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Abstract  

In solving earth pressure problems, many input parameters are needed to account for more 

realistic soil properties and complex boundary conditions. Finding an optimal output while 

considering many inputs can be costly and time consuming. The input parameters themselves 

may be significantly uncertain due to lack of laboratory test data and variations in design and 

construction stages. Adopting an optimisation technique can be useful in such a problem. In this 

study, a chaotic particle swamp optimisation (CPSO) algorithm is applied to three different 

earth pressure problems, i. e. an excavation problem, a plane strain tunnel problem and a 

suffusion sinkhole problem, to determine their global optimal outputs and corresponding input 

parameters. The problems are solved using a slip line theory satisfying static equilibrium and 

the Mohr-Coulomb failure criterion. This improved PSO algorithm is found to show better 

performances, in accuracy and computational effort, compared to conventional Monte Carlo 

simulations (MCS). 

Keywords chosen from ICE Publishing list

earth pressure, limit state analysis, uncertainty, reliability & risk

List of notations  

τ       is the shear stress 

c’      is the effective cohesion 

σ’      is the effective mean stress 

φ’      is the effective friction angle 

f0      is a parameter to be optimised 

M      is a set of interval parameters zi

𝑧𝑘 , 𝑧𝑘      are the lower value and upper value of interval parameter zI
k

α      is an interval change ratio 

np      is the number of particles xi in swamp X

xi(t), vi(t)    are the position and velocity of particle xi at iteration t

H      is the height of a rigid retaining wall, the depth of suffosion sinkhole 

β is the inclination angle of a rigid retaining to the vertical axis 

γt      is the total unit weight of a soil 

qs      is a uniform pressure over the soil surface 

δ’      is an interface friction angle 

L      is a plastic horizontal distance on the soil surface 

T      is the deepest plastic point coinciding with the toe of a retaining wall 
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Pn      is the normal force on a retaining wall 

wi()      is the coefficient of time varying inertial weight 

r1
CM, r2

CM  are the random numbers using chaotic Zaslavskii map 

c1, c2       are the cognitive and social parameters  

xi
P()     is the local best ever position of particles 

xi
G()     is the global best ever position of particles 

nξ, nη      are the number of ξ, η curves 

ni     is the number of iterations 

nMCS is the number of Monte Carlo simulations 

D is the diameter of a circular tunnel 

C     is the plastic distance around a circular tunnel 

r0     is the radius of a suffosion sinkhole 

p0     is the internal pressure on the tunnel wall 



1. Introduction1 

Earth pressure problems in geotechnical engineering can be solved using analytical methods 2 

such as limit equilibrium methods and the slip line theory. The limit equilibrium methods 3 

(Coulomb, 1776; Terzaghi, 1943; Chen, 1975) treat soil as rigid blocks and use force and 4 

moment equilibriums to solve for failure surfaces corresponding the lowest factor of safety. The 5 

slip line theory (Sokolovski, 1954; Salencon, 1974) considers plastic zones (in addition to rigid 6 

blocks) where equations of static equilibrium are satisfied continuously. 7 

8 

Earth pressure problems when formulated using the limit equilibrium methods and the slip line 9 

theory may contain few to many parameters. Considering more realistic soil properties and 10 

complex boundary conditions (geometry, load, displacement, etc.) generally increases the 11 

number of parameters. For example, bearing capacity problems may contain only 2 parameters 12 

(Prandtl, 1920) up to more than 10 parameters (Pakdel et al, 2019). Slope stability problems 13 

may involve only 2 parameters (e. g. infinite slope in homogenous soil) up to more than 10 14 

parameters when considering 3-dimensional, unsaturated condition and seismic effects (Yang 15 

and Wei, 2021). In many problems formulated by the limit equilibrium methods, accounting 16 

accurately for geometries could easily require more than 10 parameters (Chen, 1975). Finding 17 

an optimal value of output in such problems becomes time consuming. 18 

19 

Optimization is used extensively in geotechnical engineering, especially in computational limit 20 

analysis (Sloan, 2013). Developed from the principle of maximum work and applied to a 21 

perfectly plastic materials obeying the associated flow rule (Michalowski, 2005), the method of 22 

