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Abstract 
 

The relationship between the circadian molecular clock and cancer is complex 
and incompletely understood. This thesis attempts to elucidate the circadian 
behaviour of in vitro, in ovo, and in vivo model systems using a combination 
of approaches, in order to inform our understanding of the circadian clock in 
malignancy. 
 
Bioluminescent reporters, qPCR and next generation sequencing methods were 
employed to demonstrate significant disruption to circadian clock gene activity 
in MCF10A cells, a non-malignant cell line frequently described by the 
literature as having healthy clock function. Meanwhile the malignant MCF7 
cell line also demonstrated significant circadian clock gene disruption under a 
multitude of synchronisation/entrainment conditions. These findings highlight 
the challenges of using 2D in vitro models to elucidate circadian behaviour in 
cancer. 
 
The chick chorioallantoic membrane (CAM) assay was adapted in order to 
translate 2D circadian cancer models to a 3D environment. The intrinsic 
molecular clock of the chicken embryo appeared not to be free-running at 
EDD12-14. The detection of bioluminescent reporters in ovo, a relatively new 
development to the CAM assay, proved challenging for reasons that remain 
unclear. 
 
The machine learning biological time prediction algorithm TimeTeller, was 
adapted for use with low-resolution multi-tissue RNA-seq data, to predict 
biological time and clock dysfunction from single biological samples. The 
trained TimeTeller model was validated on several independent publicly 
available datasets. It is hoped that the application of TimeTeller to single 
biological samples will prove useful in understanding the degree of clock 
function in tumours and surrounding tissues. 
 
Overall these findings progress our understanding of the state of the molecular 
circadian oscillator across a range of model systems. It is hoped that the 
application of this research will enable novel insights into the circadian clock 
in malignancy. 
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Notes to Reader 
 

This thesis is an interdisciplinary undertaking, as per the requirements of 

Warwick Medical School’s Medical Research Councils’ Doctoral Training 

Partnership, which funded and supported this research. Therefore, elements of 

mathematics and statistics are used in order to understand complex biological 

datasets. It is assumed that the reader has a good understanding of molecular 

biological systems and transcriptomic datasets, with a basic understanding of 

mathematics. 

 

Each chapter stands somewhat independent of each previous chapter; 

therefore, each chapter contains its own introduction and review of the relevant 

literature. An overall introduction introduces the reader to the field of 

circadian rhythms, and its relevance to the field of cancer research. 
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1. Introduction 
 

1.1 The circadian timing system 

 

Life on planet Earth displays a staggering diversity, which we know to be the 

result of accumulated changes to inherited genetic material. The process of 

evolution ensures that organisms are often remarkably well adapted to life 

within their respective habitats. Naturally, species have evolved molecular 

mechanisms to cope with predictable changes to their environment. Some of 

the starkest environmental changes on earth are driven by the day/night cycle, 

created by the rotation of the earth on its axis every 24 hours (hrs). In order 

to anticipate and respond to daily environmental changes, organisms from all 

five kingdoms of life are known to have evolved endogenous time keeping 

systems from at least two independent evolutionary origins (Rosbash, 2009). 

Biological processes that oscillate in an endogenous, entrainable and 

temperature-compensated manner approximately every 24 hrs, are described 

as circadian rhythms (taken from the Latin ‘circa’, approximately, and ‘diem’, 

day) (Vitaterna et al., 2001). In other words, a circadian rhythm is 

endogenously generated even in the absence of entrainment factors such as 

sleep, light/dark cycles or temperature cycles; is able to respond to entrainment 

factors, e.g. shift work; and runs at the same period regardless of whether the 

external temperature is 10°C or 30°C (Kidd et al., 2015). 

 

In most mammals, diurnal or nocturnal, the key ‘Zeitgeber’, external ‘time-

giver’ or entrainment factor, is light. The detection of light by the eye transfers 

a signal to a region of the brain located in the hypothalamus called the 

suprachiasmatic nuclei (SCN), which modulates the cellular molecular clock in 
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the SCN (Ginty et al., 1993). As the SCN is the central timekeeper in 

mammals, it is capable of inducing the secretion of melatonin and 

glucocorticoids which can coordinate the molecular clocks of the peripheral 

organs (Cermakian & Boivin, 2009; Klein & Moore, 1979; Oster et al., 2006). 

The global coordination of molecular clocks is primarily, but not exclusively, 

the remit of the SCN. For instance, non-photic Zeitgeber signals including 

exercise and feeding patterns have been demonstrated to be sufficient to alter 

the sleep/wake behaviour of rats independently of the SCN (Ruis et al., 1989). 

In fact, many different external and internal signals are involved in the global 

coordination of the circadian timing system, as displayed in Figure 1.1 

(Kinouchi et al., 2018). 

 

Figure 1.1 Reproduced from Kinouchi and Sassone-Corsi (2020), Figure 1. A representation of the 

signalling pathways between the central and peripheral oscillators that allow for global coordination of 

the circadian timing system. 
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1.2 Molecular architecture of the mammalian circadian 

oscillator 

 

In mammals, the cellular molecular clock is primarily driven by approximately 

15 canonical clock genes which form transcriptional-translational feedback 

loops that control programmes of oscillatory gene expression over the course 

of a 24 hr period (Figure 1.2) (K. H. Cox & Takahashi, 2019). Heterodimers 

of aryl hydrocarbon receptor nuclear translocator like protein (ARNTL) and 

circadian locomotor output cycles kaput protein (CLOCK) bind to E-box-like 

enhancer sequences upstream of the period (PER1, 2 & 3) and cryptochrome 

genes (CRY1 & 2) (Gekakis et al., 1998; Hogenesch et al., 1998; Nakahata et 

al., 2008; Reick et al., 2001; van der Horst et al., 1999). Neuronal PAS domain 

protein 2 (NPAS2) is understood to be able to substitute for CLOCK in the 

brain (Reick et al., 2001). As the PERs and CRYs are expressed and begin to 

accumulate in the cytoplasm, they are subject to extensive regulation and bind 

with casein kinase 1 (CSNK1), RAB5-activating protein 6 (RAP6) and other 

proteins to form multimeric complexes approximately 1 megadalton (MDa) in 

size which are imported into the nucleus (Aryal et al., 2017). Once inside the 

nucleus these PER/CRY repressor complexes bind further proteins until they 

reach ~1.9 MDa (Aryal et al., 2017). The PER/CRY repressor complex binds 

to and degrades ARNTL/CLOCK, removing ARNTL/CLOCK from E-box 

enhancer sequences. Therefore, high levels of PER and CRY prevents further 

transcription of PER and CRY by ARNTL/CLOCK thereby closing the first 

transcriptional-translational feedback loop (R. Ye et al., 2014). 

 

A second transcriptional-translational feedback loop is formed by the binding 

of the ARNTL/CLOCK heterodimer to E-box regions upstream of NR1D1 and 

NR1D2, to promote their expression (Preitner et al., 2002). The concentration 
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of the NR1Ds increases until the NR1Ds out-compete RAR-related orphan 

receptor (RORa & b) binding to ROR-response elements (RREs) upstream of 

ARNTL, acting to repress expression (Guillaumond et al., 2005). Therefore, 

oscillatory expression of the NR1Ds serves to help regulate the circadian 

oscillation of ARNTL, PERs and CRYs. 

 

Figure 1.2 The circadian molecular clock. Reproduced from Cox and Takahashi, 2018, Figure 1. E-box 

binding transcription factors ARNTL (BMAL, green circles) and CLOCK (blue circles), heterodimerise 

and drive expression of PERs (yellow circles), CRYs (red/yellow circles), DBP (cyan circles), NR1Ds 

(REV-ERBs, red circles) and other E-box controlled genes. PER and CRY proteins are subject to post-

translational modifications in the cytoplasm, such that they dimerise with CSNK1 (CK1, beige hexagon) 

and are translocated into the cell nucleus. As the PER/CRY complex accumulates in the nucleus it acts 

to degrade BMAL/CLOCK heterodimers and repress expression of E-box driven genes, thus repressing 

its own transcription. Further transcriptional-translational control of the molecular oscillator is driven 

by the competition of NR1D1 and ROR (purple circles) for RRE sites on the BMAL and NFIL3 

promoters. This figure also describes a raft of post-translational molecular clock processes which will not 

be discussed in great detail here, as they are beyond the scope of the work undertaken throughout this 

thesis.  
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The oscillatory system is further complicated by a series of other molecular 

interactions with basic leucine zipper domain (bZIP) transcription factors, 

which lend nuance to the mammalian molecular clock. The ARNTL/CLOCK 

heterodimer binds to other E-box regions leading to expression of genes such 

as D-box binding PAR bZIP transcription factor (DBP) (Ripperger & Schibler, 

2006). Meanwhile expression of other PAR bZIP genes TEF transcription 

factor (TEF) and HLF transcription factor (HLF) are known to be regulated 

both dependently and independently of ARNTL (Hatanaka et al., 2010). The 

PAR bZIP proteins are thought to bind to D-box regions upstream of the 

RORs, NR1Ds, PERs and other genes, and are known to promote expression 

of PER1 and PER2 (Mitsui et al., 2001; Yamaguchi et al., 2000). In contrast, 

the related bZIP protein nuclear factor interleukin 3 regulated (NFIL3) binds 

>1,400 D-box sites across the genome that are also known to bind DBP, and 

is known to compete with DBP to have a repressive effect on PER1 expression 

(Mitsui et al., 2001; Yamaguchi et al., 2000). NFIL3 has also been 

demonstrated to heterodimerise with basic helix-loop-helix family member E41 

(BHLHE41) and repress expression of ARNTL through binding to the E-box-

like element upstream of ARNTL (Tanoue et al., 2015). 

 

Since the circadian molecular clock forms a 24 hr oscillator in cells, the phase 

of expression (commonly taken as the ‘acrophase’, the maxima of the sinusoidal 

expression) of each of the genes is consistent relative to the phases of other 

genes. This is easy to understand, as genes under E boxes promoter control 

such as DBP and PER2 will be expressed with similar phases but will have 

different phases to E box binding proteins such as ARNTL and CLOCK. Phase 

relationships of clock genes do appear to vary in consistency between different 

tissues and individuals by several hours – perhaps more so in humans than in 

mice (Hughey & Butte, 2016; R. Zhang et al., 2014). The best understanding 

of phase relationship differences across human tissues comes from CYCLOPS, 
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a model which ordered non-time-stamped samples taken from human organs 

post-mortem (Anafi et al., 2017). This data set remains to be verified by time-

stamped data and will be discussed further in chapter 4.1.2.9. A data set 

produced from Olive baboons under light/dark entrainment currently provides 

the best understanding yet of clock gene phase differences across different 

tissues in a diurnal species closely related to humans, and indicates that there 

can be quite a large range in circadian gene expression between tissues (Figure 

1.3A and B) (Mure et al., 2018). Meanwhile the most comprehensive circadian 

transcriptome in multiple murine tissues was published by R. Zhang et al. 2014 

(Figure 1.3C and D). 

 

Whilst the molecular clockwork is finely tuned, it is not inflexible, as indicated 

by small differences in the phase of expression of clock genes between different 

tissues. This is likely to be because the circadian clock interacts with, and is 

regulated by, other key cellular players. MYC proto-oncogene (MYC), for 

instance, binds to E-boxes in direct competition with ARNTL/CLOCK, and 

therefore is capable of ‘short-circuiting’ the molecular oscillator in over-

expression models (Altman et al., 2015). The relevance of this interaction at 

physiological MYC remains under-explored at present, although MYC is 

frequently over-expressed in cancer. A further example is that of tumour 

necrosis factor (TNF), which is implicated in diurnal joint pain in rheumatoid 

arthritis. TNF has been demonstrated to act in a calcium-dependent manner 

to increase RORa and decrease NR1D1 binding to the ARNTL RRE, and thus 

is capable of driving ARNTL expression (Yoshida et al., 2018). 

 

The downstream effects of the molecular clock are so pervasive that in mice 

the core clock genes are known to influence the timing of expression of up to 

43% of the genome, in at least one tissue of twelve tissues surveyed (R. Zhang 

et al., 2014). In fact it is important to understand that although the molecular 
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clock is driven by a relatively small number genes oscillating in a series of 

transcriptional-translational feedback loops, the result is global circadian 

changes in the proteome, metabolome, phosphorylome, cistrome, epigenome 

and microRNAome (Dallmann et al., 2012; Kochan et al., 2015; Koike et al., 

2012; Mauvoisin et al., 2014; Robles et al., 2017). 

Figure 1.3 Relative phase alignments of core circadian 

genes. A) and B) reproduced from Mure et al. 2018, 

Supplementary Figure 4C and D. A) Average (green 

circle) and median (red arrow) distributions of the peak 

phases of core clock genes in baboon tissues in which they 

are detected as cycling (grey circles). B) Mean clock gene 

expression over all rhythmic baboon tissues, plotted 

against time of sampling. C) and D) reproduced from R. 

Zhang et al. (2014) Supplementary Figure 5. 

C) Simplified model of the circadian clock network with circadian gene oscillation in 8 mouse organs 

super-imposed. D) A heatmap representation of the same core clock genes displayed in C). 

A B 

C D 
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Therefore, it is unsurprising that circadian gene dysregulation in humans is 

associated with multiple disease states including, sleep-wake disorders, 

cardiovascular disease, diabetes and cancer (reviewed by Auger et al., 2015; 

Crnko et al., 2019; Stenvers et al., 2019; Sulli et al., 2019). 

 

1.3 An introduction to cancer 

 

Cancer is the disease caused by uncontrolled division of abnormal cells. It is a 

major cause of death, second only to heart disease globally (Ferlay et al., 2019). 

Abnormal cancer cell division is supported by a series of abnormal biological 

processes known as the ‘hallmarks of cancer’ (Figure 1.4) (Hanahan & 

Weinberg, 2011). Broadly speaking, these ‘hallmarks’ describe the manner in 

which cells with accumulated mutations exhibit uncontrolled cell growth and 

division, promote re-structuring of the local environment and 

manipulate/evade the immune response (Hanahan & Weinberg, 2011). Some 

of the components of the molecular circadian clock are known to directly 

interact with some of the key components of processes known to contribute to 

the hallmarks of cancer, including apoptosis (MYC, p53), cell division (WEE1, 

Cyclin B1, p53) and mitochondrial metabolism (Farshadi et al., 2020; Schmitt 

et al., 2018; Stephenson et al., 2021). It is therefore unsurprising that the 

molecular circadian clock has been implicated in the development of 

oncogenesis, as will be discussed in detail in the chapter sections that follow. 

 

1.4 The molecular clock and oncogenesis 

 

The relationship between cancer and the circadian clock has long been a topic 

of research, with epidemiological research suggesting a link between light 
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exposure at night, and breast cancer incidence as early as 1987, although 

opinion remains divided regarding the strength of this association (Fagundo-

Rivera et al., 2020; Jones et al., 2019; Schernhammer et al., 2001; Stevens, 

1987). Additionally, an association between melatonin secretion from the 

pineal gland and cancer incidence has been a focus of research since the 1970s 

(Cohen et al., 1978). 

 

A great deal of in vitro and in vivo research has attempted to elucidate the 

contribution of each of the core clock genes in the development and clinical 

outcome of cancer. Whilst single gene over-expression/knock-down models can 

be undeniably useful to researchers, such a gene-wise approach to circadian 

cancer research is a somewhat blunt tool because the circadian clock is a finely 

tuned oscillatory mechanism. Therefore, any change in expression of a single 

clock gene has a knock-on effect on the expression of other genes in the 

Figure 1.4 The hallmarks of cancer. Adapted from Hanahan and Weinberg, 2011, Figure 6.  
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circadian network. Additionally, many studies that use over-expression/knock-

down models do not investigate whether expression of the gene of interest 

remains rhythmic upon over-expression/knock-down. Therefore, it is often 

difficult to predict whether an observed effect is dependent on the absolute 

expression level of a core clock gene, or degree of oscillatory expression of the 

core clock gene manipulated, or indeed upon the subsequently altered 

expression of another core clock gene. Nonetheless, a gene-wise approach to 

circadian cancer research has yielded some interesting findings which are 

discussed below with reference to the core clock genes ARNTL, CLOCK, 

PER1, 2 & 3, CRY1 &2 and NR1D1 & 2. 

 

1.4.1 ARNTL 

 

In colorectal cancer and metastatic melanoma patient populations, higher than 

mean tumour expression of ARNTL has been associated with significantly 

longer overall survival relative to patients with lower than mean tumour 

ARNTL expression (de Assis et al., 2018; Zeng et al., 2014). Since the measure 

of absolute ARNTL expression relative to the tumours of other patients does 

not give any indication of the degree of functionality of the circadian clocks in 

these tumours, nor do we know at what time of day the tumour samples were 

taken from patients – and therefore whether ARNTL in the tumour was higher 

or lower than to be expected – the implications of the in vivo data regarding 

the role of ARNTL in cancer should be interpreted with caution. These are 

common problems for circadian research on human tumour samples, and will 

be addressed further in chapter 4.1. 

 

In vivo data from murine models largely support a tumour-suppressive role for 

ARNTL, as implied by the patient data. For instance, knock-down of ARNTL 
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in murine colon carcinoma C26 cells, has been demonstrated to increase tumour 

growth in mice (Zeng et al., 2010). Similarly, in the pancreatic cell line BxPC-

3, ARNTL knock-down was shown to cause accelerated tumour growth in a 

xenotopic murine model of pancreatic cancer. Moreover, further experiments 

demonstrated that ARNTL over-expression in the pancreatic cell line AsPC-1, 

resulted in tumour suppression in vivo (Jiang et al., 2016). The xenotopic 

murine pancreatic carcinoma models demonstrated that under/over-expression 

of ARNTL resulted in a corresponding down/up-regulation of phospho-tumour 

protein p53 (TP53), whilst ARNTL was observed to bind to the promoter of 

TP53. The link between ARNTL and TP53 has been investigated further in a 

hepatocellular carcinoma cell line where ectopic over-expression of ARNTL was 

shown to increase TP53 expression and reduce tumour load in mice (Fekry et 

al., 2018). Lastly, whilst ARNTL knock-out in a Cre recombinase-induced 

murine lung adenocarcinoma model caused an increase in tumour burden, the 

tumour burden in p53-/- background mice could not be increased further by 

ARNTL knock-down in the tumours (Papagiannakopoulos et al., 2016). These 

findings all support the idea that the tumour-suppressive effect of ARNTL 

expression may be TP53-dependent. In many ways this would make sense as 

in healthy cells TP53 is capable of halting the cell cycle, and the circadian 

clock and the cell cycle are also known to interact with one another in healthy 

cells (Farshadi et al., 2020). It has been hypothesised that one of the ways in 

which changes to the circadian clock might drive cancer is through changes to 

the cell cycle, which would drive changes in cell proliferation. 

 

In contrast to the finding that ARNTL can be tumour-suppressive, murine 

models of acute myeloid leukaemia (AML) have comprehensively demonstrated 

that when ARNTL is knocked down, leukaemic cells begin to differentiate to 

a myeloid-lineage monocytic phenotype and cease replication (Puram et al., 

2016). Their healthy myeloid progenitor counterparts do not require ARNTL 
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to maintain replication, so it would seem that something about the leukaemic 

cell required a functional circadian clock to drive the cell cycle. Unfortunately, 

TP53 was not investigated by Puram et al. (2016), but as the circadian clock 

drives different transcriptional programmes in different tissue types, and 

different cancer types have very different genetic backgrounds, it is perhaps to 

be expected that different cancer types may react to changes to the circadian 

clock in different ways (Y. Ye et al., 2018; R. Zhang et al., 2014). 

 

As in in vivo data, in vitro data on the role of ARNTL in tumourigenesis is 

divided. Experiments in pancreatic adenocarcinoma, colorectal carcinoma, 

colon adenocarcinoma, breast cancer, glioblastoma cell lines and patient-

derived glioblastoma cells, all demonstrate that ARNTL has a tumour-

suppressive role (Dong et al., 2019; Gwon et al., 2020; Jiang et al., 2016; Ramos 

et al., 2020; J. Wang et al., 2019; Zeng et al., 2014; Yuan Zhang et al., 2020). 

However, experiments in mesothelioma and AML cell lines demonstrate a 

tumour-proliferative role for ARNTL (Elshazley et al., 2012; Puram et al., 

2016). It is worth noting, that as is often the case in the in vivo experiments 

discussed, in vitro experiments are often carried out on populations of cells 

with an unknown circadian clock background and an unknown degree of 

circadian synchronicity between cells in the population, both pre- and post- 

manipulation of ARNTL expression. 

 

1.4.2 CLOCK 

 

Data concerning the role of ARNTL’s binding partner CLOCK, largely 

supports a tumour promoting role for CLOCK. For instance, Puram et al. 

(2016) extended their in vivo murine work in AML cells to demonstrate that 

CLOCK knock-down halted cell cycle progression, just as BMAL had (Puram 
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et al., 2016). Other significant in vivo murine research into the role of CLOCK 

in cancer used the SW620 and SW480 colon carcinoma cell lines to demonstrate 

that knock-down of CLOCK slowed the metastasis of subcutaneous flank 

tumours, meanwhile over-expression of CLOCK resulted in increased tumour 

growth (Yaping Wang et al., 2015, 2017). The authors developed their 

argument that over-expression of CLOCK could induce tumourigenesis, by 

demonstrating in vitro that increased CLOCK expression caused an increase 

in epithelial-mesenchymal transition (EMT) markers, an increase in the 

angiogenesis-inducing factors hypoxia inducible factor 1 subunit alpha 

(HIF1A), ARNT and vascular endothelial growth factor A (VEGFA), a 

decrease in the pro-apoptotic factors BCL2 associated X protein (BAX) and 

BH3 interacting domain death agonist (BID), and an increase in AKT 

serine/threonine kinase 1 (AKT) and phospho-AKT (Yaping Wang et al., 

2015, 2017). Phosphorylation of AKT is known to be involved in the prevention 

of apoptosis, and also in enabling cell cycle progression, a finding which 

correlates with the observation of cell cycle arrest upon CLOCK knock-down 

in AML cells from Puram et al. (2016). 

 

Further studies in vitro in other cell line models, support the idea that the 

effect of CLOCK on tumourigenesis would appear to be mediated through 

angiogenesis, cell cycle progression and apoptosis. For example, knock-down of 

CLOCK in the human glioblastoma cell line U87MG was demonstrated to 

result in increased apoptosis, decreased MYC proto-oncogene, bHLH 

transcription factor (MYC) and cyclin B1 (CCNB1) (F. Wang et al., 2016). 

Meanwhile knock-down of CLOCK in patient-derived glioblastoma cells 

reduced their survival, and increased caspase 3 (CASP3) cleavage (Dong et al., 

2019). 
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It is likely that the adverse effects of CLOCK in cancer are at least partially 

mediated by oestrogen signalling. Histological examination of breast tumours 

showed that oestrogen receptor (ESR1) expression correlated with CLOCK 

expression, while addition of oestrogen to ESR1+ MCF7 breast cancer cells 

resulted in an increase in expression of CLOCK (Xiao et al., 2014). Earlier 

work in breast cancer patients identified that particular single nucleotide 

polymorphism (SNP) variants of CLOCK can be associated with either 

increased or decreased risk of breast cancer diagnosis. Importantly the 

ESR1/progesterone receptor (PGR) status of the patients’ breast cancers also 

affected the risk associated with each of the CLOCK variants, implying an 

association between the circadian clock and cancer that is dependent upon 

cancer hormone status (Hoffman et al., 2010). 

 

Whilst the majority of evidence would imply a tumour-promoting role for 

CLOCK, Cadenas et al. (2014) demonstrated that higher than mean CLOCK 

tumour expression correlated with significant improvement to metastasis free 

survival (MFS) in ESR–/ erb-b2 receptor tyrosine kinase 2 (ERBB2)– breast 

cancer patients. However, there was no such association in ESR+/ERBB2– 

patients, which further supports the idea that the association between the 

circadian clock and cancer is dependent upon cancer hormone status (Cadenas 

et al., 2014). 

 

1.4.3 PER1, PER2 and PER3 

 

The PER genes function as transcriptional repressors, as they remove the 

ARNTL/CLOCK complex from E box promoter motifs. Evidence in vitro and 

in in vivo murine models is largely supportive of a tumour-suppressive role for 

PER2. Of the PER genes, PER2 is the best researched in the literature, and 
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the same is true in relation to cancer research. In a series of early papers, Hua 

et al., (2006, 2007) demonstrated that in vitro over-expression of Per2 in mice 

and in lung and mammary carcinoma cell lines reduced cell proliferation, 

resulted in the downregulation of c-Myc, anti-apoptotic BCL2-like 1 (Bcl2l1) 

and Bcl2, and the upregulation of p53 and pro-apoptotic Bax (Hua et al., 

2006). Furthermore, in vivo ectopic delivery of Per2 to murine lung carcinomas 

reduced tumour burden (Hua et al., 2007). Similar results were later observed 

in human carcinoma cell lines; over-expression of murine Per2 in human 

pancreatic carcinoma cells decreased cell proliferation, increased pro-apoptotic 

BAX and reduced anti-apoptotic BCL2L1, whilst knock-down of PER2 in 

osteosarcoma cells increased proliferation via increased phospho-AKT and 

BCL2 and reduced histone 3 pseudogene 23 (H3P23), H3P16 and cleaved 

CASP3 (Oda et al., 2009; Qin et al., 2018). Experiments in mammary MCF10A 

cells have demonstrated that hypoxia resulted in the rapid degradation of 

PER2, and direct de-repression at the OCT1 promoter, which triggered the 

downstream expression of EMT-promoting genes (Hwang-Verslues et al., 

2013). This mechanism appeared to be somewhat similar to the HIF1A and 

EMT response driven by the over-expression of CLOCK in colon carcinoma 

lines, which would make sense as over-expression of CLOCK might also have 

perturbed the activity of PER2 in the colon carcinoma cell lines (Yaping Wang 

et al., 2015, 2017). 

 

In vivo experiments have confirmed these findings in murine carcinoma models. 

Over-expression of PER2 in nasopharyngeal carcinoma cells was demonstrated 

to slow cancer cell proliferation in murine models, and also caused a decrease 

in cell cycle and proliferation drivers including phospho- mitogen-activated 

protein kinase 1 (phospho-MAPK1) and phospho-MAPK14 (Hou et al., 2020). 

Meanwhile over-expression of PER2 in chronic myeloid leukaemia (CML) also 

slowed cancer cell division in a murine model, and resulted in a decrease in the 
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cell cycle progression drivers MYC and CCNB1 and an increase of TP53 (Sun 

et al., 2010). Papagiannakopoulos et al. (2016) later demonstrated that when 

the circadian clocks of mice were disrupted via global Per2 knock-out, they 

were more susceptible to heavier tumour burden in a lung carcinoma model. 

In slight disagreement with Sun et al. (2010) the effect of PER knock-out was 

demonstrated to be independent of the p53 status of the animal 

(Papagiannakopoulos et al., 2016). However, the models were different in that 

Sun et al. (2010) used mice with a healthy clock background, and manipulated 

the tumour cell clock, whilst Papagiannakopoulos et al. (2016) used mice with 

a disrupted clock background and did not manipulate the tumour cell clock 

any further. 

 

Whilst there is ample evidence in vitro and in in vivo murine models that 

higher PER2 expression induces a multitude of tumour-suppressive pathways, 

data from humans is more divided, and suggests that the effect of PER2 in 

cancer is dependent upon cancer type. In a comparison of patient matched 

tumour/tumour-margin biopsies from 14 cancer types in The Cancer Genome 

Atlas (TCGA) PER2 was under-expressed in tumours relative to tumour 

margins in a majority of cancer types (Y. Ye et al., 2018). However, in a 

minority of cancer types, PER2 expression was associated with driving the pro-

tumourigenic RAS/MAPK or receptor tyrosine kinase (RTK) signalling 

pathways. In keeping with the in vitro and in vivo experimental data discussed 

thus far, in breast cancer or pancreatic ductal adenocarcinoma (PDA) patients, 

lower than mean tumour PER2 expression was associated with poorer MFS 

and overall survival (OS) respectively (Cadenas et al., 2014; Relles et al., 2013). 

 

Research into the roles of PER1 and PER3 in cancer is relatively scant. In 

vitro, PER1 over-expression was shown to decrease proliferation of HCT116 

colon carcinoma cells, whilst knock-down increased proliferation of HCT116 
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cells (Gery et al., 2006). However, PER1 knock-down was shown to decrease 

proliferation in the pancreatic cell line, PaCa-2, and the hepatocarcinoma cell 

line, HepG2 (Sato et al., 2009). In patient populations, lower than mean PER1 

and PER3 expression were both shown to correlate with poorer OS in PDA 

and head and neck squamous cell carcinoma (Oshima et al., 2011). Lower than 

mean PER1 expression also correlated with increased risk of metastasis in cases 

of colorectal cancer (Relles et al., 2013). 

 

1.4.4 CRY1 and CRY2 

 

In recent years it has been demonstrated that CRY2 can recruit MYC, tousled 

like kinase 2 (TLK2) and other proteins to F-box and leucine rich repeat 

protein 3 (FBXL3) for ubiquitination and resultant degradation (Huber et al., 

2016; Papp Correia et al., 2019). TLK2 has previously been demonstrated to 

be required for cell recovery upon DNA damage, mediated by recovery from 

the DNA damage response-induced cell cycle checkpoint (Bruinsma et al., 

2016). Slightly counterintuitively, the recovery from DNA damage was more 

successful in cells which lacked TP53 – it would seem that as long as TLK2 

remained present a TP53 knock-out background pushed cells towards a repair 

pathway rather than apoptosis (Bruinsma et al., 2016). This information 

relating the role of CRY and TLK2 to TP53 and the DNA damage response 

offers an explanation for the earlier observation that Cry1-/-Cry2-/- double 

knock-out mice are resistant to the increased rate of tumourigenesis usually 

observed in p53-/- mice. It may be that in Cry1-/-Cry2-/-p53-/- mice TLK2 is 

not degraded by CRY2 and FBXL3, and therefore is able to induce a successful 

DNA damage response, resulting in reduced tumourigenesis. This evidence 

would suggest that CRY2 expression has a tumour-enhancer role. In agreement 

with this, higher CRY1 expression was observed in colorectal tumour biopsies 
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relative to adjacent noncancerous tissue, and higher tumour CRY1 expression 

correlated with decreased OS for colorectal cancer patients (H. Yu et al., 2013). 

Similarly, CRY1 was found to be significantly upregulated in higher stage 

gastric cancers (M. L. Hu et al., 2014). 

 

Despite the findings discussed thus far, data largely supports the view that 

CRY2 is tumour-suppressive, not tumour-enhancive. CRY2 was under-

expressed relative to tumour margins in 10 of the 14 cancer types surveyed by 

Ye et al. (2018) from TCGA, and higher expression has been associated with 

prolonged MFS in breast cancer, and with better OS in PDA (Cadenas et al., 

2014; Relles et al., 2013; Y. Ye et al., 2018). In vitro CRY2 knock-down in the 

human osteosarcoma (HOS) cell line has been demonstrated to increase cell 

proliferation, cell cycle progression, expression of MYC and cyclin D1 

(CCND1) and phosphorylation of MAPK3 and MAPK1 (Y. Yu et al., 2018). 

Meanwhile, similar observations have been made for CRY1 knock-down in 

HOS and U2OS osteosarcoma cells both in vitro and in in vitro. Specifically, 

CRY1 knock-down increased cell proliferation, migration, in vivo tumour 

growth, expression of cyclin A (CCNA1/2), cyclin dependent kinase 2 (CDK2), 

phosphorylation of AKT and MDM2 proto-oncogene (MDM2), and decreased 

TP53 (L. Zhou et al., 2018). It seems likely that the different effects of the 

CRY genes on tumourigenesis in different models, could be due to different 

tumour backgrounds, such as TP53 mutation status. Perhaps this is able to 

dictate whether the role of CRY in cancer cells is tumour-promoting through 

TLK2 degradation, or tumour-suppressive through MYC degradation. 
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1.4.5 NR1D1 and NR1D2 

 

The NR1D genes are under the transcriptional regulation of the E-box–binding 

ARNTL/CLOCK complex, and so are expressed in a similar circadian phase 

as the E-box driven PER genes. NR1D proteins act as transcriptional 

repressors by binding to RRE motifs in gene promoters and recruiting the 

NCOR1-HDAC3 complex via a heme ligand (Yin & Lazar, 2005; Zamir et al., 

1996). HDAC3 deacetylates histones, which allows chromatin to condense and 

therefore represses transcription locally (Pazin & Kadonaga, 1997). The reason 

for the significance of this mechanism is that small molecules have been 

developed that replace the role of heme and therefore act as pharmacological 

NR1D agonists or antagonists (Grant et al., 2010; Kojetin et al., 2011). Work 

with NR1D agonists in cancer cells has universally supported an anti-

tumourigenic role for the NR1D proteins. The agonist SR9009 was 

demonstrated to be cytotoxic in vitro to T98 glioblastoma cells and HepG2 

cells, and also reduced proliferation of glioblastoma stem cells (Dong et al., 

2019; Wagner et al., 2019). Meanwhile the agonist SR9011 was demonstrated 

to reduce proliferation of the same glioblastoma stem cells, and also reduced 

cell viability in an NR1D2-dependent manner in the breast cancer cell lines 

MCF7, MDA-MB-231, MDA-MB-361 and BT474 (Yongjun Wang et al., 2015). 

Recent work in vivo has confirmed the NR1D-dependent anti-tumourigenic 

effect of SR9009 in a glioblastoma murine model (Sulli et al., 2018). The 

authors demonstrated that the anti-tumourigenic effect of SR9009 was 

mediated by an NR1D-dependent inhibition of autophagy which resulted in 

increased p53-independent apoptosis specific to cancer cells. Independent work 

has demonstrated that SR9009 induces NR1D1 to bind to the promoter regions 

and repress expression of many core autophagy genes, which was earlier 

theorised by Sulli et al. (2018) computationally (Shen et al., 2020). Shen et al. 

(2020) also demonstrated that SR9009 reduced small-cell lung carcinoma 
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growth in a murine subcutaneous tumour model in an NR1D-dependent 

manner. 

 

The research that has not used NR1D agonists is also largely supportive of an 

anti-tumourigenic role for the NR1D genes. In vitro NR1D2 knock-down in 

BT474 breast cancer cells was demonstrated to increase cell proliferation, 

whilst NR1D1 knock-down in HCT116 colorectal carcinoma cells also cell 

increased proliferation (Basti et al., 2020; Kourtidis et al., 2010). In contrast 

to this, Tong et al. (2020) suggested that since high expression of NR1D2 in 

patient HCC tumours correlated with poorer OS, NR1D2 may have a tumour-

promoting role in some cancer types. They went on to demonstrate that 

NR1D2 knock-down reduced proliferation of HCC cell lines Huh7 and 

HCCLM3. The mechanism appeared to be dependent on NR1D2-induced over-

expression of catenin beta 1 (CTNNB1), and a resultant increase in EMT 

markers such as cadherin 2 (CDH2) (Tong et al., 2020). This finding suggests 

that the role of the NR1D genes in cancer may vary depending upon the cancer 

type, as with the other clock genes discussed. 

 

1.5 Challenges to experimental modelling of circadian 

tumour behaviour 

 

It is challenging to model circadian tumour behaviour experimentally for 

several reasons. Firstly, it is clear from the research discussed thus far that the 

expression and role of circadian genes within tumours is likely to be 

heterogenous between tumour types, which is to be expected given that 

downstream circadian gene expression varies widely between tissue types even 

prior to the development of cancer (R. Zhang et al., 2014). Secondly the degree 

to which the circadian behaviour of an in situ tumour is affected by, and 
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affects, its microenvironment and host, remains mostly unexplored (Hadadi & 

Acloque, 2021). For instance, the circadian clock is known perturb key 

immuno-modulators including, but not limited to, TNF, interleukin 6 (IL6) 

and interferon gamma (IFNG), therefore the circadian state of a tumour is 

hypothesised to impact the immune microenvironment (Cao et al., 2017; 

Scheiermann et al., 2018). Recent papers have indicated that chronic circadian 

disruption in mice, not only promotes tumour growth, but results in tumour 

microenvironments with immune cell populations that are more immune-

suppressive and therefore tumour-supportive in nature (Aiello et al., 2020; 

Hadadi et al., 2020). This research supports the idea that the clock of the host, 

the clock of the tumour and the nature of the tumour microenvironment are 

inter-linked, though presumably crosstalk between tumour cells and the 

microenvironment for the purpose of synchronisation of local cellular clocks 

may also vary between tumour types. A further dimension of complexity in 

modelling the circadian clock in cancer is understanding how the expression of 

the core clock genes change with time over a 24 hr period, and in relation to 

one another, as discussed in chapter 1.2. In order to explore how the molecular 

clock might contribute to the development and maintenance of tumourigenesis, 

experimental models must be designed to reflect these complex factors. 

 

1.5.1  Contributions of this thesis 

 

The work presented in this thesis was undertaken with the literature discussed 

thus far in mind. The chapters that follow will develop in vitro, in ovo, and in 

vivo approaches in order to explore the circadian clocks of cancer cells, with 

the aim of deepening our understanding of the complex interplay between the 

functionality of the molecular clockwork over the course of the day and 
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tumourigenesis. Specifically, the key findings of this thesis that will be 

presented are as follows: 

 

• The “benign” MCF10A and “malignant” MCF7 breast cell lines cultured 

under a range of conditions both indicate significantly altered molecular 

clock function, to that previously described by the literature. 

• The relatively novel use of bioluminescence reporters in the chick 

embryo chorioallantoic membrane tumour graft model should be 

approached with caution, as tumour bioluminescence may not correlate 

well with tumour growth and metastasis. The novel use of luciferin-

loaded polymer patches is also investigated. 

• The semi-supervised time prediction algorithm TimeTeller can be 

adapted for application to RNA-seq data, and used to detect circadian 

clock differences in murine models of circadian disruption. 
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2. Exploring circadian dysregulation in 

vitro using human breast MCF cell lines 
 

2.1 Introduction 

 

2.1.1 Breast cancer and the circadian clock 

 

Breast cancer is the second most commonly diagnosed cancer worldwide, a 

significant statistic considering that the majority of the disease burden lies 

with only half the population (Ferlay et al., 2019). Improving our 

understanding of breast cancer through experimental research is paramount to 

being able to understand and treat the disease. In the field of circadian cancer 

research, breast cancer research in particular has a long history due to studies 

on the effect of shift work on breast cancer risk, which have often surveyed 

cohorts of shift-working nurses (Schernhammer et al., 2001; Stevens, 1987). 

Evidence discussed in the previous chapter appears to indicate that in breast 

cancer the core clock genes ARNTL, CLOCK, PER2, CRY2 and NR1D2 have 

tumour-suppressive roles. However, there are few studies relating to breast 

cancer that have examined expression of all of the clock genes in relation to 

one another, in order to try and further our understanding of how the circadian 

clock functions in breast cancer. 

 

For instance, Y. Ye et al. (2018) comprehensively examined circadian clock 

gene expression in the breast carcinomas of patients relative to tumour 

margins, and established that expression of the core clock genes PER1, PER2, 

PER3, NR1D1, NR1D2, NFIL3, CRY2, RORA and RORB are all decreased 
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in the tumours of breast carcinoma patients relative to their tumour margins. 

However, since this data covers a range of different breast cancer types from 

TCGA, which were presumably sampled at different times of day (but not 

night), it is impossible to know what the state of the circadian clock in the 

individual tumours might have been (Y. Ye et al., 2018). To begin to answer 

the question of how clock gene expression changes over 24 hrs in cancer, we 

must look to experimental models where it is possible to sample repeatedly 

over time. In vitro research on cancer versus non-cancer cell lines provides such 

an opportunity. There are very well-characterised cell lines derived from breast 

tissues, which are commonly used in breast cancer research. In particular this 

chapter discusses the use of the benign and malignant MCF breast cell lines as 

a model for investigating the role of the molecular circadian clock in cancer in 

vitro. 

 

2.1.2 The MCF cell lines and their use in circadian research 

 

The MCF10A breast epithelial cell line was derived in the 1980s from breast 

tissue cells which spontaneously immortalised in vitro and is used to represent 

benign breast tissue (Qu et al., 2015; Herbert D. Soule et al., 1990). Meanwhile, 

the MCF7 cell line was developed in 1973 from the metastatic breast 

adenocarcinoma of a 69 year old woman, and is frequently used as a model of 

ESR1 and PGR positive breast cancer (Comşa et al., 2015; H D Soule et al., 

1973). 

 

Both MCF cell lines have been used in previous circadian rhythms research 

efforts, with MCF10As frequently touted as “benign good clock” cells and 

MCF7s as “malignant bad clock” cells (Gutiérrez-Monreal et al., 2016). Table 

2.1 compares the expression of core clock genes between the two cell lines in 
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the published literature (Chacolla-Huaringa et al., 2017; Cox, 2012; Gutiérrez-

Monreal et al., 2016; Lellupitiyage Don et al., 2019, 2020; Lin et al., 2019; 

Rossetti et al., 2012; Y. Zhang et al., 2018). In the case of the benign MCF10A 

cell line, rhythmic expression of ARNTL and PER transcripts is detected in 

almost all of the published research, however, the period of oscillation varies 

from as low as approximately 19 hrs, to as high as 32 hrs. It is worth noting 

that while Cox (2012) observed particularly long periods in ARNTL, PER1 

and PER2 expression (>29 hr periods) the cells were also synchronised 

differently (using dexamethasone rather than serum starve/shock/starve). 

When the circadian rhythms of cells are assessed in vitro, it is common practice 

to first synchronise the population of cells to the same phase in their circadian 

rhythms. This is usually achieved by the addition of an exogenous synchroniser 

to the media in which the cells are cultured. Dexamethasone, forskolin and 

serum starve/shock/starve are all acceptable methods of synchronising 

circadian clocks in cells (Balsalobre et al., 1998, 2000; Yagita & Okamura, 

2000). Cell synchronisation methods will be discussed in greater detail in 

chapter 2.1.3. 

