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Abstract

This thesis proves rigidity theorems for three-dimensional Riemannian manifolds with scalar curvature

bounded below by 6K, where K ∈ {−1,0,1}, by placing restrictions on the Hawking mass of surfaces. The

primary tool will be the geometry of perturbed geodesic spheres.

The majority of the work focusses on the case K = 0, for which we prove both a local and global rigidity

result. The first states that if every point in an open subset Ω has a neighbourhood U ⊂ Ω such that the

supremum of the Hawking mass of surfaces contained in U is non-positive, then Ω is locally isometric to

Euclidean R3. Taking Ω to be the ambient manifold and further assuming it is asymptotically locally simply

connected (which encompasses as a special case, the standard asymptotically flat property), we will prove

that it must be globally isometric to Euclidean R3. The method involves computing the Taylor expansion of

the Hawking mass of optimal perturbed geodesic spheres, which will be positive when the space is non-flat.

This will allow us to prove a positive lower bound (comprised of curvature tensors) on the Bartnik mass of

(non-flat) open sets, once we prove that perturbed geodesic spheres are outer-minimising.

The proof of the outer-minimising property requires the framework of sets of finite perimeter. Specifically,

for each element of a sequence of shrinking perturbed geodesic spheres, we consider the corresponding set

with least perimeter that contains it. We prove convergence and regularity properties for this new sequence

and determine that, eventually, the boundaries of its elements are the original spheres.

Later, we will extend some of our results to the case K 6= 0, where the model space is the complete, simply

connected Riemannian manifold of constant sectional curvature K. In order to extend the global rigidity

theorem to the case K =−1, we consider an alternative asymptotic condition, namely the global asymptotic

volume property, which compares the volume of large balls to those in the model space.

5



1 Introduction

The relationship between mass and the geometry of a manifold has been studied extensively in recent times.

Two important results, the Riemannian Positive Mass Theorem and the Riemannian Penrose Inequality, both

give conclusions about the total mass of a three-dimensional Riemannian manifold, given some geometric

assumptions. The former, proved first by Schoen and Yau [SY79] using minimal surfaces methods, and

then by Witten [Wit81] using spinorial techniques, asserts that if (M,g) is an asymptotically flat (Definition

1.2) Riemannian manifold with non-negative scalar curvature, then the total (ADM) mass [ADM62] is non-

negative, with the zero case only achieved by flat R3. The latter, proved independently by Huisken and

Ilmanen [HI01], and Bray [Bra01], gives a positive lower bound on the total mass in terms of the area of

the horizons of black holes contained in a Riemannian manifold satisfying the same geometric conditions.

These Riemannian manifolds fit into the framework of General Relativity as space-like hypersurfaces with

zero second fundamental form, in a four dimensional Lorentzian space-time that satisfies Einstein’s field

equation. Non-negative scalar curvature corresponds to assuming the dominant energy condition and a zero

cosmological constant. In fact the first theorem generalises to include hypersurfaces with non-zero second

fundamental form and was proved by Schoen and Yau [SY81]. The same generalisation of the second

theorem is the full Penrose Conjecture, and is still open.

This thesis is primarily concerned with the interaction between the shape of an ambient manifold, and two

types of quasi-local mass inside bounded regions; those of Hawking [Haw68] and Bartnik [Bar89]. For the

Hawking mass we will prove a rigidity-type result, contained across Theorems 1.28 and 1.33, which could

be described as the local and global versions respectively. Informally, it says; if there is no mass locally

anywhere in a given 3D Riemannian manifold with non-negative scalar curvature, then the only possibilities

for the manifold are flat, i.e. its curvature tensor is zero everywhere. In the global version, adding the further

assumption of asymptotically flat, or more generally asymptotically locally simply connected (Definition

1.29), reduces the options to just one; flat R3. We will then use the Hawking mass result to prove the

Bartnik mass theorems (Theorems 1.34 and 1.35), the first of which is also of rigidity-type and is in fact

already contained in [HI01]; we provide a different proof although we will use some ideas therein. In the

second we give a lower bound for the Bartnik mass in terms of the Hawking mass of perturbed geodesic

spheres (Definition 1.25).

Defining a local mass in General Relativity is more difficult than in the Newtonian setting where we can

integrate the mass density function over the required region. This is because, due to the Equivalence Princi-

ple, there is no well defined notion of gravitational energy density [MTW73, Section 20.4] [Pen82]. Thus,

if we want to compute the total mass/energy inside a finite region contributed by both matter and gravity, a

new method is required. The numerous versions of quasi-local mass that have been defined over the last few

decades (see [Lee19, Chapter 6] or [Sza09]), are attempts to solve this problem. There are various natural

properties one would like quasi-local mass to satisfy, such as positivity and monotonicity. The two versions

appearing in this thesis have some, but not all of them, which we will detail below.
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There is a third potential contribution towards the quasi-local mass if one considers a space-time with

non-zero cosmological constant Λ. This means that there is a non-zero vacuum energy everywhere in the

manifold, which could then affect the amount of mass/energy measured in a finite region. For the majority

of this thesis we will set Λ = 0, but in Section 7 we will briefly discuss some extensions of our results to

the Λ 6= 0 case.

Remark 1.1. Throughout this work, unless otherwise specified, a manifold M is allowed to have non-empty,

disconnected boundary ∂M.

We use the following notion of asymptotically flat.

Definition 1.2. An n-dimensional Riemannian manifold (M,g) is called asymptotically flat (AF) if there is

a compact K⊂M and a diffeomorphism φ : M \K→Rn \Bḡ
1(0) which induces coordinates at infinity such

that

gµν = δµν +σµν where |x||α||(∂ α
σµν)(x)|=O(|x|−τ) as |x| → ∞

for some τ > n−2
2 and all multi-indices α , with |α|= 0,1,2,3. Also, we require the scalar curvature Sc to

be integrable over M.

Remark 1.3. Here, and throughout, we only consider one-ended AF manifolds.

Remark 1.4. Requiring that Sc be integrable is not redundant. Take n = 3 and the decay on the metric to

be τ = 3
5 . Since the scalar curvature depends on two derivatives of the metric, this allows for Sc = |x|− 13

5 in

the AF chart, which is not integrable over R3 \Bḡ
1(0).

Definition 1.5. The total mass of an AF, n-dimensional Riemannian manifold (M,g) is

mADM(M) := lim
r→∞

1
2(n−1)ωn−1

∫
Sn−1

r

(∂ν gµµ −∂µ gµν)N̂ν dVg
Sn−1

r

where ωn−1 is the volume of the unit sphere Sn−1 and N̂ and dVSn−1
r

are the unit normal and volume form

for the sphere of radius r respectively.

Remark 1.6. In [Bar86], Bartnik shows that this definition is independent of the chart φ , and finite.

Remark 1.7. Recall that the spatial Schwartzschild manifold of mass m is the prototypical example of an

asymptotically flat manifold and in this case mADM = m (see Section 2.4).
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1.1 Hawking Mass

Definition 1.8. Let (M,g) be a 3D Riemannian manifold and Σ⊂ (M,g) an isometrically immersed sphere.

The Hawking mass of Σ is defined to be

mH(Σ) :=

√
|Σ|gΣ

(16π)3 (16π−W (Σ)) (1.1)

where W (Σ) :=
∫

Σ
H2dVgΣ

is the Willmore functional.

Remark 1.9. Note that in some texts, including [Wil97], the definition of the mean curvature H differs

from ours by a factor of 1
2 and the 16π becomes 4π in the definition of mH .

Evidently, if Σ is a minimal surface (H ≡ 0), then its Hawking mass is positive.

Perhaps the simplest example to compute is the standard sphere of radius r in R3. Using the standard

parametrisation

∫
S2

r

H2dVgS2r
=
∫ 2π

0

∫
π

0

4
r2 r2 sinφ dφ dθ = 16π

which gives mH(S2
r ) = 0. However, one can show that in R3 the round sphere is the unique minimiser of the

Willmore functional (ignoring scaling) [Wil97]. Thus, the Hawking mass can be negative and is therefore

not a perfect solution to the general problem of quantifying the mass in a finite region. However, it does

have some useful properties when certain conditions are put on the ambient manifold, as its use in the proof

of the Riemannian Penrose Inequality shows.

Theorem 1.10 (Riemannian Penrose Inequality). Let (M,g) be an AF, complete, 3D Riemannian manifold

with non-negative scalar curvature where ∂M is the only compact, minimal surface in M. Then

mADM(M)≥
√
|∂M|
16π

with equality if and only if (M,g) is isometric to the spatial Schwarzschild manifold of mass mADM(M).

Remark 1.11. Conjectured by Penrose [Pen73], the first proof of Theorem 1.10 was by Huisken and Il-

manen in [HI01], where the area term on the right hand side of the inequality above is in fact only the

area of (any) one of the components of ∂M. Later, in [Bra01], Bray’s proof includes the area of all the

components of ∂M and allows it to be outer-minimising. A compact surface Σ is outer-minimising if the

area of any other compact surface enclosing it is at least that of Σ. This is true for an outermost compact

minimal surface, i.e. one not enclosed by any other, like the boundary in Theorem 1.10 [Lee19, Theorem

4.7]. Furthermore, an outermost compact minimal surface is a (union of) sphere(s). See [Bra01, Section 8]

or [HI01, Lemma 4.1].
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Since ∂M is a minimal surface, the inequality in Theorem 1.10 can be written as mADM(M) ≥ mH(∂M).

This highlights the fact that the Hawking mass only depends on the geometry of the surface Σ⊂M, and not

on the region it encloses.

The Hawking mass was instrumental in Huisken and Ilmanen’s proof of Theorem 1.10. They used its

monotonicity along certain families of surfaces inside (M,g). More precisely, if Σt is the family generated

by the weak inverse mean curvature flow, starting from a boundary component, then mH(Σt1) ≤ mH(Σt2)

for t1 < t2 [HI01; Ger73]. Furthermore, as noted by the authors in [HI01], this monotonicity is valid for any

initial surface that is outer-minimising, which means their proof of the Riemannian Penrose Inequality also

proves a similar inequality for any outer-minimising sphere.

Lemma 1.12. Let (M,g) be an AF, complete, 3D Riemannian manifold with non-negative scalar curvature

where ∂M is the only compact, minimal surface in M. If Σ⊂M is an outer-minimising sphere, then

mADM(M)≥ mH(Σ)

Remark 1.13. If Σ happens to be minimal then the conditions in the lemma force it to be part of ∂M and

so the Riemannian Penrose Inequality applies directly.

The Hawking mass also satisfies an exhaustion property for AF (M,g), whereby limr→∞ mH(Σr)=mADM(M)

for a family Σr of so-called nearly round spheres [SWW09]. This includes, for example, constant mean cur-

vature spheres, foliations of which were proved to exist by Ye [Ye96] and Huisken and Yau [HY96]. If Σ is

a stable constant mean curvature sphere, then Christodoulou and Yau [CY88] proved that mH(Σ)≥ 0 (also

assuming non-negative scalar curvature). See also the more recent work [MWX20] by Miao, Wang and

Xie, where the authors consider an alternative to the stability condition.

Next, we state modified versions of the first two main theorems proved in this thesis. See Sections 1.3, 2.1

and 1.4 for the relevant definitions and more accurate statements.

Theorem (Local rigidity Theorem 1.28). Let (M,g) be a 3D Riemannian manifold and let Ω ⊂ M be an

open subset with non-negative scalar curvature. If every p ∈Ω\∂M admits a neighbourhood U ⊂M \∂M

such that

sup{mH(Σ) : Σ⊂U is an immersed 2-dimensional surface} ≤ 0

then Ω\∂M is locally isometric to (R3, ḡ).

Theorem (Global rigidity Theorem 1.33). Let (M,g) be a connected, complete, 3D Riemannian manifold

without boundary and with non-negative scalar curvature. If every p ∈M admits a neighbourhood U such

that

sup{mH(Σ) : Σ⊂U is an immersed 2-dimensional surface} ≤ 0

9



then (M3,g) is isometric to a space-form of zero sectional curvature. Furthermore, if (M3,g) is AF, then it

is isometric to (R3, ḡ).

1.2 Bartnik Mass

The Bartnik mass is a localised version of the total mass of an AF manifold.

Definition 1.14. Let (M,g) be an AF, complete, 3D Riemannian manifold with non-negative scalar curva-

ture where ∂M is the only compact, minimal surface in M. For a bounded, open set Ω ⊂ M with smooth

topological boundary ∂Ω, the Bartnik mass of Ω is

m̃B(Ω) := inf{mADM(N) : N ∈ A}

where A is the set of AF, complete, 3D Riemannian manifolds with non-negative scalar curvature, into

which Ω isometrically embeds, where ∂N is the only compact, minimal surface in N.

Remark 1.15. The purpose of ruling out compact minimal surfaces in the extensions is to ensure that Ω

is not enclosed by one. If this were allowed then so called "thin neck" extensions could be found with

arbitrariy small ADM mass (see [Bar89; Bra97]) and thus m̃B would always be zero.

Remark 1.16. We could define the Bartnik mass by allowing Ω to be an arbitrary compact, 3D Riemannian

manifold with non-negative scalar curvature, without reference to an ambient space. But then it would not

always be clear whether m̃B(Ω) is finite (i.e. that Ω has at least one extension). Instead, we have assumed

there exists at least one extension of Ω, namely (M,g), its ambient space.

In his original definition Bartnik [Bar89] only allowed manifolds without boundary and excluded all com-

pact minimal surfaces, whereas this version was defined by Huisken and Ilmanen [HI01] and includes

manifolds with boundary as long as the boundary is minimal. The latter authors conjectured that the two

versions are in fact equal. Since their version allows more extensions (the AF manifolds in the definition),

it is clear that it cannot be bigger than the Bartnik version. But, as the Penrose inequality indicates, the

presence of a compact minimal boundary (which models the existence of a black hole), will only increase

the total mass. Therefore it seems that these extra extensions allowed by Huisken and Ilmanen may not

affect the infimum over all extensions and thus their version would not be smaller than the Bartnik version

either.

This definition is relatively complicated (compared to the Hawking mass), although it does benefit from

being non-negative (thanks to the Riemannian Positive Mass theorem) and monotonic in the sense that Ω1⊂

Ω2 implies m̃B(Ω1)≤ m̃B(Ω2). Also, the mass of an expanding sequence of spheres inside an AF ambient

space, approaches its total mass [HI01, Exhaustion Property 9.2]. The requirements that the extension

manifolds N be AF with non-negative scalar curvature are necessary for mADM to make sense and be non-

negative. However, other aspects of the definition can be changed. For example, the embedding condition
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may be relaxed so that we include extensions with a boundary to which we identify ∂Ω in such a way

to make the resulting metric only Lipschitz across the join. As mentioned above, we could also change

the minimal surface condition in various ways (as we will do below), in part so that the definition only

depends on the boundary geometry, rather than the whole of Ω (as noted earlier, the Hawking mass already

satisifes this) and in part to make it less restrictive. Some changes have side-effects though, including loss of

monotonicity. For a detailed discussion of these possibilities, see [Jau19; McC20; Bar02; And19; Sza09].

A big drawback of the Bartnik mass is its computational difficulty. However, by constructing collar exten-

sions, Schoen and Mantoulidis [MS15] managed to prove that m̃B(Ω) = mH(∂Ω) when the first eigenvalue

of the operator −∆+K on ∂Ω is positive, where K is the Gauss curvature (in particular, when ∂Ω is a

stable, minimal sphere). Using the same methods, the authors in [Ced+17, Corollary 1.1] prove an upper

bound on the Bartnik mass in terms of the Hawking mass when ∂Ω has positive constant mean curvature,

positive Gauss curvature and satisfies a certain integral condition. See also [MX19] for more work on upper

bounds for the Bartnik mass. While it is clear from the definition that one should expect upper bounds by

providing a specific extension, the issue of finding explicit lower bounds is more subtle. The latter is one of

the goals of the present work.

In this thesis we will use the Hawking mass as a tool to prove the results about the Bartnik mass. In

particular, we will be interested in the Hawking mass of certain outer-minimising surfaces, so it will be

useful to employ a modified version of the Bartnik mass that applies the outer-minimising condition. To

this end, we first consider the variant due to Bray [Bra01].

Definition 1.17. Let (M,g) be an AF, complete, 3D Riemannian manifold with non-negative scalar curva-

ture. For a bounded, open set Ω⊂M with smooth, outer-minimising topological boundary ∂Ω, the Bartnik

mass of Ω is

m̊B(Ω) := inf{mADM(N) : N ∈ A}

whereA is the set of AF, complete, 3D Riemannian manifolds with non-negative scalar curvature, into which

Ω isometrically embeds, where ∂Ω ⊂ N is outer-minimising, i.e. |∂Ω| ≤ |Σ| for any surface Σ enclosing

∂Ω.

This version satisfies its own monotonicity property [BC04].

Lemma 1.18. Let (M,g) be an AF, complete, 3D Riemannian manifold with non-negative scalar curvature.

If Ω2 ⊂Ω1 are bounded, open sets and both ∂Ω2 and ∂Ω1 are outer-minimising, then

m̊B(Ω2)≤ m̊B(Ω1)

In order to make use of both Lemma 1.12 and Lemma 1.18 in the proof of our Bartnik mass theorems (via

Proposition 6.2), we need to combine the two previous versions into one.
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Definition 1.19. Let (M,g) be an AF, complete, 3D Riemannian manifold with non-negative scalar curva-

ture where ∂M is the only compact, minimal surface in M. For a bounded, open set Ω ⊂M with smooth,

outer-minimising topological boundary ∂Ω, the Bartnik mass of Ω is

mB(Ω) := inf{mADM(N) : N ∈ A}

where A is the set of AF, complete, 3D Riemannian manifolds with non-negative scalar curvature, into

which Ω isometrically embeds, where ∂N is the only compact, minimal surface in N and ∂Ω⊂ N is outer-

minimising.

Thanks to Lemma 1.12, and since every extension induces the same mean curvature on ∂Ω, we have the

following result.

Lemma 1.20. Let (M,g) be an AF, complete, 3D Riemannian manifold with non-negative scalar curvature

where ∂M is the only compact, minimal surface in M. For a bounded, open set Ω ⊂ M with smooth,

outer-minimising topological boundary ∂Ω∼= S2

mB(Ω)≥ mH(∂Ω)

We now state the third and fourth main theorems proved in this thesis. Again, see Sections 1.3, 2.1 and 1.4

for the relevant definitions.

Theorem (Local rigidity Theorem 1.34). Let (M,g) be an AF, complete, 3D Riemannian manifold with

non-negative scalar curvature where ∂M is the only compact, minimal surface in M. Let Ω ⊂ M be a

bounded, open set with smooth, outer-minimising topological boundary ∂Ω. If mB(Ω) = 0 then Ω\∂M is

locally isometric to (R3, ḡ).

As mentioned previously, this theorem was proven by Huisken and Ilmanen for the m̃B version of the Bartnik

mass (and, therefore, for the mB version too, since m̃B ≤ mB) using their work on the weak inverse mean

curvature flow [HI01, Positivity Property 9.1]. We prove the result for mB, using different methods.

Theorem (Lower bound Theorem 1.35). Let (M,g) be an AF, complete, 3D Riemannian manifold with non-

negative scalar curvature where ∂M is the only compact, minimal surface in M. Let Ω⊂M be a bounded,

open set with smooth, outer-minimising topological boundary ∂Ω. Let p ∈ Ω \ ∂M. For small enough ρ ,

the following lower bound holds:

mB(Ω)≥ 1
12

Scpρ
3 +

(
1

120
∆Sc(p)+

1
90
‖Sp‖2− 1

144
Sc2

p

)
ρ

5 +O(ρ6)

where S is the traceless Ricci tensor.

Remark 1.21. When Ω is non-flat, there is a point p for which the lower bound above is positive.
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Remark 1.22. Note that this theorem is only interesting when Ω does not contain some connected com-

ponent of ∂M. Indeed, if Ω contains some connected component Σ of ∂M, then in every extension N the

Riemannian Penrose Inequality [Bra01; HI01] yields mADM(N) ≥
√
|Σ|
16π

and thus mB(Ω) ≥
√
|Σ|
16π

, which

is a definite lower bound on mB(Ω). Therefore, the infinitesimal lower bound above is more useful when

∂M∩Ω = /0.

Remark 1.23. Let us also mention the recent work [Wiy18] by Wiygul, where the first order Taylor ex-

pansion of the Bartnik mass is computed for closed geodesic balls of small radius ρ > 0 and center p ∈M,

giving 1
12 Scpρ3. Under the additional condition that the Riemann curvature tensor vanishes at p, the first

order Taylor expansion of the Bartnik mass for such geodesic balls is given by 1
120 ∆Sc(p)ρ5. Note that these

results are in accordance with the lower bound in the theorem above, which holds without the assumption

that the Riemann curvature tensor vanishes at p. See Section 6.4.

1.3 Perturbed Geodesic Spheres - Notation and Motivation

1.3.1 Notation

A more detailed notation section will be given in Section 2.1 but, for continuity, we will introduce the

perturbed geodesic spheres now. Here, (M,g) is an arbitrary 3D Riemannian manifold and expp is the

exponential map at p ∈M. We writeR, Ric, Sc and S := Ric− 1
3 Sc ·g for the Riemann curvature endomor-

phism, Ricci curvature tensor, scalar curvature and traceless Ricci tensor respectively. Let Θ ∈ S2 ⊂ TpM.