limit analysis has been extended to elasto-plastic non-associative materials accounting for 23 

steady state flow types. Solution procedures for realistic boundary value problems (BVPs) have 24 

been automated in computer programmes. Much of this advancement has been enabled by 25 

increasingly efficient and user-friendly optimisation algorithms.  26 

27 
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Another potential advantage of optimisation is that it can deal with geotechnical designs 28 

containing uncertain features of soil parameters and variations introduced by practical design 29 

and construction constraints. Due to the inherent heterogeneity of geomaterial and the costs 30 

associated with field investigation, it has never been the case that soil parameters are 31 

deterministic values. There is always a certain degree of subjectivity in assessing the 32 

characteristic parameters of soil in the early stage of design. Although the probabilistic-based 33 

approach is preferred to feature the uncertainty of design parameters, this approach, normally, 34 

requires to collect a great amount of information from site investigation and laboratory 35 

experimentation to estimate the random distribution of parameters, which is not feasible for all 36 

applications. In some circumstances, other mathematical models should be considered as 37 

alternative options. A distribution model where the design parameter is known to be bracketed 38 

within a range is considered here. This type of design parameter is also referred to as interval 39 

parameters. 40 

41 

Although there are many algorithms to tackle optimization problems, PSO proposed by 42 

(Kennedy and Eberhart, 1995) is a promising technique compared to other optimization 43 

algorithms (Elbeltagi et al., 2005) as fewer number of iteration is implemented in attain the 44 

same or better results. The proficiency of PSO has been validated and demonstrated in many 45 

engineering problems (Venter and Sobieszczanski-Sobieski, 2004; Do et al., 2020; Plevris and 46 

Papadrakakis, 2011).  47 

48 

PSO have been applied to earth pressure analyses, pile and foundation design, tunnelling and 49 

underground space engineering technology (Hajihassani et al., 2018). In particular, PSO and 50 

their variants have been applied successfully to limit equilibrium analyses of retaining wall 51 

(Gandomi et al., 2015), homogenous slope impacted by seismic loadings (Gordan et al., 2016) 52 

and shallow earth footing (Kashani et al., 2021). Random field theory has been applied to a 53 

stochastic slip line method to predict the quasistatic bearing capacity of strip footing (Johari et 54 
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al., 2017). To the authors’ knowledge, there has been no application of PSO in the slip line 55 

theory. This paper presents one way an improved PSO algorithm could be used to find a 56 

globally optimal value of a slip line field. Applications of the improved PSO algorithm are 57 

demonstrated in three examples to show the simplicity of the method and its better performance 58 

compared to conventional Monte Carlo simulations (MCS). Utilising this improved PSO 59 

algorithm could save significant time when solving earth pressure problems with many 60 

parameters. 61 

62 

2. Statement of the boundary value problem 63 

A body of cohesive frictional soil is at static equilibrium, and due to boundary actions, parts of 64 

the soil are yielding in accordance with the Mohr-Coulomb failure criterion τ= c’ + σ’ tan(φ’), 65 

where τ is the shear stress, c’ is the effective cohesion, σ’ is the effective mean stress and φ’ is 66 

the effective friction angle (in other parts, the soil remains elastic/undisturbed). The governing 67 

equations for such a soil body were derived and applied to many stability problems in soil 68 

mechanics previously (Sokolovski, 1954), with solutions typically found using the finite 69 

difference method. Depending on what are known and unknown at the boundaries, at least four 70 

distinct BVPs have been identified (Booker, 1970; Sokolovski, 1954; Salencon, 1974), and the 71 

method of solution for each is well established. 72 

73 

In solving practical problems, however, these BVPs are combined so that quantities can be 74 

integrated (along slip line directions) from known to unknown boundaries (where desired 75 

quantities can be extracted). This is a trial-and-error procedure which could be costly time-wise. 76 

When a desired quantity lying on an unknown boundary is a global minimum or maximum, 77 

PSO could be used to estimate the corresponding combination of parameters. As mentioned 78 

previously in the introduction, utilisation of an optimization algorithm could be reasonable also 79 

because soil and design and construction-related parameters are generally not deterministic. In 80 

view of optimisation problem, the procedure in present study can be defined as: 81 
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82 

