
i

(A)ii(B)ii] + t
2E[ ∑

i, j
i ≠ j

(A)ii(B)jj]

+t2E[∑
i

(A)ii(B)ii] + t
2E[ ∑

i, j
i ≠ j

(A)ij(B)ij]

= t2E[tr(AB)] + t2E[tr(A)tr(B)] + t2E[tr(ABT
)]

□
We are now in position to start working on (16) and (17) from in 2.1, for k = n. In order to find
expressions for O11 and O12, and show how we derived the expressions (24) and (25), we follow the
footsteps of [11, p. 9-12], alongside the method used in [24, A.35] to compute the joined probability
density of eigenvalues of a Gin(n,C) matrix. These are results previously found by Chalker and Mehlig,
and as I’ve mentioned before, the computations below alongside Lemma 1.2, are directly taken from my
MsC, where they were originally included.

1) Off-diagonal Overlaps

We start with the off diagonal case, which the more ’complex’ of the two. We first have to find
the formula for O12 =< l1, l2 >< r1, r2 > using Eyanrd method. For notational convenience, in this
subsection we work with an (n + 2) × (n + 2) matrix with eigenvalues (λ1, λ2, σ1, ..., σn). Also we
use Eev to denote the expectation while conditioning over all eigenvalues. We use a two step Shur
decomposition. For the right eigenvectors we have:
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⎛
⎜
⎜
⎜
⎜
⎜
⎝

M z1 z2

λ1 c

0 λ2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

r1 = λ1r1 and

⎛
⎜
⎜
⎜
⎜
⎜
⎝

M z1 z2

λ1 c

0 λ2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

r2 = λ2r2

where M ∼ Gin(n,C) with eigenvalues (σ1, ..., σn) and z1, z2 and vectors of length n, of iid com-
plex Gaussians.

Right away we can see that

r1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

v1

b

0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, r2 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

v2

a

1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

where we can also take b = 1, a ∈ C and u1 and u2 are vectors of length n. Inserting them in the above
equations we get

Mv2 + z1a + z2 = λ2v2

λ1a + c = λ2a⇒ a =
−c

λ1 − λ2

Mv1 + z1 = λ1v1

Solving for v1 and v2 we have

v1 = −(M − λ1)
−1z1

v2 = −(M − λ2)
−1
(
−z1c

λ1 − λ2
+ z2)

As for the left eigenvectors

l1

⎛
⎜
⎜
⎜
⎜
⎜
⎝

M z1 z2

λ1 c

0 λ2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

= λ1l1 and l2

⎛
⎜
⎜
⎜
⎜
⎜
⎝

M z1 z2

λ1 c

0 λ2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

= λ2l2

We can take l2 = (0,0, ...,1) and l1 = (w,d1, d2). For l1 we get the equations

wM = λ1w (i)

wz1 + λ1d1 = λ1d1 (ii)

wz2 + cd1 + λ2d2 = λ1d2 (iii)

From (i), if w is not 0, then the original matrix will have a non-simple spectrum.

⇒ P (w = 0) = 1

With w = 0, (ii) implies we can take d1 = 1.

Finally (iii) gives d2 =
c

λ1 − λ2
.

There are also some normalization constants which will go away in the final expression.
We are going to compute < l2, l1 >< r2, r1 >.
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�

< l2, l1 >= (
c

λ1 − λ2
)

�

< r2, r1 >= (M − λ2)
−1
(
−z1c

λ1 − λ2
+ z2)z1

∗
(M − λ1)

−∗
−

c

λ1 − λ2

⇒ O12 = −(M − λ2)
−1 z1z1

∗∣c∣2

∣λ1 − λ2∣2
(M − λ1)

−∗
−

∣c∣2

∣λ1 − λ2∣2
+ (M − λ2)

−1 −z2z1
∗c̄2

∣λ1 − λ2∣2
(M − λ1)

−∗

where −∗ denotes inversion and Hermitian conjugation together.
Taking expectations conditioned on all eigenvalues we get

Eev
(O12) = −

Eev[tr(M − λ1)
−1(M − λ2)

−∗]

∣λ1 − λ2∣2
−

1

∣λ1 − λ2∣2

Writing M = ULU∗ in Schur’s form, we take Rn
−1 and Un

−1 to be (L − λ1) and (L − λ2) respec-
tively. Then, if ρi = λ1 − σi and ui = λ2 − σi, we have that

R−1n =
⎛
⎜
⎝

R−1n−1 c

0 ρn

⎞
⎟
⎠
⇒ Rn =

⎛
⎜
⎜
⎝

Rn−1
1
ρn
Rn−1c

0 1
ρn

⎞
⎟
⎟
⎠

and

Un
−1
=
⎛
⎜
⎝

U−1n−1 c

0 un

⎞
⎟
⎠
⇒ Un =

⎛
⎜
⎝

Un−1
1
un
Un−1c

0 1
un

⎞
⎟
⎠

⇒ U∗n =
⎛
⎜
⎝

U∗n−1 0

1
ūn
c∗U∗n−1

1
ūn

⎞
⎟
⎠

We dub W
(2)
n = Eev[tr(U∗nRn)], take on both sides conditional expectations over all eigenvalues and

proceed using Eynard’s way

tr(U∗nRn) = tr(U∗n−1Rn−1) +
c∗U∗n−1Rn−1c

ρnūn
+

1

ρnūn

⇒W (2)
n = Eev

[tr(U∗nRn)] = W
(2)
n−1 +

1

ρnūn
W
(2)
n−1 +

1

ρnūn

⇒W (2)
n + 1 = (W

(2)
n−1 + 1)(1 +

1

ρnūn
)

⇒W (2)
n + 1 =

n

∏
i=1

(1 +
1

ρiūi
) =

n

∏
i=1

(1 +
1

(λ1 − σi)(λ̄2 − σ̄i)
)

⇒ En+2(O12 ∣ Λ1 = λ1, . . . ,Λn+2 = σn) =
1

∣λ1 − λ2∣2

n

∏
i=1

(1 +
1

(λ1 − σi)(λ̄2 − σ̄i)
)
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2) Diagonal Overlaps

Similarly to the case above (note there will be no matrix Un), except for starting with an (n+1)×(n+1)
matrix, we compute

Eev
(O11) = Eev

[tr(Rn
∗Rn)] − 1

where

Rn
∗
=
⎛
⎜
⎝

Rn−1
∗ 0T

1
ρn
c∗R∗n−1

1
ρn

⎞
⎟
⎠

and

Rn
∗Rn =

⎛
⎜
⎜
⎝

Rn−1
∗Rn−1

1
ρn
Rn−1

∗Rn−1c

1
ρn
c∗Rn−1

∗Rn−1
1
∣ρn∣2
(c∗Rn−1

∗Rn−1c + 1)

⎞
⎟
⎟
⎠

We dub W
(1)
n = Eev(tr(Rn

∗Rn)), take expectations and once again solve the resulting recursion.

W (1)
n = Eev

(tr(Rn
∗Rn)) = Eev

(tr(Rn−1
∗Rn−1) +

1

∣ρn∣2
+

1

∣ρn∣2
E(c∗Rn−1

∗Rn−1c)

= W
(1)
n−1 +

1

∣ρn∣2
+

1

∣ρn∣2
E(tr(Rn−1

∗Rn−1)

= W
(1)
n−1(1 +

1

∣ρn∣2
) +

1

∣ρn∣2

⇒W (1)
n + 1 = (W

(1)
n−1 + 1)(1 +

1

∣ρn∣2
)

⇒ En+1(O11 ∣ Λ1 = λ1,Λ2 = σ1, . . .Λn+1 = σn) =
n

∏
i=1

(1 +
1

∣λ1 − σi∣2
)

For the sake of brevity we will denote ∏
n
i=1 (1 +

1
∣λ1−σi∣2

) with W
(1)
n , instead of W

(1)
n + 1.

4.2 D
(n,1)
11 (λ)

Here we will do nothing other than work with D
(n,1)
11 (λ). This was the first step, it’s the simplest form

of Theorem 1 and corresponds to what Chalker and Mehlig did in the diagonal case. As of yet, there
is no reason for orthogonal polynomials, since it all comes down to the determinant of a tri-diagonal

matrix. Such a calculation though becomes nigh impossible going forward, ie for D
(n,2)
11 (λ,σ), since even

the determinant of a 5-diagonal matrix is not a reasonable calculation.

To be exact, because I find it easier to keep track of the notation this way, we will be working with

D
(n+1,1)
11 (λ). So let M ∼ Gin(n,C) be an (n + 1) × (n + 1) matrix with eigenvalues λ,λ1, ..., λn. We start

with the weight

W (1)
n =

n

∏
i=1

(1 +
1

∣λ − λi∣2
).

This is how we first derived ourselves the simplest case of Theorem 1.

D
(n+1,1)
11 (λ) ∶= En(O11∣λ)ρ

(n+1,1)
(λ) =

n + 1

Zn+1
e−∣λ∣

2

∫
Cn

e−∑
n
i=1 ∣λi∣

2

∣∆(n+1)(λ,λ(n))∣2
n

∏
i=1

(1 +
1

∣λ − λi∣2
)

n

∏
i=1

dλidλ̄i
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where we average over all λ1, ...λn and Zn+1 is the normalisation factor with

Zn+1 =
n+1

∏
j=1

j!πn+1.

By taking separately all the terms involving λ, we rewrite the Vandermonde as follows:

∣∆(n+1)(λ,λ(n))∣2 = ∏
i<j

∣λi − λj ∣
2
∏
i

∣λ − λi∣
2

= ∣∆(n)(λ(n))∣2∏
i

∣λ − λi∣
2

and

∣∆(n)(λ(n))∣2 = ∏
i<j

(λi − λj)∏
i<j

(λ̄i − λ̄j)

= det

RRRRRRRRRRRRRRRRRR

1 ... 1
λ1 ... λn
... ... ...
λn−11 ... λn−1n

RRRRRRRRRRRRRRRRRR

× det

RRRRRRRRRRRRRRRRRR

1 ... 1
λ̄1 ... λ̄n
... ... ...
λ̄n−11 ... λ̄n−1n

RRRRRRRRRRRRRRRRRR

T

= det

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

n ∑
i

λi ... ∑
i

λn−1i

∑
i

λ̄i ∑
i

λ̄iλi ... ∑
i

λ̄iλ
n−1
i

... ... ... ...

∑
i

λ̄n−1i ∑
i

λ̄n−1i λi ... ∑
i

λ̄n−1i λn−1i

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

.

By inserting the above expression into the integral we have

D
(n+1,1)
11 (λ) =

n + 1

Zn+1
e−∣λ∣

2

∫
Cn

n

∏
i=1

dλidλ̄ie
−∑

n
i=1 ∣λi∣

2
n

∏
i=1

(1 +
1

∣λ − λi∣2
) × det

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

n ∑
i

λi ... ∑
i

λn−1i

∑
i

λ̄i ∑
i

λ̄iλi ... ∑
i

λ̄iλ
n−1
i

... ... ... ...

∑
i

λ̄n−1i ∑
i

λ̄n−1i λi ... ∑
i

λ̄n−1i λn−1i

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

=
(n + 1)!

Zn+1
e−∣λ∣

2

∫
Cn

n

∏
i=1

dλidλ̄ie
−∑

n
i=1 ∣λi∣

2
n

∏
i=1

(1 +
1

∣λ − λi∣2
) × det

RRRRRRRRRRRRRRRRRRRRRRRRRRR

1 λ1 ... λn−11

λ̄2 λ̄2λ2 ... λ̄2λ
n−1
2

... ... ... ...

λ̄n−1n λ̄n−1n λn ... λ̄n−1n λn−1n

RRRRRRRRRRRRRRRRRRRRRRRRRRR

.

since the expression is symmetric over all λi.

Now, since each line is expressed in terms of only one of λi, by merging the product and the deter-
minant appropriately and passing the integral inside, we get to calculate integrals of the form
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∫ e−∣λi∣
2

λ̄i
j−1
λi

k−1
(∣λ − λi∣

2
+ 1)dλi

where j and k range from 1 to n.

We write
∣λ − λi∣

2
+ 1 = (∣λ∣2 + 1 + ∣λi∣

2
) − (λλ̄i + λ̄λi)

where the first parenthesis will generate the diagonal terms and the second the off-diagonal ones of the
resulting 3-diagonal determinant. The rest of the terms to be 0.

With aj,k I will denote the (j, k) position on the matrix and not a particular element. Those will
be ak, bk and ck. We expect some factors of π which we will take separately as they will cancel with the
normalisation constant.

Remark: Note that this matrix is none other than M from 3.4.1, as shown in (99).

� diagonal elements (j=k)

∫ e−∣λi∣
2

∣λi∣
2(k−1)

(∣λ∣2 + 1 + ∣λi∣
2
)dλi = (∣λ∣2 + 1)∫ e−∣λi∣

2

∣λi∣
2(k−1)dλi + ∫ e−∣λi∣

2

∣λi∣
2kdλi

By taking polar coordinates and setting r2 = x we get

= π(∣λ∣2 + 1)∫ e−r
2

r2(k−1)2rdr + π∫ e−r
2

r2k2rdr

= π(∣λ∣2 + 1)∫ e−xx(k−1)dx + π∫ e−xxkdx

= π(∣λ∣2 + 1)Γ(k) + πΓ(k + 1)

= π[(∣λ∣2 + 1)(k − 1)! + k!]

⇒ ak,k = (∣λ∣
2
+ 1)(k − 1)! + k! = (k − 1)!(∣λ∣2 + k + 1).

� upper diagonal elements (j+1=k)

∫ e−∣λi∣
2

λ̄k−1i λi
k
(λλ̄i)dλi = λ∫ e−∣λi∣

2

∣λi∣
2kdλi

= πλΓ(k)

= πλk!

⇒ −ak,k+1 = λk!

times a factor of π.

� lower diagonal elements (j=k+1)

Similarly we get −ak+1,k = λ̄k! times a factor of π.
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By setting ak = ∣λ∣
2 + k + 1 and bk = λ, the initial expression becomes:

D
(n+1,1)
11 (λ) =

(n + 1)!πn

Zn+1
e−∣λ∣

2

det

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

a1 −b̄1 0 ... ... 0

−b1 a2 −2!b̄2 0 ... .

0 −2!b2 2!a3 −3!b̄3 ... .

. 0 −3!b3 . . .

. . . . . −(n − 1)!b̄n−1

0 ... ... ... −(n − 1)!bn−1 (n − 1)!an

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

=
(n + 1)πn

Zn+1

n

∏
j=1

j!e−∣λ∣
2

det

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

a1 −b̄1 0 ... ... 0

−b1 a2 −2b̄2 0 ... 0

0 −b2 a3 −3b̄3 ... .

. 0 −b3 . . .

. . . . . −(n − 1)b̄n−1

0 ... ... ... −bn−1 an

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

.

Note that the minus’ do not matter, because if one the products in the developed determinant con-
tain the (i, i + 1) element, it will also contain the (i + 1, i), and thus they will cancel.

Finally, since

Zn+1 =
n+1

∏
j=1

j!πn+1

we have

(n + 1)πn

Zn+1

n

∏
j=1

j! =
1

π

1

n!
.

And now to calculate the n × n determinant

gn = det

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

∣λ∣2 + 2 λ̄ 0 ... ... 0

λ ∣λ∣2 + 3 2λ̄ ... ... .

0 λ ∣λ∣2 + 4 3λ̄ ... .

. . λ . . .

. . . . . (n − 1)λ̄

0 ... ... ... λ ∣λ∣2 + n + 1

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

We proceed by eliminating the lower diagonal elements by using row and columns computations.
Step by step:
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� after eliminating a21 we have

a22 = a2 −
∣b1∣

2

a11

= ∣λ∣2 + 3 −
∣λ∣2∣

∣λ∣2 + 2

=
(∣λ∣2 + 3)(∣λ∣2 + 2) − ∣λ∣2∣

∣λ∣2 + 2

=
∣λ∣4 + 4∣λ∣2 + 3!

∣λ∣2 + 2!

� after eliminating a32

a33 = a3 −
2∣b2∣

2

a22

= ∣λ∣2 + 4 −
2∣λ∣2(∣λ∣2 + 2)

∣λ∣4 + 4∣λ∣2 + 3!

=
∣λ∣6 + 6∣λ∣4 + 18∣λ∣2 + 4!

∣λ∣4 + 4∣λ∣2 + 3!

� after eliminating a43

a44 =
∣λ∣8 + 8∣λ∣6 + 36∣λ∣4 + 96∣λ∣2 + 5!

∣λ∣6 + 6∣λ∣4 + 18∣λ∣2 + 4!

So far we have

g1 = ∣λ∣2 + 2!

g2 = ∣λ∣4 + 4∣λ∣2 + 3!

g3 = ∣λ∣6 + 6∣λ∣4 + 18∣λ∣2 + 4!

g4 = ∣λ∣8 + 8∣λ∣6 + 36∣λ∣4 + 96∣λ∣2 + 5!

Now taking into that its integral of the form

∫ e−∣λ∣
2

∣λ∣2(n−l)dλ

will produce an (n − l)! term, it’s not so hard to spot the following pattern.

g1 = ∣λ∣2 + 2(1!)

g2 = ∣λ∣4 + 2(2)∣λ∣2 + 3(2!)

g3 = ∣λ∣6 + 2(3)∣λ∣4 + 3(2.3)∣λ∣2 + 4(3!)

g4 = ∣λ∣8 + 2(4)∣λ∣6 + 3(3.4)∣λ∣4 + 4(2.3.4)∣λ∣2 + 5(4!)

.

.

.

gn =
n

∑
l=0

n!

(n − l)!
(l + 1)∣λ∣2(n−l)
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or

gn =
n

∑
l=0

n!

l!
(n − l + 1)∣λ∣2l =

n

∑
l=0

(
n

l
)(l + 1)!∣λ∣2l

We have to check that this formula satisfies the recursion

gn = (∣λ∣
2
+ n + 1)gn−1 − (n − 1)∣λ∣2gn−2

We can take ∣λ∣2 = x so I’ll have to write less.

RHS = (x + n + 1)
n−1

∑
l=0

(n − 1)!

l!
(n − l)xl − (n − 1)x

n−2

∑
l=0

(n − 2)!

l!
(n − l − 1)

= (n + 1)
n−1

∑
l=0

(n − 1)!

l!
(n − l)xl +

n

∑
l=1

(n − 1)!

(l − 1)!
(n − l + 1)xl − (n − 1)

n−1

∑
l=1

(n − 2)!

(l − 1)!
(n − l)

= (n + 1)
n−1

∑
l=0

(n − 1)!

l!
(n − l)xl +

n

∑
l=1

(n − 1)!

l!
l(n − l + 1)xl −

n−1

∑
l=1

(n − 1)!

l!
l(n − l).

We will independently check that the terms for l = 0, l = n and 0 < l < n on each side match.

� l = 0

(n + 1)
(n − 1)!

0!
n + 0 + 0 = (n + 1)!

� l = n

0 +
(n − 1)!

(n − 1)!
1 + 0 = 1

� 0 < l < n

n−1

∑
l=1

(n − 1)!

l!
[(n + 1)(n − l) + l(n − l + 1) − l(n − l)] =

n−1

∑
l=1

(n − 1)!

l!
[(n2 + −nl + n − l) + l]

=
n−1

∑
l=1

(n − 1)!

l!
n(n − l + 1) =

n−1

∑
l=1

n!

l!
(n − l + 1)

Remark: Note that gn(x) is actually just n!fn(x).

So altogether we get

D
(n+1,1)
11 (λ) =

1

π

1

n!
e−∣λ∣

2

gn(∣λ∣
2
) =

e−∣λ∣
2

π
fn(∣λ∣

2
)

which corresponds with Theorem 1. This way has already almost reached it’s limits. Even for the

simplest case of the off-diagonal overlaps D
(n,2)
12 (λ,σ), or the diagonal overlap D

(n,2)
11 (λ,σ), we have to

resolve in heuristic calculations by assuming translation invariance at n→∞ and take σ = 0. Otherwise
we end up with the determinant of a 5-diagonal matrix, which is no longer a realistic calculation. I’ll
omit this part, as taking σ = 0 yields very similar tri-diagonal determinants and it’s more or less the
same calculation. Having said that...
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4.3 Slightly different W
(1)
n weights

Before we move to bi-orthogonal polynomials, I’ll go on a small tangent. Nothing in this section is used
for any of the alternative proofs, although they could be, had we used a different approach. We are going
to do the same calculations, but this time using different weights, in particular

W
(1)
n,k =∏ (1 +

k

∣λ − λi∣2
).

We do this mostly for future reference and because it is possible, but actually these weights do start to
appear when we use Eynard’s way to find a recursion, not for the overlaps, but for example quantities
such as the square of an overlap or the product of overlaps. Also I will briefly explain further down how
it can be used for the reduced kernel, instead of the LDU decomposition in 3.4.1.

We start with the case of k = 2, where

W
(1)
n,k =∏ (1 +

k

∣λ − λi∣2
).

The differences only start to appear after we pass the integral inside the determinant and working the
same way as in 4.2 we end up with integrals of the form:

∫ e−∣λi∣
2

λ̄jiλi
k
(∣λ − λi∣

2
+ 2)dλ

Notice that the only difference will be a ‘+1’ to all the diagonal elements and thus we have to calculate
the determinant:

g(2)n = det

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

∣λ∣2 + 3 λ̄ 0 ... ... 0

λ ∣λ∣2 + 4 2λ̄ ... ... .

0 λ ∣λ∣2 + 5 3λ̄ ... .

. . λ . . .

. . . . . (n − 1)λ̄

0 ... ... ... λ ∣λ∣2 + n + 2

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

Again by eliminating the λ one by one we get:

�

a22 = ∣λ∣
2
+ 4 −

∣λ∣2

∣λ∣2 + 3
=
∣λ∣4 + 6∣λ∣2 + 3.4

∣λ∣2 + 3

�

a33 = ∣λ∣
2
+ 5 −

2∣λ∣2(∣λ∣2 + 3)

∣λ∣4 + 6∣λ∣2 + 3.4
=
∣λ∣6 + 9∣λ∣4 + 36∣λ∣2 + 3.4.5

∣λ∣4 + 6∣λ∣2 + 3.4

�

a44 = ∣λ∣
2
+ 6 −

3∣λ∣2(∣λ∣4 + 6∣λ∣2 + 3.4)

∣λ∣6 + 9∣λ∣4 + 36∣λ∣2 + 3.4.5
=
∣λ∣8 + 12∣λ∣6 + 72∣λ∣4 + 240∣λ∣2 + 3.4.5.6

∣λ∣6 + 9∣λ∣4 + 36∣λ∣2 + 3.4.5
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and thus

g
(2)
1 = ∣λ∣2 + 3

g
(2)
2 = ∣λ∣4 + 6∣λ∣2 + 3.4

g
(2)
3 = ∣λ∣6 + 9∣λ∣4 + 36∣λ∣2 + 3.4.5

g
(2)
4 = ∣λ∣8 + 12∣λ∣6 + 72∣λ∣4 + 240∣λ∣2 + 3.4.5.6

A bit harder to spot a pattern, but if we mutiply g2, g3 and g4 with e−∣λ∣
2

and integrate λ over C, we get
respectively

� 2! + 3.2! + 6.2!

� 3! + 3.3! + 6.3! + 10.3!

� 4! + 3.4! + 6.4! + 10.4! + 15.4!

which suggests

g(2)n =
n

∑
l=0

n!

(n − l)!

(l + 1)(l + 2)

2
∣λ∣2(n−l)

=
n

∑
l=0

n!

l!

(n − l + 1)(n − l + 2)

2
∣λ∣2l.

Once again we set x = ∣λ∣2 and we want the above expression to satisfy the following recursion:

g(2)n = (x + n + 2)g
(2)
n−1 − x(n − 1)g

(2)
n−2

= (n + 2)
n−1

∑
l=0

(n − 1)!

2l!
(n − l)(n − l + 1)xl +

n

∑
l=1

(n − 1)!

2l!
l(n − l + 1)(n − l + 2)xl −

n−1

∑
l=1

(n − 1)!

2l!
l(n − l)(n − l + 1)

Again, we check independently that the terms for l = 0, l = n and 0 < l < n on each side match.

� l = 0

(n + 2)
(n − 1)!

2
n(n + 1) + 0 + 0 =

(n + 2)!

2

� l = n

0 +
(n − 1)!

2n!
n1.2 + 0 = 1

� 0 < l < n

RHS =
n−1

∑
l=1

(n − 1)!

2l!
[(n + 2)(n − l)(n − l + 1) + l(n − l + 1)(n − l + 2) − l(n − l)(n − l + 1)]

=
n−1

∑
l=1

(n − 1)!

2l!
{[n(n − l + 2) − 2l](n − l + 1) + 2l(n − l + 1)}

=
n−1

∑
l=1

n!

l!

(n − l + 1)(n − l + 2)

2
.
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We move on to

W
(1)
n,k =∏ (1 +

k

∣λ − λi∣2
).

Similarly to before, for a general k, the resulting determinant we have to compute is

g(k)n = det

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

∣λ∣2 + k + 1 λ̄ 0 ... ... 0

λ ∣λ∣2 + k + 2 2λ̄ ... ... .

0 λ ∣λ∣2 + k + 3 3λ̄ ... .

. . λ . . .

. . . . . (n − 1)λ̄

0 ... ... ... λ ∣λ∣2 + k + n

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

Working the same way we guess that

g(k)n =
n

∑
l=0

n!

(n − l)!
(
l + k

k
)∣λ∣2(n−l)

=
n

∑
l=0

n!

l!
(
n − l + k

k
)∣λ∣2l.

Checking that it satisfies the recursion

g(k)n = (x + n + k)g
(k)
n−1 − x(n − 1)g

(k)
n−2

RHS = (n + k)
n−1

∑
l=0

(n − 1)!

l!
(
n − l + k − 1

k
)xl +

n

∑
l=1

(n − 1)!

l!
l(
n − l + k

k
)xl −

n−1

∑
l=1

(n − 1)!

l!
l(
n − l + k − 1

k
)xl

� l = 0

(n + k)(n − 1)!(
n + k − 1

k
) + 0 + 0 = (n + k)!(n − 1)!

(n + k − 1)!

k!(n − 1)!
=
(n + k)!

k!

� l = n

0 +
(n − 1)!

n!
n(
k

k
) + 0 = 1

� 0 < l < n

RHS =
n−1

∑
l=1

(n − 1)!

l!

(n − l + k − 1)!

(n − l)!k!
[(n + k)(n − l) + l(n − l + k) − l(n − l)]

=
n−1

∑
l=1

(n − 1)!

l!

(n − l + k − 1)!

(n − l)!k!
n(n − l + k)

=
n−1

∑
l=1

n!

l!
(
n − l + k

k
).
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□

As I said before, we can use the formulas for g
(k)
n to find the reduced kernel. They enable us to find the

adjoint of M and consequently, the inverse. I am only going to give a sketch of this calculation. We have
the general form of κ(n) written in terms of the bi-orthogonal polynomials

κ(n)(x, y) =∑
k

Pk(x)Qk(y)

ck

which we can rewrite as

κ(n)(x, y) = ∑
k

∑
l≤k

∑
s≤k

pklx
lȳsqks
ck

= tr(C−1PWQT
)

= tr(QTC−1PW )

= tr(M−1W )

where Wij = x
iȳj , C is diagonal and P,Q are upper trigonal. We essentially have the LDU decomposition

ofM−1 as seen in 3.4.1, whereMij =< zi, zj >, with respect to dωλ(z) = ωλ(z)dzdz̄ = (∣λ−z∣
2+1)e−∣z∣

2

dzdz̄..
It comes down to calculating the inverse of M . We are also going to need ∏

n
k=1 ck, but because of the

structure of P and Q, we can see from QTC−1P = M−1 that ∏
n
k=1 ck=detM, which we have calculated

previously.

Let {A}ij be the cofactor matrix of M . Then

M−1
=

1

detM
AT .

Because M is tri-diagonal all of the elements of A end up being the product of 2 determinants, both of

the form g
(k)
n , times a factor of λ. Then all that needs to be done is multiply with W and take the trace.

Still, this is not my method of choice.

4.4 Bi-Orthogonal Polynomials

In this section we are going to use an alternate method to the LDU decomposition, of calculating the
reduced kernel κ(n) as shown in 3.4.3, in (116) and (117). This approach is more in line with the deter-
minantal calculations so far in this chapter.