Definition 1.24. The geodesic sphere centered at p ∈M \∂M of radius ρ > 0 is the surface

Sp,ρ := expp(ρΘ)

for ρ small enough to ensure expp is a diffeomorphism.

To prove the main theorems, we will compute the mass inside perturbed geodesic spheres, i.e. normal

graphs over geodesic spheres.

Definition 1.25. A perturbed geodesic sphere centered at p ∈M \∂M of radius ρ > 0 is a surface

Sp,ρ(w) := expp(ρ(1−w)Θ)

for ρ small enough to ensure expp is a diffeomorphism, and

w ∈Ck,α(S2)

for some k ≥ 2 and 0 < α < 1.
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Later we will compute expansions of various geometric quantities for perturbed spheres where the following

notation (taken from [PX09; Mon13]) will be useful. For a ∈ N, we denote by L(a)p (w) an arbitrary linear

combination of the function w together with its partial derivatives, up to order a. The coefficients of L(a)p

may depend on ρ and p but, for all k ∈N, there exists a constant C =Cp > 0 independent on ρ ∈ (0,1) such

that

‖L(a)p (w)‖Ck,α (S2) ≤C‖w‖Ck+a,α (S2) (1.2)

Similarly, given a,b ∈ N, we denote with Q(b)(a)
p (w) an arbitrary nonlinear combination, of order at least

b, of the function w together with its partial derivatives, up to order a, such that Q(b)(a)
p (0) = 0 for every

p ∈M. The coefficients of the Taylor expansion ofQ(b)(a)
p (w) in powers of w and its partial derivatives may

depend on ρ and p but, for all k ∈N, there exists a constant C =Cp > 0 independent on ρ ∈ (0,1) such that

‖Q(b)(a)
p (w)−Q(b)(a)

p (w̄)‖Ck,α (S2) ≤C
(
‖w‖Ck+a,α (S2)+‖w̄‖Ck+a,α (S2)

)b−1×‖w− w̄‖Ck+a,α (S2), (1.3)

provided ‖w‖Ca(S2),‖w̄‖Ca(S2) ≤ 1. We write O(ρd) to denote an arbitrary smooth function on S2 (or

an open set in R3, depending on the context), dependent on p, whose norm is bounded by a constant

(independent of p) times ρd . The norm will depend on context and will be either the absolute value |.|, the

Holder norm ‖.‖Ck,α or the Ck norm ‖.‖Ck for all k ∈ N.

We note the formulas for the volume of a perturbed geodesic sphere and the perturbed geodesic ball Bp,ρ(w)

enclosed by it, proved in [PX09, Appendix], which will be useful later:

|Sp,ρ(w)|g̊ = |S2|gS2

[
1− 1

18
Scpρ

2 +
1

5400
(
5Sc2

p +8‖Ric‖2−3‖R‖2−18∆gSc
)

ρ
4
]

ρ
2

+

(∫
S2

w2dVgS2 +
1
2

∫
S2
|∇w|2dVgS2 −2

∫
S2

wdVgS2

)
ρ

2 +
2
3

∫
S2

Ric(Θ,Θ)wdVgS2 ρ
4 (1.4)

+
∫
S2
O(ρ7)+ρ

5L(2)p (w)+ρ
4Q(2)(2)

p (w)+ρ
2Q(3)(2)

p (w)dVgS2

|Bp,ρ(w)|g =
|S2|gS2

3

[
1− 1

30
Scpρ

2 +
1

12600
(
5Sc2

p +8‖Ric‖2−3‖R‖2−18∆gSc
)

ρ
4
]

ρ
3

+

(∫
S2

w2dVgS2 −
∫
S2

wdVgS2

)
ρ

3 +
1
6

∫
S2

Ric(Θ,Θ)wdVgS2 ρ
5 (1.5)

+
∫
S2
O(ρ8)+ρ

6L(2)p (w)+ρ
5Q(2)(2)

p (w)+ρ
3Q(3)(2)

p (w)dVgS2
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1.3.2 Motivation

In Theorems 1.28 and 1.33, we will consider the supremum of the Hawking mass for surfaces contained in a

given neighbourhood. In particular, its proof will focus on certain perturbed geodesic spheres Sp,ρ(w) (Def-

inition 1.25). The next proposition indicates that they are a good choice of surfaces to analyse. Indeed, we

show that they are the natural competitors for the supremum of the Hawking mass among area constrained

surfaces contained in a small ball. This principle has already been shown in related results by Lamm and

Metzger [LM13], who proved W 2,2-closeness to a geodesic sphere under a small energy assumption, and

Laurain and Mondino [LM14], who proved smooth convergence to a geodesic sphere under a milder energy

assumption.

Proposition 1.26. Let (M,g) be a 3D Riemannian manifold and let Σ j ⊂M be a sequence of maximisers

of mH under area constraint and Hausdorff converging to a point p̄ ∈M. Then ∇Sc(p̄) = 0 and eventually,

up to a subsequence, Σ j are perturbed geodesic spheres Sp j ,ρ j(w j).

Proof. First of all, recall that non-orientable closed two-dimensional surfaces cannot be embedded in R3,

but only immersed (i.e. with self-intersections). By considering their n-conformal area, Li and Yau [LY82]

showed that for such a surface Σ in any Rn

∫
Σ

|H|2dVgΣ
≥ 32π

In particular, see [LY82, Theorem 6] but note the different convention used in the definition of the mean

curvature. For us, this means

inf{W (Σ) : Σ⊂ R3 closed, non-orientable surface} ≥ 32π > 16π (1.6)

Next, from the proof of the Willmore conjecture by Marques and Neves [MN14] we know that

inf{W (Σ) : Σ⊂ R3 closed surface with genus(Σ)≥ 1} ≥ 8π
2 > 16π (1.7)

Therefore, any surface in R3 described by (1.6) or (1.7) would have a negative Hawking mass (technically

the mH from Definition 1.8 is only for spheres, but this is just the motivation). Using normal coordinates,

φ , centred at p̄, for large j the surfaces Σ j ⊂ M are isometric to φ(Σ j) ⊂ (R3, ḡ+ h) with the induced

metric. Here h = O(|x− p̄|2) is the perturbation arising from the Taylor expansion of the metric g in

normal coordinates (see Lemma 3.1). In [MS14] the authors estimate the difference between the geometric

quantities when computed using the different metrics ḡ and ḡ+h. In particular they find that (see [MS14,

Lemma 2.4])
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Wḡ(Σ)≤
3
2

Wḡ+h(Σ)+1 (1.8)

Combining (1.6) and (1.7) with (1.8) yields

inf{W (Σ) : Σ⊂M closed non-orientable surface} ≥ 2(32π−1)
3

> 16π (1.9)

and

inf{W (Σ) : Σ⊂M closed surface with genus(Σ)≥ 1} ≥ 2(8π2−1)
3

> 16π (1.10)

This means any of the surfaces Σ j ⊂ (M,g) fitting the descriptions in (1.9) or (1.10) would have a negative

Hawking mass too (for large j). In other words, for any sequence Σ j ⊂ (M,g) Hausdorff converging to a

point p̄, with Σ j either non-orientable or of genus at least one, there is a constant C > 0 such that

limsup
j→∞

mH(Σ j)√
|Σ j|

≤ −C (1.11)

On the other hand, considering a sequence of geodesic spheres Sp,ρ yields

lim
ρ→0

mH(Sp,ρ)√
|Sp,ρ |

= 0 (1.12)

Thus, the area constrained maximising condition could not be satisfied by such Σ j ⊂M. This is because the

geodesic sphere of area |Σ j| is a competitor for the surface Σ j, and (1.11) and (1.12) imply that eventually

the Hawking mass of this sphere will be greater than the corresponding Σ j. Hence the Σ j must eventually

be topological spheres. Similarly, since the Σ j are maximisers of mH , (1.12) implies

liminf
j→∞

mH(Σ j)√
|Σ j|

≥ 0

Or, equivalently

limsup
j→∞

W (Σ j)≤ 16π < 32π

Therefore we can apply [LM14, Theorem 1.2] (see also [LM10]) to infer that ∇Sc(p̄) = 0 and that, if we

rescale (M,g) around p̄ in such a way that the rescaled surfaces Σ̃ j have fixed area 1, Σ̃ j converge smoothly

(up to a subsequence) to a round sphere in 3D Euclidean space (note, again, the different convention for

the mean curvature which means the bound in the cited paper is actually 8π). This means that the Σ̃ j must

eventually be graphs over the sphere with the graph functions smoothly converging to zero, i.e. Σ j are

eventually perturbed spheres.

16



With the motivation for considering perturbed geodesic spheres now clear, we introduce the following

function space:

C4,α(S2)⊥ :=C4,α(S2)∩Ker[∆S2(∆S2 +2)]⊥ ⊂ L2(S2)

Later, in Lemma 4.2, we will restrict the perturbation w to this function space, which is natural for a number

of reasons. First, since the Euler-Lagrange equation for the Willmore functional ((1.17) with λ = 0) is a

fourth-order PDE, it makes sense to require at least four derivatives for w. Second, the Hölder condition will

allow us to apply an argument from [Mon10, Lemma 4.4] which relies on using Schauder estimates. Finally,

restricting the Willmore equation to perturbed spheres yields a PDE where the main operator is ∆S2(∆S2 +2)

(see Lemma 4.2). In order to prove the uniqueness of a solution via the Contraction Mapping Theorem, as

done in [Mon10], we further restrict to C4,α(S2)⊥ so that we can invert the operator ∆S2(∆S2 +2).

We note that the constraints on these critical points of the Willmore functional are more than just area, as

applied in Proposition 1.26. Solving the area constrained Euler-Lagrange equation within C4,α(S2)⊥ corre-

sponds not to general area constrained critical points, but to area-position constrained critical points. This

is because Ker[∆S2(∆S2 +2)] contains both constant functions (corresponding to scaling) and the coordinate

functions (corresponding to translations).

The analysis of constrained critical points in C4,α(S2)⊥ will be used purely as motivation for using the

expansion (4.24), proved in Lemma 4.2, which we will then apply at any p ∈ M, regardless of whether

Sp,ρ(w) actually describe constrained critical points of the Willmore functional/Hawking mass. They will

be called optimal perturbed spheres and will be the key geometric objects in this thesis.

Remark 1.27. In fact, using [Mon10, Lemma 5.3], the perturbations w j in Proposition 1.26 can be seen as

elements of C4,α(S2)⊥; although the statement of [Mon10, Lemma 5.3] is for critical points of W , the same

proof holds generally for area constrained critical points using that the Lagrange multipliers are bounded,

thanks to [LM14, Lemma 2.2].

1.4 Main Theorems

With the notation introduced in the previous section, we can now give precise statements of the main results

in this thesis.

Theorem 1.28. Let (M,g) be a 3D Riemannian manifold and let Ω ⊂ M be an open subset with non-

negative scalar curvature. If every p ∈Ω\∂M admits a neighbourhood U ⊂M \∂M such that

sup{mH(Σ) : Σ⊂U is an immersed 2-dimensional surface} ≤ 0 (1.13)
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or, more generally, if

limsup
ρ↓0

ρ
−5mH(Sp,ρ(w))≤ 0, ∀p ∈Ω\∂M (1.14)

where Sp,ρ(w) is the optimally perturbed geodesic sphere with w as in (4.24), then Ω \ ∂M is locally iso-

metric to (R3, ḡ).

Definition 1.29. A Riemannian manifold (M,g) is Asymptotically Locally Simply Connected (ALSC) if it is

non-compact and for all R > 0, and any diverging sequence {pn} ⊂M, there exists N(R)≥ 1 such that for

all n > N(R) the balls Bg
R(pn) are simply connected.

Remark 1.30. {pn} is a diverging sequence when, for any fixed p̄ ∈M, we have d(p̄, pn)→ ∞ as n→ ∞,

where d is the Riemannian distance function induced by a Riemannian metric g.

Remark 1.31. Note that our ALSC condition is satisfied by AF manifolds since, in this case, the balls

Bg
R(pn) are eventually diffeomorphic to 3D Euclidean balls, which are simply connected. Not all ALSC

manifolds are AF though; for example asymptotically conical and C0-asymptotically locally Euclidean

manifolds [MN16]. For some specific examples, see Section 2.4. Also note that a simply connected mani-

fold need not be ALSC. An illuminating example is a half infinite cylinder with a spherical cap on one end

(or instead Hamilton’s Cigar soliton; see Section 2.4). Any ball with radius bigger than the radius of the

cylinder will fail to be simply connected for n large enough.

Definition 1.32. A Riemannian manifold (M,g) is called a space-form if it is complete, connected and has

constant sectional curvature.

Theorem 1.33. Let (M,g) be a connected, complete, 3D Riemannian manifold without boundary and with

non-negative scalar curvature. If every p ∈M admits a neighbourhood U such that

sup{mH(Σ) : Σ⊂U is an immersed 2-dimensional surface} ≤ 0 (1.15)

or, more generally, if

limsup
ρ↓0

ρ
−5mH(Sp,ρ(w))≤ 0, ∀p ∈M (1.16)

where Sp,ρ(w) is the optimally perturbed geodesic sphere with w as in (4.24), then (M3,g) is isometric to a

space-form of zero sectional curvature. Furthermore, if (M3,g) is ALSC, then it is isometric to (R3, ḡ).

The main step in proving the above theorems will be computing the Taylor expansion (4.40) for the Hawk-

ing mass of the optimally perturbed spheres. Combining this with Proposition 6.2, which confirms that

perturbed geodesic spheres have the outer-minimising property, we will prove the following two theorems.

Theorem 1.34. Let (M,g) be an AF, complete, 3D Riemannian manifold with non-negative scalar curvature

where ∂M is the only compact, minimal surface in M. Let Ω ⊂ M be a bounded, open set with smooth,

outer-minimising topological boundary ∂Ω. If mB(Ω) = 0 then Ω\∂M is locally isometric to (R3, ḡ).
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Theorem 1.35. Let (M,g) be an AF, complete, 3D Riemannian manifold with non-negative scalar curvature

where ∂M is the only compact, minimal surface in M. Let Ω⊂M be a bounded, open set with smooth, outer-

minimising topological boundary ∂Ω. Let p ∈ Ω \ ∂M. For small enough ρ , the following lower bound

holds:

mB(Ω)≥ 1
12

Scpρ
3 +

(
1

120
∆Sc(p)+

1
90
‖Sp‖2− 1

144
Sc2

p

)
ρ

5 +O(ρ6)

1.5 Summary of Proofs of Main Theorems

As the two theorems concerning the Bartnik mass depend on the work done in proving the Hawking mass

theorems, we will prove the latter first.

The main idea in the proof of Theorems 1.28 and 1.33 is similar to the one in [Mon13, Section 3], and

also builds on [Mon10; PX09]. We will utilise Taylor expansions of the geometric quantities involved in

the Hawking mass, which will inevitably contain curvature terms. Combined with the assumptions in the

theorems, we will get information about the curvature of the manifold.

For simplicity we will first compute the Taylor expansion of the Willmore energy in the unperturbed case,

i.e. W (Sp,ρ) =W (Sp,ρ(0)), using normal coordinate expansions of the geometric quantities we will find in

Lemma 3.1 in Section 3.1. In Section 3.2 we will compute the corresponding Hakwing mass to be

mH(Sp,ρ) =

√
|Sp,ρ |g̊
(16π)3

(
8π

3
Scpρ

2−
[

4π

27
Sc2

p−
4π

15
∆Sc(p)

]
ρ

4 +O(ρ5)

)
=

1
12

Scpρ
3−
(

1
144

Sc2
p−

1
120

∆Sc(p)
)

ρ
5 +O(ρ6)

where we have simplified using (1.4) with w = 0. Analysing this equation shows an explicit connection

between the scalar curvature of M at p and the Hawking mass mH(Sp,ρ). Specifically, for small ρ , if

the scalar curvature is positive at p then so is mH(Sp,ρ). Alternatively, mH(Sp,ρ) = 0 implies the scalar

curvature is zero at p too. If it’s true for every p ∈Ω then we have the scalar curvature is identically zero in

Ω. However, no extra interesting information is yielded once we set Sc≡ 0.

Combined with the motivation in Section 1.3.2, this suggests exploiting the Taylor expansion in the per-

turbed case. Firstly, we will consider the expansion for spheres Sp,ρ(w) which are critical points of mH

(equivalently, critical points of W ) under area constraint and w ∈C4,α(S2)⊥. Note that the area constraint is

necessary due to the area factor in the definition of the Hawking mass. Thus, in Lemma 4.1 we compute the

necessary expansions of geometric quantities in a similar way to Lemma 3.1, which can then be substituted

into the area constrained Euler-Lagrange PDE for the Willmore functional. This PDE can be found by

combining (2.17), which will be zero for a critical point, with (2.16), which must be zero to satisfy the area

constraint, as in [LMS11]. This yields
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2∆g̊H +H(H2−4D+2Ric(N̂, N̂)) = λH (1.17)

where λ ∈ R. Restricting (1.17) to perturbed spheres in C4,α(S2)⊥, which we do in Lemma 4.2, allows an

application of the Contraction Mapping Theorem, yielding a unique solution satisfying the following Taylor

expansion:

w =
(
− 1

6
Ric(Θ,Θ)+

1
18

Scp

)
ρ

2 +O(ρ3) (1.18)

where limsupρ→0 ρ−3
∥∥O(ρ3)

∥∥
C4,α (S2)

< ∞.

Using this discussion of constrained critical points as motivation, for any p ∈ M we simply refer to per-

turbed spheres Sp,ρ(w) whose perturbation satisfies (1.18) as optimal. These optimal spheres are the central

geometric objects in our main theorems. As noted in Section 1.3.2, we stress that the optimal spheres are in

general not area constrained critical points of the Willmore functional, but rather area-position constrained

critical points. However, this is not relevant to our proofs of the main theorems, where we simply use these

optimal spheres as the "test" surfaces for testing the positivity of the Hawking mass.

Thus, we will compute the Hawking mass of optimally perturbed spheres in Section 4.3 to be

mH(Sp,ρ(w)) =

√
|Sp,ρ(w)|g̊
(16π)3

(
8π

3
Scpρ

2 +

[
4π

15
∆Sc(p)+

16π

45
‖Sp‖2− 4π

27
Sc2

p

]
ρ

4 +O(ρ5)

)
=

1
12

Scpρ
3 +

(
1

120
∆Sc(p)+

1
90
‖Sp‖2− 1

144
Sc2

p

)
ρ

5 +O(ρ6)

where we have simplified using (1.4). Note the difference with the unperturbed case is the presence of the

traceless Ricci tensor S. The scalar curvature and supremum assumptions in the theorem will then imply

that Sc ≡ 0 and so the leading term becomes C‖Sp‖2, where C > 0. Since this is non-negative and the

expansion itself is assumed non-positive, we get S ≡ 0 too. To conclude the proof of Theorem 1.28 we

will apply a well-known result of Schur (Corollary 5.4), which implies that the sectional curvature is also

zero. To finish proving Theorem 1.33 we will also use the well-known result of Killing-Hopf (Corollary

5.2), which forces the ambient manifold to be a space-form. A case by case analysis will show that the only

ALSC space-form is Euclidean R3 (Theorems 3.3.3 and 3.5.1 in [Wol11] will facilitate this).

We will now outline the proofs of Theorems 1.34 and 1.35. Recall that Bp,ρ(w) is the bounded region

enclosed by Sp,ρ(w). The initial idea is that for any bounded, open subset U of M we can find a small

perturbed sphere Sp,ρ(w) contained in U . Thus, by the monotonicity of the Bartnik mass (Lemma 1.18),

it makes sense to bound the Bartnik mass of U from below by the Bartnik mass of Bp,ρ(w). Then, if the

20



Bartnik mass of U is zero, as assumed in Theorem 1.34, the Bartnik mass of Bp,ρ(w) is also zero. Finally,

we can bound the Bartnik mass of Bp,ρ(w) from below by the Hawking mass of Sp,ρ(w) (Lemma 1.20),

which means we can appeal to Theorem 1.28 in order to conclude Theorem 1.34. Similarly for Theorem

1.35, we bound the Bartnik mass of U by the Hawking mass of Sp,ρ(w), then use the Taylor expansion of

mH(Sp,ρ(w)) computed above to achieve an asymptotic bound for mB(U).

A key requirement for the above argument to work is the outer-minimising property. Indeed, to apply

Lemmas 1.18 and 1.20 requires that both Sp,ρ(w) and ∂U are outer-minimising. Therefore the bulk of the

proof of Theorems 1.34 and 1.35 deals with proving the next proposition (Proposition 6.2).

Proposition (Proposition 6.2). Let (M,g) be an AF, complete, 3D Riemannian manifold with non-negative

scalar curvature where ∂M is the only compact, minimal surface in M. Fix p ∈ M \ ∂M and consider

an arbitrary sequence of perturbed geodesic spheres Sp,ρn(wn) satisfying ρn → 0 and ‖wn‖C1(S2) → 0 as

n→ ∞. Then there exist N(p)> 0 such that Sp,ρn(wn) is outer-minimising for every n≥ N.