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒  𝑓0  𝑤𝑖𝑡ℎ   𝑀 = [𝑧𝑖
𝐼 , 𝑖 ∈ [1, 𝑛]]83 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

⎩
⎪
⎨

⎪
⎧

𝑧1 ≤ 𝑧1
𝐼 ≤ 𝑧1

⋮
𝑧𝑘 ≤ 𝑧𝑘

𝐼 ≤ 𝑧𝑘

⋮
𝑧𝑛 ≤ 𝑧𝑛

𝐼 ≤ 𝑧𝑛

84 

1.  85 

86 

where f0 is the parameter under consideration in current study and M is a set of interval parameters 87 

zi whose values are uncertain-but-bounded, rather than deterministic. �̱�𝑘 and �̄�𝑘 are, respectively, 88 

the lower and upper values of interval parameter 𝑧𝑘
𝐼 . The uncertainty of all parameters is described 89 

by the interval change ratio α. Denote mean value of parameter 𝑧𝑘
𝐼  as 𝑧𝑚, then �̱�𝑘 and �̄�𝑘 are the 90 

defined as 91 

92 

𝑧𝑘 = 𝑧𝑚 − 𝑧𝑚𝛼93 

2. 94 

95 

𝑧𝑘 = 𝑧𝑚 + 𝑧𝑚𝛼96 

3. 97 

98 

In order to take advantages of PSO as well as improve the performance of global multidimensional 99 

optimisation for current study, PSO adopted in this research is enhanced by a merger between the 100 

backbone of RLHNPSO (Do et al., 2014) and integration of chaotic Zaslavsky map (Zaslavsky, 101 

1978)  into global search. This approach can be denoted as Quasi chaotic based particle swarm 102 

optimisation (CPSO). 103 

104 

Consider a swarm X consisting np particles xi, each particle xi is given numeric values for input 105 

problem parameters (for example, effective cohesion c’ and effective friction angle φ’) to be 106 
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within the possible range of known variation. The present algorithm retains the nature-inspired 107 

features of the tradition PSO in which xi flies over time in a multidimensional design space to 108 

search for its optimal position by updating its position xi(t) and velocity vi(t) simultaneously 109 

based on the predefined fitness function. Noted, t is signified as the iteration for interest. All 110 

related parameters adopted for the current study can be found in the background of RLHNPSO 111 

(Do et al., 2014). In present algorithm, the feature of chaotic map is integrated into the equation 112 

of velocity to improve the stochastic search technique for an improved PSO. The advantages of 113 

chaos embedded PSO algorithms were first highlighted in Alatas et al. (2009). This chaotic 114 

feature would dramatically accelerate the process of updating particles via velocity in searching 115 

for their optimum positions to reach the global optimisation. This is demonstrated in a 116 

comparison between the current PSO technique and the traditional PSO method in section 3. 117 

The chaotic map-based velocity vi(t) is, then, formulated as:  118 

119 

𝑣𝑖(𝑡 + 1) = 𝑤𝑖(𝑡 + 1)𝑣𝑖(𝑡) +  𝑐1𝑟1
𝐶𝑀(𝑥𝑖

𝑃(𝑡) − 𝑥𝑖(𝑡)) + 𝑐2𝑟2
𝐶𝑀(𝑥𝑖

𝐺(𝑡) − 𝑥𝑖(𝑡))120 

4. 121 

122 

where 𝑟1
𝐶𝑀 and 𝑟2

𝐶𝑀 are evaluated by chaotic Zaslavskii map while 𝑤𝑖 is coefficient of time 123 

varying inertial weight. 124 

125 

The position of particle xi is, then, updated over time as: 126 

127 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)128 

5. 129 

130 

The updates on xi(t) and 𝑣𝑖(𝑡) aim to satisfy the fitness function whereby the parameter f0 is 131 

minimised. This parameter will be detailed in the section of numerical examples.    132 

133 
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3. Numerical examples in earth pressure problems 134 