The aim is to show that the reduced kernel is given by

κ(n+1)(x, ȳ) =∑
s

Ps(x)Qs(ȳ)

cs
=

1

π

n

∑
s=1

∣λ∣2s

fs(∣λ∣2)fs+1(∣λ∣2)(s + 1)!

s

∑
i=1

(
x

λ
)
i

fi(∣λ∣
2
)

s

∑
j=1

(
ȳ

λ̄
)
j

fj(∣λ∣
2
).

This corresponds to (116) if we change the order of summation.

I’m going to use the following lemma, which I found in some of Gernot Akemann’s personal notes.
This way yield not only a formula for the reduced kernel κn(x, y), but also formulas for the polynomials
themselves, which although we don’t need, is nice to have.

Lemma 4.1: For some ω(z) ∶ C→ C, define for ease < k, l > to be

< k, l >∶= ∫ zkz̄jω(z)dzdz̄.
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for some weight ω(z).

Let ∆n be the following determinant:

∆n =

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

< 0,0 > < 1,0 > ⋯ < n − 1,0 >

< 0,1 > < 1,1 > ⋯ < n − 1,1 >

⋮ ⋮ ⋱ ⋮

< 0, n − 1 > < 1, n − 1 > ⋯ < n − 1, n − 1 >

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

If we define the polynomials Pn(z) and Qn(z̄) to b

Pn(z) =

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

< 0,0 > < 1,0 > ⋯ < n,0 >

< 0,1 > < 1,1 > ⋯ < n,1 >

⋮ ⋮ ⋱ ⋮

< 0, n − 1 > < 1, n − 1 > ⋯ < n,n − 1 >

1 z ⋯ zn

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

∆−1n

and

Qn(z̄) =

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

< 0,0 > < 0,1 > ⋯ < 0, n >

< 1,0 > < 1,1 > ⋯ < 1, n >

⋮ ⋮ ⋱ ⋮

< n − 1,0 > < n − 1,1 > ⋯ < n − 1, n >

1 z̄ ⋯ z̄n

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

∆−Tn

then Pn(z) and Qn(z̄) form a family of monic bi-orthogonal polynomials with respect to the weighted
measure ω(z)dzdz̄.

Proof: It’s easy to see that they are monic.

For bi-orthogonality one just has to notice that

< Pn(z), z̄
k
>=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 k < n

∆n+1
∆n

k = n

and

< zk,Qn(z̄) >=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 k < n

∆−Tn+1
∆T

n
k = n

□
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Now we are finally ready to find to the bi-orthogonal polynomials and all we have to do is apply the
lemma for the measure:

dωλ(z) = ωλ(z)dzdz̄ = (∣λ − z∣
2
+ 1)e−∣z∣

2

dzdz̄.

For this measure the polynomials take the following form:

Pn(z) =

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

a1 b1 0 0 ⋯ 0

c1 a2 b2 0 ⋯ 0

0 c2 a3 b3 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋮

0 cn−1 an bn

1 z ⋯ zn−2 zn−1 zn

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

∆n(z)
−1.

First we already know what ∆n is from 4.2, where we also computed all the ai, bi, ci. It’s the first
tri-diagonal determinant we computed.

∆n = πn
n−1

∏
i=1

i!
n

∑
l=0

n!

l!
(n − l + 1)∣λ∣2l

= πn
n

∏
i=1

i!
n

∑
l=0

n − l + 1

l!
∣λ∣2l

= πn
n

∏
i=1

i!fn(∣λ∣
2l
)

where

fn(x) =
n

∑
l=0

n − l + 1

l!
xl.

Let dk be the coefficient of zk in the polynomial Pn(z). Then

dk = ∆−1n k!fk(∣λ∣
2
)(−1)n−kbk+1bk+2⋯bn

= (−1)n−k∆−1n πn−kλn−kk!
n

∏
i=k+1

fk(∣λ∣
2
)

=
(−λ)n

fn(∣λ∣2)

fk
λk

⇒ Pn(z) =
(−λ)n

fn(∣λ∣2)

n

∑
k=0

(
z

λ
)
k

fk(∣λ∣
2
)

where again fn(x) = ∑
n
l=0

n−l+1
l!

xl.

Similarly

Qn(z̄) =
(−λ̄)n

fn(∣λ∣2)

n

∑
k=0

(
z̄

λ̄
)
k

fk(∣λ∣
2
).

Now all that’s left for the kernel is the ck =< Pk(z),Qk(z̄) >. Remember that Pk(z) and Qk(z̄) are monic
and < Pk(z), z̄

l >= 0 for l < k. This means that
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ck = < Pk(z), z̄
k
>=

∆k+1

∆k

=
πk+1

∏
k+1
i=0 i!fk+1(∣λ∣

2)

πk∏
k
i=0 i!fk(∣λ∣

2)

= π(k + 1)!
fk+1(∣λ∣

2)

fk(∣λ∣2)
.

Now we finally have

κ(n)(x, ȳ∣λ, λ̄) =∑
s

Ps(x)Qs(ȳ)

cs
=

1

π

n

∑
s=1

∣λ∣2s

fs(∣λ∣2)fs+1(∣λ∣2)(s + 1)!

s

∑
i=1

(
x

λ
)
i

fi(∣λ∣
2
)

s

∑
j=1

(
ȳ

λ̄
)
j

fj(∣λ∣
2
).

If we substitute λ with ν and λ̄ with µ̄, we get the more general form:

κ(n)(x, ȳ∣ν, µ̄) =
1

π

n

∑
s=1

(νµ̄)s

fs(νµ̄)fs+1(νµ̄)(s + 1)!

s

∑
i=1

(
x

ν
)
i

fi(νµ̄)
s

∑
j=1

(
ȳ

µ̄
)
j

fj(νµ̄)

which, after changing the order of summation, can be written as in (117)

κ(n)(x, ȳ, ν, µ̄) = G(n)(
x

ν
,
ȳ

µ̄
, νµ̄)

where

G(n)(x, y, z) =
1

π

n

∑
i,j=1

xiyjfi(z)fj(z)
n

∑
s=i∨j

zs

fs(z)fs+1(z)(s + 1)!
.

where

fi(x) =
i

∑
s=0

i − s + 1

s!
xs.

Remark: Thanks to Lemma 1, we have a relation between diagonal and off diagonal overlaps, which is
the reason that knowing the reduce kernel is sufficient for both cases. Had this not been the case, then
we would need the kernel corresponding to the off-diagonal weight of the form

ω(2)νµ (z) = (z̄ − ν̄)(z − µ)[1 − (z − ν)(z̄ − µ̄)]e
−∣z∣2

If we call
ω(1)νµ (z) = [1 − (z − ν)(z̄ − µ̄)]e

−∣z∣2

then ω
(2)
νµ (z) can be written as

ω(2)νµ (z) = (z̄ − ν̄)(z − µ)ω
(1)
νµ (z).

Note again that we know the orthogonal polynomials and kernel with respect to ω
(1)
νµ (z), since they are

the same as for ωλ(z) = (1 + ∣z − λ∣
2)e−∣z∣

2

if we just substitute λ with ν and λ̄ with µ̄.

As it has been already mentioned, if we know the orthogonal polynomials and kernel for ω
(1)
νµ (z), there

are formulas in [3], which give both the orthogonal polynomials and kernel for a measure of the form

ω
(2)
νµ (z) = (z̄ − ν̄)(z −µ)ω

(1)
νµ (z). But this creates a huge mess we would like to avoid, or more like had to

avoid. Lemma 1 is of huge importance to the study off-diagonal overlaps.
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4.5 Alternate way to simplify the reduced kernel

Now we are almost ready for the final part of the simplification of the reduced kernel, where with the
help of contour integrals we are going to derive relation (150) from 3.4.4. First we need to massage
G(n)(x, y, z) a bit further. We require a lemma similar to 3.3.

Let k = i ∨ j

Lemma 4.2 Call

Mn,k(z) =
n

∑
s=k

zs

fs(z)fs+1(z)(s + 1)!
.

Then

Mn,k(z) =
zk

fk(z)fn+1(z)(n + 1)!

n−k

∑
s=0

(n + 1)!

(s + k + 2)!
[(n − k − s + 1)(s + 1) + (k + 1)]zs.

Proof: Not much too this proof really. We notice that

Mk+1,k(z) =
z + (k + 3)

fk(z)fk+2(z)(k + 2)!
zk

Mk+2,k(z) =
z2 + (k + 5)z + (k + 3)(k + 4)

fk(z)fk+3(z)(k + 3)!
zk

Mk+3,k(z) =
z3 + (k + 7)z2 + (k + 4)(k + 7)z + (k + 3)(k + 4)(k + 5)

fk(z)fk+4(z)(k + 4)!
zk

and so on. Now this may seem very out of context, and it probably is, but the numerators are given by
the following determinants:

hn = det

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

∣λ∣2 + k + 3 (k + 2)λ̄ 0 ... ... 0

λ ∣λ∣2 + k + 4 (k + 3)λ̄ ... ... .

0 λ ∣λ∣2 + k + 5 (k + 4)λ̄ ... .

. . λ . . .

. . . . . (k + n)λ̄

0 ... ... ... λ ∣λ∣2 + k + n + 2

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

which I happen to have already computed to be

hn(z) =
n−k

∑
s=0

(n + 1)!

(s + k + 2)!
[(n − k − s + 1)(s + 1) + k + 1]zs.

Nothing unusual to it, just one more tri-diagonal determinant in a line of many. The only relation I can

see, is that for k = 0, hn is the tri-diagonal determinant I had to compute for D
(n,2)
11 (λ,σ) with σ = 0. So

I’m guessing the numerators of Mn,k correspond to the main sub-determinants of hn.

Anyway, having already seen the pattern, the answer is:

Mn,k(z) =
zk

fk(z)fn+1(z)(n + 1)!

n−k

∑
s=0

(n + 1)!

(s + k + 2)!
[(n − k − s + 1)(s + 1) + (k + 1)]zs.
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□
Working a bit on Mn,k(z) and plugging it back in, we derive the following expression

πG(n)(x, y, z) =
n + 3

fn+1(z)z2

n

∑
i,j=0

xiyj
fi(z)fj(z)

fi∨j(z)
An,i∨j(z) (i)

−
1

fn+1(z)z2

n

∑
i,j=0

xiyj
fi(z)fj(z)

fi∨j(z)
Bn,i∨j(z) (ii)

where

An,j(z) = zen+1j+1 (z) − (j + 1)en+2j+2 (z)

Bn,j(z) = z2enj (z) − zje
n+1
j+1 (z) − (j + 1)en+2j+2 (z)

and

enj (z) =
n

∑
s=j

zs

s!
.

Now we are ready.

4.5.1 n =∞

Although n <∞ is what we are after, since this is a very long calculation and we are interested in both
cases, with n = ∞ corresponding to the bulk limit in Corollary 1, I find it wise to start with n = ∞ to
understand how the process works. Note that fn(z) = (n + 1)en(z) − zen−1(z), therefore (ii) goes to 0
as n goes to ∞. Thus taking n→∞ is significantly simpler to work with.

As for (i), we break it in two parts, C1 and C2

∞

∑
i,j=0

xiyj
fi(z)fj(z)

fi∨j(z)
A∞,i∨j(z) =

∞

∑
i,j=0

xiyjfi(z)A∞,j(z)1j≥i +
∞

∑
i,j=0

xiyjfj(z)A∞,i(z)1j<i

= C1 +C2.

Going to use the following identity to rewrite the 2 sums. Might as well call it a lemma.

Lemma 4.3: Using contour integrals, the following indicator functions can be re-written as

1j≥i =
∞

∑
t=i

1j=t =
∞

∑
t=i
∮ dw

wt−j

2πiw
= ∮ dw

wi−j

2πiw

∞

∑
t=0

wt
(∣w∣ < 1)

= ∮ dw
wi−j

2πiw(1 −w)

and similarly

1j<i = ∮ dw
wj−i

2πi(1 −w)

where w ∈ C with ∣w∣ < 1. □

Thus we get the following expressions for C1 and C2

C1 = ∮
dw

2πiw(1 −w)

∞

∑
j=0

(
y

w
)
j

A∞,j(z)
∞

∑
i=0

(xw)ifi(z)

and

C2 = ∮
dw

2πi(1 −w)

∞

∑
j=0

(yw)jfj(z)
∞

∑
i=0

(
x

w
)
i

A∞,i(z).

50



Here is the main idea.
Both C1 and C2 are integrals over circles Γ = {reiθ ∶ 0 ≤ θ ≤ 2π}, for which all we need so far is r < 1.
This gives us a lot of leaway. Also notice how they seem to be one transformation away from eachother.
Now w is nothing but a dummy variable we eventually need to get rid off. What we aim to do is find Γ1

and Γ2 for C1 and C2 respectively, such that no poles are included inside the circles other than 0. Then
we will apply the tranformation w → 1

w
to Γ2 and shrink the new Γ̃2 down to Γ1. This will yield −C1

plus all the residues, and those residues is the answer we are looking for.

First things first, we need to find Γ1 and Γ2. We start with C1. The expression for C1 includes two sums
on which we will work on separately.

�

∞

∑
i=0

(xw)ifi(z) =
∞

∑
i=0

i

∑
s=0

(xw)i
i − s + 1

s!
zs =

∞

∑
s=0

zs

s!

∞

∑
i=s

(xw)i(i − s + 1)

=
∞

∑
s=0

(xwz)s

s!

∞

∑
i=0

(xw)i(i + 1) =
exwz

(1 − xw)2
.

From here we can see that we want ∣w∣ < ∣x∣−1.

Now for the second sum,

�

∞

∑
j=0

(
y

w
)
j

A∞,j(z) =
∞

∑
j=0

(
y

w
)
j

[zej+1(z) − (j + 1)ej+2(z)]

=
∞

∑
j=0

(
y

w
)
j

zej+1(z) (1)

−
∞

∑
j=0

(
y

w
)
j

(j + 1)ej+2(z). (2)

This is also too long to be done altogether, so we once again split it in two parts, (1) and (2).

(1) =
∞

∑
j=0

(
y

w
)
j

zej+1(z) = z
∞

∑
j=0

(
y

w
)
j ∞

∑
s=j+1

zs

s!
= z

∞

∑
s=1

zs

s!

s−1

∑
j=0

(
y

w
)
j

=
z

1 − y
w

∞

∑
s=1

zs

s!
[1 − (

y

w
)
s

] =
z

1 − y
w

(ez − e
zy
w ).

(2) = −
∞

∑
j=0

(
y

w
)
j

(j + 1)
∞

∑
s=j+2

zs

s!
=
∞

∑
s=2

zs

s!

s−2

∑
j=0

(
y

w
)
j

(j + 1) = −
∞

∑
s=2

zs

s!

(s − 1)( y
w
)
s

− s( y
w
)
s−1

+ 1

(1 − y
w
)
2

=
−1

(1 − y
w
)
2

⎛

⎝

∞

∑
s=2

zs

s!
(
y

w
)
s

(s − 1) −
∞

∑
s=2

zs

s!
(
y

w
)
s−1

s +
∞

∑
s=2

zs

s!

⎞

⎠

=
−1

(1 − y
w
)
2

⎡
⎢
⎢
⎢
⎢
⎣

zy

w
(e

zy
w − 1) − (e

zy
w − 1 −

zy

w
+ ze

y
w − z) + (ez − 1 − z)

⎤
⎥
⎥
⎥
⎥
⎦

=
−1

(1 − y
w
)
2
[(
zy

w
− 1 − z)e

zy
w + ez].
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from where we can see that we also need ∣w∣ < ∣y∣.

Putting back everything together in the initial expression for C1, we have

⇒ C1 = ∫
Γ1

dw

2πiw(1 −w)

⎡
⎢
⎢
⎢
⎢
⎣

exwz

(1 − xw)2
⎛

⎝

z

1 − y
w

(ez − e
zy
w ) −

1

(1 − y
w
)
2
[(
zy

w
− 1 − z)e

zy
w + ez]

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

= ∫
Γ1

dw

2πiw(1 −w)

⎡
⎢
⎢
⎢
⎢
⎣

exwz

(1 − xw)2
⎛

⎝

zez

1 − y
w

−
ez

(1 − y
w
)
2

⎞

⎠
+

exwz

(1 − xw)2
e

zy
w

(1 − y
w
)
2

⎤
⎥
⎥
⎥
⎥
⎦

where now we know we want Γ1 = {re
iθ ∶ 0 ≤ θ ≤ 2π} with r < 1,

1

∣x∣
, ∣y∣.

Note that the first part in the last expression for C1, the one which does not include any e
zy
w temrs, gives

0 since there are no poles. So, by setting

g(x) =
exz

(1 − x)2

we have that

C1 = ∫
Γ1

dw

2πiw(1 −w)
g(xw)g(

y

w
)

and similarly, for it is the same calculation,

C2 = ∫
Γ2

dw

2πi(1 −w)
g(yw)g(

x

w
)

where Γ2 = {re
iθ ∶ 0 ≤ θ ≤ 2π} with r < 1,

1

∣y∣
, ∣x∣.

By applying the change of variables w ←→ 1
w

in C2 it becomes

C2 = −∫
Γ̃2

dw

2πiw(1 −w)
g(
y

w
)g(xw)

with Γ̃2 = {re
iθ ∶ 0 ≤ θ ≤ 2π} , r > 1,

1

∣x∣
, ∣y∣.

Now, by shrinking Γ̃2 down to Γ1, we get the residue contribution from the 3 poles and C2 can be
written as

C2 = −∫
Γ1

dw

2πiw(1 −w)
g(xw)g(

y

w
) −Res

⎡
⎢
⎢
⎢
⎢
⎣

g(xw)g( y
w
)

w(1 −w)
∣1,

1

x
, y

⎤
⎥
⎥
⎥
⎥
⎦

⇒ C1 +C2 = −Res

⎡
⎢
⎢
⎢
⎢
⎣

g(xw)g( y
w
)

w(1 −w)
∣1,

1

x
, y

⎤
⎥
⎥
⎥
⎥
⎦

.

�

Res

⎡
⎢
⎢
⎢
⎢
⎣

g(xw)g( y
w
)

w(1 −w)
∣1

⎤
⎥
⎥
⎥
⎥
⎦

= lim
w→1
(w − 1)

g(xw)g( y
w
)

w(1 −w)

= −g(x)g(y) = −
exz

(1 − x)2
eyz

(1 − y)2
.
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�

Res

⎡
⎢
⎢
⎢
⎢
⎣

g(xw)g( y
w
)

w(1 −w)
∣y

⎤
⎥
⎥
⎥
⎥
⎦

= lim
w→y

d

dw

⎡
⎢
⎢
⎢
⎢
⎣

(w − y)2

w(1 −w)

exwz

(1 − xw)2
e

yz
w

(1 − y
w
)
2

⎤
⎥
⎥
⎥
⎥
⎦

= lim
w→y

d

dw

⎡
⎢
⎢
⎢
⎢
⎣

exwz+ yz
w

(1 − xw)2
w

1 −w

⎤
⎥
⎥
⎥
⎥
⎦

.

Going to compute the derivative separately

d

dw

⎡
⎢
⎢
⎢
⎢
⎣

exwz+ yz
w

(1 − xw)2
w

1 −w

⎤
⎥
⎥
⎥
⎥
⎦

=
d

dw

⎡
⎢
⎢
⎢
⎢
⎣

exwz+ yz
w

(1 − xw)2

⎤
⎥
⎥
⎥
⎥
⎦

w

1 −w
+
exwz+ yz

w

(1 − xw)2
d

dw

⎡
⎢
⎢
⎢
⎢
⎣

w

1 −w

⎤
⎥
⎥
⎥
⎥
⎦

= exwz+ yz
w

⎡
⎢
⎢
⎢
⎢
⎣

(xw − yz
w2 )(1 − xw)

2 − 2(1 − xw)(−x)

(1 − xw)4
w

1 −w
+

1

(1 − xw)2
1(1 −w) −w(−1)

(1 −w)2

⎤
⎥
⎥
⎥
⎥
⎦

= exwz+ yz
w

⎡
⎢
⎢
⎢
⎢
⎣

(xw − yz
w2 )(1 − xw) + 2x

(1 − xw)3
w

1 −w
+

1

(1 − xw)2(1 −w)2

⎤
⎥
⎥
⎥
⎥
⎦

= exwz+ yz
w

⎧⎪⎪
⎨
⎪⎪⎩

[(xw − yz
w2 )(1 − xw) + 2x]w(1 −w) + 1 − xw

(1 − xw)3(1 −w)2

⎫⎪⎪
⎬
⎪⎪⎭

⇒ Res

⎡
⎢
⎢
⎢
⎢
⎣

g(xw)g( y
w
)

w(1 −w)
∣y

⎤
⎥
⎥
⎥
⎥
⎦

= lim
w→y

exwz+ yz
w

(1 − xw)3(1 −w)2
{[(xw −

yz

w2
)(1 − xw) + 2x]w(1 −w) + 1 − xw}

=
exyz+z

(1 − y)2(1 − xy)3
[z(1 − xy)2(y − 1) + xy − 2xy2 + 1].

�

Res

⎡
⎢
⎢
⎢
⎢
⎣

g(xw)g( y
w
)

w(1 −w)
∣
1

x

⎤
⎥
⎥
⎥
⎥
⎦

= lim
w→ 1

x

d

dw

⎡
⎢
⎢
⎢
⎢
⎣

(w − 1
x
)
2

w(1 −w)

exwz

(1 − xw)2
e

yz
w

(1 − y
w
)
2

⎤
⎥
⎥
⎥
⎥
⎦

= lim
w→ 1

x

d

dw

⎡
⎢
⎢
⎢
⎢
⎣

exwz+ yz
w

(xw − xy)2
w

1 −w

⎤
⎥
⎥
⎥
⎥
⎦

Once again the derivative is

d

dw

⎡
⎢
⎢
⎢
⎢
⎣

exwz+ yz
w

(xw − xy)2
w

1 −w

⎤
⎥
⎥
⎥
⎥
⎦

=
d

dw

⎡
⎢
⎢
⎢
⎢
⎣

exwz+ yz
w

(xw − xy)2

⎤
⎥
⎥
⎥
⎥
⎦

w

1 −w
+

exwz+ yz
w

(xw − xy)2
d

dw

⎡
⎢
⎢
⎢
⎢
⎣

w

1 −w

⎤
⎥
⎥
⎥
⎥
⎦

= exwz+ yz
w

⎡
⎢
⎢
⎢
⎢
⎣

(xw − yz
w2 )(xw − xy) − 2x

(xw − xy)3
w

1 −w
+

1

(xw − xy)2(1 −w)2

⎤
⎥
⎥
⎥
⎥
⎦
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⇒ Res

⎡
⎢
⎢
⎢
⎢
⎣

g(xw)g( y
w
)

w(1 −w)
∣
1

x

⎤
⎥
⎥
⎥
⎥
⎦

= lim
w→ 1

x

exwz+ yz
w

(xw − xy)3(1 −w)2
{[(xw −

yz

w2
)(xw − xy) − 2x]w(1 −w) + xw − xy}

=
exyz+z

(1 − x)2(1 − xy)3
[xz(1 − xy)2(x − 1) − x2 + 2x − x3y].

Now we just need to have faith.

Res

⎡
⎢
⎢
⎢
⎢
⎣

g(xw)g( y
w
)

w(1 −w)
∣y

⎤
⎥
⎥
⎥
⎥
⎦

+Res

⎡
⎢
⎢
⎢
⎢
⎣

g(xw)g( y
w
)

w(1 −w)
∣
1

x

⎤
⎥
⎥
⎥
⎥
⎦

=
exyz+z

(1 − y)2(1 − xy)3
[z(1 − xy)2(y − 1) + xy − 2xy2 + 1]

+
exyz+z

(1 − x)2(1 − xy)3
[xz(1 − xy)2(x − 1) − x2 + 2x − x3y]

= exyz+z
[z(y − 1)(1 − xy)2(1 − x)2 + xz(1 − xy)2(x − 1)(y − 1)2] + [(xy − 2xy2 + 1)(1 − x)2 + (−x2 + 2x − x3y)(1 − y)2]

(1 − y)2(1 − x)2(1 − xy)3

= exyz+z
[−z(x − 1)(y − 1)(1 − xy)3] + [(1 − xy)3]

(1 − y)2(1 − x)2(1 − xy)3
=

exyz+z

(x − 1)2(y − 1)2
[1 − z(x − 1)(y − 1)].

Altogether we have

πG∞(x, y, z) = −
e−z

z2
Res

⎡
⎢
⎢
⎢
⎢
⎣

g(xw)g( y
w
)

w(1 −w)
∣1,

1

x
, y

⎤
⎥
⎥
⎥
⎥
⎦

= −
e−z

z2
{ −

exz+yz

(x − 1)2(y − 1)2
+

exyz+z

(x − 1)2(y − 1)2
[1 − z(x − 1)(y − 1)]}.

Substituting back to the original variables z = νµ, x = x
ν

and y = y
µ

we get the final answer

κ(bulk)(x, y∣ν,µ) =
1

π

exy

(x − ν)2(y − µ)2
[e(x−ν)(y−µ) − 1 + (x − ν)(y − µ)].

□
Here you may notice some discrepancies between this answer and the one given by (44) in Corollary

1, but that’s because (43) and (44) have been written in a more symmetric way, while this result uses ω
as in (33) and without the 1

π
.

Now is time for the longer computation, which is thankfully is no longer that much longer for we have
done some of the work.

4.5.2 Finite n

Reminder that

πG(n)(x, y, z) =
n + 3

fn+1(z)z2

n

∑
i,j=0

xiyj
fi(z)fj(z)

fi∨j(z)
An,i∨j(z) (i)

−
1

fn+1(z)z2

n

∑
i,j=0

xiyj
fi(z)fj(z)

fi∨j(z)
Bn,i∨j(z) (ii)
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where

An,j(z) = zen+1j+1 (z) − (j + 1)en+2j+2 (z)

Bn,j(z) = z2enj (z) − zje
n+1
j+1 (z) − (j + 1)en+2j+2 (z)

and

enj (z) =
n

∑
s=j

zs

s!
.

The main difference for finite n, is that (ii) is no longer 0. Still, there is also more work that needs to
be done for (i). But now we know the poles and those do not change.

For part (i) we have

C1 = ∮
dw

2πiw(1 −w)

n

∑
j=0

(
y

w
)
j

An,j(z)
n

∑
i=0

(xw)ifi(z)

and

C2 = ∮
dw

2πi(1 −w)

n

∑
j=0

(yw)jfj(z)
n

∑
i=0

(
x

w
)
i

An,i(z).

Like before, C1 and C2 are very similar, thus we need to do the work for only one of them. We again
take each of the sums in C1 separately. Since we know the poles, now the aim is to simple split the parts
with singularity at 0 from the rest.

�

n

∑
i=0

(xw)ifi(z) =
n

∑
i=0

i

∑
s=0

(xw)i
i − s + 1

s!
zs =

n

∑
s=0

zs

s!

n

∑
i=s

(xw)i(i − s + 1) =
n

∑
s=0

(xwz)s

s!

n

∑
i=0

(xw)i(i + 1)

=
n

∑
s=0

(xwz)s

s!

(n − s + 1)(xw)n−s+2 − (n − s + 2)(xw)n−s+1 + 1

(1 − xw)2

=
1

(1 − xw)2

n

∑
s=0

(xwz)s

s!
+

n

∑
s=0

(xwz)s

s!

(n − s + 1)(xw)n−s+2 − (n − s + 2)(xw)n−s+1

(1 − xw)2

=
1

(1 − xw)2

n+2

∑
s=0

(xwz)s

s!
+wn+1D(x, z,w) = gn+2(xw) +w

n+1D(x, z,w)

where D(x, z,w) has no singularity at w = 0 and that’s all we care about.

� This computation is very similar to before and yields
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n

∑
j=0

(
y

w
)
j

An,j(z) =
n

∑
j=0

(
y

w
)
j

[zen+1j+1 (z) − (j + 1)en+2j+2 (z)]

=
en+2(

yz
w
)

(1 − y
w
)
2
+
z(1 − y

w
)en+1(z) − en+2(z)

(1 − y
w
)
2

= gn+2(
y

w
) +

z(1 − y
w
)en+1(z) − en+2(z)

(1 − y
w
)
2

where

gn(x) =
en(xz)

(1 − x)2
.