We will now summarize the four main steps of its proof, given in Section 6.3. The proof uses the framework

of finite perimeter sets. Specifically, for any ρ,‖w‖C1 , we will consider the finite perimeter set Ωp,ρ,w which

minimises perimeter amoung sets containing Bp,ρ(w). In other words, Ωp,ρ,w is the minimising hull of

Bp,ρ(w) [HI01]. We will show that ∂ ∗Ωp,ρ,w = ∂Ωp,ρ,w = Sp,ρ(w) when ρ,‖w‖C1 are small enough, and

thus Sp,ρ(w) is outer-minimising.

Step 1 - Volume control.

In Section 6.1 we will prove some helpful lemmas concerning the geometry of the manifold (M,g) from

the proposition. The most important result uses the AF chart to prove that (M,g) has bounded geometry,

i.e. bounded sectional curvature and injectivity radius. Then, in Section 6.2 we will use some results about

the isoperimetric profile in manifolds with bounded geometry (namely [MN19, Theorem 2] and [Nar14,

Theorem 1]) to obtain an isoperimetric inequality for AF manifolds, contained in the lemma below.

Lemma (Lemma 6.10). If (M,g) is an AF, complete, 3D Riemannian manifold, then for every v0 > 0 there

exists C =C(v0)> 0, such that

Pg(E)≥C|E|
2
3
g for every subset E ⊂M of finite perimeter, with |E|g ∈ (0,v0].

This inequality will be important in proving the following result, which gives us some control over the

volume of the sets Ωp,ρ,w as ρ → 0.

Lemma (Lemma 6.19). Let (M,g) and Sp,ρn(wn) be as in Proposition 6.2. For the corresponding sequence

of finite perimeter sets Ωp,ρn,wn , there exists a constant Ĉ such that
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0 < Ĉ−1 ≤ liminf
n→∞

|Ωp,ρn,wn |g
ρ3

n
≤ limsup

n→∞

|Ωp,ρn,wn |g
ρ3

n
≤ Ĉ < ∞

Notice that control of the volume with repesct to the g metric proved in the previous lemma translates to a

unifom bound on |Ωp,ρn,wn |gρn , where gρn = ρ−2
n g are new, scaled metrics. This will be useful in the next

step of the proof.

Step 2 - Blow-up and local convergence to a Euclidean ball.

In Section 6.2 we will prove various results relating the perimeters of sets with respect to the metrics ḡ, g

and gρ . In particular, using the formula for the metric in normal coordinates (see (3.1) and (6.3)), we will

show the following relationship.

Lemma (Lemma 6.14). Let F ⊂ (M,gρ) be a set of finite perimeter and φ
p
gρ

be the normal coordinate chart

centered at p. Then

Pḡ(φ
p
gρ
(F),Bḡ

r (φ
p
gρ
(q))) = (1+O(ρ2r2))Pgρ

(F,Bgρ

r (q))+O(ρ2r4)

This lemma will also be useful in step 3 when we consider the regularity of the sequence φ
p
gρ
(Ωp,ρ,w). But

we will use it here to help prove the local convergence too. Note that the relationship shows that

limsup
n→∞

Pḡ(φ
p
gρn

(Fn)) = limsup
n→∞

Pgρn (Fn)

as long as Pgρn (Fn) is uniformly bounded. We will apply this to the sequence φ
p
gρ
(Ωp,ρ,w) to help prove

Pḡ(Ω̄)≤ Pḡ(B
ḡ
1(0)) and Bḡ

1(0)⊂ Ω̄

where Ω̄ is the limit of the sequence (obtained via a diagonal argument). Together with the uniform

bound on |Ωp,ρn,wn |gρn from step 1, this will allow us to apply the Euclidean isoperimetric inequality to

get |Ω̄∆Bḡ
1(0)|ḡ = 0. Hence we will get the desired convergence

φ
p
gρ
(Ωp,ρ,w)

L1
loc−−→ Bḡ

1(0)

Step 3 - Improving the convergence via regularity theory.

In this step we will use a definition and regularity result from Tamanini [Tam82], which built on the cele-

brated work of De Giorgi [De 61].
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Definition. Let E ⊂ Rn be a set of finite perimeter and V ⊂ Rn open and bounded. Then

Ψ(E,V ) := Pḡ(E,V )− inf{Pḡ(F,V )|F∆E ⊂⊂V}

Theorem (Theorem 6.24). Let U be an open subset of Rn, and E a set of finite perimeter satisfying

Ψ(E,Br(q))≤Crn−1+2α (1.19)

for some α ∈ (0,1) and for all q∈U and r ∈ (0,R), where C and R are positive constants. Then the reduced

boundary ∂ ∗E is a C1,α -hypersurface in U and

Hk((∂E \∂
∗E)∩U) = 0 ∀k > n−8

Moreover, assuming that (1.19) holds uniformly for a sequence Eh, L1-locally convergent to E∞, then for

any sequence of points qh ∈ ∂Eh converging to q∞ ∈ ∂ ∗E∞, there is an h′ such that qh ∈ ∂ ∗Eh for h > h′ and

the unit outer normal to ∂Eh at qh converges to the unit outer normal to ∂E∞ at q∞.

In order to apply this to the sequence φ
p
gρ
(Ωp,ρ,w), we will need a number of estimates. The first we will

prove in Section 6.2.

Lemma (Lemma 6.15). Let F ⊂ (M,gρ) be a set of finite perimeter which is stationary for perimeter in a

bounded open set U ⊂M (i.e. zero first variation and, in particular, zero mean curvature). Then there exists

constants C =C(U,Pgρ
(F,U)) and r0 = r0(U,Pgρ

(F,U))> 0 such that, for r < r0, we have

Pgρ
(F,Bgρ

r (q))≤Cr2

where Bgρ

r (q)⊂U.

The proof uses the theory of rectifiable varifolds, as described in Simon [Sim83], which in particular applies

to sets of finite perimeter. The main tool will be the monotonicity formula for varifolds, which we will

translate to our framework. This inequality will be used to get a better estimate in the relationship between

gρ -perimeter and ḡ-perimeter, found in step 2, in the case F = Ωp,ρ,w (note that away from the intersection

points with Sp,ρ(w), by construction Ωp,ρ,w is locally perimeter minimising).

Lemma (Lemma 6.22).

Pḡ(φ
p
gρ
(Ωp,ρ,w),Bḡ

r (φ
p
gρ
(q))) = Pgρ

(Ωp,ρ,w,B
gρ

r (q))+O(ρ2r4)

The next useful estimate, for proving the conditions in the Tamanini theorem, is the following.

Lemma (Lemma 6.17). Let B⊂ (M,gρ) be a bounded open set with C2 boundary. Then, for small enough
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r, there exists a constant C =C(B)> 0 such that, for every q ∈ B

Pgρ
(B)≤ Pgρ

(G)+Cr3 ∀ G∆B⊂⊂ Bgρ

r (q)

We prove this in Section 6.2, along the lines of the proof of (6−9) in [MS17].

To apply the regularity theorem, we will switch from ḡ-perimeters to gρ -perimeters using the relationsips

described above and then use the proven estimates to conclude that (1.19) holds for φ
p
gρ
(Ωp,ρ,w).

Step 4 - ∂Ωp,ρ,w = Sp,ρ(w)

This final step will be done in detail at the end of Section 6.3. The previous steps amount to the fact

that the elements of the sequence ∂φ
p
gρ
(Ωp,ρ,w) are eventually graphs of C1, 1

2 -functions over the sphere

∂Bḡ
1(0) = S

2, as ρ → 0. For a given ρ , φ
p
gρ
(Sp,ρ(w)) is also a graph over S2, and so we can in fact consider

each ∂φ
p
gρ
(Ωp,ρ,w) as a graph over φ

p
gρ
(Sp,ρ(w)) instead. Furthermore, since Sp,ρ(w) ⊂ Ωp,ρ,w, we know

that the graph functions are non-negative. Thus, differentiating the area functional reveals

Agρ
(∂Ωp,ρ,w)≥ Agρ

(Sp,ρ(w))

with equality if and only if the graph function is identically zero. But the definition of Ωp,ρ,w implies

Agρ
(∂Ωp,ρ,w)≤ Agρ

(Sp,ρ(w))

Therefore, it must be that, for small ρ , Agρ
(∂Ωp,ρ,w) = Agρ

(Sp,ρ(w)) and hence the graph function is

identically zero. Therefore ∂φ
p
gρ
(Ωp,ρ,w) = φ

p
gρ
(Sp,ρ(w)) and ∂Ωp,ρ,w = Sp,ρ(w). Hence Sp,ρ(w) is outer-

minimising for small ρ and ‖w‖C1 . This ends the proof of the proposition and therefore also of Theorems

1.34 and 1.35.
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2 Preliminaries

2.1 Notations

We adopt the Einstein summation convention for repeated indices and agree that latin index letters (e.g.

i, j,k, l, ...) run from 1 to 2, while greek index letters (e.g. µ,ν ,η ,λ , ...) run from 1 to n > 2.

For an n-dimensional Riemannian manifold (M,g) with Levi-Civita connection ∇, we define the Riemann

curvature endomorphism to be

R(X ,Y )Z = ∇X ∇Y Z−∇Y ∇X Z−∇[X ,Y ]Z

for vector fields X ,Y,Z. By lowering an index we define the Riemann curvature tensor by

Rm(X ,Y,Z,W ) = g(R(Z,W )Y,X)

and therefore the Ricci curvature tensor as the trace over the first and third indices of Rm, which we write

as Ric = tr13
g Rm. In particular, for n = 3 this means at p ∈ M with an orthonormal basis Eµ of TpM, we

have

Ric(Xp,Yp) = Rm(E1,Xp,E1,Yp)+Rm(E2,Xp,E2,Yp)+Rm(E3,Xp,E3,Yp)

= g(R(E1,Yp)Xp,E1)+g(R(E2,Yp)Xp,E2)+g(R(E3,Yp)Xp,E3)

=−g(R(Yp,E1)Xp,E1)−g(R(Yp,E2)Xp,E2)−g(R(Yp,E3)Xp,E3)

using the anti-symmetry of the Riemann curvature in the last two entries. Note that we will usually suppress

the subscript p to keep the formulas as clean as possible. We then have the scalar curvature, denoted by Sc,

as the trace of the Ricci tensor.

Scp = Ric(E1,E1)+Ric(E2,E2)+Ric(E3,E3)

A key tensor used later will be the traceless Ricci tensor (for n = 3)

S := Ric− 1
3

Sc ·g

We will also use the following useful fact (for n = 3):
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‖S‖2 = g(Ric− 1
3

Sc ·g,Ric− 1
3

Sc ·g)

= g(Ric,Ric)− 2
3

Sc ·g(Ric,g)+
1
9

Sc2 ·g(g,g)

= g(Ric,Ric)− 2
3

Sc ·gηµ Rλν gηλ gµν +
1
9

Sc2 ·gηµ gλν gηλ gµν

= g(Ric,Ric)− 2
3

Sc ·δ λ
µ Rµ

λ
+

1
9

Sc2 ·δ λ

λ

= g(Ric,Ric)− 2
3

Sc2 +
1
3

Sc2

= ‖Ric‖2− 1
3

Sc2

We denote the Hessian of a smooth function f ∈ C∞(M) by ∇2 f , its Laplacian by ∆ f = trg(∇
2 f ) and its

gradient by grad f . More generally, for a tensor A we have ∇X ∇Y A = ∇2A(...,Y,X)+∇∇XY A. If X =Y then

we write ∇2
X := ∇X ∇X A and similarly for higher derivatives. We denote the divergence of a vector field by

divg(X) = tr(∇X).

Occasionally we will use the Kulkarni-Nomizu product, defined as

A©∧ B(X ,Y,Z,W ) := A(X ,Z)B(Y,W )+A(Y,W )B(X ,Z)−A(X ,W )B(Y,Z)−A(Y,Z)B(X ,W )

for symmetric 2-tensors A and B. It satisfies the property contained in the next lemma.

Lemma 2.1 (Lemma 7.22 in [Lee18]). For a symmetric 2-tensor A on an n-dimensional Riemannian man-

ifold (M,g)

tr13
g
(
A©∧ g

)
=
(
trgA

)
g+(n−2)A (2.1)

Proof. Evaluating the left hand side of (2.1) on basis vector fields yields

(
tr13

g
(
A©∧ g

))
µν

= gηλ
(
A©∧ g

)
ηµλν

= gηλ

(
Aηλ gµν +Aµν gηλ −Aην gµλ −Aµλ gην

)
= trg(A)gµν +nAµν −Aµν −Aµν

= trg(A)gµν +(n−2)Aµν
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Euclidean space as a Riemannian manifold will be written (Rn, ḡ), where ḡ is the standard Euclidean metric,

i.e. at each point x ∈ Rn, ḡ is the dot product on TxRn.

For the rest of this subsection, set n = 3. Let Σ⊂ (M,g) be a closed surface and take X ,Y to be vector fields

on Σ. Since the normal bundle NΣ is 1-dimensional, we have the scalar second fundamental form h, defined

as

h(X ,Y ) = g(∇XY, N̂) =−g(∇X N̂,Y ) (2.2)

where N̂ is the inward unit normal and the second equality follows from the Weingarten equation. The two

eigenvalues k1 and k2 of h at a point p ∈ Σ are the principal curvatures at p and we use the convention that

the mean curvature H = k1 + k2, and denote their product by D = k1k2. The formulas we will use later to

compute them are

H = trg̊(h) = g̊i jhi j D = det(g̊ikhk j) =
dethi j

det g̊kl

where g̊ is the induced metric on Σ (sometimes we will write gΣ instead). Note that when (M,g) = (R3, ḡ),

D is the classical (intrinsic) Gaussian curvature. The area of Σ is

A(Σ) :=
∫

Σ

dVg̊ =
∫

φ(Σ)
(φ−1)∗(dVg̊) =

∫
φ(Σ)

√
det g̊i jdx1dx2

for some local coordinates xi and chart φ .

We will make extensive use of normal coordinates, so we introduce them now. A curve γ is a geodesic

if ∇γ ′γ
′ = 0. At any point p ∈ M, there is a unique (maximal) geodesic starting with any given direction

V ∈ TpM ([Lee18],Corollary 4.28). This allows us to define the exponential map

expp : TpM→M

where the image of a tangent vector is the image of the associated geodesic after time 1. One can show

that the exponential map is smooth and in fact a diffeomorphism when we restrict to a small enough neigh-

bourhood of the origin in TpM. Thus, given any orthonormal basis Eµ of TpM we have a normal coordinate

chart

φ = exp−1
p : U → TpM ∼= R3

where U is a neighbourhood of p, φ(p) = 0, and we identify TpM with R3 by xµ Eµ = x1E1+x2E2+x3E3 ∼=
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(x1,x2,x3). The normal coordinate vector fields induced by φ are

(φ−1)∗
∂

∂xµ
= (expp)∗

∂

∂xµ
:= ∂µ (2.3)

At p they satisfy

∂µ(p) = d0φ
−1(

∂

∂xµ
(0)) = d0(expp)(Eµ) = Id(Eµ) = Eµ

where we used that the differential of the exponential map is just the identity on T0(TpM) = TpM. Therefore

the metric coefficients satisfy

(gp)µν = gp(∂µ(p),∂ν(p)) = gp(Eµ ,Eν) = δµν

by assumption that Eµ are orthonormal. Now we introduce polar coordinates on TpM using the standard

parametrisation of the unit sphere. For Θ ∈ S2 ⊂ TpM

Θ = Θ
µ Eµ = (sinθ

1 cosθ
2)E1 +(sinθ

1 sinθ
2)E2 +(cosθ

1)E3, for 0 < θ
1 < π, 0 < θ

2 < 2π

Then, for ρ ∈ (0,∞) we have the parametrisation of TpM \0.

ψ
−1(ρ,θ 1,θ 2) = ρΘ

We have the induced polar coordinate vector fields obtained via the push-forward of the vector fields ∂θ i .

(ψ−1)∗∂θ 1 = ρ∂θ 1Θ
µ Eµ = ρ

(
(cosθ

1 cosθ
2)E1 +(cosθ

1 sinθ
2)E2 +(−sinθ

1)E3

)
=: ρΘ1 (2.4)

(ψ−1)∗∂θ 2 = ρ∂θ 2Θ
µ Eµ = ρ

(
(−sinθ

1 sinθ
2)E1 +(sinθ

1 cosθ
2)E2

)
=: ρΘ2 (2.5)

Remark 2.2. Since (gp)µν = δµν , using (2.4) and (2.5), we have gp(Θ,Θ)= gp(Θ1,Θ1)= 1, gp(Θ,Θi)= 0,

gp(Θ1,Θ2) = 0 and gp(Θ2,Θ2) = sin2
θ 1. Defining Θ̄2 := 1

sinθ 1 Θ2 produces another orthonormal basis of

TpM: {Θ,Θ1,Θ̄2}.

Composing the polar coordinate chart with the normal coordinate chart at p yields the polar normal coor-

dinate chart φP := ψ ◦φ on M \ p.

Definition. The geodesic sphere centered at p ∈M \∂M of radius ρ > 0 is the surface
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Sp,ρ := expp(ρΘ)

for ρ small enough to ensure expp is a diffeomorphism.

The induced polar normal coordinate vector fields on Sp,ρ , denoted by Zi, are

Zi := (expp(ρΘ))∗∂θ i = ∂θ i
[
φ ◦ expp

(
ρΘ(θ 1,θ 2)

)]µ
∂µ = ρ∂θ iΘ

µ
∂µ (2.6)

where we used (2.4), (2.5) and (2.3). To prove the main theorems, we will compute the mass inside per-

turbed geodesic spheres, i.e. normal graphs over geodesic spheres.

Definition. A perturbed geodesic sphere centered at p ∈M \∂M of radius ρ > 0 is a surface

Sp,ρ(w) := expp(ρ(1−w)Θ)

for ρ small enough to ensure expp is a diffeomorphism, and

w ∈Ck,α(S2)

for some k ≥ 2 and 0 < α < 1.

The induced polar normal coordinate vector fields on Sp,ρ(w), denoted by Zw
i , are

Zw
i := (expp(ρ(1−w)Θ))∗∂θ i = ∂θ i

[
φ ◦ expp

(
ρ
(
1−w(θ 1,θ 2)

)
Θ(θ 1,θ 2)

)]µ
∂µ

= ρ((1−w)∂θ iΘ
µ −wiΘ

µ)∂µ (2.7)

For further notation regarding perturbed geodesic spheres, see Section 1.3.1.

The Riemannian measure µg induced by the Riemannian metric g is defined on Borel sets by

µg(E) :=
∫

E
dVg

where dVg is the volume form. We will henceforth write |E|g := µg(E).
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The relative perimeter of a Borel set E inside an open set V ⊂M is defined to be

Pg(E,V ) := sup
X

{∫
E∩V

divg(X)dVg | X ∈C1
c (V \∂M,T M), ||X ||∞,g ≤ 1

}
(2.8)

where ||X ||∞,g is the sup norm with respect to the metric g. When V = M we get the full perimeter Pg(E).

If Pg(E,V ) < ∞ for all bounded V then we say E is a set of locally finite perimeter and if Pg(E) < ∞ then

we say E is a set of finite perimeter. Note that ∂M does not contribute to the perimeter.

A sequence En locally converges to E if, for every V ⊂⊂M, limn→∞ |(En∆E)∩V |g = 0, also written En
loc−→

E. A sequence En converges to E if limn→∞ |En∆E|g = 0, also written En→ E. Note that, in this context, ∆

denotes the symmetric difference of two sets.

E∆F := (E ∪F)\ (E ∩F)

By Riesz’s theorem [Mag12, Theorem 4.7 and Proposition 12.1], there is a vector-valued Radon measure

µE associated to a set of finite perimeter E ⊂M, representing the distributional gradient of the characteristic

function of E, such that the (generalised) Gauss-Green formula

∫
E

divg(X)dVg =
∫

M
g(X ,u) d|µE | ∀X ∈C1

c (M \∂M,T M),where u ∈ T M, |u|g = 1 and µE = u|µE |

still holds, and its total variation measure |µE | satisfies |µE |(V ) = Pg(E,V ). When E is open and ∂E is C1,

we have µE = N̂H2
g|∂E , where H2

g|∂E is the two dimensional Hausdorff measure, restricted to ∂E, N̂ is the

outer unit normal to ∂E, and we recover the usual Gauss-Green formula.

Let spt(µE)⊂M be the support of µE . We define the reduced boundary ∂ ∗E to be the following set:

∂
∗E =

{
x ∈ spt(µE) : lim

r→0

µE(B
g
r (x))

|µE |(Bg
r (x))

exists and has unit length
}

Although rarely used explicitly in this thesis, we mention that the reduced boundary is contained in the

topological boundary, that is ∂ ∗E ⊂ ∂E, and if E is open with C1 boundary, then ∂ ∗E = ∂E. The only

result we will use about the reduced boundary is De Giorgi’s Theorem [De 61] which states that Pg(E,V ) =

H2
g(∂
∗E ∩V ). This will be applied in the proof of Lemma 6.15.