 

Much of the research summarised in Table 2.1 did not identify rhythmic 

behaviour in the core clock genes of MCF7s, in keeping with the conclusion 

that MCF7s are “bad clock malignant” cells. However, Cox (2012) 

demonstrated rhythmic expression of ARNTL and PER2 in MCF7s. Whilst 

Lellupitiyage Don et al. (2019) did not demonstrate distinct MCF7 circadian 

rhythms in ARNTL and PER2 transcripts by quantitative polymerase chain 

reaction (qPCR), they did show oscillatory promoter activation for ARNTL 

and PER2 using transcriptional luciferase reporter lentiviral vectors 

(Lellupitiyage Don et al., 2019, 2020), which supports the findings of Cox 

(2012). It is interesting that Zhang et al. (2018) used transcriptional luciferase 

reporter lentiviral vectors to observe a particularly short 19 hr period of 
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MCF10A ARNTL oscillation. It should be noted that the transcriptional 

luciferase reporter lentiviral vectors used were built using the promoters of 

clock genes from mice, while MCFs are a human cell line, therefore it is possible 

that the luciferase reporters used by Zhang et al (2018) and Lellupitiyage Don 

et al. (2019, 2020) provided an inaccurate assessment of the circadian rhythms 

in the MCF10As and the MCF7s (Ramanathan et al., 2012). However, 

Ramanathan et al. (2012) demonstrate clear circadian oscillation of 

transcriptional mouse clock promoter luciferase reporters in U2OS human cells, 

which indicates that the homology between mouse and human clock gene 

promoters is high enough to report rhythmic behaviour accurately in either 

mouse or human cell lines. 

 

The most detailed analysis of circadian rhythms in MCF10A and MCF7 cell 

lines undoubtedly comes from the DNA microarray analysis of gene expression 

undertaken by Gutiérrez-Monreal et al. (2016). Samples of serum 

starved/shocked/starved MCF10A and MCF7 cells were obtained from 8 hrs 

post return to serum starvation conditions, every 4 hrs, for 28 hrs. As detailed 

by Table 2.1, Gutiérrez-Monreal et al. (2016) observed clear circadian gene 

oscillation in MCF10A ARNTL and PER2 by qPCR, however their microarray 

dataset did not appear to support this finding (Figure 2.1). Only one of the 

sixteen PER2 probes demonstrated circadian oscillation in MCF10As in a 

phase that matched the qPCR data, meanwhile the single ARNTL probe 

appeared to oscillate with a 30.8 hr rhythm. Other circadian clock genes in 

MCF10A cells also did not appear to be functioning canonically. For instance, 

NR1D2 displayed a short 19 hr rhythm in 2 out of 3 probes. One of the DBP 

probes appeared to oscillate in opposition to the ARNTL probe, but the other 

did not. Two RORA probes appeared to oscillate in phase with ARNTL, but 

the third was antiphasic, and the fourth was not rhythmic at all. Meanwhile, 

none of the probes for CLOCK, CRY1, CRY2, NR1D1, PER1 or PER3 
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oscillated in a circadian fashion. The MCF7 cells did not demonstrate 

appropriate core circadian gene oscillation either, which would support the 

conclusion that MCF7 is indeed an arrhythmic cell line. It is possible that the 

unexpected lack of rhythmicity in core clock genes of the MCF10A cells 

assessed by microarray could be a due to limitations intrinsic to microarray 

experiments. Microarray experiments can suffer from cross-reactivity between 

cDNA and off-target probes, washing/imaging issues and normalisation 

problems (Jaksik et al., 2015). In particular the work presented by Gutiérrez-

Monreal et al. (2016) lacks biological duplicates, which makes it hard to 

determine if the apparent lack of rhythmicity in core clock transcripts in 

MCF10As is the result of experimental noise, or a true representation of the 

transcriptome. 
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Figure 2.1 Core clock gene expression in MCF7 (black) and MCF10A (red) by microarray. Some genes 

have more than one probe, additional probes are marked as .1, .2 etc. Period and correlation for each 

probe is shown at the top of each profile (“w” for period and “r” for correlation). Y axis denotes normalized 

log ratioed gene expression. X axis represents time: 0, 4, 8, 12, 16, 20, 24, and 28 hrs delayed 8 hrs post-

serum shock. Reproduced from Gutiérrez-Monreal et al. 2016, Supplementary Figure 5. 
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2.1.3 Cell circadian clock synchronisation methods 

 

The circadian research performed in MCF7 and MCF10A cells described thus 

far used either dexamethasone or serum starvation/shock/starvation to 

synchronise the individual cellular clocks within the population to the same 

phase. When cells are cultured in vitro, synchronisation is necessary as the 

cells lack the endogenous signals that would have synchronised the cellular 

clocks within an organism. The use of dexamethasone to synchronise the 

molecular clocks of a population of cells to the same phase mirrors the 

afforementioned cooperation of the SCN and adrenal cortex in vivo, which 

results in rhythmic glucocorticoid levels in humans (Ishida et al., 2005; Oster 

et al., 2006). In vivo glucocorticoids bind to glucocorticoid receptors (GRs) and 

are imported to the nucleus where they bind to GR elements (GREs) allowing 

for regulation of target gene expression. PER1 and PER2 both have GREs in 

their promoter and intronic regions respectively that are believed to induce 

PER expression, whilst NR1D1 and RORa have GREs that are believed to 

repress expression (Conway-Campbell et al., 2010; Pineda Torra et al., 2000; 

So et al., 2009; Stavreva et al., 2009; Surjit et al., 2011). It is also thought that 

CLOCK and CRYs are both capable of inhibiting the GR complex (Lamia et 

al., 2011; Nader et al., 2009). These interactions, and perhaps others, are 

thought to enable dexamethasone to act as a phase resetter of circadian clocks 

in vitro (Dickmeis et al., 2013). 

 

Forskolin is a second commonly used chemical for circadian clock 

synchronisation in vitro. Forskolin is an adenylyl cyclase agonist, therefore it 

increases cellular cyclic AMP (cAMP) levels (Takeda et al., 1983). cAMP levels 

have previously been demonstrated to be rhythmic in SCN slices cultured in 
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vitro, and indeed rhythmic cAMP is required for sustenance of circadian clock 

gene oscillations (O’Neill et al., 2008; Prosser & Gillette, 1989). However, the 

ability of cAMP to synchronise rhythms in the SCN was found to be 

independent of the protein kinase A (PKA)-driven phosphorylation of cAMP 

response element binding protein (CREB) (O’Neill et al., 2008). This is 

interesting because the PER1 and PER2 promoters have cAMP response 

elements (CREs) that bind phosphorylated CREB in complexes with CREB 

binding protein (CREBBP), and CREB is phosphorylated in the SCN upon 

light exposure (Ding et al., 1997; Ginty et al., 1993; Hastings et al., 2007). 

 

Synchronisation by serum deprivation and subsequent replacement is well-

known for its use in cell cycle research; cells are forced into G0 quiescence by 

serum deprivation, before being released into G1 upon serum replacement 

(Davis et al., 2001). Serum deprivation also has a long history as a circadian 

clock synchroniser of cell populations (Balsalobre et al., 1998). Serum shock 

protocols are often varied, indeed Balsalobre et al. (1998) did not first deprive 

cell populations of serum prior to serum shock and subsequent removal, which 

many protocols do include (Gutiérrez-Monreal et al., 2016; Rossetti et al., 2012; 

Xiang et al., 2012). Serum-induced circadian clock synchronisation appears to 

be mediated by a combination of Ca2+-dependent PKC-driven phosphorylation 

of CLOCK, and CREBBP binding to ARNTL, both of which appear to cause 

ARNTL/CLOCK dimers to bind to E boxes and drive expression of the PER 

genes (Y. Lee et al., 2010; Shim et al., 2007). 

 

Not all methods of circadian clock synchronisation depend upon chemical 

manipulation of the cell culture media; for instance, circadian clocks can be 

entrained by environmental cues such as temperature changes. The link 

between temperature and circadian rhythms is complex, and not fully 

understood. Circadian rhythms are by definition ‘temperature compensated’, 
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which means that whilst most biochemical processes speed up in response to 

an increase in temperature, the period of a circadian clock remains 

approximately 24 hrs regardless of the environmental temperature (Kidd et al., 

2015). Despite this, the phase of circadian processes remains temperature 

sensitive. For example, in vitro Drosophila melanogaster organ cultures have 

been synchronised to 12 hr 25°C / 12 hr 17°C temperature cycles (Glaser & 

Stanewsky, 2005), whilst in vitro organotypic cultures of rat SCN have been 

demonstrated to entrain to temperature cycles of 12 hr 35.3°C / 12 hr 36.8°C 

(Herzog & Huckfeldt, 2003). In terms of 2D cell culture, the innate daily 

peritoneal temperature oscillations of mice have been demonstrated to entrain 

circadian gene expression in rat fibroblasts (Brown et al., 2002). Meanwhile 

NIH3T3 fibroblasts have been demonstrated to entrain to temperature cycles 

of as little as 1°C oscillation (Saini et al., 2012). In fact the core body 

temperature of humans oscillates by approximately ~1°C every day (e.g. 

~36.4.-37.1 (Baschieri et al., 2020), ~36.4-37.4°C (Lericollais et al., 2013)). The 

oscillation of body temperature in humans is dependent on many variables 

including sex and age (Baker et al., 2001). 

 

2.1.4 Chapter aims 

 

This chapter is dedicated to trying to better understand the circadian 

behaviour of MCF10A and MCF7 cell lines, that we might gain a clearer 

understanding of their use in and to circadian cancer research. A number of 

different experimental methods will be employed to achieve this. 

 

qPCR is an excellent technique for relative quantification of transcript 

expression in a population of cells and is a stalwart of molecular biology. Since 

the transcripts of the core clock genes should oscillate in a circadian manner, 
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qPCR will be employed in this chapter to assess the functionality of the 

circadian clock in MCF cell populations. Previous work on the circadian gene 

expression of MCF cell lines has also employed qPCR as discussed in chapter 

2.1.2, e.g. Rossetti et al. (2012). 

 

The use of bioluminescent reporters to assess oscillatory clock promoter 

activity in MCF cells lines will also be presented. Frequently such reporters 

are delivered by lentiviral vectors in order to create stably transduced reporter 

cell lines (Ramanathan et al., 2012). In vitro circadian experiments often occur 

over a period of many days, therefore fluorescent reporter constructs are of 

limited use due to photo-toxicity. In contrast, bioluminescent reporter 

constructs allow for population tracking of circadian promoter activity via 

luciferase-catalysed photon release. 

 

Understanding the circadian system in the wider cell biology context can be 

aided by the use of ‘‘omics’ technologies. RNA sequencing (RNA-seq) and 

Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) 

will be used to comprehensively assess the rhythmic biology of MCF10A and 

MCF7 cells in greater detail than has been achieved thus far. Whilst RNA-seq 

profiles the transcriptome of a population of cells, ATAC-seq produces reads 

in regions of chromatin that are accessible to the cutting action of Tn5 

transposase (Buenrostro et al., 2013) (Figure 2.2). ATAC-seq data is somewhat 

indicative of gene transcription – where DNA is tightly wound around histones, 

then both Tn5 transposase and the transcriptional machinery are excluded, 

and genes cannot be transcribed. However, an accessible gene is not always 

transcribed as transcription is also dependent upon other variables, such as the 

accessibility of distal enhancer/repressor elements, and the presence/absence 

of transcription factors. 
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The circadian clock has long been understood to contribute to chromatin 

remodelling; the circadian protein CLOCK for instance has been identified as 

a histone acetyltransferase, in addition to its ARNTL-binding role (Doi et al., 

2006). Meanwhile, chromatin immunoprecipitation (ChIP)-seq experiments in 

mouse liver have identified circadian rhythmicity in histone modifications at 

transcriptional start sites (TSSs), including changes to H3K4me3, H3K9ac, and 

H3K27ac marks, which are presumed to result in circadian changes to 

chromatin accessibility (Koike et al., 2012). Information about rhythmic 

transcript levels can be provided by RNA-seq, but the circadian activity of the 

final protein product is regulated by other processes under circadian regulation 

including splicing, translation and protein post-translational modifications and 

localisation (Jouffe et al., 2013; McGlincy et al., 2012; Okamoto-Uchida et al., 

2019). As changes to chromatin structure are driven by the integration of the 

aforementioned cellular processes, the same can be expected of circadian 

changes to chromatin structure (Garcia-Bassets & Wang, 2012). Circadian 

changes to chromatin structure have even been demonstrated by 4C sequencing 

Figure 2.2 A schematic of the ATAC-seq procedure reproduced from Buenrostro et al. (2013). Tn5 

transposase is able to fragment DNA whilst tagging it with the adapters that it carries, in a process 

called tagmentation. Tagmented DNA is amplified by PCR which introduces sample specific Illumina 

indexes for sequencing. 



54 

 

to contribute to tissue type specific expression of downstream rhythmic genes 

(Yeung et al., 2018). Therefore, ATAC-seq has the potential to enable a deeper 

understanding of the degree of circadian clock function beyond the 

transcriptome. ATAC-seq is a relatively young technology, and as of yet it has 

only been applied in the circadian field to non-mammalian models, or to murine 

cortex samples in a sleep deprivation context (Hor et al., 2019; Lugena et al., 

2019; Weizman et al., 2019). 
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2.2 Materials and Methods 

 

2.2.1 MCF10A and MCF7 cell culture and media 

 

MCF10A cells were obtained from the American Type Culture Collection 

(ATCC, CRL-10317) and cultured in humidified incubators at 37°C, 5% CO2 

in complete MCF10A media. Complete MCF10A media was prepared following 

the standard protocol developed from the original source of the MCF10A cell 

line Soule et al. (1990) (Arnandis & Godinho, 2015). Complete MCF10A media 

consisted of the following: Dulbecco’s Modified Eagle’s Medium/ Hams F-12 

50:50 mix (DMEM/F-12) (Corning, 10-092-CV); 5% horse serum (Sigma-

Aldrich, H1138); 20 ng/ml human epidermal growth factor (Sigma-Aldrich, 

E9644); 0.5 µg/ml hydrocortisone; 100 ng/ml cholera toxin (Sigma-Aldrich, 

C8052); 10 µg/ml insulin (Sigma-Aldrich, 91077C); 20 U/ml penicillin (Sigma, 

P3032); 20 µg/ml streptomycin (Sigma, S9137) and 300 µM L-glutamine (BDH 

chemicals, 371077J). 

 

MCF7 cells were obtained from Prof Peter Sadler’s lab courtesy of Dr Hannah 

Bridgewater. Complete MCF7 media consisted of DMEM supplemented with 

UltraGlutamine (Lonza, LZBE12-604FU1), 10% foetal bovine serum (FBS) 

(Sigma, F9665-500ML), x20 U/ml penicillin (Sigma, P3032) and 20 µg/ml 

streptomycin (Sigma, S9137). 

 

All cells were maintained at fewer than 25 passages. For sub-culturing, cells at 

90% confluency were detached from tissue culture plates with 0.25% trypsin 

(VWR, 0458-50) / 1mM EDTA (Fisher Scientific, 10213570) and re-seeded at 

a 1:4 dilution. Cryopreservation media for storage in liquid nitrogen consisted 
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of 90% complete media supplemented with 10% dimethyl sulfoxide (DMSO) 

(Corning, 25-950-CQC). 

 

Imaging media consisted of complete media without phenol red and 

supplemented with an additional 10 mM HEPES buffer (Gibco, 15630106) in 

order to provide extra pH buffering capacity whilst cells were incubated for 

many days without media replacement throughout circadian experiments. 

100µM potassium D-luciferin (Promega, E1605) was also added in order to 

report the activity of D-luciferase reporter constructs. 

 

2.2.2 Generation of stable P(Per2)-dluc and P(Arntl)-dluc reporter 

MCF cell lines 

 

Second-generation lentivirus backbone transfer plasmids pLV7-Bsd-P(Arntl)-

dluc and pLV7-Bsd-P(Per2)-dluc were obtained as a kind gift from Dr Andrew 

Liu’s laboratory at the University of Memphis. These lentivirus transfer 

plasmids are termed ‘pLV7’ as they were originally generated by modifying 

pLenti6/R4R2/V5-DEST (available from Invitrogen) to include woodchuck 

hepatitis virus post-transcriptional regulatory element (WPRE) sequences to 

promote the expression of the luciferase construct and increase the 

bioluminescent signal in transduced cells (Ramanathan et al., 2012). The ‘Bsd’ 

refers to the blasticidin resistance gene which acts as a selectable marker in 

mammalian cells. The ‘P(Per2)’ (or ‘P(Arntl)’) refers to the promoter region 

of the murine Per2 gene (or murine Arntl gene). Lastly, ‘dluc’ refers to the 

firefly luciferase gene, which has been modified to include a C-terminal PEST 

sequence to allow rapid degradation of luciferase, for accurate reporting of 

clock gene promoter activity (Ramanathan et al., 2012). All plasmid 

propagation was performed using OneShot Stbl3 E. coli (ThermoFisher, 
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C737303) and the NucleoBond® Xtra Midi plasmid purification kit 

(Clonentech, 740410.100). The lentiviral packaging plasmid pCMVR8.74 

(Addgene, 22036), envelope plasmid pMD2.G (Addgene, 12259) and the clock 

gene promoter containing backbone transfer plasmid were transfected into 

HEK293FT cells (gifted by the McAinsh lab, ThermoFisher, R70007) using 

TransIT-Lenti transfection reagent (Mirus, MIR6600). After 48 hrs the 

resultant lentivirus-containing media was harvested, sterile filtered and stored 

at -80°C. Lentiviral transduction of MCF cell lines was achieved by 6 hrs of 

incubation with 1 ml of lentivirus-containing media and 8 µg/ml polybrene 

(Sigma, TR-1003-G), per 100 mm diameter tissue culture dish. Blasticidin 

(Corning, 30-100-RB) was used at 10 µg/ml to select for MCF7 or MCF10A 

cells which were P(Arntl)-luc or P(Per2)-luc positive. From this point 

forwards, the stably transduced cell lines will be referred to in the format 

“MCF10A Arntl-luc”. 

 

2.2.3 Synchronisation of MCF cells 

 

2.2.3.1 Dexamethasone synchronisation 

MCF cells were seeded with 300,000 cells in 35 mm tissue culture dishes in 

3 ml complete media. The following day the cell culture media was replaced 

with 3 ml complete media supplemented with 100 nM dexamethasone (Sigma, 

D4902-100MG). Cells were incubated with dexamethasone at 37°C for 20 

minutes, after which the cells were washed twice with phospho-buffered saline 

(PBS) and supplemented with imaging media. 

 

2.2.3.2 Forskolin synchronisation 

MCF cells were seeded with 300,000 cells in 35 mm tissue culture dishes in 

3 ml complete media. The following day the complete media was replaced with 
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imaging media supplemented with 10 µM forskolin (APExBIO, B1421) 

(Balsalobre et al., 2000). 

 

2.2.3.3 Serum synchronisation 

MCF cells were seeded with 300,000 cells in 35 mm tissue culture dishes in 

3 ml complete media. The following day the complete media was replaced with 

3 ml serum-free media. After 22 hrs in serum-deprivation conditions, the 

medium was exchanged for 3 ml of 50% horse serum / 50% serum-free media. 

After 2 hrs in serum-rich conditions the media was exchanged for imaging 

media. 

 

2.2.3.4 Temperature synchronisation 

MCF cells were seeded in 35 mm tissue culture dishes in 3 ml complete media. 

The following day the complete media was exchanged for imaging media, and 

the cells were entrained with temperature cycles in a Memmert INCO 

incubator according to Table 2.2 using Memmert’s CELSIUS software. 

Incubator temperature was monitored throughout the experiment. Table 2.2 

details the cell seeding densities used. 

 

2.2.4 Bioluminescence assay for clock gene reporter cell lines 

 

Synchronised cells in 35 mm tissue culture dishes were supplemented with 

imaging media and placed in an ActiMetrics LumiCycle 32 device for 

continuous monitoring of luciferase reporter activity. Population level 

bioluminescence (raw counts/sec) was recorded at 10 min intervals for each 

dish. The resultant raw bioluminescence traces were detrended by calculating 

the percentage deviation of the raw data at each timepoint from the 24 hr 

running mean, an example of data normalisation is shown in Figure 2.3. This  
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accounted for changes in the cell population size with time and for different 

photomultiplier tube (PMT) sensitivities. 

 

Extra sum-of-squares F tests were implemented using GraphPad Prism v8 in 

order to identify the best fitting model to each of the detrended bioluminescent 

traces by iterative hypothesis testing. I.e., sine fits were accepted/rejected in 

favour of linear fits at a significance threshold of 0.05. Then damped sine fits 

were accepted/rejected in favour of sine fits at a significance threshold of 0.05. 

All sine fits were constrained to periods of no less than 18 hrs, and were fitted 

from 24 hrs post-cessation of synchronisation, as indicated by Figure 2.4. 

Periods were calculated from GraphPad Prism’s best (damped) sine fits. Figure 

2.4 demonstrates that amplitudes of sine fits were calculated by inspection as 

the absolute difference between the maxima and minima of the first oscillation.  

Table 2.2 Summary of entrainment protocols for MCF10A and MCF7 clock gene promoter luciferase 

reporter cell lines 

   

Entrainment Protocol 
Seeding Density 

(cells/35 mm dish) 

Dexamethasone 100 nM dexamethasone for 20 min, wash out 300,000 

Forskolin 10 µM forskolin 300,000 

Serum 22 hrs serum-free, 2 hrs 50% serum, return to 
imaging media for bioluminescence recording 300,000 

12 hr 32°C / 12 hr 37°C 1 hr 37°C / 12 hr 32°C / 12 hr 37°C / 12 hr 
32°C / constant 37°C 300,000 

12 hr 32°C / 12 hr 37°C 
without HEPES 

1 hr 37°C / 12 hr 32°C / 12 hr 37°C / 12 hr 
32°C / constant 37°C 300,000 

12 hr 36°C / 12 hr 37°C 1 hr 37°C / (12 hr 36°C / 12 hr 37°C)× 4 / 
12 hr 36°C / constant 37°C 

250,000 

12 hr 33°C / 12 hr 38°C 1 hr 38°C / 12 hr 33°C / 12 hr 38°C / 12 hr 
33°C / constant 38°C 

300,000 

10.5 hr 32°C / 10.5 hr 
37°C 

1 hr 37°C / (10.5 hr 32°C / 10.5 hr 37°C)	× 4 
/ 10.5 hr 32°C / constant 37°C 200,000 

13.5 hr 32°C / 13.5 hr 
37°C 

1 hr 37°C / (13.5 hr 32°C / 13.5 hr 37°C)	× 3 
/ 13.5 hr 32°C / constant 37°C 

200,000 
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Meanwhile, phase measurements were taken as the acrophase of the first peak 

in the fitted sine function. Welch’s unpaired t-tests were applied to compare 

the periods of fitted cosine functions between conditions. Welch’s method does 

not assume equal standard deviations between the test conditions. No 

correction for multiple t-testing was applied, therefore each p value of e.g., 0.05 

represents an e.g., 5% chance that the null hypothesis (i.e., periods are not 

significantly different between condition A and condition B) was mistakenly 

rejected. 
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Figure 2.3 Procedure for ‘detrending’ raw bioluminescence data. A) Raw bioluminescent traces from 3 

biological replicate experiments (in this case MCF10A Per2-luc cells). 24 hour running means are also 

plotted. B) Percentage difference between raw data and 24 hr running mean gives ‘detrended’ data. 
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from cosine functions fitted to raw data. 
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2.2.5 RNA extraction from MCF cells 

 

At the time of sampling, dishes of cells were removed from the incubator and 

the media was removed and replaced with 1 ml of TRIzol (Fisher Scientific, 

12034977). The TRIzol-cell mixture was dislodged from the dishes using a cell 

scraper, transferred to a 1.5 ml Eppendorf and centrifuged for 2 min at 

12,000 x g, 4 °C to pellet any cell debris. The supernatant was transferred to 

a fresh Eppendorf containing 200 µl chloroform (Fisher Chemical, 

C/4960/PB17) and centrifuged at 12,000 x g, 4 °C for a further 15 min to 

establish RNA/DNA phase separation. The RNA in the upper aqueous phase 

was precipitated with 450 µl isopropanol (Fisher Scientific, 11436471) and 

pelleted by centrifugation at 12,000 x g, 4 °C for 10 min. The supernatant was 

removed, and the RNA pellet washed twice with 75% ethanol (VWR,  

20821.330). The ethanol was removed, and the RNA pellets were allowed to 

air dry prior to resuspension in RNase/DNase–free water (Invitrogen, 

11538646). The Turbo DNA-free kit (Invitrogen, AM1907) was used to remove 

any trace amounts of DNA from the RNA, and the quality of the RNA was 

checked by gel electrophoresis (1% w/v agarose gel in Tris/borate/EDTA 

buffer). 

 

2.2.6 qPCR of MCF cells 

 

DNase-treated RNA was converted to cDNA using the superscript II reverse 

transcriptase kit (Invitrogen, 18064022). RPLP0 was selected as a house-

keeping gene as it is known to remain stable over circadian time (Hadadi et 

al., 2018). The primers used for RPLP0, ARNTL, PER2, and NR1D1 are listed 

below in Table 2.3. For each cell line, cells were synchronised to a 12 hr/12 hr  
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36°C/37°C temperature cycle for 72 hrs before the first samples were taken. 

Triplicate samples were collected in TRIzol every 4 hrs and snap-frozen in 

liquid nitrogen, until 6 samples had been obtained under continued 

temperature entrainment conditions. 

 

RNA was extracted, DNase-treated and converted to cDNA as described in 

chapters 2.2.5 and 2.2.6. For qPCR experiments samples were assayed in 384 

well plate format using an Applied Biosystems QuantStudio 5. Each biological 

sample was measured in triplicate to account for technical error. Each 10 µl 

qPCR reaction comprised of 5 µl PowerUp SYBR Green Master Mix (Applied 

Biosystems, A25741), 1 µl of pre-mixed forward and reverse primer at 0.5 µM 

each, 1 µl of cDNA (diluted 1:10 from cDNA conversion) and 3 µl 

DNase/RNase–free water. The temperature profile applied during the 

experiment was as follows: 2 min 50°C, 2 min 95°C followed by 40 cycles of 15 

sec 95°C, 30 sec 55°C, 30 sec 72°C. Primer efficiency was determined by qPCR 

of serially diluted pooled cDNA to a) confirm that the relationship between 

the amount of DNA and Ct remained logarithmic, and b) determine the 

efficiency of amplification (Figure 2.5 A&C). Melt curves of primer pairs 

(Figure 2.5 B) indicated that even where primer efficiency was >100%, a single 

PCR product was amplified, which implies that perhaps high primer 

efficiencies were caused by inhibitors of the qPCR reaction present in higher 

concentrations of cDNA. The Pfaffl method of relative quantification of DNA 

accounts for variability in primer efficiencies and was used to calculate the log2 

Table 2.3 Forward and reverse primer sequences for human housekeeping and clock genes. 

Gene Forward Primer Sequence Reverse Primer Sequence 
RPLP0 5’ AATCCCTGACGCACCGCCGTGATG 3’ 5’ TGGGTTGTTTTCCAGGTGCCCTCG 3’ 

ARNTL 5’ AAGGATGGCTGTTCAGCACATGA 3’ 5’ CAAAAATCCATCTGCTGCCCTG 3’ 

PER2 5’ GCAGGTGAAAGCCAATGAAG 3’ 5’ CACCGCAAACATATCGGCAT 3’ 

NR1D1 5’ AGAGCACCAGCAACATCACCAAGC 3’ 5’ TTCTTGAAGCGACATTGCTGGCAG 3’ 
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fold change of each gene at each timepoint relative to the mean of all 

timepoints (Pfaffl, 2006): 

	Log!	fold	change = log! .
𝐸"#$%&%,&'('%&),&'(

𝐸()*%&%,*+,'%&),*+,
0 

𝑤ℎ𝑒𝑟𝑒	𝑔𝑜𝑖 = 𝑔𝑒𝑛𝑒	𝑜𝑓	𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡; 	𝑟𝑒𝑓 = 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑔𝑒𝑛𝑒; 	𝑠 = 𝑡𝑒𝑠𝑡	𝑠𝑎𝑚𝑝𝑙𝑒, 𝑖. 𝑒. 𝑠𝑖𝑛𝑔𝑙𝑒	𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡; 

𝑏	 = 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒	𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑜𝑟, 𝑖. 𝑒.𝑚𝑒𝑎𝑛	𝑜𝑓	𝑎𝑙𝑙	𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡𝑠; 	𝐸 = 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 

 

For each time-course, extra sum-of-squares F tests were implemented using 

GraphPad Prism v8 in order to determine whether a sine fit constrained to a 

period of 24 hr was a better fit for the data than a linear fit at a significance 

threshold of 0.05. 

 

2.2.7 Sample harvesting for RNA-seq and ATAC-seq experiments 

 

Just as for qPCR, MCF cells were entrained to a 12 hr/12 hr 36°C/37°C 

temperature cycle for 72 hrs before the first samples were taken. For RNA-seq 

experiments, triplicate samples were collected in TRIzol every 4 hrs and snap-

Figure 2.5 A) cDNA dilution curves for the 

determination of primer pair amplification efficiency 

across different concentrations of cDNA. B) Melt curves 

for each primer pair (line = mean, dotted line = S.D., 

n=3) C) Tabulation of cDNA dilution curve slopes and 

corresponding efficiencies of primers. 

Gene Slope Efficiency E 

RPLP0 -3.317 100.21% 2.00 

ARNTL -2.890 121.83% 2.22 

PER2 -2.821 126.20% 2.26 

NR1D1 -2.737 131.93% 2.32 
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frozen in liquid nitrogen, until 6 samples had been collected (one sample = 1x 

100 mm diameter tissue culture dish). For ATAC-seq experiments cells were 

washed with PBS and detached from the dish with Trypsin/EDTA. Detached 

cells were pelleted by centrifugation at 300 x g for 3 min in order to wash the 

cells with PBS. Centrifugation was repeated in order to remove the PBS, and 

cell pellets were snap frozen in liquid nitrogen. 

 

2.2.8 RNA-seq experimental procedure 

 

All library preparation for RNA-seq beyond RNA extraction was carried out 

by the University of Warwick’s Genomics Facility. RNA quality was checked 

with an Agilent Bioanalyzer and concentration was determined by Invitrogen 

Qubit. Of the triplicate samples harvested, the duplicates with the best RNA 

integrity numbers (RINs) were selected for RNA-seq; all RINs were >9. 

Libraries were prepared using the unstranded TruSeq RNA Library Prep Kit 

(Illumina, RS-122-2001). Samples were sequenced (single–end) using Illumina’s 

NextSeq 500/550 High Output Kit v2.5 (75 Cycles) (Illumina, 20024906) on 

an Illumina NextSeq 500 platform. Library sizes ranged from 12 to 18 million 

reads per sample. 

 

2.2.9 ATAC-seq experimental procedure 

 

The protocol described below for nuclear isolation and ATAC library 

preparation follows the Kaestner laboratory’s protocol (accessible at 

https://www.med.upenn.edu/kaestnerlab/protocols.html, accessed 28/01/21). 

It was developed from the original ATAC-seq protocols published by 

Buenrostro et al. and the omni-ATAC-seq protocol developed by Ryan-Corces 
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et al. (2017) (Buenrostro et al., 2013, 2016; Ryan-Corces et al., 2017). The 

following buffers were prepared in advance: 

 

Resuspension Buffer: 

 1 ml  1M Tris-HCl buffer (pH 7.5) (Sigma-Aldrich, T5941) 

 200 µl  5M NaCl (Fisher Scientific, S671-500) 

 300 µl  1M MgCl2 (Sigma-Aldrich, M2670) 

 98.5 ml RNase/DNase–free water 

 

Lysis Buffer: 

 4.85 ml Resuspension buffer 

 50 µl  10% IGEPAL CA-630 (Sigma-Aldrich, I8896) 

 50 µl  Tween-20 (Sigma-Aldrich, P9416) 

 1% v/v 1% Digitonin (final 0.01% v/v, Promega, G9441) 

 

Wash Buffer: 

 1 ml  10% Tween-20 

 99 ml  Resuspension Buffer 

 

100,000 cells were washed with 5 ml ice cold PBS and centrifuged at 500 G for 

5 min to pellet. Supernatant was discarded and cells were pipetted slowly 

up/down x3 with 100 µl of cold lysis buffer. Cells were incubated on ice for 3 

min. 2 ml of wash buffer was added and tubes were mixed by gentle inversion 

x3. Nuclei were pelleted by centrifugation at 500 G for 10 min at 4°C. 

Transposition mix was prepared as follows (scaled as appropriate): 25 µl 2x 

Tagment DNA Buffer (Illumina, 20034197), 16.5 µl PBS, 0.5 µl 10% Tween-

20, 0.5 µl 1% Digitonin, 2.5 µl Tn5 transposase (Tagment DNA Enzyme 1, 

Illumina, 20034197), 5 µl nuclease-free water. 50 µl was added to each nuclei 

pellet, and samples were incubated at 37°C for 30 min to allow for transpose 
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to cut accessible DNA. The DNA was isolated using the MinElute Reaction 

Cleanup Kit (Qiagen, 28204) and stored at -20°C until the following day. 

 

For library amplification by PCR 10 µl of purified transposed DNA was mixed 

with 10 µl nuclease-free water, 2.5 µl 25 µM forward primer, 2.5 µl 25 µM 

reverse primer, and 25 µl NEBNext High-Fidelity 2X PCR Master Mix (New 

England BioLabs, M0541S). For primers refer to Table 2.4. Library 

amplification was started using a Hain Q-Cycler 96+ and the following 

temperature profile: 72°C 5 min, 98°C 30 sec, (98°C 10 sec, 63°C 30 sec, 72°C 

1 min) x5 cycles, hold at 4°C. For quantification of library amplification by 

qPCR, 5 µl of partially amplified library from each sample was mixed with 

3.85 µl nuclease-free water, 0.5 µl 25 µM forward primer, 0.5 µl 25 µM reverse 

primer, 0.15 µl 100X SYBR Green I (Invitrogen, S7563), and 5 µl NEBNext 

High-Fidelity 2X PCR Master Mix. The qPCR reaction was run on an Agilent 

Table 2.4 Illumina primers for ATAC-seq library preparation 

Forward Primer Sequence 
AD1_noMX AATGATACGGCGACCACCGAGATCTACACTCGTCGGCAGCGTCAGATGTG 
Reverse Primer Sequences 
Ad2.1_TAAGGCGA CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTCTCGTGGGCTCGGAGATGT 
Ad2.2_CGTACTAG CAAGCAGAAGACGGCATACGAGATCTAGTACGGTCTCGTGGGCTCGGAGATGT 
Ad2.3_AGGCAGAA CAAGCAGAAGACGGCATACGAGATTTCTGCCTGTCTCGTGGGCTCGGAGATGT 
Ad2.4_TCCTGAGC CAAGCAGAAGACGGCATACGAGATGCTCAGGAGTCTCGTGGGCTCGGAGATGT 
Ad2.5_GGACTCCT CAAGCAGAAGACGGCATACGAGATAGGAGTCCGTCTCGTGGGCTCGGAGATGT 
Ad2.6_TAGGCATG CAAGCAGAAGACGGCATACGAGATCATGCCTAGTCTCGTGGGCTCGGAGATGT 
Ad2.7_CTCTCTAC CAAGCAGAAGACGGCATACGAGATGTAGAGAGGTCTCGTGGGCTCGGAGATGT 
Ad2.8_CAGAGAGG CAAGCAGAAGACGGCATACGAGATCCTCTCTGGTCTCGTGGGCTCGGAGATGT 
Ad2.9_GCTACGCT CAAGCAGAAGACGGCATACGAGATAGCGTAGCGTCTCGTGGGCTCGGAGATGT 
Ad2.10_CGAGGCTG CAAGCAGAAGACGGCATACGAGATCAGCCTCGGTCTCGTGGGCTCGGAGATGT 
Ad2.11_AAGAGGCA CAAGCAGAAGACGGCATACGAGATTGCCTCTTGTCTCGTGGGCTCGGAGATGT 
Ad2.12_GTAGAGGA CAAGCAGAAGACGGCATACGAGATTCCTCTACGTCTCGTGGGCTCGGAGATGT 
Ad2.13_GTCGTGAT CAAGCAGAAGACGGCATACGAGATATCACGACGTCTCGTGGGCTCGGAGATGT 
Ad2.14_ACCACTGT CAAGCAGAAGACGGCATACGAGATACAGTGGTGTCTCGTGGGCTCGGAGATGT 
Ad2.15_TGGATCTG CAAGCAGAAGACGGCATACGAGATCAGATCCAGTCTCGTGGGCTCGGAGATGT 
Ad2.16_CCGTTTGT CAAGCAGAAGACGGCATACGAGATACAAACGGGTCTCGTGGGCTCGGAGATGT 
Ad2.17_TGCTGGGT CAAGCAGAAGACGGCATACGAGATACCCAGCAGTCTCGTGGGCTCGGAGATGT 
Ad2.18_GAGGGGTT CAAGCAGAAGACGGCATACGAGATAACCCCTCGTCTCGTGGGCTCGGAGATGT 
Ad2.19_AGGTTGGG CAAGCAGAAGACGGCATACGAGATCCCAACCTGTCTCGTGGGCTCGGAGATGT 
Ad2.20_GTGTGGTG CAAGCAGAAGACGGCATACGAGATCACCACACGTCTCGTGGGCTCGGAGATGT 
Ad2.21_TGGGTTTC CAAGCAGAAGACGGCATACGAGATGAAACCCAGTCTCGTGGGCTCGGAGATGT 
Ad2.22_TGGTCACA CAAGCAGAAGACGGCATACGAGATTGTGACCAGTCTCGTGGGCTCGGAGATGT 
Ad2.23_TTGACCCT CAAGCAGAAGACGGCATACGAGATAGGGTCAAGTCTCGTGGGCTCGGAGATGT 
Ad2.24_CCACTCCT CAAGCAGAAGACGGCATACGAGATAGGAGTGGGTCTCGTGGGCTCGGAGATGT 
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Stratagene Mx3005P machine, using the following temperature profile: 98°C 

30 sec, (98°C 10 sec, 63°C 30 sec, 72°C 1 min) x20 cycles. Based on R vs. cycle 

number plots, a further 6 cycles of PCR were applied to the partially amplified 

libraries (bringing the total number of PCR cycles required for library 

amplification to 11). Libraries were stored at -20°C until the following day. 

 

For library purification, Agencourt AMPure XP beads (Beckman Coulter, 

10136224) were warmed to room temperature and vortexed. 81 µl of AMPure 

XP beads were mixed thoroughly with 45 µl of amplified library and incubated 

at room temperature for 10 min. Samples were placed in a magnetic rack in 

order to retain the AMPure XP beads whilst the supernatant was removed.  

The beads were washed with 200 µl of 80% ethanol. Ethanol was removed and 

the remainder was allowed to evaporate. The AMPure XP beads were re-

suspended in 20 µl of nuclease-free water. 17 µl of sample was removed from 

the beads with the aid of the magnetic rack and stored at -20°C. 1 in 4 dilutions 

of each sample were prepared in order to run samples on the Agilent High 

Sensitivity DNA Bioanalyzer and Invitrogen Qubit. Concentrations of libraries 

were calculated from the Bioanalyzer traces and libraries were pooled and 

sequenced (paired–end, 35+40) using Illumina’s NextSeq 500/550 High Output 

Kit v2.5 (75 Cycles) (Illumina, 20024906) on an Illumina NextSeq 500 

platform. The first sequencing run was over-clustered, therefore two sequencing 

runs were required to accrue 680 million read pairs over the 24 samples. 

 

2.2.10  RNA-seq data analysis pipeline 

 

All file processing encompassing sequence alignment and transcript counting 

was achieved using a CentOS Linux 7 kernel on the University of Warwick’s 

CyVerse UK servers (a ‘big data’ project funded by the Biotechnology and 
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Biological Sciences Research Council). Illumina .bcl.bgzf files were converted 

to FASTQ files using Bcl2Fastqv2.20.0.422 (Illumina), Illumina adapter 

sequences were removed at the same time. Single end FASTQ files were aligned 

to the human genome (Genome Reference Consortium (GRC), release h38.84) 

and converted to SAM files using HISAT2 v2.2.0 (Kim et al., 2019). SAM files 

were compressed to BAM using Samtools v1.10 (Heng Li et al., 2009). 

Transcript read counts were determined from the BAM files and the human 

transcriptome (GRCh38.84 .gtf file) using LiBiNorm v2.4, an in-house software 

package, in HTSeq-count mode with ‘--stranded=no’ (Anders et al., 2015; Dyer 

et al., 2019). Raw read counts were concatenated for all samples and exported 

as one text file for all subsequent analysis on a Mac OS. 

 

Raw count normalisation was carried out in R Studio v1.3.1093 (with the 

underlying R installation v4.0.3). The edgeR package was used to normalise 

the raw counts to log2 counts per million (logCPM) or log2 trimmed mean of 

M-values (logTMM) (M. D. Robinson et al., 2010). 

 

2.2.11  RNA-seq rhythmicity analysis 

 

Rhythmicity of logCPM normalised transcripts was analysed using the meta2d 

function of the MetaCycle package in R (Wu et al., 2016). Period length was 

set to between 23 and 25 hrs. Rhythmicity was evaluated at a Bonferroni-

Hochberg (B-H) adjusted p-value of 0.2, which means that ~20% of the positive 

results are likely to be false positives. A high false discovery rate (FDR) was 

determined to be necessary by inspection of the data, in order to avoid losing 

too many true positives. Such an approach is often necessary in the case of 

relatively low sampling resolution (Hughes et al., 2010), i.e. every 4 hrs as is 
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the case for the RNA-seq data generated here, and the microarray data of 

Gutiérrez-Monreal et al. (2016). 