To avoid confusion we call

en(x) = e
n
0 (x) =

n

∑
s=0

zs

s!

as in

enj (z) =
n

∑
s=j

zs

s!

for j = 0.

⇒ C1 = ∮
Γ1

dw

2πiw(1 −w)
[gn+2(xw) +w

n+1D(x, z,w)]

⎡
⎢
⎢
⎢
⎢
⎣

gn+2(
y

w
) +

z(1 − y
w
)en+1(z) − en+2(z)

(1 − y
w
)
2

⎤
⎥
⎥
⎥
⎥
⎦

with Γ1 same as before.

Note that

∮
Γ1

dw

2πiw(1 −w)
wn+1D(x, z,w)

⎡
⎢
⎢
⎢
⎢
⎣

gn+2(
y

w
) +

z(1 − y
w
)en+1(z) − en+2(z)

(1 − y
w
)
2

⎤
⎥
⎥
⎥
⎥
⎦

= 0

since gn+2(
y
w
) has a pole at 0 of degree n, thus the whole expression has no singularities inside of Γ1.

Therefore

C1 = ∮
Γ1

dw

2πiw(1 −w)
gn+2(xw)gn+2(

y

w
)

and

C2 = ∮
Γ2

dw

2πi(1 −w)
gn+2(yw)gn+2(

x

w
).

Working the same way as before, we apply the change of variables w =
1

w
on C2 and get

C2 = −∫
Γ̃2

dw

2πiw(1 −w)
gn+2(

y

w
)gn+2(xw)

⇒ C1 +C2 = −Res

⎡
⎢
⎢
⎢
⎢
⎣

gn+2(xw)gn+2(
y
w
)

w(1 −w)
∣1,

1

x
, y

⎤
⎥
⎥
⎥
⎥
⎦

.
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This is just more residue computations I’m going to omit. So after a bit of suffering and substitut-
ing back to the original variables z = νµ, x = x

ν
and y = y

µ
we have

(i) =
(n + 3)en+2(xy)en+2(νµ)

fn+1(νµ)(x − ν)2(y − µ)2

⎡
⎢
⎢
⎢
⎢
⎣

en+2(xµ)en+2(yν)

en+2(xy)en+2(νµ)
− 1 + (x − ν)(y − µ) +Hn+2(x, y, ν, µ)

⎤
⎥
⎥
⎥
⎥
⎦

where

Hn(x, y, ν, µ) =
(x − ν)(y − µ)

n!en(xy)en(νµ)

⎛

⎝

(νµ)n+1en(xy) − (xy)
n+1en(νµ)

xy − νµ

⎞

⎠

or without substituting back to the original values.

(i) =
(n + 3)en+2(xyz)en+2(z)

fn+1(z)z2(x − 1)2(y − 1)2

⎡
⎢
⎢
⎢
⎢
⎣

en+2(xz)en+2(yz)

en+2(xy)en+2(z)
− 1 + z(x − 1)(y − 1) +Hn+2(x, y, z)

⎤
⎥
⎥
⎥
⎥
⎦

where

Hn(x, y, z) =
z(x − 1)(y − 1)

n!en(xyz)en(z)

⎛

⎝

znen(xyz) − xy(xyz)
n+1en(z)

xy − 1

⎞

⎠
.

If we call

Fn(x, y, z) = −Res

⎡
⎢
⎢
⎢
⎢
⎣

gn(xw)gn(
y
w
)

w(1 −w)
∣1,

1

x
, y

⎤
⎥
⎥
⎥
⎥
⎦

then

(i) =
n + 3

fn+1(z)z2
Fn+2(x, y, z).

We also have part (ii) to deal with
We once again split it into two parts C3 and C4.

n

∑
i,j=0

xiyj
fi(z)fj(z)

fi∨j(z)
Bn,i∨j(z) =

n

∑
i,j=0

xiyjfi(z)Bn,j(z)1j≥i +
n

∑
i,j=0

xiyjfj(z)Bn,i(z)1j<i

= C3 +C4

where
Bn,j(z) = z

2enj (z) − zje
n+1
j+1 (z) − (j + 1)en+2j+2 (z).

The idea is still the same and exactly like before we get

C3 = ∮
dw

2πiw(1 −w)

n

∑
j=0

(
y

w
)
j

Bn,j(z)
n

∑
i=0

(xw)ifi(z)

and

C4 = ∮
dw

2πi(1 −w)

n

∑
j=0

(yw)jfj(z)
n

∑
i=0

(
x

w
)
i

Bn,i(z).
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Again, dealing with only C3 suffices. We have already done the work for ∑
n
i=0(xw)

ifi(z), so we fo-
cus on

n

∑
j=0

(
y

w
)
j

Bn,j(z) =
n

∑
j=0

(
y

w
)
j

(z2enj (z) − zje
n+1
j+1 (z) − (j + 1)en+2j+2 (z)).

We will do this in three steps so we don’t get lost.

�

n

∑
j=0

(
y

w
)
j

z2enj (z) = z2
n

∑
j=0

(
y

w
)
j n

∑
s=j

zs

s!
= z2

n

∑
s=0

zs

s!

s

∑
j=0

(
y

w
)
j

= z2
n

∑
s=0

zs

s!

1 − ( y
w
)
s+1

1 − y
w

=
z2

1 − y
w

[en(z) −
y

w
en(

zy

w
)]

�

−
n

∑
j=0

(
y

w
)
j

zjen+1j+1 (z) = −z
n

∑
j=0

(
y

w
)
j

j
n+1

∑
j+1

zs

s!
= −z

n+1

∑
s=1

zs

s!

s−1

∑
j=0

(
y

w
)
j

[(j + 1) − 1]

= −z
n+1

∑
s=1

zs

s!

s( y
w
)
s+1

− (s + 1)( y
w
)
s

+ 1

(1 − y
w
)
2

+ z
n+1

∑
s=1

zs

s!

(1 − y
w
)
s

1 − y
w

=
z2 y

w

1 − y
w

en(
zy

w
) +

z y
w

(1 − y
w
)
2
en+1(

y

w
) +

z y
w

(1 − y
w
)
2

� and we have already computed

−
n

∑
j=0

(
y

w
)
j

(j + 1)en+2j+2 =
1

(1 − y
w
)
2

⎡
⎢
⎢
⎢
⎢
⎣

z(1 −
y

w
)en+1(

zy

w
) + en+2(

zy

w
) − en+2(z)

⎤
⎥
⎥
⎥
⎥
⎦

Altogether we have

⇒
n

∑
j=0

(
y

w
)
j

Bn,j(z) = z
en+1(yz

w
)

(1 − y
w
)
2
+
en+2( zy

w
)

(1 − y
w
)
2
+
z2(1 − y

w
)en(z) + z y

w
en+1(z) − en+2(z)

(1 − y
w
)
2

= zgn+1(
y

w
) + gn+2(

y

w
) +wD̃n(y, z,w)

where D̃n(y, z,w) has no singularity at w = 0.
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Therefore the expression for C3 becomes

C3 = ∫
Γ1

dw

2πiw(1 −w)

⎡
⎢
⎢
⎢
⎢
⎣

gn+2(xw) +w
n+1Dn(x, z,w)

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

zgn+1(
y

w
) + gn+2(

y

w
) +wD̃n(y, z,w)

⎤
⎥
⎥
⎥
⎥
⎦

After getting rid of all the terms with no singularities at 0, all that remains is

C3 = ∫
Γ1

dw

2πiw(1 −w)

⎡
⎢
⎢
⎢
⎢
⎣

zgn+1(xw)gn+1(
y

w
) + gn+2(xw)gn+2(

y

w
)

⎤
⎥
⎥
⎥
⎥
⎦

and similarly for C4

C4 = ∫
Γ2

dw

2πi(1 −w)

⎡
⎢
⎢
⎢
⎢
⎣

zgn+1(yw)gn+1(
x

w
) + gn+2(yw)gn+2(

x

w
)

⎤
⎥
⎥
⎥
⎥
⎦

.

Following the same argument as before, we change variables on C4, shrink Γ̃2 to Γ1 and get

C3 +C4 = −zRes

⎡
⎢
⎢
⎢
⎢
⎣

gn+1(xw)gn+1(
y
w
)

w(1 −w)
∣1,

1

x
, y

⎤
⎥
⎥
⎥
⎥
⎦

−Res

⎡
⎢
⎢
⎢
⎢
⎣

gn+2(xw)gn+2(
y
w
)

w(1 −w)
∣1,

1

x
, y

⎤
⎥
⎥
⎥
⎥
⎦

= zFn+1(x, y, z) + Fn+2(x, y, z)

⇒ (ii) =
1

fn+1(z)z2
Fn+2(x, y, z) +

z

fn+1(z)z2
Fn+1(x, y, z).

So, summing (i) and −(ii), the final expression for Gn is

πGn(x, y, z) =
n + 2

fn+1(z)(z)2
Fn+2(x, y, z) −

z

fn+1(z)z2
Fn+1(x, y, z)

=
(n + 2)en+2(xyz)en+2(z)

fn+1(z)z2(x − 1)2(y − 1)2

⎡
⎢
⎢
⎢
⎢
⎣

en+2(xz)en+2(yz)

en+2(xyz)en+2(z)
− 1 + z(x − 1)(y − 1) +Hn+2(x, y, z)

⎤
⎥
⎥
⎥
⎥
⎦

−
zen+1(xyz)en+1(z)

fn+1(z)z2(x − 1)2(y − 1)2

⎡
⎢
⎢
⎢
⎢
⎣

en+1(xz)en+1(yz)

en+1(xyz)en+1(z)
− 1 + z(x − 1)(y − 1) +Hn+1(x, y, z)

⎤
⎥
⎥
⎥
⎥
⎦

where

Hn(x, y, z) =
z(x − 1)(y − 1)

n!en(xyz)en(z)

⎛

⎝

znen(xyz) − xy(xyz)
nen(z)

xy − 1

⎞

⎠
.

After changing back to the original variable, the final expression for the reduced kernel for finite n
is
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πκ(n+1)(x, y∣ν,µ) =
n + 2

fn+1(νµ)(νµ)2
Fn+2(x, y, νµ) −

νµ

fn+1(νµ)(νµ)2
Fn+1(x, y, νµ)

=
(n + 2)en+2(xy)en+2(νµ)

fn+1(νµ)(x − ν)2(y − µ)2

⎡
⎢
⎢
⎢
⎢
⎣

en+2(xµ)en+2(yν)

en+2(xy)en+2(νµ)
− 1 + (x − ν)(y − µ) +Hn+2(x, y, ν, µ)

⎤
⎥
⎥
⎥
⎥
⎦

−
νµen+1(xy)en+1(νµ)

fn+1(νµ)(x − ν)2(y − µ)2

⎡
⎢
⎢
⎢
⎢
⎣

en+1(xµ)en+1(yν)

en+1(xy)en+1(νµ)
− 1 + (x − ν)(y − µ) +Hn+1(x, y, ν, µ)

⎤
⎥
⎥
⎥
⎥
⎦

where

Hn(x, y, ν, µ) =
(x − ν)(y − µ)

n!en(xy)en(νµ)

⎛

⎝

(νµ)n+1en(xy) − (xy)
n+1en(νµ)

xy − νµ

⎞

⎠
.

So

κ(n)(x, y∣ν,µ) =
1

π

(n + 1)Fn+1(x, y, ν, µ) − νµFn(x, y, ν, µ)

fn(νµ)(νµ)2

which although may not look like it at first glance, does correspond to (34) from Theorem 1, if you take
1
π

to be part of the weight and take into account the definition of Fn. Through Fn, (34) is a much slicker
way to write down the reduced kernel, but I also do like Fn for you can write the reduce kernel in terms
of it, even without computing the residues. Not that this Hn(x, y, z) and the one used in (149) are not
the same, so it is a bit of an abuse of notation. But they are almost the same, since we where actively
trying to match the two answers. I’ve kept them as they are to include some context as to why we are
handling the sum in 3.4.4 the way that we do.

Even having the above answer, matching it with (134) from chapter 3.4.4, took us more than 2 months.
Needless to say, getting to the final expression from (134) is not at all obvious and would probably be
nigh impossible.

4.6 Bulk and edge scaling limits

In this section I’ll present in much greater detail the computation regarding the bulk and edge scaling
limits, from Corollaries 1 and 2. Nothing interesting happens here, just an endless computation as
n→∞. For those calculations I’ll use the reduced kernel κ(n) as shown in chapter 4.5.

4.6.1 Bulk Scaling Limit (Corollary 1)

Diagonal Overlaps:

In the bulk, the conditional overlaps scale as n, thus we use the following rescaling:

O11 =
1

n
< r1, r1 >< l1, l1 >

A quick reminder of where we are and what we are doing. We have

D
(n,k)
11 (λ(k)) ∶= E(O11∣λ1, λ2, ..., λk)ρ

(n,k)
(λ(k))
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for k = 1, ..., n, where λ(k) = (λ1, λk..., λk) and ρ(n,k)(λ(k)) is the k-point correlation function.

Then

D
(bulk,k)
11 (λ(k)) = lim

n→∞

1

n
D
(n,k)
11 (λ(k)).

We have from Theorem 1 that

D
(n,k)
11 (λ(k)) =

fn−1(∣λ1∣
2)

π
e−∣λ1∣

2

det
2≤i,j≤k

[K
(n−1)
11 (λi, λ̄j)]

where
K
(n)
11 (x, ȳ) = ω(x, x̄, λ1, λ̄1)κ

(n)
(x, ȳ∣λ1, λ̄1).

We want to compute the bulk scaling limit as n→∞. Only two things we have to do. First we take the
limit of the term outside the determinant as n→∞, alongside the rescaling factor of n.

fn−1(∣λ1∣
2)

nπ
e−∣λ1∣

2

=
nen−1(∣λ1∣

2) − ∣λ1∣
2en−2(∣λ1∣

2)

nπ
e−∣λ1∣

2 n→∞
=

1

π

Secondly we take the limit of the reduced kernel. For κ(n) we can, and have seen in 4.5, that in the bulk,
not only the terms Hn disappear, but there is also no contribution from the second half. But here we
shall use the reduced kernel for finite n and then take n to infinity in order to be consistent.

κ(n)(x, ȳ∣λ1, λ̄1) =
1

π

(n + 2)en+2(xȳ)en+2(λ1λ̄1)

fn+1(λ1λ̄1)(x − λ1)2(ȳ − λ̄1)2

⎡
⎢
⎢
⎢
⎢
⎣

en+2(xλ̄1)en+2(ȳλ1)

en+2(xȳ)en+2(λ1λ̄1)
− 1 + (x − λ1)(ȳ − λ̄1) +Hn+2(x, ȳ, λ1, λ̄1)

⎤
⎥
⎥
⎥
⎥
⎦

−
λ1λ̄1en+1(xȳ)en+1(λ1λ̄1)

fn+1(λ1λ̄1)(x − λ1)2(ȳ − λ̄1)2

⎡
⎢
⎢
⎢
⎢
⎣

en+1(xλ̄1)en+1(ȳν)

en+1(xȳ)en+1(λ1λ̄1)
− 1 + (x − ν)(ȳ − λ̄1) +Hn+1(x, ȳ, λ1, λ̄1)

⎤
⎥
⎥
⎥
⎥
⎦

n→∞
=

1

π

exȳ

(x − λ1)2(ȳ − λ̄1)2

⎡
⎢
⎢
⎢
⎢
⎣

e−(x−λ1)(ȳ−λ̄1) − [1 − (x − λ1)(ȳ − λ̄1)]

⎤
⎥
⎥
⎥
⎥
⎦

= κ(bulk)

So for the bulk limit of the diagonal overlaps we have

D
(bulk,k)
11 (λ(k)) =

1

π
det

2≤i,j≤k
[K
(bulk)
11 (λi, λ̄j)]

where

K
(bulk)
11 (x, ȳ) =

1

π

(1 + ∣x − λ1∣
2)e−xx̄+xȳ

(x − λ1)2(ȳ − λ̄1)2

⎡
⎢
⎢
⎢
⎢
⎣

e−(x−λ1)(ȳ−λ̄1) − [1 − (x − λ1)(ȳ − λ̄1)]

⎤
⎥
⎥
⎥
⎥
⎦

=
1

π

(1 + ∣x − λ1∣
2)e−(x−λ1)(x̄−λ̄1)

(x − λ1)2(ȳ − λ̄1)2

⎡
⎢
⎢
⎢
⎢
⎣

e(x−λ1)(ȳ−λ̄1)(x − λ1)(ȳ − λ̄1) − [e
(x−λ1)(ȳ−λ̄1) − 1]

⎤
⎥
⎥
⎥
⎥
⎦

=
(1 + ∣x − λ1∣

2)e−∣x−λ1∣
2

π

d

dz
(
ez − 1

z
)

RRRRRRRRRRRz=(x−λ1)(ȳ−λ̄1)
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□
This corresponds to (41)-(44) from Corollary 1.

Off-diagonal Ovelaps:

From Theorem 1 we have that the weighted multi-point intensities of the eigenvalues are given by

D
(n,k)
12 (λ(k)) = −

e−∣λ1∣
2
−∣λ2∣

2

π
fn−1(λ1λ̄2)κ

(n−1)
(λ2, λ̄1∣λ1, λ̄2) det

3≤i,j≤k
[K
(n−1)
12 (λi, λ̄j)].

We want to compute the bulk scale limit

D
(bulk,k)
12 (λ(k)) = lim

n→∞

1

n
D
(n,k)
12 (λ(k))

We already have K
(bulk)
12 , κ(bulk) and the weight ω does not change. Then a straightforward computation

yields

D
(bulk,k)
12 (λ(k)) = lim

n→∞

1

n
D
(n,k)
12 (λ(k))

= lim
n→∞

−
e−∣λ1∣

2
−∣λ2∣

2

π

nen−1(λ1λ̄2) − λ1λ̄2en−2(λ1λ̄2)

n
κ(n−1)(λ2, λ̄1∣λ1, λ̄2) det

3≤i,j≤k
[K
(n−1)
12 (λi, λ̄j)]

= −
e−∣λ1∣

2
−∣λ2∣

2

π
eλ1λ̄2κ(bulk)(λ2, λ̄1∣λ1, λ̄2) det

3≤i,j≤k
[K
(bulk)
12 (λi, λ̄j)]

= −
e−∣λ1−λ2∣

2

π2(λ2 − λ1)2(λ̄1 − λ̄2)2
[e−(λ2−λ1)(λ̄1−λ̄2) − [1 − (λ2 − λ1)(λ̄1 − λ̄2)]] det

3≤i,j≤k
[K
(bulk)
12 (λi, λ̄j)]

= −
1

π2

[ − ∣λ1 − λ2∣
2e−∣λ1−λ2∣

2

− (e−∣λ1−λ2∣
2

− 1)]

−∣λ1 − λ2∣4
det

3≤i,j≤k
[K
(bulk)
12 (λi, λ̄j)]

= −
1

π2
det

3≤i,j≤k
[K
(bulk)
12 (λi, λ̄j)]

d

dz
(
ez − 1

z
)

RRRRRRRRRRRz=−∣λ1−λ2∣2

where

K
(bulk)
12 (x, ȳ) =

ω(x, x̄∣λ1, λ̄2)

κ(bulk)(λ2, λ̄1∣λ1, λ̄2)
det
⎛
⎜
⎝

κ(bulk)(x, ȳ∣λ1, λ̄2) κ(bulk)(x, λ̄1∣λ1, λ̄2)

κ(bulk)(λ2, ȳ∣λ1, λ̄2) κ(bulk)(λ2, λ̄1∣λ1, λ̄2)

⎞
⎟
⎠

ω(x, ȳ∣λ1, λ̄2) = [1 + (x − λ1)(ȳ − λ̄2)]e
−xȳ

and

κ(bulk)(x, ȳ∣λ1, λ̄2) =
1

π

exȳ

(x − λ1)2(ȳ − λ̄2)2

⎡
⎢
⎢
⎢
⎢
⎣

e−(x−λ1)(ȳ−λ̄2) − [1 − (x − λ1)(ȳ − λ̄2)]

⎤
⎥
⎥
⎥
⎥
⎦

.
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4.6.2 Edge Scaling Limit (Corollary 2)

Here we prove Corollary 2, but this time in great detail. It’s not even an alternate proof, I’m just
going to go through all the miniscule computations that are required. We need to include terms of
order n−

1
2 , which makes this a very lengthy computation. It’s as straightforward and long as it gets, so

even though I’ll go in great detail, it will be light on explanations as it feels as more of an appendix entry.

We set x =
√
n+x′ , y =

√
n+y′ , ν =

√
n+ν′ , µ =

√
n+µ′. Also z = νµ = n+

√
n(ν′+µ′)+ν′µ′ = n+

√
na+b,

where a = ν′ + µ′ and b = ν′µ′.

Note that it makes no difference as n→∞ whether we have κn(
√
n+x′,

√
n+ȳ′) or κn−2(

√
n+x′,

√
n+ȳ′).

Before we even go near the reduced kernel, we need to go through a long list terms which appear
down the road.

Step by step.

�

zn+1

n!
√
n
=
(n +

√
na + b)n+1

n!
√
n

nn+1

n!
√
n
(1 +

a
√
n
+
b

n
)
n+1

=
nn+1

n!
√
n
e
(n+1)log(1+ a√

n
+ b

n
)

=
nn+

1
2

n!
exp

⎧⎪⎪
⎨
⎪⎪⎩

(n + 1)[(
a
√
n
+
b

n
) −

1

2
(
a
√
n
+
b

n
)
2

+ (
a
√
n
+

1

3

b

n
)
3

+O(n−4)]

⎫⎪⎪
⎬
⎪⎪⎭

=
nn+

1
2

n!
exp [

√
na + b −

a2

2
+

a
√
n
−
ab
√
n
+

a3

3
√
n
+O(n−1)]

=
nn+

1
2

n!
e
√
na+b− a2

2 [1 +
1
√
n
(a − ab +

a3

3
) +O(n−1)]

=
en
√

2π
e
√
na+b− a2

2 [1 +
1
√
n
(a − ab +

a3

3
) +O(n−1)]

=
ez−

a2

2

√
2π
[1 +

1
√
n
(a − ab +

a3

3
) +O(n−1)]

where we used the Stirling formula for w = n.

Γ(w + 1) =
√

2πww+ 1
2 e−w[1 +

1

12w
+

1

128w2
+O(w−3)].

Two other similar relations that will be useful are

zn+1

(n + 1)!
=
ez−

a2

2

√
2πn
[1 +

1
√
n
(a − ab +

a3

3
) +O(n−1)]

and

zn+2

(n + 2)!
=
ez−

a2

2

√
2πn
[1 +

1
√
n
(2a − ab +

a3

3
) +O(n−1)].
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�

en(z) =
ez

n!
∫

∞

z
tne−tdt

t=τz
=

ez

n!
zn+1 ∫

∞

1
τne−τzdτ =

ez

n!
zn+1 ∫

∞

1
enlogτ−τzdτ

τ=t+1
=

ez

n!
zn+1 ∫

∞

0
en log(t+1)−(t+1)zdt =

zn+1

n!
∫

∞

0
exp [n(t −

t2

2
+
t3

3
+O(t4)) − (n +

√
na + b)t]dt

t= t√
n
=

zn+1

n!
√
n
∫

∞

0
exp [ −

t2

2
− at −

bt
√
n
+

t3

3
√
n
+O(n−1)]dt

=
zn+1

n!
√
n
∫

∞

0
e−

t2

2 −at[1 +
1
√
n
( − bt +

t3

3
) +O(n−1)]dt

=
zn+1

n!
√
n
[∫

∞

0
e−

t2

2 −atdt +
1
√
n
∫

∞

0
e−

t2

2 −at(
t3

3
− bt)dt +O(n−1)].

Reminder that

F (a) =
1
√

2π
∫

∞

a
e−

t2

2 dt.

Before continuing with en(z), we need to step aside and compute

∫

∞

0
e−

t2

2 −at(
t3

3
− bt)dt

separately, by splitting it into two parts:

1)

b∫
∞

0
(−t)e−

t2

2 −atdt = b
∂

∂a
∫

∞

0
e−

t2

2 −atdt = b
∂

∂a
e

a2

2 ∫

∞

a
e−

t2

2 dt = bae
a2

2 ∫

∞

a
e−

t2

2 dt − be
a2

2 e−
a2

2

= ab
√

2πe
a2

2 F (a) − b

and
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2)

∫

∞

0

t3

3
e−

t2

2 −atdt = −
1

3

∂3

∂a3
∫

∞

0
e−

t2

2 −atdt = −
1

3

∂3

∂a3
e

a2

2 ∫

∞

a
e−

t2

2 dt = −
1

3

∂2

∂a2
[ae

a2

2 ∫

∞

a
e−

t2

2 dt − 1]

= −
1

3

∂

∂a
[(e

a2

2 + a2e
a2

2 )∫

∞

a
e−

t2

2 dt − a]

= −
1

3
[(3ae

a2

2 + a3e
a2

2 )∫

∞

a
e−

t2

2 dt − (1 + a2) − 1]

= ( −
a3

3
− a)
√

2πe
a2

2 F (a) +
a2 + 2

3
.

Altogether we have

∫

∞

0
e−

t2

2 −at(
t3

3
− bt)dt = ( −

a3

3
+ ab − a)

√
2πe

a2

2 F (a) +
a2 + 2

3
− b.

Back to en(z).

⇒ en(z) =

√
2πe

a2

2 zn+1

n!
√
n

⎧⎪⎪
⎨
⎪⎪⎩

F (a) +
1
√
n
[( −

a3

3
+ ab − a)F (a) +

e−
a2

2

√
2π

a2 + 2 − 3b

3
] +O(n−1)

⎫⎪⎪
⎬
⎪⎪⎭

= ez[1 +
1
√
n
(
a3

3
− ab + a) +O(n−1)]

⎧⎪⎪
⎨
⎪⎪⎩

F (a) +
1
√
n
[( −

a3

3
+ ab − a)F (a) +

e−
a2

2

√
2π

a2 + 2 − 3b

3
] +O(n−1)

⎫⎪⎪
⎬
⎪⎪⎭

= ez[F (a) +
e−

a2

2

√
2πn

a2 + 2 − 3b

3
+O(n−1)].

Note that

en+k(z) = e
z
[F (a) +

e−
a2

2

√
2πn
(
a2 + 2 − 3b

3
+ k) +O(n−1)].

This can be seen from the term

∫

∞

0
e(n+k) log(t+1)−(t+1)zdt = ∫

∞

0
en log(t+1)−(t+1)z

(1+ t)kdt = ∫
∞

0
en log(t+1)−(t+1)z

[1+kt+O(t2)]dt.
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�

en+2(z) = en+1(z) +
zn+2

(n + 2)!
= en+1(z) +

ez−
a2

2

√
2πn
[1 +

2a − ab + a3

3√
n

+O(n−1)]

= en+1(z) +
ez−

a2

2

√
2πn

+ ezO(n−1).

�

fn+1(z) = (n + 2)en+1(z) − zen(z) = (n + 2)[en(z) +
zn+1

(n + 1)!
] − zen(z)

= (n + 2)

⎧⎪⎪
⎨
⎪⎪⎩

en(z) +
ez−

a2

2

√
2πn
[1 +

1
√
n
(a − ab +

a3

3
) +O(n−1)]

⎫⎪⎪
⎬
⎪⎪⎭

− zen(z)

= (−a
√
n − b + 2)en(z) +

√
n

2π
ez−

a2

2 +
ez−

a2

2

√
2π
(
a3

3
− ab + a) + ezO(n−

1
2 )

=

√
n

2π
ez−

a2

2

⎡
⎢
⎢
⎢
⎢
⎣

e−z+
a2

2 ( − a +
2 − b
√
n
)
√

2πen(z) + 1 +
1
√
n
(
a3

3
− ab + a) +O(n−1)

⎤
⎥
⎥
⎥
⎥
⎦

=

√
n

2π
ez−

a2

2

⎧⎪⎪
⎨
⎪⎪⎩

− a[
√

2πe
a2

2 F (a) +
1
√
n

a2 + 2 − 3b

3
+O(n−1)] + 1 +

1
√
n
(
a3

3
− ab + a) +O(n−

1
2 )

⎫⎪⎪
⎬
⎪⎪⎭

=

√
n

2π
ez−

a2

2 [1 − a
√

2πe
a2

2 F (a) +O(n−
1
2 )].

�

en+2(xµ)en+2(yν) =
⎛

⎝
en+1(xµ) +

exµ−
(x′+µ′)2

2

√
2πn

+ exµO(n−1)
⎞

⎠

⎛

⎝
en+1(yν) +

eyν−
(y′+ν′)2

2

√
2πn

+ eyνO(n−1)
⎞

⎠

= en+1(xµ)en+1(yν) +
1

√
2πn
[exµ−

(x′+µ′)2
2 en+1(yµ) + e

yν−
(y′+ν′)2

2 en+1(xµ)] + e
xµ+yνO(n−1).