We now state some more known results about sets of finite perimeter, used later. Their proof can be found

in [Mag12] where the author proves them for Euclidean space, but analogous arguments apply to a general

Riemannian manifold. Alternatively, see [Vol10] where the author proves them for functions of bounded

variation in a Riemannian manifold, which applies to sets of finite perimeter because their characteristic
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functions have bounded variation. Finally, one can first Nash-embed the ambient manifold into a high

dimensional Euclidean space and then use the theory of currents or varifolds. We take this approach later

when proving Lemma 6.15, following the work of Simon [Sim83].

Lemma 2.3. Let E and F be sets of finite perimeter in (M,g). Then both E ∩F and E ∪F are sets of finite

perimeter and the following inequality holds for all open V ⊂M:

Pg(E ∪F,V )+Pg(E ∩F,V )≤ Pg(E,V )+Pg(F,V )

Theorem 2.4 (Lower semi-continuity of perimeter). Let En ⊂ (M,g) be a sequence of locally finite perime-

ter sets. If, for every V ⊂⊂M

|(En∆E)∩V |g→ 0 and limsup
n→∞

Pg(En,V )< ∞

then E is a set of locally finite perimeter such that, for every open V ′ ⊂M

Pg(E,V ′)≤ liminf
n→∞

Pg(En,V ′)

Theorem 2.5 (Compactness for sets of finite perimeter). Let En ⊂ (M,g) be a sequence of finite perimeter

sets. If there exists R > 0 and p ∈M such that

supPg(En)< ∞ and En ⊂ Bg
R(p) ∀n

then there exists a set E of finite perimeter such that

|En∆E|g→ 0 and E ⊂ Bg
R(p)

Finally, positive constants are denoted by C,D, ... and their value is allowed to vary from line to line. When

we want to stress the dependence of the constants on parameters, we add subscripts or parentheses e.g.

Cr,C(r).

2.2 Conformal Metrics

A metric g̃ on a smooth, n-dimensional manifold M is conformal to another metric g if g̃= e2 f g for a smooth

function f on M. In this subsection we recall some facts about such metrics, namely how the curvatures of

(M, g̃) relate to (M,g). Some of the proofs are from [Lee18, Chapter 7].
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Lemma 2.6.

∇̃XY = ∇XY +X( f )Y +Y ( f )X−g(X ,Y )grad f (2.9)

Proof. By definition we have

Γ̃
λ
ηµ =

1
2

g̃λν(∂η g̃µν +∂µ g̃ην −∂ν g̃ηµ)

=
1
2

e−2 f gλν(∂η(e2 f gµν)+∂µ(e2 f gην)−∂ν(e2 f gηµ))

=
1
2

e−2 f gλν
[
e2 f (∂η gµν +∂µ gην −∂ν gηµ)+2e2 f (∂η f gµν +∂µ f gην −∂ν f gηµ)

]
= Γ

λ
ηµ +∂η f δ

λ
µ +∂µ f δ

λ
η −gλν

∂ν f gηµ

Thus, for vector fields X ,Y

(∇̃XY )λ = X(Y λ )+XηY µ
Γ̃

λ
ηµ

= X(Y λ )+XηY µ(Γλ
ηµ +∂η f δ

λ
µ +∂µ f δ

λ
η −gλν

∂ν f gηµ)

= (∇XY )λ +XηY λ
∂η f +XλY µ

∂µ f −gηµ XηY µ gλν
∂ν f

which is the coordinate version of (2.9).

Lemma 2.7.

R̃m = e2 f (Rm− (∇2 f )©∧ g+(d f ⊗d f )©∧ g− 1
2
|d f |2g(g©∧ g)

)
(2.10)

Proof. First, since [∂η ,∂µ ] = 0, we have

R̃(∂η ,∂µ)∂λ = R̃ ν

ηµλ
∂ν

= ∇̃∂η
∇̃∂µ

∂λ − ∇̃∂µ
∇̃∂η

∂λ

= ∇̃∂η
(Γ̃ν

µλ
∂ν)− ∇̃∂µ

(Γ̃ν

ηλ
∂ν)

= ∂η Γ̃
ν

µλ
∂ν + Γ̃

ν

µλ
∇̃∂η

∂ν −∂µ Γ̃
ν

ηλ
∂ν − Γ̃

ν

ηλ
∇̃∂µ

∂ν

=
(
∂η Γ̃

ν

µλ
−∂µ Γ̃

ν

ηλ

)
∂ν + Γ̃

ν

µλ
Γ̃

α
ην ∂α − Γ̃

ν

ηλ
Γ̃

α
µν ∂α

=
(
∂η Γ̃

ν

µλ
−∂µ Γ̃

ν

ηλ
+ Γ̃

α

µλ
Γ̃

ν
ηα − Γ̃

α

ηλ
Γ̃

ν
µα

)
∂ν

32



and therefore

R̃ηµλν = g̃να R̃ α

ηµλ
= g̃να

(
∂η Γ̃

α

µλ
−∂µ Γ̃

α

ηλ
+ Γ̃

γ

µλ
Γ̃

α
ηγ − Γ̃

γ

ηλ
Γ̃

α
µγ

)
(2.11)

Working in g-normal coordinates at a point p, we have the simplifications

gηµ = δηµ

∂λ gηµ = 0

Γ
λ
ηµ = 0

at p. Therefore, using the above calculation, at p we have

Γ̃
λ
ηµ = ∂η f δ

λ
µ +∂µ f δ

λ
η −gλν

∂ν f gηµ

Also we have

(∇2 f )ηµ = ∇
2 f (∂η ,∂µ)

= ∇∂µ
(∇∂η

f )−∇∇∂η
∂µ

f

= ∂µ ∂η f −Γ
λ
ηµ ∂λ f

= ∂µ ∂η f

and

R ν

ηµλ
= ∂η Γ

ν

µλ
−∂µ Γ

ν

ηλ
+Γ

α

µλ
Γ

ν
ηα −Γ

α

ηλ
Γ

ν
µα = ∂η Γ

ν

µλ
−∂µ Γ

ν

ηλ

at p. Finally, we have

∂α Γ̃
λ
ηµ = ∂α Γ

λ
ηµ +∂α ∂η f δ

λ
µ +∂α ∂µ f δ

λ
η −gλν

∂α ∂ν f gηµ
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where we used ∂α gηµ = 0 = ∂α gηµ at p. Now we can expand (2.11) in g-normal coordinates at p.

R̃ηµλν = e2 f gνα

[(
∂η Γ

α

µλ
+∂η ∂µ f δ

α

λ
+∂η ∂λ f δ

α
µ −gαβ

∂η ∂β f gµλ

)
−
(
∂µ Γ

α

ηλ
+∂µ ∂η f δ

α

λ
+∂µ ∂λ f δ

α
η −gαβ

∂µ ∂β f gηλ

)
+
(
∂µ f δ

γ

λ
+∂λ f δ

γ

µ −gγβ
∂β f gµλ

)(
∂η f δ

α
γ +∂γ f δ

α
η −gαε

∂ε f gηγ

)
−
(
∂η f δ

γ

λ
+∂λ f δ

γ

η −gγβ
∂β f gηλ

)(
∂µ f δ

α
γ +∂γ f δ

α
µ −gαε

∂ε f gµγ

)]
= e2 f

[
gνα R α

ηµλ
+gνλ ∂η ∂µ f +gνµ ∂η ∂λ f −gµλ ∂η ∂ν f −gνλ ∂µ ∂η f −gνη ∂µ ∂λ f +gηλ ∂µ ∂ν f

+gνλ ∂µ f ∂η f +gνη ∂µ f ∂λ f −gηλ ∂µ f ∂ν f +gνµ ∂λ f ∂η f +gνη ∂λ f ∂µ f −gηµ ∂λ f ∂ν f

−gµλ ∂ν f ∂η f −gγβ gµλ gνη ∂β f ∂γ f +gµλ ∂η f ∂ν f −gνλ ∂η f ∂µ f −gνµ ∂η f ∂λ f +gµλ ∂η f ∂ν f

−gνη ∂λ f ∂µ f −gνµ ∂λ f ∂η f +gµη ∂λ f ∂ν f +gηλ ∂ν f ∂µ f +gγβ gηλ gνµ ∂β f ∂γ f −gηλ ∂µ f ∂ν f
]

= e2 f
[
Rηµλν −∂η ∂ν f gµλ −∂µ ∂λ f gνη +∂η ∂λ f gνµ +∂µ ∂ν f gηλ +gνη ∂λ f ∂µ f +gµλ ∂η f ∂ν f

−gνµ ∂λ f ∂η f −gηλ ∂µ f ∂ν f +gγβ gηλ gνµ ∂β f ∂γ f −gγβ gµλ gνη ∂β f ∂γ f
]

= e2 f (Rηµλν − ((∇2 f )©∧ g)ηµλν +((d f ⊗d f )©∧ g)ηµλν −
1
2
|d f |2g(g©∧ g)ηµλν

)

This proves (2.10) at an arbitrary point p in normal coordinates. Hence it is true everywhere.

Lemma 2.8.

R̃ic = Ric− (n−2)(∇2 f )+(n−2)d f ⊗d f −
(

∆ f +(n−2)|d f |2g
)

g (2.12)

Proof.

R̃ic = tr13
g̃ R̃m

= e−2 f tr13
g

[
e2 f (Rm− (∇2 f )©∧ g+(d f ⊗d f )©∧ g− 1

2
|d f |2g(g©∧ g)

)]
= Ric− tr13

g

[
(∇2 f )©∧ g

]
+ tr13

g

[
(d f ⊗d f )©∧ g

]
− 1

2
|d f |2gtr13

g

[
g©∧ g

]
= Ric− (n−2)(∇2 f )− trg(∇

2 f )g+(n−2)d f ⊗d f + trg(d f ⊗d f )g

− 1
2
|d f |2g

[
(n−2)g+(trgg)g

]
= Ric− (n−2)(∇2 f )− (∆ f )g+(n−2)d f ⊗d f + |d f |2gg− (n−1)|d f |2gg

= Ric− (n−2)(∇2 f )+(n−2)d f ⊗d f −
(

∆ f +(n−2)|d f |2g
)

g

where in the fourth line we used (2.1) and in the fifth line we used the fact that trgg = gηµ gηµ = δ
µ

µ = n

and trg(d f ⊗d f ) = gηµ(d f ⊗d f )ηµ = gηµ(d f )η(d f )µ = g(d f ,d f ) = |d f |2g.
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Lemma 2.9.

S̃c = e−2 f
(

Sc−2(n−1)∆ f − (n−1)(n−2)|d f |2g
)

(2.13)

Proof.

S̃c = trg̃R̃ic

= e−2 f trgR̃ic

= e−2 f
[
Sc− (n−2)∆ f +(n−2)|d f |2g−n

(
∆ f +(n−2)|d f |2g

)]
where we traced (2.12) term by term. Collecting like terms yields (2.13).

Now let s = e2 f . Then g̃ = sg, g̃−1 = s−1g−1 and ∂η g̃µλ = ∂η sgµλ +s∂η gµλ . Thus, the Christoffel symbols

become

Γ̃
λ
ηµ =

s−1gλν

2

[
s
(

∂η g̃µν +∂µ g̃ην −∂ν g̃ηµ

)
+∂η sgµν +∂µ sgην −∂ν sgηµ

]
= Γ

λ
ηµ +

s−1

2

[
∂η sδ

λ
µ +∂µ sδ

λ
η −gλν

∂ν sgηµ

]

and then (2.9) changes to

∇̃XY = ∇XY +
s−1

2

[
X( f )Y +Y ( f )X−g(X ,Y )grad f

]

We can rewrite (2.13) in terms of s as follows:

∆ f = ∆

(1
2

lns
)

= gηµ

[
∂µ ∂η

(1
2

lns
)
−∂λ

(1
2

lns
)

Γ
λ
ηµ

]
=

1
2

gηµ

[
∂µ

(
∂η s

s

)
− ∂λ s

s
Γ

λ
ηµ

]
=

1
2s

gηµ

[
∂µ ∂η s−

∂η s∂µ s
s
−∂λ sΓ

λ
ηµ

]
=

1
2s

[
∆s−

|ds|2g
s

]
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|d f |2g = g(d
(1

2
lns
)
,d
(1

2
lns
)
) =

1
4s2 g(ds,ds) =

1
4s2 |ds|2g

so that

S̃c = s−1
(

Sc−2(n−1)

[
1
2s

[
∆s−

|ds|2g
s

]]
− (n−1)(n−2)

[ 1
4s2 |ds|2g

])
= s−1Sc− s−2(n−1)∆s− s−3

4
(n−1)(n−6)|ds|2g (2.14)

Now, if s = u
4

n−2 (for n 6= 2) then we have

∆

(
u

4
n−2

)
= gηµ

[
∂µ ∂η

(
u

4
n−2

)
−∂λ

(
u

4
n−2

)
Γ

λ
ηµ

]
=

4gηµ

n−2

[
∂µ

(
u

6−n
n−2 ∂η u

)
−u

6−n
n−2 ∂λ uΓ

λ
ηµ

]
=

4gηµ

n−2

[6−n
n−2

u
8−2n
n−2 ∂µ u∂η u+u

6−n
n−2 ∂µ ∂η u−u

6−n
n−2 ∂λ uΓ

λ
ηµ

]
=

4(6−n)
(n−2)2 u

8−2n
n−2 |du|2g +

4
n−2

u
6−n
n−2 ∆u

|d
(

u
4

n−2

)
|2g = g(d

(
u

4
n−2

)
,d
(

u
4

n−2

)
) = (

4
n−2

)2(u
6−n
n−2 )2g(du,du) =

16
(n−2)2 u

12−2n
n−2 |du|2g

which means (2.14) becomes

S̃c = u−
4

n−2 Sc−u−
8

n−2 (n−1)∆
(

u
4

n−2

)
− u−

12
n−2

4
(n−1)(n−6)|d

(
u

4
n−2

)
|2g

= u−
4

n−2 Sc−u−
8

n−2 (n−1)
[4(6−n)
(n−2)2 u

8−2n
n−2 |du|2g +

4
n−2

u
6−n
n−2 ∆u

]
− u−

12
n−2

4
(n−1)(n−6)

[ 16
(n−2)2 u

12−2n
n−2 |du|2g

]
= u−

4
n−2 Sc− 4(n−1)

n−2
u−

(n+2)
n−2 ∆u (2.15)

Remark 2.10. The main difference between (2.14) and (2.15) is that the latter doesn’t have a "du" term.
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Remark 2.11. If Sc = 0, for example when g = ḡ, then (2.15) shows that S̃c = 0 is equivalent to u being

harmonic.

2.3 Variation of Geometric Quantities

For a closed surface Σ ⊂ (M,g), define a normal variation of Σ by a smooth map F : Σ× (−ε,ε)→ M

such that ∂tF = ftNt , for a smooth function ft and outward unit normal Nt on the surface Σt := F(Σ, t).

Induce the pullback metric gt := F∗t g on each Σt . Thus (Σ0,g0) = (Σ, g̊). With these notations, we recall the

variation equations for some geometric quantities, whose proof can be found in [HP96; CM11; Bra97], or

the Appendix to this work (Section 9.2).

Lemma 2.12 (Variation of Geometric Quantities).

i) ∂t(gt)i j = 2 ft(ht)i j

ii) ∂tdVgt = ftHtdVgt

iii) ∂tNt =−gradΣt
ft

iv) ∂t(ht)i j =− ftRm(Nt ,∂ j,Nt ,∂i)−g(∇∂igradΣt
ft ,∂ j)+ ftg(∇∂iNt ,∇∂ j Nt)

v) ∂tHt =−∆gt ft − ft(|ht |2 +Ric(Nt ,Nt))

Lemma 2.13 (First Variation of the Area Functional).

∂t |0(A(Σt)) =
∫

Σ

f0HdVg̊ (2.16)

Proof. By Lemma 2.12 we have

∂t(A(Σt)) =
∫

Σ

∂tdVgt =
∫

Σ

ftHtdVgt

and evaluating at t = 0 completes the proof.

Lemma 2.14 (First Variation of the Willmore Functional).

∂t |0(W (Σt)) =
∫

Σ

(
−2∆g̊H−H(H2−4D+2Ric(N̂, N̂))

)
f0 dVg̊ (2.17)

and therefore Σ is a Willmore surface if and only if it satisfies

−2∆g̊H−H(H2−4D+2Ric(N̂, N̂)) = 0
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Proof. We follow the proof given in [LMS11].

∂t(W (Σt)) = ∂t

∫
Σ

H2
t dVgt

=
∫

Σ

2Ht∂t(Ht)dVgt +H2
t ∂t(dVgt )

=
∫

Σ

2Ht(−∆gt ft − ft(|ht |2 +Ric(Nt ,Nt)))dVgt + ftH3
t dVgt

=
∫

Σ

−2Ht∆gt ft −2 ftHt(|ht |2−
1
2

H2
t +Ric(Nt ,Nt)) dVgt

=
∫

Σ

−2 ft∆gt Ht −2 ftHt(|ht |2−
1
2

H2
t +Ric(Nt ,Nt)) dVgt

=
∫

Σ

(
−2∆gt Ht −2Ht(|ht |2−

1
2

H2
t +Ric(Nt ,Nt))

)
ft dVgt

where we have used Lemma 2.12, and integrated by parts (recall ∂Σ = /0) so that f factored out. Evaluating

at t = 0, we can expand |h|2 in an orthonormal frame which diagonalizes h, so that

|h|2 = k2
1 + k2

2 = (k1 + k2)
2−2k1k2

= H2−2D

where k1, k2 are the principle curvatures. This gives the desired integral. If Σ minimises the functional for

any normal variation, then the integral in (2.17) will be equal to zero for any f , hence

−2∆g̊H−H(H2−4D+2Ric(N̂, N̂)) = 0

2.4 Examples

These examples are 3D Riemannian manifolds relevant to the conditions in the main theorems.

Example 2.15. For any given (M,g) with zero scalar curvature, Remark 2.11 shows that we get another by

taking (M,u4g) for harmonic u. For example, the spatial Schwarzschild manifold of mass m is

(
R3 \0,

(
1+

m
2|x|

)4

ḡ

)

and we have
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∆ḡ

(
1+

m
2|x|

)
= ∑

µ

∂µ ∂µ

(
1+

m
2|x|

)
= ∑

µ

∂µ

(
− mxµ

2|x|3
)
= ∑

µ

−m
2

(
|x|−3−3(xµ)2|x|−5

)
= 0

Therefore the spatial Schwarzschild manifold has zero scalar curvature. In general, for (R3 \0,u4ḡ) we can

use harmonic function theory ([ABR01], Chapter 10), which gives the following Laurent expansion:

u(x) =
∞

∑
m=0

pm(x)+
∞

∑
m=0

qm(x)
|x|2m+1

Restricting to functions u which satisfy u→ a at infinity means we have

u(x) = a+
b
|x|

+O(|x|−2)

Thus we can attempt to compute the ADM mass of (R3 \0,u4ḡ). Firstly

(u4
δµν)µ = 4

(
a+

b
|x|

+O(|x|−2)
)3(
− bxµ

|x|3
+O(|x|−3)

)
δµν

and

(u4
δµµ)ν = 4

(
a+

b
|x|

+O(|x|−2)
)3(
− bxν

|x|3
+O(|x|−3)

)
δµµ

Therefore the integrand of mADM((R3 \0,u4ḡ)) is
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(
(u4

δµν)µ − (u4
δµµ)ν

) xν

|x|
= 4
(

a+
b
|x|

+O(|x|−2)
)3(
− bxµ

|x|3
+O(|x|−3)

)
δµν

xν

|x|

−4
(

a+
b
|x|

+O(|x|−2)
)3(
− bxν

|x|3
+O(|x|−3)

)
δµµ

xν

|x|

= ∑
ν

−4
(

a+
b
|x|

+O(|x|−2)
)3(b(xν)2

|x|4
+O(|x|−4)

)
+∑

ν

12
(

a+
b
|x|

+O(|x|−2)
)3(b(xν)2

|x|4
+O(|x|−4)

)
= 8b

(
a+

b
|x|

+O(|x|−2)
)3(
|x|−2 +O(|x|−4)

)
Thus, (using r = |x|)

mADM((R3 \0,u4ḡ)) = lim
r→∞

2b
ω2

(
a+

b
r
+O(r−2)

)3(
r−2 +O(r−4)

)∫
S2

r

dVS2
r

= lim
r→∞

2b
(

a+
b
r
+O(r−2)

)3(
1+O(r−2)

)
= 2a3b

Unfortunately, this quantity is not well defined because it is multiplied by C when computed in a coordinate

system obtained by scaling with a factor of C. The invariant quantity is in fact 2ab and so when a = 1, the

above calculation is valid. This makes sense because, when a = 1 we can show that (R3 \ 0,u4ḡ) is AF

(with τ = 1) as follows. Rewrite the metric as

(
1+

b
|x|

+O(|x|−2)
)4

δµν =
(

1+O(|x|−1)
)

δµν = δµν +O(|x|−1)δµν

and then, for any µ , ν and multi-index α , we have

|x||α|∂ α(O(|x|−1)δµν) = |x||α|O(|x|−1−|α|) =O(|x|−1)

The case with a = 1, b = m
2 and no lower order terms yields the spatial Schwarzschild manifold of mass m

which, by the above calculation, has an ADM mass of m too.