3.1 The retaining force needed to support an excavation 135 

A cohesive frictional soil is retained by a rigid wall of height H inclined at an angle β to the 136 

vertical axis. The soil has a total unit weight of γt. A uniform pressure qs acts over the soil 137 

surface. At limiting equilibrium, an interface friction angle 0°≤δ’≤ φ’ is mobilised between the 138 

soil and the wall, the plastic zone extends a horizontal distance L over the ground surface, and 139 

the deepest plastic point (T) coincides with the toe of the wall (Figure 1(a)). It is required to 140 

calculate a precise combination of parameters (c’, φ’, H, β, γt, qs, δ’, L), whose values vary 141 

within known ranges, that minimises the retaining force Pn. In this demonstrative example, the 142 

mean values of all components of particles are given as (c’m, φ’m, βm, γt_m, qs_m, δ’m, Lm) = (10 143 

kPa, 35°, 5°, 19.62 kN/m3, 10 kPa, 5°, 2 m).  The subscript m denotes design parameter’s mean 144 

values. While a degree of uncertainty in the material parameters (c’, φ’, γt, δ’) is inevitable (e. g. 145 

due to limited experimental data available, non-uniform soil fabric, inadequate idealisation 146 

introduced by the Mohr-Coulomb failure model), the source of uncertainty in the geometric 147 

defining variables (H, β) and ground surcharge loading (qs, L) is more related to practical design 148 

and construction constraints (e. g. availability of suitable construction equipments/materials, 149 

variations introduced/specified by engineers/designers, spatiotemporal restrictions by 150 

authorities). Nevertheless, the interval change ratio α can be modified to account for different 151 

levels of uncertainty in applying PSO to real-world applications (i. e. α→0 as uncertainty is 152 

reduced to certainty). Different α can be adopted for different parameters. For illustrational 153 

purpose, α=0.2 is adopted in this example. 154 

155 

The PSO algorithm was applied to solve the above problem by adopting the following 156 

parameters: Pn_s=0 kN/m run, c1=c2=2, coefficient of w is adopted from RLHNPSO, 𝑟1
𝐶𝑀and 157 

𝑟2
𝐶𝑀 are assigned via the chaotic mapping procedure discussed in section 2. For this problem, a 158 

mesh density with nξ=nη=20 where nξ, nη denote the number of ξ, η curves used in each slip line 159 

BVP, respectively, as shown in Figure 1(b) is used because it gives sufficiently accurate Pn_c. It 160 
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is noted that the letter s, c in a subscript (e. g. Pn_s, Pn_c) indicates a specified and a computed 161 

value, respectively.  162 

163 

The results of the PSO algorithm are compared with the results of MCS. A parametric study is 164 

conducted using the number of particles (np) = 5, 10, 20, the number of iterations (ni)=20, 50, 165 

100, the number of MCS (nMCS)=103, 104, 105, 106. The results are listed in Table 1, which 166 

shows that |Pn_c-Pn_s|= 32.1769 kN/m run (hence, the minimised Pn is 32.1769 kN/m run) for all 167 

PSO cases but the case (np, ni) = (5, 20). This is smaller than the minimised Pn_c = 33.149 kN/m 168 

run obtained even for nMCS=106. The time required to execute the PSO algorithm is much shorter 169 

than the corresponding MCS algorithm ran in the same computing environment (Intel® Core TM170 

i7-6700 CPU @ 3.40GHz, RAM of 32.0GB on 64-bit Operating System & x64-based 171 

processor). 172 

173 

To examine how the iteration number ni and the number of used particles np affect the 174 

convergence of the output, a parametric study on these parameters was conducted with the 175 

numerical example in subsection 3.1. The results are shown in Figure 1(c) for np =10 particles 176 

with the different numbers of iterations, and in Figure 1(d) for ni =20 iterations with different 177 

numbers of used particles.  178 

179 

The increase in value of ni dramatically enhances the chance of targeting the optimal value as 180 

shown in Figure 1(c) (an adequate number ni is needed to avoid the premature convergence of 181 