Once again, we are going to work on them separately. Also a, c and b, d are going to be used
in the place of sums and products respectively.
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exµ−
a2

2

√
2πn

en+1(yµ) =
exµ−

a2

2

√
2πn

[en(yν) +
(yν)n+1

(n + 1)!
] =

exµ−
a2

2

√
2πn

⎡
⎢
⎢
⎢
⎢
⎣

en(yν) +
eyν−

c2

2

√
2πn
(1 +

c − cd + d3

3√
n

)

⎤
⎥
⎥
⎥
⎥
⎦

=
exµ−

a2

2

√
2πn

en(yν) + e
xµ+yνO(n−1)

=
exµ−

a2

2

√
2πn

eyν[F (c) +
e−

c2

2

√
2πn

c2 + 2 − 3d

3
+O(n−1)] + exµ+yνO(n−1)

=
exµ+yν
√

2πn
e−

a2

2 F (c) + exµ+yνO(n−1) =
exµ+yν
√

2πn
e−

(x′+µ′)2
2 F (y′ + ν′) + exµ+yνO(n−1)

⇒ en+2(xµ)en+2(yν) = en+1(xµ)en+1(yν) +
exµ+yν
√

2πn
[e−

(x′+µ′)2
2 F (y′ + ν′) + e−

(y′+ν′)2
2 F (x′ + µ′) +O(n−

1
2 )]

and similarly

en+2(xy)en+2(µν) = en+1(xy)en+1(µν) +
exy+µν
√

2πn
[e−

(x′+y′)2
2 F (µ′ + ν′) + e−

(µ′+ν′)2
2 F (x′ + y′) +O(n−

1
2 )]

We are going to come back to en+1(xy)en+1(νµ) later.

� Let

hn(x, y, ν, µ) =
(νµ)n+1en(xy) − (xy)

n+1en(νµ)

n!

Then

H̃n(x, y, νµ) =
(n + 2)en+2(xy)en+2(νµ)

fn+1(νµ)(x − ν)2(y − µ)2
Hn+2(x, y, ν, µ) −

νµen+1(xy)en+1(νµ)

fn+1(νµ)(x − ν)2(y − µ)2
Hn+1(x, y, ν, µ)

=
(x − ν)(y − µ)

fn+1(νµ)(x − ν)2(y − µ)2(xy − νµ)
[(n + 2)hn+2(x, y, ν, µ) − (νµ)hn+1(x, y, ν, µ)].

We dub J = (n + 2)hn+2(x, y, ν, µ) − (νµ)hn+1(x, y, ν, µ) and compute it separately.
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J = (n + 2)
(νµ)n+3en+2(xy) − (xy)

n+3en+2(νµ)

(n + 2)!
− (νµ)

(νµ)n+2en+1(xy) − (xy)
n+2en+1((νµ))

(n + 1)!

=
(νµ)n+3en+1(xy)

(n + 1)!
+
(xy)n+2(νµ)n+3

(n + 1)!(n + 2)!
−
(νµ)n+3en+1(xy)

(n + 1)!
−
(xy)n+3en+1(νµ)

(n + 1)!

−
(xy)n+3(νµ)n+2

(n + 1)!(n + 2)!
+
νµ(xy)n+2en+1(νµ)

(n + 1)!

=
(νµ − xy)(xy)n+2

(n + 1)!

(νµ)n+2

(n + 2)!
+
(xy)n+2(νµ − xy)

(n + 1)!
en+1(νµ)

= −
(xy − νµ)(xy)n+2

(n + 1)!
en+2(νµ)

⇒ H̃n(x, y, νµ) = −
(x − ν)(y − µ)

fn+1(νµ)(x − ν)2(y − µ)2
(xy)n+2

(n + 1)!
en+2(νµ).

�

(xy)n+2

(n + 1)!
en+2(νµ) = (n + 2)

(xy)n+2

(n + 2)!
en+2(νµ) =

= (n + 2)
exy−

c2

2

√
2πn
[1 +

1
√
n
(2c − cd +

c3

3
) +O(n−1)]eνµ[F (a) +

e−
a2

2

√
2πn
(
a2 + 2 − 3b

3
+ 2) +O(n−1)]

=

√
n

2π
exy+νµe−

(x′+y′)2
2 F (ν′ + µ′) + exy+νµO(1) =

√
n

2π
exy+νµ[e−

(x′+y′)2
2 F (ν′ + µ′) +O(n−

1
2 )].

�

1 − (x − ν)(y − µ) = 1 − [(
√
n + x′) − (

√
n + ν′)][(

√
n + y′) − (

√
n + µ′)] = 1 − (x′ − ν′)(y′ − µ′).
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�

⇒ en+2(xµ)en+2(yν) − [1 − (x − ν)(y − µ)]en+2(xy)en+2(νµ) =

= en+1(xµ)en+1(yν) − [1 − (x
′
− ν′)(y′ − µ′)]en+1(xy)en+1(νµ)

+
exµ+yν
√

2πn
[e−

(x′+µ′)2
2 F (y′ + ν′) + e−

(y′+ν′)2
2 F (x′ + µ′) +O(n−

1
2 )]

−[1 − (x′ − ν′)(y′ − µ′)]
exy+µν
√

2πn
[e−

(x′+y′)2
2 F (µ′ + ν′) + e−

(µ′+ν′)2
2 F (x′ + y′) +O(n−

1
2 )].

�

en+1(xy)en+1(νµ) = exy+νµ[F (a) +
e−

a2

2

√
2πn
(
a2 + 2 − 3b

3
+ 1) +O(n−1)] ×

×[F (c) +
e−

c2

2

√
2πn
(
c2 + 2 − 3d

3
+ 1) +O(n−1)]

= exy+νµ[F (x′ + y′)F (ν′ + µ′) +O(n−
1
2 )]

= e2n+
√
n(x′+y′+ν′+µ′)ex

′y′+ν′µ′
[F (x′ + y′)F (ν′ + µ′) +O(n−

1
2 )].

As boring and incoherent as that might have been, we now have all the terms for the reduce
kernel and we are ready to substitute them in the following expression.

κ(n)(x, y∣ν,µ) =
π−1(n + 2)

fn+1(νµ)(x − ν)2(y − µ)2

⎡
⎢
⎢
⎢
⎢
⎣

en+2(xµ)en+2 − [1 − (x − ν)(y − µ)]en+2(xy)en+2(νµ) +Hn+2(x, y, ν, µ)

⎤
⎥
⎥
⎥
⎥
⎦

−
π−1(νµ)

fn+1(νµ)(x − ν)2(y − µ)2

⎡
⎢
⎢
⎢
⎢
⎣

en+1(xµ)en+1 − [1 − (x − ν)(y − µ)]en+1(xy)en+1(νµ) +Hn+1(x, y, ν, µ)

⎤
⎥
⎥
⎥
⎥
⎦
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⇒ πKn(x, y∣ν,µ) =
n + 2 − νµ

fn+1(νµ)(x′ − ν′)2(y′ − µ′)2

⎡
⎢
⎢
⎢
⎢
⎣

en+1(xµ)en+1(yν) − [1 − (x
′
− ν′)(y′ − µ′)]en+1(xy)en+1(νµ)

⎤
⎥
⎥
⎥
⎥
⎦

(i)

+
n + 2

fn+1(νµ)(x′ − ν′)2(y′ − µ′)2

⎧⎪⎪
⎨
⎪⎪⎩

exµ+yν
√

2πn
[e−

(x′+µ′)2
2 F (y′ + ν′) + e−

(y′+ν′)2
2 F (x′ + µ′)]

−[1 − (x′ − ν′)(y′ − µ′)]
exy+µν
√

2πn
[e−

(x′+y′)2
2 F (µ′ + ν′) + e−

(µ′+ν′)2
2 F (x′ + y′)]

⎫⎪⎪
⎬
⎪⎪⎭

(ii)

−
(x′ − ν′)(y′ − µ′)

fn+1(νµ)(x′ − ν′)2(y′ − µ′)2

√
n

2π
exy+νµe−

(x′+y′)2
2 F (ν′ + µ′) (iii)

+
(n + 2)O(n−1)

fn+1(νµ)(x′ − ν′)2(y′ − µ′)2

⎡
⎢
⎢
⎢
⎢
⎣

exµ+yν − exy+µν
√

2π
− [1 − (x′ − ν′)(y′ − µ′)]

exy+µν
√

2π

⎤
⎥
⎥
⎥
⎥
⎦

. (iv)

Note that the terms exy+νµ and exµ+yν are dependent on n, since x, y, ν, µ scale as
√
n, which means the

reduced kernel on each own blows up as n →∞, but we are not yet ready for the whole expression. So
let κ̃(n) be the reduced reduced kernel such that:

κ(n)(x, y) = en+
√
n(x′+y′)κ̃(n)(x, y).

This definition is restricted only to the calculation of the edge limit, since it makes no sense in any other
context. This was done so we can take n→∞ independently for K̃n(x, ȳ).

Now we are going to compute (i) − (iv), but for K̃n(x, y) = e
−n−

√
n(x′+y′)Kn(x, y).

(i) �

n + 2 − νµ

fn+1(νµ)
e−n−

√
n(x′+y′)

=
−
√
n(ν′ + µ′) + 2 − ν′µ′

√
n
2π
eνµ−

a2

2 [1 − a
√

2πe
a2

2 F (a) +O(n−
1
2 )]

e−n−
√
n(x′+y′)

=
−
√

2π(ν′ + µ′)e
(ν′+µ′)2

2 −ν′µ′ +O(n−
1
2 )

1 −
√

2π(ν′ + µ′)e
(ν′+µ′)2

2 F (ν′ + µ′) +O(n−
1
2 )

e−2n−
√
n(x′+y′+ν′+µ′).

�

en+1(xµ)en+1(yν) − [1 − (x
′
− ν′)(y′ − µ′)]en+1(xy)en+1(νµ) = e

2n+
√
n(x′+y′+ν′+µ′)

×

×

⎡
⎢
⎢
⎢
⎢
⎣

ex
′µ′+y′ν′F (x′ + µ′)F (y′ + ν′) − [1 − (x′ − ν′)(y′ − µ′)]ex

′y′+ν′µ′F (x′ + y′)F (ν′ + µ′) +O(n−
1
2 )

⎤
⎥
⎥
⎥
⎥
⎦

.

Since the primes are not needed anymore, we are dropping them.
By this I mean we change (x′, y′, µ′, ν′) back to (x, y, µ, ν).
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⇒ (i) =
−
√

2π(ν + µ)e
(ν+µ)2

2 −νµ +O(n−
1
2 )

[1 −
√

2π(ν + µ)e
(ν+µ)2

2 F (ν + µ) +O(n−
1
2 )](x − ν)2(y − µ)2

×

×

⎡
⎢
⎢
⎢
⎢
⎣

exµ+yνF (x + µ)F (y + ν) − [1 − (x − ν)(y − µ)]exy+νµF (x + y)F (ν + µ) +O(n−
1
2 )

⎤
⎥
⎥
⎥
⎥
⎦

n→∞
=

−
√

2π(ν + µ)e
(ν+µ)2

2 −νµ

[1 −
√

2π(ν + µ)e
(ν+µ)2

2 F (ν + µ)](x − ν)2(y − µ)2
×

×

⎡
⎢
⎢
⎢
⎢
⎣

exµ+yνF (x + y)F (ν + µ) − [1 − (x − ν)(y − µ)]exy+νµF (x + y)F (ν + µ)

⎤
⎥
⎥
⎥
⎥
⎦

=
−
√

2π(ν + µ)e
(ν+µ)2

2 exy

[1 −
√

2π(ν + µ)e
(ν+µ)2

2 F (ν + µ)](x − ν)2(y − µ)2
×

×

⎡
⎢
⎢
⎢
⎢
⎣

e−(x−ν)(y−µ)F (x + µ)F (y + ν) − [1 − (x − ν)(y − µ)]F (x + y)F (ν + µ)

⎤
⎥
⎥
⎥
⎥
⎦

.

(ii)

(n + 2)e−n−
√
n(x′+y′)

fn+1(νµ)
√

2πn
=

(n + 2)e−n−
√
n(x′+y′)

√
n
2π
eνµ−

a2

2 [1 − a
√

2πe
a2

2 F (a) +O(n−
1
2 )]
√

2πn

=
e
(ν′+µ′)2

2 e−ν
′µ′ +O(n−1)

1 −
√

2π(ν′ + µ′)e
(ν′+µ′)2

2 F (ν′ + µ′) +O(n−
1
2 )

e−2n−
√
n(x′+y′+ν′+µ′).

Thus, once again reverting back to (x, y, ν, µ), we have:

⇒ (ii) =
e
(ν+µ)2

2 exy +O(n−1)

[1 −
√

2π(ν + µ)e
(ν+µ)2

2 F (ν + µ) +O(n−
1
2 )](x − ν)2(y − µ)2

×

×

⎧⎪⎪
⎨
⎪⎪⎩

e−(x−ν)(y−µ)[e−
(x+µ)2

2 F (y + ν) + e−
(y+ν)2

2 F (x + µ)] −

−[1 − (x − ν)(y − µ)][e−
(x+y)2

2 F (µ + ν) + e−
(µ+ν)2

2 F (x + y)]

⎫⎪⎪
⎬
⎪⎪⎭
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n→∞
=

e
(ν+µ)2

2 exy

[1 −
√

2π(ν + µ)e
(ν+µ)2

2 F (ν + µ)](x − ν)2(y − µ)2
×

×

⎧⎪⎪
⎨
⎪⎪⎩

e−(x−ν)(y−µ)[e−
(x+µ)2

2 F (y + ν) + e−
(y+ν)2

2 F (x + µ)] −

−[1 − (x − ν)(y − µ)][e−
(x+y)2

2 F (µ + ν) + e−
(µ+ν)2

2 F (x + y)]

⎫⎪⎪
⎬
⎪⎪⎭

.

(iii) Similarly, this gives:

−
e
(ν+µ)2

2 exy

[1 −
√

2π(ν + µ)e
(ν+µ)2

2 F (ν + µ)](x − ν)2(y − µ)2
(x − ν)(y − µ)e−

(x+y)2
2 F (µ + ν)

and cancels out with a term from (ii).

(iv) �

(n + 2)O(n−1)

fn+1(νµ)
e−n−

√
n(x′+y′)

=
O(1)e−n−

√
n(x′+y′)

√
n
2π
eνµ−

a2

2 [1 − a
√

2πe
a2

2 F (a) +O(n−
1
2 )]

= O(n−
1
2 )
O(1)e−n−

√
n(x′+y′+µ′+ν′)

O(1) +O(n−
1
2 )

= O(n−
1
2 )e−n−

√
n(x′+y′+µ′+ν′).

�

exµ+yν − exy+µν
√

2π
− [1 − (x′ − ν′)(y′ − µ′)]

exy+µν
√

2π
= e−n−

√
n(x′+y′+µ′+ν′)O(1)

⇒ (iv) = O(n−
1
2 )

n→∞
= 0.

Altogether we have that

κ̃(edge)∞(x, y) =
1

π

e
(ν+µ)2

2 exy

[1 −
√

2π(ν + µ)e
(ν+µ)2

2 F (ν + µ)](x − ν)2(y − µ)2
×

×

⎧⎪⎪
⎨
⎪⎪⎩

−
√

2π(ν + µ)

⎡
⎢
⎢
⎢
⎢
⎣

e−(x−ν)(y−µ)F (x + µ)F (y + ν) − [1 − (x − ν)(y − µ)]F (x + y)F (ν + µ)

⎤
⎥
⎥
⎥
⎥
⎦

+e−(x−ν)(y−µ)[e−
(x+µ)2

2 F (y + ν) + e−
(y+ν)2

2 F (x + µ)] − [1 − (x − ν)(y − µ)]e−
(µ+ν)2

2 F (x + y)

−e−
(x+y)2

2 F (µ + ν)

⎫⎪⎪
⎬
⎪⎪⎭

.
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And now we can finally start computing the edge limit of the reduced kernel for D11 and D12.

Off-diagonal Overlaps

Remember that for the edge scaling limit we rescale the conditional overlaps by
√
n instead of n.

As Kn is the reduced kernel, the expression for the full kernel is:

K
(n)
12 (x, ȳ) =

ω(x, x̄∣ν, µ̄)

κ(n)(µ, ν̄∣ν, µ̄)
det
⎛
⎜
⎝

κ(n)(x, ȳ∣ν, µ̄) κ(n)(x, ν̄∣ν, µ̄)

κ(n)(µ, ȳ∣ν, µ̄) κ(n)(µ, ν̄∣ν, µ̄)

⎞
⎟
⎠

where
ω(x, ȳ∣ν, µ̄) = [1 + (x − ν)(ȳ − µ̄)]e−xȳ

Then

K
(n)
12 (x, ȳ) =

ω(x, x̄)

en+
√
n(µ′+ν̄′)κ̃(n)(µ, ν̄)

det
⎛
⎜
⎝

en+
√
n(x′+ȳ′)κ̃(n)(x, ȳ) en+

√
n(x′+ν̄′)κ̃(n)(x, ν̄)

en+
√
n(µ′+ȳ′)κ̃(n)(µ, ȳ) en+

√
n(µ′+ν̄′)κ̃(n)(µ, ν̄)

⎞
⎟
⎠

=
[1 − (x′ − ν′)(x̄′ − µ̄′)]e−∣x∣

2

en+
√
n(x+ȳ)

κ̃(n)(µ, ν̄)
det
⎛
⎜
⎝

κ̃(n)(x, ȳ) κ̃(n)(x, ν̄)

κ̃(n)(µ, ȳ) κ̃(n)(µ, ν̄)

⎞
⎟
⎠
.

Again from Theorem one, the expression for D
(n,k)
12 (λ(k)) is given by

D
(n,k)
12 (λ(k)) = −

e−∣λ1∣
2
−∣λ2∣

2

π
fn−1(λ1λ̄2)κ

(n−1)
(λ2, λ̄1) det

3≤i,j≤k
[K
(n−1)
12 (λi, λ̄j)].

Define L̃
(n)
12 (x, ȳ) to be

L̃
(n)
12 (x, ȳ) =

1 + (x′ − λ′1)(x̄
′ − λ̄′2)

κ̃(n)(λ2, λ̄1)
det
⎛
⎜
⎝

κ̃(n)(x, ȳ) κ̃(n)(x, λ̄1)

κ̃(n)(λ2, ȳ) κ̃(n)(λ2, λ̄1)

⎞
⎟
⎠
.

Then

det
3≤i,j≤k

[K
(n−1)
12 (λi, λ̄j)] =

k

∏
s=3

e−∣λs∣
2

en+
√
n(λ′s+λ̄

′
s) det

3≤i,j≤k
[L̃
(n−1)
12 (λi, λ̄j)]

=
k

∏
s=3

e−λ
′
sλ̄
′
s det
3≤i,j≤k

[L̃
(n−1)
12 (λi, λ̄j)]

and last but not least

73



e−∣λ1∣
2
−∣λ2∣

2

π
κ(n−1)(λ2, λ̄1)fn−1(λ1λ̄2) =

e−∣λ1∣
2
−∣λ2∣

2

π
en+

√
n(λ′2+λ̄

′
1)κ̃(n−1)(λ2, λ̄1)

√
n

2π
eλ1λ̄2−

(λ′1+λ̄
′
2)

2

2 ×

×[1 −
√

2π(λ′1 + λ̄
′
2)e

(λ′1+λ̄
′
2)

2

2 F (λ′1 + λ̄
′
2) +O(n

− 1
2 )]

=

√
n

2π

e−(λ
′
1−λ

′
2)(λ̄

′
1−λ̄

′
2)

π
e−λ

′
2λ̄
′
1e−

(λ′1+λ̄
′
2)

2

2 κ̃(n−1)(λ2, λ̄1) ×

×[1 −
√

2π(λ′1 + λ̄
′
2)e

(λ′1+λ̄
′
2)

2

2 F (λ′1 + λ̄
′
2) +O(n

− 1
2 )].

So by dropping the primes this time for good, rescaling by
√
n and taking n→∞ we finally have

D
(edge,k)
12 (λ(k)) = lim

n→∞

1
√
n
D
(n,k)
12 (eiθ(

√
n +λ(k))) = lim

n→∞

1
√
n
D
(n,k)
12 (

√
n +λ(k))

= −
e−(λ1−λ2)(λ̄1−λ̄2)

π
√

2π
e−λ2λ̄1e−

(λ1+λ̄2)2
2 κ̃(edge)(λ2, λ̄1)

k

∏
s=3

e−∣λs∣
2

det
3≤i,j≤k

[L̃
(egde)
12 (λi, λ̄j)] ×

×[1 −
√

2π(λ1 + λ̄2)e
(λ1+λ̄2)2

2 F (λ1 + λ̄2)]

= −
e−

λ2
1
2 −

λ̄2
2
2

π
√

2π
κ̃(edge)(λ2, λ̄1)

k

∏
s=1

e−∣λs∣
2

[1 −
√

2π(λ1 + λ̄2)e
(λ1+λ̄2)2

2 F (λ1 + λ̄2)] det
3≤i,j≤k

[L
(egde)
12 (λi, λ̄j)]

where

L̃
(egde)
12 (λi, λ̄j) =

1 + (x − λ1)(x̄ − λ̄2)

κ̃(edge)(λ2, λ̄1)
det
⎛
⎜
⎝

κ̃(edge)(x, ȳ) κ̃(edge)(x, λ̄1)

κ̃(edge)(λ2, ȳ) κ̃(edge)(λ2, λ̄1)

⎞
⎟
⎠

and

κ̃(edge)(x, ȳ) =
1

π

e
(λ1+λ̄2)2

2 exȳ

[1 −
√

2π(λ1 + λ̄2)e
(λ1+λ̄2)2

2 F (λ1 + λ̄2)](x − λ1)2(ȳ − λ̄2)2
×

×

⎧⎪⎪
⎨
⎪⎪⎩

−
√

2π(λ1 + λ̄2)

⎡
⎢
⎢
⎢
⎢
⎣

e−(x−λ1)(ȳ−λ̄2)F (x + λ̄2)F (ȳ + λ1) − [1 − (x − λ1)(ȳ − λ̄2)]F (x + ȳ)F (λ1 + λ̄2)

⎤
⎥
⎥
⎥
⎥
⎦

+e−(x−λ1)(ȳ−λ̄2)[e−
(x+λ̄2)2

2 F (ȳ + λ1) + e
−
(ȳ+λ1)2

2 F (x + λ̄2)]

−[1 − (x − λ1)(ȳ − λ̄2)]e
−
(λ1+λ̄2)2

2 F (x + ȳ)

−e−
(x+ȳ)2

2 F (λ1 + λ̄2)

⎫⎪⎪
⎬
⎪⎪⎭

.
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In particular for k = 2 we have that

D
(edge,2)
12 (λ(2)) = −

e−
λ2
1
2 −

λ̄2
2
2

π
√

2π
K̃∞(λ2, λ̄1)

2

∏
s=1

e−∣λs∣
2

[1 −
√

2π(λ1 + λ̄2)e
(λ1+λ̄2)2

2 F (λ1 + λ̄2)]

= −
1

π2

e−∣λ1−λ2∣
2

√
2π(x − λ1)2(ȳ − λ̄2)2

×

×

⎧⎪⎪
⎨
⎪⎪⎩

−
√

2π(λ1 + λ̄2)

⎡
⎢
⎢
⎢
⎢
⎣

e∣λ1−λ2∣
2

F (λ2 + λ̄2)F (λ̄1 + λ1) − [1 + ∣λ1 − λ2∣
2
)]F (λ2 + λ̄1)F (λ1 + λ̄2)

⎤
⎥
⎥
⎥
⎥
⎦

+e∣λ1−λ2∣
2

[e−
(λ2+λ̄2)2

2 F (λ̄1 + λ1) + e
−
(λ̄1+λ1)2

2 F (λ2 + λ̄2)]

−[1 + ∣λ1 − λ2∣
2
]e−

(λ1+λ̄2)2
2 F (λ2 + λ̄1) − e

−
(λ2+λ̄1)2

2 F (λ1 + λ̄2)

⎫⎪⎪
⎬
⎪⎪⎭

.

Diagonal Overlaps:

For the diagonal overlaps we have from Theorem 1

D
(n,k)
11 (λ(k)) =

fn−1(∣λ1∣
2)

π
e−∣λ1∣

2

det
2≤i,j≤k

[K
(n−1)
11 (λi, λ̄j)].

Then

D
(edge,k)
11 (λ(k)) = lim

n→∞

1
√
n
D
(n,k)
11 (eiθ(

√
n +λ(k))) = lim

n→∞

1
√
n
D
(n,k)
11 (

√
n +λ(k))

= lim
n→∞

√
n

2π

eλ1λ̄1−
(λ′1+λ̄

′
1)

2

2 [1 −
√

2π(λ′1 + λ̄
′
1)e

(λ′1+λ̄
′
1)

2

2 F (λ′1 + λ̄
′
1) +O(n

− 1
2 )]

√
nπ

e−∣λ1∣
2

×

×
k

∏
s=2

e−λ
′
sλ̄
′
s det
2≤i,j≤k

[L̃
(n−1)
11 (λi, λ̄j)]

(dropping primes) =
e−

(λ1+λ̄1)2
2

π
√

2π
[1 −
√

2π(λ1 + λ̄1)e
(λ1+λ̄1)2

2 F (λ1 + λ̄1)]
k

∏
s=2

e−∣λs∣
2

det
2≤i,j≤k

[L̃
(edge)
11 (λi, λ̄j)]

where
L̃
(n)
11 (x, ȳ) = (1 + ∣x − λ1∣

2
)κ̃(n−1)(x, ȳ∣λ1, λ̄1)

and
L̃
(edge)
11 (x, ȳ) = (1 + ∣x − λ1∣

2
)κ̃(edge)(x, ȳ∣λ1, λ̄1).

75



5 Conditioning on Determinantal and Pfaffian Point Processes

In this chapter we first consider determinantal point process on a countable set (to be concrete, on Z).
We show that the point process, conditioned on whether a finite subset of points are either occupied or
empty, remains a determinantal point process, and give a formula for the new kernel (see Theorem 2
below). We extend this to Pfaffian point process in Theorem 3, which I will not present yet, for it will
make little sense out of context. The proofs are elementary, and reduce to certain finite determinantal
and Pfaffian identities which we recall in an appendix. The derivation of these expressions comes from
standard conditioning through Bayes formula. Using this method it is not immediately clear that the
resulting point process is a determinantal one, so we use the determinantal identity first found in [21]
to rearrange the elements and produce an explicit expression for the new kernel. In section 5.1.1 we
work on discrete determinantal point processes and prove Theorem 2. In section 5.1.2 we do the same
work, but for discrete Pfaffian point processes, and prove Theorem 3, which can be seen as the natural
expansion of Theorem 2 for Pfaffians. In Section 5.2 we extend these results to the natural continuum
analogues for point processes on R, though for the time we have yet to explore the Pfaffian case. We
explore alternative proofs using of the modern point process techniques of Campbell and Palm measures
to state the results for conditioned processes and characterise processes via Laplace functionals, which
mesh well with the algebraic structure. This is on-going work. As a concrete example of the condition-
ing, we show in the final section that the complex Ginibre ensemble, conditioned to have k points at the
origin, remains determinantal and we give an explicit formula for the new kernel.

One of our hopes is that we will be able use this study to get some results on rigidity (see [7,16,22]
for reference). Say we have a point process on R and let (a, b) ∈ R be an interval. That point process
is called rigid, if by conditioning on everything outside the interval (a, b), we can determine the exact
number of particles inside (a, b). We hope we will be able to use our expressions for the kernels of
the conditioned determinantal point process to find under which circumstance a determinantal p.p. has
the rigidity property.finally we give an example of conditioning using the point process formed by the
eigenvalues on the complex Ginibre ensemble.