Example 2.16. Another class of relevant examples is asymptotically flat graphs in R4. These arise by

considering functions f ∈C∞(R3) such that either f (x)→C or f (x)→ ∞, as r = |x| → ∞, where x ∈ R3
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and C ∈ R. Letting (M,g f ) be the image of f as a subset of R4 with the induced metric yields

(M,g f ) = (R3, ḡ+d f ⊗d f ) where (g f )µν = δµν +∂µ f ∂ν f

Requiring

4

∑
|α|=1

r|α|−1
∂

α f =O(r−
τ
2 )

for some τ > 1
2 implies that (M,g f ) is asymptotically flat, as per Definition 1.2. More generally, for a

bounded, open set Ω ⊂ R3 we can consider f ∈C∞(R3 \Ω). The spatial Schwarzschild manifold fits into

this class as the graph of the following function:

R3 \B2m(0)→ R r 7→
√

8m(r−2m)

The scalar curvature of any graph over Euclidean space can be computed in terms of the function f using

Scg f =
1

1+ |gradḡ f |2ḡ

[
fµµ fνν − fµν fµν −

2 fν fη

1+ |gradḡ f |2ḡ

(
fµµ fνη − fµν fµη

)]
See [Geo10] for the proofs and much more detail about asymptotically flat graphs. An explicit example of

a graph with non-negative scalar curvature is given by the 3D elliptic paraboloid, whose graph function is

f (x1,x2,x3) = (x1)2 +(x2)2 +(x3)2, so that fµ = 2xµ , fµν = 0 for µ 6= ν , and fµµ = 2. Plugging these in

to the above formula and summing over µ,ν and η yields

Scg f =
8|gradḡ f |2ḡ +24(
1+ |gradḡ f |2ḡ

)2 > 0

The metric in this case is not asymptotically flat, since in coordinates we have (g f )µν = δµν +4xµ xν , but it

is ALSC because the radius of its cross-section grows without bound.

Example 2.17. We can look for further examples by considering warped products. For (M1,g1), (N2,g2)

and a positive function f ∈C∞(M) we form the warped product (M×N,g f ), where g f = g1 + f 2g2. The

next result is a special case of Theorem 2.1 in [DD87].

Lemma 2.18. The scalar curvature Scg f of (M×N,g f ) satisfies

vScg f = v−
1
3 Scg2 −

8
3

v′′ (2.18)

where Scg2 is the scalar curvature of (N2,g2) and v = f
3
2 .
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Proof. We mimic the method in [DD87] and write g f = f 2( f−2g1+g2) =: f 2g3, where g3 is another metric

on M×N. Since M is one dimensional, it is locally isometric to an interval with the standard metric and

so Scg1 = 0 and its Laplacian is just the second derivative. Thus, by (2.14) we have Sc f−2g1
= f 2Scg1 = 0.

This implies that Scg3 = Sc f−2g1
+Scg2 = Scg2 , where we have used that g3 is just the product metric on

(M, f−2g1)× (N,g2). Next, applying (2.15) to (M×N,g3) where the conformal factor is f 2, we have

Scg f = Sc f 2g3
= u−4Scg3 −8u−5

∆g3u

= u−4Scg2 −8u−5
∆g3u (2.19)

where f 2 = u4 for some u ∈C∞(M). In order to change the Laplacian term so that it is with respect to the

metric g1 we use that u ∈C∞(M) and the standard coordinate formula to compute

∆g3u = ∆ f−2g1
u := (det f−2g1)

− 1
2 ∂i

(
( f−2g1)

i j(det f−2g1)
1
2 ∂ ju

)
= f (g1)

i j
∂i f ∂ ju+ f 2

∆g1u

= u3(2u′u′+uu′′) (2.20)

Now we can get rid of the term containing the first derivative by letting u = vs and using the product rule

(vs)′′ = svs−1v′′+ s(s−1)vs−2v′v′

Substituting this into (2.20) shows that both v′v′ terms would have a v2s−2 factor, so they could be combined.

To make the resulting coefficient zero, we would need s to satisfy 2s2 = −s(s− 1), which implies s = 1
3 .

Thus, letting u = v
1
3 and inserting (2.20) into (2.19), we obtain

Scg f = v−
4
3 Scg2 −

8
3

v−1v′′

which is equivalent to (2.18).

By inspection, we can see that for Scg f = 0 and Scg2 equal to a constant, choosing

v(r) =

((
Scg2

2

) 1
2

r+A

) 3
2
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satisfies the equation, for any constant A. In particular, for Scg2 = 2 and A = 0 (so that v(r) = r
3
2 and

f (r) = r), we get (R3, ḡ) and the spatial Schwarzschild manifold of mass m (in different coordinates to

Example 2.15) as

(M×N,g f ) =
(
(0,∞)×S2,dr2 + r2gS2

)
(M×N,g f ) =

(
(2m,∞)×S2,

(
1− 2m

r

)−1

dr2 + r2gS2

)

Alternatively, if Scg2 = 0 and A 6= 0 (so that v(r)≡ A
3
2 and f (r)≡ A), then we get, for example

(M×N,g f ) =
(
R×T 2, ḡ+A2gT 2

)
where (T 2,gT 2) is the flat torus. While the first two warped products are both ALSC (in fact AF), the latter

isn’t, because any ball with large enough radius can’t avoid the topology of the torus.

Another way a warped product can fail to be ALSC is when it shrinks to a cusp at infinity. For example

(M×N,g f ) =
(
[1,∞)×S2,dr2 + e−2rgS2

)
Substituting v = e−

3r
2 and Scg2 = 2 into (2.18) yields Scg f = 2e2r−6 > 0.

Finally, we mention that in Lemma 3.3 of [Eji81], it is shown that the equivalent form of (2.18) obtained by

substituting in f

Scg f =
Scg2

f 2 −
2( f ′)2

f 2 − 4 f ′′

f

has a positive, periodic solution when Scg f and Scg2 are positive constants.

Example 2.19. Hamilton’s Cigar soliton (self-similar solution to the Ricci flow) is the complete, rotation-

ally symmetric Riemannian manifold

(
R2,

dx2 +dy2

1+ x2 + y2

)
Using polar coordinates, the metric becomes
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dr2 + r2dθ 2

1+ r2

and therefore, as r→ ∞, the cross-section at r tends towards a unit circle. Thus it is asymptotically cylin-

drical and therefore not ALSC, because a ball of radius bigger than 1 will eventually contain a non-trivial

loop if we take it far enough towards infinity. The scalar curvature of the Cigar is

4
1+ r2 > 0

Consider now a 3D analogue of the Cigar. That is, a complete, 3D, rotationally symmetric (gradient) Ricci

soliton with positive sectional curvature (thus positive scalar curvature), proved to exist by Bryant in [Bry05,

Theorem 1]. The cited author shows that its metric, written as the warped product
(
R3,dr2 + f 2gS2

)
,

satisfies f (r) = O(r 1
2 ) as r→ ∞ and that its sectional curvatures decay at least inverse linearly (see also

[CLN06, Section 4.6]). Thus, unlike the Cigar, the 3D Bryant soliton is ALSC since the radius of its

cross-section grows without bound. However, it is not AF because f (r) is only O(r 1
2 ), not O(r).
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3 Geodesic Spheres - Calculations

3.1 Normal Coordinate Expansions of Geometric Quantities

In this subsection we compute the expansions of the geometric quantities for a geodesic sphere, inside an

arbitrary 3D Riemannian manifold, that are needed in order to find W (Sp,ρ) and therefore mH(Sp,ρ). The

methods used in the proofs are mostly the same as in [Mon13; PX09], and the perturbed case in Section 4

will be similar. We want expansions for g̊ and H, since then we can compute

W (Sp,ρ) :=
∫

Sp,ρ

H2 dVg̊ =
∫
S2

H2
√

det g̊ dθ
1dθ

2

Lemma 3.1. Let (M,g) be a 3D Riemannian manifold and p∈M. The following expansions hold in normal

coordinates at p:

i) gµν = δµν +
1
3

g(R(Θ,Eµ)Θ,Eν)ρ
2 +

1
6

g(∇ΘR(Θ,Eµ)Θ,Eν)ρ
3

+
1

20
g(∇2

ΘR(Θ,Eµ)Θ,Eν)ρ
4 +

2
45

g(R(Θ,Eµ)Θ,Eτ)g(R(Θ,Eν)Θ,Eτ)ρ
4 (3.1)

+O(ρ5)

ii) g̊i j = gS
2

i j ρ
2 +

1
3

g(R(Θ,Θi)Θ,Θ j)ρ
4 +

1
6

g(∇ΘR(Θ,Θi)Θ,Θ j)ρ
5

+
1

20
g(∇2

ΘR(Θ,Θi)Θ,Θ j)ρ
6 +

2
45

g(R(Θ,Θi)Θ,Eτ)g(R(Θ,Θ j)Θ,Eτ)ρ
6

+O(ρ7)

iii) H2 =
4

ρ2 −
4
3

Ric(Θ,Θ)+gi j
S2g(∇ΘR(Θ,Θi)Θ,Θ j)ρ

+

[
2
5

gi j
S2g(∇2

ΘR(Θ,Θi)Θ,Θ j)+
16
45

gi j
S2g(R(Θ,Θi)Θ,Eτ)g(R(Θ,Θ j)Θ,Eτ)

− 4
9

gil
S2gk j

S2g(R(Θ,Θi)Θ,Θ j)g(R(Θ,Θl)Θ,Θk)+
1
9

Ric(Θ,Θ)2

]
ρ

2 +O(ρ3)
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iv)
√

det g̊ = sinθ
1
ρ

2

[
1− 1

6
Ric(Θ,Θ)ρ2 +

1
12

gi j
S2g(∇ΘR(Θ,Θi)Θ,Θ j)ρ

3

+
1

40
gi j
S2g(∇2

ΘR(Θ,Θi)Θ,Θ j)ρ
4

+
1

45
gi j
S2g(R(Θ,Θi)Θ,Eτ)g(R(Θ,Θ j)Θ,Eτ)ρ

4

+
1

18
g(R(Θ,Θ1)Θ,Θ1)g(R(Θ,Θ̄2)Θ,Θ̄2)ρ

4

− 1
18

g(R(Θ,Θ1)Θ,Θ̄2)
2
ρ

4− 1
72

Ric(Θ,Θ)2
ρ

4

]
+O(ρ7)

where all the inner products and curvatures on the right hand sides are computed at p.

Remark 3.2. It is useful to remark that (3.1), combined with the symmetries of the curvature tensor and

Remark 2.2, shows

g(Θµ
∂µ ,∂θ 1Θ

ν
∂ν) = g(Θµ

∂µ ,∂θ 2Θ
ν
∂ν) = 0 and g(Θµ

∂µ ,Θ
ν
∂ν) = 1

Proof. i) This is achieved by using a variation through geodesics; see [LP87], [Sak96, Chapter 2] or

[SY10, Chapter 5] for example (or, using a more general method, shown in [Gra04], Chapter 9).

Consider the vectors x,W ∈ TpM ∼= R3. For every s ∈ R small enough the curve γs(t) := expp(t(x+

sW )) is a geodesic in M starting at p. In normal coordinates it is represented by γs(t) = t(x+sW ), with

initial velocity x+ sW . Varying s, we get a variation through geodesics with variation field X(t) :=
∂

∂ s γs(t) = tW . Denoting the tangent vector field to each geodesic by T := γ ′s(t), we prove two properties

in the lemmas below.

Lemma 3.3 (Jacobi equation). ∇2
T X := ∇T ∇T X =R(T,X)T

Proof. Since every curve in the variation is a geodesic, we have ∇T T = 0 by definition. Also, both

X and T are the push-forward of ∂

∂ s and ∂

∂ t which means their commutator is zero. Therefore, by the

torsion-free property, we have

0 = [T,X ] = ∇T X−∇X T

Thus

0 = ∇X ∇T T = ∇T ∇X T −∇[T,X ]T −R(T,X)T

= ∇T ∇T X−R(T,X)T
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where we have used the definition of the Riemann curvature endomorphism.

Lemma 3.4.

g(∇n
TR(T,Y )T,Z) = g(Y,∇n

TR(T,Z)T ) (3.2)

for any vector fields Y , Z and non-negative integer n.

Proof. We will prove by induction. First, (3.2) is true for n = 0 because

g(R(T,Y )T,Z) = Rm(T,Z,Y,T )

= Rm(Y,T,T,Z)

= Rm(T,Y,Z,T )

= g(R(T,Z)T,Y )

= g(Y,R(T,Z)T )

where we used the symmetries of the curvature tensor. Now assume that (3.2) is true for n = k and

differentiate both sides, yielding

∇T g(∇k
TR(T,Y )T,Z) = g(∇T

(
∇

k
TR(T,Y )T

)
,Z)+g(∇k

TR(T,Y )T,∇T Z)

= g(∇k+1
T R(T,Y )T,Z)+g(∇k

TR(T,∇TY )T,Z)

+g(∇k
TR(T,Y )T,∇T Z) (3.3)

and

∇T g(Y,∇k
TR(T,Z)T ) = g(∇TY,∇k

TR(T,Z)T )+g(Y,∇T (∇
k
TR(T,Z)T ))

= g(∇TY,∇k
TR(T,Z)T )+g(Y,∇k+1

T R(T,Z)T )

+g(Y,∇k
TR(T,∇T Z)T ) (3.4)

where we used compatibility of ∇ with g, the product rule, and ∇T T = 0. Equating (3.3) and (3.4), and

using the induction assumption to cancel like terms, gives (3.2) for n = k+1. Thus, by induction, it is

true for all non-negative n.
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Now, consider the function f (t) := gexpp(tx)(X(t),X(t)). To compute the Taylor expansion for f around

0 we need to compute the derivatives at 0. Using Lemmas 3.3 and 3.4, we compute

∇T g(X ,X) = 2g(∇T X ,X)

∇
2
T g(X ,X) = 2∇T g(∇T X ,X)

= 2g(R(T,X)T,X)+2g(∇T X ,∇T X)

∇
3
T g(X ,X) = 2∇T g(R(T,X)T,X)+2∇T g(∇T X ,∇T X)

= 2g(∇T (R(T,X)T ),X)+2g(R(T,X)T,∇T X)+4g(R(T,X)T,∇T X)

= 2g(∇TR(T,X)T,X)+2g(R(T,∇T X)T,X)+6g(R(T,X)T,∇T X)

= 2g(∇TR(T,X)T,X)+8g(X ,R(T,∇T X)T )

∇
4
T g(X ,X) = 2∇T g(∇TR(T,X)T,X)+8∇T g(R(T,X)T,∇T X)

= 2g(∇2
TR(T,X)T,X)+2g(∇TR(T,∇T X)T,X)+2g(∇TR(T,X)T,∇T X)

+8g(∇TR(T,X)T,∇T X)+8g(R(T,∇T X)T,∇T X)

+8g(R(T,X)T,R(T,X)T )

= 12g(X ,∇TR(T,∇T X)T )+8g(R(T,∇T X)T,∇T X)

+8g(R(T,X)T,R(T,X)T )+2g(∇2
TR(T,X)T,X)

∇
5
T g(X ,X) = 12∇T g(X ,∇TR(T,∇T X)T )+8∇T g(R(T,∇T X)T,∇T X)

+8∇T g(R(T,X)T,R(T,X)T )+2∇T g(∇2
TR(T,X)T,X)

= 12g(∇T X ,∇TR(T,∇T X)T )+12g(X ,∇2
TR(T,∇T X)T )

+12g(X ,∇TR(T,∇2
T X)T )+8g(∇TR(T,∇T X)T,∇T X)

+8g(R(T,∇2
T X)T,∇T X)+8g(R(T,∇T X)T,∇2

T X)

+16g(∇TR(T,X)T,R(T,X)T )+16g(R(T,∇T X)T,R(T,X)T )

+2g(∇3
TR(T,X)T,X)+2g(∇2

TR(T,∇T X)T,X)+2g(∇2
TR(T,X)T,∇T X)

= 20g(∇TR(T,∇T X)T,∇T X)+16g(∇2
TR(T,∇T X)T,X)

+28g(∇TR(T,X)T,R(T,X)T )+32g(R(T,∇T X)T,R(T,X)T )

+2g(∇3
TR(T,X)T,X)
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∇
6
T g(X ,X) = 20∇T g(∇TR(T,∇T X)T,∇T X)+16∇T g(∇2

TR(T,∇T X)T,X)

+28∇T g(∇TR(T,X)T,R(T,X)T )+32∇T g(R(T,∇T X)T,R(T,X)T )

+2∇T g(∇3
TR(T,X)T,X)

= 20g(∇2
TR(T,∇T X)T,∇T X)+20g(∇TR(T,∇2

T X)T,∇T X)

+20g(∇TR(T,∇T X)T,∇2
T X)+16g(∇3

TR(T,∇T X)T,X)

+16g(∇2
TR(T,∇2

T X)T,X)+16g(∇2
TR(T,∇T X)T,∇T X)

+28g(∇2
TR(T,X)T,R(T,X)T )+28g(∇TR(T,∇T X)T,R(T,X)T )

+28g(∇TR(T,X)T,∇TR(T,X)T )+28g(∇TR(T,X)T,R(T,∇T X)T )

+32g(∇TR(T,∇T X)T,R(T,X)T )+32g(R(T,∇2
T X)T,R(T,X)T )

+32g(R(T,∇T X)T,∇TR(T,X)T )+32g(R(T,∇T X)T,R(T,∇T X)T )

+2g(∇4
TR(T,X)T,X)+2g(∇3

TR(T,∇T X)T,X)+2g(∇3
TR(T,X)T,∇T X)

= 36g(∇2
TR(T,∇T X)T,∇T X)+100g(∇TR(T,∇T X)T,R(T,X)T )

+20g(∇3
TR(T,∇T X)T,X)+44g(∇2

TR(T,X)T,R(T,X)T )

+28g(∇TR(T,X)T,∇TR(T,X)T )+60g(∇TR(T,X)T,R(T,∇T X)T )

+32g(R(T,∇2
T X)T,R(T,X)T )+32g(R(T,∇T X)T,R(T,∇T X)T )

+2g(∇4
TR(T,X)T,X)

where we have written most terms in a form which makes the next simplification as easy as possible.

Thus, evaluating at t = 0, we have X(0) = 0 and ∇T X(0) =W , which means any term gp(·, ·) with one

of the entries being X or ∇n
TR(T,X)T , will be zero (the latter case is true after applying Lemma 3.4).