 

2.2.12  ATAC-seq analysis pipeline 

 

As with RNA-seq analysis, Illumina .bcl.bgzf files were converted to FASTQ 

files using Bcl2Fastq v2.20.0.422 (Illumina), Illumina adapter sequences were 

removed at the same time. Low quality reads were trimmed using 

Trimmomatic v0.39, with the TRAILING argument set to ‘3’, and 

SLIDINGWINDOW to ‘4:15’ (Bolger et al., 2014). FASTQ files were filtered 

to remove reads that aligned to the GRCh38 mitochondrial genome using 

Bowtie2 v2.4.1 (Langmead & Salzberg, 2012). These reads were removed as 

ATAC-seq aims to assess the accessibility of nuclear chromosomes only. 

Remaining reads were aligned to the GRCh38 chromosomal genome and 

converted to SAM format. SAM files were compressed to BAM using Samtools 

v1.10 (Heng Li et al., 2009). BAM files from the same samples but from 

different sequencing runs were merged using Samtools, resulting in 680 million 

aligned read pairs across all samples. 

 

The number of reads in samples was down-sampled at random in order to 

match the sample with the smallest library size. Samples were merged in order 

to allow MACS2 to detect peak regions (Gaspar, 2018). MACS2 was used in 

the default mode (q<0.05) to identify a preliminary peakset. Those peaks were 

subsequently filtered further at a generous threshold of q<10-3 for finding 

background regions or a more stringent threshold of q<10-4 for finding peak 

regions. This two-step peak-finding approach (q=0.05 followed by a smaller q-

value) ensured that peaks were highly significant, but not overly narrow. 
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Gene-wise views of down-sampled reads in samples were visualised in 

Integrative Genomics Viewer (J. T. Robinson et al., 2011). Heatmaps of 

transcriptional start sites (TSSs) were plotted by first using bamCoverage 

(deepTools) to convert down-sampled BAM files to binned bigWig files (bin 

width = 50 bp) (Ramírez et al., 2014), and then using the deepTools 

plotHeatmap function on the open source Galaxy platform 

(https://usegalaxy.eu). TSS enrichment scores (TSSE scores) were calculated 

in Linux from down-sampled BAM files using TSS regions for hg38 taken from 

Ensembl Biomart, according to the formula described by the ENCODE 

consortium. 

 

Background regions were identified in R according to the strategy described 

by Blythe & Wieschaus (2016). A series of 25,000 regions that were more than 

1000 bp away from any detected peaks (determined at the less stringent 

threshold of q<10-3) were selected at random and any overlapping regions were 

removed (Blythe & Wieschaus, 2016). Reads in peaks and reads in background 

regions were calculated for each down-sampled sample using a Linux 

installation of featureCounts (Liao et al., 2014). For rhythmicity analysis 

down-sampled read counts in peaks were normalised in edgeR to logCPM with 

library size set to the number of down-sampled reads in each sample prior to 

peak calling. This is an important distinction, if counts in peaks are truly 

higher in one sample relative to another then normalising to total counts in 

peaks (the default edgeR setting) would eliminate such a true difference. 

Chapter 2.3.6 explains the normalisation of ATAC-seq data in more detail. 

Rhythmicity analysis in MetaCycle was implemented as described in chapter 

2.2.11.  
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2.3 Results and Discussion 

 

2.3.1 The effect of circadian clock synchronisation method on 

apparent clock function in MCF cells 

 

Dishes of MCF10A and MCF7 cells stably transduced with lentiviral clock 

gene promoter luciferase reporters were subjected to multiple circadian clock 

synchronisation/entrainment conditions to try and establish if the differences 

observed in the published literature (see Table 2.1) were the result of 

synchronisation method. 

 

Dexamethasone induced synchronous oscillatory expression of Per2-luc in 

MCF10A cell populations, albeit with a rather long period of 30.4 hrs (S.D. ± 

1.1 hrs) (Figure 2.6). In MCF7s consistency was poorer between replicates, the 

most rhythmic replicate (C) had a Per2-luc period of 24.3 hrs, whilst the least 

rhythmic (A) did not fit a damped sine wave of period >18 hrs well (although 

a damped sine wave was still considered to be a better fit than a straight line 

or standard sine wave by hypothesis testing). Conversely to MCF10As, 

dexamethasone synchronisation induced better oscillatory expression of Arntl-

luc than Per2-luc in MCF7s. Arntl-luc expression oscillated with a period of 

23.1 hrs (± 0.9 hrs) in MCF7s, whereas, Arntl-luc activity did not oscillate in 

MCF10As. MCF7 Arntl and Per2-luc activity oscillated in opposite phase 

relationships, which is to be expected (Takahashi, 2017). 

 

Figure 2.7 displays the Arntl and Per2-luc activity in MCF10As and MCF7s 

resulting from forskolin synchronisation. The findings were broadly similar to 

the rhythmic expression induced by dexamethasone synchronisation. The 

MCF10As displayed oscillatory expression of Per2-luc with a long period of 
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29.5 hrs (± 4.3 hrs), whilst MCF7s displayed Per2-luc oscillations with a short 

period of 21.6 hrs (± 1.5 hrs). As was the case after dexamethasone 

synchronisation, Arntl-luc expression was not oscillatory in MCF10As after 

forskolin synchronisation, meanwhile in MCF7s Arntl-luc oscillated with a 

period of 25.9 hrs (± 4.7 hrs). 

 

Figure 2.8 shows the Arntl and Per2-luc oscillatory expression in MCF10As 

and MCF7s in response to serum synchronisation. Serum shock induced 

rhythmic expression of Per2-luc in MCF10As with a long period of 31.4 hrs (± 

0.4 hrs), and rhythmic expression of Arntl-luc in MCF7s with a period of 

24.0 hrs (± 0.8 hrs). Per2-luc in MCF7s and Arntl-luc in MCF10As remained 

arrhythmic. Serum synchronisation was similar to forskolin and 

dexamethasone, in that MCF10A Per2-luc was consistently rhythmic with a 

longer than 24 hr period, whilst MCF7 Arntl-luc was consistently rhythmic 

with ~24 hr period. Whilst the phase relationships between the different cell 

lines remained the same across the different synchronisation methods presented 

thus far, the different synchronisation methods all appeared to reset the 

oscillatory luciferase expression to different phases of the circadian clock (i.e., 

MCF10A Per2-luc phase varies from Figure 2.6 to Figure 2.8). This is 

unsurprising as dexamethasone, forskolin and serum synchronisation are 

understood to have differing modes of action. 

 

Figure 2.9 displays the effect of the first of the cycling temperature protocols. 

Two cycles of 12 hr 32°C / 12 hr 37°C temperature oscillation was sufficient 

to synchronise the cells such that after return to constant temperature, 

MCF10A Per2-luc expression oscillated with a period of 29.3 hrs (± 1.0 hrs). 

MCF7 Arntl-luc expression also oscillated, although replicates were not 

particularly consistent, with periods ranging from 18.7 – 41.9 hrs (although, 

some of the replicates were too variable in amplitude to fit either a damped 
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sine wave or a standard sine wave particularly well). MCF7 Per2-luc expression 

was also rhythmic with a period of 21.4 hrs (± 1.0 hr), although phases between 

the replicates varied between 2.0-15.4 hrs. The MCF10A Arntl-luc cells did 

not oscillate, as was the case with dexamethasone, forskolin and serum 

synchronisation conditions. 

 

The luciferase oscillations during the temperature entrainment protocol are 

also of interest. Although the temperature protocol was set to 12 hr 32°C / 12 

hr 37°C, the incubator heated much faster than it cooled (Figure 2.9C). The 

abrupt increase in temperature to 37°C caused an abrupt change in luciferase 

expression in a process known as ‘masking’ (Spörl et al., 2011), i.e., instead of 

the free-running circadian gene expression, the abrupt temperature Zeitgeber 

induces ‘forced’ circadian gene expression. It has previously been demonstrated 

in NIH-3T3 fibroblasts, that temperature cycles drive clock gene promoter 

activity in the correct phase relationships to one another (Saini et al., 2012). 

Therefore, when temperature increases NIH-3T3 Dbp-luc activity decreases, 

whilst anti-phasic NIH-3T3 Arntl-luc activity increases. Similarly, in HaCaT 

keratinocytes, temperature cycles drive rhythmic transcription of the core clock 

genes in the canonical phase relationships (Spörl et al., 2011). However it is 

clear from Figure 2.9 that even though ARNTL should be expressed ~11-12 

hrs phase advanced of PER2 in a functional circadian clock (Takahashi, 2017), 

in MCF10As and MCF7s an increase in temperature drove a decrease in both 

Arntl-luc and Per2-luc activity. In MCF10As the trough of Per2-luc activity 

appeared 5-6 hrs prior to the trough of Arntl-luc activity, which is indicative 

of some phase difference, although this was not the case in MCF7s. There are 

several possible reasons for the breakdown between the phase relationships of 

Arntl-luc and Per2-luc activity under temperature entrainment. Firstly, 

neither the MCF10As nor the MCF7s displayed strong rhythmic Arntl and 

Per2 promoter activity as a synchronised population in constant temperature 
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conditions, so it is perhaps unsurprising that clock promoter reporter activity 

was also disrupted whilst under a cycling temperature entrainment protocol. 

Secondly, the free-running period of MCF10A Per2-luc was particularly long, 

which could have affected the extent to which MCF10As were capable of 

entraining to 24 hr temperature cycles. Thirdly, it is unclear whether these 

phase relationships would have persisted under longer temperature 

entrainment. 

 

Figure 2.10 displays the effect of 12 hr 32°C / 12 hr 37°C temperature 

entrainment without HEPES in the media for extra buffering capacity. The 

findings were broadly similar to that of Figure 2.9 (with HEPES), though the 

agreement in phase and period between replicates was improved for MCF7 

Arntl-luc activity. The period of MCF7 Arntl-luc activity was longer than that 

induced by dexamethasone, forskolin or serum shock entrainment at 29.6 hrs 

(± 1.5 hrs). 

 

The long period in MCF10A Per2-luc cells and the lack of oscillation in 

MCF10A Arntl-luc cells demonstrated across all of these synchronisation 

protocols is contrary to much of the literature discussed in chapter 2.1.2, which 

suggests that MCF10A cells have a functional circadian clock. With this in 

mind the temperature protocol was altered to see if a more physiological 

temperature entrainment protocol of only 1°C temperature change might also 

induce similar patterns of luciferase activity in cells. The protocol was 

lengthened to 5 cycles of 36°C/37°C oscillation because the 1°C temperature 

oscillation was expected to synchronise cells to a lesser degree than 32°C/37°C 

oscillations (Saini et al., 2012). The cell seeding density was also decreased due 

to the longer entrainment protocol (see chapter 2.2.4 for details). Figure 2.11 

shows the synchronisation effect of 5× 12 hr 36°C / 12 hr 37°C temperature 

cycles on MCF10A and MCF7 cells. MCF10A Per2-luc activity oscillated with 
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a period of 30.7 hrs (± 1.0 hr, excluding outliers). The phase was quite highly 

varied between replicates, ranging from 1.0 to 15.7 hrs. The higher variation 

between replicates was thought to be reflective of the longer entrainment 

period, which resulted in cells being less healthy by the end of the experiment. 

As was the case under other entrainment conditions, MCF10A Arntl-luc and 

MCF7 Per2-luc activity did not oscillate in a self-sustaining manner with a 

period of ~24 hrs. MCF7 Arntl-luc activity oscillated with a period of 25.5 (± 

0.4 hrs, excluding outliers), which was similar to the MCF7 Arntl-luc activity 

observed under other entrainment conditions. 

 

Overall, Figure 2.6-Figure 2.11 demonstrate that MCF10A Per2-luc activity 

robustly oscillated with a mean period of 29.3-31.4 hrs across dexamethasone, 

forskolin, serum shock and temperature synchronisation protocols. MCF10A 

Per2-luc activity also demonstrated the largest amplitudes of oscillation 

relative to the other luciferase reporters. In contrast, MCF10A Arntl-luc 

activity was the least rhythmic and did not oscillate in response to any of the 

synchronisation protocols (Figure 2.6-Figure 2.11). This data is contrary to 

much of the published literature which found circadian rhythms in MCF10A 

ARNTL and PER2 expression of ~24 hrs (Chacolla-Huaringa et al., 2017; 

Gutiérrez-Monreal et al., 2016; Rossetti et al., 2012; Xiang et al., 2012). It 

agrees most closely with Cox (2012), who demonstrated a period of approx. 30 

hrs in PER2 by qPCR post-dexamethasone synchronisation – although Cox 

(2012) also demonstrated rhythms of ~32 hrs in ARNTL expression, which 

were not observed here. Rhythmic Per2-luc oscillation in MCF10As would 

imply that the activity of ARNTL/CLOCK complex on the Per2 promoter is 

rhythmic. Therefore, it is quite surprising that oscillatory MCF10A Arntl 

promoter activity is not observed in MCF10As in these experiments. It seems 

unlikely that there was a problem with the Arntl-luc reporter construct, as it 

reports circadian rhythmic activity in MCF7 cells (Figure 2.6). 
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Figure 2.6-Figure 2.8 demonstrate that MCF7 Arntl-luc activity robustly 

oscillated with a period of 23.1-25.9 hrs across dexamethasone, forskolin and 

serum shock entrainment. Relatively, temperature synchronisation (Figure 2.9-

Figure 2.11) induced less robust oscillation of MCF7 Arntl-luc activity, with a 

broader range of periods, phases and amplitudes. MCF7 Per2-luc activity was 

quite inconsistent and appeared circadian in some entrainment conditions, but 

not others. For instance, forskolin and 32/37°C temperature entrainment 

induced periods of 21.6-25.8 hrs, with MCF7 Per2-luc activity in the correct 

phase relationship (~12 hrs phase advanced) relative to MCF7 Arntl-luc 

activity (Figure 2.7, Figure 2.9 & Figure 2.10). However, serum shock did not 

induce circadian expression of MCF7 Per2-luc (Figure 2.8). The amplitude of 

MCF7 Arntl-luc and Per2-luc oscillatory activity was lower than the amplitude 

of MCF10A Per2-luc oscillation in all entrainment conditions except forskolin 

entrainment and dexamethasone entrainment for MCF7 Per2-luc only. As 

discussed in chapter 2.1.2, the literature generally agrees that MCF7 cells do 

not display circadian expression of core clock genes (Chacolla-Huaringa et al., 

2017; Gutiérrez-Monreal et al., 2016; Rossetti et al., 2012; Xiang et al., 2012; 

Yuan Zhang et al., 2018). However, the data presented here is consistent with 

Lellupitiyage Don et al. (2019) who demonstrated circadian luciferase reporter 

activity for Arntl-luc and Per2-luc reporters in the correct phase relationships. 

Additionally, Cox (2019) demonstrated circadian oscillation of ARNTL and 

PER1, but not PER2, in MCF7s by qPCR.  



77 

 

  

2 3 4

-20

-10

0

10

20

Time (days)

P
er

ce
nt

ag
e 

de
vi

at
io

n 
of

 b
io

lu
m

.
fr

om
 2

4 
hr

 r
un

ni
ng

 m
ea

n

MCF10A Per2-luc

A

B

C

2 3 4

-20

-10

0

10

20

Time (days)

P
er

ce
nt

ag
e 

de
vi

at
io

n 
of

 b
io

lu
m

.
fr

om
 2

4 
hr

 r
un

ni
ng

 m
ea

n

MCF7 Per2-luc

A

B

C

2 3 4

-20

-10

0

10

20

Time (days)

P
er

ce
nt

ag
e 

de
vi

at
io

n 
of

 b
io

lu
m

.
fr

om
 2

4 
hr

 r
un

ni
ng

 m
ea

n

MCF10A Arntl-luc

A

B

C

2 3 4

-20

-10

0

10

20

Time (days)

P
er

ce
nt

ag
e 

de
vi

at
io

n 
of

 b
io

lu
m

.
fr

om
 2

4 
hr

 r
un

ni
ng

 m
ea

n

MCF7 Arntl-luc

A

B

C

D

MCF10A MCF7
0

10

20

30

40

50

P
er

io
d 

(h
r)

MCF10A MCF7
0

5

10

15

20

25

A
m

pl
itu

de

MCF10A MCF7
0

5

10

15

20

25

P
ha

se
 (h

r)

Per2-luc

Arntl-luc

A 

 

 

 

 

 

 

 

 

B 

Figure 2.6 A) MCF10A and MCF7 Per2-luc and Arntl-luc activity 24 hrs post-dexamethasone 

synchronisation, n=3 and n=4 for MCF7 Arntl-luc. B) Phase, amplitude and period graphs for MCF 

Per2-luc and Arntl-luc activity. 
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Figure 2.7 A) MCF10A and MCF7 Per2-luc and Arntl-luc activity 24 hrs post-forskolin synchronisation,  

n=3 and n=4 for MCF7 Arntl-luc. B) Phase, amplitude and period graphs for MCF Per2-luc and Arntl-

luc activity. 
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Figure 2.8 A) MCF10A and MCF7 Per2-luc and Arntl-luc activity 24 hrs post-serum synchronisation,  

n=4. B) Phase, amplitude and period graphs for MCF Per2-luc and Arntl-luc activity. 
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Figure 2.9 A) MCF10A and MCF7 Per2-luc and Arntl-luc activity induced by 12 hr 32°C / 12 hr 37°C 

temperature synchronisation, n=5. B) Phase, amplitude and period graphs for MCF Per2-luc and Arntl-

luc activity. C) The temperature cycling protocol and the resultant temperature profile in the incubator. 
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Figure 2.10 A) MCF10A and MCF7 Per2-luc and Arntl-luc activity induced by 12 hr 32°C / 12 hr 37°C 

temperature synchronisation without addition of HEPES to the imaging media, n=5. B) Phase, 

amplitude and period graphs for MCF Per2-luc and Arntl-luc activity. 
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Figure 2.11 A) MCF10A and MCF7 Per2-luc and Arntl-luc activity induced by 12 hr 36°C / 12 hr 37°C 

temperature synchronisation; Per2-luc n=5, Arntl-luc n=4. B) Phase, amplitude and period graphs for 

MCF Per2-luc and Arntl-luc activity. 
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2.3.2 Temperature compensation and period stability of MCF Cells 

 

Circadian rhythms are temperature compensated, which means that the rate 

of the process, i.e., the period length, remains robust relative to the 

temperature at which the cells are incubated (Kidd et al., 2015). Therefore, if 

the long period of the MCF10A Per2-luc cells represented a stable temperature 

compensated circadian clock, then the period would be expected to remain 

stable at a higher temperature. To test this, MCF10A cells were entrained with 

2 hotter cycles of 12 hr 33°C/ 12 hr 38°C before release into constant 38°C (see 

Figure 2.12). The period of MCF10A Per2-luc was subtly but significantly 

longer when cells were entrained to 33/38°C temperature cycles rather than 

32/37°C temperature cycles (Figure 2.15, p£0.05). This implies that the 

circadian timing system in the MCF10As may not be operating in a 

temperature compensated manner, as it should, though a wider range of 

temperature entrainment protocols would be required to confirm this. As with 

dexamethasone, forskolin and serum synchronisation, MCF10A Per2-luc 

activity consistently reported long periods (>24 hrs) across 32/37°C, 33/38°C 

and 36/37°C temperature entrainment (for which means ranged from 

29.3-33.4 hrs, Figure 2.15). 

 

Circadian rhythms should also display a degree of robustness to entrainment 

cycles of different period lengths (Eelderink-Chen et al., 2021). To investigate 

this, the MCF cells were exposed to either short T cycles of 21 hrs (10.5 hr 

32°C / 10.5 hr 37°C) or long T cycles of 27 hrs (13.5 hr 32°C / 13.5 hr 37°C). 

Figure 2.13 and Figure 2.14 show that for the most part the free-running 

construct activity of the MCF cell lines (i.e., activity after release to constant 

37°C) was masked by the temperature entrainment protocols. However, there 

were some instances in which Arntl/Per2 activity was clearly behaving in a 

manner independent to the short/long T cycles. For instance, MCF7 Arntl-luc 
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activity under 21 hr temperature cycle entrainment appeared just reach a 

trough, though never quite reach a peak immediately prior to temperature 

change. This indicates that the oscillator resisted entraining to the short T 

cycle (Figure 2.13). Conversely, MCF7 Arntl-luc activity under 27 hr 

temperature cycles always peaked, and always troughed, prior to the forced 

phase adjustment induced by the temperature change, which indicated that 

the MCF7 Arntl-luc activity was shorter than 27 hrs and did not entrain to 27 

hr temperature cycles (Figure 2.14). A similar pattern was observed for 

MCF10A Per2-luc activity, which appeared forced to trough and peak 

immediately after temperature change when under 21 hr temperature cycles, 

but reached a free-running peak and trough just before the temperature change 

under 27 hr temperature cycles (Figure 2.13, Figure 2.14). In fact, MCF10A 

Per2-luc activity appeared to entrain quite well to 27 hr temperature cycles, 

which correlated with the longer oscillations observed for Per2-luc in free-

running conditions (chapter 2.3.1). The MCF10A Arntl-luc and MCF7 Per2-

luc cell lines did not demonstrate a marked robustness to either 21 or 27 hr 

temperature entrainment conditions, which correlated with the distinctly less 

robust oscillatory behaviour observed for these cell lines in free-running 

conditions. 

 

Figure 2.15 and Figure 2.16 compare the free-running period lengths of each of 

the MCF reporter cell lines following entrainment to the different temperature 

entrainment protocols. MCF10A Per2-luc oscillation appeared robustly >24 

hrs. The shortest period length observed was after 27 hr entrainment, at 28.2 

hrs (±1.68 hrs), although this was only significantly shorter (at p<0.05) 

relative to 21 hr and 32/37°C no HEPES entrainment conditions. MCF10A 

Arntl-luc oscillation was observed only after 21 and 27 hr temperature 

entrainment conditions, and demonstrated a mean free-running period of 26.2 

(±1.26 hrs), which was much shorter than for the MCF10A Per2-luc free-
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running period, suggesting that the molecular clock in MCF10As may not have 

been functioning canonically even under conditions that entrained both Per2-

luc and Arntl-luc activity. Relatively each MCF7 reporter line showed a greater 

range of free-running period lengths than each of the MCF10A reporter lines. 

Although, generally speaking, the conditions with fewer outliers produced 

period lengths close to 24 hrs (Figure 2.16). 
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Figure 2.12 A) MCF10A Per2-luc and Arntl-luc activity induced by 12 hr 33°C / 12 hr 38°C temperature 

synchronisation; n=5. B) Phase, amplitude and period graphs for MCF10A Per2-luc and Arntl-luc 

activity. 
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Figure 2.13 A) MCF10A and MCF7 Per2-luc and Arntl-luc activity induced by 10.5 hr 32°C / 10.5 hr 

37°C temperature synchronisation; n=5. B) Phase, amplitude and period graphs for MCF Per2-luc and 

Arntl-luc activity. 
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Figure 2.14 A) MCF10A and MCF7 Per2-luc and Arntl-luc activity induced by 13.5 hr 32°C / 13.5 hr 

37°C temperature synchronisation; n=5. B) Phase, amplitude and period graphs for MCF Per2-luc and 

Arntl-luc activity. 
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Figure 2.15 A comparison of free-running period length of MCF10A A) Per2-luc and B) Arntl-luc cells 

after release from entrainment to different temperature protocols. P-values were determined by Welch’s 

two-tailed unpaired t-tests, n.s. = no significant difference. 
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Figure 2.16 A comparison of free-running period length of MCF7 A) Per2-luc and B) Arntl-luc cells after 

release from entrainment to different temperature protocols. P-values were determined by Welch’s two-

tailed unpaired t-tests, n.s. = no significant difference. 
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2.3.3 Clock gene transcripts of MCF7 and MCF10A cells under 12 

hr 36°C / 12 hr 37°C entrainment by qPCR 

 

In practice, the use of the clock gene promoter bioluminescence assay in 

combination with temperature entrainment cycles is subject to error. Although 

firefly luciferase activity is known to be temperature compensated, the 

bioluminescence output in U2OS cells in vitro is not (Feeney et al., 2016). It 

is thought that a proportion of the change in bioluminescence associated with 

temperature change is dependent upon a change in the cellular concentration 

of luciferase’s substrate luciferin. Therefore, qPCR was employed as a second 

method to ascertain clock gene expression in MCF cells under 12 hr 36°C / 

12 hr 37°C temperature cycles. 

 

Figure 2.17 displays the results of qPCR for core clock components PER2, 

ARNTL and NR1D1. For MCF10A cells, straight line fits were not rejected at 

a significance level of 0.05 in favour of sine fits of period = 24 hrs for any of 

the three clock genes. However, the error bars between the biological replicates 

were quite large, so it is not easy to conclude whether MCF10A cells truly 

lacked rhythmicity in clock gene expression under 36/37°C temperature 

entrainment or not. For MCF7 cells straight line fits were rejected in favour 

of sine fits for PER2 and NR1D1 expression. The phase of entrainment agreed 

well between PER2 and NR1D1 sine fits – NR1D1 appeared approx. 1 hr phase 

advanced of PER2. This broadly agrees with NR1D1 expression being ~4.4 hrs 

phase advanced of PER2 expression in baboons (albeit with a large margin of 

error depending upon tissue) (Chapter 1 Figure X). qPCR of ARNTL in 

MCF7s did not preferentially fit a sine wave of period = 24 hrs over a straight 

line, though were a sine fit to be forced, the trend of the data indicates that 

the phase of entrainment would likely be similar to that of NR1D1 and PER2. 
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This was contradictory to the canonical anti-phasic relationships expected 

between ARNTL and PER2. MCF7 Arntl-luc and Per2-luc appeared 

approximately anti-phasic in free-running conditions after 36/37°C 

entrainment, however phases appeared aligned whilst under 36/37°C 

entrainment (Figure 2.11). When the bioluminescence and qPCR data are 

considered together, the MCF7 cells did not appear to demonstrate canonical 

circadian clock gene phase alignment under 36/37°C temperature entrainment. 

This implies the absence of a fully functional temperature-entrainable 

molecular oscillator in the MCF7 cells, as discussed in chapter 2.3.1. 

 

0 4 8 12 16 20 24
-1.0

-0.5

0.0

0.5

1.0

1.5

ZT

Lo
g 2 

fo
ld

 c
ha

ng
e

MCF10A PER2

0 4 8 12 16 20 24
-3

-2

-1

0

1

2

ZT

Lo
g 2 

fo
ld

 c
ha

ng
e

MCF7 PER2

0 4 8 12 16 20 24
-1

0

1

2

ZT

Lo
g 2 

fo
ld

 c
ha

ng
e

MCF10A ARNTL

0 4 8 12 16 20 24
-1.5

-1.0

-0.5

0.0

0.5

1.0

ZT

Lo
g 2 

fo
ld

 c
ha

ng
e

MCF7 ARNTL

0 4 8 12 16 20 24
-3

-2

-1

0

1

2

ZT

Lo
g 2 

fo
ld

 c
ha

ng
e

MCF10A NR1D1

0 4 8 12 16 20 24
-4

-2

0

2

ZT

Lo
g 2 

fo
ld

 c
ha

ng
e

MCF7 NR1D1

Figure 2.17 Relative abundance of clock transcripts under 12 hr 36°C / 12 hr 37°C temperature 

entrainment assayed by qPCR. Data is displayed as mean ± S.D., n=3 biological replicates except for 

MCF10A & MCF7 NR1D1 ZT4 and MCF7 ARNTL ZT12 where n=2 due to disagreement between 

technical triplicates. Sum of squares F tests determined whether sine fits (period = 24 hrs) surpassed 

linear fits (p<0.05). Sampling commenced after 72 hrs of 36/37°C temperature entrainment. 
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2.3.4 RNA-sequencing of MCF7 and MCF10A cells under 12 hr 

36°C / 12 hr 37°C temperature cycles 

 

2.3.4.1 Data quality 

 

Two methods were considered for normalisation of RNA-seq data to library 

size, logCPM and logTMM (edgeR R package) (M. D. Robinson et al., 2010). 

TMM normalisation aims to prevent particularly highly expressed genes from 

biasing the normalisation and hinges on the presumption that more than half 

of the genes are not differentially expressed between any two samples (M. D. 

Robinson et al., 2010). Given that MCF10A and MCF7 cells have different 

transcriptomes, and were sampled at different circadian timepoints, it seemed 

possible that this presumption might not have held true. Principal components 

analysis (PCA) comparison of logCPM and logTMM normalisation methods 

(Figure 2.18) suggests that in practice logTMM normalisation was not 

substantially different from logCPM, and so the decision was taken to use the 

more intuitive logCPM method of normalisation going forwards. Figure 2.19A 

displays the distributions of logCPM gene expression across all time points and 
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Figure 2.18 Comparison of all RNA-seq samples by PCA. LHS = logCPM normalisation, RHS = 

logTMM normalisation. 
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both MCF cell types. The distributions were stable from sample to sample and 

are no cause for concern. It is important to validate that the cells sequenced 
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Figure 2.19 Assessment of RNA-seq data quality. A) Violin plots of logCPM normalised data for all 

genes from all samples in MCF10A (blue) and MCF7 (red) cells. B) Scatter plot of average expression 

of all genes expressed in MCF7 samples relative to MCF10A samples (logCPM). Marker genes identified 

by Nagaraja et al. (2006) for distinguishing between MCF10A and MCF7 are highlighted either in red 

(MCF7) or blue (MCF10A). C) Scatter plots compare expression of all genes between duplicate samples. 

D) 1st PC vs 2nd PC for MCF10A and MCF7 logCPM normalised RNA-seq transcripts. 
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were indeed MCF10A and MCF7 cells. To this end, Figure 2.19B displays 

mean gene expression between all MCF10A samples and all MCF7 samples. 

Also displayed (in blue and red) are a set of marker genes that are known to 

be differentially expressed between MCF10A and MCF7 cells (Nagaraja et al., 

2006). Based on the general agreement between marker genes and cell line 

identity, it is reasonable to conclude that Figure 2.19B supports the identity 

of the MCF10A and MCF7 cell lines. Figure 2.19D compares the variation 

between and within the timepoints in all of the normalised RNA-seq transcripts 

for A) MCF10A cells and B) MCF7 cells by PCA. The duplicate time points 

were clustered reasonably closely in 2D PCA space in MCF7 cells, but 

appeared to be more variably clustered in MCF10A cells. It is important not 

to place too much weight on interpreting these PCA graphs, as the first two 

principal components vary between cell lines in terms of the amount of 

variability in the dataset that they explain. Additionally, the data presented 

thus far using promoter-luciferase constructs and qPCR indicate a degree of 

circadian dysfunction in both cell lines. If the clock in MCF10A and MCF7 

cells is not functional then poor separation of timepoints by PCA might be 

expected. Figure 2.19C demonstrates that duplicate samples are relatively 

similar to one another in terms of their gene expression with few outliers either 

side of the red x=y line. Therefore, the loose clustering of duplicate samples in 

PC1 and PC2 might imply similarity between the timepoints, rather than 

differences between duplicates. 

 

2.3.4.2 MCF rhythmic gene expression under 12 hr 36°C / 12 hr 37°C 

temperature cycles 

 

Figure 2.20 displays the genes identified as rhythmic in MCF7 and MCF10A 

cells using B-H adjusted p-value <0.2. In the heatmaps, genes were ordered by 
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phase, and colour was scaled by row (i.e., gene-wise). Many more rhythmic 

genes were identified in the MCF7 cell line vs MCF10As (1503 vs 209 genes). 

This is contradictory to the literature consensus that MCF10As have a 

functional molecular oscillator, which presumably governs downstream 

rhythmic gene expression, whilst MCF7s are arrhythmic. For that reason, 

Figure 2.19B is key in validating the nature of the cell lines, as discussed in 

chapter 2.3.4.1. Phase histograms for the MCF10A and MCF7 cells display the 

Figure 2.20 A) Heatmaps of rhythmic gene expression under 12 hr 36°C / 12 hr 37°C temperature cycles 

in MCF10A and MCF7 cells over time. Colour is scaled row-wise. Genes are ordered by phase (B-H 

adjusted p<0.2; mean of n=2 displayed at each ZT). B) Histograms showing the phase distributions of 

oscillating genes in MCF10A and MCF7 cells. 

  

MCF7 
 1503 genes p<0.2 in MCF7 cells

ZT 0
ZT 4

ZT 8
ZT 12

ZT 16
ZT 20

−2

−1

0

1

2

MCF10A 
 209 genes p<0.2 in MCF10A cells

ZT 0
ZT 4

ZT 8
ZT 12

ZT 16
ZT 20

−1

0

1

36°C37°C

1
2

3

4

5

6

7

8

9
10

111213
14

15

16

17

18

19

20

21
22

23 0/24

0
10
20
30
40
50

ZT

R
hy

th
m

ic
 g

en
e 

co
un

t

MCF10A Phase Histogram

36°C37°C

1
2

3

4

5

6

7

8

9
10

111213
14

15

16

17

18

19

20

21
22

23 0/24

0

100

200

300

ZT

R
hy

th
m

ic
 g

en
e 

co
un

t

MCF7 Phase Histogram

A 

 

 

 

 

 

 

 

B 



96 

 

rhythmic genes by phase of peak expression (Figure 2.20B). The bimodal 

distribution of rhythmic gene expression is quite normal and has been observed 

in many tissues (Mure et al., 2018; R. Zhang et al., 2014). 

 

Only 40 genes were identified as rhythmic in both cell lines, implying little 

overlap in the rhythmic transcriptomes of MCF7 and MCF10A cells (Figure 

2.21). This is consistent with the findings of Gutiérrez-Monreal et al. (2016). 

However, such comparisons should be interpreted with caution. As discussed 

in chapter 2.2.11, rhythmicity analysis was implemented at a high FDR (0.2), 

in order to try and limit the number of false negatives (i.e., rhythmic genes 

incorrectly identified as arrhythmic). However, false negatives will occur, 

simply as biological and experimental noise cannot be tolerated so well in 

smaller datasets. Therefore, at an FDR of 0.2 for rhythmic gene detection in 

both MCF10A and MCF7s, approximately 36% of these 40 doubly rhythmic 

genes will be false positives. An alternative approach to searching for 

DBP TEF 

PER2 PER3 NR1D2 

RORC BHLHE40 

Figure 2.21 Venn diagram of genes identified as rhythmic in MCF7 and MCF10A cells at a B-H adjusted 

p-value < 0.2. Genes involved in the molecular circadian clock are also denoted. 
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differentially rhythmic genes would be to use a hypothesis testing or model 

selection approach (Pelikan et al., 2020). These approaches compare gene 

expression in MCF10As and MCF7s directly, thereby reducing the number of 

differentially rhythmic genes that are falsely identified. However, these 

methods categorise genes into categories such as ‘gain of rhythmicity’, ‘loss of 

rhythmicity’ and ‘change in amplitude of rhythmicity’. Such approaches work 

well when applied to high-resolution time-courses. However, in the case of low-

resolution time-courses, one should be cautious about the potential for over-

analysis that such algorithms may encourage. Figure 2.21 also demonstrates 

that, in addition to the wider transcriptome being more rhythmic in MCF7s 

than MCF10As, a number of core clock genes were identified as rhythmic in 

MCF7 cells, whereas none were identified in MCF10A cells. 

 

The expression of MCF10A core clock transcripts are presented in Figure 2.22. 

Sine fits of period = 24 hrs are displayed for all transcripts. The R2 values of 

the sine fits were evaluated in order to assess the goodness of the sine fits. In 

MCF10A cells, the expression of only two clock transcripts, NPAS2 and 

BHLHE40, fitted sinusoidal functions with R2>0.66. Peak MCF10A NPAS2 

transcription appeared to be ~6 hrs phase-advanced of MCF10A BHLHE40, 

whereas in multiple mouse tissues Npas2 and Bhlhe40 are phase separated by 

approximately 12 hrs (http://circadb.hogeneschlab.org/mouse provides a 

searchable online repository of published murine circadian transcriptomes for 

easy inspection of phase relationships). Transcripts with moderate sine fits 

(0.33<R2<0.66), also displayed phase desynchrony between clock genes. For 

instance, in MCF10As ARNTL and PER1 sine fits oscillated with the same 

phase alignment, which is not observed in the functional circadian clocks of 

baboons or mice, where Arntl and Per2 oscillate in an anti-phasic manner to 

one another (Mure et al., 2018; R. Zhang et al., 2014; Chapter 1.2 Figure 1.3). 

Furthermore, although MCF10A PER1 and PER2 were broadly phase-aligned 
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(acrophases ~3.5 hrs apart) and the PARbZIP transcripts DBP and HLF (but 

not TEF) were also phase-aligned as expected, the MCF10As PERs were 

phase-advanced of PARbZIP transcripts DBP and HLF by ~6 hrs, even though 
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Figure 2.22 MCF10A expression of core circadian transcripts under 12 hr 36°C / 12 hr 37°C temperature 

cycles as determined by RNA-seq. Data presented as mean ± S.D.; n=2. Sine fits were set to a period of 

24 hr. R2 values of sine fits are coloured as follows for ease of observation: R2<0.33 coloured red; 

0.33<R2<0.66 coloured orange; R2>0.66 coloured green. 
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the PARbZIP transcripts should appear ~1-2 hrs phase advanced of the PER 

transcripts (Mure et al., 2018; R. Zhang et al., 2014). 

 

Overall, MCF10A cell populations under 36°C/37°C temperature cycles 

assayed by RNA-seq, simply did not display clock gene transcription akin to 

that observed in a functional molecular clock. This conclusion agrees with the 

MCF10A qPCR data presented in chapter 2.3.3 (Figure 2.17). Although linear 

fits were not rejected in favour of sine fits for qPCR of MCF10A clock gene 

expression, the trend of expression appears to mimic that observed by RNA-

seq, i.e., ARNTL expression decreased with time in RNA-seq and qPCR 

experiments. PER2 expression peaked at Zeitgeber time (ZT) 4, and then 

decreased using both methods. Lastly NR1D1 expression decreased with time, 

and then peaked at ZT 20 by RNA-seq and qPCR. This is an excellent 

confidence builder in the accuracy of the data presented here. The lack of a 

functional circadian clock in MCF10A cells appears to be reflected in the large 

reduction of rhythmic genes in the MCF10A transcriptome relative to the 

MCF7 transcriptome (Figure 2.20). 

 

The expression of MCF7 molecular clock transcripts is presented in Figure 

2.23. Overall, sine functions fitted the expression of MCF7 transcripts better 

than in the MCF10A cells. PER2, PER3, CRY2, DBP, TEF, NR1D2, RORC 

and BHLHE40 all achieved sine fit R2 values greater than 0.66. Generally, 

these genes displayed the canonical phase alignments of a functional molecular 

clock. That is to say that DBP, TEF and NR1D2 were slightly phase advanced 

of PER2, PER3 and BHLHE40 as expected (Mure et al., 2018; R. Zhang et 

al., 2014). The peak of the MCF7 CRY2 sine fit occurred a few hours phase 

advanced of where one might have expected, as CRY2 would normally align 

with peak PER2 expression. However, the peak of raw MCF7 CRY2 expression 

is delayed by a few hours relative to the fitted sine curve, which is closer to 
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peak MCF7 PER2, therefore the phase alignment of MCF7 CRY2 is not of 

great cause for concern. More unusually, MCF7 RORC was slightly phase 

advanced of MCF7 PER2, whereas in mice and baboons Rorc is known to be 

phase delayed of Per2 by 4 to 6 hrs. 
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Figure 2.23 MCF7 expression of core circadian transcripts under 12 hr 36°C / 12 hr 37°C temperature 

cycles as determined by RNA-seq. Data presented as mean ± S.D.; n=2. Sine fits were set to a period of 

24 hr. R2 values of sine fits are coloured as follows for ease of observation: R2<0.33 coloured red; 

0.33<R2<0.66 coloured orange; R2>0.66 coloured green. 
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Figure 2.23 shows that for MCF7 transcripts with an R2 of >0.33 and <0.66, 

the phase-alignment of the clock transcripts was more mixed. Unlike in 

MCF10A cells (Figure 2.22), in MCF7s HLF was correctly phase-aligned with 

the other PAR bZIP proteins DBP and TEF. Meanwhile whilst RORA does 

not oscillate well in all mouse and baboon tissues, it does oscillate in alignment 

with PER2 in the mouse lung, which was also the case in MCF7s (R. Zhang 

et al., 2014). However relative to MCF7 PER2 expression, peak MCF7 PER1 

expression was a few hours phase advanced of where it would normally peak 

in mice or baboons, MCF7 CRY1 was ~5 hrs phase advanced of where it would 

normally peak and MCF7 BHLHE41 was ~2 hrs phase delayed of where it 

would normally peak. MCF7 CLOCK was almost anti-phasic to where it would 

be expected to peak as it was ~4 hrs phase delayed of MCF7 PER2, when in 

mice Per2 and Clock would normally be expressed anti-phasically. In baboons 

Clock usually has a relatively low amplitude of oscillation, and also exhibits a 

highly variable phase – although it is never ~4 hrs phase delayed of Per2, as 

was the case in the MCF7 cells. 

 

Strangely, although many MCF7 E-box driven genes (including PERs, PAR 

bZIPs, NR1D2 and CRY2) oscillated in the correct phase alignments, their 

transcriptional activators ARNTL/CLOCK or NPAS2 did not display the 

rhythmic behaviour that would be associated with a functional circadian clock. 

As was observed for the MCF10A cells, the MCF7 qPCR data broadly supports 

the conclusions drawn from the RNA-seq data. For both qPCR and RNA-seq 

MCF7 ARNTL expression was best described by a linear fit, whilst MCF7 

PER2 and NR1D1 oscillated in phase alignment with one another. 