PSO). Similar observation can be made for np in Figure 1(d) which shows that a sufficient 182 

number of np is required to obtain the convergence. The adopted values of np and ni, in other 183 

words, directly affect the optimization of the output. 184 

185 

3.2 The critical depth at the heading of a plane strain tunnel 186 
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A purely frictional soil (c’=0 kPa, φ’>0°) at the heading of a circular tunnel of diameter D is 187 

prevented from collapse by applying an internal pressure p0 to the wall. The soil has a total unit 188 

weight of γt. At limiting equilibrium, the soil around the tunnel becomes plastic while the soil 189 

further away is elastic. It is required to calculate a precise combination of parameters (φ’, p0, γt, 190 

D) that minimises the plastic distance C (Figure 2(a)). (φ’m, p0_m, γt_m, D_m) = (25°, 200 kPa, 191 

19.62 kN/m3, 2.5 m) is used to demonstrate this problem. The source of uncertainty over the 192 

tunnel diameter D and the internal pressure on the tunnel wall p0 are contributed by practical 193 

constraints. Different uncertainty levels can be applied in PSO by adjusting α. In this example, 194 

the interval change ratio α=0.1 is adopted for simplicity (the effect of a variation in α is 195 

considered in subsection 3.3). 196 

197 

The PSO algorithm was applied to solve the above problem by adopting Cs = 0 m while α, c1, c2, 198 

w, 𝑟1
𝐶𝑀and 𝑟2

𝐶𝑀in section 3.1 are also adopted in this section. A mesh density with nξ=nη=20 199 

(Figure 2(b)) is used because it gives sufficiently accurate Cc. 200 

201 

Comparison between PSO and MCS results is shown in Table 2. It shows that |Cc-Cs|= 4.4022 m 202 

(hence, the minimised Cc is 4.4022 m) for all PSO cases. This is smaller than the minimised Cc203 

= 4.4237 m obtained by MCS, even for nMCS=106. 204 

205 

In each iteration of PSO, particles xi is updated by assigning any value within the given 206 

ranges (boundaries and local values) to search for its optimal positions. For the current 207 

problems, the optimal value of the output is found based on the combination of end 208 

points of interval variables, not based on the collection of the local values within the 209 

ranges of interval variables. This can result in PSO giving premature convergence with 210 

a small number of iterations (Figures 2(c).i-v) where design parameters reach local 211 

values of interval variables before reaching their global values to attain the global 212 
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optimisation. Figures 2(c).i-v show how |Cc-Cs| and design parameters φ’, γt, p0, D vary 213 

over iterations to target the optimal value. 214 

215 

As mentioned in XXX, the global values of the output for current study are achieved by 216 

the combination of end points of interval variables whose values vary within closed sets. 217 

While the traditional Monte Carlo Simulation is often adopted in the literature for 218 

verifying the uncertainty analysis involving interval variables (termed as the interval 219 

analysis), another approach that is also sufficient for the current analysis is the 220 

combinatorial approach by which all possible scenarios of combining the endpoints of 221 

interval parameters are assessed. However, this approach is only available for the small 222 

number of interval variables due to the rapid escalation in the number of possible 223 

solutions, 2k where k is the number of interval variables as identified in  (Do et al., 224 

2020). To remove this limitation for the interval analysis, the intelligent optimisation 225 

technique, CPSO is, therefore, adopted for the current analysis and is recommended for 226 

the analysis of uncertain-but-bounded problems.227 

228 

229 

3.3 Minimum depth of a suffosion sinkhole 230 

A suffosion sinkhole is an axisymmetric subsidence formed in non-cohesive soil, often initiated 231 

by the withdrawal of the ground water table (Arakaki Rengifo et al., 2021; Ford and Williams, 232 

2007; White, 1988). Here, a suffosion sinkhole is idealised to have radius r0 and reaches a depth 233 

H at limiting equilibrium (Figure 3(a)). The soil surrounding the sinkhole has a total unit weight 234 

of γt. A tension crack layer imposes a surcharge qs=2c’cotφ’/[sinφ’/(1-sinφ’)] on the ground 235 

surface. A setback horizontal distance L can be estimated by observing the ground surface for 236 

signs of deformation. It is required to calculate a precise combination of parameters (c’, φ’, r0, 237 