This yields

∇T gp(X ,X)|0 = 0

∇
2
T gp(X ,X)|0 = 2gp(W,W )

∇
3
T gp(X ,X)|0 = 0

∇
4
T gp(X ,X)|0 = 8gp(R(T (0),W )T (0),W ) (3.5)

∇
5
T gp(X ,X)|0 = 20gp(∇T (0)R(T (0),W )T (0),W )

∇
6
T gp(X ,X)|0 = 36gp(∇

2
T (0)R(T (0),W )T (0),W )+32gp(R(T (0),W )T (0),R(T (0),W )T (0))

We could continue this process to get more terms. On the one hand we have, for a point near 0
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f (t) = gexpp(tx)(X(t),X(t)) = gexpp(tx)(W,W )t2

and on the other, using (3.5), we have the Taylor expansion

f (t) = gp(W,W )t2 +
1
3

gp(R(T (0),W )T (0),W )t4 +
1
6

gp(∇T (0)R(T (0),W )T (0),W )t5

+
1
20

gp(∇
2
T (0)R(T (0),W )T (0),W )t6 +

2
45

gp(R(T (0),W )T (0),R(T (0),W )T (0))t6

+O(t7)

Putting these together and letting T (0) = x = Θ and t = ρ we get

gexpp(ρΘ)(W,W ) = gp(W,W )+
1
3

gp(R(Θ,W )Θ,W )ρ2 +
1
6

gp(∇ΘR(Θ,W )Θ,W )ρ3

+
1
20

gp(∇
2
ΘR(Θ,W )Θ,W )ρ4 +

2
45

gp(R(Θ,W )Θ,R(Θ,W )Θ)ρ4

+O(ρ5) (3.6)

Now, take W to be the normal coordinate vector fields ∂µ . Applying the polarization identity for vector

spaces

g(∂µ ,∂ν) =
1
4
(g(∂µ +∂ν ,∂µ +∂ν)−g(∂µ −∂ν ,∂µ −∂ν))

to (3.6), simplifying using linearity, the symmetry of the curvature tensor and recalling that ∂µ(p)=Eµ ,

yields (3.1).

ii) We can use (3.1) to get an expansion for g̊ by recalling that the induced metric is just the ambient

metric restricted to the coordinate vector fields Zi of Sp,ρ . Plugging (2.6) into g, using (3.1) and

gp(Θi,Θ j) = gS
2

i j gives the result.

iii) In order to find an expansion for the mean curvature, first we need one for the second fundamental

form h of Sp,ρ , since then we have H := hi jg̊i j. To do this, we allow ρ to vary in TpM. Then we have

the three coordinate vector fields
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Z0 = exp∗(∂ρ ρΘ) = Θ
µ

∂µ

Z1 = exp∗(ρΘ1) = ρ∂θ 1Θ
µ

∂µ

Z2 = exp∗(ρΘ2) = ρ∂θ 2Θ
µ

∂µ

Note that we have the following symmetry:

g(∇ZiZ0,Z j) = ∂ig(Z0,Z j)−g(Z0,∇ZiZ j)

=−g(Z0,∇ZiZ j)

=−g(Z0,∇Z j Zi)

= g(∇Z j Z0,Zi)

where we have used compatibility and symmetry of the connection, and that g(Z0,Z j) = 0. Using this

and the Weingarten equation with inward unit normal N̂ =−Z0, we get

hi j =−g(∇ZiN̂,Z j) = g(∇ZiZ0,Z j) =
1
2
(g(∇ZiZ0,Z j)+g(Zi,∇Z j Z0))

=
1
2
(g(∇Z0Zi,Z j)+g(Zi,∇Z0Z j))

=
1
2

Z0(g(Zi,Z j))

=
1
2

∂ρ g̊i j

Differentiating the expansion for g̊i j above gives

hi j = gS
2

i j ρ +
2
3

g(R(Θ,Θi)Θ,Θ j)ρ
3 +

5
12

g(∇ΘR(Θ,Θi)Θ,Θ j)ρ
4

+
3

20
g(∇2

ΘR(Θ,Θi)Θ,Θ j)ρ
5 +

2
15

g(R(Θ,Θi)Θ,Eτ)g(R(Θ,Θ j)Θ,Eτ)ρ
5

+O(ρ6)

Next, to get an expansion for g̊i j we use the following formula for the inverse of a sum of matrices,

where A is invertible:
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(A+Bρ
2 +Cρ

3 +Dρ
4)−1 = A−1−A−1BA−1

ρ
2−A−1CA−1

ρ
3−A−1DA−1

ρ
4

+A−1BA−1BA−1
ρ

4 +O(ρ5)

which is applicable here because A is just the metric of the round sphere

A = gS
2

i j =

1 0

0 sin2
θ 1

 and A−1 =

1 0

0 1
sin2 θ 1

 := gi j
S2

Ignoring higher order terms, we get

g̊i j = g̊−1
i j

= ρ
−2

[
gS

2

i j +
1
3

g(R(Θ,Θi)Θ,Θ j)ρ
2 +

1
6

g(∇ΘR(Θ,Θi)Θ,Θ j)ρ
3

+
1
20

g(∇2
ΘR(Θ,Θi)Θ,Θ j)ρ

4 +
2
45

g(R(Θ,Θi)Θ,Eτ)g(R(Θ,Θ j)Θ,Eτ)ρ
4

]−1

= gi j
S2ρ
−2− 1

3
gil
S2g(R(Θ,Θl)Θ,Θk)g

k j
S2 −

1
6

gil
S2g(∇ΘR(Θ,Θl)Θ,Θk)g

k j
S2ρ

− 1
20

gil
S2g(∇2

ΘR(Θ,Θl)Θ,Θk)g
k j
S2ρ

2

− 2
45

gil
S2g(R(Θ,Θl)Θ,Eτ)g(R(Θ,Θk)Θ,Eτ)g

k j
S2ρ

2

+
1
9

gil
S2 g(R(Θ,Θl)Θ,Θk)gkn

S2g(R(Θ,Θn)Θ,Θm)g
m j
S2 ρ

2 +O(ρ3)

Now we can finally obtain an expansion for H by multiplying the expansions of hi j and g̊i j and carefully

collecting terms, remembering that gS
2

i j and gi j
S2 are inverses and so in particular gS

2

i j gi j
S2 = δ i

i = 2.

H = hi jg̊i j

= 2ρ
−1− 1

3
Ric(Θ,Θ)ρ +

1
4

gi j
S2g(∇ΘR(Θ,Θi)Θ,Θ j)ρ

2

+

[
1

10
gi j
S2g(∇2

ΘR(Θ,Θi)Θ,Θ j)+
4

45
gi j
S2g(R(Θ,Θi)Θ,Eτ)g(R(Θ,Θ j)Θ,Eτ)

− 1
9

gil
S2gk j

S2g(R(Θ,Θi)Θ,Θ j)g(R(Θ,Θl)Θ,Θk)

]
ρ

3 +O(ρ4)
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where the second term arises because Θ,Θ1,Θ̄2 are in fact an orthonormal basis of TpM (where the bar

indicates that Θ2 has been normalized by dividing by sinθ 1), and so we have

1
3

gi j
S2g(R(Θ,Θi)Θ,Θ j) =

1
3

[
g(R(Θ,Θ1)Θ,Θ1)+

1
sin2

θ 1
g(R(Θ,Θ2)Θ,Θ2)

]
=

1
3

[
g(R(Θ,Θ1)Θ,Θ1)+g(R(Θ,Θ̄2)Θ,Θ̄2)

]
=−1

3
Ric(Θ,Θ)

by definition of the Ricci curvature at p and the fact that g(R(Θ,Θ)Θ,Θ) = Rm(Θ,Θ,Θ,Θ) = 0 by

anti-symmetry. Note that the minus sign is just a result of the convention used when defining the

curvature tensor. The result is now obtained by squaring the expansion for H.

iv) Since g̊ can be viewed as a 2×2 matrix, its determinant can be computed by writing out the components

and using the standard formula g̊11 g̊22− g̊12 g̊21.

det g̊ = sin2
θ

1
ρ

4 +
1
3

g(R(Θ,Θ2)Θ,Θ2)ρ
6 +

sin2
θ 1

3
g(R(Θ,Θ1)Θ,Θ1)ρ

6

+
1
6

g(∇ΘR(Θ,Θ2)Θ,Θ2)ρ
7 +

sin2
θ 1

6
g(∇ΘR(Θ,Θ1)Θ,Θ1)ρ

7

+
1
20

g(∇2
ΘR(Θ,Θ2)Θ,Θ2)ρ

8 +
sin2

θ 1

20
g(∇2

ΘR(Θ,Θ1)Θ,Θ1)ρ
8

+
2
45

g(R(Θ,Θ2)Θ,Eτ)g(R(Θ,Θ2)Θ,Eτ)ρ
8

+
2sin2

θ 1

45
g(R(Θ,Θ1)Θ,Eτ)g(R(Θ,Θ1)Θ,Eτ)ρ

8

+
1
9

g(R(Θ,Θ1)Θ,Θ1)g(R(Θ,Θ2)Θ,Θ2)ρ
8

− 1
9

g(R(Θ,Θ1)Θ,Θ2)g(R(Θ,Θ2)Θ,Θ1)ρ
8 +O(ρ9)

where we have used the fact that gS
2

12 = gS
2

21 = 0 which means most of the terms in the g̊12 g̊21 part are

zero. We can rewrite this in a nicer way by using some of the notations introduced above.

53



det g̊ = sin2
θ

1
ρ

4

[
1− 1

3
Ric(Θ,Θ)ρ2 +

1
6

gi j
S2g(∇ΘR(Θ,Θi)Θ,Θ j)ρ

3

+
1

20
gi j
S2g(∇2

ΘR(Θ,Θi)Θ,Θ j)ρ
4

+
2

45
gi j
S2g(R(Θ,Θi)Θ,Eτ)g(R(Θ,Θ j)Θ,Eτ)ρ

4

+
1
9

g(R(Θ,Θ1)Θ,Θ1)g(R(Θ,Θ̄2)Θ,Θ̄2)ρ
4

− 1
9

g(R(Θ,Θ1)Θ,Θ̄2)
2
ρ

4

]
+O(ρ9) (3.7)

This also helps the final step because we can easily use the following Taylor expansion around zero:

√
1+ x = 1+

1
2

x− 1
8

x2 +O(x3)

with 1+ x replaced by the term inside the brackets in (3.7). This gives the result.

3.2 The Hawking Mass in a Geodesic Sphere

In this subsection we again use the methods in [Mon13].

Proposition 3.5. Let (M,g) be a 3D Riemannian manifold and p ∈M. Then

mH(Sp,ρ) =

√
|Sp,ρ |g̊
(16π)3

(
8π

3
Scpρ

2−
[

4π

27
Sc2

p−
4π

15
∆Sc(p)

]
ρ

4 +O(ρ5)

)
(3.8)

Proof. Plugging in the expansions from the previous section, we compute the Willmore energy of Sp,ρ up

to fourth order.
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W (Sp,ρ) =
∫
S2

H2
√

det g̊ dθ
1dθ

2

=
∫
S2

(
4−2Ric(Θ,Θ)ρ2 +

4
3

gi j
S2g(∇ΘR(Θ,Θi)Θ,Θ j)ρ

3

+
[1

2
gi j
S2g(∇2

ΘR(Θ,Θi)Θ,Θ j)

+
4
9

gi j
S2g(R(Θ,Θi)Θ,Eτ)g(R(Θ,Θ j)Θ,Eτ)

− 4
9

gil
S2gk j

S2g(R(Θ,Θi)Θ,Θ j)g(R(Θ,Θl)Θ,Θk)

+
2
9

g(R(Θ,Θ1)Θ,Θ1)g(R(Θ,Θ̄2)Θ,Θ̄2)

− 2
9

g(R(Θ,Θ1)Θ,Θ̄2)
2 +

5
18

Ric(Θ,Θ)2
]
ρ

4
)

dVgS2

Firstly we notice that the second and third ρ4 terms cancel as we can take Eτ to be the orthonormal basis

Θ,Θ1,Θ̄2. Similarly, the fourth and fifth ρ4 can also be simplified by using the following identities:

g(R(Θ,Θ1)Θ,Θ1) =−(Ric(Θ1,Θ1)+g(R(Θ1,Θ̄2)Θ1,Θ̄2))

g(R(Θ,Θ̄2)Θ,Θ̄2) =−(Ric(Θ̄2,Θ̄2)+g(R(Θ1,Θ̄2)Θ1,Θ̄2))

g(R(Θ,Θ1)Θ,Θ̄2) =−Ric(Θ1,Θ̄2) (3.9)

Ric(Θ1,Θ1)+Ric(Θ̄2,Θ̄2) = Scp−Ric(Θ,Θ)

g(R(Θ1,Θ̄2)Θ1,Θ̄2) =−
1
2

Scp +Ric(Θ,Θ)

where Scp is the scalar curvature at p. Applying these, we get

W (Sp,ρ) =
∫
S2

(
4−2Ric(Θ,Θ)ρ2 +

4
3

gi j
S2g(∇ΘR(Θ,Θi)Θ,Θ j)ρ

3

+
[1

2
gi j
S2g(∇2

ΘR(Θ,Θi)Θ,Θ j) (3.10)

+
1
9

ScpRic(Θ,Θ)− 1
18

Sc2
p +

5
18

Ric(Θ,Θ)2

− 2
9
(Ric(Θ1,Θ̄2)

2−Ric(Θ1,Θ1)Ric(Θ̄2,Θ̄2))
]
ρ

4
)

dVgS2

This is simpler because we have a strategy for integrating all the terms in the integrand, which we will now

describe, starting with the most complicated, ρ4 term. Recall that, at p, we have Θ, Θ1, Θ̄2 ∈ TpM, where
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Θ = (sinθ
1 cosθ

2,sinθ
1 sinθ

2,cosθ
1)

Θ1 = (cosθ
1 cosθ

2,cosθ
1 sinθ

2,−sinθ
1)

Θ̄2 = (−sinθ
2,cosθ

2,0)

We can instead write them using the normal coordinates x,y,z as

Θ = (x,y,z)

Θ1 =

(
xz√

x2 + y2
,

yz√
x2 + y2

,−
√

x2 + y2

)

Θ̄2 =

(
− y√

x2 + y2
,

x√
x2 + y2

,0

)

We can use these to integrate the fifth ρ4 term because all the components of the Ricci tensor are evaluated

at p, so they can be pulled out of the integral, leaving polynomials in x,y and z which we can integrate.

Expanding the Ricci terms in these coordinates gives

Ric(Θ1,Θ̄2)
2 =

(
−R11

xyz
x2 + y2 +R12

x2z
x2 + y2 −R21

y2z
x2 + y2

+R22
xyz

x2 + y2 +R31y−R32x
)2

Ric(Θ1,Θ1) =
(

R11
x2z2

x2 + y2 +2R12
xyz2

x2 + y2 −2R13xz+R22
y2z2

x2 + y2

−2R23yz+R33(x2 + y2)
)

Ric(Θ̄2,Θ̄2) =
(

R11
y2

x2 + y2 −2R12
xy

x2 + y2 +R22
x2

x2 + y2

)

When we combine these terms to make the one we have in the integrand, we can ignore any term which

contains an odd power of x,y or z. This is because any such term will have zero integral over S2. For

example, consider x3z2y4: the integral over the half of the sphere where x > 0 will cancel out the integral

over the half where x < 0. It is also useful to note the integrals below, using index notation for x,y and z:
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∫
S2
(xµ)2 dVgS2 =

4π

3∫
S2
(xµ)2(xν)2 dVgS2 =

4π

15
µ 6= ν (3.11)∫

S2
(xµ)4 dVgS2 =

4π

5

Applying these simplifications yields

Ric(Θ1,Θ̄2)
2−Ric(Θ1,Θ1)Ric(Θ̄2,Θ̄2) = R2

12z2 +R2
13y2 +R2

23x2−R11R22z2

−R11R33y2−R22R33x2

and the integral of the fifth ρ4 term becomes

∫
S2
−2

9
(
R2

12z2 +R2
13y2 +R2

23x2−R11R22z2−R11R33y2−R22R33x2)dVgS2

=−8π

27
(
R2

12 +R2
13 +R2

23−R11R22−R11R33−R22R33
)

=−4π

27
(
‖Ric‖2−Sc2

p
)

Similar methods allow us to compute the second, third and fourth ρ4 terms as

∫
S2

1
9

ScpRic(Θ,Θ) dVgS2 =
4π

27
Sc2

p∫
S2
− 1

18
Sc2

p dVgS2 =−2π

9
Sc2

p∫
S2

5
18

Ric(Θ,Θ)2 dVgS2 =
2π

27
(2‖Ric‖2 +Sc2

p)

To rewrite the final ρ4 term, first note that since we are using normal coordinates, we have Γk
i j(p) = 0 and

therefore ∇ΘΘl = (Θ(Θk
l )+ΘiΘ

j
l Γk

i j)∂k = 0 at p. Here we have used the radially constant extensions of Θl

in order to compute the derivative and the fact that Θ is the velocity of a radial geodesic as in the proof of

(3.1). Thus, by compatibility of the metric
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1
2

gi j
S2g(∇2

ΘR(Θ,Θi)Θ,Θ j) =
1
2

gi j
S2g(∇Θ

(
∇ΘR(Θ,Θi)Θ

)
,Θ j)

=
1
2

gi j
S2g(∇Θ

(
∇Θ

(
R(Θ,Θi)Θ

))
,Θ j)

=
1
2

gi j
S2g(∇2

Θ

(
R(Θ,Θi)Θ

)
,Θ j)

=
1
2

gi j
S2∇

2
Θg(R(Θ,Θi)Θ,Θ j)

=
1
2

[
∇

2
Θg(R(Θ,Θ1)Θ,Θ1)+ sin−2

θ
1
∇

2
Θg(R(Θ,Θ2)Θ,Θ2)

]
=

1
2

[
∇

2
Θg(R(Θ,Θ1)Θ,Θ1)+∇

2
Θ

(
sin−2

θ
1g(R(Θ,Θ2)Θ,Θ2)

)
−∇

2
Θ

(
sin−2

θ
1)g(R(Θ,Θ2)Θ,Θ2)

−2∇Θ

(
sin−2

θ
1)

∇Θ

(
g(R(Θ,Θ2)Θ,Θ2)

)]
=

1
2

[
∇

2
Θg(R(Θ,Θ1)Θ,Θ1)+∇

2
Θ

(
sin−2

θ
1g(R(Θ,Θ2)Θ,Θ2)

)]
=

1
2

∇
2
Θ

(
gi j
S2g(R(Θ,Θi)Θ,Θ j)

)
=−1

2
∇

2
Θ

(
Ric(Θ,Θ)

)
=−1

2
∇Θ

(
∇Θ

(
Ric(Θ,Θ)

))
=−1

2
∇Θ

(
∇ΘRic(Θ,Θ)

)
=−1

2
∇

2
ΘRic(Θ,Θ)

=−1
2
[
∇

2Ric(Θ,Θ,Θ,Θ)+∇∇ΘΘRic(Θ,Θ)
]

=−1
2

∇
2Ric(Θ,Θ,Θ,Θ)

where we have repeatedly used the product rule and, in the seventh line, the fact that

∇Θ

(
sin−2

θ
1)=−2sin−3

θ
1
∇Θ

(
sinθ

1)= 0

which is true because

∇Θ sinθ
1 =−∇Θgp(Θ1,E3) =−gp(∇ΘΘ1,E3)−gp(Θ1,∇ΘE3) = 0

which follows since E3 is a parallel vector field and using ∇ΘΘi = 0 at p. Now we can integrate, using

index notation with Θ = xµ Eµ and recalling that the components of the tensor ∇2Ric are evaluated at p.
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∫
S2
−1

2
∇

2Ric(Θ,Θ,Θ,Θ) dVgS2 =−1
2

∫
S2

∇µ ∇ν Rστ xµ xν xσ xτ dVgS2

=−∇µ ∇ν Rστ

1
2

∫
S2

xµ xν xσ xτ dVgS2

=−4π

30

(
3∑

µ

∇µ ∇µ Rµµ + ∑
µ 6=ν

∇µ ∇µ Rνν

+ ∑
µ 6=ν

∇µ ∇ν Rµν + ∑
µ 6=ν

∇µ ∇ν Rνµ

)
=−2π

15

(
∇µ ∇µ Rνν +∇µ ∇ν Rµν +∇µ ∇ν Rνµ

)
=−2π

15

(
∇µ ∇µ Rνν +2∇µ ∇ν Rµν

)
=−4π

15
∆Sc(p)

where in the last line we have used the definition of the Laplacian, scalar curvature Sc, and the Contracted

Bianchi Identity. Similarly, the ρ3 term can be written as

4
3

gi j
S2g(∇ΘR(Θ,Θi)Θ,Θ j) =−

4
3

∇ΘRic(Θ,Θ) =−4
3

∇Ric(Θ,Θ,Θ)

which, by linearity of ∇Ric, changes sign if we replace Θ with −Θ and so it integrates to 0 over S2. The

remaining terms are computed using the same method as above. Collecting everything together, we finally

get

W (Sp,ρ) = 16π− 8π

3
Scpρ

2 +

(
4π

27
Sc2

p−
4π

15
∆Sc(p)

)
ρ

4 +O(ρ5) (3.12)

which in turn gives the desired expansion for the Hawking mass.
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4 Perturbed Geodesic Spheres - Calculations

In this section we use many of the methods found in [Mon13; PX09].

4.1 Normal Coordinate Expansions of Perturbed Geometric Quantities

Recall that the Taylor expansions we found in Lemma 3.1 were for the unperturbed geodesic spheres (i.e.

w = 0). Now we turn to the perturbed case. Once w is introduced to the parametrisation, the expressions

naturally become a little more complicated, but the same methods work. Note that throughout this section

we work in an arbitrary 3D Riemannian manifold.