 

MCF7 cells under 12 hr 36°C / 12 hr 37°C temperature cycles demonstrated 

better core clock gene oscillation relative to MCF10A cells, and indeed 
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demonstrated a much greater degree of transcriptome oscillation than 

MCF10A cells (Figure 2.20). This is contrary to the literature consensus, that 

‘benign’ MCF10A cells generally behave more rhythmically than ‘malignant’ 

MCF7s (Table 2.1). Though, even the more rhythmic MCF7 cells did not 

exhibit canonical clock gene expression. 

 

2.3.5 Comparison to Gutiérrez-Monreal et al. 2016 rhythmic gene 

expression in MCFs synchronised by serum shock 

 

Gutiérrez-Monreal et al. originally identified 451 probes oscillating with a 

period of 20-28 hrs in their MCF10A population and 416 probes oscillating in 

their MCF7 population (with a cosine fit correlation coefficient of >0.9). 

However, given that their microarray totalled 44,544 probes and no statistical 

test of rhythmicity was applied, many of their ‘rhythmic’ probes might have 

been false positives. Since Gutiérrez-Monreal et al. have made their log ratioed 

normalised probe counts publicly available (GEO identifier: GSE76370) we re-

analysed their data using MetaCycle’s meta2d function, as applied to the RNA-

seq data presented in chapter 2.3.4.2. 

 

Figure 2.24 demonstrates the expression of MCF10A and MCF7 marker genes 

in the Gutiérrez-Monreal et al. dataset. Marker genes were previously identified 

using microarrays and validated by the RNA-seq data presented in chapter 

2.3.4.1 (Nagaraja et al., 2006). Of 7 marker probes for MCF10A cells, 3 were 

expressed at a higher level in MCF10As than MCF7s, whilst 4 were expressed 

at a low level in both MCF10As and MCF7s. This seems a passable threshold, 

as not every microarray probe is capable of reporting transcript expression 

optimally due to processes such as alternative splicing, off-target probe binding 

and the 3’ bias of reverse transcription (Q. Li et al., 2011). However, the 



103 

 

marker probes for MCF7 cells did not appear to be expressed preferentially in 

MCF7 cells relative to MCF10A cells, which is a cause for concern. 

 

After thresholding for MetaCycle probe rhythmicity at a B-H adjusted p-value 

<0.2 only 26 probes were identified as rhythmic in MCF10A cells and 55 probes 

in MCF7 cells (Figure 2.25). It is difficult to compare the re-analysed 

Gutiérrez-Monreal et al. data directly with the MCF RNA-seq data presented 

in chapter 2.3.4 for several reasons; the experiments use different technologies 

and different time course sampling protocols, making direct comparison of 

rhythmic genes (B-H adjusted p-value <0.2) between the datasets impossible. 

However, it is clear that MCF10A and MCF7 cells subjected to serum shock 

by Gutiérrez-Monreal et al. express very few probes that can be confidently 

identified as rhythmic. This finding is supported by data presented by 

Gutiérrez-Monreal et al. that the majority of probes for core clock genes were 

arrhythmic in both MCF10A and MCF7 cells (detailed in chapter 2.1.2). 

Figure 2.25B demonstrates that the rhythmic probes follow a bimodal 

distribution, as seen in the MCF RNA-seq data presented in Figure 2.20B. 

Figure 2.24 Scatter plot of average expression of all probes expressed in MCF7 samples relative to 

MCF10A samples. Probes for marker genes identified by Nagaraja et al. (2006) for distinguishing between 

MCF10A and MCF7 cell lines are highlighted either in red (MCF7) or blue (MCF10A). 
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This pattern of rhythmic gene expression has been observed in many tissues 

(Mure et al., 2018; R. Zhang et al., 2014). 

 

2.3.6 ATAC-seq of 12 hr 36°C / 12 hr 37°C temperature-entrained 

MCF Cells 

 

MCF10A and MCF7 cells cultured under 12 hr 36°C / 12 hr 37°C temperature 

cycles were also analysed using ATAC-seq to assess changes in chromatin 

accessibility over time. Figure 2.26 demonstrates the ATAC-seq library sizes 
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Figure 2.25 Rhythmic probes from the Gutiérrez-Monreal et al. dataset. A) Heatmaps of Gutiérrez-

Monreal et al. rhythmic probe expression from 8 hrs post-serum synchronisation in MCF10A and MCF7 

cells over time. Colour is scaled row-wise. Probes are ordered by phase (B-H adjusted p<0.2). B) 

Histograms showing the phase distributions of oscillating probes in MCF10A and MCF7 cells in response 

to serum synchronisation. 
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of the MCF10A and MCF7 samples. For direct comparison of reads aligned to 

promoter regions between different time points, the libraries were down-

sampled at random to match the size of the smallest library. Figure 2.27 shows 

the ATAC-seq reads across all time points for the TSSs of a selection of core 

clock genes. Whilst distinct peaks above the background noise are visible for 

the MCF10A samples, no such peaks are visible in the MCF7 samples. This 

was also observed to be the case across all TSSs (Figure 2.28). The lack of 

MCF7 reads in promoter regions is reflected in the TSSE scores for the MCF7 

samples, which fall <5, such that the ENCODE consortium deems the data 

quality to be ‘concerning’ (Figure 2.29). Peak calling in the MCF7 samples was 

confounded by a combination of low signal to noise ratio, and a large number 
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Figure 2.26 MCF10A and MCF7 ATAC-seq raw library sizes, and library sizes post- 

downsampling to the smallest library size. 
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of reads that fell into the four genomic regions that in MCF7 cells are known 

to contain clusters of breakpoint mutations resulting in over-expression of 

genes: 1p13.1-p21.1, 3p14.1-p14.2, 17q22-q24.3, and 20q12-q13.33 (Figure 2.30) 

(Hampton et al., 2009). Genes in these regions are known to be genuinely over-

expressed, therefore blacklisting these regions from peak finding would not 

have been an ideal solution. The high read count in MCF7 break point regions 

serves to confirm the identity of the cell line. 

 

It is probable that the poor signal to noise ratio in MCF7 cell promoters 

resulted from snap-freezing of cells at sample collection times over the course 

of the experiment. Snap-freezing of cells has previously proven to be successful 

using the omni-ATAC-seq protocol in mouse embryonic stem cells (Ryan-

Corces et al., 2017), and is also the approach that has previously been used 
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Figure 2.27 Distribution of ATAC-seq reads across core clock genes. TSSs are denoted in red. All track 

heights were set to the same scale. Reads were summed across timepoints for comparison of MCF7 vs 

MCF10A. 
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with success in the Ott lab. However, other papers have suggested that the 

decrease in signal:noise resulting from snap-freezing is so great that it becomes 

untenable (Fujiwara et al., 2019; Milani et al., 2016). It would appear that this 

applies to the MCF7 data set generated here. It should be noted that the 

MCF10A 
ZT 0         ZT 4       ZT 8   ZT 12 ZT 16        ZT 20  

MCF7 
ZT 0         ZT 4       ZT 8   ZT 12 ZT 16        ZT 20  

Figure 2.28 Heatmap of ATAC-seq coverage across all TSSs (± 2 kb). Read counts from duplicate 

samples were summated, prior to binning into genomic regions 50 base pairs in length, color was scaled 

across all rows and all columns. 
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decision to freeze-thaw the MCF7 and MCF10A samples rather than to 

cryopreserve was not taken lightly. The use of ATAC-seq to study circadian 

rhythms is essentially the same as assaying time, and freeze-thaw was viewed 

as being a faster method for halting nuclei at a particular circadian time. 

Freeze-thaw has been demonstrated to affect the size distributions of ATAC-

Figure 2.30 Genome-wide overview of the difference in ATAC-seq read density between MCF7 and 

MCF10A cells. Marked in red are four regions in the MCF7 cells that yield particularly high ATAC read 

counts. These red regions correspond with four known breakpoints regions that result in increased gene 

expression in MCF7 cells located at 1p13.1-p21.1, 3p14.1-p14.2, 17q22-q24.3, and 20q12-q13.33 (Hampton 

et al. 2009). Scale set to the same across the tracks. 
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seq fragments (Y.-J. Lee et al., 2019). ATAC-seq fragments are usually 

observed to exhibit periodicity in length of ~10.5 base pairs (bp) and ~200 bp. 

The 10.5 bp periodicity corresponds with the bias of Tn5 transposase activity 

resultant from the double-stranded helical structure of the DNA, whilst the 

200 bp periodicity is caused by the wrapping of DNA around nucleosomes 

(Schep et al., 2015). Figure 2.31 displays representative fragment size 

distribution plots from the MCF10A and MCF7 samples. In the MCF10A 

samples 10.5 bp periodicity is clear, although 200 bp periodicity is almost 

completely lost. This pattern is consistent across MCF10A samples and has 

also previously been observed in the Ott lab from freeze-thawed samples. This 

pattern of fragment size distribution is not considered to be inhibitory to 

further data analysis, provided that the fragment size distributions are similar 

across samples. The MCF7 fragment size distribution plot has a lesser degree 

of apparent periodicity than the MCF10A plot. This is representative of all 

MCF7 samples and is in agreement with the hypothesis that the chromatin 

structure of MCF7 cells was disrupted to a greater degree by freeze-thaw, than 

the MCF10A cells. It is possible that cryopreservation of cells would have 

proven to be a less damaging alternative to snap-freezing for preserving the 
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Figure 2.31 Representative fragment size distribution plots of MCF10A and MCF7 ATAC-seq samples. 
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chromatin structure (Fujiwara et al., 2019). Due to the poorer TSSE scores, 

fragment size distributions and highly accessible breakpoint regions in the 

MCF7 samples, only the MCF10A peak calling data will be presented. 

 

The normalisation of ATAC-seq data is a much-discussed topic. Many methods 

have been proposed including but not limited to: scaling to counts per million 

either using the total reads in peaks as the library size, or the total number of 

reads in the sample; quantile normalisation by equilibrating the counts of 

differentially-accessible regions or of non-differentially-accessible regions; 

normalising to house-keeping control genes or spike-in control samples; or 

down-sampling of reads to the same total number per sample (C. Evans et al., 

2018; Halstead et al., 2020; Reske et al., 2020). The appropriate normalisation 

approach depends somewhat on the data. The decision was taken to down-

sample the MCF10A samples, as the library sizes were varied between samples 

and this was a straight-forward approach. The success of down-sampling as a 

normalisation method hinges on the assumptions that peaks are a relatively 

rare event and/or all samples have approximately similar degrees of ‘open-ness’ 

to their chromatin structure. It was not known if this was the case in MCF10A 

cells under temperature entrainment – in fact it seemed reasonable to presume 

that this may not be the case. This question was addressed by peak calling. 

MACS2 was used to call 67,915 peak regions (q<10-3) in the merged, down-

sampled MCF10A dataset. Background regions were calculated by selecting a 

series of regions > 1000 bp away from any detected peaks. Counts in 

background regions were compared between samples, with the assumption 

being that if down-sampling was an appropriate method of sample 

normalisation, background regions would have similar read counts across 

samples after down-sampling. Figure 2.32A and B demonstrate the read counts 

in peak and background regions. The similarity in the read counts in 

background regions across samples after down-sampling supports down-
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sampling as an appropriate normalisation method for this dataset. Figure 

2.32C demonstrates the distributions of reads in peaks after logCPM 

normalisation. 

 

MACS2 was used to detect 55,183 peaks (q<10-4) in the MCF10A dataset. 

PCA revealed that replicate samples did not cluster particularly closely (Figure 

2.34). Indeed, differences between duplicate samples are also clearly visible in 

Figure 2.32C and Figure 2.33. None of the peaks were found to be rhythmically 

accessible over a 23-25 hr period by MetaCycle analysis at a B-H adjusted 

p-value < 0.2. Nor were any peaks rhythmically accessible over a 28-32 hr 

period (B-H adjusted p-value < 0.2). This may reflect a lack of rhythmicity in 

chromatin accessibility in MCF10A samples under 12 hr 36°C / 12 hr 37°C 

temperature cycles. It is certainly the case that the qPCR and RNA-seq data 

suggests that MCF10A cells do not appear to have a functional molecular 

clock. However, it is also possible that snap-freezing of the MCF10A cells 

damaged the chromatin structure to such an extent that the original chromatin 

structure was lost. Therefore, little information can be gleaned from the 

ATAC-seq data presented here. It would be interesting to explore the effect of 

fresh preparation vs cryopreservation vs snap-freezing in liquid nitrogen on 

signal:noise ratios in a range of different cell lines, as the data presented here, 
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Figure 2.33 Scatter plots of peak counts for duplicate MCF10A time-point samples (logCPM). 
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and that of others, would suggest that some cell lines are more sensitive to 

snap-freezing than others (Fujiwara et al., 2019; Milani et al., 2016; Ryan-

Corces et al., 2017). Though, in all likelihood, snap-freezing is simply best to 

be avoided.  
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2.4 Conclusions 

 

The results presented in this chapter demonstrate that neither MCF10A nor 

MCF7 cells displayed clock gene promoter activity indicative of a functional 

molecular clock across all of the different synchronisation methods employed. 

MC10A cell populations generally had long periods (~27-31 hrs) of Per2-luc 

activity and poor oscillation of Arntl-luc activity. Entrainment to 13.5 hr 32°C 

/ 13.5 hr 37°C temperature cycles provided the highest free-running amplitude 

of MCF10A Arntl-luc activity, though the period was >26 hrs. Meanwhile the 

best circadian rhythmic MCF7 promoter activity was achieved by 

dexamethasone synchronisation and 13.5 hr 32°C / 13.5 hr 37°C temperature 

oscillations. MCF7s demonstrated periods of oscillation closer to 24 hrs than 

MCF10As, though rhythms were of lower amplitude than MCF10A Per2-luc. 

These findings broadly support the recent findings of Lin et al. (2019) and 

Lellupitiyage Don et al. (2020), who also demonstrated longer 27 hr rhythms 

in MCF10A clock promoter activity and lower-amplitude 24 hr rhythms in 

MCF7 clock promoters. However, the work of Lin et al. (2019) and 

Lellupitiyage Don et al. (2020) was achieved in response to serum shock 

synchronisation protocols, which did not entrain the clocks of MCF10A and 

MCF7 cells particularly well in the data presented here. 

 

The impact of the synchronisation method on circadian gene promoter activity 

should provide pause for thought. For instance, from the data presented here, 

if only the dexamethasone synchronisation data is considered MCF10As could 

be labelled as ‘benign bad clock’ cells and MCF7s as ‘malignant good clock’ 

cells. Whereas, when considering only the 13.5 hr 32°C / 13.5 hr 37°C 

temperature cycles it would be easy to label MCF10As as ‘benign long clock’ 

cells, and MCF7s as ‘malignant damped clock’ cells. The implication is that 
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circadian phenotypes in vitro are not stable enough to draw conclusions about 

the rhythmicity of a cell line from a single synchronisation method. 

 

A further important indicator of a functional circadian oscillator is its ability 

to entrain to an indicator of external time, i.e., a Zeitgeber. This was assessed 

by monitoring the expression of circadian genes in MCF10A and MCF7 cells 

under physiological 12 hr 36°C / 12 hr 37°C temperature entrainment cycles 

by qPCR and RNA-seq. Both methods demonstrated that MCF7 cell 

populations appeared to entrain more robustly to 12 hr 36°C / 12 hr 37°C 

temperature cycles relative to MCF10A cells, although MCF7s also 

demonstrated a degree of clock dysfunction. This directly contradicts the 

generally accepted view that MCF10A cells have ‘better’ molecular clock 

function relative to the ‘worse’ clock function of MCF7 cells. 

 

Clearly it is important that the variable clock function of the MCF cell lines – 

both within this body of research and within the published literature – is not 

overlooked or over-simplified. One such example would be that of Ye et al. 

(2018). Ye et al. discuss in excellent detail the differences in clock gene 

expression between human cancer and non-cancer biopsies. However, they re-

analysed the Gutiérrez-Monreal et al. (2016) MCF microarray dataset in a 

manner that supported both the 2018 literature consensus of ‘good clock’ 

MCF10A, ‘bad clock’ MCF7, and their hypothesis that molecular clocks are 

disrupted in cancer. Though the original Gutiérrez-Monreal et al. paper noted 

poor oscillation of core clock probes, Ye et al. presented the same data in a  

different light by finding ‘rhythmic probes’ in MCF10A cells (p<0.05, no 

correction applied for multiple statistical tests) and suggesting that as these 

genes are expressed differently in MCF7 cells, cancer must have disrupted 

circadian gene expression relative to healthy tissue (Figure 2.35) (Y. Ye et al., 

2018). Their supplementary data does provide the converse findings, i.e., 
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rhythmic probes identified in MCF7 cells which appeared to be disrupted in 

MCF10A cells. However, Ye et al., present and discuss the data in such a way 

that the reader might be biased towards the presumption that circadian gene 

expression in the MCF10A cells is representative of canonical clock function in 

healthy tissue. The data analysis presented in this chapter represents a third 

interpretation of MCF rhythmicity from the same dataset generated by 

Gutiérrez-Monreal et al. (2016) and analysed Ye et al. (2018) by employing a 

more stringent metric of rhythmicity to limit false positives (B-H corrected 

p<0.2). It is important to recognise that the analysis of ‘big data’ sets is often 

less than straight-forward, and that therefore there is value in the ‘mining’ or 

re-interpretation of published data. As always, for the integrity of the scientific 

record, scientists should seek to avoid biased data interpretion to support a 

preconceived hypothesis. 

 

A criticism that could be levelled at the experimental data presented in this 

chapter is that the biological replicates are not the result of independent 

Figure 2.35 Reproduced from Ye et al. (2018), Fig 4. B) This figure presents Ye et al.'s re-analysis of the 

MCF microarray data set produced by Gutiérrez -Monreal et al. (2016). Circadian oscillating genes were 

determined by JTK_CYCLE and MetaCycle::meta2d (p < 0.05). Red = high expression; blue = low 

expression. CT refers to time post-serum synchronisation. C) Ye et al. 2018 highlight 6 clock and clock-

associated probes that they suggest are more rhythmic in MCF10A cells than MCF7 cells. 
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experiments. Whilst the importance of independent experiments is not to be 

dismissed, circadian experiments are particularly lengthy and are therefore 

time-consuming to repeat independently. The similarity in the period, phase 

and amplitude of promoter activity in the MCFs that were synchronised with 

12 hr 36°C / 12 hr 37°C cycles in either the presence or absence of HEPES, 

supports the hypothesis that the data presented here are independently 

reproducible, given that HEPES is not expected to affect circadian gene 

expression (Figure 2.9, Figure 2.10). 

 

In recent years many researchers have explored the behaviour of cells in 3D 

cell culture environments, which are understood to be more physiological than 

2D culture (Edmondson et al., 2014). 2D vs 3D research in the breast cell 

context is primarily focussed on oncology research, and is concerned with how 

changes in the biology of cells in 2D vs 3D might affect the results of drug 

screens (Imamura et al., 2015; Riedl et al., 2017). Specifically, MCF10A cells 

cultured as 3D spheroids are known to express breast cell specific genes such 

as β-casein (CSN2) and α-lactalbumin, which are not expressed in 2D cultures 

(Qu et al., 2015). Meanwhile, MCF7 cells grown as 3D spheroids were 

demonstrated to be less responsive to oestrogen than 2D cultures, but are more 

structurally differentiated with lumina formation, luminal secretions and apical 

microvilli (Vantangoli et al., 2015). This is important because 2D and 3D cell 

culture techniques have also recently been demonstrated to affect the circadian 

clocks of benign breast cells in vitro (Williams et al., 2018). Williams et al. 

(2018) showed that mammary epithelial cells demonstrated stronger oscillation 

of PER2 in 3D than in 2D, whilst conversely mammary fibroblasts 

demonstrated stronger oscillatory PER2 activity in 2D rather than 3D. This 

finding also held true in the epithelial cells and fibroblasts of lung and skin 

tissue. Work by the same research group demonstrated that increasing 3D 

extracellular matrix stiffness, as is found in aging, damped the PER2 oscillation 
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in mammary epithelial cells (N. Yang et al., 2017). Since both MCF10A and 

MCF7 cells are of epithelial lineages, it is possible that the 2D culture 

environment is simply not supportive of circadian gene oscillation in these cell 

types (Comşa et al., 2015; Qu et al., 2015). This reflects a necessity to move 

towards more complex and physiological models in order to truly understand 

how the molecular clock genes interact with other cellular components in 

benign tissue versus malignant tissue. 
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3. Exploring circadian dysregulation in 

cancer in ovo using the chick embryo 

chorioallantoic membrane model 
 

3.1 Introduction 

 

3.1.1 Ethical in vivo models for circadian oncology research 

 

The cellular circadian transcriptional-translational clock is not a closed 

oscillatory system, the molecular clocks of cell populations are entrainable to 

external stimuli by design. Synchronisation of cellular clocks either in response 

to entrainment stimuli such as light, or in the absence of entrainment stimuli, 

is for the most part coordinated by the central SCN oscillator (Cermakian & 

Boivin, 2009; Ginty et al., 1993; Klein & Moore, 1979; Oster et al., 2006). The 

cellular clocks of peripheral organ systems such as the liver and the gut are 

also able to entrain to Zeitgebers such as feeding schedules independently of 

the SCN (Damiola et al., 2000; Stokkan et al., 2001). Whether the circadian 

clock in tumours functions in a similar manner to peripheral and central 

oscillators is the subject of a great deal of research (discussed at length in 

chapter 1). In order to gain physiological insight into the circadian clocks of 

cancer cells, it is therefore important to be able to study tumours in an in vivo 

context where central and peripheral molecular clocks are operational. Of 

course an in vivo tumour graft model, also provides a number of non-circadian 

advantages, including a mechanical 3D environment, supportive cell 

populations, access to a vascular network for angiogenesis, and a degree of 

immune function (Holen et al., 2017). 
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In circadian research, as elsewhere in biology, mammals such as rats and mice 

are often the in vivo mammalian model organism of choice. Their small size, 

and short generation time makes them relatively easy to work with, and they 

are relatively well understood due to the large amount of research that has 

gone before. However, circadian experiments can require lengthy periods of 

animal isolation in dark/dark conditions (Eckel-Mahan & Sassone-Corsi, 2015). 

Social isolation is a known stressor for mice, whilst constant darkness has been 

suggested to have a depressive effect on mice and rats (Gonzalez & Aston-

Jones, 2008; Ieraci et al., 2016; Y. Zhou et al., 2018). There is an ethical 

argument to be made for the replacement, refinement and reduction of animal 

use in research (Burden et al., 2015). To this end we sought to develop a novel 

model for in vivo circadian cancer research. 

 

A recent example is that of the zebrafish model for tumour grafting (Basti et 

al., 2020). HCT116 tumours with knock-down of a range of core clock genes 

were grafted and grown in zebrafish embryos. The experiments were 

terminated at 7 days post-fertilisation (p-f) – N.B. prior to 5 days p-f zebrafish 

embryos are not considered to be a protected animal in the UK (Animals 

(Scientific Procedures) Act 1986, 2014). Knock-down of ARNTL, PER2 or 

NR1D1 in HCT116 cells had similar effects in vitro. All knock-down cell lines 

displayed increased cell growth relative to wild type (WT), and the expression 

of TP53, WEE1 and MYC were also all increased. In vitro cell migration was 

reduced in all knock-down cell lines relative to WT. However, in an in vivo 

zebrafish model of tumour grafting, differences between the different knock-

down cell lines became apparent. PER2 knock-down cells formed larger 

tumours and metastasized faster than the WT cells, which formed larger 

tumours that metastasised faster than the NR1D1 knock-down cells. 

Interestingly these effects were likely to have been independent of the circadian 
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clock of the zebrafish embryos as the researchers maintained dark/dark 

conditions throughout the experiment to avoid synchronising the circadian 

gene expression of the embryos which would normally begin to oscillate in 

response to light/dark cycles by 5 days p-f (Kaneko & Cahill, 2005). Basti et 

al. (2020) also demonstrated an absence of 24 hr oscillation of endogenous per2 

expression in the zebrafish embryos in dark/dark conditions at 6 days p-f. 

 

Although zebrafish embryos are cheaper to house and are ethically more 

acceptable than the use of adult mice, they are limited as a model organism 

for circadian research and tumour grafting. This is because both tumour 

grafting and the study of circadian gene expression must be undertaken over a 

number of days. There are only three days between the earliest opportunity 

for tumour grafting and the zebrafish beginning to feed and therefore the 

experiment becoming a regulated procedure under ASPA, which is too short a 

period of time to allow for tumour engraftment and subsequent monitoring of 

the circadian system. 

 

In this chapter the chicken chorioallantoic membrane (CAM) is investigated 

as a model of tumour grafting for a novel circadian research application. The 

CAM is an extra-embryonic membrane of the developing chicken embryo 

(Figure 3.1) (Merckx et al., 2020). The CAM is positioned immediately under 

the eggshell membrane and is highly vascularised to allow for O2/CO2 exchange 

for the developing embryo’s respiratory needs. The chicken embryonic CAM 

has a very long history of use as a reductionist animal model organism in 

angiogenesis, oncology, virology and tissue engineering research (Komatsu et 

al., 2019; Marshall et al., 2020; Murphy & Rous, 1911). A chicken embryo 

takes 21 days to hatch, therefore after two thirds of the incubation period, i.e., 
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embryonic development day 14 (EDD14)1, the developing embryo becomes 

protected under UK law (Animals (Scientific Procedures) Act 1986, 2014). 

Grafting of tumour cells onto the CAM is usually performed from EDD8, 

therefore 6 days are available for monitoring of tumour growth before the 

chicken embryos are considered to be sentient animals (Merckx et al., 2020). 

 

The use of the early embryonic CAM for tumour grafting, instead of mice, is 

attractive for a number of reasons aside from its appeal as a more ethical 

replacement model. The chicken embryo CAM is a low-cost model that is easy 

to scale up, as an incubator can hold many eggs (tens to hundreds). The 

imaging of tumour grafts for long term monitoring is theoretically easier in 

chicken embryos than in mice, as the windowed eggshell provides visible access 

to a relatively static tumour. Additionally, since the CAM is not innervated, 

 
1 N.B. The start of the incubation period is denoted as ‘EDD0’, thus EDD0-0.99 is the 1st day 
of incubation, EDD13-13.99 is the 14th day of incubation and EDD14 (i.e., EDD14.0) denotes 
14 whole days of incubation and marks the end of the first two thirds of the development 
period. 

Figure 3.1 A representation of the anatomy of the developing chicken embryo and its associated 

structures. Reproduced from Merckx et al. (2020). 
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the risk of distress to the developing early chicken embryo is thought to be low 

(Ribatti, 2016). 

 

3.1.2 The circadian timing system of the chicken 

 

In humans the circadian clock is synchronised by the SCN, which is in turn 

entrained by light information received by the eye. However, avian species 

contain additional photoreceptors in their brains, including the pineal gland, 

preoptic area, the lateral septum, and the tuberal hypothalamus (Cassone, 

2014). In both mammals and chickens the pineal gland is the region of the 

brain responsible for producing circadian expression of the sleep hormone 

melatonin, while both mammalian and avian species also produce some 

melatonin in the retina (Garbarino-Pico et al., 2004; Tosini et al., 2012). In 

avian species the light-responsive pineal gland functions as a master oscillator, 

in that it is required for maintenance of activity rhythms in free-running 

conditions (Menaker, 1968). Meanwhile the avian SCN is thought to consist of 

two connected structures, the medial SCN and the visual SCN, which together 

also ensure maintenance of activity rhythms in free-running conditions 

(Cassone, 2014). Coordination between the avian pineal gland and the avian 

SCN determines the oscillation of melatonin and clock gene expression in the 

peripheral tissues (Bell-Pedersen et al., 2005). Birds contain orthologues to all 

of the human clock genes with the exception of PER1, although PER2 and 

PER3 are present (Helfer et al., 2006). 

 

3.1.3 The circadian timing system of the chicken embryo 

 

Circadian patterns of gene expression and behaviour are established during the 

development of organisms. For instance, human infants display diurnal 
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oscillations in cortisol expression at 8 weeks of age, oscillatory melatonin at 9 

weeks and oscillatory core body temperature at 10 weeks (Joseph et al., 2015). 

Meanwhile, in the pups of mice and rats, diurnal rhythms are apparent sooner. 

Oscillatory pineal melatonin has been observed in 5 day old rat pups 

(Trávníčková & Illnerová, 1997), whilst oscillations of the core clock genes in 

the SCN have been observed in 2 day old mouse pups (Ansari et al., 2009). 

 

In avian species, circadian rhythmicity has been observed even sooner in 

development. Rhythmic secretion of melatonin from pineal cells was 

demonstrated in complete darkness from pineal glands harvested at chicken 

embryonic development day (EDD) 18 (out of 21 days for development). Pineal 

cells from EDD13 embryos even demonstrated diurnal secretion of melatonin 

through entrainment to 12 hr light / 12 hr dark cycles (Akasaka et al., 1995). 

In fact, it has been demonstrated that exposure to 12 hr light / 12 hr dark 

cycles on EDD13-15 (with constant light on other days) was sufficient to 

entrain the body temperature cycle of chicks 7 days post-hatch relative to 

constant light controls (Hill et al., 2004). Meanwhile 12 hr light / 12 hr dark 

cycles delivered from EDD7-12 resulted in diurnal variation in vocalisation in 

chicks 7 days post-hatch relative to constant light controls (Hill et al., 2004). 

In response to temperature entrainment cycles (36°C/39°C), whole chick 

embryos have been found to express gARNTL2, gPER and gCRY rhythmically 

as early as EDD4 (Paulose, 2016). This research cumulatively indicates that 

the chicken embryo CAM may provide a vascularised site for tumour grafting, 

with an entrainable circadian clock. 

 

 
2 ‘g’ is used throughout this thesis to differentiate chicken (Gallus gallus) genes/proteins from 
those of humans. 
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3.1.4 Bioluminescence imaging in vivo and in ovo 

 

As discussed in chapter 2.1.4, bioluminescent reporters are useful tools for 

circadian research. The combination of bioluminescence reporters and the 

CAM tumour graft assay is a relatively recent development, dating to 2017 

(Hafner et al., 2019; J. Hu et al., 2019; Jefferies et al., 2017; Rovithi et al., 

2017). Since chicken eggs remain stationary, many eggs can be placed under 

one camera, which represents an improvement in throughput relative to mouse 

experiments. Thus far, none of the researchers that use the CAM assay in 

combination with bioluminescence imaging have published a protocol for 

longer-term continuous bioluminescence imaging. This is because for 

monitoring of tumour growth a ‘start’ and ‘end’ image are often sufficient 

metrics. However, for monitoring of rhythmic gene expression over a number 

of days, bioluminescence images must be acquired throughout the course of the 

experiment. Such experiments in mice are difficult, as the substrate of the 

luciferase reporter, D-luciferin, is rapidly excreted by the kidneys (Berger et 

al., 2008). Therefore longitudinal bioluminescence imaging in mice over a 

period of days requires the implantation of an osmotic pump for continual 

slow-release of D-luciferin (Gross et al., 2007). 

 

It was unknown how long D-luciferin would take to be cleared from the CAM 

of chicken embryos. As systemic diffusion of D-luciferin is readily observed in 

mice (Berger et al., 2008), addition of D-luciferin to the chorionic face of the 

CAM was expected to diffuse quickly into the chicken embryo. The developing 

chicken embryo has been shown to excrete renal waste into the allantoic sac 

(which is bounded by the CAM) from at least as early as EDD5 (Bolin & 

Burggren, 2013; Fiske & Boyden, 1926). The allantoic face of the CAM acts as 

a barrier impervious to transport of waste urea, uric acid, calcium, potassium 

and phosphorous from the allantoic sac to the CAM vasculature (Gabrielli & 
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Accili, 2010). Therefore, D-luciferin may also be compartmentalised to the 

allantoic fluid by renal filtration in the developing chicken embryo.  

 

3.1.5 Aims and objectives 

 

The following chapter investigates the expression of core clock genes in the 

chicken embryo using bioluminescent reporters and qPCR. This research lays 

the groundwork for the subsequent use of the chicken embryo CAM as a 

tumour xenograft model for a circadian application. 
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3.2 Materials and Methods 

 

3.2.1 Chicken embryonic fibroblast isolation and culture 

 

Bovans brown fertilised chicken eggs were obtained from Henry Stewart & Co 

(https://www.medeggs.com/). Eggs were stored for no longer than 4 days 

between 13-18°C prior to incubation. Eggs were incubated pointed end down 

and gradually rocked in a Maino MiniPro 108 egg incubator at 38°C, 45% 

humidity. The protocol for isolation of chicken embryonic fibroblasts is 

adapted from Hernandez & Brown (2010) (Hernandez & Brown, 2010). On 

EDD10 sterile scissors were used to open the eggshell and to immediately 

decapitate the embryo. This is considered to be a humane method of 

termination for embryonic birds under ASPA, although regulation of 

experimental procedures under ASPA does not apply to chicken embryos until 

the latter third of incubation (Animals (Scientific Procedures) Act 1986, 2014). 

Nonetheless, all procedures were approved by the University’s Animal Welfare 

Ethical Review Body. 

 

Chicken embryos were transferred to a class II biosafety cabinet for the 

remainder of the procedure. The limb buds and inner organs of the embryo 

were carefully removed with sterile tweezers and scissors. The remaining tissue 

was gently washed in sterile PBS. The tissue was macerated using scissors to 

break down as much of the tissue as possible mechanically. The tissue was 

transferred to a 50 ml Falcon tube containing 45 ml of 0.25% trypsin (VWR, 

0458-50), 1mM EDTA (Fisher Scientific, 10213570) and 2.5 mg/ml amphotericin 

B (Sigma-Aldrich, A2942). Falcon tubes were incubated at 37°C for 45 min 

with frequent agitation, after which cell material was pelleted at 500 ×g for 

5 min. The supernatant was removed and replaced with fresh 
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trypsin/EDTA/amphotericin B for a further 15 min incubation period. Tubes 

were centrifuged at 500 × g for 5 min to pellet the cells, and the supernatant 

removed. The cells were resuspended in the same media used for MCF7 culture 

in chapter 2.2.1 (DMEM with UltraGlutamine, 10% FBS, 20 U/ml penicillin 

and 20 µg/ml streptomycin). Cell suspensions from different embryos were 

pooled prior to seeding. Two 175 cm2 flasks were seeded per embryo used, and 

were incubated at 38°C, 5% CO2 overnight. The following day, the media in 

the flasks was replaced to remove cellular debris. 

 

Within one passage fibroblasts growth outstrips that of any other cell type to 

produce a monoculture of contact inhibited primary chicken embryonic 

fibroblasts (CEFs). Cells may either be cryopreserved (10% DMSO, 90% FBS), 

or maintained for 5 or 6 passages in total (maximum 30 days) before they lose 

their ability to replicate. 

 

3.2.2 Generation of stable Per2-luc and Arntl-luc reporter CEF cell 

lines 

 

CEFs were stably transduced with Per2-luc and Arntl-luc constructs by 

lentiviral vectors as described in chapter 2.2.2. The protocol differed only 

slightly in the transfection reagent employed – Fugene HD (Promega, E2311). 

 

3.2.3 Bioluminescence assay for CEF clock promoter reporter cell 

lines 

 

CEFs were seeded at 50,000 cells per 3 ml of culture media in 35 mm diameter 

tissue culture dishes. The following day the media was removed from the 

dishes, and the CEFs were synchronised with 3 ml of fresh media containing 



129 

 

either 10 µM forskolin or 100 nM dexamethasone. Forskolin-containing media 

also contained 100 µM potassium D-luciferin for bioluminescence monitoring. 

CEFs synchronised with 100 nM dexamethasone were washed with PBS after 

20 min at 37°C in order to remove the dexamethasone. The dishes were 

replenished with cell culture media containing 100 µM potassium D-luciferin. 

Bioluminescence was monitored by the ActiMetrics LumiCycle 32 device. Data 

was detrended as described in chapter 2.2.4. Extra sum-of-squares F tests were 

implemented to determine whether sinusoidal fits fitted the data significantly 

better than linear fits (p<0.05) as described in chapter 2.2.4. 

 

3.2.4 Chick embryo tissue sampling and subsequent RNA 

extraction 

 

Chick eggs were incubated in a range of conditions including 38°C constant 

darkness, 38°C 12 hr light / 12 hr dark, and 12 hr 39°C / 12 hr 36°C constant 

darkness. For the purposes of ensuring a light-tight environment with 

oscillatory temperature control, eggs were incubated in a New Brunswick 

Galaxy 170 S incubator. The CO2 supply was switched off, and air was pumped 

in using a simple aquarium pump covered by a light tight cloth to ensure 

sufficient air flow. A second Galaxy 170 S incubator with an aquarium pump 

was illuminated every 12 hrs for 12 hrs with a 5 m length strip of 7000 Kelvin 

LEDs to achieve 12 hr light / 12 hr dark conditions. For constant darkness, 

constant temperature conditions eggs were incubated in dark-adapted Amerex 

Instruments hybridisation ovens with a cup of water for increased humidity. 

The hybridisation ovens were placed in a dark room. Eggs were turned by hand 

in the dark every 12 hrs for the first 36 hrs to prevent embryos from sticking 

to the eggshell, which would have reduced the viability. 
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One hour before onset of EDD12, eggs were removed from the incubators every 

4 hrs using a large blackout cloth to protect the incubators from very dim 

room light upon opening. Embryos were killed in conditions as close to 

darkness as was possible. Sterile tweezers and scissors were used to remove the 

embryonic brain and a clean piece of CAM tissue approx. 2 cm in diameter. 

Tissue was placed into screw cap 2 ml tubes pre-filled with 400 µl of TRIzol 

and 200 µl of zirconia beads (Thistle Scientific, BSP-11079107zx). The tissue 

was homogenised in a VelociRuptor V2 set to 7m/s for 20 seconds. Samples 

were immediately placed on dry ice and stored at -80°C until RNA extraction. 

As CAM is quite a tough tissue to homogenise, some tubes containing CAM 

required an additional homogenisation cycle. In this case tubes were allowed 

to chill on dry ice between cycles to prevent the sample from over-heating 

during homogenisation. 

 

For RNA extraction all samples were thawed from -80°C and briefly vortexed 

to ensure a well-mixed sample. 100 µl of sample was transferred to a 1.5 ml 

tube prefilled with 900 µl of TRIzol and vortexed briefly to mix. 

TRIzol/chloroform RNA extraction was performed as described for MCF cell 

material in chapter 2.2.5. The Turbo DNA-free kit was used to remove any trace 

amounts of DNA from the RNA, and the quality of the RNA was checked by gel 

electrophoresis (1% w/v agarose gel in Tris/borate/EDTA buffer). 

 

3.2.5 qPCR of chicken embryonic tissue samples 

 

DNase-treated RNA was converted to cDNA using the superscript II reverse 

transcriptase kit. The primers used for gACTB, gARNTL, gPER3, and 

gRPLP0 are listed in Table 3.1. All primers were designed in NCBI’s Primer 

Blast tool with melting temperatures of 58.1-60.2°C. 
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For qPCR experiments, samples were assayed in 384 well plate format using a 

BioRad CFX384 Touch Real-Time qPCR System. Each biological sample was 

measured in triplicate to account for technical error. Each 20 µl qPCR reaction  

comprised of 10 µl PowerUp SYBR Green Master Mix 2 µl of pre-mixed 

forward and reverse primer at 0.5 µM each, 2 µl of cDNA (diluted 1:10 from 

cDNA conversion) and 6 µl DNase/RNase–free water. The temperature profile 

applied during the experiment was as follows: 2 min 50°C, 2 min 95°C followed 

by 40 cycles of 15 sec 95°C, 30 sec 60°C, 30 sec 72°C. Primer efficiency was 

determined by qPCR of serially diluted pooled cDNA to a) confirm that the 

relationship between the amount of cDNA and Ct remained logarithmic, and 

b) determine the efficiency of amplification (Figure 3.2). The Pfaffl method of 

relative quantification of cDNA was used to calculate the log2 fold change of each 

gene as described in chapter 2.2.6 (Pfaffl, 2006). For each time-course, extra sum-

 

Table 3.1 Forward and reverse primer sequences for chicken housekeeping and clock genes. 
   

Gene Forward primer sequence Reverse primer sequence 
gACTB 5’ ATATTGCTGCGCTCGTTGTT 3’ 5’ CGACCCACGATAGATGGGAA 3’ 

gARNTL 5’ TACGTGGTGCTACAAACCCA 3’ 5’ GAAATCCATCTGCTGCCCTG 3’ 

gPER3 5’ ATCTGCGGAGCCTTCACTTA 3’ 5’ GTGCATTCACTAGAAGCGCA 3’ 

gRPLP0 5’ GTTTCCTGGAGGGTGTTCGT 3’ 5’ AAGCACCCGCTTGTAGCC 3’ 
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Figure 3.2 qPCR cDNA dilution curves and primer melt curves for chicken genes. A) cDNA dilution 

curves for the determination of primer pair amplification efficiency across different concentrations of 

cDNA. B) Melt curves for each primer pair (line = mean, dotted line = S.D., n=3). 
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of-squares F tests were implemented using GraphPad Prism v8 in order to 

determine whether a sine fit constrained to a period of 24 hr was a better fit for 

the data than a linear fit at a significance threshold of 0.05. 

 

3.2.6 Cell culture 

 

MCF10A and MCF7 cells were cultured as described in chapter 2.2.1. MDA-

MB-231 cells (human mammary adenocarcinoma cell line), Hepa1-6 cells 

(murine hepatoma cell line) and C26 cells (murine colon carcinoma cell line) 

were all cultured in DMEM with Ultraglutamine, 10% FBS, x20 U/ml 

penicillin and 20 µg/ml streptomycin as described for MCF7 cell culture in 

chapter 2.2.1. All cell lines were stably transduced with Per2-luc or Arntl-luc 

lentiviral constructs as described in chapter 2.2.2. 