γt, qs) that minimises H. A reasonable combination of parameters set (c’m, φ’m, r0_m, Lm, γt_m) = 238 
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(10 kPa, 15°, 20 m, 1 m, 19.62 kN/m3) is adopted to demonstrate how the PSO algorithm can be 239 

applied. The source of uncertainty over the sinkhole radius r0 and the setback horizontal 240 

distance L is contributed by observational constraints. Different uncertainty levels can be 241 

applied in PSO by adjusting α. 242 

243 

The PSO algorithm was applied with the following parameters: Hs = 0 m. The parameters c1, c2, 244 

w, r1, r2 in this section are assigned as in section 3.1. α = 0.05, 0.1 are considered in this section 245 

in addition to only α = 0.2 in section 3.1. A mesh density with nξ=nη=50 (Figure 3(b)) is used to 246 

approximate Hc with sufficient accuracy. 247 

248 

Comparison between PSO results and MCS results is shown in Table 3(a), 3(b), 3(c) for α249 

=0.05, 0.1, 0.2, respectively. It shows that |Hc-Hs|= 1.3888, 1.3557, 1.2774 m (hence, the 250 

minimised Hc is 1.3888, 1.3557, 1.2774 m) in Table 3(a), 3(b), 3(c), respectively. They are 251 

smaller than the corresponding minimised Hc obtained by MCS, even for nMCS=106. The time 252 

required to execute the PSO algorithm is again much shorter than the corresponding MCS 253 

algorithm. 254 

To demonstrate advantages of improved PSO (CPSO), a comparison between the 255 

current PSO technique and the traditional PSO is made via a parametric study with 256 

different particles and depicted in Figure 3(c). It is shown that the performance of CPSO 257 

surpasses the performance of PSO, especially when a small number of particles is used 258 

in an analysis. In other words, the tradition PSO can give the premature convergence for 259 

the output with small number of particles while CPSO can reach the global values under 260 

the same condition. This advantage would benefit the optimisation procedure for large 261 

scale problems in which the small number of particles will result in less computational 262 

effort to achieve the global optimisation. Another advantage of CPSO is that it can 263 

accelerate the convergence compared to the traditional PSO which may require more 264 
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iterations for the same number of particles. This acceleration is due to the improvement 265 

of the stochastic search technique using chaotic map mentioned in section 2. 266 

Considerable advantages of chaos embedded particle swarm optimisation can also be 267 

found in Alatas et al. (2009). 268 

269 

4. Conclusions 270 

An optimisation technique has been shown to effectively aid preliminary design calculations in 271 

geotechnical engineering. In particular, an improved PSO algorithm was applied to three earth 272 

pressure problems to optimise specific outputs while accounting for uncertain inputs i. e. soil 273 

properties (e. g. due to lack of data from laboratory experiments and in situ tests), geometry and 274 

boundary conditions (e. g. due to practical design and construction constraints). The earth 275 

pressure problems were simplified to demonstrate the optimisation procedure more clearly. 276 

Each problem contains multiple input parameters to show that determining the combination of 277 

input parameters corresponding to an optimal output is not trivial using conventional methods e. 278 

g. MCS. In the three problems considered, advantages of using the improved PSO method far 279 

outweighed using MCS, in that the PSO method requires a smaller number of iterations and 280 

achieves a better accuracy. The present study shows that it is uncomplicated to incorporate a 281 

PSO algorithm into an established solution method such as the slip line theory, thus global 282 

optimisation can be considered as a promising approach for handling more intricate hybrid 283 

uncertainty in geotechnical designs. 284 

285 
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Figure 1(a). The retaining force needed to support an excavation. 346 

Figure 1(b). Slip line mesh adopted for the retaining wall problem. 347 

Figure 1(c). Convergence history over ni. 348 

Figure 1(d). Convergence history over np.349 

Figure 2(a). Critical depth of a plane strain tunnel. 350 

Figure 2(b). Slip line mesh adopted for the plane strain tunnel problem. 351 

Figure 2(c). Convergence history of |Cc-Cs| in terms of design variables over iterations. 352 

Figure 3(a). Minimum depth of a suffosion sinkhole. 353 

Figure 3(b). Slip line mesh adopted for the suffosion sinkhole problem.  354 

Figure 3(c). Convergence history of |Hc-Hs| over different values of np.355 
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design parameter; it is a calculated value from the optimisation procedure and is included here 359 

for completeness)360 
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