Lemma 4.1. Let (M3,g) be a 3D Riemannian manifold and p ∈ M. The following expansions hold in

normal coordinates at p:

i) gµν = δµν +
1
3

g(R(Θ,Eµ)Θ,Eν)(1−w)2
ρ

2 +
1
6

g(∇ΘR(Θ,Eµ)Θ,Eν)(1−w)3
ρ

3

+
1

20
g(∇2

ΘR(Θ,Eµ)Θ,Eν)(1−w)4
ρ

4

+
2

45
g(R(Θ,Eµ)Θ,Eτ)g(R(Θ,Eν)Θ,Eτ)(1−w)4

ρ
4 +O(ρ5)+ρ

5L(0)p (w)

+ρ
5Q(2)(0)

p (w)

ii) g̊i j = gS
2

i j (1−w)2
ρ

2 +wiw jρ
2 +

1
3

g(R(Θ,Θi)Θ,Θ j)(1−w)4
ρ

4

+
1
6

g(∇ΘR(Θ,Θi)Θ,Θ j)(1−w)5
ρ

5 +
1

20
g(∇2

ΘR(Θ,Θi)Θ,Θ j)(1−w)6
ρ

6 (4.1)

+
2
45

g(R(Θ,Θi)Θ,Eτ)g(R(Θ,Θ j)Θ,Eτ)(1−w)6
ρ

6 +O(ρ7)+ρ
7L(0)p (w)

+ρ
7Q(2)(0)

p (w)

iii) g̊i j = gi j
S2(1−w)−2

ρ
−2−gil

S2gk j
S2wlwk(1−w)−4

ρ
−2− 1

3
gil
S2g(R(Θ,Θl)Θ,Θk)g

k j
S2

− 1
6

gil
S2g(∇ΘR(Θ,Θl)Θ,Θk)g

k j
S2(1−w)ρ− 1

20
gil
S2g(∇2

ΘR(Θ,Θl)Θ,Θk)g
k j
S2(1−w)2

ρ
2

− 2
45

gil
S2g(R(Θ,Θl)Θ,Eτ)g(R(Θ,Θk)Θ,Eτ)g

k j
S2(1−w)2

ρ
2 (4.2)

+
1
9

gil
S2g(R(Θ,Θl)Θ,Θk)gkn

S2g(R(Θ,Θn)Θ,Θm)g
m j
S2 (1−w)2

ρ
2 +O(ρ3)

+ρ
3L(0)p (w)+ρ

2Q(2)(0)
p (w)+ρ

−2Q(4)(1)
p (w)
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iv) hi j = gS
2

i j (1−w)ρ +(∇2
S2w)i jρ +wkgkl

S2

(
gS

2

jl wi +gS
2

il w j−gS
2

i j wl

)
ρ +

1
2

gS
2

i j gkl
S2wkwlρ

+
2
3

g(R(Θ,Θi)Θ,Θ j)(1−w)3
ρ

3

+
1
6

wkgkn
S2gml

S2 g(R(Θ,Θn)Θ,Θm)
(

∂igS
2

jl +∂ jgS
2

il −∂lgS
2

i j

)
ρ

3 (4.3)

− 1
6

wkgkl
S2

(
∂ig(R(Θ,Θ j)Θ,Θl)+∂ jg(R(Θ,Θi)Θ,Θl)−∂lg(R(Θ,Θi)Θ,Θ j)

)
ρ

3

+
5

12
g(∇ΘR(Θ,Θi)Θ,Θ j)(1−w)4

ρ
4 +

3
20

g(∇2
ΘR(Θ,Θi)Θ,Θ j)(1−w)5

ρ
5

+
2

15
g(R(Θ,Θi)Θ,Eτ)g(R(Θ,Θ j)Θ,Eτ)(1−w)5

ρ
5 +O(ρ6)+ρ

4L(1)p (w)

+ρQ(3)(2)
p (w)+ρ

3Q(2)(1)
p (w)

v) H = 2ρ
−1 +(2+∆S2)wρ

−1 +2w(w+∆S2w)ρ−1

+
1
6

wkgi j
S2gkn

S2gml
S2 g(R(Θ,Θn)Θ,Θm)

(
∂igS

2

jl +∂ jgS
2

il −∂lgS
2

i j

)
ρ

− 1
6

wkgi j
S2gkl

S2

(
∂ig(R(Θ,Θ j)Θ,Θl)+∂ jg(R(Θ,Θi)Θ,Θl)−∂lg(R(Θ,Θi)Θ,Θ j)

)
ρ

− 1
3

gil
S2 gk j

S2g(R(Θ,Θl)Θ,Θk)(∇
2
S2w)i jρ−

1
3

Ric(Θ,Θ)(1−w)ρ

+
1
4

gi j
S2 g(∇ΘR(Θ,Θi)Θ,Θ j)(1−w)2

ρ
2 (4.4)

+

[
1
10

gi j
S2g(∇2

ΘR(Θ,Θi)Θ,Θ j)+
4

45
gi j
S2g(R(Θ,Θi)Θ,Eτ)g(R(Θ,Θ j)Θ,Eτ)

− 1
9

gil
S2 gk j

S2g(R(Θ,Θi)Θ,Θ j)g(R(Θ,Θl)Θ,Θk)

]
(1−w)3

ρ
3 +O(ρ4)

+ρ
2L(1)p (w)+ρQ(2)(1)

p (w)+ρ
−1Q(3)(2)

p (w)

vi) det g̊ = sin2
θ

1
ρ

4

[
(1−w)4 +gi j

S2wiw j−
1
3

Ric(Θ,Θ)(1−w)6
ρ

2

+
1
6

gi j
S2g(∇ΘR(Θ,Θi)Θ,Θ j)(1−w)7

ρ
3

+
1

20
gi j
S2g(∇2

ΘR(Θ,Θi)Θ,Θ j)(1−w)8
ρ

4

+
2

45
gi j
S2g(R(Θ,Θi)Θ,Eτ)g(R(Θ,Θ j)Θ,Eτ)(1−w)8

ρ
4 (4.5)

+
1
9

g(R(Θ,Θ1)Θ,Θ1)g(R(Θ,Θ̄2)Θ,Θ̄2)(1−w)8
ρ

4

− 1
9

g(R(Θ,Θ1)Θ,Θ̄2)
2(1−w)8

ρ
4

]
+O(ρ9)

+ρ
9L(0)p (w)+ρ

6Q(2)(1)
p (w)+ρ

4Q(4)(1)
p (w)

61



vii) deth = sin2
θ

1(1−w)2
ρ

2 + sin2
θ

1
∆S2w(1−w)ρ2 + sin2

θ
1gi j
S2wiw jρ

2

+
[
(∇2
S2w)11(∇

2
S2w)22− (∇2

S2w)2
12

]
ρ

2

+
2
3

[
g(R(Θ,Θ1)Θ,Θ1)(∇

2
S2w)22 +g(R(Θ,Θ2)Θ,Θ2)(∇

2
S2w)11

−2g(R(Θ,Θ1)Θ,Θ2)(∇
2
S2w)12− sin2

θ
1Ric(Θ,Θ)(1−w)4

]
ρ

4

+
sin2

θ 1

6

[
wkgi j

S2gkn
S2 gml

S2 g(R(Θ,Θn)Θ,Θm)
(

∂igS
2

jl +∂ jgS
2

il −∂lgS
2

i j

)
−wkgi j

S2gkl
S2

(
∂ig(R(Θ,Θ j)Θ,Θl)+∂ jg(R(Θ,Θi)Θ,Θl)−∂lg(R(Θ,Θi)Θ,Θ j)

)]
ρ

4

+ sin2
θ

1
[ 5

12
gi j
S2g(∇ΘR(Θ,Θi)Θ,Θ j)(1−w)5

ρ
5

+
3

20
gi j
S2g(∇2

ΘR(Θ,Θi)Θ,Θ j)(1−w)6
ρ

6 (4.6)

+
2

15
gi j
S2g(R(Θ,Θi)Θ,Θτ)g(R(Θ,Θ j)Θ,Θτ)(1−w)6

ρ
6
]

+
4sin2

θ 1

9

[
g(R(Θ,Θ1)Θ,Θ1)g(R(Θ,Θ̄2)Θ,Θ̄2)−g(R(Θ,Θ1)Θ,Θ̄2)

2
]
(1−w)6

ρ
6

+O(ρ7)+ρ
5L(2)p (w)+ρ

2Q(3)(2)
p (w)+ρ

4Q(2)(1)
p (w)

viii) H2−4D = (∆S2w)2
ρ
−2− 4

sin2
θ 1

(∇2
S2w)11(∇

2
S2w)22ρ

−2

+
4

sin2
θ 1

(∇2
S2w)2

12ρ
−2

+
8

3sin2
θ 1

g(R(Θ,Θ1)Θ,Θ2)(∇
2
S2w)12

− 4
3sin2

θ 1
g(R(Θ,Θ1)Θ,Θ1)(∇

2
S2w)22 (4.7)

− 4
3sin2

θ 1
g(R(Θ,Θ2)Θ,Θ2)(∇

2
S2w)11

− 2
3

Ric(Θ,Θ)∆S2w− 4
9

g(R(Θ,Θ1)Θ,Θ1)g(R(Θ,Θ̄2)Θ,Θ̄2)ρ
2

+
4
9

g(R(Θ,Θ1)Θ,Θ̄2)
2
ρ

2 +
1
9

Ric(Θ,Θ)2
ρ

2 +O(ρ3)+ρL(2)p (w)+Q(2)(2)
p (w)

+ρ
−2Q(3)(2)

p (w)

ix) Ric(N̂, N̂) = Ric(Θ,Θ)+L(1)p (w)+Q(2)(1)
p (w) (4.8)

where all the inner products and curvatures on the right hand sides are computed at p and L and Q are

linear and non-linear combinations of w and its derivatives respectively, as defined in Section 2.1.

Proof. i) The expansion is achieved by replacing Θ with (1−w)Θ in (3.1).

ii) The expression for the induced metric follows by applying g to the coordinate vector fields Zw
i on

Sp,ρ(w), found in (2.7), and applying Remark 3.2.
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iii) Since the induced metric is still a perturbation of gS2 , we can use the same formula as in Lemma 3.1 to

get the required expansion.

iv) First we need an expression for the unit normal vector to Sp,ρ(w). To find it, consider

Ñ :=−Θ+a jZw
j

where we would like to find a j such that Ñ is orthogonal to both Zw
1 and Zw

2 . Computing

g(Ñ,Zw
i ) = g(−Θ+a jZw

j ,Z
w
i )

=−g(Θ,Zw
i )+a jg(Zw

j ,Z
w
i )

=−g(Θ,ρ((1−w)Θi−wiΘ))+a jg̊i j

= ρwi +a jg̊i j

where we again use that g(Θ,Θ) = 1 and g(Θ,Θi) = 0. Therefore, to satisfy orthogonality, we need to

take a j such that a jg̊i j =−wiρ , or a j =−g̊i jwiρ . To normalize, we need

g(Ñ, Ñ) = g(−Θ+a jZw
j ,−Θ+aiZw

i )

= g(Θ,Θ)−g(Θ,aiZw
i )−g(Θ,a jZw

j )+g(a jZw
j ,a

iZw
i )

= 1−aig(Θ,ρ((1−w)Θi−wiΘ))−a jg(Θ,ρ((1−w)Θ j−w jΘ))

+aia jg̊i j

= 1+aiwiρ +a jw jρ +aia jg̊i j

= 1+a jw jρ

= 1− g̊i jwiw jρ
2

which means we have found the (inward) unit normal vector

N̂ = (1− g̊klwkwlρ
2)−

1
2

(
−Θ− g̊i jwi((1−w)Θ j−w jΘ)ρ2

)

Now we can use the Taylor expansion around 0 of (1− x)−
1
2 with x = g̊i jwiw jρ

2 to get
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g(Ñ, Ñ)−
1
2 = 1+

1
2

g̊i jwiw jρ
2 +Q(4)(1)

p (w) (4.9)

Together with (4.2), we obtain

N̂ =−Θ−gi j
S2wiΘ j +ρ

2L(1)p (w)Θ1 +ρ
2L(1)p (w)Θ2 +Q(2)(1)

p (w)Θ1

+Q(2)(1)
p (w)Θ2 +Q(2)(1)

p (w)Θ (4.10)

We now compute h̃i j :=−g(∇Zw
i

Ñ,Zw
j ) as a first step in computing hi j. We have

h̃i j =−g(∇Zw
i
(−Θ+akZk),Zw

j )

= g(∇Zw
i

Θ,Zw
j )−g(∇Zw

i
akZw

k ,Z
w
j )

=
wi

1−w
g(Θ,Zw

j )−
wi

1−w
g(Θ,Zw

j )+g(∇Zw
i

Θ,Zw
j )−g(∇Zw

i
akZw

k ,Z
w
j )

=
wi

1−w
g(Θ,Zw

j )+
1

1−w
[(1−w)g(∇Zw

i
Θ,Zw

j )−wig(Θ,Zw
j )]−g(∇Zw

i
akZw

k ,Z
w
j )

=
wi

1−w
g(Θ,Zw

j )+
1

1−w
g((1−w)∇Zw

i
Θ+Zw

i (1−w)Θ,Zw
j )−g(∇Zw

i
akZw

k ,Z
w
j )

=
wi

1−w
g(Θ,Zw

j )+
1

1−w
g(∇Zw

i
((1−w)Θ),Zw

j )−g(∇Zw
i

akZw
k ,Z

w
j ) (4.11)

Let’s compute the three terms in (4.11) seperately. For the first one, we use the definition of Zw
i and

the fact that g(Θ,Θ) = 1 and g(Θ,Θi) = 0, to yield

wi

1−w
g(Θ,Zw

j ) =
wi

1−w
g(Θ,ρ((1−w)Θ j−w jΘ)) =−

wiw jρ

1−w
(4.12)

Now we proceed in a similar way to the unperturbed case and consider ρ as a variable, giving

Zw
0 = exp∗(∂ρ(ρ(1−w)Θ)) = (1−w)Θ

Since
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g(∇Zw
i
((1−w)Θ),Zw

j ) = Zw
i (g((1−w)Θ,Zw

j ))−g((1−w)Θ,∇Zw
i

Zw
j )

= Zw
i (g((1−w)Θ,ρ((1−w)Θ j−w jΘ)))−g((1−w)Θ,∇Zw

i
Zw

j )

= Zw
i (ρ(w−1)w j)−g((1−w)Θ,∇Zw

i
Zw

j )

= ρ(wiw j +ww ji−w ji)−g((1−w)Θ,∇Zw
i

Zw
j )

is symmetric in i and j, we have

g(∇Zw
i
((1−w)Θ),Zw

j ) = g(∇Zw
j
((1−w)Θ),Zw

i )

Thus, we compute

g(∇Zw
i
((1−w)Θ),Zw

j ) =
1
2
(g(∇Zw

i
((1−w)Θ),Zw

j )+g(∇Zw
j
((1−w)Θ),Zw

i ))

=
1
2
(g(∇Zw

i
Zw

0 ,Z
w
j )+g(∇Zw

j
Zw

0 ,Z
w
i ))

=
1
2
(g(∇Zw

0
Zw

i ,Z
w
j )+g(∇Zw

0
Zw

j ,Z
w
i ))

=
1
2

Zw
0 (g(Z

w
i ,Z

w
j ))

=
1
2

∂ρ g̊i j (4.13)

which sorts out the second term in (4.11). The final term becomes

g(∇Zw
i

akZw
k ,Z

w
j ) = Zw

i (a
kg(Zw

k ,Z
w
j ))−akg(Zw

k ,∇Zw
i

Zw
j )

= Zw
i (−g̊lkwlρ g̊k j)+ g̊lkwlρΓ̊

m
i jg̊km

=−w jiρ +wlΓ̊
l
i jρ

=−(∇2
g̊w)i jρ (4.14)

Substituting (4.12), (4.13) and (4.14) into (4.11) gives

65



h̃i j =−
wiw jρ

1−w
+

1
2(1−w)

∂ρ g̊i j +(∇2
g̊w)i jρ (4.15)

To further expand h̃i j, we will first combine the first two terms of (4.15). Differentiating (4.1) with

respect to ρ gives

∂ρ g̊i j = 2gS
2

i j (1−w)2
ρ +2wiw jρ +

4
3

g(R(Θ,Θi)Θ,Θ j)(1−w)4
ρ

3

+
5
6

g(∇ΘR(Θ,Θi)Θ,Θ j)(1−w)5
ρ

4 +
3

10
g(∇2

ΘR(Θ,Θi)Θ,Θ j)(1−w)6
ρ

5

+
4

15
g(R(Θ,Θi)Θ,Eτ)g(R(Θ,Θ j)Θ,Eτ)(1−w)6

ρ
5 +O(ρ6)+ρ

6L(0)p (w)

+ρ
6Q(2)(0)

p (w)

and so the first term in (4.15) cancels the second term of ∂ρ g̊i j after it is multiplied by 1
2(1−w) . This

leaves

h̃i j = gS
2

i j (1−w)ρ +(∇2
g̊w)i jρ +

2
3

g(R(Θ,Θi)Θ,Θ j)(1−w)3
ρ

3

+
5
12

g(∇ΘR(Θ,Θi)Θ,Θ j)(1−w)4
ρ

4 +
3

20
g(∇2

ΘR(Θ,Θi)Θ,Θ j)(1−w)5
ρ

5 (4.16)

+
2
15

g(R(Θ,Θi)Θ,Eτ)g(R(Θ,Θ j)Θ,Eτ)(1−w)5
ρ

5 +O(ρ6)+ρ
6L(0)p (w)

+ρ
6Q(2)(0)

p (w)

and therefore we are left to compute the term (∇2
g̊w)i j. By definition we have

(∇2
g̊w)i j = wi j− Γ̊

k
i jwk = wi j− [

1
2

g̊kl(∂ig̊ jl +∂ jg̊il−∂l g̊i j)]wk (4.17)

Differentiating (4.1) term by term shows

∂ig̊ jl = ∂i(gS
2

jl )(1−w)2
ρ

2−2gS
2

jl wiρ
2 +

1
3

∂i(g(R(Θ,Θ j)Θ,Θl))ρ
4 (4.18)

+O(ρ5)+ρ
4L(1)p (w)+ρ

2Q(2)(2)
p (w)
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Combining (4.2) and (4.18), we get

Γ̊
k
i j = Γ

k
i j +gkl

S2(gS
2

i j wl−gS
2

jl wi−gS
2

il w j)

+
1
6

gkl
S2(∂i(g(R(Θ,Θ j)Θ,Θl))+∂ j(g(R(Θ,Θi)Θ,Θl))−∂l(g(R(Θ,Θi)Θ,Θ j)))ρ

2 (4.19)

− 1
6

gkn
S2gml

S2 g(R(Θ,Θn)Θ,Θm)(∂i(gS
2

jl )+∂ j(gS
2

il )−∂l(gS
2

i j ))ρ
2

+O(ρ3)+ρ
2L(1)p (w)+Q(2)(2)

p (w)

where Γk
i j are the Christoffel symbols of gS2 . Substituting (4.17) and (4.19) into (4.16) gives

h̃i j = gS
2

i j (1−w)ρ +(∇2
S2w)i jρ +wkgkl

S2

(
gS

2

jl wi +gS
2

il w j−gS
2

i j wl

)
ρ

+
2
3

g(R(Θ,Θi)Θ,Θ j)(1−w)3
ρ

3

+
1
6

wkgkn
S2gml

S2 g(R(Θ,Θn)Θ,Θm)
(

∂igS
2

jl +∂ jgS
2

il −∂lgS
2

i j

)
ρ

3

− 1
6

wkgkl
S2

(
∂ig(R(Θ,Θ j)Θ,Θl)+∂ jg(R(Θ,Θi)Θ,Θl)−∂lg(R(Θ,Θi)Θ,Θ j)

)
ρ

3

+
5

12
g(∇ΘR(Θ,Θi)Θ,Θ j)(1−w)4

ρ
4 +

3
20

g(∇2
ΘR(Θ,Θi)Θ,Θ j)(1−w)5

ρ
5

+
2

15
g(R(Θ,Θi)Θ,Eτ)g(R(Θ,Θ j)Θ,Eτ)(1−w)5

ρ
5 +O(ρ6)+ρ

4L(1)p (w)

+ρQ(3)(2)
p (w)+ρ

3Q(2)(1)
p (w)

Now, to complete the proof, we note that

hi j :=−g(∇Zw
i

N̂,Zw
j )

=−g(∇Zw
i

g(Ñ, Ñ)−
1
2 Ñ,Z j)

=−Zw
i (g(Ñ, Ñ)−

1
2 )g(Ñ,Zw

j )−g(Ñ, Ñ)−
1
2 g(∇Zw

i
Ñ,Zw

j )

= g(Ñ, Ñ)−
1
2 h̃i j

where we have used that Ñ is orthogonal to Zw
j . Using (4.9), we pick up an extra term, obtaining

hi j = h̃i j +
1
2

gS
2

i j gkl
S2wkwlρ
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and therefore (4.3) too.

v) Since H = hi jg̊i j, we multiply (4.3) and (4.2) to obtain (4.4), where we have used some simplifications.