 

3.2.7 Windowing of chicken eggs for tumour grafting 

 

Eggs were incubated as described in chapter 3.2.1 in a Maino Mini Pro 108 egg 

incubator. After 67-77 hrs of incubation (~EDD2.8–EDD3.2) chicken eggs were 

moved in batches of six to a class II biosafety cabinet for windowing – N.B. a 

class II biosafety cabinet was used for any procedure which required that the 

eggs be opened. Eggs were inverted to sit pointed end up upon removal from 

the incubator to reduce the chances of the embryo sticking to the inner 

membrane. For the experiment described in chapter 3.3.3, eggs were windowed 

at the base, top or side or the egg. Windowing was achieved by using sharp 

sterile tweezers to pierce the eggshell and slowly remove fragments of shell 

until a window of approx. 2.5 cm diameter had been achieved. The young chick 

embryo always rotates to the upwards facing side of the egg, which enabled 

dead embryos or unfertilised eggs to be observed and discarded upon 
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windowing. The exact size of the window varied slightly from egg-to-egg due 

to the size and shape differences between eggs. When windows were created at 

the top or side of the eggs it was necessary to remove 0.5-1.0 ml of albumin 

from the egg by sliding a 1 ml pipette into the window past the edge of the 

yolk. This lowered the embryo sufficiently to allow for the window to be sealed 

with a piece of wide width sticky tape cut to the right size, without risk of 

injury to the developing embryo. For eggs windowed at the base, removal of 

albumin was not necessary as the air sac is located directly under the base of 

the eggshell, creating a void space for windowing. Additionally, for eggs 

windowed at the base the inner membrane was carefully removed with tweezers 

in order to expose the embryo, after which the window was sealed with sticky 

tape. Once eggs were returned to the incubator they were no longer 

rocked/rolled or agitated in any manner in order to avoid the sticky tape from 

contacting the embryo. 

 

Cancer cells were usually grafted onto eggs on EDD8, once the CAM had grown 

sufficiently large to accept and support a graft. Cells were pre-mixed with 20 µl 

of ice-cold growth factor reduced Matrigel (Corning, 356231) per egg to ensure 

a defined graft location. Grafts were placed at junctions of large central blood 

vessels to aid angiogenesis. In later experiments the aim was to graft 4 million 

cells per egg, though the cell number varied according the number of cells 

available for grafting. This was not too concerning as the number of cells 

recommended by the literature for tumour grafting onto the CAM varies 

widely from 103- >106 depending upon the cell line (Jefferies et al., 2017; 

Pawlikowska et al., 2020). Table 3.2 details the cell line and graft density used 

for each of the tumour grafting CAM experiments described in this chapter. 
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3.2.8 Tumour graft bioluminescence imaging 

 

3.2.8.1 D-luciferin pulse 

On the day of imaging, the sticky tape was pierced with a sterile needle in 

order to deliver potassium D-luciferin dissolved in sterile water directly over 

the grafted tumour. The concentration of the potassium D-luciferin depended 

on the experiment (see Table 3.2 for details), whilst the volume varied between 

100-300 µl. Eggs were resealed with a small piece of sticky tape and were 

immediately transferred to the Cairn Alligator bioluminescence imaging system 

for monitoring of tumour bioluminescence. Fresh potassium D-luciferin was 

administered at the end of imaging prior to termination of the experiment. See 

Table 3.2 for details. 

 

3.2.8.2 D-luciferin drip 

Eight lengths of tubing (Crystal Clear Tygon R3607, Saint Gobain 

Performance Plastics, 15113226) were bundled together with black electrical 

tape to pass through the light-tight port into the Cairn Alligator. Tubing was 

sterilised by flushing 70% ethanol through and left to soak for 30 minutes. 

Tubing was subsequently flushed with sterile water (Elga PURELAB system). 

One end of the tubing was secured just inside the sticky taped window of 

embryos with tumour grafts. The other was secured to a syringe pre-filled with 

D-luciferin solution (see Table 3.2 for concentration/volumes). Syringes were 

placed in an Aladdin 8-channel syringe pump (WPI Instruments, AL-1800) 

which was covered by a light-tight blackout cloth for the duration of imaging 

(Figure 3.3). 
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3.2.9 Luciferin loaded polymer patch 

Luciferin loaded polymer patches were synthesised in Professor Dave 

Haddleton’s laboratory by Shivani Rughani (Department of Chemistry, 

University of Warwick) using a protocol developed by Medherant Ltd which 

was originally intended for the development of polymer patches for transdermal 

drug delivery. The polymer patch consisted of a poly(ether-urethane)-silicone 

crosslinked pressure-sensitive adhesive (PSA) mixed with 10% luciferin by 

weight (Tombs et al., 2018). The PSA was spread onto a thin layer of acetate, 

and a backing layer was adhered to complete the patch. The luciferin used was 

either potassium D-luciferin for batch 1 and 2 patches, or cyclic 

alkylaminoluciferin (CycLuc1) for batch 2 patches (see Figure 3.4). CycLuc1 

is a modified luciferin which is >10-fold brighter than D-luciferin in vivo (M. 

S. Evans et al., 2014). However, no difference in CAM graft bioluminescence 

intensity was observed between patches loaded with potassium D-luciferin 

compared to patches loaded with CycLuc1 (data not shown), therefore the 

patches were used interchangeably in experiments. Upon synthesis of the 

Control unit with LED 

was moved away for 

light-tight imaging 

Figure 3.3 Aladdin 8-channel syringe pump (WPI Instruments, AL1800) for continuous delivery of 

potassium D-luciferin to chicken embryos. 

blackout cloth  to Alligator 

potassium D-luciferin 

fully dispensed 
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luciferin-loaded patch the CycLuc1 changed colour to a darker yellow, therefore 

it is possible that CycLuc1 was modified in the process of the polymer patch 

production, which might have resulted in similar graft bioluminescence to D-

luciferin patches. Since the batch 2 1 cm2 polymer patches were backed onto 

non-sterile beige fabric, 50 µl of 2000 U/ml penicillin and 2 mg/ml streptomycin 

solution was added onto (and was absorbed by) the beige fabric after the 

placement of the polymer patch onto each chicken CAM to try to limit the 

risk of infection to the chicken embryo. 

 

3.2.9.1 Image acquisition parameters 

Image acquisition parameters varied slightly between experiments. The 

majority of experiments employed the CAIRN Alligator, whilst two 

experiments used the Biospace Labs PhotonImager Optima imaging system. 

All imaging parameters are described in Table 3.2. 

 

3.2.10  Bioluminescence image analysis 

 

All .tif images were exported to FIJI-ImageJ for analysis. Images from the 

CAIRN Alligator contained a degree of high intensity random background 

A B 

Figure 3.4 Luciferin loaded polymer patches. A) Batch 1, potassium d-luciferin-loaded polymer patch. 

PSA was coated onto a foiled backing. B) Batch 2, LHS = CycLuc1-loaded polymer patch. RHS = 

potassium d-luciferin-loaded polymer patch. PSA was coated onto a beige fabric backing. 

D-luciferin 
loaded 
front face 

Fabric 
backing 

CycLuc1 
loaded front 
face 
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noise. The FIJI ‘remove outliers’ function was used to reduce this (threshold: 

50, pixels: 2-6). Bioluminescent grafts and a bioluminescence-free (i.e., 

background) part of the image were selected using the FIJI region of interest 

(ROI) manager. Mean background intensity was subtracted from mean graft 

intensity for each graft in each image. The background can be a little variable 

across the image, for instance a particularly bright tumour graft may slightly 

increase the noise of neighbouring CAMs under the camera. For most 

experiments this was negligible and not an issue, however it did present a 

challenge for quantification of the data presented in Figure 3.14. To account 

for variable background in Figure 3.14A, the background ROI was set ‘locally’ 

i.e., a separate background ROI was created for each tumour graft, as close as 

possible to each tumour graft. In order to fit a graft ROI and a background 

ROI into each of the CAM regions, the ROIs were required to be slightly 

different shapes and sizes to one another (although paired graft and 

background ROIs always matched in size and shape). Therefore, for the locally 

background subtracted data presented in Figure 3.14B, mean bioluminescence 

of graft A cannot be quantitively compared to mean bioluminescence of graft 

B (because mean bioluminescence is dependent upon the size of the ROI). For 

analysis of images from the PhotonImager Optima, the ‘remove outliers’ 

Table 3.2 Supplementary protocol information for all CAM tumour graft experiments. 
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function was not necessary. Additionally, the mean bioluminescence was 

extremely small. Therefore, sum bioluminescence was plotted instead. 
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3.3 Results and Discussion 

 

3.3.1 Circadian clock function of chicken embryonic fibroblast cells 

 

Primary chicken embryonic fibroblasts (CEFs) extracted from EDD10 embryos 

were stably transduced with murine luciferase reporters of Arntl or Per2 clock 

promoter activity. Figure 3.5 demonstrates that both dexamethasone and 

forskolin were capable of producing oscillatory Arntl-luc activity in CEFs with 

an approx. 24 hr period. The Arntl-luc oscillations were quite low in amplitude, 

which is clear from the degree of noise in the oscillatory signal. Meanwhile, 
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Figure 3.5 Clock promoter activity in chicken embryonic fibroblasts (CEFs). CEFs were synchronised 

either with dexamethasone or forskolin. Standard or damped sine fits were preferentially fitted to 

detrended data corresponding to n=4 experiments for each condition in Graphpad Prism. The first 12 hrs 

of data was omitted from the sine fit to ensure that 24 hrs of data was available for the sliding window 

used for running average detrending. 
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oscillatory Per2-luc activity was only detectable after forskolin 

synchronisation, and rhythmicity was lost by 2.5 days post-synchronisation. 

This could mean that the murine clock promoter constructs were poorly 

regulated by the chicken transcriptional machinery, or that a majority of cells 

in the population had a very low amplitude (or lack) of circadian gene activity. 

The former possibility seems unlikely, as the raw expression of the 

bioluminescence signal was sufficiently high that activation of clock promoters 

and detection of luciferase activity did not appear to be a limitation of the 

assay. The latter scenario that the CEF circadian clock genes simply had a 

very low amplitude of oscillation seems more likely, as it has already been 

demonstrated that clock gene expression is not rhythmic in mouse embryonic 

stem cells, but that rhythmic gene oscillation is established gradually as stem 

cells differentiate (Yagita et al., 2010). The results presented in Figure 3.5 lend 

confidence that the cells of the chicken embryo may well express circadian 

clock genes capable of driving the bioluminescent reporter expression, even if 

the molecular clock is not yet oscillating at a high amplitude in a free running 

manner. 

 

3.3.2 Expression of circadian genes in the chick embryo brain and 

CAM at EDD12-14 

 

qPCR was used to assess the expression of circadian gene transcripts in the 

developing chick embryo brain and CAM at EDD12-14. The developing 

chicken embryos were incubated under a variety of conditions described by 

Figure 3.6. Constant temperature (38°C) and constant darkness was used to 

ascertain the free-running expression of circadian clock genes. Two Zeitgeber 

incubation protocols were also explored; firstly 12 hr 39°C / 12 hr 36°C 

temperature cycles were employed as described by Paulose (2016). The cloacal 
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temperature of chickens has been shown to vary by approx. 1°C over the 24 hr 

period with the peak temperature between midday and mid-afternoon 

(Aluwong et al., 2017). It is therefore reasonable to presume that between the 

temperature cycle of the hen and the temperature cycle of the environment, 

chicken embryos incubated by a hen would experience oscillatory temperature 

cycles of cooler nights and warmer days. Broody hens will leave a clutch of 

eggs for no longer than 20 minutes per 24 hr period, therefore the temperature 

of the eggs should closely track that of the hen. The second entrainment signal 

investigated by qPCR was a 12 hr light / 12 hr dark cycle. It is likely that 

very little light would reach developing embryos incubated by broody hens. 

However, that does not mean that chicken embryos cannot entrain to 

light/dark cycles, as discussed in chapter 3.1.3. Figure 3.6 describes the 

protocol followed for incubation of chicken eggs and subsequent tissue sampling 

for qPCR. 

 

Figure 3.7 shows that gARNTL was uniformly expressed in a non oscillatory 

manner in the brain and the CAM of the chicken embryos regardless of 

incubation conditions. gPER3 expression in the CAM under 12 hr light / 12 hr 

dark entrainment was the only condition that fitted a 24 hr period sine wave, 

better than a straight line by sum of squares F test (p<0.05). From the mean 

(black line) it is apparent that gPER3 appears to be somewhat oscillatory 

0hr  4     8     12    16   20    24   28    32   36    40   44

EDD12 EDD13

Sampling timepoints

38°C, constant darkness

38°C, 12 hr light / 12 hr dark

12 hr 39°C / 12 hr 36°C, constant darkness

Figure 3.6 Protocol for chicken egg incubation for sample collection for qPCR. 
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under both light/dark and 39°C/36°C entrainment, with peak expression 

occuring sooner in the CAM than in the brain. 
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Figure 3.7 qPCR of clock genes gARNTL and gPER3 in the brains or CAMs of EDD12-14 chicken 

embryos incubated either under constant temperature, constant darkness (dark grey), 12 hr light / 12 hr 

dark (light grey / dark grey) or 12 hr 39°C / 12 hr 36°C entrainment (red/blue). ACTB was used as the 

reference gene. N=3 biological replicates except where technical triplicates did not agree, 19 data points 

removed out of a total of 432. Solid line represents mean of biological replicates. Sum of squares F tests 

were used to determine whether sine fits (period = 24 hrs) surpassed linear fits (p<0.05), represented by 

dashed line. 
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gACTB expression normalised to gRPLP0 expression remained stable over 

time in the CAM under light/dark entrainment conditions, which supports the 

use of gACTB as a reference gene for circadian experiments (Figure 3.8). 

 

Whilst research on PER3 expression during embryonic development is rare, 

studies on rats have shown that the paralogue Per2 is expressed at a higher 

amplitude than Arntl in both the foetal SCN and the foetal liver (Houdek & 

Sumová, 2014; Varcoe et al., 2013). In a similar vein, weak oscillation of gPER3 

in chicken embryos was observed in Figure 3.7 in response to entrainment 

stimuli, whilst expression of gARNTL was not oscillatory. The implication is 

that some genes may demonstrate increased oscillatory capability slightly 

earlier in development than others. Given the absence of oscillatory expression 

of gARNTL, the weak oscillation of gPER3 in the presence of Zeitgeber stimuli, 

does not indicate a functional embryonic molecular clock. 
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Figure 3.8 RPLP0 expression normalised to ACTB expression in chicken embryos under 12 hr light / 

12 hr dark entrainment. N=3 biological replicates, solid line represents mean of biological replicates. No 

discernible trend, which indicates that gRPLP0 and gACTB were stably expressed in the chick embryo 

CAM over time. 
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3.3.3 In ovo CAM assay development 

 

In order to access the embryonic CAM for tumour grafting the embryos can 

either be incubated in ovo or ex ovo. Ex ovo culture methods afford better 

accessibility to the CAM for imaging purposes but yield quite low survival 

rates (data not shown). In ovo incubation requires a window to be created in 

the eggshell at EDD3, which is resealed in order to provide access to the CAM 

later in the incubation period for tumour grafting and imaging. 

Understandably, in ovo culture is less disruptive to the embryonic 

environment, therefore survival rates are generally higher (Naik et al., 2018). 

Protocols for in ovo windowing are abundant in the literature and are varied 

in many parameters, including the location of the window in the eggshell. 

However, a search of the literature revealed no studies that compared the effect 

of the location of the window on embryonic survival. 

 

The viability of a batch of chicken embryos subjected to a combination of 

different incubation and window location methods is displayed by Figure 3.9. 

Embryonic survival to EDD13 was found to be very similar between eggs that 

were either rolled or rocked prior to windowing at the base (62.5% and 66.7% 

respectively). Nor was there a difference in embryonic survival to EDD13 

between eggs incubated either in a purpose built Maino MiniPro 108 

humidified egg incubator, or in an Amerex Instruments hybridisation oven 

with a cup of water for increased humidity (66.7% and 65% respectively)). 

Windowing at the side of the eggs resulted in a very low EDD13 viability 

(25%). This came as no surprise, as creating a window in the side of the eggshell 

was observed to be rather destabilising to the structure of the egg, and easily 

resulted in the appearance of hairline cracks in the eggshell. Windowing at the 

top (apex) of the egg yielded the highest EDD13 viability of 81.25%. Control 

eggs which remained unopened until EDD13 at had a similar endpoint 
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embryonic viability of 80%, suggesting that windowing at the top of the egg 

did not adversely affect embryonic viability. When an egg was windowed at 

the top, the shape of the egg required the size of the window to be smaller 

(approx. 2 cm diameter) relative to if the egg had been windowed at the base 

of the egg (2.5-3 cm diameter). Therefore, top windowing may have yielded 

higher survival relative to base windowing due to the smaller, and presumably 

less disruptive, window sizes. For some applications a smaller egg window 

would be sufficient. However, base-windowing was used for the CAM tumour 

grafting experiments described in this chapter, as a larger window was required 

0 2 4 6 8 10 12 14
0

20

40

60

80

100

Embryonic development day

V
ia

bi
lit

y 
(%

)

In ovo viability

Rolled EDD0-3, windowed at base EDD3, EDD0-7 n=20, EDD8-13 n=16

Rocked EDD0-3, windowed at base EDD3, EDD0-7 n=24, EDD8-13 n=20

Rocked EDD0-3, windowed at top EDD3, n=16

Rocked EDD0-3, windowed on side EDD3, n=20

Rolled EDD0-3, windowed at base EDD3, incubated in hybridisation 
oven thereafter, n=20
Unopened, n=20

Figure 3.9 The effect of incubation method and window location on chicken embryo viability. From 

EDD0-3, eggs were either incubated base up and automatically rocked gradually back and forth by 90° 

every 6 hrs, or eggs were incubated on their sides and allowed to roll as the egg trays automatically 

rocked back and forth by 90°. The eggs were either windowed at the side, top or base. Eggs were briefly 

handled each day to check that embryos were viable. Unopened eggs were opened at the termination of 

the experiment (EDD13) to assess viability. 
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for tumour grafting and potassium D-luciferin delivery for subsequent 

bioluminescence imaging. 

 

3.3.4 Examples of tumours grafted onto the chicken embryonic 

CAM 

 

Grafting of tumours onto chicken embryos was easy to confirm by inspection 

at the end of the experimental procedure at EDD14. Figure 3.10 shows 

examples of how grafted tumours appeared, white arrows indicate features of 

biological interest. 

 

3.3.5 Bioluminescence imaging of CAM tumour grafts after a single 

dose of potassium D-luciferin 

 

Either MCF7 Arntl-luc or C26 Arntl-luc tumour grafts were introduced to 

chicken embryos at EDD9. Bioluminescence imaging was commenced at start 

of EDD10, after the delivery of a 100 µl dose of 209 mM potassium D-luciferin 

(i.e., 6.6 mg) to each chick embryo. Figure 3.11 demonstrates that the 

Figure 3.10 A) An MCF7 tumour at EDD14. B) An MDA-MB-231 tumour at EDD14. 1) White arrows 

indicate examples of increased angiogenesis typical of successful tumour grafting. 2) The original Matrigel 

graft site. 3) Metastasis of the original tumour graft on the surface of the CAM. 4) Secondary tumour 

growth beneath the CAM. 5) Blood pooling around the tumour graft, characteristic of leaky tumour-

driven angiogenesis. 
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bioluminescent signal from the tumour grafts was no longer detectable above 

background within the first 24 hrs of imaging. In some embryos this would be 

expected as the embryo might have died, or the tumour cells might not have 

grafted successfully. However, at EDD14 5 MCF7 Arntl-luc and 4 C26 Arntl-

luc grafts were visible on the CAMs of live chick embryos (as denoted by ^ in 

Figure 3.11). Upon re-dosing with 50 µl 209 mM potassium D-luciferin on 

EDD14, bioluminescence was detected in 3 of the MCF7 Arntl-luc and 2 of the 

C26 Arntl-luc grafts (Figure 3.11). This indicated that either all of the initial 

D-luciferin dose had been converted completely by luciferase to oxyluciferin 

within the first 24 hrs of imaging, or that the chicken embryos were capable of 

eliminating D-luciferin from the CAM within hours of dosing. The latter was 

perceived to be the more likely scenario, as in in vitro experiments 3 ml of 100 

µM potassium D-luciferin – only 95 µg of potassium D-luciferin – is sufficient 

for imaging of >300,000 cells for upwards of 1 week at 37°C (chapter 2.3). In 

comparison tumour grafts of 150-250,000 cells received more than 5-fold more 

potassium D-luciferin yet bioluminescence was only detectable for <24 hrs. 

N.B. the Arntl-luciferase construct may be under circadian control in 

individual tumour cells, however, given that the chicken embryo is unlikely to 

have a well-developed circadian rhythm it seemed unlikely that Arntl-luc (or 

indeed Per2-luc) would be expressed in an oscillatory manner at a tumour 
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Figure 3.11 Chicken embryos with either A) MCF7 Arntl-luc or B) C26 Arntl-luc grafts. All embryos 

received 100 µl 209 mM potassium D-luciferin prior to imaging. ^ denotes embryos which survived to 

EDD14. * denotes embryos with visible graft bioluminescence at EDD14. Red arrow denotes addition of 

a further 50 µl 209 mM potassium D-luciferin immediately prior to the end of the experiment. 
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population level. For the purposes of CAM tumour graft assay development, 

the potential for oscillatory Arntl-luc expression was not judged to be a 

concern. 

  

In an effort to lengthen the period of time for which the bioluminescence signal 

was detectable, the luciferin dose was increased ~7.5 fold to 1 ml of 157 mM 

potassium D-luciferin (i.e., 50 mg/ml). This time MCF10A Arntl-luc cells were 

grafted on to the chicken embryos at EDD8 and imaged from EDD11. This 

allowed embryos to be selected which had survived the graft process and that 

also had tumour grafts that appeared to be driving a degree of local 

angiogenesis. Figure 3.12 shows the result of 3 embryos with MCF10A Arntl-

luc grafts that were dosed with 50 mg of potassium D-luciferin. The 

bioluminescence signal was undetectable within 12 hours of imaging. After 24 

hrs the incubator was opened, and it was confirmed that all three embryos had 

died. It is possible that the MCF10A Arntl-luc tumour grafts killed the chicken 

embryos, though as the MCF10A cell line is benign, albeit immortalised, it 

does not metastasise extensively in ovo. Therefore, the larger dose of potassium 
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Figure 3.12 Monitoring of bioluminescence from MCF10A Arntl-luc tumours grafted onto chicken 

embryos at EDD8 and imaged from EDD11. MCF10A Arntl-luc tumours were dosed with 1 ml of 157 mM 

potassium D-luciferin. N.B. absolute bioluminescence is not comparable between the MCF10A and 

MCF7/C26 experiments, as the image acquisition parameters and the number of cells grafted varied 

between the two experiments, see Table 3.2 for details. 
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D-luciferin may have been the cause of death. As the potassium D-luciferin was 

dissolved in sterile H2O, it is possible that addition of a large volume (1 ml) of 

water containing potassium ions was osmotically disruptive to the vascularised 

CAM. It has previously been published that injection of increasing volumes of 

H2O up to 300 µl into the chicken egg albumin prior to incubation reduces 

hatch rates proportionally to as low as 20%, which would support the idea that 

potassium D-luciferin should be delivered to the egg in a much smaller volume 

of solvent than 1 ml (Yi lin Wang et al., 2017). 

 

3.3.6 Bioluminescence imaging of CAM tumour grafts with a 

continuous drip delivery of potassium D-luciferin 

 

In order to try and monitor tumour graft bioluminescence over time, D-luciferin 

was supplied to the egg continuously via a WPI Aladdin syringe pump for the 

duration of bioluminescence imaging. MDA-MB-231 Arntl-luc and Hepa1-6 

Per2-luc cells were grafted onto chicken eggs at EDD8. At EDD11 eggs with 

grafted tumours were selected for bioluminescence imaging. Figure 3.13 shows 

the result of administration of 20.7 mM potassium D-luciferin solution at a rate 

of 13.9 µl/hr (i.e., 2.2 mg in 333 µl/day) to eggs with MDA-MB-231 or Hepa1-

6 tumour grafts. In some embryos continuous luciferin delivery enabled the 

monitoring of tumour bioluminescence over >2.5 days, however 

bioluminescence appeared very uneven over time from embryo to embryo. This 

was at least partially the result of variance in the delivery rate of luciferin to 

the CAM, as droplets formed at the end of the luciferin delivery tubing. These 

droplets took some time to fall and contact the surface of the CAM – 

presumably at rate dependent upon the distance of the tubing from the 

eggshell/CAM. The ‘drip rate effect’ was particularly noticeable in embryo B 

with a Hepa1-6 Per2-luc graft, and embryo C with an MDA-MB-231 Arntl-luc 
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graft. This is a difficult issue to address, as there is a limit to how close the 

tubing can be placed to the CAM – too close and the tubing may contact and 

damage the CAM whilst the eggs are moved around the Alligator incubator in 

preparation for imaging. Too far and the ‘drip rate effect’ becomes more 

pronounced. 

 

In some cases, the bioluminescence took some time to ‘appear’, e.g. embryos A 

and C in the Hepa1-6 Per2-luc graft group and embryo A in the MDA-MB-

231 Arntl-luc graft group. This was likely to have been caused by air bubbles 

at the end of the luciferin-loaded tubing, as loading a pre-filled syringe into an 

8-channel WPI Aladdin syringe pump can sometimes disturb syringes that 

have already been placed. In contrast, some embryos e.g. B and D in the 
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Figure 3.13 Chicken embryo CAMs with A) and C) Hepa1-6 Per2-luc grafts and B) and D) MDA-MB-

231 Arntl-luc tumour grafts. D-luciferin was delivered by continuous drip at 20.7 mM, 13.9 µl/hr. A) and 

B) y axes are linear. C) and D) y axes are logarithmic. ^ denotes embryos which survived to EDD14. * 

denotes tumour grafts that bioluminesced at EDD14. Black arrows indicate the baseline of the 

experiment, i.e. the threshold at which no bioluminescence was visible. As is to be expected the baseline 

appears quite noisy when data is plotted on logarithmic axes. 
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Hepa1-6 Per2-luc graft group appear to have started the experiment with a 

burst of luciferin rather than a lack, which was attributed to early luciferin 

delivery during syringe placement. 

 

In general the bioluminescence decreased with time, although it could be said 

that embryos B and D in the Hepa1-6 Per2-luc graft group, and embryo B in 

the MDA-MB-231 Arntl-luc graft group reached a ‘steady-state’ 

bioluminescence signal in the last day of imaging. It is unclear what the cause 

of the general decrease in signal should be attributed to. Perhaps many of the 

grafted tumour cells could not be supported by the CAM and died. 

Alternatively, the decrease in bioluminescence may be related to the storage 

of D-luciferin within syringes at room temperature – albeit in darkness – for a 

number of days. D-luciferin solubilised in water with sufficient oxygen exposure 

is known to degrade to dehydroluciferin, which inhibits luciferase’s photon-

releasing catalysis of luciferin to oxyluciferin (da Silva & da Silva, 2011; Shi et 

al., 2020). Therefore, it is possible that the decreasing of bioluminescence with 

time was the result of increasing inhibitory dehydroluciferin concentration. 

 

In order to address the issue of the ‘drip-rate effect’, the flow rate of D-luciferin 

delivery was increased from 13.9 µl/hr (20.7 mM) to 139 µl/hr (2.07 mM). The 

hypothesis was that drips would fall more frequently and therefore would not 

limit the rate of bioluminescence. Hepa1-6 Arntl-luc cells were grafted at 

EDD8. At EDD11, eggs with grafted tumours were selected for 

bioluminescence imaging. Figure 3.14 shows the effect of continuous D-luciferin 

at a rate of 139 µl/hr. The bioluminescent signals were very weak for the last 

two days of imaging (Figure 3.14A), therefore background subtraction was 

applied to each graft individually using a local region for background 

subtraction to provide a less noisy baseline (Figure 3.14B). Such an approach 

means that absolute bioluminescence is no longer directly comparable between 
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Figure 3.14 A) Chicken embryo CAMs grafted with Hepa1-6 Arntl-luc cells. D-luciferin was delivered by 

continuous drip at 2.07 mM, 139 µl/hr. B) Same embryos plotted using local background subtraction. 

To allow for an appropriate local region for background subtraction the size of regions of interest are 

different, therefore absolute mean bioluminescence of embryos A-I cannot be directly compared for this 

method of background subtraction. C) Same data as B, plotted with a logarithmic y axis. Black arrow 

indicates the baseline of the experiment, i.e. the threshold at which no bioluminescence was visible. As 

is to be expected the baseline appeared quite noisy when data was plotted on logarithmic axes. Camera 

failed for a period of 5 hrs due to the recording computer crashing. N.B. egg incubation conditions were 

controlled independently and therefore continued unperturbed, despite camera failure. ̂  denotes embryos 

which survived to EDD14, i.e., none. 
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grafts, see chapter 3.2.10 for more details. The ‘drip-rate effect’ certainly 

appeared greatly reduced with a higher drip volume. However, at EDD14 every 

chicken embryo was found to have died. A disadvantage of bioluminescence 

imaging is that it is not possible to check every day for host survival without 

the pausing of image recording. Therefore, it was not possible to ascertain how 

long the embryos survived. Since all eight drips were confirmed to still be 

delivering D-luciferin at EDD14, it seems probable that the loss in 

bioluminescence from five of eight grafts within 24 hrs of imaging, was likely 

to be due to chick embryo death. The survival in chick embryos grafted with 

Hepa1-6 Arntl-luc cells (0%, n=8), relative to those grafted with Hepa1-6 Per2-

luc (75%, n=4) or MDA-MB-231 Arntl-luc cells (75%, n=8) was stark. This 

data supports the theory formulated from the results of Figure 3.12, that the 

delivery of larger volumes of D-luciferin to chick embryos was not conducive to 

survival. 

 

In order to deliver D-luciferin consistently to the embryo throughout the 

imaging window it was necessary to seek an alternative method of D-luciferin 

delivery. 

 

3.3.7 Bioluminescence imaging of CAM tumour grafts with a slow-

release luciferin-loaded polymer patch 

 

Advances in polymer chemistry have enabled the development of slow- or 

controlled-release polymeric formulations of many small molecule drugs (Sung 

& Kim, 2020). In the same vein, it was proposed that potassium D-luciferin 

could be encapsulated in a polymer to provide a method of continual luciferin 

supply to the CAM without the need for a liquid carrier. See chapter 3.2.9 for 

details of the synthesis of luciferin-loaded polymers. 



154 

 

 

Figure 3.15 demonstrates the bioluminescence signal resulting from the 

placement of 1 cm2 D-luciferin patches (batch 1) on the surface of the CAMs 

grafted with MCF10A Per2-luc tumours at EDD8. The bioluminescent signal 

that was produced was extremely weak in two of the chicken embryos (D and 

E), and undetectable in the three other chicken embryos (A, B and C). After 

2 days of bioluminescence imaging only one tumour was faintly visible (D). 

The incubator was opened, and all 5 chicken embryos were found to be alive. 

100 µl of 20 mM potassium D-luciferin was added to embryos A-C at EDD12, 

and the imaging parameters were altered to be more sensitive to 

bioluminescence (see Table 3.2 for details). Addition of 20 mM potassium D-

luciferin appeared to result in large spikes in bioluminescence from embryos A 

and C, but not B. In fact, the signal from embryo B began to increase at 
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Figure 3.15 Chicken embryo CAMs grafted with MCF10A Per2-luc cells at EDD8. 1 cm2 D-luciferin 

polymer patches (batch 1) were placed onto the CAM at EDD9.9 to allow for monitoring of graft 

bioluminescence. The resulting bioluminescence was monitored in the Cairn Alligator. The black arrow 

indicates addition of 100 µl 20 mM potassium D-luciferin to embryos A-C, and a shift to more sensitive 

imaging parameters in order to better detect tumour bioluminescence, note the different y axis scales. ^ 

denotes embryos which survived to EDD14. * denotes tumours that bioluminesced at EDD14. 
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EDD13, suggesting that a lack of tumour graft growth, rather than a lack of 

luciferin, may have been the reason for the lack of bioluminescence prior to 

EDD13. Similarly, embryo D received no luciferin beyond that of the original 

1 cm2 polymer patch, and also remained bioluminescent at EDD14. Therefore, 

it was concluded that the use of batch 1 D-luciferin polymer patches likely 

contained enough luciferin for adequate monitoring of MCF10A Per2-luc graft 

bioluminescence over 4 days, but that the rate of graft bioluminescence was 

highly variable from embryo to embryo. 

 

Figure 3.16 demonstrates the bioluminescence signal resulting from the 

placement of 1 cm2 luciferin patches (batch 2) on the surface of CAMs grafted 

with MCF7 Arntl-luc tumours at EDD8. The bioluminescent signal decreased 

rapidly from all five embryos within the first 24 hrs of imaging. Four chicken 

embryos survived to EDD14, at which point bioluminescence was detectable 

only from grafts C and E. However, embryos B and D had visibly grafted 

tumours (Figure 3.16B). Which would suggest that either luciferin availability 

or camera sensitivity limited the detection of bioluminescence. Since the 

luciferin-loaded polymer patch is still early in development, little is known 

about the release profile of luciferin from the polymer patch onto the CAM. In 

particular the change in rate of release of luciferin from the patch over time is 

not well-understood. For instance, if the release of luciferin from the patch 

follows first order release kinetics rather than zero order, then the bulk of 

luciferin release from the polymer patch might occur within the first 12 hours 

of imaging. Therefore, the spike in bioluminescence signal early in the 

experiment may have been attributable to the rate of luciferin release, rather 

than the apparent decline of tumour cell growth. It is of interest to note that 

the signal was of a similar magnitude to that produced by batch 1 luciferin 

patches from EDD10-12 on embryo CAMs with MCF10A Per2-luc grafts 

(Figure 3.15). 
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In order to try to ascertain whether the bioluminescence was present but below 

the threshold of detection, the luciferin patch technology was next imaged in 

a PhotonImager Optima imaging system. For this experiment embryos were 

grafted either with MCF7 Per2-luc cells or MDA-MB-231 Arntl-luc cells at 

EDD8. Bioluminescence imaging was commenced at EDD10 after placement 

Graft B, EDD13. 9 Graft D, EDD13.9 
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Figure 3.16 A) Chicken embryo CAMs grafted with MCF7 Arntl-luc cells at EDD8. 1 cm2 luciferin 

polymer patches (batch 2) were placed onto the CAM at EDD10 to allow for monitoring of graft 

bioluminescence. The resulting bioluminescence was monitored in the Cairn Alligator. ^ denotes embryos 

which survived to EDD13.9. * denotes tumour grafts with detectable bioluminescence at EDD13.9 B) 

Embryos B and D both displayed extensive angiogenesis at tumour cell graft sites, indicative of successful 

grafting, in spite of the absence of a bioluminesce signal at EDD13.9. ] denotes the baseline of the 

experiment, i.e. the threshold at which no bioluminescence was visible. 
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of luciferin polymer patches as shown in Figure 3.17 (batch 2, 1 cm2). 

Unfortunately, for the duration of this experiment the temperature control 

plate would not heat higher than 37°C, therefore the ambient temperature of 

egg incubation was approx. 5-10°C lower than the target temperature of 38°C. 

Additionally, the imager and temperature control failed at EDD11.6, causing 

the temperature to drop further. As a consequence, by EDD12.1 the chicken 

embryos had reached a 50% mortality rate, accompanied by a rather sharp 

decrease in graft bioluminescence. The experiment was terminated to avoid 

further distress to the chicken embryos. Encouragingly, at EDD11.6 

bioluminescence remained above the threshold of detection for 10 of 12 grafts. 

Bioluminescence even increased until EDD11.6 for MCF7 Per2-luc grafts A, C 

and F, which indicated that luciferin release from the batch 2 polymer patches 

was sufficient to report relative tumour graft growth or decline for >40 hrs. It 

is unclear why the rapid decrease of bioluminescence observed in Figure 3.15 

and Figure 3.16 in the first 12 hrs of imaging was not observed in Figure 3.17. 

Figure 3.16 and Figure 3.17 embryos both received grafts of 4x106 MCF7 cells 

at EDD8 (see Table 3.2), so it seems unlikely that this phenomenon was related 
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Figure 3.17 Chicken embryo CAMs grafted with MCF7 Per2-luc or MDA-MB-231 Arntl-luc cells at 

EDD8. 1 cm2 luciferin polymer patches (batch 2) were placed onto the CAM at EDD10 to allow for 

monitoring of graft bioluminescence. The resulting bioluminescence was monitored in the PhotonImager 

Optima. ^ denotes embryos which survived to EDD12.1. * denotes tumour grafts with detectable 

bioluminescence at EDD12.1. N.B. ambient egg incubation temperature was low for the duration of this 

experiment (~27-30°C), and fell further at EDD11.6 at the point of imager failure, therefore the 

experiment was terminated sooner than EDD14. 
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to the success of tumour grafting, which should have been similar between the 

two experiments. It is also unlikely to have been related to any difference in 

sensitivity of bioluminescence detection between the Cairn Alligator and 

PhotonImager Optima imaging systems, as it is clear that the difference in 

bioluminescence signals from Figure 3.15 to Figure 3.17 was not related to the 

sensitivity of bioluminescence detection, but to the shape of the profile. In 

other words, none of the bioluminescence signals in Figure 3.17 decreased 

within the first 12 hrs of imaging, unlike the signals from Figure 3.15 and 

Figure 3.16. 

 

For subsequent experiments, in order to allow for better temperature control 

during imaging in the PhotonImager Optima, the chicken eggs were placed 

inside an adapted polystyrene egg incubator with a clear acrylic lid to allow 

for imaging. Figure 3.18 demonstrates the use of this system to monitor 

embryos that were grafted either with MCF7 Per2-luc cells or MCF10A Per2-

luc cells at EDD8. Bioluminescence imaging commenced at EDD11 (grafts A-

B) or EDD12 (grafts C-F) after placement of luciferin polymer patches (batch 

2, 1 cm2). The exposure time of the PhotonImager Optima was reduced from 

20 min (Figure 3.17) to 5 min (Figure 3.18), since the signal:background ratio 

was very reasonable in Figure 3.17. 

 

The bioluminescence signals from embryos displayed in Figure 3.18 were 

remarkably different from those displayed in Figure 3.16. For instance, in 

Figure 3.17, bioluminescence was still increasing in 3 out of 6 embryos grafted 

with MCF7 Per2-luc cells after 1.6 days of imaging. However, in Figure 3.18 

none of the MCF7 or MCF10A cell grafts even displayed detectable 

bioluminescence after 1.6 days of imaging. In fact, the cell grafts in Figure 3.18 

appeared more similar in profile to the MCF7 Arntl-luc grafts monitored in 

Figure 3.16. That is to say that for the most part, bioluminescence signals 
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Figure 3.18 A) Chicken embryo CAMs grafted with MCF7 or MCF10A Per2-luc cells at EDD8. 1 cm2 

luciferin polymer patches (batch 2) were placed onto the CAM at EDD11 (A&B) or EDD12 (C-F) to 

allow for monitoring of graft bioluminescence. The resulting bioluminescence was monitored in the 

PhotonImager Optima. ^ denotes embryos which survived to EDD14. * denotes tumour grafts with 

detectable bioluminescence at EDD14. B) Photos of embryos alive at EDD14. Black arrowheads indicate 

the tumour graft site, blue arrowheads denote regions that appear to be infected, likely with a fungal 

infection. The nature of structures on the CAM can be unclear even to the naked eye, for instance red 

arrows with black outlines denote regions that may be graft metastasis, or may be the result of fungal 

infection. 

A 

B 
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peaked within the first 12 hrs of imaging and then rapidly decayed. In order 

to try to understand the reason for the rapid loss of bioluminescence, the 

embryos that were still alive at EDD14 were imaged (see Figure 3.18B). Some 

grafts, including embryos A and D grafted with MCF10A Per2-luc cells, did 

not appear to be particularly well vascularised at EDD14, which is indicative 

of graft failure and would explain the lack of bioluminescence within 24 hrs. 

However, other grafts, including embryo B grafted with MCF7 Per2-luc cells 

and embryos E and F grafted with MCF10A Per2-luc cells, were very well 

vascularised at EDD14, yet also lacked bioluminescent signals within 24 hrs. 

In fact, embryo F grafted with MCF7 Per2-luc cells never displayed any 

detectable bioluminescence despite excellent tumour graft vascularisation.  

 

A further complication of working with the luciferin polymer patches was that 

they were not manufactured under sterile conditions. Despite addition of 

pen/strep to the patch at point of grafting (see chapter 3.2.9), it was not 

uncommon to observe opportunistic infections on the surface of the CAM in 

the area surrounding the patch. The infections were likely to have been fungal 

for two reasons – firstly egg albumin is rich in anti-bacterial lysozyme greatly 

reducing the chance of bacterial infection (Vilcacundo et al., 2018), and 

secondly hyphae growth was sometimes observed. Whilst no direct correlation 

was observed between severity of fungal infection and chicken embryo survival, 

it is certainly reasonable to speculate that fungal infection is disadvantageous 

to embryonic development, and that future work with luciferin-loaded polymer 

patches would benefit from a sterile manufacturing process. 

 

The work with the luciferin-loaded polymer patches is early in its development, 

and as such many questions remain unanswered. In particular it remains 

unknown what the release profile of luciferin from the polymer patch into the 

CAM looks like. This could be answered by direct assay of the CAM for 
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luciferin by an analysis method such as high-performance liquid 

chromatography. 