This chapter has little to nothing to do with overlaps and the previous chapters. It’s a tangent I

went on after coming across a determinantal identity while we were computing D
(n,3)
12 (λ1, λ2, λ3) in two

different ways. Remember that from Theorem 1 we have

D
(n,k)
12 (λ(k)) = −

e−∣λ1∣
2
−∣λ2∣

2

π2
fn−1(λ1λ̄2)κ

(n−1)
(λ̄1, λ2 ∣ λ1, λ̄2)

× det
3≤i,j≤k

(K
(n−1)
12 (λi, λ̄i, λj , λ̄j ∣ λ1, λ̄1, λ2, λ̄2))

where from (36) in Theorem 1 we know that K
(n−1)
12 itself is given by a 2x2 determinant

K
(n)
12 (x, x̄, y, ȳ ∣ u, ū, v, v̄) =

ω(x, x̄ ∣ u, v̄)

κ(n)(ū, v ∣ u, v̄)

×det(
κ(n)(ū, v ∣ u, v̄) κ(n)(ū, y ∣ u, v̄)

κ(n)(x̄, v ∣ u, v̄) κ(n)(x̄, y ∣ u, v̄)
) .

Without the use of transposition

T̂ f(λ1, λ̄1, λ2, λ̄2, . . .) = f(λ1, λ̄2, λ2, λ̄1, . . .),

at first in was not at all obvious that K
(n)
12 could be written as a 2x2 determinant, and heuristic compu-

tations of D
(n,k)
12 (λ(k)) yielded a determinant one size larger that in Theorem 1 and not in determinantal
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form. Turns out, that was because of this identity

RRRRRRRRRRRRR

a11 a12 a13
a21 a22 a23
a31 a32 a33

RRRRRRRRRRRRR

=
1

a11

RRRRRRRRRRRRRRRRRRRRRRRR

∣
a11 a12
a21 a22

∣ ∣
a11 a13
a21 a23

∣

∣
a11 a12
a31 a32

∣ ∣
a11 a13
a31 a33

∣

RRRRRRRRRRRRRRRRRRRRRRRR

.

which can be generalised as follows:

Lemma: Suppose we have an n × n matrix with elements aij . For some 1 ≤ k ≤ n − 2, let K be

⎛
⎜
⎜
⎜
⎝

a11 a12 ⋯ a1k
a21 a22 .
⋮ ⋱ .
ak1 . . akk

⎞
⎟
⎟
⎟
⎠

=K.

Then the following identity is true for every 1 ≤ k ≤ n − 2

RRRRRRRRRRRRRRRRRRRRRRRRRRR

a11 a12 ⋯ a1k ⋯ a1n
a21 a22 .
⋮ ⋱ . ⋮

ak1 . . akk
⋮ ⋱

an1 ⋯ ann

RRRRRRRRRRRRRRRRRRRRRRRRRRR

=
1

∣K ∣
n−k−1

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRR

K a1,k+1
.
.

ak+1,1 ... ak+1,k+1

RRRRRRRRRRRRRRRRRR

...

RRRRRRRRRRRRRRRRRR

K a1,n
.
.

ak+1,1 ... ak+1,n

RRRRRRRRRRRRRRRRRR
. .
. .

RRRRRRRRRRRRRRRRRR

K a1,k+1
.
.

an,1 ... an,k+1

RRRRRRRRRRRRRRRRRR

...

RRRRRRRRRRRRRRRRRR

K a1,n
.
.

an,1 ... ann

RRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

.

where K is a k×k matrix, the large determinat is of size (n−k)×(n−k), and its elements are (k+1)×(k+1)
determinants of matrices comprised by the matrix K by a the row (αh,j)

k+1
j=1 and a column (αi,g)

k+1
i=1 , for

k + 1 ≤ h, g ≤ n. We have re-written an n × n determinant as a ratio of an (n − k) × (n − k) determinant
with (k + 1) × (k + 1) determinants as elements, over a k × k determinant to the power on − k − 1.

Proof of this Lemma is in the appendix.

What we did was proceed to used this identity to find explicit formulas for the kernels of determi-
nant and Pfaffian point process, conditioned on having particles at certain points.

Random Point Processes: A small introduction on the random p.p. we will be working with. Nothing
fancy, just some basic information.

Let X be either Z, N, R or C. A locally finite collection of points X in X is called a point configu-
ration. The set of all point configurations in X is denoted by Conf(X). A random point process in X is a
probability measure on Conf(X). Under mild conditions on the process (reference Borodin), a sequence
of symmetric measures (ρn)

∞

n=1 exists on Xn, where ρn is called the nth correlation measure.

In the discrete cases of Z or N, the probabilistic meaning of the nth correlation function is:

ρn(x1, x2, ..., xn) = Pr{there exists a particle in each point xi}.

If X = R, then ρn is the density function of the probability of finding particles in each of the infinitesimal
intervals around xi:

ρn(x1, x2, ..., xn)dx1dx2...dxn = Pr{there exists a particle in each of the intervals (xi, xi + dxi)}.
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Suppose we have a point process P on X, such that all the correlation functions exist. The point
process P is called determinantal if there exist a function K ∶ X ×X→ R (or C) such that

ρn(x1, x2...xn) = det
1≤i,j≤n

[K(xi, xj)].

Similarly, a point process P is called a Pfaffian if the correlation functions are given by

ρn(x1, x2...xn) = pf
1≤i,j≤n

[K(xi, xj)]

where this time

K(x, y) =
⎛
⎜
⎝

K11(x, y) K12(x, y)

K21(x, y) K22(x, y)

⎞
⎟
⎠

and K(x, y) is antisymmetric.

Theorem 2: Suppose we have a discrete point process like above. Then if we condition on any fi-
nite number k of occupied and unoccupied points, say at x1, x2, . . . , xk, we still get a determinantal p.p.
with kernel K̃(xi, xj) given by

RRRRRRRRRRRRRRRRRRRRRRR

Dk
K(x1, xj)

⋮

K(xk, x1)

K(xi, xj) . . .K(xi, xk) K(xi, xj)

RRRRRRRRRRRRRRRRRRRRRRR

∣Dk ∣

where Dk is a k × k matrix, whose structure depends on the points conditioned. Specifically, Dk will
be the matrix (Dk)ij = K(xi, xj) for i ≠ j, (Dk)ii = K(xi, xi) if xi is conditioned to be occupied and
(Dk)ii =K(xi, xi) − 1 if xi is conditioned to be unoccupied. □

5.1 Discrete Point Processes

5.1.1 Determinantal Point Processes

Suppose we have a simple point processes on a discrete state space X, such as N or {1,2, ...,M}, of which
all the correlation functions exist. Let there be a kernel K ∶ X ×X → R or C such that the correlation
functions are given by

ρn(x1, x2, ..., xn) = det
1≤i,j≤n

(K(xi, xj)).

In this section we are going to be using the determinantal identity to prove the following

Theorem 2: Suppose we have a discrete point process like above. Then if we condition on any fi-
nite number k of occupied and unoccupied points, say at x1, x2, . . . , xk, we still get a determinantal p.p.
with kernel K̃(xi, xj) given by
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RRRRRRRRRRRRRRRRRRRRRRR

Dk
K(x1, xj)

⋮

K(xk, x1)

K(xi, xj) . . .K(xi, xk) K(xi, xj)

RRRRRRRRRRRRRRRRRRRRRRR

∣Dk ∣

where Dk is a k × k matrix, whose structure depends on the points conditioned. Specifically, Dk will
be the matrix (Dk)ij = K(xi, xj) for i ≠ j, (Dk)ii = K(xi, xi) if xi is conditioned to be occupied and
(Dk)ii =K(xi, xi) − 1 if xi is conditioned to be unoccupied.

Proof:

We write Nxi = 1 if there exist a particle at point xi ∈X, and Nxi = 0 if not.
We also denote Jn = {1,2, ..., n}. For ease, when working with determinants, we will substitute K(xi, xj)
with aij .

1) We start by conditioning on 1 point.

P (Nxi = 1, Jn/{1}∣Nx1 = 1) =
P (Nxi = 1, Jn)

P (Nx1 = 1)
=

det
1≤i,j≤n

(K(xi, xj))

K(x1, x1)
.

Using the determinantal identities from 4.1, we have

det
1≤i,j≤n

(K(xi, xj)) =

RRRRRRRRRRRRRRRRRRRRRRR

a11 a12 . . a1n
a21 . .
. . .
. . .
an1 . . . ann

RRRRRRRRRRRRRRRRRRRRRRR

=
1

(a11)n−2

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

∣
a11 a12
a21 a22

∣ ⋯ ∣
a11 a1n
a21 a2n

∣

⋮ ⋱ ⋮

∣
a11 a12
an1 an2

∣ ⋯ ∣
a11 a1n
an1 ann

∣

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR(n−1)×(n−1)

⇒
det(K(xi, xj))

K(x1, x1)
=

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

∣
a11 a12
a21 a22

∣

a11
⋯

∣
a11 a1n
a21 a2n

∣

a11

⋮ ⋱ ⋮

∣
a11 a12
an1 an2

∣

a11
⋯

∣
a11 a1n
an1 ann

∣

a11

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR(n−1)×(n−1)

.

So by denoting

K̃(xi, xj) =

∣
K(x1, x1) K(x1, xj)
K(xi, x1) K(xi, xj)

∣

K(x1, x1)

we have
P (Nxi = 1, Jn/{1}∣Nx1 = 1) = det

2≤i,j≤n
(K̃(xi, xj))

and thus a new determinantal point process.
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2) For k < n, we now condition on k points

P (Nxi = 1, Jn/Jk ∣Nxi = 1, Jk) =
P (Nxi

= 1, Jn)

P (Nxi = 1, Jk)
=

det
1≤i,j≤n

(K(xi, xj))

det
1≤i,j≤k

(K(xi, xj))
.

Calling

det
1≤i,j≤k

(K(xi, xj)) =

RRRRRRRRRRRRR

a11 ⋯ a1k
⋮ ⋱ ⋮

ak1 ⋯ akk

RRRRRRRRRRRRR

= ∣Dk ∣

we write

det
1≤i,j≤n

(K(xi, xj)) =
1

∣Dk ∣
n−k−1

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRR

Dk
a1,k+1
.
.

ak+1,1 ... ak+1,k+1

RRRRRRRRRRRRRRRRRR

⋯

RRRRRRRRRRRRRRRRRR

Dk
a1n
.
.

ak+1,1 ... ak+1,n

RRRRRRRRRRRRRRRRRR

⋮ ⋱ ⋮

RRRRRRRRRRRRRRRRRR

Dk
a1,k+1
.
.

an1 ... an,k+1

RRRRRRRRRRRRRRRRRR

⋯

RRRRRRRRRRRRRRRRRR

Dk
a1n
.
.

an1 ... ann

RRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

.

So once again by defining a new kernel K̃(xi, xj) to be

RRRRRRRRRRRRRRRRRR

Dk
K(x1, xj)

.

.
K(xi, x1) ... K(xi, xj)

RRRRRRRRRRRRRRRRRR

∣Dk ∣

we get

P (Nxi = 1, Jn/Jk ∣Nxi = 1, Jk) = det
k+1≤i,j≤n

(K̃(xi, xj)).
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3) Conditioning on empty points

P (Nxi = 1, Jn/{1}∣Nx1 = 0) =
P (Nxi = 1, Jn/{1}) − P (Nxi = 1, Jn)

1 − P (Nx1 = 1)

=

RRRRRRRRRRRRR

a22 ⋯ a2n
⋮ ⋱ ⋮

an2 ⋯ ann

RRRRRRRRRRRRR

−

RRRRRRRRRRRRRRRRRR

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋱ ⋮

an1 an2 ⋯ ann

RRRRRRRRRRRRRRRRRR

1 − a11

=

RRRRRRRRRRRRRRRRRRRRRRR

a11 − 1 a12 . . a1n
a21 . .
. . .
. . .
an1 . . . ann

RRRRRRRRRRRRRRRRRRRRRRR

a11 − 1

=
1

(a11)n−1

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

∣
a11 − 1 a12
a21 a22

∣ ⋯ ∣
a11 − 1 a1n
a21 a2n

∣

⋮ ⋱ ⋮

∣
a11 − 1 a12
an1 an2

∣ ⋯ ∣
a11 − 1 a1n
an1 ann

∣

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

=

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

∣
a11 − 1 a12
a21 a22

∣

a11 − 1
⋯

∣
a11 − 1 a1n
a21 a2n

∣

a11 − 1

⋮ ⋱ ⋮

∣
a11 − 1 a12
an1 an2

∣

a11 − 1
⋯

∣
a11 − 1 a1n
an1 ann

∣

a11 − 1

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

= det
2≤i,j≤n

(K̃(xi, xj))

where

K̃(xi, xj) =

∣
a11 − 1 a1j
ai1 aij

∣

a11 − 1
.

4) Let’s see how this works for 2 unoccupied points

P (Nxi = 1, Jn/J2∣Nxi = 0, J2) =
P (Nxi

= 1, Jn/J2 & Nxi = 0, J2)

P (Nxi = 0, J2)

=
P (Nxi = 1, Jn/J2) − P (Nxi = 1, Jn/{1}) − P (Nxi = 1, Jn/{2}) + P (Nxi = 1, Jn)

1 − P (Nx1 = 1) − P (Nx2 = 1) + P (Nxi = 1, J2)
.
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In terms of determinants

numerator =

RRRRRRRRRRRRRRRRRRRRRRR

a11 a12 . . a1n
a21 . .
. . .
. . .
an1 . . . ann

RRRRRRRRRRRRRRRRRRRRRRR

−

RRRRRRRRRRRRRRRRRRRRRRR

a11 a13 . . a1n
a31 . .
. . .
. . .
an1 . . . ann

RRRRRRRRRRRRRRRRRRRRRRR

−

RRRRRRRRRRRRRRRRRRRRRRR

a22 a23 . . a1n
a32 . .
. . .
. . .
an1 . . . ann

RRRRRRRRRRRRRRRRRRRRRRR

+

RRRRRRRRRRRRRRRRRRRRRRR

a33 a34 . . a1n
a43 . .
. . .
. . .
an1 . . . ann

RRRRRRRRRRRRRRRRRRRRRRR

=

RRRRRRRRRRRRRRRRRRRRRRR

a11 a12 . . a1n
a21 a22 − 1 .
. . .
. . .
an1 . . . ann

RRRRRRRRRRRRRRRRRRRRRRR

−

RRRRRRRRRRRRRRRRRRRRRRR

a22 − 1 a23 . . a1n
a32 . .
. . .
. . .
an1 . . . ann

RRRRRRRRRRRRRRRRRRRRRRR

=

RRRRRRRRRRRRRRRRRRRRRRR

a11 − 1 a12 . . a1n
a21 a22 − 1 .
. . .
. . .
an1 . . . ann

RRRRRRRRRRRRRRRRRRRRRRR

=
1

∣
a11 − 1 a12
a21 a22 − 1

∣

n−3

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRR

a11 − 1 a12 a13
a21 a22 − 1 a23
a31 a32 a33

RRRRRRRRRRRRR

⋯

RRRRRRRRRRRRR

a11 − 1 a12 a1n
a21 a22 − 1 a2n
a31 a32 a3n

RRRRRRRRRRRRR

⋮ ⋱ ⋮

RRRRRRRRRRRRR

a11 − 1 a12 a13
a21 a22 − 1 a23
an1 an2 an3

RRRRRRRRRRRRR

⋯

RRRRRRRRRRRRR

a11 − 1 a12 a1n
a21 a22 − 1 a2n
an1 an2 ann

RRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR(n−2)×(n−2)

.

denominator = 1 − a11 − a22 + ∣
a11 a12
a21 a22

∣

= ∣
a11 − 1 a12
a21 a22 − 1

∣ .

Introducing new notation: bij = aij − 1
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By setting

K̃(xi, xj) =

RRRRRRRRRRRRR

b11 a12 a1j
a21 b22 a2j
ai1 ai2 aij

RRRRRRRRRRRRR

∣
b11 a12
a21 b22

∣

we have
P (Nxi = 1, Jn/J2∣Nxi = 0, J2) = det

3≤i,j≤n
(K̃(xi, xj)).

5) Lemma 5.1.1: The following identity holds true:

P (Nxi = 1, Jn/Jk & Nxi = 0, Jk) = (−1)k

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

b11 a12 ⋯ a1k a1,k+1 ⋯ a1n
a21 b22 .
⋮ ⋱ . ⋮

ak1 . . bkk
ak+1,1 ak+1,k+1
⋮ ⋱

an1 ⋯ ann

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

.

(Proof in the appendix)

Remark: For k = n we have

P (Nxi
= 0, Jn) = (−1)n det(K − I) = det(I −K)

where Kij =K(xi, xj) = aij .

6) Call P (Nxi = 0, Jk) = ∣Dk ∣.

Then

P (Nxi = 1, Jn/Jk ∣Nxi = 0, Jk) =
P (Nxi = 1, Jn/Jk & Nxi = 0, Jk)

P (Nxi = 0, Jk)

=

(−1)k

RRRRRRRRRRRRRRRRRRRRRRRRRRR

Dk
a1,k+1
.
.

⋯

.

.

a1n
.
.

ak+1,1 ... ak+1,k+1
⋮ ⋱

an1 ⋯ ann

RRRRRRRRRRRRRRRRRRRRRRRRRRR

(−1)k ∣Dk ∣
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=
1

∣Dk ∣
n−k

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRR

Dk
a1,k+1
.
.

ak+1,1 ... ak+1,k+1

RRRRRRRRRRRRRRRRRR

⋯

RRRRRRRRRRRRRRRRRR

Dk
a1n
.
.

ak+1,1 ... ak+1,n

RRRRRRRRRRRRRRRRRR

⋮ ⋱ ⋮

RRRRRRRRRRRRRRRRRR

Dk
a1,k+1
.
.

an1 ... an,k+1

RRRRRRRRRRRRRRRRRR

⋯

RRRRRRRRRRRRRRRRRR

Dk
a1n
.
.

an1 ... ann

RRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR(n−k)×(n−k)

= det
k+1≤i,j≤n

(K̃(xi, xj))

where, similarly with before, K̃(xi, xj) is given by

RRRRRRRRRRRRRRRRRR

Dk
K(x1, xj)

.

.
K(xi, x1) ... K(xi, xj)

RRRRRRRRRRRRRRRRRR

∣Dk ∣
.

7) Conditioning on any mixture of occupied and unoccupied points still produces a determinantal point
process with a similar kernel, where Dk will be the matrix (Dk)ij = K(xi, xj) for i ≠ j, (Dk)ii =

K(xi, xi) if xi is conditioned to be occupied and (Dk)ii = K(xi, xi) − 1 if xi is conditioned to be
unoccupied.

□

5.1.2 Pfaffian Point Processes

Pfaffian Identity

We start by finding an analogue of the determinantal identity, but for Pfaffians. This is pretty much a
bit more explained and denser version of Knuth’s first pages [21].

Following Knuth’s notation, for a set of indexes X and function f satisfying the skew symmetry

f(xy) = −f(yx) x, y ∈ X

we define the Pfaffian
f(x1x2...x2n) = ∑

µ∈M(a)

s(µ)f(y1y2)...f(y2n−1y2n)

where we sum over all the (2n− 1)!! perfect matching {y1, y2}∪ ...∪ {y2n−1y2n} of {1,2, ...,2n}, and s(µ)
is the sign of the permutation that takes (x1, x2, ..., x2n) to (y1, ..., y2n).
i.e.

f(xyzw) = f(xy)f(zw) − f(xz)f(yw) + f(xw)f(yz) = pf

⎛
⎜
⎜
⎜
⎝

0 f(xy) f(xz) f(xw)
−f(xy) 0 f(yz) f(yw)
−f(xz) −f(yz) 0 f(zw)
−f(xw) −f(yw) −f(zw) 0

⎞
⎟
⎟
⎟
⎠

.
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Another way of defining a Pfaffian is the following recursion

f(ϵ) = 1

f(x1x2...x2n) =
n

∑
j=2

f(x1xj)f(xj+1...x2nx2...xj)

where ϵ is the null word.

Also, for two arbitrary words a, b made up of indexes in X, i.e. a = x1x2...x2n, we define s(a, b) = 0
if either a or b has a repeated letter or if b contains a letter not in a. Otherwise we define s(a, b) to be
the sign of the permutation that takes a into the word b(a/b). For example, if a = x1x2x3x4x5x6x7x8
and b = x4x5x6, then b(a/b) would be x4x5x6(x1x2x3x7x8) and the sign s(a, b) of the permutation would
be -1, since we had 3 letters move to the left 3 times each.

Under this notation we have the following identity by Tanner

f(a)f(ab) =∑
y

s(b, xy)f(axy)f(ab/xy), for all x ∈ b.

The smaller non trivial case is for ∣b∣ = 4 and gives

f(a)f(axyzw) = f(axy)f(azw) − f(axz)f(ayw) + f(axw)f(ayz).

Now let a be a fixed word with ∣a∣ even, and define

g(b) =
f(ab)

f(a)
.

Tanner’s identity tells us that

g(b) =∑
y

s(b, xy)g(xy)g(b/xy), for all x ∈ b.

This is a generalization of the definition by recurrence. We already knew that g(b) is a Pfaffian, but now
we also know that all the identities for f also hold for g. In particular we have that

g(b) = ∑
µ∈M(a)

s(µ)g(y1y2)...g(y2n−1y2n)

⇒
f(ab)

f(a)
= ∑

µ∈M(a)

s(µ)
f(ay1y2)

f(a)
...
f(ay2n−1y2n)

f(a)

where we know for which matrix this is the Pfaffian of.

In other words we now have a similar way of writing a ratio of two Pfaffians as we do for determi-
nants.

Here we are going to take X to be N. Similarly to before, we dub f(i, j) = aij . i.e.

f(1234) = f(12)f(34) − f(13)f(24) + f(14)f(23) = a12a34 − a13a24 + a14a23

= pf

⎛
⎜
⎜
⎜
⎝

0 a12 a13 a14
−a12 0 a23 a24
−a13 −a23 0 a34
−a14 −a24 −a34 0

⎞
⎟
⎟
⎟
⎠

.
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In the examples we won’t reach double digits for it to be confusing.

The simplest non trivial example of how to use this identity is for ∣a∣=2 and ∣b∣=4.
Let’s take a = 12 and b = 3456.
Then

pf

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 a12 a13 a14 a15 a16
0 a23 a24 a25 a26

0 a34 a35 a36
0 a45 a46

0 a56
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

pf (
0 a12

0
)

=
f(123456)

f(12)
= g(3456) = pf

⎛
⎜
⎜
⎜
⎝

0 g34 g35 g36
0 g45 g46

0 g56
0

⎞
⎟
⎟
⎟
⎠

where

gij =
f(12ij)

f(ij)
=

pf

⎛
⎜
⎜
⎜
⎝

0 a12 a1i a1j
0 a2i a2j

0 aij
0

⎞
⎟
⎟
⎟
⎠

pf (
0 a12

0
)

.

Now we can move on to conditioning. We aim to prove a theorem on conditioning for the Pfaffian
point processes, analogue to Theorem 2 for the determinantal case.

Theorem 3: Suppose now we have a Pfaffian point processes on a discrete space, of which all the
correlation functions exist and are given by

ρn(x1, ..., xn) = pf
1≤i,j≤n

(K(xi, xj)).

Then the point process derived by conditioning on a finite number k of occupied and unoccupied points,
say x1, x2, . . . , xk is also Pfaffian with kernel given by

K̃(xi, xj) =
⎛
⎜
⎝

K̃11(xi, xj) K̃12(xi, xj)

K̃21(xi, xj) K̃22(xi, xj)

⎞
⎟
⎠

=
1

pf(JK)

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

pf

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

JK u
(k)
1 (xi) u

(k)
1 (xj)

0 K11(xi, xj)

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

pf

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

JK u
(k)
1 (xi) u

(k)
2 (xj)

0 K12(xi, xj)

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

pf

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

JK u
(k)
2 (xi) u

(k)
1 (xj)

0 K21(xi, xj)

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

pf

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

JK u
(k)
2 (xi) u

(k)
2 (xj)

0 K2(xi, xj)

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where
JK = det

1≤i,j≤k
Jij
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is a 2k × 2k antisymmetric matrix with each element given by a 2 × 2 matrix. Jij = K(xi, xj) for i ≠ j,
Jii =K(xi, xi) if we condition on xi being occupied and

Jii = C(xi, xi) =
⎛
⎜
⎝

0 K12(xi, xi) − 1

−K12(xi, xi) + 1 0

⎞
⎟
⎠

if xi is conditioned to be unoccupied.

Finally u
(k)
1 and u

(k)
2 are defined to be

u
(k)
1 (y) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

K11(x1, y)
K21(x1, y)
K11(x2, y)
K21(x2, y)

⋮

K11(xk, y)
K21(xk, y)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and u
(k)
2 (y) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

K12(x1, y)
K22(x1, y)
K12(x2, y)
K22(x2, y)

⋮

K12(xk, y)
K22(xk, y)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Proof: We start by introducing the following lemma.

Lemma 5.1.2: f(1,2...,2n) − f(3,4, ...,2n) ∶= f̃(2,2n) is the Pfaffian of the matrix

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 a12 − 1 a13 ⋯ a1,2n
0 a23

0 ⋮

⋱

0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

i.e.

pf

⎛
⎜
⎜
⎜
⎝

0 a12 a13 a14
0 a23 a24

0 a34
0

⎞
⎟
⎟
⎟
⎠

− pf (
0 a34

0
) = pf

⎛
⎜
⎜
⎜
⎝

0 a12 − 1 a13 a14
0 a23 a24

0 a34
0

⎞
⎟
⎟
⎟
⎠

.

(Proof in the appendix).

Remark: Similar identity holds for

f(1,2, ...,2n) − f(1,2, ...,2i,2i + 3, ...,2n) = pf(L)

where Lkm =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

f(km), (k,m) ≠ (2i + 1,2i + 2)

f(2i + 1,2i + 2) − 1, (k,m) = (2i + 1,2i + 2).

Suppose now we have a Pfaffian point processes on a discrete space, of which all the correlation functions
exist and are given by

ρn(x1, ..., xn) = pf
1≤i,j≤n

(K(xi, xj))

where K(x, y) is a 2 × 2 block given by

K(x, y) =
⎛
⎜
⎝

K11(x, y) K12(x, y)

K21(x, y) K22(x, y)

⎞
⎟
⎠
.

Now if

K(xi, xi) = (
0 a2i−1,2i

−a2i−1,2i 0
)
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define

C(xi, xi) = (
0 a2i−1,2i − 1

−a2i−1,2i + 1 0
) .

Note that for easier notation, we are going to be focusing on conditioning on empty points. If in-
stead we want to have particles at certain points, we just replace C(xi, xi) with K(xi, xi) as needed.

Lemma 5.1.3: P (Nxi = 1, Jn/Jk & Nxi = 0, Jk) is equal to

(−1)kpf

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C(x1, x1) K(x1, x2) ⋯ K(x1, xk) ⋯ K(x1, xn)

C(x2, x2)

⋱ ⋮ ⋮

C(xk, xk)

K(xk+1, xk+1)

⋱

K(xn, xn)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(Proof in the appendix).

Now we are going to start computing the kernel for the conditioned point processes.
We will need to use the aij , bij notation and revert back to the elements of K(x, y)
afterwards.

i)

P (Nxi = 1, Jn/{1}∣Nx1 = 0) =
P (Nxi = 1, Jn/{1} & Nx1 = 0)

P (Nx1 = 0)

=

pf

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C(x1, x1) K(x1, x2) ⋯ K(x1, xn)

K(x2, x2)

⋱ ⋮

K(xn, xn)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

pf(C(x1, x1))
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 b12 a13 a14 ⋯ a1,2n
0 a23 a24

0
⋱ ⋮

⋱

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

pf (
0 b12

0
)

=
f(1,2,3, ...,2n)

f(1,2)
= g(3, ...,2n)

= pf

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 g34 g35 ⋯ g3,2n
0 g45

0
⋱

0

⎞
⎟
⎟
⎟
⎟
⎟
⎠
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where, as seen before,

gij =
f(12ij)

f(ij)
=

pf

⎛
⎜
⎜
⎜
⎝

0 b12 a1i a1j
0 a2i a2j

0 aij
0

⎞
⎟
⎟
⎟
⎠

pf (
0 b12

0
)

.