 

3.3.8 Bioluminescence imaging of CAM tumour grafts with daily 

potassium D-luciferin dosing 

 

Figure 3.18 demonstrated an inconsistency between apparent success of 

grafting by angiogenesis and detection of graft bioluminescence. In order to 

confirm that this was not related to the use of the luciferin-loaded polymer 

patch, MCF10A Per2-luc grafts were supplemented with 90 µl 10 mg/ml 

potassium D-luciferin every day immediately prior to imaging, and were imaged 

once per day for 4 days. The amount of potassium D-luciferin was selected 

because it was the same dose that Jefferies et al. (2017) used for 

bioluminescence imaging of tumour grafts on the CAM. Figure 3.19 

demonstrates that daily luciferin dosing and imaging resulted in a rapid 

decrease of bioluminescent signal (N.B. the logarithmic y axis). Although 

embryos B, C, D, E and F all demonstrated good angiogenesis indicative of 

successful tumour engraftment, only graft C demonstrated bioluminescence at 

the end of the experiment. 

 

Jefferies et al. (2017) demonstrated a similar phenomenon of falling 

bioluminescence in MG63 and HOS cells grafted onto the CAM in BD 

Bioscience’s Matrigel. However, when MG63 cells were grafted in a gelfoam 

scaffold (Pfizer), bioluminescence increased for the first two days of imaging 

prior to falling. Therefore, Jeffries et al. concluded that use of a gelfoam scaffold 

supported tumour grafting better than Matrigel. For the experiments described 

in this thesis, growth factor reduced Matrigel was used as the matrix for 

tumour grafting. However, since good angiogenesis was observed at the graft 



162 

 

EDD10.9            EDD11.9                      EDD12.9                    EDD13.9 
D                         D                       D                        D 
 
   
E                F                  E                F                 E                F        E                F  

11 12 13 14
1

10

100

1000

10000

EDD

B
io

lu
m

in
es

ce
nc

e
(b

ac
kg

ro
un

d 
su

bt
ra

ct
ed

) A^
B^

C^*

11 12 13 14
1

10

100

1000

10000

EDD

B
io

lu
m

in
es

ce
nc

e
(b

ac
kg

ro
un

d 
su

bt
ra

ct
ed

) D^
E^

F^

Embryos with MCF10A Per2-luc grafts

                    

A 
    
 
 
 
B                         C 

EDD13.9 

A                         A                       A                         A 
   
 
B               C                  B               C                  B               C        B               C  

EDD10.9            EDD11.9                      EDD12.9                    EDD13.9 

D 
 
 
 
     
E                       F 

EDD13.9 

A 

B 

C 

Figure 3.19 A) Chicken embryo CAMs grafted with MCF10A Per2-luc cells at EDD9. Imaged for 

bioluminescence immediately after daily doses of 90 µl 10 mg/ml potassium D-luciferin. ^ denotes 

embryos which survived to EDD13.9. * denotes tumour grafts with detectable bioluminescence at 

EDD13.9 B) Bioluminescent images of embryos A-F. Contrast settings are set differently for each image 

to best allow visualisation of tumour graft bioluminescence. C) Images of embryos at EDD13.9, end of 

experiment. 
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site of many tumours, it seems reasonable to conclude that in most cases the 

growth factor reduced Matrigel was sufficient to support tumour engraftment. 

Figure 3.20 offers further evidence to support the hypothesis that the Matrigel 

matrix was sufficient for tumour graft growth and did not cause the 

bioluminescence to decrease through lack of tumour growth. Two particularly 

successful MCF7 Per2-luc tumour grafts with a large number of metastases at 

EDD13.9 are depicted in Figure 3.20B. However, even though it can be 

assumed that the final tumour cell number outstripped the initial number of 

MCF10A cells grafted, daily dosing with potassium D-luciferin (90 µl, 10 

mg/ml) still resulted in bioluminescent signals that decreased rapidly with time 

(Figure 3.20A). 

 

When Figure 3.20 is taken into account, it is logical to consider that an 

explanation for the observed decrease in bioluminescence with time, even 

whilst apparent tumour size increased in the presence of fresh luciferin, might 

be that expression of the stably transduced lentiviral Per2-luc (or Arntl-luc) 

construct was greatly decreased in tumour cells grafted onto the CAM. It 

should be noted, that cell lines stably transduced with the Per2/Arntl-luc 

constructs have been cultured in vitro for many passages (>30) in the 

Dallmann lab without the requirement for reporter maintenance by continual 

blasticidin selection, and that a significant decrease in cell bioluminescence has 

never been observed in vitro (anecdotal, data not shown). However, it is 

possible that in a 3D environment gene expression shifted significantly, such 

that either molecular clock gene activity in the tumour cells was routinely 

damped, or the lentiviral reporter constructs were transcriptionally silenced. 

Transcriptional silencing of lentiviral constructs has previously been reported 

to result largely, though not exclusively, from methylation of DNA, histone 

deacetylation and resultant condensation of chromatin (Yao et al., 2004; F. 

Zhang et al., 2007). There is evidence of this occurring both in vitro and in 
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vivo (Palmer et al., 1991; F. Zhang et al., 2007), and transcriptional silencing 

remains a significant barrier to viral delivery of gene therapy (Tolmachov et 

al., 2013). Despite this, reports of lentiviral reporter silencing remain 

uncommon in a tumour graft context. Baklaushev et al. (2017) demonstrated 

a significant decrease in luciferase expression in 4T1 cells after they were grown 
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Figure 3.20 A) Chicken embryo CAMs grafted with MCF7 Per2-luc cells at EDD9. Imaged for 

bioluminescence immediately after daily doses of 90 µl 10 mg/ml potassium D-luciferin. ^ denotes 

embryos which survived to EDD13.9. * denotes tumour grafts with detectable bioluminescence at 

EDD13.9. B) Images of embryos at EDD13.9, end of experiment. Black arrowheads denote original 

tumour graft site. Red arrowheards outlined in black indicate visible metastases. 
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as tumours in mice. However, the authors attributed the decrease to a specific 

anti-luciferase T-cell response in the immunocompetent mice (Baklaushev et 

al., 2017). This certainly was not the case in chicken embryos at EDD8-14, as 

chicken embryos have not yet developed adaptive immune responses. Of 

course, absence of evidence for lentiviral reporter silencing upon tumour 

grafting, is not evidence of absence, and is worthy of future investigation. 

qPCR for luciferase RNA would establish if the decrease in observed 

bioluminescence with time was attributable, or not, to a concurrent decrease 

in the luciferase reporter activity. 

 

An alternative possibility worthy of consideration is that with time, tumour 

gene expression shifted in order to change the import or export of luciferin. 

The ATP-binding cassette (ABC) family transporter ABCG2 is a known 

effluxer of D-luciferin, and causes a decrease in tumour graft bioluminescence 

in vivo when upregulated (Yimao Zhang et al., 2007). MCF7 and MDA-MB-

231, but not MCF10A cells are known to increase expression ABCG2, which 

is upregulated further when exposed to cytostatic drugs (Rosenfeldt et al., 

2014; Saxena et al., 2011). A decrease in graft bioluminescence with time was 

observed in both MCF10A cells and MCF7 tumour cell grafts (Figure 3.19 and 

Figure 3.20), therefore it seems unlikely that ABCG2 specifically is responsible 

for the phenomenon described in this chapter. 

 

One must also consider the possibility that diminishing oxygen or ATP – the 

other substrates of the photon-emitting luciferase reaction – progressively 

limited the rate of the bioluminescence reaction. Decreasing ambient oxygen 

concentration has been shown to inhibit the rate of the bioluminescence 

reaction in cells not by a lack of oxygen, but by a resultant lack of intracellular 

ATP (Moriyama et al., 2008). If intracellular ATP had been limited to such 

an extent as to prevent the bioluminescence reaction from occurring, then it 
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seems unlikely that extensive tumour growth and metastasis would have been 

able to occur as observed in Figure 3.20. Therefore, it seems unlikely that 

either oxygen or ATP were unavailable to such an extent as to cause the 

observed decrease in bioluminescence. 
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3.4 Conclusions 

 

The work presented in this chapter is aimed at developing an alternative model 

to the mouse, for the investigation of circadian gene expression in a 3D tumour 

graft model. 

 

Synchronised CEF cultures demonstrated circadian Per2-luc and Arntl-luc 

reporter activity, indicating that the molecular clock is oscillating even in 

embryonic chicken cells. However, the qPCR evidence does not support the 

presence of a free running circadian clock in the brain or CAM of the 12-14 

day old chicken embryo incubated in constant darkness. gPER3, but not 

gARNTL, appeared to be diurnally expressed in response to light/dark and 

perhaps temperature entrainment cycles. Future work should focus on 

expanding this research to other circadian genes.3 A logical conclusion that 

might be drawn from the data, would be that the individual cells of the 

developing chicken embryo might have had functional molecular clocks (as 

observed for the CEFs) which at EDD12-14 remained de-synchronised at a 

tissue level (as observed by qPCR of CAM/brain under constant darkness), 

but were partially responsive to environmental entrainment cues (as observed 

by qPCR of gPER3 under light/dark entrainment) This conclusion is in 

agreement with earlier data that suggested rhythmic pineal melatonin secretion 

could be detected at EDD13 in embryos cultured under light/dark 

entrainment, but did not occur in the absence of entrainment (Akasaka et al., 

1995). 

 

 
3 N.B. gNR1D1 and gPER2 were also assayed by qPCR, however the data quality was poor, 
and the arrival of COVID ultimately prevented repeat of these experiments due to the inability 
to access the site of the 384-well qPCR machine. 
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Ultimately the chicken embryo remains an interesting model for the study of 

tumour grafting in a circadian context, even in the absence of a fully functional 

circadian clock. This is because the chicken embryo could be employed in the 

same manner that the 3D graft environment of the zebrafish embryo has been 

used, i.e., to assess how clock gene expression affects tumour growth rate 

differently in a 3D environment, relative to a 2D cell culture environment 

(Basti et al., 2020). The chicken embryo CAM model holds at least two 

advantages over the zebrafish model. Firstly, the chicken embryo allows for 6 

days to pass between grafting of tumours and termination of the experiment 

prior to regulation under ASPA, whereas the zebrafish only allows for 3 days. 

The longer that cancer cells have to graft and metastasize, the more 

physiological the tumour environment is likely to become. Secondly, the 

expression of circadian genes in individual tumours in multiple individual 

zebrafish cannot not be assayed easily over time, since they would not remain 

in situ under a camera. This is not a concern for the chicken embryo, therefore 

the CAM provides an excellent opportunity for assaying tumour clock gene 

expression in a 3D environment over time. 

 

Clearly questions remain concerning how tumours grafted onto the CAM 

translate to a reproducible, reliable bioluminescent signal. Future work should 

explore the use of CRISPR/Cas9 to create bioluminescent and fluorescent 

reporter cell lines at the endogenous clock gene locus. Such cell lines would 

reveal whether the decrease observed in graft bioluminescence over time was 

caused by transcriptional silencing of the lentiviral bioluminescence reporter, 

or perhaps resulted from inhibition of the luciferase reaction via a biochemical 

mechanism, such as the pharmacokinetics of luciferin availability. 

 

The data presented here also provides proof-of-principle for the use of luciferin-

loaded polymer patches to enable bioluminescence imaging for up to 4 days in 
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ovo (Figure 3.15 and Figure 3.16). The development of luciferin-loaded polymer 

patches is of importance beyond in ovo imaging, as they offer a transdermal 

surgery-free solution to the problem of long-term luciferin delivery to mice. 
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4. Exploring circadian dysregulation in 

vivo using an algorithmic approach: 

TimeTeller 
 

4.1 Introduction 

 

If one wishes to understand the degree of circadian dysregulation in cancer and 

the extent to which it may contribute to tumourigenesis, then the study of the 

circadian system in situ could be highly informative. Clearly, such an approach 

is met with the same challenge for circadian biologists as for any researcher; 

namely that sample availability from cancer patients is limited to the ex vivo 

by-products of surgical resection or tumour biopsy. Since the molecular 

circadian clock is a finely balanced transcriptional-translational feedback 

system comprising of at least 14 genes which oscillate every 24 hrs (Y. Ye et 

al., 2018), the inference of clock function from a single biopsy, which is 

representative of only a single point in time, is not an entirely straight-forward 

task. Biological time prediction from a single sample has long been a goal of 

circadian research, and though considerable progress has been made, it remains 

a work in progress, as will be discussed in this chapter (Ueda et al., 2004). 

 

The combination of multiple variables i.e., expression of clock genes, to predict 

another variable, i.e., biological time, is a problem well-suited to a machine 

learning solution. Therefore several machine learning approaches have been 

developed, which aim to help us to understand more about the circadian state 

of a single biological sample (Dijk & Duffy, 2020). The primary focus of this 

thesis chapter is TimeTeller, a semi-supervised machine learning algorithm 
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which was developed by Professor David Rand and Dr Denise Vlachou at the 

University of Warwick (Vlachou et al., 2020). TimeTeller was originally 

designed for biological time prediction of single timepoint microarray data. 

Here, TimeTeller is extended for use with RNA-seq data sets. 

 

4.1.1 Comparison of the gene expression technologies RNA-seq and 

microarrays 

 

Although TimeTeller was originally designed for biological time prediction of 

single timepoint microarray data, working with microarrays has its 

disadvantages. Like a number of other time-telling algorithms, TimeTeller is 

trained on publicly available microarray datasets. Therefore, TimeTeller can 

only predict the time of test samples for which a training dataset comprised of 

the same microarray probeset exists. This requirement for matching probesets 

limits the extent to which publicly available microarray datasets can be 

successfully mined. A second disadvantage to working with microarrays is the 

relative increase in popularity of RNA-seq methods. PubMed search results per 

annum for “RNA sequencing” now outnumber those for “microarray”, a trend 

that reflects the experimental advantages of RNA-seq over microarrays. RNA-

seq has a larger dynamic range than microarray platforms, does not use probe 

technology (which risks off-target amplification), and has decreased in cost 

significantly in recent years (Jaksik et al., 2015; Rao et al., 2019). Given the 

rising popularity of RNA-seq, this thesis chapter focuses on the expansion of 

the TimeTeller method to RNA-seq datasets, in order to provide opportunities 

for novel insights. 

 

The structure of this chapter is as follows: 
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• An in-depth introduction to the state-of-the-art time-telling algorithms 

available to date. 

• ‘Model Methods’ describes the structure of the TimeTeller algorithm. 

• ‘Results and Discussion’ describes the novel application of TimeTeller 

to publicly available RNA-seq datasets. 

• ‘Conclusions’ and future directions 

 

4.1.2 Review of algorithms for time prediction of biological 

samples 

 

4.1.2.1 Molecular Timetable – Ueda et al., 2004 

The original algorithm designed to predict biological time was coined 

“Molecular Timetable” (MT) (Ueda et al., 2004). MT was trained using the 

expression of 182 probes expressed rhythmically around the clock in mouse 

liver and was employed to predict the biological time of mouse liver samples. 

To train the model, Ueda et al. normalised the 48 hr expression profile of each 

probe using its mean and standard deviation (i.e., z-score normalised). Cosine 

functions were subsequently fitted to the normalised probe expression profiles. 

To estimate the time of a single test sample, probe expression was first 

normalised using the corresponding probe’s profile means and standard 

deviations of the training data, and then the phase that gave the maximal 

correlation between the normalised test sample expression of each of the 182 

probes and the 182 cosines fitted to the training data was selected. MT 

demonstrated mean error of <2hrs between predicted biological time and 

actual time of sampling for 8 independent samples (Ueda et al., 2004). 

 

Whilst MT was an excellent early example of single time-point time-telling, 

the method had some disadvantages. Firstly, Ueda et al. used many genes to 
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build the model, which made for lengthy computation times. A reduction in 

the number of genes has since been demonstrated to greatly reduce the 

accuracy of time prediction (Hughey et al., 2016). Secondly, the fitting of cosine 

functions to gene expression profiles presumes that rhythmic gene expression 

is best described by a cosine function. This biases the model against circadian 

clock genes that may not be expressed in a cosine fashion. For instance, DBP 

is sometimes detected with sharper peaks and flatter troughs over time, as in 

Hughes et al.’s mouse liver microarray data (Hughes et al., 2009). Of course, 

this non-canonical cosine expression pattern may in part reflect the sensitivity 

of the experimental microarray assay rather than nascent DBP expression, but 

it demonstrates the disadvantage of reliance on cosine fits in time-telling 

algorithms.  

 

4.1.2.2 ZeitZeiger – Hughey et al., 2016 

ZeitZeiger is a supervised dimensionality reduction algorithm which was 

originally trained on a multi-tissue murine microarray time-course dataset 

published by Zhang et al. (2014), in order to predict time of other murine 

microarray time-course datasets. ZeitZeiger is essentially a supervised 

algorithm as features (i.e., genes) were selected by using dimensionality 

reduction to identify a small number of genes that optimally predicted time. 

The ZeitZeiger method can be described as follows: 

1) For each of the genes, g, the training data was comprised of observations 

over time. ZeitZeiger was designed such that the training dataset did 

not need to consist of sampling points that were evenly distributed 

through time. 

2) Periodic smoothing splines, 𝑓"(𝑡), were fitted to each of the n 

observations of g genes as a function of time (removing the need for 

even time-point sampling). The spline was time-discretised to provide a 

vector of m timepoints 𝜏 for each gene g. The mean of the spline and 
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variance of the observations around the spline were calculated as 

follows: 

𝑓"̅ =
1
𝑚;𝑓"(𝜏$)

+

$,-

 

𝑠"! =
.//&
0

 , RSS=sum of squared residuals. 

And each time-discretised spline was normalised to give the 𝑚 × 𝑝 

matrix Z, where 𝑝 = number of genes g. 

𝑧$" =
𝑓"(𝜏$) − 𝑓"

𝑠"
 

The presumption made here was that the variance of gene expression 

remained constant over time. 

3) Penalised matrix decomposition (PMD) was applied to the matrix Z in 

order to find the sparse principal components (SPCs) of the training 

data. SPCs is a method designed for sparse data, i.e., large and noisy 

datasets with a low degree of ‘significant structure’ (D. Yang et al., 

2014). This was the case for ZeitZeiger as only a small number of genes 

in the training data represented time-dependent variation across the 

Zhang et al. tissues. Each SPC contained information from a linear 

recombination of a relatively minimal number of features. When the 

Zhang training data was reduced to 2 dimensions, the first SPC was 

composed of information from 8 genes, and the second SPC from 6 

genes. Only one gene (Per2) contributed to both the first and the second 

SPC. 

4) Training data was projected onto the first two SPCs, time-discretised 

splines were fitted to the projected data and the mean and variance 

were calculated as was calculated for the original features g. 

5) Test data was projected onto the first two SPCs calculated from the 

training data. 
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6) Projected test data was normalised by the mean and variance of the 

SPCs, and the likelihood of time, given the projected test data, was 

estimated for each SPC. 

7) The log likelihoods of each SPC were summed for each test sample, and 

the maximum was identified as the predicted time of sampling. 

 

4.1.2.3 Strengths of ZeitZeiger 

ZeitZeiger was demonstrated to perform faster than MT, and to predict time 

with greater accuracy (Hughey et al., 2016). Additionally, unlike MT, 

ZeitZeiger does not require that oscillatory genes fit a cosine function. Finally, 

ZeitZeiger does not require that training data be at discrete time intervals 

(e.g., ZT0, ZT2, ZT4… etc.), thanks to the splines fitted to features plotted as 

a function of time. This is a significant advantage as it enables ZeitZeiger to 

be trained on a wider range of datasets. 

 

4.1.2.4 Weaknesses of ZeitZeiger 

A disadvantage of the spline fitting approach is that variance of expression of 

each of the features is presumed to remain constant over time, which has been 

observed not to be the case in, for instance, human skin biopsies (Wu et al., 

2018). Therefore, the trained ZeitZeiger model is missing information about 

how the variance of oscillatory gene expression changes over time, and so the 

likelihood functions used to predict time do not truly contain information that 

can be related to the confidence of the time prediction (i.e., how close the 

projected test data truly lies to the projected training data). This means that 

ZeitZeiger does not provide the confidence of a predicted time. TimeTeller – 

the approach developed in this thesis chapter for RNA-seq datasets – provides 

an advantage over ZeitZeiger as it also calculates a confidence metric of 

predicted time (Vlachou et al., 2020). 

 



176 

 

4.1.2.5 Applications of ZeitZeiger 

ZeitZeiger was originally applied to the multi-organ Zhang et al., (2014) murine 

microarray dataset and applied to murine test datasets generated from 

different probeset microarrays. The challenge of working across microarray 

probesets (introduced in chapter 4.1.1) was addressed by the application of a 

batch correction method (ComBat) to remove batch effects between training 

and test datasets generated using different microarray probesets (Hughey & 

Butte, 2016; Johnson et al., 2007). ComBat was also employed to remove batch 

effects between different tissue types in the Zhang et al. training dataset, whilst 

genotype in the test data was provided to ComBat as a covariate. This batch 

correction approach has several disadvantages. Firstly, batches were not evenly 

balanced as the training data only contained WT mice, whilst test data batches 

contained both WT and genetically manipulated knock-out (KO) samples as 

illustrated by Figure 4.1. The inappropriate application of batch correction 

Figure 4.1 An example of the batches that Hughey et al. (2016) identified in order to implement ComBat 

to enable the comparison of training and test datasets from different microarray probesets. Test data 

genotype was identified as a covariate by Hughey et al. (2016), however the batches were unbalanced as 

all of the training data batches from probeset A contained only WT samples. 
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methods to datasets with unbalanced batches is reviewed elsewhere (Nygaard 

et al., 2016). A second disadvantage to the use of batch correction is that it 

necessitates that the model be re-trained for every new training and test 

dataset combination post- batch correction, therefore it is difficult to directly 

compare ZeitZeiger’s findings from different test datasets. Ultimately, one of 

the primary aims for the design of models such as ZeitZeiger is to be able to 

estimate the biological time of human biopsies – both healthy and unhealthy. 

Batch correction of human data would require a priori knowledge of covariates, 

which may not even be known. In other words, ‘real world’ data contains many 

variables which would confound batch correction such as patient age, sex, time 

of sampling, health status etc. Therefore, a method for time prediction should 

ideally be applicable without the need for batch correction. 

 

ZeitZeiger has since successfully been applied to human blood microarray 

datasets, again requiring batch correction prior to time prediction (Hughey, 

2017). ZeitZeiger has also been applied to human peripheral blood mononuclear 

cells assayed by NanoString in order to train a model to predict biological time 

(relative to dim light melatonin onset (DLMO)) in test data samples 

(Wittenbrink et al., 2018). The consistency of the NanoString method, with 

built in housekeeping, negative and positive controls allowed for normalisation 

to be implemented without the need for batch correction methods. NanoString 

certainly holds promise for the development of clinical circadian biomarker 

tools, partly as it is cheaper than either RNA-seq or microarray (Wittenbrink 

et al., 2018). 

 

4.1.2.6 BIO_CLOCK – Agostinelli et al., (2016) 

BIO_CLOCK is described as a ‘supervised deep learning algorithm with neural 

networks’ and was trained using a feature-set of 16 oscillatory genes from a 

mixture of murine datasets (RNA-seq and microarray, multiple organs). 
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Datasets from various sources were combined and normalised by time-course 

mean and standard deviation prior to separation into 70% training and 30% 

test datasets. The model reportedly predicted time of single test samples with 

a mean absolute error of 1.22 hrs when the following training gene set was 

used: Arntl, Per1, Per2, Per3, Cyr1, Cry2, Nr1d1, Nr1d2, Bhlhe40, Bhlhe41, 

Dbp, Npas2, Tef, Fmo2, Lonrf3 and Tsc22d3. However, no figures were 

provided to support this claim, no rationale was given as to how these genes 

were selected, and the methods description was quite concise. The 

amalgamation of multiple datasets prior to separation into ‘training’ and ‘test’ 

sets required normalisation of gene expression to time-course means and 

standard deviations, which meant that time estimation of single samples was 

not truly ‘single timepoint’. It was reported in 2017 that BIO_CLOCK was 

not yet available for testing on further datasets since the model was being 

retrained (Laing et al., 2017). 

 

4.1.2.7 PLSR – Laing et al., 2017 

Laing et al., (2017) developed a slightly different approach to single timepoint 

biological time prediction using partial least squares regression (PLSR) (Laing 

et al., 2017).  Instead of predicting a one dimensional output, i.e., time, PLSR 

was used to predict ‘melatonin phase’ a two-dimensional periodic output. The 

advantage of this approach is that melatonin phase, or more specifically 

DLMO, is a clinical biomarker that is commonly used as a proxy for SCN 

phase. Therefore, the predicted time can be related to the patients’ own 

circadian timing. Laing et al., (2017) trained their model on the expression of 

100 genes assayed by microarray from round-the-clock blood samples of 26 

individuals for whom DLMO data was available. The 100 transcriptomic 

features that formed the predictor variables were reduced to five dimensions 

optimised to explain the maximal variance of the melatonin phase response 

variable (Talamanca & Naef, 2020). The method predicted DLMO with an 
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error of <2 hrs in 54% of validation samples, although the validation set and 

training set were formed from different individuals from within the same study, 

therefore the model requires more robust testing. A point of interest of this 

method is that DLMO predictions were quite variable in accuracy for 

individuals that had experienced sleep deprivation (relative to measured 

DLMO). It is not clear why the method did not perform consistently across 

the sleep-deprived population of individuals. 

 

4.1.2.8 TimeSignature – Braun et al., 2018 

Braun et al., 2018 have described a machine-learning approach that was 

trained on human blood transcriptomic datasets to predict the biological time 

of samples. TimeSignature was trained using RNA-seq and transcriptomic 

data, with the resulting caveat that expression data of each gene must be 

mean-normalised for each individual. In practice this means that much like 

BIO_CLOCK, TimeSignature cannot be used for single sample timepoint time 

prediction. Braun et al. (2018) state that two time-points at opposite phases 

of the circadian clock (~12 hrs apart to provide an accurate mean estimate) 

are the minimum requirements for test data samples. This thesis is focused on 

single timepoint time-telling, therefore this method will not be discussed in 

further detail. 

 

4.1.2.9 CYCLOPS – Anafi et al., 2017 

The methods described thus far require time-annotated training datasets and 

also, with the exception of ZeitZeiger’s application to murine datasets, tissue-

matched training datasets. This creates an obvious problem for the clinical 

application of single timepoint time-telling, namely that time-annotated, 

tissue-specific training datasets are extremely challenging to obtain. 

CYCLOPS aims to address this gap by assigning relative circadian time where 
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time of sampling is unknown (Anafi et al., 2017). CYCLOPS was designed to 

assign time to samples within large (>250 samples) transcriptomic datasets 

composed of single samples from different individuals over the course of the 

day/night period. Though, CYCLOPS is not capable of true single timepoint 

time-telling, because time is predicted relative to other samples in the dataset, 

it has the potential to support single timepoint time-telling approaches. Briefly, 

the CYCLOPS method was designed as follows: 

1) The genes in the dataset that were observed to represent the top 2.5% 

variably expressed genes, and were also known to be rhythmic in mice, 

were selected to build a feature set. 

2) The dimensionality reduction method singular value decomposition 

(SVD) was applied to the mean-scaled features, such that 85% of the 

variation over time in the dataset was explained. 

3) A neural network subsequently optimally weighted and combined the 

resultant singular values, dubbed ‘eigengenes’, using a circular node 

autoencoder to create an elliptical curve in 2D space, a phenomenon 

which occurs in oscillatory systems (Alter et al., 2000; Anafi et al., 

2017). 

4) The authors validated CYCLOPS against 146 pre-frontal cortex 

biopsies obtained post-mortem with annotated time of death, which 

as a population had previously been demonstrated to exhibit 

oscillatory expression of core clock genes (Anafi et al., 2017; Chen et 

al., 2016). The calculated CYCLOPS phase correlated reasonably well 

with time of death with a median absolute error of 1.69 hr; some 

variation was to be expected due to differences in the circadian 

entrainment of individuals, and the post-mortem nature of the 

samples (Anafi et al., 2017). 

CYCLOPS has also been applied to 249 matched hepatocellular carcinoma 

(HCC) and HCC tumour margin biopsies (Anafi et al., 2017; Lamb et al., 
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2011). As expected, tumour margin samples ordered over time by CYCLOPS 

demonstrated population-wide oscillations in core clock gene expression. The 

authors did not take advantage of the paired nature of the data to order 

tumour samples according to the predicted CYCLOPS phase of tumour margin 

samples. Instead, the tumour biopsy data was projected onto tumour margin 

eigenvector space, and then ordered using CYCLOPS. The HCC tumour 

biopsies demonstrated population-wide oscillations in 8 of 9 core clock genes 

presented but showed a reduction in amplitude of oscillation and magnitude of 

expression in some of these genes. It is worth noting that up to approximately 

10-20% of ‘healthy’ tumour margin samples were ordered to a circadian phase 

which presumably corresponded with night-time. As it seems unlikely that 

hepatocellular carcinomas were resected overnight, these individuals may have 

been poorly entrained, which is not wholly unexpected given that up to 30-

60% of cancer patients are thought to experience sleep disruption (Fortner et 

al., 2002; Malone et al., 1994; Savard et al., 2001). A weakness of CYCLOPS 

is that because the original dataset is often not time-annotated, it is difficult 

to validate the method. For instance, CYCLOPS has been applied to the 

Genotype-Tissue Expression (GTEx) dataset of >4000 post-mortem RNA-seq 

samples from >600 donors in 13 different tissue types in order to apply relative 

time-ordering to the samples (Ruben et al., 2018). The resultant population-

wide gene expression time-courses are available for easy consultation via the 

publicly available resource: http://circadb.hogeneschlab.org/human. However, 

validation of the time-ordering method itself is difficult as the GTEx dataset 

is not time-annotated, sample collection occurred up to 24 hrs post-mortem, 

and further to this many of the patients were presumably critically ill prior to 

death. TimeSignature was recently applied to blood samples from critically ill 

patients that were monitored within 24 hrs of admission to critical care units, 

to demonstrate that blood samples of these patients displayed dramatically 

altered circadian gene expression relative to healthy controls (Maas et al., 
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2020). CYCLOPS has the significant potential to provide the circadian field 

with time-ordered training datasets – but it should be remembered that 

application of CYCLOPS to datasets like GTEx that were never intended to 

explain the circadian behaviour of healthy individuals, should be approached 

with caution. 

 

4.1.2.10 Clock Correlation Distance (CCD) – Shilts et al., 2018 

The developers of ZeitZeiger have also proposed a method which, like 

CYCLOPS, but unlike ZeitZeiger, does not rely on the existence of tissue-

matched, time-stamped training datasets (Shilts et al., 2018). Shilts et al. 

(2018) calculated a metric called the ‘clock correlation distance’ (CCD) to 

summarise the relative expressions in any given sample of 12 of the core clock 

genes which were previously used to build ZeitZeiger. It is important to note 

that CCD is not a time-telling method, instead it is intended to assess the 

degree of clock gene dysfunction of a population of samples. Briefly, the method 

can be described as follows: 

1) For all samples in each dataset each pair of clock genes was plotted 

as an ellipse on x-y axes, as when eigengenes are graphed for 

CYCLOPS. 

2) The Spearman correlation between each gene pair was calculated to 

provide a measure of the shape of the ellipse. 12x12 heatmaps of 

Spearman correlations were used to visualise the 66 possible 

relationships between 12 paired clock genes in healthy tissues. 

3) The Fisher z-transformed weighted means of Spearman correlations 

were calculated and normalised to a mouse reference to calculate 

CCD. Comparison to a mouse reference (comprised of almost 200 

samples over 8 tissues from 7 different studies) was possible since 

the Spearman correlations contain no information about the 
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different phase of entrainment between humans and mice (Shilts et 

al., 2018). 

Shilts et al. (2018) applied the CCD metric to 12 different cancers types in the 

TCGA dataset, and also to 8 other publicly available tumour/tumour margin 

biopsy datasets. The CCDs calculated for each of the 20 tumour datasets were 

without exception higher than the CCDs of the corresponding non-tumour 

samples, indicating that clock gene expression of the tumour samples was more 

different relative to the mouse reference than clock gene expression of non-

tumour samples. Interestingly, cancer datasets of the same type appeared 

different relative to one another in terms of Spearman correlation signatures. 

For instance, DCCD (CCDtumour – CCDnon-tumour) differed between the four 

hepatocarcinoma datasets, and the Spearman correlation signature appeared 

very different between the lung adenocarcinoma samples from 3 different 

datasets. This could have been a result of differing times of sampling between 

different datasets, as although Shilts et al. (2018) claim their method is robust 

against differing sampling times, their comparisons of day-only or night-only 

samples in fact yielded different Spearman correlation signatures and different 

CCDs. Additionally, it is worth noting that the 12 TCGA datasets contain 

many more tumour samples than non-tumour (normal margin) samples. 

Therefore, time of sampling may not be consistent between tumour and non-

tumour samples and could be reflected as a difference in CCD between the 

same cancer types. From the work of Shilts et al. (2018) it is possible to 

conclude that core circadian gene expression is probably disrupted in tumours 

over a population. 

 

4.1.2.11 TimeTeller – Vlachou et al. 2020 

TimeTeller is a semi-supervised algorithm constructed using dimensionality 

reduction. TimeTeller is unique in that it is designed to output both a 

prediction of biological time from a single sample, and a metric relating to the 
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confidence in the time prediction (Vlachou et al., 2020). This thesis will 

implement the TimeTeller method and extend its application to RNA-seq 

datasets. The method as applied by Vlachou et al. (2020) will be described 

briefly as follows, see chapter 4.2.3 for a detailed description of TimeTeller’s 

application to RNA-seq datasets: 

1) A transcriptomic training dataset was identified that contained J 

instances (i.e., number of individuals or tissues) observed over T evenly 

spaced time-points. Periodic features were selected using a combination 

of cosine fitting and dimensionality reduction to identify 10-15 probes 

that behaved similarly over time across J observations. 

2) SVD was applied to the training features × observations matrix in order 

to identify 3 dimensions into which to project the training dataset. 

3) Three-dimensional multi-variate Gaussian distributions were fitted to 

the projected data from each of the time points represented in the 

training dataset. 

4) Discrete Gaussians corresponding to each timepoint were interpolated 

along a spline through all timepoints in order to extend the model to 

approximate continuous time. 

5) New test samples were projected onto the model, and likelihood 

functions were generated to describe the proximity of the test data to 

the training data, throughout model time. 

6) The likelihood functions were used to predict the test sample times, and 

also to infer the degree of confidence in the time prediction termed a 

‘clock dysfunction metric’. 

TimeTeller has been used to detect differences in clock (dys)function between 

cohorts of healthy and non-healthy samples. Secondly, it has been applied to 

cancer patients to correlate clock dysfunction with overall survival (Vlachou 

et al., 2020). Thus far, TimeTeller is the only time-telling method that is both 

able to predict the biological time or circadian phase of a single biological 
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sample, and provide an estimate of clock dysfunction. Therefore, TimeTeller’s 

expansion and application to RNA-seq datasets is of great interest and will 

form the bulk of this chapter. 

 

4.1.3 Summary of time-telling algorithms in relation to circadian 

cancer research 

 

Comprehensive analysis of publicly available tumour biopsy transcriptomes by 

Anafi et al. (2017) and Shilts et al. (2018) with the novel mathematical 

algorithms CYCLOPS and CCD has demonstrated population level 

dysregulation of rhythmic gene expression in human tumours. However, there 

consistently appears to be little correlation in the clock gene expression 

observed across different tumour types and even between cohorts of the same 

tumour type (Shilts et al., 2018; Y. Ye et al., 2018). It is unclear whether this 

might result from individual molecular clock difference, tumour difference or 

time-sampling difference. This demonstrates the importance of well-annotated 

publicly available datasets. In order to gain the best understanding of how 

rhythmic gene expression changes between different cancer types and different 

individuals, publicly available datasets should aim to provide time-stamped, 

tumour/non-tumour matched biopsies. Ideally data sampling would also be 

distributed over the 24 hour day, however in a clinical setting this is highly 

improbable. TimeTeller avoided the requirement for tissue-matched training 

datasets by normalising each probe in the feature set relative to all other probes 

in the feature set (Vlachou et al., 2020). Thus, TimeTeller was trained using 

oral mucosa time course microarray data, and then applied to predict time and 

clock dysfunction in breast cancer samples. This cross-tissue approach will be 

investigated with regard to RNA-seq data in this thesis chapter. 
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For a biological time-telling algorithm to be useful in assessing the molecular 

clock of a patient tissue sample in a research context, there are a number of 

key aims that should be considered. 

1) The method should predict the biological time of the sample. 

2) The method should be applicable to a single patient biopsy – i.e., no 

requirement for a time-course of samples from the same individual. 

3) The method should aim to provide a metric indicating the confidence 

in the time prediction, i.e., serving as an indicator of clock dysfunction. 

4) The method would ideally be applicable across different patient tissues. 

After an extensive review of the literature TimeTeller is thus far the only time 

prediction model that claims to achieve all of these key aims. Each of these 

aims will be addressed in the application of TimeTeller to RNA-seq datasets.  
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4.2 TimeTeller Model Method 

 

4.2.1 Publicly available datasets used 

 

The results presented in this thesis chapter are dependent entirely on publicly 

available transcriptomics datasets that were used to train and test TimeTeller. 

All datasets used are detailed in Table 4.1. 

 

Table 4.1 Metadata for mined datasets. 

Zhang et al. 2014 
Technology Microarray (Affymetrix  MoGene 1.0 ST arrays) 
GEO GSE54652 
Tissue(s) Adrenal, aorta, brown fat, heart, kidney, liver, lung, skeletal muscle, white fat 
Entrainment conditions 1 week 12 hr light/ 12 hr dark. Sample collection commenced after 18 hrs constant darkness. 
Experimental conditions Wild type 
Timepoints CT18 – CT64, every 2 hrs. 
Number of replicates 1 sample per timepoint consisting of 3 pooled mice 
Male or female? Male 
Age 6 weeks 
Strain C57BL/6 
Zhang et al. 2014 
Technology RNA-seq 
GEO GSE54652 
Tissue(s) Adrenal, aorta, brown fat, heart, kidney, liver, lung, skeletal muscle, white fat 
Entrainment conditions 1 week 12 hr light/ 12 hr dark. Sample collection commenced after 18 hrs constant darkness. 
Experimental conditions Wild type 
Timepoints CT22 – CT64, every 6 hrs. 
Number of replicates 1 sample per timepoint consisting of 3 pooled mice 
Male or female? Male 
Age 6 weeks 
Strain C57BL/6 
Kinouchi et al., 2018 
Technology RNA-seq 
GEO GSE107787 
Tissue(s) Liver, skeletal muscle 
Entrainment conditions 12 hr light / 12 hr dark 
Experimental conditions Ad libitum fed vs 24 hr starved 
Timepoints ZT0 – ZT20, every 4 hrs. 
Number of replicates 3 samples per timepoint 
Male or female? Male 
Age 8 weeks 
Strain C57BL/6 
Weger et al., 2021 
Technology RNA-seq 
GEO GSE135898 
Tissue(s) Liver 
Entrainment conditions 12 hr light / 12 hr dark 
Experimental conditions Bmal KO with WT controls and Cry1/2 double KO with WT controls 
Timepoints ZT0 – ZT20, every 4 hrs. 
Number of replicates 2 samples per timepoint 
Male or female? Male 
Age 12-16 weeks 
Strain C57BL/6 
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Yeung et al., 2018 
Technology RNA-seq 
GEO GSE100457 
Tissue(s) Kidney 
Entrainment conditions 12 hr light / 12 hr dark 
Experimental conditions Bmal KO with WT controls. Night restricted feeding protocol for all mice. 
Timepoints ZT0 – ZT20, every 4 hrs. 
Number of replicates 2 samples per timepoint 
Male or female? Male 
Age 8-12 weeks 
Strain C57BL/6 

 

4.2.2 Data analysis pipeline 

 

The Zhang et al. microarray data was normalised using frozen robust 

multiarray analysis (fRMA) normalisation as described by Vlachou et al. 

(2020) (McCall et al., 2010). 

 

All RNA-seq data was processed using a CentOS Linux 7 kernel on the 

University of Warwick’s CyVerse UK servers. RNA-seq datasets were 

downloaded as .sra files from NCBI’s SRA database (accessed via the GEO 

database). SRA files were converted to fastq files using ‘fasterq-dump’ from 

NCBI’s SRA Toolkit. FASTQ files were aligned to the mouse genome (GRC 

release m38.84) and converted to SAM files using HISAT2 v2.2.0 (Kim et al., 

2019). SAM files were compressed to BAM using Samtools v1.10 (Heng Li et al., 

2009). Transcript read counts were determined from the BAM files and the mouse 

transcriptome (GRCm38.84 .gtf file) using LiBiNorm v2.4, an in-house software 

package, in HTSeq-count mode (Anders et al., 2015; Dyer et al., 2019). Raw read 

counts were concatenated for all samples and exported as one text file for all 

subsequent analysis on a Mac OS. For dataset specific arguments see Table 4.2. 

 

Raw count normalisation to logCPM was carried out in R Studio as described in 

chapter 2.2.10. Data was also inspected for quality by checking library sizes, 

replicate plots and PCA plots. 
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Table 4.2 Dataset specific RNA-sequencing parameters 

 
 Zhang et al., 2014 Kinouchi et al., 

2018 
Weger et al., 2021 Yeung et al., 

2018 
Library prep 
kit 

Illumina TruSeq 
stranded mRNA 

Illumina TruSeq 
stranded mRNA 

Illumina TruSeq 
stranded mRNA 

Not stated in 
the paper, 
supplement or 
GSE series 
matrix txt file. 

Reads Paired end 100 bp Single end 100 bp Paired end 100 bp Single end 100 
bp 

Strandedness First read from 
the 
opposite/reverse 
strand 

Single read from 
the 
opposite/reverse 
strand 

First read from 
the 
opposite/reverse 
strand 

Inspection of 
SAM flags 
indicated an 
unstranded 
protocol 

fasterq-dump Default Default Default Default 
hisat2 --rna-strandness 

RF 
--rna-strandness 
R 

--rna-strandness 
RF 

Default 

samtools sort sort sort then merge sort 
LiBiNorm count -z -i 

gene_id -s 
reverse 

count -z -i 
gene_id -s 
reverse 

count -z -i 
gene_id -s 
reverse 

count -z -i 
gene_id -s no 

     
     

All RNA-seq data was migrated from R Studio to MATLAB v2020b for use in 

TimeTeller. 

 

4.2.3 Training dataset tissue and feature selection 

 

The first step to running TimeTeller is to identify a training dataset with J 

observations over T evenly spaced time-points. For the purposes of explaining 

the model build in this methods chapter, the Zhang et al., 2014 RNA-seq time-

series will be used as the exemplar training dataset (see Figure 4.9 for 

experimental design). The Zhang et al., dataset contains 12 tissues (i.e., 

observations) which were sampled repeatedly over time under constant 

darkness. Three tissues originating from the brain (brainstem, cerebellum, and 

hypothalamus) were omitted from the model build as rhythmic gene expression 
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in these brain tissues is of lower amplitude (Vlachou et al., 2020). White fat 

samples were also omitted from the model build as the white fat tissue sampled 

at circadian time (CT)40 appeared to have a significantly larger library size 

relative to the other samples. Subsequent investigation revealed that the CT40 

sample may have been sampled from the genital fat pad, rather than the 

intended subcutaneous fat pad (Figure 4.2). 
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Periodic features were selected using a combination of cosine fitting and 

dimensionality reduction to identify genes that behaved rhythmically and 

synchronously over time across the 8 tissues. Since the shape of the gene 

expression in each tissue relates directly to clock function, gene expression was 

first normalised using a shape-preserving method. Expression of each gene in 

each tissue was z-scored over time, i.e., expression of each gene in each tissue 

was transformed to a standard normal distribution by subtracting the time-

Svs2      Car3 

 

 
 
 
 

Pate4      Scd1 

Genital 
fat pad 

Subcutaneous 
fat pad 

 

 

A B 

C 

Figure 4.2 Quality analysis of Zhang et al., 2014 white fat time series data. A) Library sizes for the 8 

white fat samples (each sampled at a different circadian time) – the library size of the CT40 sample is 

an outlier. B) The most highly expressed genes in the CT40 are quite different to those in the CT46 

sample. C) ENCODE mouse expression atlas data (available at: www.ncbi.nlm.nih.gov/gene) 

demonstrates that the most highly expressed genes from the CT40 and CT46 samples are differentially 

expressed in different fat tissues. 
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course mean and dividing by the time-course standard deviation, as described 

by the following notation: 

For each gene, g = (1,…,G), and each tissue, j = (1,…,J), the gene 

expression time series was contained within the vector 𝑋1," where 

the number of samples in the time series was n = (1,…,N) such that: 

𝑋1," = A𝑥1,"-, … , 𝑥1,"3E 

 

Each observation, n, of 𝑋1," was normalised to the mean and standard 

deviation of the time series to calculate Z scores: 

𝑧1,"0 =
𝑥1,"0 − 𝑋

F1,"
𝑠G𝑋1,"H

 

𝑍1," was a vector of length N containing normalised time-course 

information for each gene g and tissue j. 

This normalisation method shall henceforth be referred to as “time-course 

normalisation”. 

 

Time-course normalised genes were ranked for goodness of 24 hr period cosine 

fit using cosinor analysis. Cosinor is a least squares regression approach, 

originally developed for use with short/sparse datasets (Cornelissen, 2014). The 

‘cosinor’ function written for MATLAB by Casey Cox (2008) was used to 

determine the genes with the best 24 hr cosine fits. One small change was made 

to the code, such that the p-value of the zero-amplitude f-test was calculated 

correctly using the ‘fcdf’ function rather than the ‘fpdf’ function. P-values for 

the zero-amplitude test (i.e., H0=not rhythmic) were calculated for each gene 

in each tissue. The mean p-value of all tissues was retained for each gene. 

 

Time-course normalised genes were also ranked for synchronicity using SVD. 

Matrices (𝑀") were constructed for each gene, g, containing J columns of the 

aforementioned vectors 𝑍1," (i.e., 𝑀" contained time-course gene expression for 
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every tissue). The matrices were decomposed such that 𝑀" = 𝑈"𝑆"𝑉"4. For the 

genes that were expressed most similarly across tissues over time, a greater 

proportion of variation in the matrix was explained by the first principal 

component, i.e., the first column of 𝑈", 𝑈",-. The proportion of variance 

explained by the first principal component for each gene was calculated using 

the singular values 𝜎" obtained from the diagonal matrix 𝑆", as follows:  

%	𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
5&,-.

∑5&.
× 100. 

Equally weighted ranks were assigned to both rhythmicity and synchronicity 

scores, and summated, in order to select a feature set for TimeTeller. 

 

4.2.4 Data normalisation approaches 

 

Time-course normalisation has already been described as part of feature 

selection (chapter 4.2.3). Time-course normalisation is conditional upon 

knowledge of the mean and standard deviation of feature gene expression in 

each tissue over time. This information is unknown for independent test data 

samples which represent a single point in time, n. Therefore, other methods 

are required for normalisation of independent test data samples. 

 

Vlachou et al. (2020) proposed a data normalisation approach that shall be 

referred to here as “inter-gene” normalisation. Briefly: 

The data was structured such that for each sample of time n = (1,…,N) 

and each tissue, j = (1,…,J), expression of the G selected feature genes  

was contained within the vector 𝑋1,0: 

𝑋1,0 = A𝑥1,0-, … 𝑥1,0", … , 𝑥1,07E 

Expression of each gth gene in 𝑋1,0 was normalised to the mean and 

standard deviation of the expression set to calculate z-scores: 
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𝑧1,0" =
𝑥1,0" − 𝑋

F1,0
𝑠G𝑋1,0H

 

𝑍1,0 was a vector of length G containing inter-gene normalised gene 

expression for each tissue j at a time n (𝑧1,0) as its elements. 

A model trained using inter-gene normalisation, would also require that test 

datasets be normalised using inter-gene normalisation. 

 

An alternative approach was used in this thesis to normalise test data when 

the training data was normalised using time-course normalisation, and is 

referred to as “quasi-time-course” normalisation. This approach uses the time-

dependent mean and standard deviation of gene expression in the 

corresponding training data tissue to normalise the test data as described by 

the following notation: 

For each independent test data sample originating from a tissue j and a 

time n, the gene expression for genes g = (1,…,G) was organised in the 

vector 𝑌81,0 such that: 

𝑌81,0 = A𝑦81,0-, … , 𝑦
8
1,07

E 

Expression of each gth gene in 𝑌81,0 was normalised using the 𝑋F1," and 

𝑠G𝑋1,"H from the corresponding tissue and gene in the training data such 

that: 

𝑧81,0" =
𝑦81,0" − 𝑋

F1,"

𝑠G𝑋1,"H
 

𝑍81,0 was a vector of length G containing quasi-time-course normalised gene 

expression for a test sample of tissue j at time n (𝑧81,0") as its elements. 

 

 

 



195 

 

4.2.5 TimeTeller model build 

 

4.2.5.1 Dimensionality reduction 

After feature selection and either inter-gene or time-course data normalisation, 

the first step in building TimeTeller is to reduce the dimensionality of the 

training data. In the case of the Zhang et al. training datasets G=11 features 

were reduced to dimensions d = (1,…,D) where D=3. Chapter 4.3.1 provides a 

longer discussion regarding the reasoning for G=11 and D=3. 

 

Normalised training data for each of the timepoints (𝑡$) contained within the 

training dataset was organised into a 𝐺 × 𝐽 matrix, 𝑀&(, where the column-wise 

normalised observations of 𝑀&( were the vectors 𝑍&(,1 of length G. SVD was 

applied to 𝑀&( in order to extract the eigenvectors for projection of the data 

onto principal component axes, such that: 

𝑀&( = 𝑈&(𝑆&(𝑉&(
4 

Where the columns of the 𝐺 × 𝐺 matrix 𝑈&(, 𝑈&(9 corresponded to the left 

singular vectors of 𝑀&( (i.e., the principal components), the columns of the 𝐽 × 𝐽 

matrix 𝑉&( corresponded to the right singular vectors of 𝑀&(, and 𝑆&( was a 

diagonal matrix containing the singular values 𝜎&( corresponding to each of the 

column-wise singular vectors. 

 

This was termed a ‘local’ principal component approach, i.e., a set of principal 

components was generated for each timepoint 𝑡$ in the training dataset. 

Vlachou et al. (2020) demonstrated that because the projection of training data 

onto D-dimensional principal component axes may form an inherently 

asymmetrical shape in D-dimensional space, multiple local projections of the 

data improved the accuracy of time prediction. 
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For each observation in the normalised training data set, j, at each time 

instance, n, the feature gene expression was organised into the vectors 𝑍1,0. 

Each instance of 𝑍1,0 were projected into D dimensional space using the first 

D columns of 𝑈&(, denoted as 𝑈&(:: 

𝑄&( = 𝑈&(:
4𝑍1,0 

The resultant vector 𝑄&(,1,0 of length D contained the projection of a single 

training data observation of time n and tissue j using the first D principal 

components of the data associated with each training data timepoint 𝑡$. The 

𝐷 × (𝐽 × 𝑁) matrix 𝑄&( contained the vectors 𝑄&(,1,0 as its columns. Figure 4.3 

displays 𝑄&( plotted on D=3 principal component axes for each 𝑡$, for the Zhang 

et al. RNA-seq dataset. 

 

Figure 4.3 Four local projections of the Zhang et al. RNA-seq training data. Data was folded such that 

samples from CT22 and CT46 were considered to belong to the same timepoint. Each graph displays the 

training data projected onto the first 3 principal component axes contained within the matrix 𝑄𝑡𝑖. The 

four graphs correspond to the four values of 𝑡𝑖. Graphs are oriented to best show the separation of the 

clusters in 3D space. 
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4.2.5.2 Gaussian fitting and model interpolation 

In order to allow for continuous time prediction, the model was interpolated 

from discrete time to approximate continuous time. Each local projection data 

matrix 𝑄&(, was subdivided into the 𝐷 × 𝐽 matrix 𝑄&(,0 to describe the data for 

each time n for a fixed 𝑡$ projection. 𝑄&(,0 was presumed to be normally 

distributed. The MATLAB function ‘fitgmdist’ was used to fit a multivariate 

Gaussian distribution to each 𝑄&(,0, of mean 𝜇&(,0 and covariance matrix Σ&(,0. 

The resultant Gaussian distributions are represented in Figure 4.4 by mesh 

ellipsoids indicating 3 standard deviations of the total probability mass, i.e., 

encompassing ~97% of the population data within the ellipsoid (plotted using 

‘plot_gaussian_ellipsoid’) (Vallabha, 2021). A cubic spine with periodic end 

conditions was fitted to interpolate through the means of the Gaussian 

distributions i.e., 𝜇&(,0 for all values of n, using the MATLAB function ‘cscape’. 

The spline for each local 𝑡$ 	projection is also displayed in Figure 4.4. 

Figure 4.4 Four local projections of the Zhang et al. RNA-seq training data. Training data displayed as 

for Figure 4.3, but with mesh ellipsoids representing the 97% boundary of the Gaussian distributions 

fitted to each 𝑄#",%. The splines represent mean continuous time. 
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The covariance matrices of the Gaussian distributions, Σ&(,0,  were interpolated 

for continuous time along the shape-preserving mean spline using the 

MATLAB function ‘pchip’. The resultant interpolated Gaussian distributions 

approximated continuous time. In total 384 Gaussians were used to form the 

model (1 Gaussian per 3.75 min). This was a sufficiently high resolution to 

predict time accurately. Figure 4.5 demonstrates the result of interpolation. 

 

The Gaussian distributions that were interpolated from the training Gaussian 

distributions described by 𝜇&(,0 and Σ&(,0, will be referred to as 𝜇&((𝑡) and Σ&((𝑡), 

where t = interpolated timepoints (in this instance t=1,…,384). 

Figure 4.5 Four local projections of the Zhang et al. RNA-seq training data. Splines represent mean 

continuous time. Mesh ellipsoids represent the 97% boundary of the interpolated Gaussian distributions 

fitted to each 𝑄#",%, extending the model to continuous time. N.B. for ease of visualisation only 1 in every 

16 of the interpolated Gaussians are plotted. 
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4.2.5.3 Projection of independent samples onto the model 

Independent test observations were projected onto the trained TimeTeller 

ellipsoids using the same D principal components that were used to transform 

the training data to principal component space, such that: 

𝑄8&(,1,0 = 𝑈&(:
4𝑍81,0 

Where 𝑍81,0 represents an independent test observation sampled at a given 

time n and tissue j. And 𝑄8&(,1,0 represents a vector of length D generated for 

each of 𝑡$ local principal components. 

 

4.2.5.4 Obtaining time predictions for independent test samples 

The likelihood that the projected test data sample belonged to each of the 

interpolated Gaussian distributions (described by 𝜇&((𝑡) and Σ&((𝑡)) was 

calculated using the probability density function of each Gaussian (MATLAB 

function ‘mvnpdf’) as described by the following equation: 

𝐿;/0(,1,2
(𝑡) =

1

bcΣ&((𝑡)c(2𝜋)<
𝑒
='-!>;

/
0(,1,2

'?0((&)BC0((&)
3->;/0(,1,2'?0(

(&)B
4
D
 

Figure 4.6 displays this process pictographically. All resultant likelihood 

curves, 𝐿;/0(,1,2
(𝑡), were thresholded – such that any likelihoods that were lower 

than an arbitrarily low threshold (in this case thresh=𝑒'-!/ logthresh=−12) 

were replaced with the threshold value. The thresholded likelihood curves 

generated for each local projection, 𝑡$ = 1,… , 𝑇, were combined as follows: 

𝐿;/1,2(𝑡) =
1
𝑇; log

4

&(,-

𝐿;/0(,1,2
(𝑡) 

Such that the proximity of each independent projected test data point 𝑄81,0 to 

the trained TimeTeller model was described by a single likelihood curve, 

𝐿;/1,2(𝑡) – essentially a geometric mean of all thresholded local likelihood 
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curves. The reason for thresholding the likelihood curves was that the minima 

of the likelihood curves could theoretically have approached 0. Such incredibly 

low values might have biased the geometric mean of the local likelihood curves, 

such that true peaks that occurred only in a small number of local projections, 

but that were nonetheless accurate, would have been smoothed away. 

Therefore, the threshold helped to prevent extremely low likelihood values from 

biasing time prediction. 

 

The maximum of the likelihood curve 𝐿;/1,2(𝑡) provided the model time, 𝑡E()9,  

that best represented the test sample 𝑍81,0 as indicated by Figure 4.6B. 

 

4.2.5.5 Defining a metric, 𝜃, for confidence in 𝑡:;<= 

The shape of the likelihood curve, 𝐿;/1,2(𝑡), generated for each test data sample 

contained information that relates to the accuracy of the maximum time 

Prediction of biological time, 𝑡5678 

A B 

Figure 4.6 A) A representation of an independent test data sample (orange circle) projected onto the 

trained TimeTeller model of continuous time. Black dashed lines represent the relationship between the 

projected test sample, 𝑄′#",&,% , and each of the 3D Gaussian distributions, which is defined by the 

multivariate normal probability density function, such that 𝐿𝑄′𝑡𝑖,𝑗,𝑛
(𝑡) contains the likelihood of 𝑄′#",&,% 

belonging to time t. B) A representation of the likelihood curve, 𝐿𝑄′𝑡𝑖,𝑗,𝑛
(𝑡), resulting from the scenario 

depicted in A). The maximum of the likelihood curve corresponds with the model time 𝑡)*+, that best 

represents the test sample. 
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prediction, 𝑡E()9. Three scenarios illustrated by Figure 4.7 display how the raw 

likelihood curves may vary given different test data samples. The leftmost 

scenario shows that a test data sample which overlays the training data will 

have a high maximum likelihood and a distinct peak from which to estimate 

predicted time. However, the middle scenario shows that when a test data 

sample is projected towards the centre of the ellipsoidal model, the maximum 

of the likelihood curve is lower, and the shape is broader. The rightmost side 

shows that a very distant test data sample will not produce a maximum 

likelihood above logthresh, and 𝑡E()9 	cannot be estimated. Thus far, the 

absolute value of the maximum likelihood would be sufficient to estimate the 

confidence in 𝑡E()9. However, the likelihood curve of each sample, 𝐿;/1,2(𝑡), was 

𝑡!"#$  No prediction of biological time 

Logthresh = -12 

𝑡!"#$  

Figure 4.7 A) A representation of different independent test data samples (orange circles) projected onto 

the trained TimeTeller model of continuous time. Black dashed lines represent the relationship between 

the projected test sample, 𝑄′#",&,% , and each of the 3D training Gaussian distributions, which is defined 

by the multivariate normal probability density function, such that 𝐿𝑄′𝑡𝑖,𝑗,𝑛
(𝑡) contains the likelihood of 

𝑄′#",&,% belonging to time t. B) A representation of the likelihood curve, 𝐿𝑄′𝑡𝑖,𝑗,𝑛
(𝑡), resulting from each of 

the test data points depicted in A). The maximum of the likelihood curve corresponds with the model 

time 𝑡)*+, that best represents the test sample. The position of logthresh ensures that relatively low 

maximum likelihoods do not result in a time prediction. 

A 

B 
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generated from the geometric mean of T thresholded local likelihood curves, 

which in turn were generated from asymmetric local projections. Therefore, 

the resultant likelihood curves frequently contained more than one peak, and 

a more sophisticated method was required to determine the confidence in 𝑡E()9. 

 

The further that the primary peak lay from any secondary peaks (to a 

maximum difference of 12 hrs), the more likely it was that the time prediction 

from the maximum likelihood estimate, 𝑡E()9, was inaccurate. Therefore, a 

cosine function termed a ‘clock dysfunction threshold’ was implemented to 

calculate a metric, termed ‘theta’ (Θ), that progressively penalised secondary 

peaks which were increasingly distant from the primary peak. To implement 

the clock dysfunction threshold and calculate Θ, the likelihood curves 𝐿;/1,2(𝑡) 

were first centred on the primary peak and scaled to a maximum of 1 to give 

Λ;/1,2(𝑡), such that for 𝑡 = (𝑡E()9 − 12	ℎ𝑟𝑠, … , 𝑡E()9 , … , 𝑡E()9 + 12ℎ𝑟𝑠): 

Λ;/1,2(𝑡) =
𝐿;/1,2(𝑡)

𝐿;/1,2G𝑡E()9H
 

Figure 4.8 provides some examples of how Λ;/1,2(𝑡) may appear. The clock 

dysfunction threshold is also depicted in Figure 4.8, and was defined as follows: 

𝐶G𝑡c𝑡E()9H = 𝜂 m1 + 	𝜖 +	cos m
𝑡 − 𝑡E()9
24 2𝜋qq 

 where 𝜖 = 0.4 and 𝜂 = 0.35. Chapter 4.2.5.6 discusses the setting of 

parameters 𝜖 and 𝜂. 

The clock dysfunction metric Θ, was defined as the proportion of time t for 

which the following held true: 

Λ;/1,2(𝑡) ≥ 𝐶(𝑡|𝑡E()9) 

Therefore Θ was equal to the proportion of the centred scaled likelihood curve 

which lay above the clock dysfunction threshold (i.e., in the red region in 

Figure 4.8). 
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The Θ metric was designed with secondary peaks in mind, but Figure 4.8 

demonstrates that Θ was dependent upon the shape of the likelihood curve as 

a whole. For instance, the higher the maximum likelihood relative to all other 

likelihoods, the sharper the primary peak of the likelihood curve. Conversely, 

a wider flatter primary peak represented a lower confidence in 𝑡E()9. The 

relative width of the primary peak contributed to the calculation of Θ. A 

further factor that contributed to Θ values, was the height of the baseline of 

the scaled likelihood curve. The height of the baseline is related to both the 

ratio between the lowest likelihoods and the maximum likelihood, and to the 

logthresh. In other words, when the maximum likelihood estimate was not that 

much higher than the minimum likelihoods (or indeed logthresh), the value of 

Θ was likely to increase. 

 

Higher Θ values served to identify time predictions in which one should have 

relatively low confidence. Thus, Θ functions as an excellent ‘red flag metric’ 

and is termed the ‘clock dysfunction metric’. The underlying reason for the low 

𝐭𝒑𝒓𝒆𝒅 − 𝟏𝟐𝒉𝒓𝒔																																																																									𝐭𝒑𝒓𝒆𝒅 																																																																𝐭𝒑𝒓𝒆𝒅 +𝟏𝟐𝒉𝒓𝒔 

    

Clock dysfunction 

threshold 

Wider peak 
increases Θ 

Secondary peak 
increases Θ 

Higher baseline increases Θ 

𝚯𝒈𝒓𝒆𝒆𝒏 < 𝚯𝒚𝒆𝒍𝒍𝒐𝒘 < 𝚯𝒓𝒆𝒅 

Figure 4.8 Depiction of three exemplar centred scaled likelihood curves, Λ1'(𝑡), (red, yellow and green). 

The relationship between the shape of the likelihood curve and the clock dysfunction threshold (black) 

determines the value of Θ. 

Λ ;
/(
𝑡)

 

0 

1 
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confidence in a predicted time is not apparent solely from Θ, and usually 

requires further inspection of the likelihood curves or local projections. 

 

4.2.5.6 Setting 𝜖 and 𝜂 to determine the clock dysfunction threshold 

The placement of the cosine function 𝐶(𝑡|𝑡E()9) termed the ‘clock dysfunction 

threshold’ was somewhat arbitrary. The minima of 𝐶(𝑡|𝑡E()9) should clearly be 

>0, whilst the maxima should clearly be <1. As the minima of 𝐶G𝑡c𝑡E()9H =

𝜂𝜖, and the maxima of 𝐶G𝑡c𝑡E()9H = 	𝜂(2 + 𝜖) it holds that: 

0 < 	𝜂𝜖 < 𝜂(2 + 𝜖) < 1 

Here, 𝜖 = 0.4 and 𝜂 = 0.35, such that 𝜂𝜖 = 0.14 and 𝜂(2 + 𝜖) = 0.84, satisfying 

the equation above. These are the same values of 𝜖 and 𝜂 that were selected 

by Vlachou et al. 2020. In practice, the exact values of 𝜖 and 𝜂 were not too 

important, providing that 𝜖 and 𝜂 were set such that the values of Θ remained 

relatively minimal for time predictions of high confidence.  



205 

 

4.3 Results and Discussion 

 

4.3.1 TimeTeller model build applied to microarray vs RNA-seq 

 

There is currently a shortage of time-stamped training datasets in human 

tissue. Therefore, for the optimisation of time prediction algorithms it is 

common to use murine datasets (Hughey et al., 2016). For the migration of 

the TimeTeller method from microarray to RNA-seq datasets, the Zhang et al. 

(2014) dataset used by Hughey et al. (2016) is an excellent choice because the 

same samples underwent RNA-seq and microarray analysis. Figure 4.9 

describes the sampling protocol that was followed by Zhang et al. (2014). 

Whilst the microarray dataset contains 24 time points (samples every 2 hrs for 

48 hrs), the RNA-seq dataset contains only 8 time points (samples every 6 hrs 

for 48 hrs). Therefore, the microarray dataset was first used to test whether 

TimeTeller could perform adequately on such a low-resolution time course. 

 

TimeTeller was trained using an iterative leave-one-tissue-out method, so as 

to ensure that the test tissue remained independent of the trained model. The 

Figure 4.9 Sampling protocol for the mouse circadian transcriptomic datasets published by Zhang et al., 

2014. All samples were analysed by microarrays. Red samples were also analysed by RNA-seq. Only 8 

tissues from the dataset are used for the model build (i.e., no brain samples, nor white fat, see chapter 

4.2.3 for details). 
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model was built exactly as described by Vlachou et al., (2020), i.e., using inter-

gene normalisation (see chapters 4.2.4 & 4.2.5). Figure 4.10A displays the time 

predictions that TimeTeller produced for each of the samples in the microarray 

dataset when trained using all 24 time points (CT18 → CT46). Meanwhile, 

Figure 4.10B shows the time predictions that TimeTeller produced for each of 
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Figure 4.10 Results of TimeTeller trained on Zhang microarray data in 

a leave-one-tissue-out fashion. A&C) Full 2 hr resolution time course 

used for training. B&D) Subset 6 hr resolution time course used for 

training. A&B) TimeTeller’s predicted time vs actual time. C&D) Mean 

of each tissue, (absolute error = absolute difference between predicted 

time and actual time, accounts for 0hr=24hr). E) Overall MAE for the 

high- and low-resolution time prediction models. 

Training 
resolution 

MAE 
(hr) 

2 hr 1.4798 

6 hr 1.5334 

 

E 



207 

 

the samples in the microarray dataset when trained using only the 8 timepoints 

contained within the RNA-seq dataset (CT22, 28, 34, 40, 46, 52, 58 and 64). 

Figure 4.10A and B demonstrate that the 2 hr and 6 hr model builds performed 

very similarly. Figure 4.10E confirms that the mean absolute error (MAE) of 

all of the test samples was comparable between the 2 and the 6 hr model builds, 

suggesting that TimeTeller’s interpolation of low-resolution training data in 

principal component space was perfectly adequate for accurate time prediction. 

 

Figure 4.10C&D are of particular interest because they demonstrate that the 

accuracy of time prediction varied by up to 2 hrs for different tissue types. 
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Figure 4.11 Microarray probes used as features to train the TimeTeller model. Different tissues express 

the oscillatory probes at quite different amplitudes and magnitudes. 
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Figure 4.11 demonstrates that this bias was likely due to differences between 

different tissue types in the amplitude and magnitude of the oscillatory probes 

that were used to train TimeTeller. One of the challenges in building a multi-

tissue time predictor is how to deal with tissue-tissue variation in system that 

is designed to predict time, and ideally would only contain information relating 

to time-dependent variation between samples. Hughey et al. (2016) addressed 

tissue-tissue variation by using ComBat to reduce such variation prior to 

training ZeitZeiger. The disadvantages to using ComBat have been discussed 

in chapter 4.1.2.5. 

 

Given that the 6 hr resolution Zhang et al. microarray dataset was sufficient 

to train TimeTeller, the Zhang et al. RNA-seq dataset was screened for 

rhythmic and synchronous genes as described by Vlachou et al. (2020), and 

detailed in chapter 4.2.3. Table 4.3 and Figure 4.12 display the results of 

periodic gene selection for the Zhang et al. RNA-seq data. Eleven genes were 

selected to train TimeTeller, as 11 probes were selected to train TimeTeller for 

analysis of the microarray dataset. The highest ranked rhythmic and 

synchronous genes identified in the Zhang RNA-seq dataset (Figure 4.12) were 

similar but not identical to the rhythmic and synchronous probes identified in 

the microarray dataset (Figure 4.11). This is likely to be due in part to the 

different technologies, and in part to the difference in sampling resolution. The 

optimal number of features required to train TimeTeller – and indeed other 

time-telling algorithms – is a question without a precise answer. Vlachou et al. 

(2020) used 11-16 probes to train TimeTeller. Meanwhile Hughey et al. (2016) 

trained ZeitZeiger using 10 probes, but also observed remarkable accuracy with 

as few as 2 probes, and observed no improvement to the MAE of time 

predictions with more than 13 probes. 
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TimeTeller was trained in a leave-one-tissue-out fashion on the RNA-seq 

dataset using the 11 genes selected by rhythmicity and synchronicity analysis, 

just as for microarray data. The RNA-seq time-course was folded at 24 hrs, 

such that CT22=CT46. This allowed TimeTeller to predict time on a 0 to 

24 hr scale, which are ultimately easier to interpret than 0 to 48 hr time 

predictions. Figure 4.13 shows TimeTeller’s time predictions produced for each 

of the samples in the RNA-seq dataset. TimeTeller’s time predictions of the 

RNA-seq samples are relatively comparable in accuracy to those of the 

microarray samples (RNA-seq MAE=1.57 hr vs microarray MAE=1.53 hr). As 

was observed in the leave-one-out microarray model, Figure 4.13B shows that 

Table 4.3 Identification of rhythmic and synchronous genes according to the method developed by 

Vlachou et al. (2020). Genes were ranked for goodness of cosine fit (indicating rhythmicity) and 

percentage of variance in the data explained by the first principal component (indicating synchronicity 

between tissues). Equally weighted ranks were assigned to both scores to select a feature set for 

TimeTeller. 

 Gene 
Name 

ENSEMBL ID 

Percentage of 
variance 

explained by 
the 1st PC 

Geometric 
mean of 

cosinor p-value 

Rank of %age 
of variance 

explained by 
the 1st PC 

Rank of 
geometric 
mean of 

cosinor p value 

Sum rank 

1 Tef ENSMUSG00000022389 96.4768 0.00050 49 48 97 
2 Dbp ENSMUSG00000059824 95.7964 0.00025 47 50 97 
3 Nr1d2 ENSMUSG00000021775 97.1282 0.00110 50 46 96 
4 Per3 ENSMUSG00000028957 94.9269 0.00048 46 49 95 
5 Arntl ENSMUSG00000055116 95.9986 0.00120 48 45 93 
6 Hlf ENSMUSG00000003949 93.9324 0.00190 43 42 85 
7 Nr1d1 ENSMUSG00000020889 88.7963 0.00060 35 47 82 
8 Dtx4 ENSMUSG00000039982 91.3875 0.00200 37 41 78 
9 Npas2 ENSMUSG00000026077 91.6742 0.00230 38 39 77 
10 Cys1 ENSMUSG00000062563 88.1739 0.00160 31 44 75 
11 Per2 ENSMUSG00000055866 94.5974 0.00520 44 23 67 
12 Nfil3 ENSMUSG00000056749 86.4695 0.00400 25 32 57 
13 Hsp90aa1 ENSMUSG00000021270 83.643 0.00340 18 36 54 
14 Bhlhe41 ENSMUSG00000030256 86.186 0.00410 24 29 53 
15 Ypel2 ENSMUSG00000018427 85.9972 0.00420 23 28 51 
16 Trim65 ENSMUSG00000054517 87.1274 0.00500 27 24 51 
17 Clock ENSMUSG00000029238 84.4957 0.00480 20 25 45 
18 Hsp90ab1 ENSMUSG00000023944 80.5717 0.00350 5 35 40 
19 Wee1 ENSMUSG00000031016 88.6362 0.00820 33 7 40 
20 Tmem57 ENSMUSG00000028826 88.0459 0.00870 30 4 34 
21 Naa60 ENSMUSG00000005982 83.3822 0.00650 17 16 33 
22 Adamts4 ENSMUSG00000006403 88.214 0.00920 32 1 33 
23 Leo1 ENSMUSG00000042487 81.5901 0.00590 9 20 29 
24 Rasl11a ENSMUSG00000029641 80.8371 0.00590 6 19 25 
25 Zfp36l1 ENSMUSG00000021127 82.2365 0.00730 11 10 21 
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Figure 4.12 Scatter plot of genes expressed in 8 tissues from the Zhang et al. (2014) RNA-seq time-course 

dataset. Genes are scored for rhythmicity (using the geometric mean of each tissue’s cosinor p-value) and 

percentage of variation explained by the first principal component. The 11 genes marked in blue form 

the selected feature set (see Table 4.3 for more details). 
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Figure 4.13 Results of TimeTeller trained on Zhang RNA-seq data in a leave-one-tissue-out fashion. A) 

TimeTeller’s predicted time vs actual time of sampling. B) Mean absolute error of all samples from each 

tissue. Overall MAE = 1.57 hr.  
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the MAEs of the different tissues in the RNA-seq dataset were highly varied 

(by ~3 hrs). Figure 4.14 shows that the amplitude/magnitude of expression of 

the features used to train TimeTeller varied from tissue to tissue, which 

presumably hindered the accuracy of time prediction in some tissues relative 

to others. The “inter-gene” data normalisation method implemented by 

Vlachou et al. (2020) was not sufficient to remove tissue-tissue differences in 

the data, such that single sample time prediction was not of similar accuracy 

across tissues. 
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Figure 4.14 Time-dependent expression of the RNA-seq transcripts used as features to train the 

TimeTeller model in each tissue type used in the model build. Different tissues express the oscillatory 

genes at quite different amplitudes and magnitudes. 
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4.3.2 Improving data normalisation for multi-tissue time prediction 

 

Building a time-telling model from a combination of different tissue types, as 

described above, is an attractive goal and therefore has been attempted by 

several research groups (Agostinelli et al., 2016; Hughey et al., 2016; Vlachou 

et al., 2020). A multi-tissue time predictor could have a broad application to 

a number of different tissue types, which would make it more useful. 

Additionally, one of the remaining limitations to the development of biological 

time prediction algorithms is the availability of tissue-matched training 

datasets. It therefore makes sense to design a time-telling model that could 

take advantage of any available datasets, regardless of tissue type. To achieve 

multi-tissue model builds and/or cross-tissue time prediction, is not an easy 

goal. 

 

The data presented thus far demonstrates that the normalisation of the 

oscillatory genes used as TimeTeller’s feature set is important in order to 

remove tissue-tissue variation in oscillatory gene expression. It is clear that the 

ideal data normalisation method for TimeTeller should be shape-preserving, 

since the shape of the gene expression in each tissue relates directly to clock 

function. One such shape-preserving method would be to z-score the training 

data, i.e., normalise each sample to a standard normal distribution by 

subtracting the time-course mean and dividing by the time-course standard 

deviation for each gene in each tissue. This is termed “time-course 

normalisation” and is described in greater detail in chapter 4.2.3. 

 

Having performed time-course normalisation instead of the aforementioned 

inter-gene normalisation, TimeTeller was re-run in a leave-one-tissue-out 

fashion on the Zhang et al. (2014) RNA-seq dataset, in order to test the 

accuracy of time prediction following time-course normalisation. Figure 4.15 
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shows that time-course normalisation removed a great deal of the tissue-tissue 

variation that was visible in the unnormalised data presented in Figure 4.14. 

Figure 4.16 demonstrates that time-course normalisation also increased the 

accuracy of leave-one-tissue-out sample time prediction; the MAE decreased 

from 1.57 hr using inter-gene normalisation to 0.61 hr when time-course 

normalisation was applied. Importantly the MAE of different tissues was also 

more uniform after time-course normalisation (Figure 4.16B). Figure 4.16B 

shows that the tissue-wise MAE of the adrenal gland and skeletal muscle were 

slightly higher than that of the other tissues, therefore the raw error of each 

time prediction was investigated for each tissue. Figure 4.17 demonstrates that 

relative to the other tissues the skeletal muscle and adrenal gland samples were 
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Figure 4.15 Time-course normalised time-dependent expression of the RNA-seq transcripts used as 

features to train the TimeTeller model in each tissue type used in the model build. Tissue-tissue variation 

in the dataset was greatly reduced by shape-preserving time-course normalisation. 
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slightly phase advanced, i.e., TimeTeller assigned a predicted time that was 

advanced of the known time of sampling. Since the tissue-wise raw error 

differed from 0 by no more than 1 hr for any tissue, the small phase 

advance/delays for each tissue were not considered to be a significant cause 

for concern. It should be noted that TimeTeller is at a disadvantage relative 

to ZeitZeiger here, as whilst TimeTeller requires training data sampled at 

regular time intervals around the clock, the ZeitZeiger method accepts training 

data sampled at any time. Therefore, for ZeitZeiger the relative tissue phase 

advances/delays could be used to adjust the time of sampling prior to re-

training the model. However, thus far it appears that such a tissue-wise phase 

adjustment has not been implemented in the literature in combination with 

ZeitZeiger. 
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Figure 4.16 Results of TimeTeller trained on Zhang RNA-seq data in a leave-one-tissue-out fashion 

having applied time-course normalisation. A) TimeTeller’s predicted time vs actual time of sampling. B) 

Mean absolute error of all samples from each tissue. Overall MAE = 0.613 hr. 
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Having trained the TimeTeller model on the multi-tissue Zhang et al. RNA-

seq data, it was important to confirm that the reduction of the feature set to 

3 dimensions was appropriate. The idea is to reduce the feature set such that 

most of the variation in the dataset is described by as few dimensions as 

possible. Figure 4.18 demonstrates that three dimensions is sufficient to explain 

>90% of the variation in the feature × observation data matrices that 

corresponded to each timepoint in the training time series. Vlachou et al.  

(2020) also found that 3 dimensions was suitable for every application of 

TimeTeller to microarray data. 

 

The disadvantage of time-course normalisation in this leave-one-tissue-out 

model is perhaps already apparent. Time-course normalisation is by definition 

time-course dependent. Therefore, the goal of single time point time prediction 
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Figure 4.17 The tissue-wise raw error, i.e., TimeTeller's predicted time subtracted from the time of 

sampling. A negative raw error represents a relatively phase-advanced tissue, whilst a positive raw error 

represents a tissue that was phase-delayed relative to the other tissues. Each box-and-whisker plot 

represents the error of 8 samples of the given tissue type. Black whiskers represent the range, blue boxes 

the interquartile range, and red lines represent the mean. 
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is not achieved. However, the notion behind time-course normalisation is 

important. That is that shape-preserving normalisation can be achieved using 

the mean and standard deviation of gene expression in each tissue over time. 

 

4.3.3 Adapting time-course normalisation for single sample time 

prediction: testing quasi-time-course normalisation on an 

independent test dataset 

 

Since time-course normalisation is not an appropriate approach for the 

normalisation of a single independent test data sample for which no time wise 

means and standard deviations of gene expression are available, “quasi-time-

course normalisation” will be tested as an alternative approach for single-

timepoint time-telling. Quasi-time-course normalisation is described in greater 
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Figure 4.18 Cumulative percentage of variance explained by each of the principal components found by 

SVD. Data for day 1 and day 2 (e.g., CT22 and CT46) is combined to build a 24 hr model. 3 dimensions 

are sufficient to explain more than 90% of the variation in the dataset for each local projection. 
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detail in chapter 4.2.4; essentially gene expression in the independent test data 

sample is normalised to the time series mean and standard deviation of gene 

expression in the training tissue that corresponds to the test sample. To test 

the efficacy of “quasi-time-course normalisation” an independent test dataset is 

required. An appropriate test dataset should be comprised of murine samples 

in at least one of the following tissues: adrenal, aorta, brown fat, heart, kidney, 

liver, lung or skeletal muscle. Secondly, the test data samples should be time-

stamped, so that TimeTeller’s biological time prediction can be compared with 

the known time of sampling. Lastly, a time series would ideally contain samples 

collected over a 24 hr period in order to understand how TimeTeller functions 

over 24 hr time. Possible test datasets were identified by literature search and 

are detailed in Table 4.1, chapter 4.2.1. 

 

The Kinouchi et al. (2018) dataset contains samples from mouse liver and 

skeletal muscle taken around the clock in light/dark entrainment conditions 

(Kinouchi et al., 2018). Sample collection commenced at ZT0 which 

corresponded to the ‘lights on’ time. The Zhang et al. (2014) training dataset 

contains samples taken under dark/dark conditions from CT22, i.e., 22 hrs 

after the lights would have been switched on, were the mice not in dark/dark 

conditions. For the purposes of this study, CT28 and CT52 in the Zhang et al. 

dataset is considered equivalent to ZT4 in the Kinouchi et al. dataset. In truth, 

there is likely to be a small difference in the oscillatory gene expression between 

CT28, CT52 and ZT4 as the free-running murine circadian clock is slightly 

shorter than 24 hrs (23.8 hr in C57BL/6 (Schwartz & Zimmerman, 1990)). 

However, a recent comparison of the period lengths of core clock genes in 

light/dark entrained vs short time dark/dark conditioned mice showed no 

significant difference between the two datasets (Huan Li et al., 2020). 
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The Kinouchi et al. data was downloaded from NCBI’s SRA database as raw 

SRA files (GEO identifier: GSE107787) and normalised to logCPM as 

described in chapter 4.2.2. For both skeletal muscle and liver, there were two 

conditions. Firstly, mice that had been fed ad libitum, and secondly mice that 

had been starved for exactly 24 hrs prior to point of sampling (Figure 4.19). 

Kinouchi et al. examined the differences in the oscillatory gene expression 

between the ad libitum fed mice and the starved mice and concluded that 

oscillatory transcription was significantly altered in the liver and skeletal 

muscle of starved mice. It should be noted that the study design was unusual, 

as the oscillatory gene expression of the starved mice was analysed by Kinouchi 

et al. as though the starved samples belonged to a continuous time series, even 

though each mouse had been starved for exactly 24 hrs regardless of where it 

appeared in the time-course (Figure 4.19). Here, TimeTeller has an opportunity 

to provide information about the molecular clock in single independent 

samples. 

 

Firstly, it was important to examine the raw Zhang et al. and Kinouchi et al. 

data in order to assess whether quasi-time-course normalisation seemed an 

appropriate approach. Figure 4.20A displays the raw Zhang et al. data 

previously displayed in Figure 4.14, however this time the data was plotted 

folded at 24 hrs to better represent how the data was folded to train 

Figure 4.19 Sampling protocol for Kinouchi et al. dataset. Reproduced from Kinouchi et al. (2018) Figure 

1. 
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Figure 4.20 logCPM normalised Zhang and Kinouchi data. A) Raw folded, double-plotted Zhang training 

data coloured by tissue. B) Raw Zhang training data plotted in black, skeletal muscle in pink. Raw 

Kinouchi test data plotted in green (ad libitum fed) and red (starved). C) Time-course normalised Zhang 

training data plotted in black, skeletal muscle in pink. Quasi-time-course normalised Kinouchi test data 

plotted in green (ad libitum fed) and red (starved). N.B. each sample is from a different mouse to the 

sample at the following timepoint. Therefore lines are drawn only for ease of data visualisation. 
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TimeTeller. The skeletal muscle data was considered first. Figure 4.20B 

demonstrates that expression of the training genes in the ad libitum fed skeletal 

muscle samples from Kinouchi et al. aligned remarkably well to expression of 

the training genes in the skeletal muscle Zhang samples. This was a promising 

indicator that quasi-time-course normalisation would be an appropriate 

approach for independent normalisation of single samples. Rhythmic gene 

expression in the starved skeletal muscle samples plotted in Figure 4.20B 

appeared different to that in the ad libitum fed samples, as described by 

Kinouchi et al. (2018). Figure 4.20C shows the result of normalising the 

Kinouchi et al. skeletal muscle gene expression to the time-course mean and 

standard deviation of skeletal muscle gene expression in the Zhang et al. data, 

i.e., the result of implementing the aforementioned quasi-time-course 

normalisation on the Kinouchi et al. skeletal muscle dataset. The quasi-time-

course Kinouchi et al. ad libitum skeletal muscle data aligned well to the time-

course normalised Zhang et al. data (Figure 4.20C). The most differently 

expressed gene was Dtx4 which appeared to be more highly expressed in the 

Kinouchi skeletal muscle samples than the Zhang skeletal muscle samples. 