Passing from the (aij , bij) to the Klm(xi, xj) notation.

Let’s take a23 ∼ (2,3).
To get (xi, xj), for an even index you divide by 2 and for an odd you add 1 and then divide by 2.

(2,3); (x1, x2)

For Klm it’s
(2,3); (even,odd); (2,1)

⇒ a23 =K21(x1, x2)

other examples

a14 = K12(x1, x2)

a56 = K12(x3, x3)

Now let’s take the following block

(
g35 g36
g45 g46

) =
1

pf (
0 b12

0
)

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

pf

⎛
⎜
⎜
⎜
⎝

0 b12 a13 a15
0 a23 a25

0 a35
0

⎞
⎟
⎟
⎟
⎠

pf

⎛
⎜
⎜
⎜
⎝

0 b12 a13 a16
0 a23 a26

0 a36
0

⎞
⎟
⎟
⎟
⎠

pf

⎛
⎜
⎜
⎜
⎝

0 b12 a14 a15
0 a24 a25

0 a45
0

⎞
⎟
⎟
⎟
⎠

pf

⎛
⎜
⎜
⎜
⎝

0 b12 a14 a16
0 a24 a26

0 a46
0

⎞
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
1

pf (
0 b12

0
)

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

pf

⎛
⎜
⎜
⎜
⎝

0 b12 K11(x1, x2) K11(x1, x3)
0 K21(x1, x2) K21(x1, x3)

0 K11(x2, x3)
0

⎞
⎟
⎟
⎟
⎠

pf

⎛
⎜
⎜
⎜
⎝

0 b12 K11(x1, x2) K12(x1, x3)
0 K21(x1, x2) K22(x1, x3)

0 K12(x2, x3)
0

⎞
⎟
⎟
⎟
⎠

pf

⎛
⎜
⎜
⎜
⎝

0 b12 K12(x1, x2) K11(x1, x3)
0 K22(x1, x2) K21(x1, x3)

0 K21(x2, x3)
0

⎞
⎟
⎟
⎟
⎠

pf

⎛
⎜
⎜
⎜
⎝

0 b12 K12(x1, x2) K12(x1, x3)
0 K22(x1, x2) K22(x1, x3)

0 K22(x2, x3)
0

⎞
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where b12 =K12(xi, xj).
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So by denoting

K̃(xi, xj) =
⎛
⎜
⎝

K̃11(xi, xj) K̃12(xi, xj)

K̃21(xi, xj) K̃22(xi, xj)

⎞
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

pf

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 b12 K11(x1, xi) K11(x1, xj)
0 K21(x1, xi) K21(x1, xj)

0 K11(xi, xj)
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

pf
⎛
⎜
⎝

0 b12
0

⎞
⎟
⎠

pf

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 b12 K11(x1, xi) K12(x1, xj)
0 K21(x1, xi) K22(x1, xj)

0 K12(xi, xj)
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

pf
⎛
⎜
⎝

0 b12
0

⎞
⎟
⎠

pf

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 b12 K12(x1, xi) K11(x1, xj)
0 K22(x1, xi) K21(x1, xj)

0 K21(xi, xj)
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

pf
⎛
⎜
⎝

0 b12
0

⎞
⎟
⎠

pf

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 b12 K12(x1, xi) K12(x1, xj)
0 K22(x1, xi) K22(x1, xj)

0 K22(xi, xj)
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

pf
⎛
⎜
⎝

0 b12
0

⎞
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

we have that P (Nxi = 1, Jn/{1}∣Nx1 = 0) = pf
2≤i,j≤n

(K̃(xi, xj)).

ii)

P (Nxi = 1, Jn/Jk ∣Nxi = 0, Jk) =
P (Nxi = 1, Jn/Jk & Nxi = 0, Jk)

P (Nxi = 0, Jk)

Here

P (Nxi = 0, Jk) = pf

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C(x1, x1) K(x1, x2) ⋯ K(x1, xk)

C(x2, x2)

⋱ ⋮

C(xk, xk)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= f(1,2, ...,2k) = pf(JK)

It’s worthwhile to note that the f we are using here is such that

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

f(2i − 1,2i) = b2i−1,2i, for i = 1, ..., k

f(i, j) = aij , otherwise.

Also the following results hold for the general case where, similarly to the determinantal point
processes, we condition on any mixture of occupied and unoccupied points. It will simply produce
an accordingly different matrix JK .
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Passing to Knuth’s notation, we have that

P (Nxi = 1, Jn/Jk ∣Nxi = 0, Jk) =
f(1,2, ...,2n)

f(1,2, .., .2k)
= g(2k + 1, ...,2n)

= pf

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 g2k+1,2k+2 g2k+1,2k+3 ⋯ g2k+1,2n

0 g2k+2,2k+3 ⋮

0

⋱ g2n−1,2n

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Let’s look at the block
⎛
⎜
⎝

g2k+1,2k+3 g2k+1,2k+4

g2k+2,2k+3 g2k+2,2k+4

⎞
⎟
⎠

which might as well be a random one.

We have
(2k + 1) + 1

2
= k + 1,

(2k + 3) + 1

2
= k + 2, so this block will be K̃(xk+1, xk+2).

Now, before this becomes an uncontrollable mess, we define

u
(k)
1 (y) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

K11(x1, y)
K21(x1, y)
K11(x2, y)
K21(x2, y)

⋮

K11(xk, y)
K21(xk, y)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and u
(k)
2 (y) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

K12(x1, y)
K22(x1, y)
K12(x2, y)
K22(x2, y)

⋮

K12(xk, y)
K22(xk, y)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Then for example

g2k+1,2k+3 =
f(1, ...,2k,2k + 1,2k + 3)

f(1, ...,2k)
=

1

pf(JK)
pf

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

JK u
(k)
1 (xk+1) u

(k)
1 (xk+2)

0 K11(xk+1, xk+2)

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

So by defining

K̃(xi, xj) =
⎛
⎜
⎝

K̃11(xi, xj) K̃12(xi, xj)

K̃21(xi, xj) K̃22(xi, xj)

⎞
⎟
⎠

=
1

pf(JK)

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

pf

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

JK u
(k)
1 (xi) u

(k)
1 (xj)

0 K11(xi, xj)

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

pf

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

JK u
(k)
1 (xi) u

(k)
2 (xj)

0 K12(xi, xj)

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

pf

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

JK u
(k)
2 (xi) u

(k)
1 (xj)

0 K21(xi, xj)

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

pf

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

JK u
(k)
2 (xi) u

(k)
2 (xj)

0 K2(xi, xj)

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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we have that

P (Nxi = 1, Jn/Jk ∣Nxi = 0, Jk) = pf
k+1≤i,j≤n

(K̃(xi, xj)).

□

Observation: Suppose we have a discrete Pfaffian point process with correlation functions ρn(x1, x2, ..., xn) =
pf

1≤i,j≤n
(K(xi, xj)). The kernels of all the known Pfaffian point processes have the following derived

form:

K(x, y) =
⎛
⎜
⎝

sgn(y − x)F ∣y − x∣ F ′(y − x)

−F ′(y − x) −F ′′(y − x)

⎞
⎟
⎠
=

⎛
⎜
⎜
⎝

sgn(y − x)F ∣y − x∣ d
dy
F (y − x)

d
dx
F (y − x) d2

dxdy
F (y − x)

⎞
⎟
⎟
⎠

.

The question is, do Pfaffian point processes derived by conditioning retain the above form? Well,
yes they do.

First note that K12(x, y) = −K21(y, x) ⇒ F ′(y − x) = F ′(x − y), thus F ′ is even and F ′′ is odd.
By condition on one point, say b, having a particle, we get a new Pfaffian p.p. with

ρ̃n(x1, x2,⋯, xn) = P (Nxi = 1, i = 1,⋯, n∣Nb = 1) = pf(K̃(xi, xj)

where the new kernel K̃ is give by

K̃(x, y) =
1

pf (
0 c

0
)

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

pf

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 c K11(b, x) K11b(y, )
0 K21(b, x) K21(b, y)

0 K11(x, y)
0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

pf

⎛
⎜
⎜
⎜
⎝

0 c K11(b, x) K12(b, y)
0 K21(b, x) K22(b, y)

0 K12(x, y)
0

⎞
⎟
⎟
⎟
⎠

pf

⎛
⎜
⎜
⎜
⎝

0 c K12(b, x) K11(b, y)
0 K22(b, x) K21(b, y)

0 K21(b, y)
0

⎞
⎟
⎟
⎟
⎠

pf

⎛
⎜
⎜
⎜
⎝

0 c K12(b, x) K12(b, y)
0 K22(b, x) K22(b, y)

0 K22(x, y)
0

⎞
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where c is a constant.

Without loss of generality, I’m going to assume x < b < y. Then, forgetting about the denomi-
nator, we have

�

K̃11(x, y) = cK11(x, y) −K11(b, x)K21(b, y) +K21(b, x)K11(b, y)

= sgn(y − x)cF ∣y − x∣ + sgn(x − b)F ∣x − b∣F ′(y − b) − F ′(x − b)sgn(y − b)F ∣y − b∣

= cF (y − x) − F (b − x)F ′(y − b) − F ′(b − x)F (y − b).

�

d

dy
K̃11(x, y) = cF

′
− F (b − x)F ′′(y − b) − F ′(b − xF ′(y − b)
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and

K̃12(x, y) = cF ′(y − x) + F ′′(y − b)sgn(x − b)F ∣x − b∣ − F ′(y − b)F ′(x − b)

= cF ′(y − x) − F (b − x)F ′′(y − b) − F ′(y − b)F ′(b − x)

=
d

dy
K̃11(x, y).

�

d

dx
K̃11(x, y) = −cF

′
(y − x) + F ′(b − x)F ′(y − b) + F ′′(b − x)F (y − b)

K̃21(x, y) = −cF ′(y − x) + F ′(x − b)F ′(y − b) − sgn(y − b)F ∣y − b∣F ′′(x − b)

= −cF ′(y − x) + F ′(b − x)F ′(y − b) + F ′′(b − x)F (y − b)

=
d

dx
K̃11(x, y).

�

d2

dxdy
K̃11(x, y) = −cF

′′
(y − x) + F ′(b − x)F ′′(y − b) + F ′′(b − x)F ′(y − b)

and

K̃22(x, y) = −cF ′′(y − x) + F ′(x − b)F ′′(y − b) − F ′(y − b)F ′′(x − b)

= −cF ′′(y − x) + F ′(b − x)F ′′(y − b) + F ′′(b − x)F ′(y − b)

=
d2

dxdy
K̃11(x, y).

As we can see, the kernel of the new Pfaffian process indeed retain the same form.

5.2 Continuous Determinantal Point Processes

Conditioning of point processes plays a key role in the papers on rigidity of random matrix ensem-
bles, see [7,16,22], where conditioning on an infinite region is done. Janossi densities, which lead
immediately to the kernels for processes conditioned on empty regions, are also well explored (see
[5] and [28]). There are also some papers on the use of determinantal point processes in statistical
modelling, where condtioning is discussed [26]. These papers seem to be for certain special classes
of kernels, or special matrix ensembles, and we do not know of results indicating the complete gen-
erality of conditioning, and there is also almost nothing for Pfaffian point processes. We hope our
results will lead to new kernels for conditioned particle systems, where coalescing and annihilating
systems naturally lead to Pfaffian point processes [29], [30].

First we will be needing a bit of theory which is taken directly from [13, Chapter 12]. The aim of
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this section is to see how Theorem 2 works for continuous determinantal point processes. and use
the determinantal identity to get similar expressions for the kernels of the conditioned p.p. Apart
from the fact that instead of conditioning on empty points, now we have to start conditioning on
empty sets which means we’ll come across Fredholm determinants, we also have to be very careful
about conditioning on occupied points, since these are null sets. Before anything else, we have to
make sure what we are doing even makes sense. We felt that the best way to go about it, is through
Palm measures [13, 31].

We start by building up the machinery we’ll be using and showing the connection between Palm
measures and conditioning. First step is to show that taking a random measure ξ on R with dis-
tribution P and conditioning on having a particle on a point x ∈ R, yields a Palm measure Px

(Lemma 5.2.1). In this section we will only work with determinantal point processes, but in the
future we want to extend those results to Pfaffian p.p. too. Next, in section 5.2.2., we take the
Laplace functional L[f] of a random measure with distribution P and define Lx[f], which is the
Laplace functional with respect to Px. By using Lemma 5.2.2., which offers a relation between L[f]
and Lx[f], and Proposition 5.2.5., which expresses the Laplace functional of a determinantal point
process as a Fredholm determinant, we where able to show that conditioning on a determinantal
p.p. having a particle at a point x, produces a new determinantal p.p. with kernel

Kx(y, z) =K(y, z) −
K(x, z)K(y, x)

K(x,x)
,

which correspond with our previous results. Conditioning on having particles on more that one
point can be done inductively the same way it was done in 5.1. Working with Palm measures is
convenient, but we also want to verify the results by conditioning on events of positive probability
and then taking the limit, as we do so in Lemmas 5.2.8, 5.2.9 and 5.2.10. This unifies the discrete
and continuous cases and give a common tool for both of them. Lemma 5.2.8 corresponds to the
main result of this section, which we have rigorously proven. As for Lemma 5.2.9, I believe the
expression for a kernel of a determinantal point process conditioned on not having any particles in
a set A, is already an established result. Lemma 5.2.10 yields what we believe to be the kernel of a
determinantal p.p. conditioned on both an empty set A and a particle at point x. Once again, this
can be inductively expanded to n particles at points x1, ..., xn. While there are strong indications
that is the correct kernel, it is just a naive Bayes computation and we still do not have a rigorous
proof. It is one of our future goals, alongside conditioning on having more than one particles on a
point x, which the Palm measures allow, and getting analogous results for the continuous Pfaffian
point processes.

5.2.1 Campbell and Palm Measures

Let ξ be a random measure with distribution P on a complete separable metric space X (in our case
X = R,C) and M̂(X) be the set of boundedly finite measures on X.

For A ∈ B(X) and U ∈ (M̂(X)), the Campbell measure can be introduced on the product space
W =X × M̂(X) to be the set function

CP (A ×U) = E(ξ(A)1U(ξ)) = ∫
U
∫
A
ξ(dx)P (dξ)

(Note: A more exact notation would be EP [ξ(ω)(A)1U(ξ(ω))])

Let BW be the Borel σ-field BX ×BM̂(X ). To be exact BW is generated by all A × U ∈ W with

A ∈BX and U ∈BM̂(X ).

Proposition 5.2.1:([13]) CP (A ×U) extends uniquely to a measure on BW .
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Proposition 5.2.2: For BW measurable functions g(x, ξ) that are either non-negative or CP inte-
grable

∫
W
g(x, ξ)CP (dx × dξ) = E(∫

X
g(x, ξ)ξ(dx))

= ∫
M̂(X)

∫
X
g(x, ξ)ξ(dx)P (dξ).

If the first moment measure exists, by taking U to be the whole of M̂(X) we get

CP (A × M̂(X)) = E(ξ(A)) =M(A).

In this case the previous lemma yields

E(∫
X
g(x)ξ(dx)) = ∫

X
g(x)∫

M̂(X)
ξ(dx)P (dξ) = ∫

X
g(x)M(dx).

For fixed U , CP (⋅×U) is absolutely continuous wrt M(⋅) (CP (⋅×U)≪M(⋅)), thus we can introduce

the Radon-Nikodym derivative as a BW measurable function Px(U) satisfying ∀A ∈BW

∫
A
Px(U)M(dx) = CP (A ×U).

Px(U) is defined uniquely up to a set of M -measure zero. Furthermore, the family of {Px(U)} can
be chosen so that

1) for each fixed x ∈BX , Px(U) is a probability measure on U ∈BM̂(X ).

2) for each fixed U ∈BM̂(X ), Px(U) is a measurable function of x, M-integrable on bounded subsets
of X.

Each such measure Px(⋅) is called a local Palm distribution and a family of such measures satisfying
1) and 2), a Palm kernel.

Proposition 5.2.3: Let ξ be a random measure for which the first moment measure exists. Then ξ
admits a family of local Palm distributions P⋅(⋅), which is defined uniquely up to a set of M-measure
zero and satisfy for each BX measurable functions g that is either non-negative or CP integrable

E(∫
X
g(x, ξ)ξ(dx)) = ∫

W
g(x, ξ)Cp(dx × dξ) = ∫

X
∫
M̂(X)

g(x, ξ)Px(dξ)M(dx).

Proof: For a function g(x, ξ) = 1A(x)1U(ξ) we have

E(∫
X
1A(x)1U(ξ)ξ(dx)) = ∫

X
∫
M̂(X)

1A(x)1U(ξ)Px(dξ)M(dx)

⇔ CP (A ×U) = ∫
A
Px(U)M(dx).

The rest of the proof is same as in the previous proposition.

□
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Now this is one of the most important results we will need, hidden as an exercise in [13], in a
version I don’t own. This is where we first connect Palm measures and conditioning.

Lemma 5.2.1: Let ξ be a random measure on R. If ρ1 is continuous, ρ2 is locally bounded
and Px(U) is continuous in x for some fixed U ∈BM̂(R)

lim
ϵ→0

P (ξ ∈ U ∣ξ(x − ϵ, x + ϵ) > 0) = Px(U).

Proof: We can assume wlog that x = 0 and call ξ(−ϵ, ϵ) = Zϵ. Then

P (ξ ∈ U ∣Zϵ > 0) =
P (ξ ∈ U,Zϵ > 0)

P (Zϵ > 0)
.

1) Denominator

We have P (Zϵ > 0) = E(1Zϵ>0). We can rewrite 1Zϵ>0 the following way

Zϵ = 1Zϵ>0 + (Zϵ − 1)1Zϵ>1

⇒ 1Zϵ>0 = Zϵ − (Zϵ − 1)1Zϵ>1

⇒ E(1Zϵ>0) = E(Zϵ) −E((Zϵ − 1)1Zϵ>1).

Also
(Zϵ − 1)1Zϵ>1 ≤ Zϵ(Zϵ − 1)⇒ E((Zϵ − 1)1Zϵ>1) ≤ E(Zϵ(Zϵ − 1)).

We have that

E(Zϵ(Zϵ − 1)) =

ϵ

∫
−ϵ

ϵ

∫
−ϵ

ρ2(z1, z2)dz1dz2 ≤ 4ϵ2M

for M > 0, since ρ2 is locally bounded.

⇒ E((Zϵ − 1)1Zϵ>1) = o(ϵ).

As for E(Zϵ)

E(Zϵ) =

ϵ

∫
−ϵ

ρ1(z)dz =

ϵ

∫
−ϵ

(ρ1(z) − ρ1(0))dz + 2ϵρ1(0)

≤ 2ϵ sup
∣z∣<ϵ

∣ρ1(z) − ρ1(0)∣ + 2ϵρ1(0) = 2ϵρ1(0) + o(ϵ).

Put together we get
P (Zϵ > 0) = E(1Zϵ>0) = 2ϵρ1(0) + o(ϵ).
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2) Numerator

P (ξ ∈ U,Zϵ > 0) = E(1U(ξ)1Zϵ>0) = E(1U(ξ)Zϵ) −E(1U(ξ)(Zϵ − 1)1Zϵ>1).

We already know that
E(1U(ξ)(Zϵ − 1)1Zϵ>1) = o(ϵ).

Let g(y, ξ) = 1U(ξ)1(−ϵ,ϵ)(y). Then

E(1U(ξ)Zϵ) = E(1U(ξ)ξ(−ϵ, ϵ)) = E(∫
R
1U(ξ)1(−ϵ,ϵ)(y)ξ(dy)) = E(∫

R
g(y, ξ)ξ(dy))

= ∫
R
g(y, ξ)Py(ξ)M(dy) =

ϵ

∫
−ϵ

∫
U
Py(ξ)ρ1(y)dy =

ϵ

∫
−ϵ

Py(U)ρ1(y)dy

= 2ϵρ1(0)P0(U) + o(ϵ)

⇒ lim
ϵ→0

P (ξ ∈ U ∣ξ(−ϵ, ϵ) > 0) = lim
ϵ→0

P (ξ ∈ U,Zϵ > 0)

P (Zϵ > 0)
= lim

ϵ→0

2ϵρ1(0)P0(U) + o(ϵ)

2ϵρ1(0) + o(ϵ)
= P0(U).

□

Note 1) This shows that if ξ is a simple point process in R then Px can be interpreted as the law of
ξ conditioned on x being a point in R.

Note 2) If x→ Px is continuous then the Palm measure is defined uniquely.

5.2.2 Laplace Functionals

Let L[f] be the Laplace functional of a random measure with distribution P and, for f ∈ BM+(X)
(non negative functions on X with bounded support), let L[f ;x] = Lx[f] be the the Laplace func-
tional derived from the Palm kernel

Lx[f] = ∫
M̂(X)

exp ( − ∫
X
f(y)ξ(dy))Px(dξ).

Lemma 5.2.2:([13]) Let ξ be a random measure with finite first moment measure M , and L[f] ,
Lx[f] the Laplace functionals associated with the original measure and it’s Palm measure respec-
tively. Then for f, g ∈ BM+(X), which is the set of non-negative measurable functions of bounded
support in X, the functionals L[f] and Lx[f] satisfy the relation

DgL[f] = lim
ϵ→0

L[f + ϵg] −L[f]

ϵ
= −∫

X
g(x)Lx[f]M(dx).

Example: Poisson Point Process.

Let µ be a Poisson p.p. on the real line with intensity λ. First we need the Laplace functional. We
take a simple function f = ∑

n
i=1 1Ai . Then
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L[f] = E(e− ∫ f(x)µ(dx)
) = E(e−∑

n
i=1 ciµ(Ai)) =

n

∏
i=1

E(e−ciµ(Ai))

=
n

∏
i=1

e−λ(Ai)(1−e
−ci)
= exp ( −

n

∑
i=1

−λ(Ai)(1 − e
−ci)) = exp ( −

n

∑
i=1
∫
Ai

(1 − e−ci)λ(dx))

= exp ( − ∫ (1 − e
−f(x)

)λ(dx))

because 1 − e−f(x) = 0 for x ∉
n

⋃
i=1
Ai.

For a general f ∈ BM+(R) we find fn ↗ f pointwise as n → ∞, by monotone convergence the-
orem µ(fn)→ µ(f) and by dominated convergence L[fn]→ L[f]

⇒ L[f] = exp ( − ∫ (1 − e
−f(x)

)λ(dx)).

The directional derivative is also given by

dL(f + ϵg)

dϵ

RRRRRRRRRRRϵ=0

= −L(f + ϵg)
d

dϵ
∫
X
(1 − e−f(x)−ϵg(x))λ(dx)

RRRRRRRRRRRϵ=0

= −L(f + ϵg)∫
X
g(x)(1 − e−f(x)−ϵg(x))λ(dx)

RRRRRRRRRRRϵ=0

= −L[f]∫
X
g(x)(1 − e−f(x))λ(dx)

⇒ Lx[f] = e−f(x)L[f] = Lδx[f]L[f]

which was expected. We get back the original process plus a deterministic point mass at x. By
Lδx[f] I mean the Laplace functional of a delta function. So we get back the Poisson process, plus
an extra deterministic point at x.

5.2.3 Higher Order Campbell and Palm measures

We define the second order Campbell measure on W (2) =X2 × M̂(X) by setting

C
(2)
P (A ×B ×U) = E(ξ(A)ξ(B)1U(ξ)).

Countable additivity works the same way as in the first order case. We are going to show that is
σ-finite. Let {Am ∶m ∈ N} be a cover of X, same as before. We define

Um1m2n = {ξ ∶ ξ(Am1)ξ(Am2) ≤ n}.

Then

C
(2)
P (Am1 ×Am2 ×Um1m2n) = ∫

Am1

∫

Am2

∫

Um1m2n

ξ(dx)ξ(dy)P (dξ) ≤ nP (Um1m2n).
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Now let (x, y, ξ) ∈ W (2). Since {Am ∶ m ∈ N} is a cover of X, ∃m1,m2 ∈ N such that x ∈ Am1 and
y ∈ Am1 . ξ is boundedly finite, thus ∃n such that
xi(Am1)ξ(Am2) ≤ n ⇒ (x, y, ξ) ∈ Am1Am2Um1m2n, which means those set s form a cover of W (2).

By Carathéodory’s Theorem the set function C
(2)
P extends uniquely to a measure on BW

(2)
=

BX ×BX ×BM̂(X ).

Of course the same way we can define

C
(n)
P (A1 ×A2⋯×An ×U) = E(ξ(A1)ξ(A2)⋯ξ(An)1U(ξ))

which extends uniquely to a σ-finite measure on BW
(n).

Lemma 5.2.3: ([13]) For BW
(n) measurable functions g(x1, x2,⋯, xn, ξ) that are either non-

negative or C
(n)
P integrable

∫
W (n)

g(x1, x2,⋯, ξ)C
(n)
P (dx1, dx2,⋯, dξ) = E(∫

Xn
g(x1, x2,⋯, ξ)dx1dx2⋯dξ)

= ∫
M̂(X)

∫
Xn

g(x1, x2,⋯, ξ)ξ(dx1)ξ(dx2)⋯P (dξ).

When the nth moment measure Mn exists, for U = M̂(X) we have

C
(n)
P (A1 ×A2⋯×An × M̂(X)) = E(ξ(A1)ξ(A2)⋯ξ(An)1) =Mn(A1 ×A2⋯×An).

Again, for a fixed U , C
(n)
P (⋅ × U) is absolutely continuous to Mn(⋅), so we can introduce the Palm

measure as the Radon-Nikodym derivative and the BX
n measurable function P (x1,⋯, xn, U) =

Px̄(U)

∫

A1

⋯∫

An

P (x1,⋯, xn, U)Mn(dx1,⋯, dxn) = C
(n)
P (A1 ×A2⋯×An ×U).

We also have the following:

Lemma 5.2.4: ([13]) Let ξ be a random measure for which the nth moment measure Mn exists.
Then same as before, but for a general n

E(∫
Xn

g(x̄, ξ)ξ(dx̄)) = ∫
W (n)

g(x̄, ξ)C
(n)
P (dx̄, dξ)

= ∫
Xn
∫
W (n)

g(x̄, ξ)Px̄(dξ)Mn(dx̄).

We have already defined DgL[f] to be the directional derivative in direction g and have proved that

DgL[f] = lim
ϵ→0

L[f + ϵg] −L[f]

ϵ
= −∫

X
g(x)Lx[f]M(dx).

Taking this one step further I claim

Proposition 5.2.4: Let f, g ∈ BM+(R). With the same conditions as before
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D
(2)
g,hL[f] = lim

ϵ→∞

DgL[f + ϵh] −DgL[f]

ϵ
= ∫

X
∫
X
g(x)h(y)Lxy[f]M2(dx1, dx2)

where Lxy[f] is the Laplace functional of f with respect to the second order Palm measure Pxy(dξ).

Proof: We first take a step back

DgL[f] = −∫
X
g(x)Lx[f]M(dx) = −∫

X
g(x)∫

M̂(X)
e−ξ(f)Px(dξ)M(dx)

= −∫
M̂(X)

∫
X
g(x)e−ξ(f)P (dξ)ξ(dx)

⇒DgL[f + ϵh] −DgL[f] = −∫
M̂(X)

∫
X
g(x)(e−ξ(f+ϵh) − e−ξ(f))P (dξ)ξ(dx).

We compute separately

e−ξ(f+ϵg) − e−ξ(f) = e−ξ(f)(e−ϵ ∫X h(y)ξ(dy)
− 1)

= e−ξ(f)(1 − ϵ∫
X
h(y)ξ(dy) + o(ϵ) − 1)

= −ϵe−ξ(f)ξ(h) + o(ϵ)

⇒ lim
ϵ→∞

DgL[f + ϵh] −DgL[f]

ϵ
= ∫

M̂(X)
∫
X
g(x)ξ(y)e−ξ(f)P (dξ)ξ(dx)

= ∫
M̂(X)

∫
X
∫
X
g(x)h(y)e−ξ(f)P (dξ)ξ(dx)ξ(dy)

= ∫
M̂(X)

∫
X
∫
X
g(x)h(y)e−ξ(f)Pxy(dξ)M2(dx, dy)

= ∫
X
∫
X
g(x)h(y)Lxy[f]M2(dx, dy).

□

Before continuing, we prove the following lemma

Lemma 5.2.5: Let {Xi}
∞
i=1, be a random p.p. on R with correlation functions ρn(x1, x2,⋯, xn).

Then for disjoint A,B ∈ R

∫
A
∫
B
ρ2(x, y)dxdy = E(N(A)N(B))

and

∫
A2
∫
B
ρ3(x, y, z)dxdydz = E[N(A)(N(A) − 1)N(B)]

where N(A) and N(B) are the number of particles in A and B respectively.

Proof: Let m(x) be the empirical density

m(x) =∑
i

δ(x − xi).
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Then by definition
ρ1(x) ∶= E(m(x))

and for x ≠ y

ρ2 ∶= E(m(x)m(y)) =∑
i≠j

E(δ(x − xi)δ(y − yi)).

�

∫
A
ρ1(x)dx = E(

∞

∑
i=1

1A(xi)) = E(N(A)).

�

∫
A2
ρ2(x, y)dxdy = (∑

i≠k

1A(xi)1A(xj)) = E(∑
i,j

1A(xi)1A(xj) −∑
i

1A(xi)).

= E[N(A)(N(A) − 1)]

� Similarly, ∫Ak ρk(x1, x2,⋯, xk)dx1dx2⋯dxk = E(Pk(N(A)), where Pk(x) is a monic polynomial
of degree k. Since for N(A) = 0,1,⋯, k − 1 we have Pk(N(A)) = 0, we can deduce that

Pk(N(A)) = N(A)(N(A) − 1)(N(A) − 2)⋯(N(A) − k + 1)

i)

∫
A
∫
B
ρ2(x, y)dxdy = ∫

A
∫
B
E(∑

i≠j

δ(x − xi)δ(y − xj))dxdy

= E(∑
i≠j

1A(xi)1B(xj)) = E(∑
i,j

1A(xi)1B(xj))

= E(N(A)N(B))

ii)

∫
A2
∫
B
ρ3(x, y, z)dxdydz = E( ∑

i≠j≠k≠i

1A(xi)1A(xj)1B(xk))

= E(∑
k

1B(xk)∑
i≠j

1A(xi)1A(xj))

= E(N(B)[∑
i,j

1A(xi)1A(xj) −∑
i

1A(xi)])

= E[N(A)(N(A) − 1)N(B)]

where we also used that for either i = k or j = k, 1A(xi)1A(xj)1B(xk) = 0.

□

Lemma 5.2.6: Assume we have a point process on R for which ρ1, ρ2, ρ3 are continuous and Pxy(U)
is continuous in both x and y for some fixed U . Then
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lim
ϵ→0

P (ξ ∈ U ∣ξ(x − ϵ, x + ϵ) > 0, ξ(y − ϵ, y + ϵ) > 0) = Px,y(U).

Proof: The proof is similar to that of lemma 4.4.1.

P (ξ ∈ U ∣ξ(x − ϵ, x + ϵ) > 0, ξ(y − ϵ, y + ϵ) > 0) =
P (ξ ∈ U,Zx

ϵ > 0, Zy
ϵ > 0)

P (Zx
ϵ > 0, Zy

ϵ > 0)

� Denominator

P (Zx
ϵ > 0, Zy

ϵ > 0) = E(1Zx
ϵ >0
1Zy

ϵ >0)

We once again use that 1Zx
ϵ >0 = Z

x
ϵ − (Z

x
ϵ − 1)1Zx

ϵ >1.

⇒ P (Zx
ϵ > 0, Zy

ϵ > 0) = E(Zx
ϵ Z

y
ϵ −Z

x
ϵ (Z

y
ϵ − 1)1Zy

ϵ >1 −Z
y
ϵ (Z

x
ϵ − 1)1Zx

ϵ >1 + (Z
x
ϵ − 1)(Zy

ϵ − 1)1Zx
ϵ >11Z

y
ϵ >1).

I claim that P (Zx
ϵ > 0, Zy

ϵ > 0) = 4ϵ2ρ2(x, y) + o(ϵ
2). Term by term, we have:

i)

Zx
ϵ (Z

y
ϵ − 1)1Zy

ϵ >1 ≤ Zx
ϵ Z

y
ϵ (Z

y
ϵ − 1)

and

E(Zx
ϵ Z

y
ϵ (Z

y
ϵ − 1)) = ∫

A2
ϵ

∫

Bϵ

ρ3(z1, z2, z3)dz1dz2dz3

≤ 8ϵ3 sup
A2

ϵ×Bϵ

∣ρ3∣

ii) Zy
ϵ (Z

x
ϵ − 1)1Zx

ϵ >1 and (Zx
ϵ − 1)(Zy

ϵ − 1)1Zx
ϵ >11Zy

ϵ >1 are similar to i).

iii)

E(Zx
ϵ Z

y
ϵ ) =

x+ϵ

∫
x−ϵ

y+ϵ

∫
y−ϵ

ρ2(z1, z2)dz1dz2

=

x+ϵ

∫
x−ϵ

y+ϵ

∫
y−ϵ

ρ2(z1, z2) − ρ(x, y)dz1dz2 + 4ϵ2ρ2(x, y)

= ≤ 4ϵ2 sup
(z1,z2)∈Aϵ×Bϵ

∣ρ2(z1, z2) − ρ2(x, y)∣ + 4ϵ2ρ2(x, y)

= 4ϵ2ρ2(x, y) + o(ϵ
2
)

� Numerator

Reminder that Zx
ϵ is just short for ξ(x − ϵ, x + ϵ), which just counts the number of points

in (x − ϵ, x + ϵ).
The numerator can now be written as follows:

E(1U(ξ),1Zx
ϵ >0,1Zx

ϵ >0) = E(1U(ξ)ξ(Aϵ)ξ(Bϵ)) + o(ϵ
2
).

102



We define g(z1, z2, ξ) = 1Aϵ(z1)1Bϵ(z2)1U(ξ). Then

E(1U(ξ)ξ(Aϵ)ξ(Bϵ)) = ∫

R2

∫

M̂(R)

g(z1, z2, ξ)P (dξ)ξ(dz1)ξ(dz2)

= ∫

R2

∫

M̂(R)

g(z1, z2, ξ)Pz1,z2(dξ)M(dz1 × dz2) = ∫
Aϵ

∫

Bϵ

Pz1,z2(U)M(dz1 × dz2)

=

x+ϵ

∫
x−ϵ

y+ϵ

∫
y−ϵ

ρ2(z1, z2)Pz1,z2(U)dz1dz2 = 4ϵ2ρ2(x, y)Px,y(U) + o(ϵ
2
)

Thus, by dividing both numerator and denominator by 4ϵ2 and sending ϵ→ 0, we get

lim
ϵ→0

P (ξ ∈ U ∣ξ(x − ϵ, x + ϵ) > 0, ξ(y − ϵ, y + ϵ) > 0) = Px,y(U).

□

Working the exact same way, but with Px instead of P , we can show

lim
ϵ→0

Px(ξ ∈ U ∣ξ(y − ϵ, y + ϵ) > 0) = (Px)y(U).

A question I have yet to answer is the following: What happens if we condition on having two
particles at the same point, ie

lim
ϵ→0

P (ξ ∈ U ∣ξ(x − ϵ, x + ϵ) > 1) =?

While I have yet to solve this, I present a rigid example in 5.2.6 as what happens if we condition
on having many particles at the origin, on the determinantal p.p. form by the eigenvalues of the
Ginibre ensemble.

5.2.4 Determinantal Point Processes

This is what everything has been leading to. For a determinantal point process on R with kernel
K, we will show that the Palm measure Px corresponds to a determinantal p.p. away from x, with

kernel Kx(y, z) =K(y, z) −
K(x,z)K(y,x)

K(x,x)
. Not only this is the result we got from Theorem 2, but we

also use the knowledge of what we expect the kernel to be, in order to prove it.

Proposition 5.2.5: Let f ∈ BM+(R) and K be a kernel such that TrK = ∫AK(x,x)dx is fi-
nite for all bounded sets A. The Laplace functionals for a determinantal point process ξ with kernel
K are given by the Fredholm determinants

L[f] = E(e−ξ(f)) = det(1 −M1−e−fK).

Proof: Let ξ =
∞

∑
i=1
δxi be a d.p.p. on R with correlation functions ρn, and ϕ be a function on R

s.t. the kernel ϕ(x)K(x, y) defines an operator MϕK in L2 and Tr(MϕK) is also finite. Then

E(
∞

∏
i=1

(1 − ϕ(xi)) = det(1 −MϕK).
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To show this we start with the identity

∞

∏
i=1

(1 − ϕ(xi)) = 1 −
∞

∑
i=1

ϕ(xi) + ∑
i1<i2

ϕ(xi1)ϕ(xi2) − ⋅ ⋅ ⋅ + ∑
i1<i2<⋅⋅⋅<ik

(−1)kϕ(xi1)ϕ(xi2) . . . ϕ(xik) + . . .

⇒ E(
∞

∏
i=1

(1 − ϕ(xi)) =
∞

∑
k=1

(−1)k

k!
∫…∫ ϕ(x1)ϕ(x2) . . . ϕ(xk)ρk(x1, x2, . . . , xk)

k

∏
i=1

dxi

= det(I −MϕK)

In order to get the Laplace funtional of a d.p.p. we set ϕ = 1 − ef and work as following

E(
∞

∏
i=1

(1 − ϕ(xi)) = E(e
∑
i
log(1−ϕ(xi)

) = E(e∫ log(1−ϕ(x)ξ(dx)
)

= E(e− ∫ f(x)ξ(dx)
) = E(e−ξ(f)) = L[f]

□

Lemma 5.2.7: Suppose the L2 operator Kt, where Kt(x, y) is a C1 function on t. Then

d

dt
det(I +Kt) = det(I +Kt)Tr(K̇t(1 +Kt)

−1).

(Proof in the appendix)

Using the previous lemma and
d

dϵ
M1−e−f−ϵg ∣

ϵ=0
=Mge−f

we get

−DgL[f] = det(1 −M1−e−fK)Tr(Mge−fK(1 −M1−e−fK)
−1).

Expanding the trace as an integral we have

−DgL[f] = det(1 −M1−e−fK)∫
R
g(x)e−f(x)K(1 −M1−e−fK)

−1
(x,x)dx

= ∫
R
g(x)det(1 −M1−e−fK)

e−f(x)

K(x,x)
K(1 −M1−e−fK)

−1
(x,x)K(x,x)dx

⇒ Lx[f] = det(1 −M1−e−fK)
e−f(x)

K(x,x)
K(1 −M1−e−fK)

−1
(x,x).

We predict that the new kernel will be

Kx(y, z) =K(y, z) −
K(x, z)K(y, x)

K(x,x)

which can be written as Kx =K − Fx, where Fx =K(x,x)
−1K(⋅, x)K(x, ⋅), showing it is a rank one

perturbation.
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But as seen in the Poisson p.p. example, the Palm measure also accounts for an extra deterministic
point mass on x, on which we conditioned. So we expect

Lx[f] = Lδx[f]det(1 −M1−e−f (K − Fx))

= e−f(x) det(1 −M1−e−fK)det (1 +M1−e−fFx(1 −M1−e−fK)
−1).

The operator M1−e−fFx(1 −M1−e−fK)
−1 is still rank one, which means it has only one eigenvalue

and thus the characteristic polynomial is of degree one.

The characteristic polynomial is given by

det(1 + zK) =
∞

∑
n=1

zn

n!
∫…∫ ρn(x1,⋯, xn)

n

∏
i=1

dxi.

Then for kernels of the formK = u○v, for z = 1 we get the Fredholm determinant det(1+u○v) = 1+∫ uv

Call 1 − ef = ϕ. We want to show that

1

K(x,x)
K(1 −MϕK)

−1
(x,x) = det(1 +MϕFx(1 −MϕK)

−1
).

First we rewrite the RHS, starting with writing down the kernel

MϕFx(1 −MϕK)
−1
(z,w) =

ϕ(z)

K(x,x)
K(z, x)∫ K(x, y)(1 −MϕKK)

−1
(y,w)dy

⇒ det(1 +MϕFx(1 −MϕK)
−1
) = 1 + ∫

ϕ(z)

K(x,x)
K(z, x)∫ K(x, y)(1 −MϕKK)

−1
(y, z)dydz.

It suffices to show that

K(1 −MϕK)
−1
(x,x) =K(x,x) + ∫ ϕ(z)K(z, x)∫ K(x, y)(1 −MϕKK)

−1
(y, z)dydz

which in operator language translates to

K(1 −MϕK)
−1
=K +K(1 −MϕK)

−1MϕK

on the diagonal. But these operators are equal in general:

K +K(1 −MϕK)
−1MϕK = K +K(1 −MϕK)

−1MϕK −K(1 −MϕK)
−1
+K(1 −MϕK)

−1

= K +K(1 −MϕK)
−1
(MϕK − 1) +K(1 −MϕK)

−1
=K(1 −MϕK)

−1

⇒ Lx[f] = e−f(x) det(1 −M1−e−fKx) = Lδx[f]det(1 −M1−e−fKx)

which means we have our kernel. We can get rid of the point mass at x by using test function f
that disappear on x, i.e. f(x) = 0⇒ ϕ(x) = 0.
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5.2.5 Conditioning

Now back to the old tricks.

Just like in the discrete case, we start by conditioning on having particles on certain points. The
difference is that in the continuous case that has probability zero, so we need to condition on a point
process having a particle in a small increment and then sent the length of said increment to 0. The
goal is to condition on any finite amount of points plus an empty integral and find a formula for the
kernel, much like we did in the discrete case.

We will prove the following 3 Lemmas, all of which are counterparts to the results we got for
the discrete case.

Lemma 5.2.8:

lim
ϵ→0

P (Zx
δ > 0∣Zy

ϵ > 0) =

∣
K(x,x) K(x, y)
K(y, x) K(y, y)

∣

K(y, y)
δ + o(δ)

Lemma 5.2.9:

P (Zx
δ > 0∣N(A) = 0) =K ∣A(I −K ∣A)

−1
(x,x)δ + o(δ)

and

Lemma 5.2.10:

lim
ϵ→0

P (Zx
δ > 0∣N(A) = 0, Zy

ϵ > 0) = K̃ ∣A(I − K̃ ∣A)
−1
(x,x)δ + o(δ)

where

K̃(x, z) =

∣
K(x, z) K(x, y)
K(y, z) K(y, y)

∣

K(y, y)
.

i) We will use the following notation. Zx
ϵ is the number of particles in (x,x + ϵ) and N(A) is the

number of points in a set A. We start by conditioning on a point process having a particle in
(y, y + ϵ).

We will show that

Lemma 5.2.8:

lim
ϵ→0

P (Zx
δ > 0∣Zy

ϵ > 0) =

∣
K(x,x) K(x, y)
K(y, x) K(y, y)

∣

K(y, y)
δ + o(δ)

Proof:

P (Zx
δ > 0∣Zy

ϵ > 0) =
P (Zx

δ > 0, Zy
ϵ > 0)

P (Zy
ϵ > 0)

=
E(1Zx

δ
>01Zy

ϵ >0))

E(1Zy
ϵ >0)

.
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We have already come across these quantities before and we have:

P (Zy
ϵ > 0) = E(1Zy

ϵ >0) = E(Z
y
ϵ ) + o(ϵ)

=

y+ϵ

∫
y

K(w,w)dw + o(ϵ) = ϵK(y, y) + o(ϵ).

Similarly

P (Zx
δ > 0, Zy

ϵ > 0) = E(1Zx
δ
>01Zy

ϵ >0) = E(Z
x
δ Z

y
ϵ ) + ϵo(δ) + o(ϵ)

=

x+δ

∫
x

y+ϵ

∫
y

∣
K(w1,w1) K(w1,w2)

K(w2,w1) K(w2,w2)
∣dw1dw2 + ϵo(δ) + o(ϵ)

= ϵδ ∣
K(x,x) K(x, y)
K(y, x) K(y, y)

∣ + ϵo(δ) + o(ϵ).

Let’s see in more detail on the side why this last bit holds true.

x+δ

∫
x

y+ϵ

∫
y

∣
K(w1,w1) K(w1,w2)

K(w2,w1) K(w2,w2)
∣dw1dw2

=

x+δ

∫
x

y+ϵ

∫
y

[K(w1,w1)K(w2,w2) −K(w1,w2)K(w2,w1)]dw1dw2

=

x+δ

∫
x

[ϵK(w1,w1) sup
w2∈(y,y+ϵ)

∣K(w2,w2) −K(y, y)∣ + ϵK(w1,w1)K(y, y)

−ϵ sup
w2∈(y,y+ϵ)

∣K(w1,w2)K(w2,w1) −K(w1, y)K(y,w1)∣ − ϵK(w1, y)K(y,w1)]dw1

= ϵ

x+δ

∫
x

[K(w1,w1)K(y, y) −K(w1, y)K(y,w1)]dw1 + δo(ϵ)

= ϵδK(y, y) sup
w1∈(x,x+δ)

∣K(w1,w1) −K(x,x)∣ + ϵδK(x,x)K(y, y)

− sup
w1∈(x,x+δ)

∣K(w1, y)K(y,w1) −K(x, y)K(y, x)∣ − ϵδK(x, y)K(y, x) + δo(ϵ)

= ϵδ ∣
K(x,x) K(x, y)
K(y, x) K(y, y)

∣ + ϵo(δ) + δo(ϵ).

Dividing numerator and denominator by ϵ and sending it to 0, we get

lim
ϵ→0

P (Zx
δ > 0∣Zy

ϵ > 0) =

∣
K(x,x) K(x, y)
K(y, x) K(y, y)

∣

K(y, y)
δ + o(δ)
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□
From there we can see that for the new point process derived from conditioning we have

ρ1(x) = K̃(x,x) =

∣
K(x,x) K(x, y)
K(y, x) K(y, y)

∣

K(y, y)
.

So all the identities from the discrete case so far carry over to the continuous one, since we’ve
seen how we can inductively condition on more particles.

Before we continue, we will include this well know proposition.

Proposition 5.2.6: For a determinantal point process with correlation functions given by
ρn(x1, x2, ..., xn) = det1≤i,j≤n(K(xi, xj)), where the kernel K is continuous, we have that

P (N(A) = 0) = det(I −K ∣A) =DA

where det(I −K ∣A) is the Fredholm determinant

DA = 1 − ∫
A

K(z1, z1)dz1 +
1

2!
∫

A2

∣
K(z1, z1) K(z1, z2)
K(z2, z1) K(z2, z2)

∣dz1dz2 −
1

3!
∫

A3

⋯

□

ii) We continue with conditioning on an empty set A. We will show that

Lemma 5.2.9:

P (Zx
δ > 0∣N(A) = 0) =K ∣A(I −K ∣A)

−1
(x,x)δ + o(δ)

Proof:

P (Zx
δ > 0∣N(A) = 0) =

P (Zx
δ > 0,N(A) = 0)

P (N(A) = 0)
=
E(1Zx

δ
>01N(A)=0)

DA
.

Without dwelling again too much on the indicators and subsequent continuity arguments (I’ll

give a more concrete one in the next, more general case), we have

E(1Zx
δ
>01N(A)=0) = E(Zx

δ (1 − 1)N(A)) + o(δ)

and

E(Zx
δ (1 − 1)N(A)) = E(Zx

δ ) −E(Z
x
δN(A)) +E(Z

x
δ

N(A)(N(A) − 1)

2!
) −⋯

=

x+δ

∫
x

K(w1,w1)dw1 −

x+δ

∫
x

∫

A

∣
K(w1,w1) K(w1, z1)
K(z1,w1) K(z1, z1)

∣dw1dz1 +
1

2!

x+δ

∫
x

∫

A2

⋯

= δK(x,x) + o(δ) − δ∫
A

∣
K(x,x) K(x, z1)
K(z1, x) K(z1, z1)

∣dz1 +⋯

By defining as R(x, y) ∶ R ×R→ R the following function
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R(x, y) = K(x, y) − ∫
A

∣
K(x, y) K(x, z1)
K(z1, y) K(z1, z1)

∣dz1 +
1

2!
∫

A2

RRRRRRRRRRRRR

K(x, y) K(x, z1) K(x, z2)
K(z1, y) K(z1, z1) K(z1, z2)
K(z2, y) K(z2, z1) K(z2, z2)

RRRRRRRRRRRRR

dz1dz2

−
1

3!
∫

A3

∣4 × 4∣dz1dz2dz3 +
1

4!
∫

A4

⋯

we can write

P (Zx
δ > 0∣N(A) = 0) =

R(x,x)

DA
δ + o(δ)

Now we have from Lax [23, Chapter 24] the following 2 equations linking R(x, y) and K(x, y)

DAK(x, y) −R(x, y) + ∫
R
K(x, z)R(z, y)dz = 0

DAK(x, y) −R(x, y) + ∫
R
R(x, z)K(z, y)dz = 0

If we write them in operator language and also the operator I −K is invertible, then from the
second equation we get

R −RK ∣A =DAK ∣A ⇒ R(I −K ∣A) =DAK ∣A ⇒ R =DAK ∣A(I −K ∣A)
−1

⇒ P (Zx
δ > 0∣N(A) = 0) =K ∣A(I −K ∣A)

−1
(x,x)δ + o(δ).

□

iii) Now we move one on the more general case where we condition both on an empty set A and a
particle at y. This may be redundant, since we can just condition first on an set of points being
occupied, get our new kernel K̃, and then condition on an empty set. But given that I have yet
to condition the other way around, meaning first condition on an empty set and then on a set
of occupied points, and then match the two answers, I decided to include it.

Lemma 5.2.10:

lim
ϵ→0

P (Zx
δ > 0∣N(A) = 0, Zy

ϵ > 0) = K̃ ∣A(I − K̃ ∣A)
−1
(x,x)δ + o(δ)

where

K̃(x, z) =

∣
K(x, z) K(x, y)
K(y, z) K(y, y)

∣

K(y, y)
.

Proof:

P (Zx
δ > 0∣N(A) = 0, Zy

ϵ > 0) =
P (Zx

δ > 0,N(A) = 0, Zy
ϵ > 0)

P (N(A) = 0, Zy
ϵ > 0)

Denominator
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P (N(A) = 0, Zy
ϵ > 0) = E(1N(A)=01Zy

ϵ >0) = E(1N(A)=0Z
y
ϵ ) + o(ϵ)

= ϵ
⎛

⎝
K(y, y) − ∫

A

∣
K(y, y) K(y, z1)
K(z1, y) K(z1, z1)

∣dz1 +

+
1

2!
∫

A2

RRRRRRRRRRRRR

K(y, y) K(y, z1) K(y, z2)
K(z1, y) K(z1, z1) K(z1, z2)
K(z2, y) K(z2, z1) K(z2, z2)

RRRRRRRRRRRRR

dz1dz2⋯
⎞

⎠
+ o(ϵ)

= ϵK(y, y)
⎛

⎝
1 − ∫

A

∣
K(y, y) K(y, z1)
K(z1, y) K(z1, z1)

∣

K(y, y)
dz1

+
1

2!
∫

A2

RRRRRRRRRRRRR

K(y, y) K(y, z1) K(y, z2)
K(z1, y) K(z1, z1) K(z1, z2)
K(z2, y) K(z2, z1) K(z2, z2)

RRRRRRRRRRRRR

K(y, y)
dz1dz2⋯

⎞

⎠
+ o(ϵ)

= ϵK(y, y)
⎛

⎝
1 − ∫

A

K̃(z1, z1)dz1 +

+
1

2!
∫

A2

RRRRRRRRRRRRRRRRRRRRRRRR

∣
K(y, y) K(y, z1)
K(z1, y) K(z1, z1)

∣ ∣
K(y, y) K(y, z2)
K(z1, y) K(z1, z2)

∣

∣
K(y, y) K(y, z1)
K(z2, y) K(z2, z1)

∣ ∣
K(y, y) K(y, z2)
K(z2, y) K(z2, z2)

∣

RRRRRRRRRRRRRRRRRRRRRRRR

K2(y, y)
dz1dz2⋯

⎞

⎠
+ o(ϵ)

= ϵK(y, y)
⎛

⎝
1 − ∫

A

K̃(z1, z1)dz1 +
1

2!
∫

A2

∣
K̃(z1, z1) K̃(z1, z2)

K̃(z2, z1) K̃(z2, z2)
∣dz1dz2⋯

⎞

⎠
+ o(ϵ)

= ϵK(y, y)D̃A + o(ϵ)

where

K̃(x1, x2) =

∣
K(x1, x2) K(x1, y)
K(y, x2) K(y, y)

∣

K(y, y)

Numerator

P (Zx
δ > 0,N(A) = 0, Zy

ϵ > 0) = E(1Zx
δ
>01Zy

ϵ >01N(A)=0)

= E(Zx
δ Z

y
ϵ 1N(A)=0) + ϵo(δ) + o(ϵ)

where

E(Zx
δ Z

y
ϵ 1N(A)=0) = E(Z

x
δ Z

y
ϵ ) −E(Z

x
δ Z

y
ϵN(A)) −

1

2
E((Zx

δ Z
y
ϵN(A)(N(A) − 1)) +⋯
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=

x+δ

∫
x

y+ϵ

∫
y

∣
K(w1,w1) K(w1,w2)

K(w2,w1) K(w2,w2)
∣dw1dw2

−

x+δ

∫
x

y+ϵ

∫
y

∫

A

RRRRRRRRRRRRR

K(w1,w1) K(w1,w2) K(w1, z1)
K(w2,w1) K(w2,w2) K(w1, z1)
K(z1,w1) K(z1,w2) K(z1, z1)

RRRRRRRRRRRRR

dw1dw2dz1 + o(ϵ)

= ϵδK(y, y)R̃(x,x) + ϵo(δ) + o(ϵ).

This probably requires an explanation. First of all

R̃(x1, x2) = K̃(x1, x2) − ∫
A

∣
K̃(x1, x2) K̃(x1, z1)

K̃(z1, x2) K̃(z1, z1)
∣dz1

+
1

2!
∫

A2

RRRRRRRRRRRRRR

K̃(x1, x2) K̃(x1, z1) K̃(x1, z2)

K̃(z1, x2) K̃(z1, z1) K̃(z1, z2)

K̃(z2, x2) K̃(z2, z1) K̃(z2, z2)

RRRRRRRRRRRRRR

dz1dz2 −
1

3!
∫

A3

∣4 × 4∣dz1dz2dz3 + . . .

where again

K̃(x1, x2) =

∣
K(x1, x2) K(x1, y)
K(y, x2) K(y, y)

∣

K(y, y)
.

What we did was take outside a factor of K(y, y), consequently dividing each term by it, and
then used the determinantal identity to write each ratio as one determinant with elements K̃i,j .

Also here is a more detailed explanation as to why the rest of the term are ϵo(δ) + o(ϵ). Let’s
take the term with the n × n determinant. Using

detA = ∑
σ∈Sn

sgn(σ)
n

∏
i=1

ai,σi

said term can be written as

1

(n − 2)!

x+δ

∫
x

y+ϵ

∫
y

∫

An−2
∑

σ∈Sn

sgn(σ)K(w1, σ(w1))K(σ
−1
(w2),w2)

n−2

∏
i=1

K(zi, σ(z1))dw1dw2dz1⋯dzn−2

=
1

(n − 2)!
∫

An−2

dz1⋯dzn−2 ∑
σ∈Sn

sgn(σ)
n−2

∏
i=1

K(zi, σ(z1))

x+δ

∫
x

y+ϵ

∫
y

dw1dw2K(w1, σ(w1))K(σ
−1
(w2),w2)

where the double integral inside has been already computed.

Note also that all the o(ϵ) terms may include δ, we just don’t care about them, since we
expect them to disappear as ϵ→ 0.

Currently we have managed to write the conditional probability as follows:

P (Zx
δ > 0∣N(A) = 0, Zy

ϵ > 0) =
δϵK(y, y)R̃(x,x) + ϵo(δ) + o(ϵ)

ϵK(y, y)D̃A + o(ϵ)
.

Again, by taking ϵ→ 0, we get
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lim
ϵ→0

P (Zx
δ > 0∣N(A) = 0, Zy

ϵ > 0) =
K(y, y)R̃(x,x)

K(y, y)D̃A

δ + o(δ)

= K̃ ∣A(I − K̃ ∣A)
−1
(x,x)δ + o(δ).