Dtx4 is involved in the Notch signalling pathway which can help to determine 

cell fate amongst other processes (Chastagner et al., 2017). Dtx4 is consistently 

expressed rhythmically in the eight Zhang et al. tissues, though the relationship 

between Dtx4 and the core circadian clock genes is unknown (R. Zhang et al., 

2014). 

 

TimeTeller was able to predict the sampling time of the Kinouchi et al. ad 

libitum fed skeletal muscle samples with remarkable accuracy (Figure 4.21A, 

C); overall, the MAE of ad libitum fed skeletal muscle samples was under 30 

minutes. With a logthresh of -12, the Θ values ranged from 0.02 to 0.08. This 

gave an indication of the magnitude of Θ associated with samples known to 

have ‘normal’ time predictions. On average the time predictions for the starved 
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skeletal muscle samples displayed a much higher error (MAE=3.79 hr, Figure 

4.21D), which was to be expected, given that Kinouchi et al. (2018) reported 

a very different rhythmic transcriptional programme in starved mice relative 

to ad libitum fed mice. Additionally, the Θ values were more varied, and 

generally higher, than for the ad libitum fed samples. 
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Figure 4.21 A) TimeTeller's predicted times for Kinouchi et al.’s ad libitum fed skeletal muscle samples, 

plotted against corresponding Θ values (logthresh=e-12). Vertical coloured lines represent the actual time 

of sampling of all samples. B) TimeTeller's predicted times for Kinouchi et al.’s starved skeletal muscle 

samples, plotted against corresponding Θ values. C) Error (difference between time of sampling and 

TimeTeller’s predicted time) for ad libitum fed skeletal muscle samples.  MAE= 0.496 hr. D) Error for 

starved skeletal muscle samples. MAE = 3.45 hr excluding one ZT4 and one ZT8 sample for which the 

maximum likelihood fell below logthresh. 
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The advantage of applying to TimeTeller to the Kinouchi et al. starved 

samples is that they can be considered independently from one another – as 

each of the mice was starved for exactly 24 hrs the data should not truly be 

considered as a continuous time-course. In fact, TimeTeller demonstrates that 

the ZT20 starved skeletal muscle samples have time predictions and Θ values 

that are most comparable to the ad libitum samples. This suggests that 24 hrs 

of food restriction prior to ZT20 did not have a very large effect on the 

expression of the genes used to build TimeTeller, i.e., the genes that are most 

consistently circadian in mouse tissues. The time predictions for ZT0 and ZT16 

starved skeletal muscle samples were more abnormal than the ZT20 samples. 

Two of the ZT0 samples had excellent time predictions, though on average Θ 

was higher for all of the ZT0 samples. Meanwhile the ZT16 starved samples 

had Θ values within the ‘normal’ ad libitum range, but the time predictions 

were phase delayed relative to time of sampling. The ‘daytime’ starved skeletal 

muscle samples (ZT4, 8 and 12) all displayed much poorer time predictions 

relative to time of sampling, and/or much larger Θ values. In fact, the 

maximum likelihoods were so low for two samples (one ZT4 and one ZT8) that 

they fell below logthresh (𝑒'-!) and no time prediction was able to be 

estimated. 

 

The Θ metric contains interesting information about the degree of clock 

dysfunction, however it is somewhat opaque to interpretation since the 

magnitude of Θ depends upon several variables (discussed in detail in chapter 

4.2.5.5). Therefore, it is helpful to view the centred scaled likelihood curves 

and the raw data projections for a better understanding of the key drivers 

behind the apparent increase clock dysfunction in the starved skeletal muscle 

samples. Figure 4.22 shows that the likelihood curves were generally more 

disordered for the starved samples relative to the ad libitum samples. The 

higher baselines of the starved sample likelihood curves relative to the ad 
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libitum samples, reveals that the maximum likelihoods were frequently lower 

for the starved samples. Generally lower maximum likelihoods are reflective of 

test data that is projected to a low dimensional location that is relatively 

distant to the location of the projected training data. If the maximum 

likelihood is so low that the baseline of the likelihood curve is raised above the 

clock dysfunction threshold (shown in black, Figure 4.22) then the value of Θ 

will be higher to reflect the fact that TimeTeller’s time predictions are of 

relatively low maximum likelihood, as observed for some of the starved skeletal 

muscle samples. Figure 4.22 also reveals that a greater proportion of the 

starved samples’ likelihood curves had secondary peaks than the ad libitum 

samples’ likelihood curves. Secondary peaks may occur when different local 

Starved skeletal muscleAd libitum fed skeletal muscle

ZT0
ZT4

ZT8
ZT12

ZT16
ZT20

Clock Dysfunction Threshold, =0.35, =0.4, logthresh=-12

Centred Scaled Likelihood Functions

Figure 4.22 Centred scaled likelihood functions of A) Kinouchi et al.’s ad libitum fed skeletal muscle 

samples and B) Kinouchi et al.’s starved skeletal muscle samples. All functions are coloured by time of 

sampling. Likelihood functions were thresholded such that the minimum likelihood was set to 𝑒234 (i.e., 

a logthresh value > 0). Then all likelihood curves were scaled such that the maximum likelihood was 

equal to 1. Functions were centred around the primary peak such that the shapes of different functions 

were comparable to one another. Θ was calculated as the proportion of the centred scaled likelihood 

function that crosses above the black clock dysfunction threshold. 

A B 



224 

 

projections of the test data give different time predictions, which implies that 

the training genes were expressed in a combination that may not be observed 

in ‘normal clock’ samples. The further a secondary peak lies from the primary 

peak, the more it is likely to reflect an abnormal combination of expressed 

genes, and the more likely it becomes that the secondary peak will cross the 

clock dysfunction threshold (black line) and increase the value of Θ. Figure 

4.22 shows that some of the secondary peaks in the starved skeletal muscle 

samples crossed the clock dysfunction threshold and contributed to an increase 

in the value of Θ. 

 

Sometimes visualising the data in the low dimensional projection space can 

help to understand high Θ values. Figure 4.23A shows that the ad libitum fed 

mice lie neatly on the trained TimeTeller model (which is visualised using mesh 

ellipsoids to represent interpolated time – see chapter 4.2.5 for details). The 3-

dimensional graphs are rotated such that the relative locations of the training 

and test data samples can be appreciated as best as possible. From Figure 

4.23B it is clear that the starved skeletal muscle samples behave differently to 

the Zhang et al. training data. Interestingly the starved skeletal muscle samples 

appear to form an elliptical oscillator that is ‘off-centre’ from the model such 

that it oscillates in the vicinity of the CT22/46 training data. This observation 

should be interpreted with caution, given that the starved samples do not form 

a conventional time course. 

 

It is interesting to consider that food intake in mice is a rhythmic process, and 

that the majority of caloric intake occurs during the dark phase (ZT12-

ZT24/0) (Kinouchi et al., 2018). Therefore, the starved samples taken at ZT12 

had arguably endured 24 hrs starvation which was immediately preceded by 

12 hrs of relatively low caloric intake. Conversely, the starved samples taken 

at ZT0 had endured 24 hrs starvation which was immediately preceded by 12 
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hrs of relatively high caloric intake. In other words, over the 36 hr prior to 

sampling, mice sampled at ZT12 were ‘more starved’ than the ZT0 mice. It is 

therefore interesting to compare the ZT0 (red) and ZT12 (cyan) samples in 

Figure 4.23A & B. The predicted times of the samples corresponding to ZT0 

behave much more similarly in the ad libitum and starved conditions, than the 

predicted times of the ZT12 samples in the ad libitum vs starved conditions. 

This might indicate that the degree of rhythmic gene disruption was related 

to the of the relative length of caloric deprivation in the mice. This observation 

is only possible by considering each sample as an independent entity in 

TimeTeller, rather than as a part of a time-course, and therefore was not a 

point of discussion in the Kinouchi et al. paper. 

 

Figure 4.23 Projected Zhang et al. training and Kinouchi et al. skeletal muscle test data onto the first 3 

principal components identified from each of the original training data timepoints (t=4). A) Projected 

ad libitum  fed samples. B) Projected starved samples. The mesh ellipsoids which represent the training 

data are colour-matched to the test data, such that ZT0 = CT24 = red. The mesh ellipsoids represent 3 

standard deviations from the mean of the interpolated Gaussian ellipsoids. The means of the interpolated 

Gaussian ellipsoids lie along the spline fitted to the training data distributions (black line). 
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The Kinouchi et al. (2018) paper also contained RNA-seq data corresponding 

to liver samples from ad libitum fed and starved mice. Figure 4.24 

demonstrates expression of the training genes in the Zhang et al. training data, 

and also the liver samples from Kinouchi et al. (2018). Quasi-time-course 

normalisation of the Kinouchi et al. liver gene expression to the time-course 

mean and standard deviation of the Zhang et al. liver gene expression also 
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Figure 4.24 A) Raw Zhang training data plotted in black, Zhang liver in blue. Raw Kinouchi liver test 

data plotted in green (ad libitum fed) and red (starved). C) Time-course normalised Zhang training data 

plotted in black, Zhang liver in blue. Quasi-time-course normalised Kinouchi liver test data plotted in 

green (ad libitum fed) and red (starved). N.B. each sample is from a different mouse to the sample at 

the following timepoint. Therefore connecting lines are plotted only for ease of data visualisation. 

A 

B 



227 

 

appeared to be an appropriate approach for independent normalisation of 

single Kinouchi et al. liver samples (Figure 4.24B). Expression of the rhythmic 

training genes in the starved liver samples appeared different to that in the ad 

libitum fed liver samples, as described by Kinouchi et al. (2018). It is 

interesting to note that expression of the rhythmic training genes in the starved 

liver samples was also slightly different to training gene expression in the 

starved skeletal muscle samples. For instance, in the starved skeletal muscle 

tissue Cys1 appeared slightly phase delayed relative to ad libitum fed samples. 

However, in the starved liver tissue Cys1 appeared to be under-expressed 

relative to the ad libitum fed samples. This suggests that starvation conditions 

caused a tissue-specific response in circadian gene expression. 

 

TimeTeller was able to predict the sampling time of the Kinouchi et al. ad 

libitum fed liver samples with very good accuracy (Figure 4.25A, C); overall, 

the MAE of ad libitum fed liver samples was 0.87 hr. With a logthresh of -12, 

the Θ values ranged from 0.01 to 0.05. This gave an indication of the magnitude 

of Θ associated with samples known to have ‘normal’ clock function. Unlike 

the starved skeletal muscle samples, the Θ values of the starved liver samples 

were consistent with the Θ values of the ad libitum fed liver samples (Figure 

4.26), which indicated high confidence in TimeTeller’s time predictions for the 

starved liver samples. However, the MAE of TimeTeller’s time predictions for 

the starved liver samples was much higher (3.87 hr, Figure 4.25D), than would 

be expected of functional clocks – which given that Kinouchi et al. (2018) 

reported a different rhythmic transcriptional programme in the livers of 

starved mice relative to ad libitum fed mice, was not wholly unexpected. For 

instance, ZT4 starved liver samples had what appeared to be almost perfectly 

functional clocks with low Θs and a time prediction error approaching 0, 

indicating that rhythmic training gene expression in the liver was apparently 

unperturbed by 24 hrs of starvation. On the other hand, the ZT16 samples 
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appeared to have extremely inaccurate time predictions, with a very high 

(magnitude) error of -9.25 hr. It is apparent from examining the data in the 

low dimensional projection space that the ad libitum fed liver samples aligned 

well with the trained TimeTeller model (Figure 4.27). However, the starved 

skeletal liver samples appeared to form an elliptical oscillator ‘off-centre’ from 

the model, such that it oscillated in the vicinity of the CT28/52 training data 
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Figure 4.25 A) TimeTeller's predicted times for Kinouchi et al.’s ad libitum fed liver samples, plotted 

against corresponding Θ values (logthresh=e-12). Vertical coloured lines represent the actual time of 

sampling of all samples. B) TimeTeller's predicted times for Kinouchi et al.’s starved liver samples, 

plotted against corresponding Θ values. C) Error (difference between time of sampling and TimeTeller’s 

predicted time) for ad libitum fed liver samples.  MAE= 0.87 hr. D) Error for starved liver samples. 

MAE = 3.87 hr excluding one ZT12 sample for which the maximum likelihood fell below logthresh. 
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– about 4-6 hrs phase-delayed of the time that the skeletal muscle samples 

clustered to most closely. This observation should be interpreted with caution, 

given that the starved samples do not originate from a conventional time 

course. 

 

The Kinouchi et al. skeletal muscle and liver data discussed above 

demonstrates for the first time that TimeTeller is capable of predicting both 

time, and confidence in the predicted time (Θ), in a single time point fashion 

from RNA-seq data, provided the following holds true: 

• The test and training data sets are processed and normalised using the 

same RNA-seq pipeline. 

• The test data matches one of the tissues in the training data set to allow 

for quasi-time-course normalisation. 

 

Skel mus ad lib Skel mus starved Liver ad lib Liver starved
10-2

10-1

100

Thetas of Kinouchi et al. data

Figure 4.26 Θ values for all samples in Kinouchi et al. (2018) data set. The Θ values indicate significant 

clock dysfunction in the starved skeletal muscle samples. P values correspond to Welch’s two sample t-

test and indicate >99% confidence that the marked distributions do not belong to populations of the 

same mean. 

p=0.0033 p=0.0027 
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The Kinouchi et al. data highlights one of the significant hurdles to the 

implementation of time-telling algorithms to single samples. That is that a 

single sample can only provide information about the clock gene expression at 

a single instance in time. For instance, the starved liver samples at ZT4 had 

predicted times and Θ values consistent with a healthy oscillating clock. 

However, given that many of the other 24 hr starved liver samples displayed a 

disrupted oscillator, it is likely that the molecular clock in the ZT4 samples 

was also not oscillating as normal over time. For this reason, the use of a single 

sample to draw conclusions about the function of the molecular oscillator in a 

single individual should be approached with caution. 

 

This conclusion is relevant for analysis of human data. For instance, 

Wittenbrink et al. (2018) applied ZeitZeiger to NanoString data to build a 

A B 

Figure 4.27 Projected Zhang et al. training and Kinouchi et al. liver test data onto the first 3 principal 

components identified from each of the original training data timepoints (t=4). A) Projected ad libitum  

fed samples. B) Projected starved samples. The mesh ellipsoids which represent the training data are 

colour-matched to the test data, such that ZT0 = CT24 = red. The mesh ellipsoids represent 3 standard 

deviations from the mean of the interpolated Gaussian ellipsoids. The means of the interpolated Gaussian 

ellipsoids lie along the spline fitted to the training data distributions (black line). 
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diagnostic tool that predicts the biological time (relative to DLMO) of a single 

individual from a single human blood sample. However, the application of 

TimeTeller to the Kinouchi et al. data – particularly the starved liver samples 

– demonstrates that time prediction from a single sample in a single individual 

can be misleading. Therefore, it is likely that the strength of time-prediction 

algorithms lies in protocols that rely on repeated sampling, relative sampling 

and/or population sampling. Blood samples for instance are possible to obtain 

repeatedly, e.g., 2 samples, sampled 4 hrs apart. Meanwhile, for tissues that 

can only be biopsied once, such as a tumour, it might be possible to gain 

greater insight by comparing the clock function in ‘healthy’ tumour margin 

relative to malignant tumour stroma. Finally, TimeTeller’s time predictions 

and Θ values can be compared between conditions sampled over a population 

of individuals, in order to make the method more resilient to the effect of 

misleading samples. 

 

4.3.4 Testing quasi-time-course normalisation on further 

independent test datasets 

 

A number of datasets were identified to determine whether the Zhang tissue 

trained TimeTeller could also assess circadian clock function using quasi-time-

course normalisation in datasets with genetically altered clocks. The datasets 

selected included Arntl WT vs KO samples from liver and kidney, and 

Cry1/Cry2 double KO samples from liver (Weger et al., 2021; Yeung et al., 

2018) (see Table 4.1, chapter 4.2.1 for further details of datasets). When testing 

TimeTeller on data that had a knockout of a rhythmic training gene, that 

training gene was excluded from the model build, and replaced with the next 

most rhythmic and synchronous gene, in order to avoid biasing the time 

prediction. In practice this meant that the feature set remained the same for 
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all datasets, except those containing Arntl KO samples, in which case Arntl 

was replaced with Nfil3. Nfil3 is a known component of the circadian clock (see 

chapter 1.2 for further details). All datasets were downloaded from NCBI’s 

SRA database and were normalised to logCPM as described in chapter 4.2.2. 

 

4.3.4.1 Weger et al. 2021 Liver Arntl WT vs Arntl KO 

Figure 4.28A demonstrates that the majority of TimeTeller’s time predictions 

for the Arntl WT and Arntl KO liver samples were of relatively high confidence 

(Θ value remained < 0.08). The time predictions for the Arntl KO liver samples 

displayed a much higher error than the Arntl WT liver samples (Figure 4.28 

A&B) as the time predictions for the Arntl KO liver samples all clustered 

between CT20 and CT24, regardless of the original sampling time. The 

clustering of Arntl KO liver samples to CT20-24 is also noticeable when the 

data is observed in the low dimensional local projection spaces (Figure 4.28C). 

This clustering of samples to a particular point in time implies that when Arntl 

was knocked out the oscillatory clock in the liver became ‘stuck or ‘frozen’ at 

a particular point in time. 

 

Hughey et al. have previously demonstrated using ZeitZeiger that Arntl KO 

microarray samples had a demonstrable bias for CT20-24, but the bias was not 

so extreme that the molecular oscillatory system appeared frozen (Figure 4.29). 

There are multiple reasons why TimeTeller’s findings might differ from 

ZeitZeiger’s; ZeitZeiger was trained using a slightly different gene set to 

TimeTeller, ZeitZeiger was tested on different test datasets from different 

tissues that used different knock out techniques relative to the test datasets 

used here, and Hughey et al. even applied an unbalanced batch correction 

method to their data prior to running ZeitZeiger. The Arntl WT and KO liver 

samples analysed by TimeTeller support the conclusion that Arntl KO biases 

the molecular clock to a state that limits the expression of E-box driven genes 
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Figure 4.28 A) TimeTeller's predicted times for Weger et al’s Arntl WT and KO liver samples, plotted 

against corresponding Θ values (logthresh=e-12). Vertical coloured lines represent the actual time of 

sampling of all samples. B) Error (difference between time of sampling and TimeTeller’s predicted time) 

of samples. C) Projected Zhang et al. training and Weger et al. liver Arntl WT and KO test data onto 

the first 3 principal components identified from each of the original training data timepoints (t=4). 

A 

B 

C 



234 

 

such as Per2 and Dbp, and that this may occur to such an extent as to limit 

oscillatory core circadian gene expression altogether. Since E-box driven genes 

are at their lowest expression at CT20-24, this is the timepoint that best 

represents the gene expression that results from Arntl KO. 

 

 

Figure 4.29 Figure reproduced from Hughey et al. 2016, supplementary Figure 11. ZeitZeiger's findings 

for three different Arntl KO test microarray datasets. A) Time of sampling vs ZeitZeiger predicted time. 

B) Error, N.B. ZeitZeiger error trends appear reversed relative to TimeTeller’s error trends because 

ZeitZeiger calculates error as ‘predicted time’ – ‘sampling time’, rather than ‘sampling time’ – ‘predicted 

time’. C) Low dimensional data projections. Dashed line represents the model built from the Zhang 

microarray dataset. Coloured circles/triangles indicate projected test data. Arntl KO gave a varied 

phenotype, but tended to result in a damped oscillator that was biased towards ~CT20-CT24. 

C 
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4.3.4.2  Yeung et al. 2018 Kidney Arntl WT vs Arntl KO 

As was observed for Weger et al.’s liver samples, Figure 4.30A demonstrates 

that the majority of TimeTeller’s time predictions for the Yeung et al. Arntl 

WT and Arntl KO kidney samples were of relatively high confidence (i.e., Θ 

values remained < 0.08). The time predictions for the Arntl KO kidney samples 

displayed a much higher error than the Arntl WT samples (Figure 4.30 A&B), 

as the time predictions for the Arntl KO kidney samples all clustered between 

CT20 and CT24, regardless of the original sampling time. The clustering of 

Arntl KO kidney samples to CT20-24 was also noticeable when the data was 

observed in the low dimensional local projection spaces (Figure 4.30C). This 

clustering of samples to a particular point in time implies that when Arntl was 

knocked out the oscillatory clock in the kidney became ‘stuck or ‘frozen’ at a 

particular point in time, just as was observed for the Weger et al. liver samples. 

 

It is worth noting that one of the ZT4 Arntl KO samples behaved exactly as 

the ZT 4 WT samples did (Figure 4.30, red arrows). The raw gene expression 

of this sample was inspected to confirm that this sample was not an accidental 

duplication of a WT sample upon upload/download to/from the SRA 

database. The implication is that a WT mouse was mistakenly included in the 

Arntl KO group, though Yeung et al. do not address this issue in their paper. 

When using TimeTeller, such data quality issues are very apparent to the 

researcher. Yeung et al.’s dataset confirms TimeTeller’s ability to predict 

biological time of a third tissue – kidney.  

 

4.3.4.3  Weger et al. 2021 liver Cry1/Cry2 WT versus Cry1/Cry2 

double KO 

Figure 4.31A demonstrates that the majority of TimeTeller’s time predictions 

for the Cry1/2 WT and Cry1/2 KO liver samples were of relatively high 
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Figure 4.30 A) TimeTeller's predicted times for Yeung et al’s Arntl WT and KO kidney samples, plotted 

against corresponding Θ values (logthresh=e-12). Vertical coloured lines represent the actual time of 

sampling of all samples. B) Error (difference between time of sampling and TimeTeller’s predicted time) 

of samples. C) Projected Zhang et al. training and Yeung et al. kidney Arntl WT and KO test data onto 

the first 3 principal components identified from each of the original training data timepoints (t=4). Red 

arrows indicate one of the ZT4 Arntl KO samples which behaved as a WT sample would be expected to. 
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Figure 4.31 A) TimeTeller's predicted times for Weger et al’s Cry1/2 WT and KO liver samples, plotted 

against corresponding Θ values (logthresh=e-12). Vertical coloured lines represent the actual time of 

sampling of all samples. B) Error (difference between time of sampling and TimeTeller’s predicted time) 

of samples. C) Projected Zhang et al. training and Weger et al. liver Cry1/2 WT and KO test data onto 

the first 3 principal components identified from each of the original training data timepoints (t=4). 
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confidence (i.e., Θ values remained < 0.08). The time predictions for the 

Cry1/2 KO liver samples displayed a much higher error than the Cry1/2 WT 

liver samples (Figure 4.31 A & B) because the time predictions for the Cry1/2 

KO liver samples all clustered between approximately CT8 and CT13, 

regardless of the original sampling time. The clustering of Cry1/2 KO liver 

samples to CT8-13 was also noticeable when the data was observed in the low 

dimensional local projection spaces (Figure 4.31C). This clustering of samples 

to a particular point in time implied that when Cry1/2 was knocked out the 

oscillatory clock in the liver became ‘stuck or ‘frozen’ at a particular point in 

time that is approximately opposite in phase to the point at which Arntl KO 

liver clocks appear to be frozen (CT20-24). 

 

Previously Hughey et al. demonstrated using ZeitZeiger that Cry1/2 KO 

microarray samples also displayed time predictions of CT8-13 (Figure 4.32). 

The Weger et al. Cry1/2 WT and KO liver samples analysed by TimeTeller 

support the conclusion that Cry1/2 KO breaks the molecular oscillator such 

that the expression of E-box driven genes such as Per2 and Dbp remains 

constantly high, as the Per/Cry repressor complex cannot form to repress E-

box driven gene expression. Since E-box driven genes are at their highest 

expression at CT8-12, this is the timepoint that best represents the gene 

expression that results from Cry1/2 KO. 

 

It is interesting to note that the Weger et al. Cry1/2 KO liver samples 

appeared to form a single cluster in the low dimensional projection spaces 

(Figure 4.31C), but the time predictions for these samples formed two discrete 

clusters (Figure 4.31B). Further investigation revealed that this was due to the 

Cry1/2 KO liver samples displaying split likelihood curves with two discrete 

peaks (Figure 4.33). The phenomenon was particularly apparent for three 

samples ZT0B, ZT4A and ZT16B. Split likelihood curves can occur when a 
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data point lies inside a tight curve of the projected training data, as was the 

case for some of the Cry1/2 KO liver samples projected using the principal 

components obtained from CT22/46, CT28/52 and CT40/64 training data 

matrix decomposition (see Figure 4.31C for the tight curve in the model at 

approx. CT34 in these local projection spaces). Since each local projection 

results in a slightly differently shaped model, it is possible that a higher 

resolution training dataset, would produce a local projection where the model 

does not turn quite so sharply at e.g., CT34, and would result in a more 

continuous time prediction. On the other hand, since some of the Cry1/2 KO 

samples really did appear to lie just inside the model in many of the local 

projections, the implication is that gene expression in the Cry1/2 KO samples 

Figure 4.32 Figure reproduced from Hughey et al. 2016, supplementary Figure 11. ZeitZeiger’s findings 

for a Cry1/2 KO test dataset. A) Time of sampling vs ZeitZeiger predicted time. B) Error, N.B. ZeitZeiger 

error trends appear reversed relative to TimeTeller’s error trends because ZeitZeiger calculates error as 

‘predicted time’ – ‘sampling time’, rather than ‘sampling time’ – ‘predicted time’. C) Low dimensional 

data projections. Dashed line represents the model built from the Zhang microarray dataset. Coloured 

circles/triangles indicate projected test data. Cry1/2 KO resulted in a ‘frozen’ oscillator that was ‘stuck’ 

at ~CT8-13, as was the case for the Cry1/2 KO liver Weger et al. dataset processed by TimeTeller. 

C 
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most closely matched clock gene expression at either ~CT8 or ~CT13, and 

therefore the predicted times were accurate. Data such as this highlights the 

importance of inspecting the local projections and the raw likelihood curves for 

a better understanding of the outputs of TimeTeller. 
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Figure 4.33 Raw likelihood curves for each Weger et al. Cry1/2 WT and Cry1/2 KO liver sample. Each 

sample has four likelihood curves, one generated from each local projection of the data. The Cry1/2 KO 

samples display a phenomenon of split likelihood peaks, which was observed for the projections built 

from CT22/46, CT28/52 and CT40/64 data matrix decomposition, but not the CT34/58 projection. 



241 

 

4.3.4.4 Summary of quasi-time-course normalisation 

The quasi-time-course normalisation approach presented here allowed 

TimeTeller to proficiently predict time and a clock dysfunction metric, with 

high accuracy, for single biological samples across a range of murine RNA-seq 

tissues, in a range of different genotypes. This satisfies the original key criteria 

that were identified in chapter 4.1.3 for a biological time-telling algorithm. 

Following an extensive literature search (chapter 4.1.2), TimeTeller is believed 

to be the first instance of a time prediction tool that has been applied to murine 

RNA-seq datasets that are independent of the training dataset used to build 

the time prediction model. TimeTeller is also the first time-prediction tool that 

has been used to assign predicted times to single independent RNA-seq test 

data samples. Lastly, TimeTeller is the only time prediction tool that has a 

comprehensive metric of clock dysfunction, termed Θ here.  
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4.4 Conclusions 

 

The application of TimeTeller to RNA-seq data represents a step forwards for 

algorithmic time prediction. For this method to be useful in a human time-

telling context, training datasets will be required. There are already a number 

of human RNA-seq time course datasets that exist for multiple individuals in 

either skeletal muscle or abdominal fat, which may be of interest to answer 

specific research questions (Perrin et al., 2018; Stenvers, Jongejan, et al., 2019). 

However, training data time series for deep internal tissues such as liver and 

kidney will not be easy to obtain from humans for obvious reasons. The 

particular strength of the quasi-time-course normalisation approach presented 

here, is that in theory a tissue-matched training dataset is not required for 

time prediction. If necessary, only the tissue-specific time-series means and 

standard deviations of gene expression are required to normalise a test sample, 

in order to enable time prediction using a trained multi-tissue TimeTeller. The 

time-dependent means and standard deviations of expressed genes in, e.g., liver 

samples, should be relatively easier to estimate using biopsies that are collected 

in the clinic for diagnostic purposes, provided that time-of-sampling 

information is recorded. It is worth noting here that currently time-of-sampling 

metadata is frequently not collected with clinical samples intended for a 

secondary research purpose, and that an effort should be made to improve this, 

for the benefit of the wider circadian research community (Stephenson et al., 

2021). 

 

In addition to TimeTeller’s demonstrable use in time prediction of ex vivo 

samples, an in vitro application is also apparent. For instance, in vitro murine 

time series data could be mapped to the trained multi-tissue murine TimeTeller 

in order to produce time predictions for the in vitro samples. The absolute 
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value of the time predictions would of course not be relevant in an in vitro 

population of cells synchronised to an arbitrary phase by e.g., dexamethasone 

synchronisation. However, TimeTeller’s relative time predictions for a number 

of samples could be used to estimate the period of the in vitro population clock. 

Current estimations of period generally rely on sine fits to individual clock 

genes, which can be error prone when a relatively small number of samples are 

available for fitting. The power of TimeTeller is that dimensionality reduction 

allows for many different clock genes to contribute to a single period estimate. 

 

It is important to acknowledge that the quasi-time-course normalisation 

approach used here in combination with TimeTeller, could also be used to 

normalise data prior to training ZeitZeiger. A comparison of TimeTeller and 

ZeitZeiger is not presented here, since this is discussed at length by Vlachou 

et al. (2020). In short, TimeTeller’s time predictions were found to be slightly 

less accurate than ZeitZeiger’s, but TimeTeller had a more meaningful metric 

of confidence (Θ) in the time predictions, which was directly related to the 

variance structure of the underlying training data. It is exciting to consider 

that ultimately the strengths of both TimeTeller and ZeitZeiger could be 

combined to build an even better time predictor model. 

 

The research presented here achieves the goal of single sample time-telling from 

a remarkably low-resolution training dataset, i.e., a sampling interval of 6 hrs. 

There is also no requirement for batch correction or retraining of the model 

when applied to novel test data sets. It is anticipated that these features will 

help to make TimeTeller easy for future researchers to extend. Moreover, the 

results presented here suggest the model works for 8 different tissues in mice, 

of which 3 (liver, kidney and skeletal muscle) have been independently 

validated with publicly available data. This is an achievement that holds real 

potential to help to elucidate the circadian behaviour of spontaneous or 
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orthotopic tumours harvested from in vivo murine models. It is hoped that the 

use of this tool will help to answer some of the questions that remain regarding 

the cancer circadian clock. For instance, does the tumour molecular clock 

behave in the same manner as the surrounding tissue clock? Are peripheral 

tissue clocks affected by the presence of tumours, as has been suggested by 

Huisman et al. (2015) using a murine liver tumour model and Masri et al. 

(2016) using a murine lung tumour model (Huisman et al., 2015; Masri et al., 

2016)? And might the circadian function of tumours be targeted as a 

therapeutic avenue as suggested by Sulli et al. among others (Sulli et al., 2018)? 

 

Finally, it is worth noting that this novel adaption of TimeTeller to time 

prediction of single sample murine RNA-seq data, may prove useful in other 

fields of circadian dysregulation research besides cancer, including but not 

limited to sleep/wake, metabolic and cardiovascular systems. For instance, 

Manella et al. (2021) have recently assessed the effect of dark-restricted feeding 

on the mean phase advance/delay of six core clock genes across a range of 

different mouse tissues by RNA-seq (Manella et al., 2021). This required that 

accurate sine fits be applied to each of the clock genes considered, and therefore 

a high number of samples were considered per tissue (n=24), resulting no doubt 

in high experimental costs. TimeTeller can predict clock time and function 

from a single sample, considers more than six genes, and accounts for 

amplitude/magnitude differences in addition to phase differences. Therefore, it 

is likely that the validated murine RNA-seq TimeTeller described in this thesis, 

would enable a deeper understanding of the state of the peripheral molecular 

oscillators under dark-restricted feeding, from many fewer samples, and 

therefore at lower cost. 
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5. Conclusions and Outlook 
 

5.1 Summary of thesis 

 

The body of work presented in this thesis explored circadian molecular function 

in a variety of different model systems, with a primary focus on circadian gene 

activity in an oncology context. Specifically, the three results chapters 

(chapters 2, 3 and 4) focused on circadian gene activity in three different model 

systems, which were designed to represent increasingly physiological scenarios. 

The selection of appropriate model systems is an important area of circadian 

research because it is clear from a review of the circadian-oncology literature 

that although there appears to be an association between circadian function 

and cancer, there is no universal pathway that has been identified, and findings 

are frequently conflicting (as reviewed in chapter 1.4). Circadian-oncology 

research efforts frequently overlook the importance of understanding the state 

of circadian clock gene expression either before or after perturbation of the 

model system, which is a particular focus of this thesis (Stephenson et al., 

2021). 

 

Chapter 2 explored the clock gene behaviour of the in vitro cell lines MCF10A 

and MCF7, as representatives of ‘normal’ and ‘malignant’ breast cells. The 

data presented in Chapter 2 does not agree with the canonical literature 

conclusion that MCF10A cells have a more robust circadian oscillator than 

MCF7 cells. In particular, this chapter emphasises the value of interrogating 

existing large ‘omics datasets. 
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Chapter 3 explored the circadian behaviour of the chicken embryo, as part of 

an effort to extend the 3D environment CAM tumour assay to a circadian 

application. The relatively novel use of luciferase reporter systems in ovo 

proved challenging, as tumour bioluminescence did not appear to correlate well 

with tumour growth and metastasis, therefore further research will be required 

to address the true value of the CAM tumour assay in a circadian context. 

 

Chapter 4 extended the mathematical model TimeTeller to murine RNA-seq 

datasets, in order to predict the circadian behaviour of single samples. The 

development and validation of this method is a key step in translating oncology 

samples, which are frequently not available as a time-series, to a circadian 

application. In particular, this chapter highlights the value of an inter-

disciplinary approach to scientific research. 

 

5.2 Areas for future research and development 

 

5.2.1 2D vs 3D circadian research 

The advantages that a 3D in vitro environment provides in better 

recapitulating a physiological environment, have already been discussed in 

chapter 2.4. In the field of circadian research, it has been suggested that even 

the stiffness of a 3D in vitro environment significantly affects the circadian 

behaviour of cultured cells (Williams et al., 2018; N. Yang et al., 2017). The 

research presented here did not explore an intermediary 3D in vitro system 

between 2D in vitro and 3D in ovo. In the field of circadian-oncology research, 

one of the primary research questions is the extent to which cancer cells 

interact with their 3D circadian environment in the context of local tissue 

clocks and the distal central oscillator. The expression of circadian genes in 



247 

 

cancer cells cultured in reductionist 3D in vitro models vs in vivo models may 

help to provide an answer to this question. 

 

5.2.2 Single cell circadian behaviour 

The methods used in this thesis all rely on a population-wide approach to the 

study of circadian gene activity. However, population-wide circadian activity 

is an average of the circadian gene activity in each of the cells within the 

population, and may vary from cell to cell (Nagoshi et al., 2004). Single cell 

circadian rhythms are interesting in the context of cancer because cancers are 

known to contain different populations of cells that evolve over time (Batlle & 

Clevers, 2017). In recent years, single cell RNA-seq has been applied to time-

series samples of the SCN to demonstrate the circadian behaviour of different 

populations of neurons, and other cells such as astrocytes, within the central 

circadian oscillator (Park et al., 2016; Wen et al., 2020). Currently, the study 

of single cell cancer rhythms by single cell RNA-seq is limited by the expense 

that a time series experiment with sufficient library depth to detect clock gene 

oscillation would incur. The high-resolution single cell imaging technique single 

molecule fluorescence in situ hybridisation (smFISH) offers a probe-based 

alternative to transcript detection, such that read depth is no longer a concern 

(Phillips et al., 2021). Single cell techniques have the power to address the 

function of the circadian clock in single cells or sub-populations of established 

tumours, which may help to elucidate the relationship between the circadian 

clock and cancer. 

 

5.2.3 Male/female circadian differences 

Since the majority of experimental research uses male mice, all the studies 

discussed as part of chapter 4 were composed entirely of samples from male 

mice. This is a limitation of the work presented in this thesis – and indeed of 
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the wider research community – and TimeTeller should also be 

comprehensively validated using murine female RNA-seq samples, when such 

samples become available (Mauvais-Jarvis et al., 2017). It has previously been 

shown that there are small differences in the expression of some of the core 

circadian clock genes in mouse liver between male and female mice (Weger et 

al., 2019). For instance, the amplitudes of oscillation of Per3, Npas2 and Nfil3 

were higher in the female mice than the male mice. However, Vlachou et al., 

(2020) noted no difference in the circadian gene expression profiles of the male 

and female human oral mucosa samples used to train TimeTeller. Researchers 

should keep sex differences in mind when training and validating future 

machine learning time prediction models. 

 

5.2.4 Use of luciferin polymer patches for murine research 

Since luciferin is eliminated extremely rapidly from mice (Berger et al., 2008), 

a non-surgical approach to luciferin delivery via a transdermal patch, would 

represent an improvement on the current technology. Currently longitudinal 

luciferin delivery to mice is achieved either via surgical implantation of a 

luciferin-loaded osmotic pump, or by addition of luciferin to the drinking water 

– which is consumed primarily nocturnally by mice and therefore does not 

represent constant luciferin delivery (Martin-Burgos et al., 2020). Therefore, 

the in ovo use of luciferin-loaded polymer patches demonstrated here, might 

also provide an advantage over current luciferin delivery systems in other in 

vivo models, such as mice. 
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5.3 Novel findings 

 

5.3.1 MCF10A and MCF7 core clock gene activity 

There was already some recent evidence that suggested that the MCF10A cells 

might have a long free-running period, and that MCF7 cells might display 

more core circadian oscillatory gene expression than the previous literature 

consensus (Lellupitiyage Don et al., 2019, 2020; Lin et al., 2019). However, this 

is the first time that the rhythmic gene activity of MCF7 and MCF10A cells 

has been directly compared under a comprehensive range of synchronisation 

and entrainment conditions. The luciferase reporter construct and qPCR 

experiments presented here consistently found that MCF10A cells were no 

more rhythmic than MCF7 cells. RNA-seq revealed that in fact the core 

molecular oscillator and wider transcriptome of MCF7 cells behaved relatively 

more rhythmically in response to a 12 hr 36°C / 12 hr 37°C temperature 

entrainment protocol than MCF10A cells. Additionally, the re-analysis of a 

published MCF10A and MCF7 microarray time-course dataset highlighted 

concerns regarding the identity of the MCF7 cells (Gutiérrez-Monreal et al., 

2016). Frequently, the expression of very few circadian genes, from cells 

synchronised with a single entrainment method, are used to determine the 

circadian behaviour of a cancer cell line (see table X for instance). The data 

presented here cautions against such an approach, which may be misleading, 

and ultimately further confuse the literature. MCF10A cells cultured in a 2D 

in vitro environment do not appear to represent ‘normal’ molecular oscillation. 

This finding is important in the context of research that uses MCF10A cells as 

a model to try to understand how perturbations to clock gene expression affect 

cell proliferation (Hwang-Verslues et al., 2013). 

 



250 

 

5.3.2 Luciferin loaded polymer patches 

This thesis presents the first known instance of intra-tumoural delivery of 

luciferin from a slow-release polymeric formulation (originally intended for 

transdermal drug delivery (Tombs et al., 2018)). The use of luciferin loaded 

polymer patches for in ovo bioluminescence imaging provided an improvement 

over luciferin delivery via a drip, the alternative method of long-term luciferin 

delivery that was investigated. This is because the use of a polymer patch 

eliminated many of the technical challenges of drip delivery, including concerns 

about maximum tolerated dose volume, luciferin stability at room temperature 

in solution, and uneven drip rate. Further investigation will be required to 

understand more about the release kinetics of luciferin from the polymer patch 

to the CAM. 

 

5.3.3 Extension of TimeTeller method to RNA-seq data 

This thesis extends the single sample prediction of time and clock dysfunction 

by TimeTeller to RNA-seq datasets for the first time. Additionally, quasi-time-

course normalisation is newly combined with TimeTeller for accurate multi-

tissue time prediction. Lastly, a 6 hr resolution RNA-seq time-series was 

demonstrated to be sufficient for training TimeTeller, which is excellent proof-

of-concept to reduce the cost of obtaining future training datasets in either 

mice or humans. These are valuable developments in the field of single sample 

time prediction, which will enable the study of the circadian system in samples 

that were previously obtuse to interpretation, due to their independent nature. 

 

5.4 Closing remarks 

 

Taken collectively, the findings of this thesis all aimed to further our 

understanding of the function of the molecular circadian clock in cancer. The 
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data suggested that MCF10A cells cultured in vitro are not representative of 

a functional circadian oscillator, in contrast to the literature consensus. It is 

hoped that the validated multi-tissue murine RNA-seq TimeTeller that was 

presented in this thesis might be used to explore differences in circadian 

function between in vitro murine cancer cell line time series data and single 

sample cell-line derived tumours in an in ovo or in vivo setting. 
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