□

Remark: While we have assumed y is not in A, the same method would work if we take y ∈ A
and instead of N(A) = 0 we condition on N(A/(y, y + ϵ) = 0.

Conditioning on an empty set A and having particles in n points will produce a determinantal
point process with kernel K̃ ∣A(I − K̃ ∣A)(x,y) where K̃ is the ratio of an (n + 1) × (n + 1) deter-
minant by an n × n determinant, same as in the discrete case. I don’t believe it’s worth going
through those huge calculations just to show something there no doubt it holds true.

5.2.6 Complex Ginibre Example

We have the correlation function of the eigenvalues which for a determinantal point process. We
will use this example to see what happens if we condition on having to particles at the same point,
i.e. the origin.

ρn(z1, z2, ..., zn) = π
−n exp(−

n

∑
i=1

∣zi∣
2
) det

1≤i,j≤n
(K(zi, zj))

where
K(x, y) = exȳ.

All the calculations will be made with respect to the measure

µ(dz) =
e−∣z∣

2

π
dz

i) Conditioning on having one particle at the origin, the new kernel will be

K̃(x, y) =

∣
K(0,0) K(0, y)
K(x,0) K(x, y)

∣

K(0,0)
=

∣
1 1
1 K(x, y)

∣

1
= exȳ − 1.

ii) Conditioning on two particles at the origin results in 0/0, so we conditioning on a particle at
a→ 0. Also we are going to use as K(x, y), the new kernel above. Thus once again we have

K̃(x, y) = lim
a→0

∣
K(a, a) K(a, y)
K(x, a) K(x, y)

∣

K(a, a)
= lim

a→0

∣
e∣a∣

2

− 1 eaȳ − 1
exā − 1 exȳ − 1

∣

e∣a∣2 − 1

= lim
a→0
[exȳ − 1 −

(exā − 1)(eaȳ − 1)

e∣a∣2 − 1
]
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Calculating separately

lim
a→0

(exā − 1)(eaȳ − 1)

e∣a∣2 − 1
= lim

a→0

(xā + (xā)
2

2!
+O(ā3)) (aȳ + (aȳ)

2

2!
+O(a3))

∣a∣2 +O(∣a∣4)

= lim
a→0

xȳ∣a∣2 + xȳ(a+ā)∣a∣2

2!
+O(∣a∣2)

∣a∣2 +O(∣a∣4)
= xȳ

⇒ K̃(x, y) = exȳ − 1 − xȳ.

The pattern is obvious by now, so assuming the kernel for the complex Ginibre conditioned on
having k − 1 particles at the origin is

K(x, y) = exȳ −
k−1

∑
i=0

(xȳ)i

i!

then for k particles at (0,0) we have

K̃(x, y) = K(x, y) − lim
a→0

K(x, a)K(a, y)

K(a, a)

lim
a→0

K(x, a)K(a, y)

K(a, a)
= lim

a→0

(
(xā)k

k!
+O(āk+1)) ( (aȳ)

k

k!
+O(ak+1))

∣a∣2k

k!
+O(∣a∣2k+2)

= lim
a→0

(xȳ)k

(k!)2
∣a∣2k +O(∣a∣

4k+1
2 )

∣a∣2k

k!
+O(∣a∣2k+1)

=
(xȳ)k

k!

⇒ K̃(x, y) = exȳ −
k

∑
i=0

(xȳ)i

i!
.
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6 Appendix

6.1 Proof of the Determinantal Identity

Here we prove this presumably known, but long forgotten determinantal identity.

Lemma Suppose we have an n × n matrix with elements aij . For some 1 ≤ k ≤ n − 2, let K be

⎛
⎜
⎜
⎜
⎝

a11 a12 ⋯ a1k
a21 a22 .
⋮ ⋱ .
ak1 . . akk

⎞
⎟
⎟
⎟
⎠

=K.

Then the following identity is true for every 1 ≤ k ≤ n − 2

RRRRRRRRRRRRRRRRRRRRRRRRRRR

a11 a12 ⋯ a1k ⋯ a1n
a21 a22 .
⋮ ⋱ . ⋮

ak1 . . akk
⋮ ⋱

an1 ⋯ ann

RRRRRRRRRRRRRRRRRRRRRRRRRRR

=
1

∣K ∣
n−k−1

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRR

K a1,k+1
.
.

ak+1,1 ... ak+1,k+1

RRRRRRRRRRRRRRRRRR

...

RRRRRRRRRRRRRRRRRR

K a1,n
.
.

ak+1,1 ... ak+1,n

RRRRRRRRRRRRRRRRRR
. .
. .

RRRRRRRRRRRRRRRRRR

K a1,k+1
.
.

an,1 ... an,k+1

RRRRRRRRRRRRRRRRRR

...

RRRRRRRRRRRRRRRRRR

K a1,n
.
.

an,1 ... ann

RRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

.

Proof:

It’s going to be down in multiple steps to showcase how it works and the forms we will be using most
often.

i) We start with the simplest case we showed before, to understand where the cancellations occur

RRRRRRRRRRRRR

a11 a12 a13
a21 a22 a23
a31 a32 a33

RRRRRRRRRRRRR

=
1

a11

RRRRRRRRRRRRRRRRRRRRRRRR

∣
a11 a12
a21 a22

∣ ∣
a11 a13
a21 a23

∣

∣
a11 a12
a31 a32

∣ ∣
a11 a13
a31 a33

∣

RRRRRRRRRRRRRRRRRRRRRRRR

.

On the left we have 6 terms and on the right 8. Note that the only terms we don’t want can-
cel out

(−a12a21)(−a13a31)

a11
−
(−a21a13)(−a12a31)

a11
= 0.

ii) Let’s begin generalizing

RRRRRRRRRRRRRRRRRR

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

RRRRRRRRRRRRRRRRRR

=
1

(a11)2

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

∣
a11 a12
a21 a22

∣ ∣
a11 a13
a21 a23

∣ ∣
a14 a12
a21 a24

∣

∣
a11 a12
a31 a32

∣ ∣
a11 a13
a31 a33

∣ ∣
a11 a14
a31 a34

∣

∣
a11 a12
a41 a42

∣ ∣
a11 a13
a41 a43

∣ ∣
a11 a14
a41 a44

∣

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
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RHS =

∣
a11 a12
a21 a22

∣

(a11)2

RRRRRRRRRRRRRRRRRRRRRRRR

∣
a11 a13
a31 a33

∣ ∣
a11 a14
a31 a34

∣

∣
a11 a13
a41 a43

∣ ∣
a11 a14
a41 a44

∣

RRRRRRRRRRRRRRRRRRRRRRRR

−

∣
a11 a12
a31 a32

∣

(a11)2

RRRRRRRRRRRRRRRRRRRRRRRR

∣
a11 a13
a21 a23

∣ ∣
a11 a14
a21 a24

∣

∣
a11 a13
a41 a43

∣ ∣
a11 a14
a41 a44

∣

RRRRRRRRRRRRRRRRRRRRRRRR

+

∣
a11 a12
a41 a42

∣

(a11)2

RRRRRRRRRRRRRRRRRRRRRRRR

∣
a11 a13
a21 a23

∣ ∣
a11 a14
a21 a24

∣

∣
a11 a13
a31 a33

∣ ∣
a11 a14
a31 a34

∣

RRRRRRRRRRRRRRRRRRRRRRRR

.

Using i) we get

RHS = (a22 −
a12a21
a11

)

RRRRRRRRRRRRR

a11 a13 a14
a31 a33 a34
a41 a43 a44

RRRRRRRRRRRRR

− (a32 −
a12a31
a11

)

RRRRRRRRRRRRR

a11 a13 a14
a21 a23 a24
a41 a43 a44

RRRRRRRRRRRRR

+(a42 −
a12a41
a11

)

RRRRRRRRRRRRR

a11 a13 a14
a21 a23 a24
a31 a33 a34

RRRRRRRRRRRRR

.

By adding and subtracting

a12

RRRRRRRRRRRRR

a21 a23 a24
a31 a33 a34
a41 a43 a44

RRRRRRRRRRRRR

and breaking the above expression into two sums we have that RHS is equal to

−a12

RRRRRRRRRRRRR

a21 a23 a24
a31 a33 a34
a41 a43 a44

RRRRRRRRRRRRR

+ a22

RRRRRRRRRRRRR

a11 a13 a14
a31 a33 a34
a41 a43 a44

RRRRRRRRRRRRR

− a32

RRRRRRRRRRRRR

a11 a13 a14
a21 a23 a24
a41 a43 a44

RRRRRRRRRRRRR

+ a42

RRRRRRRRRRRRR

a11 a13 a14
a21 a23 a24
a31 a33 a34

RRRRRRRRRRRRR

+
a12
a11

⎛

⎝
a11

RRRRRRRRRRRRR

a21 a23 a24
a31 a33 a34
a41 a43 a44

RRRRRRRRRRRRR

− a21

RRRRRRRRRRRRR

a11 a13 a14
a31 a33 a34
a41 a43 a44

RRRRRRRRRRRRR

+ a31

RRRRRRRRRRRRR

a11 a13 a14
a21 a23 a24
a41 a43 a44

RRRRRRRRRRRRR

− a41

RRRRRRRRRRRRR

a11 a13 a14
a21 a23 a24
a31 a33 a34

RRRRRRRRRRRRR

⎞

⎠
.

The first part is the expansion of the initial 4 × 4 determinant with respect to the second column
and the second part is

a12
a11

RRRRRRRRRRRRRRRRRR

a11 a11 a13 a14
a21 a21 a23 a24
a31 a31 a33 a34
a41 a41 a43 a44

RRRRRRRRRRRRRRRRRR

= 0.

iii)

RRRRRRRRRRRRRRRRRRRRRRR

a11 a12 . . a1n
a21 . .
. . .
. . .
an1 . . . ann

RRRRRRRRRRRRRRRRRRRRRRR

=
1

(a11)n−2

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

∣
a11 a12
a21 a22

∣ ∣
a11 a13
a21 a23

∣ . . ∣
a11 a1n
a21 a2n

∣

∣
a11 a12
a31 a32

∣ . .

. . .

. . .

∣
a11 a12
an1 an2

∣ . . . ∣
a11 a1n
an1 ann

∣

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

.
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The proof will be by induction following the same steps as in ii)

RHS =

∣
a11 a12
a21 a22

∣

(a11)n−2

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

∣
a11 a13
a31 a33

∣ ... ∣
a11 a1n
a31 a3n

∣

. .

. .

∣
a11 a13
an1 an3

∣ ... ∣
a11 a1n
an1 ann

∣

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

+ ... +

+

(−1)n−1 ∣
a11 a12
an1 an2

∣

(a11)n−2

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

∣
a11 a13
a21 a23

∣ ... ∣
a11 a1n
a21 a2n

∣

. .

. .

∣
a11 a13
an−1,1 an−1,3

∣ ... ∣
a11 a1n
an−1,1 an−1,n

∣

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

.

Using the induction step for k = n − 1 we get

RHS = (a22 −
a21a12
a11

)

RRRRRRRRRRRRRRRRRRRRRRR

a11 a13 . . a1n
a31 . .
. . .
. . .
an1 . . . ann

RRRRRRRRRRRRRRRRRRRRRRR

+ ... + (−1)n−1(an2 −
an1a12
a11

)

RRRRRRRRRRRRRRRRRRRRRRR

a11 a13 . . a1n
a21 . .
. . .
. . .

an−1,1 . . . an−1,n

RRRRRRRRRRRRRRRRRRRRRRR

.

Again, by adding and subtracting

a12

RRRRRRRRRRRRRRRRRRRRRRR

a21 a23 . . a1n
a31 a33 .
. . .
. . .
an1 . . . ann

RRRRRRRRRRRRRRRRRRRRRRR

and splitting into two sums, the first will be the expansion of the initial n × n determinant and the
second will give

a12
a11

RRRRRRRRRRRRRRRRRRRRRRR

a11 a11 . . a1n
a21 a21 .
. . .
. . .
an1 an1 . . ann

RRRRRRRRRRRRRRRRRRRRRRR

= 0.

iv) In the 4 × 4 case, the matrix can also be written as follows

RRRRRRRRRRRRRRRRRR

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

RRRRRRRRRRRRRRRRRR

=
1

∣
a11 a12
a21 a22

∣

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRR

a11 a12 a13
a21 a22 a23
a31 a32 a33

RRRRRRRRRRRRR

RRRRRRRRRRRRR

a11 a12 a14
a21 a22 a24
a31 a32 a34

RRRRRRRRRRRRR

RRRRRRRRRRRRR

a11 a12 a13
a21 a22 a23
a41 a42 a43

RRRRRRRRRRRRR

RRRRRRRRRRRRR

a11 a12 a14
a21 a22 a24
a41 a42 a44

RRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

.
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Proof:

RHS =
1

(a11)2
1

∣
a11 a12
a21 a22

∣

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRRRRRRRR

∣
a11 a12
a21 a22

∣ ∣
a11 a13
a21 a23

∣

∣
a11 a12
a31 a32

∣ ∣
a11 a13
a31 a33

∣

RRRRRRRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRRRRRRRR

∣
a11 a12
a21 a22

∣ ∣
a11 a14
a21 a24

∣

∣
a11 a12
a31 a32

∣ ∣
a11 a14
a31 a34

∣

RRRRRRRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRRRRRRRR

∣
a11 a12
a21 a22

∣ ∣
a11 a13
a21 a23

∣

∣
a11 a12
a41 a42

∣ ∣
a11 a13
a41 a43

∣

RRRRRRRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRRRRRRRR

∣
a11 a12
a21 a22

∣ ∣
a11 a14
a21 a24

∣

∣
a11 a12
a41 a42

∣ ∣
a11 a14
a41 a44

∣

RRRRRRRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

=
1

(a11)2

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

∣
a11 a12
a21 a22

∣ ∣
a11 a13
a21 a23

∣ ∣
a11 a14
a21 a24

∣

∣
a11 a12
a31 a32

∣ ∣
a11 a13
a31 a33

∣ ∣
a11 a14
a31 a34

∣

∣
a11 a12
a41 a42

∣ ∣
a11 a13
a41 a43

∣ ∣
a11 a14
a41 a44

∣

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

= LHS.

First we used i) for each of the 3 × 3 determinant. On the second step we used again i), this time
the other way around for a 3× 3 determinant with elements 2× 2 determinants. Finally we used ii),
all while having so much fun typing this.

v) The above relations can be generalized as follows:

An n×n determinant can be written as an (n−k)×(n−k) determinant determinant with (k+1)×(k+1)
determinants as elements, divided by a k×k determinant to the power of n−k−1, for every 1 ≤ k ≤ n−2.

We have already denoted K to be

⎛
⎜
⎜
⎜
⎝

a11 a12 ⋯ a1k
a21 a22 .
⋮ ⋱ .
ak1 . . akk

⎞
⎟
⎟
⎟
⎠

=K.

We will know prove the more general form of the identity

RRRRRRRRRRRRRRRRRRRRRRRRRRR

a11 a12 ⋯ a1k ⋯ a1n
a21 a22 .
⋮ ⋱ . ⋮

ak1 . . akk
⋮ ⋱

an1 ⋯ ann

RRRRRRRRRRRRRRRRRRRRRRRRRRR

=
1

∣K ∣
n−k−1

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRR

K a1,k+1
.
.

ak+1,1 ... ak+1,k+1

RRRRRRRRRRRRRRRRRR

...

RRRRRRRRRRRRRRRRRR

K a1,n
.
.

ak+1,1 ... ak+1,n

RRRRRRRRRRRRRRRRRR
. .
. .

RRRRRRRRRRRRRRRRRR

K a1,k+1
.
.

an,1 ... an,k+1

RRRRRRRRRRRRRRRRRR

...

RRRRRRRRRRRRRRRRRR

K a1,n
.
.

an,1 ... ann

RRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

.

We want to prove the above relation for every n and every 1 ≤ k ≤ n − 2.
We have proved this for n = 4.
Assuming this true for every s < n, we now want to prove it for s = n.
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We know it’s true for s = n and k = 1. So it suffices to prove that if the relation hold for s = n and
1,2, .., k − 1, then it also holds for s = n and k.

First we write each element of the right determinant as a 2 × 2 determinant.

i.e. the (1,1) element

RRRRRRRRRRRRRRRRRRRRRRRRRRR

a11 a12 ⋯ a1,k−1 a1k a1,k+1
a21 a22 .
⋮ ⋱ . ⋮

ak−1,1 . . ak−1,k−1
ak1 akk
ak+1,1 ⋯ ak+1,k+1

RRRRRRRRRRRRRRRRRRRRRRRRRRR

=
1

∣L ∣

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRR

L a1k
.
.

ak1 ... akk

RRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRR

L a1,k+1
.
.

ak1 ... ak,k+1

RRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRR

L a1k
.
.

ak+1,1 ... ak+1,k

RRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRR

L a1,k+1
.
.

ak+1,1 ... ak+1,k+1

RRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

where L is th top left block matrix.
Also note that the top left element of each determinant will be ∣K ∣. Thus the initial relation takes
the following form:

RHS =
1

∣L∣n−k
1

∣K ∣n−k−1

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRR

∣K ∣ ∣ ∣

∣ ∣ ∣ ∣

RRRRRRRRRRRRR

⋯

RRRRRRRRRRRRR

∣K ∣ ∣ ∣

∣ ∣ ∣ ∣

RRRRRRRRRRRRR
⋮ ⋱ ⋮

RRRRRRRRRRRRR

∣K ∣ ∣ ∣

∣ ∣ ∣ ∣

RRRRRRRRRRRRR

⋯

RRRRRRRRRRRRR

∣K ∣ ∣ ∣

∣ ∣ ∣ ∣

RRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR(n−k)×(n−k)

.

We now have an (n − k) × (n − k) determinant with 2 × 2 determinants as elements in the correct
form to use iii) an write it as an (n − k + 1) × (n − k + 1) determinant. The exponent of ∣K ∣ will be
(n − k + 1) − 2 = n − k − 1.

RHS =
1

∣L ∣
n−k

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRR

L a1k
.
.

ak1 ... akk

RRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRR

L a1,k+1
.
.

ak1 ... ak,k+1

RRRRRRRRRRRRRRRRRR

⋯

RRRRRRRRRRRRRRRRRR

L a1n
.
.

ak1 ... akn

RRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRR

L a1k
.
.

ak+1,1 ... ak+1,k

RRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRR

L a1,k+1
.
.

ak+1,1 ... ak+1,k+1

RRRRRRRRRRRRRRRRRR

⋮

⋮ ⋱
RRRRRRRRRRRRRRRRRR

L a1k
.
.

an1 ... ank

RRRRRRRRRRRRRRRRRR

⋯

RRRRRRRRRRRRRRRRRR

L a1n
.
.

an1 ... an

RRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

=

RRRRRRRRRRRRRRRRRRRRRRR

a11 a12 . . a1n
a21 . .
. . .
. . .
an1 . . . ann

RRRRRRRRRRRRRRRRRRRRRRR

.

In the last step we used the induction step inside the induction.

□
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Remark: I have always started from the top left corner because of convenience, but each of the
determinants can be re-written in a number of different ways.

i.e.

RRRRRRRRRRRRR

a11 a12 a13
a21 a22 a23
a31 a32 a33

RRRRRRRRRRRRR

=
1

a22

RRRRRRRRRRRRRRRRRRRRRRRR

∣
a11 a12
a21 a22

∣ ∣
a12 a13
a22 a23

∣

∣
a21 a22
a31 a32

∣ ∣
a22 a23
a32 a33

∣

RRRRRRRRRRRRRRRRRRRRRRRR

.

RRRRRRRRRRRRRRRRRR

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

RRRRRRRRRRRRRRRRRR

=
1

∣
a11 a14
a41 a44

∣

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRR

a11 a12 a14
a21 a22 a23
a31 a32 a34

RRRRRRRRRRRRR

RRRRRRRRRRRRR

a11 a13 a14
a21 a23 a24
a41 a43 a44

RRRRRRRRRRRRR

RRRRRRRRRRRRR

a11 a12 a14
a31 a32 a34
a41 a42 a44

RRRRRRRRRRRRR

RRRRRRRRRRRRR

a11 a13 a14
a31 a33 a34
a41 a43 a44

RRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

.
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6.2 Proof of Lemma 5.1.1

Lemma 5.1.1: The following identity holds true:

P (Nxi = 1, Jn/Jk & Nxi = 0, Jk) = (−1)k

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

b11 a12 ⋯ a1k a1,k+1 ⋯ a1n
a21 b22 .
⋮ ⋱ . ⋮

ak1 . . bkk
ak+1,1 ak+1,k+1
⋮ ⋱

an1 ⋯ ann

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

.

Proof: By induction, presented in the appendix.

We have already proved it for k = 1,2.
Assuming it holds for s ≤ k − 1 < n, we are going to prove it for s = k ≤ n.

P (Nxi = 1, Jn/Jk & Nxi = 0, Jk) = P (Nxi = 1, Jn/Jk & Nxi = 0, Jk−1)−P (Nxi = 1, Jn/Jk−1 & Nxi = 0, Jk−1)

= (−1)k−1

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

b11 a12 ⋯ a1,k−1 a1,k+1 ⋯ a1n
a21 b22 .
⋮ ⋱ . ⋮

ak−1,1 . . bk−1,k−1
ak+1,1 ak+1,k+1
⋮ ⋱

an1 ⋯ ann

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

−(−1)k−1

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

b11 a12 ⋯ a1,k a1,k+1 ⋯ a1n
a21 b22 .
⋮ ⋱ . ⋮

ak,1 . . ak,k
ak+1,1 ak+1,k+1
⋮ ⋱

an1 ⋯ ann

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

= (−1)k

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

b11 a12 ⋯ a1k a1,k+1 ⋯ a1n
a21 b22 .
⋮ ⋱ . ⋮

ak1 . . bkk
ak+1,1 ak+1,k+1
⋮ ⋱

an1 ⋯ ann

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

.

□
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6.3 Proof of Lemma 5.1.2

Lemma 5.1.2: f(1,2...,2n) − f(3,4, ...,2n) ∶= f̃(2,2n) is the Pfaffian of the matrix

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 a12 − 1 a13 ⋯ a1,2n
0 a23

0 ⋮

⋱

0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

i.e.

pf

⎛
⎜
⎜
⎜
⎝

0 a12 a13 a14
0 a23 a24

0 a34
0

⎞
⎟
⎟
⎟
⎠

− pf (
0 a34

0
) = pf

⎛
⎜
⎜
⎜
⎝

0 a12 − 1 a13 a14
0 a23 a24

0 a34
0

⎞
⎟
⎟
⎟
⎠

.

Proof:

f̃(2,2n) = ∑
µn

s(µn)f(y1y2)...f(y2n−1y2n) − ∑
µn−1

s(µn−1)f(x1x2)...f(x2n−3x2n−2)

[
(y1, ..., y2n) is a permutation of (1,2, ...,2n) and
(x1, ..., x2n−2) is a permutation of (3,4, ...,2n)

]

= ∑
{y2i−1y2i}≠{1,2}

s(µn)f(y1y2)...f(y2n−1y2n) + f(12) ∑
µn−1

s(µn−1)f(x1x2)...f(x2n−3x2n−2)

− ∑
µn−1

s(µn−1)f(x1x2)...f(x2n−3x2n−2)

= ∑
{y2i−1y2i}≠{1,2}

s(µn)f(y1y2)...f(y2n−1y2n) + (f(12) − 1) ∑
µn−1

s(µn−1)f(x1x2)...f(x2n−3x2n−2)

= ∑
µn

s(µn)h(y1y2)...h(y2n−1y2n)

where

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

h(ij) = f(ij) for (i, j) ≠ (1,2) and

h(12) = f(12) − 1.
□

Remark: Similar identity holds for

f(1,2, ...,2n) − f(1,2, ...,2i,2i + 3, ...,2n) = pf(L)

where Lkm =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

f(km), (k,m) ≠ (2i + 1,2i + 2)

f(2i + 1,2i + 2) − 1, (k,m) = (2i + 1,2i + 2).
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6.4 Proof of Lemma 5.1.3

Lemma 5.1.3: P (Nxi = 1, Jn/Jk & Nxi = 0, Jk) is equal to

(−1)kpf

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C(x1, x1) K(x1, x2) ⋯ K(x1, xk) ⋯ K(x1, xn)

C(x2, x2)

⋱ ⋮ ⋮

C(xk, xk)

K(xk+1, xk+1)

⋱

K(xn, xn)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Proof: This proof is quite similar to the equivalent determinantal one. We will show by induction
that it’s true ∀n and ∀k ≤ n.

� n = 2, k = 1 is Lemma 5.1.2

� n = 2,k = 2

P (Nxi = 0, J2) = 1 − P (Nx1 = 1) − P (Nx2 = 1) + P (Nxi = 1, J2)

= 1 − pf (
0 a12

0
) − pf (

0 a34
0
) + pf

⎛
⎜
⎜
⎜
⎝

0 a12 a13 a14
0 a23 a24

0 a34
0

⎞
⎟
⎟
⎟
⎠

= −pf (
0 a12 − 1

0
) + pf

⎛
⎜
⎜
⎜
⎝

0 a12 − 1 a13 a14
0 a23 a24

0 a34
0

⎞
⎟
⎟
⎟
⎠

= pf

⎛
⎜
⎜
⎜
⎝

0 a12 − 1 a13 a14
0 a23 a24

0 a34 − 1
0

⎞
⎟
⎟
⎟
⎠

= pf
⎛
⎜
⎝

C(x1, x1) K(x1, x2)

C(x2, x2)

⎞
⎟
⎠
.

Assuming it holds ∀s < n and ∀k ≤ s we will prove it for s = n. We know it’s true for k = 1, so it’s
sufficient to assume that it holds for k − 1 and prove it for k.

P (Nxi = 1, Jn/Jk & Nxi = 0, Jk) = P (Nxi = 1, Jn/Jk & Nxi = 0, Jk−1)

−P (Nxi = 1, Jn/Jk−1 & Nxi = 0, Jk−1)
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= (−1)k−1pf

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C(x1, x1) K(x1, x2) ⋯ K(x1, xk−1) ⋯ K(x1, xn)

C(x2, x2)

⋱ ⋮ ⋮

C(xk−1, xk−1)

K(xk+1, xk+1)

⋱

K(xn, xn)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−(−1)k−1pf

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C(x1, x1) K(x1, x2) ⋯ K(x1, xk−1) ⋯ K(x1, xn)

C(x2, x2)

⋱ ⋮ ⋮

C(xk−1, xk−1)

K(xk, xk)

⋱

K(xn, xn)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= (−1)kpf

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C(x1, x1) K(x1, x2) ⋯ K(x1, xk) ⋯ K(x1, xn)

C(x2, x2)

⋱ ⋮ ⋮

C(xk, xk)

K(xk+1, xk+1)

⋱

K(xn, xn)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

□
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6.5 Proof of Lemma 5.2.7

Lemma 5.2.7: Suppose the L2 operator Kt, where Kt(x, y) is a C1 function on t. Then

d

dt
det(I +Kt) = det(I +Kt)Tr(K̇t(1 +Kt)

−1)

Proof:

LHS = lim
ϵ→0

det(1 +Kt+ϵ) − det(1 +Kt)

ϵ

= lim
ϵ→0

det(1 +Kt)
det [(1 +Kt)

−1(1 +Kt+ϵ)] − 1

ϵ

= det(1 +Kt) lim
ϵ→0

det [(1 +Kt)
−1 + (1 +Kt)

−1Kt+ϵ + (1 +Kt)
−1Kt − (1 +Kt)

−1Kt] − 1

ϵ

= det(1 +Kt) lim
ϵ→0

det [(1 +Kt)
−1(1 +Kt) + (1 +Kt)

−1(Kt+ϵ −Kt)] − 1

ϵ

= det(1 +Kt) lim
ϵ→0

det [1 + (1 +Kt)
−1(Kt+ϵ −Kt)] − 1

ϵ

= det(1 +Kt) lim
ϵ→0

1 + Tr((1 +Kt)
−1(Kt+ϵ −Kt)) + o(ϵ) − 1

ϵ

= det(1 +Kt)Tr(K̇t(1 +Kt)
−1).

□
On the second to last line, we expanded the Fredholm determinant, kept the first 2 terms and the rest
are of o(ϵ).
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