First, as in the unperturbed case, we have

1
3

gi j
S2g(R(Θ,Θi)Θ,Θ j) =

1
3

[
g(R(Θ,Θ1)Θ,Θ1)+

1
sin2

θ 1
g(R(Θ,Θ2)Θ,Θ2)

]
=

1
3

[
g(R(Θ,Θ1)Θ,Θ1)+g(R(Θ,Θ̄2)Θ,Θ̄2)

]
=−1

3
Ric(Θ,Θ)

because Θ,Θ1,Θ̄2 are in fact an orthonormal basis of TpM (where the bar indicates that Θ2 has been

normalized by dividing by sinθ 1). This simplifies the multiplication of the third g̊i j term with the first

hi j term. Next, we use the Taylor expansions

(1−w)−1 = 1+w+w2 +O(w3)

(1−w)−2 = 1+2w+O(w2)

(1−w)−3 = 1+O(w)

to simplify the multiplication of hi j by the first and second terms of g̊i j respectively. Here, we also

use the definition ∆S2 := gi j
S2(∇

2
S2w)i j. Furthermore, the terms containing wlwk cancel each other out.

Finally, we use the following calculation:

gi j
S2wkgkl

S2gS
2

i j wl−gi j
S2wkgkl

S2gS
2

jl wi−gi j
S2wkgkl

S2gS
2

il w j = 2wkgkl
S2wl−wkgki

S2wi−wkgk j
S2w j = 0

which shows that the first g̊i j term multiplied by the third hi j term is zero.

vi) As in the unperturbed case, we compute det g̊ = g̊11g̊22− g̊12g̊21 to achieve (4.5). Note that gS2 and g−1
S2

are diagonal which means many of the g̊12g̊21 terms are zero. We also use the fact that gS
2

11 = sin2
θ 1g22

S2

and gS
2

22 = sin2
θ 1g11

S2 , so that, for example, the sixth term in (4.5) arises as follows:
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2sin2
θ 1

45
gi j
S2g(R(Θ,Θi)Θ,Eτ)g(R(Θ,Θ j)Θ,Eτ)(1−w)8

ρ
8

=
2sin2

θ 1

45

(
g11
S2g(R(Θ,Θ1)Θ,Eτ)g(R(Θ,Θ1)Θ,Eτ)

+g22
S2 g(R(Θ,Θ2)Θ,Eτ)g(R(Θ,Θ2)Θ,Eτ)

)
(1−w)8

ρ
8

=
2
45

(
gS

2

22g(R(Θ,Θ1)Θ,Eτ)g(R(Θ,Θ1)Θ,Eτ)

+gS
2

11g(R(Θ,Θ2)Θ,Eτ)g(R(Θ,Θ2)Θ,Eτ)
)
(1−w)8

ρ
8

= gS
2

11(1−w)2
ρ

2× 2
45

g(R(Θ,Θ2)Θ,Eτ)g(R(Θ,Θ2)Θ,Eτ)(1−w)6
ρ

6

+gS
2

22(1−w)2
ρ

2× 2
45

g(R(Θ,Θ1)Θ,Eτ)g(R(Θ,Θ1)Θ,Eτ)(1−w)6
ρ

6

vii) Similarly we compute deth = h11h22− h12h21 to prove (4.6), where, for example, the second term

results from

sin2
θ

1
∆S2w(1−w)ρ2 = sin2

θ
1gi j
S2(∇

2
S2w)i j(1−w)ρ2

= sin2
θ

1
(

g11
S2(∇

2
S2w)11 +g22

S2(∇
2
S2w)22

)
(1−w)ρ2

=
(

gS
2

22(∇
2
S2w)11 +gS

2

11(∇
2
S2w)22

)
(1−w)ρ2

= gS
2

11(1−w)ρ× (∇2
S2w)22ρ

+gS
2

22(1−w)ρ× (∇2
S2w)11ρ

viii) First we evaluate H2 by squaring (4.4).
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H2 =

[
4+4(2+∆S2)w+8w(w+∆S2w)+((2+∆S2)w)2

]
ρ
−2

+

[
2
3

wkgi j
S2gkn

S2gml
S2 g(R(Θ,Θn)Θ,Θm)

(
∂igS

2

jl +∂ jgS
2

il −∂lgS
2

i j

)
− 2

3
wkgi j

S2gkl
S2

(
∂ig(R(Θ,Θ j)Θ,Θl)+∂ jg(R(Θ,Θi)Θ,Θl)−∂lg(R(Θ,Θi)Θ,Θ j)

)
− 2

3
Ric(Θ,Θ)(2+∆S2w)− 4

3
gil
S2gk j

S2g(R(Θ,Θl)Θ,Θk)(∇
2
S2w)i j

]
(4.20)

+

[
gi j
S2 g(∇ΘR(Θ,Θi)Θ,Θ j)

]
ρ

+

[
2
5

gi j
S2g(∇2

ΘR(Θ,Θi)Θ,Θ j)+
16
45

gi j
S2g(R(Θ,Θi)Θ,Eτ)g(R(Θ,Θ j)Θ,Eτ)

− 4
9

gil
S2gk j

S2g(R(Θ,Θi)Θ,Θ j)g(R(Θ,Θl)Θ,Θk)+
1
9

Ric(Θ,Θ)2

]
ρ

2

+O(ρ3)+ρL(1)p (w)+Q(2)(1)
p (w)+ρ

−2Q(3)(2)
p (w)

Now, to compute D = deth
det g̊ we first use the Taylor expansion (1+x)−1 = 1−x+x2 +O(x3) with (4.5),

to get

1
det g̊

=
1

sin2
θ 1(1−w)4ρ4

[
1−gi j

S2 wiw j +
1
3

Ric(Θ,Θ)(1−w)2
ρ

2

− 1
6

gi j
S2g(∇ΘR(Θ,Θi)Θ,Θ j)(1−w)3

ρ
3

− 1
20

gi j
S2g(∇2

ΘR(Θ,Θi)Θ,Θ j)(1−w)4
ρ

4

− 2
45

gi j
S2g(R(Θ,Θi)Θ,Eτ)g(R(Θ,Θ j)Θ,Eτ)(1−w)4

ρ
4 (4.21)

− 1
9

g(R(Θ,Θ1)Θ,Θ1)g(R(Θ,Θ̄2)Θ,Θ̄2)(1−w)4
ρ

4

+
1
9

g(R(Θ,Θ1)Θ,Θ̄2)
2(1−w)4

ρ
4

+
1
9

Ric(Θ,Θ)2(1−w)4
ρ

4 +O(ρ5)+ρ
5L(0)p (w)+ρ

2Q(2)(1)
p (w)+Q(4)(1)

p (w)

]

Multiplying (4.21) and (4.6), we have
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D =
[
1+2w+∆S2 w+3w∆S2w+3w2

+
1

sin2
θ 1

((∇2
S2w)11(∇

2
S2w)22− (∇2

S2w)2
12)
]
ρ
−2

+
2

3sin2
θ 1

[
g(R(Θ,Θ1)Θ,Θ1)(∇

2
S2w)22 +g(R(Θ,Θ2)Θ,Θ2)(∇

2
S2w)11

−2g(R(Θ,Θ1)Θ,Θ2)(∇
2
S2w)12

]
+

1
3

Ric(Θ,Θ)(∆S2w−1)

+
1
6

[
wkgi j

S2gkn
S2gml

S2 g(R(Θ,Θn)Θ,Θm)
(

∂igS
2

jl +∂ jgS
2

il −∂lgS
2

i j

)
(4.22)

−wkgi j
S2gkl

S2

(
∂ig(R(Θ,Θ j)Θ,Θl)+∂ jg(R(Θ,Θi)Θ,Θl)−∂lg(R(Θ,Θi)Θ,Θ j)

)]
+

1
4

gi j
S2g(∇ΘR(Θ,Θi)Θ,Θ j)(1−w)ρ

+
[ 1

10
gi j
S2g(∇2

ΘR(Θ,Θi)Θ,Θ j)+
4
45

gi j
S2g(R(Θ,Θi)Θ,Θτ)g(R(Θ,Θ j)Θ,Θτ)

+
1
3

g(R(Θ,Θ1)Θ,Θ1)g(R(Θ,Θ̄2)Θ,Θ̄2)−
1
3

g(R(Θ,Θ1)Θ,Θ̄2)
2

− 1
9

Ric(Θ,Θ)2
]
(1−w)2

ρ
2 +O(ρ3)+ρL(2)p (w)+Q(2)(2)

p (w)+ρ
−2Q(3)(2)

p (w)

Thus, to achieve (4.7), we combine (4.20) and (4.22), noting the following. Firstly, four times the first

line of (4.22) subtracted from the first line of (4.20) leaves (∆S2w)2ρ−2. Also, the second and third

lines of (4.20) are cancelled exactly by the fifth and sixth lines of (4.22) (after they are multiplied by

4). Similarly, the ρ terms are cancelled exactly. For the remaining ρ0 terms, we compute

− 4
3

gil
S2gk j

S2g(R(Θ,Θl)Θ,Θk)(∇
2
S2w)i j

=−4
3

[
g(R(Θ,Θ1)Θ,Θ1)(∇

2
S2w)11 +

2
sin2

θ 1
g(R(Θ,Θ1)Θ,Θ2)(∇

2
S2w)12

+
1

sin2
θ 1

g(R(Θ,Θ̄2)Θ,Θ̄2)(∇
2
S2w)22

]

Subtracting 4 times the ρ0 terms from D which contain Hessian components, yields
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− 4
3

gil
S2gk j

S2g(R(Θ,Θl)Θ,Θk)(∇
2
S2w)i j

− 8
3sin2

θ 1

[
g(R(Θ,Θ1)Θ,Θ1)(∇

2
S2w)22 +g(R(Θ,Θ2)Θ,Θ2)(∇

2
S2w)11

−2g(R(Θ,Θ1)Θ,Θ2)(∇
2
S2w)12

]
=

8
3sin2

θ 1
g(R(Θ,Θ1)Θ,Θ2)(∇

2
S2w)12−

8
3sin2

θ 1
g(R(Θ,Θ1)Θ,Θ1)(∇

2
S2w)22

− 8
3

g(R(Θ,Θ̄2)Θ,Θ̄2)(∇
2
S2w)11−

4
3

g(R(Θ,Θ1)Θ,Θ1)(∇
2
S2w)11

− 4
3sin2

θ 1
g(R(Θ,Θ̄2)Θ,Θ̄2)(∇

2
S2w)22

=
8

3sin2
θ 1

g(R(Θ,Θ1)Θ,Θ2)(∇
2
S2w)12−

4
3sin2

θ 1
g(R(Θ,Θ1)Θ,Θ1)(∇

2
S2w)22

− 4
3

g(R(Θ,Θ̄2)Θ,Θ̄2)(∇
2
S2w)11 +

4
3

Ric(Θ,Θ)∆S2 w

where, to get the final equality, we have used half of the second and third terms, together with the

fourth and fifth terms to make 4
3 Ric(Θ,Θ)∆S2w. This is true because

Ric(Θ,Θ)∆S2w =−
[
g(R(Θ,Θ1)Θ,Θ1)+g(R(Θ,Θ̄2)Θ,Θ̄2)

][
(∇2
S2w)11 +

1
sin2

θ 1
(∇2
S2w)22

]

Now the ρ0 term is completed by collecting like terms. To get the ρ2 terms, we compute

− 4
9

gil
S2gk j

S2g(R(Θ,Θi)Θ,Θ j)g(R(Θ,Θl)Θ,Θk)

=−4
9

[
g11
S2g11

S2g(R(Θ,Θ1)Θ,Θ1)
2 +g11

S2g22
S2g(R(Θ,Θ1)Θ,Θ2)

2 +g22
S2g11

S2g(R(Θ,Θ2)Θ,Θ1)
2

+g22
S2g22

S2g(R(Θ,Θ2)Θ,Θ2)
2
]

(4.23)

=−4
9

[
g(R(Θ,Θ1)Θ,Θ1)

2 +g(R(Θ,Θ1)Θ,Θ̄2)
2 +g(R(Θ,Θ̄2)Θ,Θ1)

2

+g(R(Θ,Θ̄2)Θ,Θ̄2)
2
]

=−4
9

[
Ric(Θ,Θ)2−2g(R(Θ,Θ1)Θ,Θ1)g(R(Θ,Θ̄2)Θ,Θ̄2)+2g(R(Θ,Θ1)Θ,Θ̄2)

2
]

where we have used that
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Ric(Θ,Θ)2 =
[
g(R(Θ,Θ1)Θ,Θ1)+g(R(Θ,Θ̄2)Θ,Θ̄2)

]2

= g(R(Θ,Θ1)Θ,Θ1)
2 +2g(R(Θ,Θ1)Θ,Θ1)g(R(Θ,Θ̄2)Θ,Θ̄2)

+g(R(Θ,Θ̄2)Θ,Θ̄2)
2

and the symmetries of the curvature tensor, which imply

g(R(Θ,Θ1)Θ,Θ̄2) = g(R(Θ,Θ̄2)Θ,Θ1)

Using (4.23) we can now easily calculate the ρ2 terms of (4.7).

ix) Plugging in the expression in (4.10) for the unit normal, we get (4.8).

4.2 An Optimal Perturbation

As outlined in Section 1.3.2 and motivated by Proposition 1.26, it is natural to choose perturbed geodesic

spheres Sp,ρ(w) as the surfaces to "test" the positivity of the Hawking mass. In this section we consider

such surfaces at a given point p ∈ M, and find an expansion of the perturbation w, in terms of the radius

ρ , satisfied by small Sp,ρ(w) which have w ∈ C4,α(S2)⊥ and solve the area constrained Euler-Lagrange

equation for the Willmore functional, assuming they exist. Inspired by this, at any p ∈ M, the spheres

Sp,ρ(w) satisfying the same expansion will be the key geometric objects in the proof of our main theorems;

the optimal spheres.

Lemma 4.2. Let p ∈ M. There exists ρ0 > 0 and r > 0 such that if Sp,ρ(w) with w ∈ C4,α(S2)⊥ and

(ρ,w)∈ (0,ρ0]×B(0,r) is a critical point of the Willmore functional under area constraint, then w satisfies

the following expansion:

w =
(
− 1

6
Ric(Θ,Θ)+

1
18

Scp

)
ρ

2 +O(ρ3) (4.24)

where limsupρ→0 ρ−3
∥∥O(ρ3)

∥∥
C4,α (S2)

< ∞.

Proof. Step 1 - PDE setup.

Fix p ∈M. Recall that if Sp,ρ(w) is a critical point of the Willmore functional under area constraint, then it

satisfies the associated PDE (1.17)
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2∆g̊H +H(H2−4D+2Ric(N̂, N̂)) = λH (4.25)

where λ ∈ R is the Lagrange multiplier and N is the inward pointing unit normal vector [LMS11]. The

geometric expansions of Section 4.1 give us

g̊i j = gi j
S2ρ
−2 +O(ρ0)+ρ

−2L(0)p (w)+ρ
−2Q(2)(1)

p (w)

Γ̊
k
i j = Γ

k
i j +O(ρ2)+L(1)p (w)+Q(2)(2)

p (w)

H = 2ρ
−1 +(2+∆S2)wρ

−1− 1
3

Ric(Θ,Θ)ρ +O(ρ2)+ρL(2)p (w)

+ρ
−1Q(2)(2)

p (w) (4.26)

H2−4D =O(ρ2)+L(2)p (w)+ρ
−2Q(2)(2)

p (w)

Ric(N̂, N̂) = Ric(Θ,Θ)+L(1)p (w)+Q(2)(1)
p (w)

Using equations (4.26) and the fact that ∆g̊v = g̊i j(vi j− Γ̊k
i jvk) for a function v, we get

∆g̊v = vi j

[
gi j
S2ρ
−2 +O(ρ0)+ρ

−2L(0)p (w)+ρ
−2Q(2)(1)

p (w)
]

− vk

[
gi j
S2ρ
−2 +O(ρ0)+ρ

−2L(0)p (w)+ρ
−2Q(2)(1)

p (w)
][

Γ
k
i j +O(ρ2)+L(1)p (w)+Q(2)(2)

p (w)
]

= ∆S2vρ
−2 +O(ρ0)(vi j + vk)+ρ

−2L(1)p (w)(vi j + vk)+ρ
−2Q(2)(2)

p (vi j + vk) (4.27)

By linearity, to compute ∆g̊H we can split H and successively compute ∆g̊v for the terms below:

v ∈
{

2ρ
−1, (2+∆S2)wρ

−1, −1
3

Ric(Θ,Θ)ρ, O(ρ2)+ρL(2)p (w)+ρ
−1Q(2)(2)

p (w)
}

using (4.27).

• v = 2ρ−1

In this case v is constant, so ∆g̊v = 0.

• v = (2+∆S2)wρ−1

In this case we have (vi j + vk) = ρ−1L(4)p (w) and therefore
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∆g̊v = ∆S2(2+∆S2)wρ
−3 +ρ

−1L(4)p (w)+ρ
−3Q(2)(4)

p (w) (4.28)

• v =− 1
3 Ric(Θ,Θ)ρ

Now (vi j + vk) =O(ρ), giving

∆g̊v =−1
3

∆S2Ric(Θ,Θ)ρ−1 +O(ρ)+ρ
−1L(1)p (w)+ρ

−1Q(2)(2)
p (w) (4.29)

• v =O(ρ2)+ρL(2)p (w)+ρ−1Q(2)(2)
p (w)

Finally, (vi j + vk) =O(ρ2)+ρL(4)p (w)+ρ−1Q(2)(4)
p (w) which yields

∆g̊v =O(ρ0)+ρ
−1L(4)p (w)+ρ

−3Q(2)(4)
p (w) (4.30)

Combining (4.28) - (4.30) gives

∆g̊H = ∆S2(2+∆S2)wρ
−3− 1

3
∆S2Ric(Θ,Θ)ρ−1 +O(ρ0)+ρ

−1L(4)p (w)+ρ
−3Q(2)(4)

p (w) (4.31)

To compute the other term on the left hand side of (4.25), we use equations (4.26) again. This reveals

H(H2−4D+2Ric(N̂, N̂)) = 4Ric(Θ,Θ)ρ−1 +O(ρ)+ρ
−1L(2)p (w)+ρ

−3Q(2)(2)
p (w) (4.32)

Finally, using that the λ s are bounded as ρ → 0 ([LM14, Lemma 2.2]), the term on the right hand side of

(4.25) is

λH = 2λρ
−1 +O(ρ)+ρ

−1L(2)p (w)+ρ
−1Q(2)(2)

p (w) (4.33)

Substituting (4.31) - (4.33) into (4.25) yields the PDE for perturbed spheres.

∆S2(2+∆S2)wρ
−3− 1

3
∆S2Ric(Θ,Θ)ρ−1 +2Ric(Θ,Θ)ρ−1 = λρ

−1 +O(ρ0)+ρ
−1L(4)p (w)

+ρ
−3Q(2)(4)

p (w)

Rearranging gives
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∆S2(∆S2 +2)w =
(1

3
∆S2Ric(Θ,Θ)−2Ric(Θ,Θ)+λ

)
ρ

2 +O(ρ3)+ρ
2L(4)p (w)+Q(2)(4)

p (w) (4.34)

Step 2 - Uniqueness.

Next we use the argument from [Mon10, Lemma 4.4]. First, we have the orthogonal projection

P : L2(S2)→ Ker[∆S2(∆S2 +2)]⊥

Then, (4.34) implies

P
[
∆S2(∆S2 +2)w+O(ρ2)+ρ

2L(4)p (w)+Q(2)(4)
p (w)

]
= 0. (4.35)

Recall that w ∈C4,α(S2)⊥ =C4,α(S2)∩Ker[∆S2(∆S2 +2)]⊥, and the operator ∆S2(∆S2 +2) is invertible on

the space orthogonal to its kernel. Thus, denoting its inverse by K, applying K to 4.35 and rearranging,

yields

w = K ◦P
[
O(ρ2)+ρ

2L(4)p (w)+Q(2)(4)
p (w)

]
=: Fp,ρ(w) (4.36)

In [Mon10, Lemma 4.4] the author uses Schauder estimates to show that Fp,ρ(w) is a bounded operator.

Combining this with the estimates (1.2) and (1.3), they show that (for all p in a compact set) Fp,ρ(w) is in

fact a contraction on a small enough ball B(0,r)⊂C4,α(S2)⊥, for small enough ρ . Thus, by the Contraction

Mapping Theorem, there exists ρ0 > 0 and r > 0 such that, for ρ ∈ (0,ρ0], there exists a unique solution of

(4.36) in B(0,r)⊂C4,α(S2)⊥ (i.e. a unique solution of (4.34) in B(0,r)⊂C4,α(S2)⊥).

Step 3 - Asymptotic expansion.

We will show that the expansion (4.24) holds. Firstly, set the ansatz

w = w2ρ
2 +O(ρ3) (4.37)

where w2 ∈ C4,α(S2)⊥ depends on p, but not ρ , and limsupρ→0 ρ−3
∥∥O(ρ3)

∥∥
C4,α (S2)

< ∞. Substituting

(4.37) into (4.34) gives

∆S2(∆S2 +2)w2ρ
2 =

(1
3

∆S2Ric(Θ,Θ)−2Ric(Θ,Θ)+λ

)
ρ

2 +O(ρ3) (4.38)
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Therefore, since the ρ2 terms are dominant as ρ → 0, we deduce

∆S2(∆S2 +2)w2 =
1
3

∆S2Ric(Θ,Θ)−2Ric(Θ,Θ)+λ . (4.39)

To solve this PDE we can use knowledge of the eigenfunctions of ∆S2 . As before, we have Θ= xµ Eµ ∈ TpM

and so (at p) we can write the Ricci curvature in the following way:

Ric(Θ,Θ) = Ric(xµ Eµ ,xν Eν)

= Rµν xµ xν

= ∑
µ 6=ν

Rµν xµ xν +∑
µ

Rµµ xµ xµ

= ∑
µ 6=ν

Rµν xµ xν +∑
µ

Rµµ

(
(xµ)2− 1

3

)
+

1
3 ∑

µ

Rµµ

where ∑µ Rµµ is just the scalar curvature at p. Now, since Θ is on the unit sphere, we have

(x1)2 +(x2)2 +(x3)2 = 1

which, after rearranging, gives

(x1)2− 1
3
=

1
3

(
((x1)2− (x2)2)+((x1)2− (x3)2)

)

and similarly for (x2)2− 1
3 and (x3)2− 1

3 . But since (xµ)2− (xν)2 and xµ xν are eigenfunctions of ∆S2 with

eigenvalue −6, we have shown that

Ric(Θ,Θ)− 1
3

Scp = ∑
µ 6=ν

Rµν xµ xν +∑
µ

Rµµ

(
(xµ)2− 1

3

)

is just a sum of constants times eigenfunctions, and is therefore also an eigenfunction with eigenvalue −6.

Now, (4.39) becomes

∆S2(∆S2 +2)w2 =
1
3

∆S2

(
Ric(Θ,Θ)− 1

3
Scp

)
−2Ric(Θ,Θ)+λ

=−4
(

Ric(Θ,Θ)− 1
3

Scp

)
− 2

3
Scp +λ
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We can solve this by taking λ = 2
3 Scp and noting that, for any constant A

∆S2(∆S2 +2)
[

A
(

Ric(Θ,Θ)− 1
3

Scp

)]
= ∆S2

[
−4A

(
Ric(Θ,Θ)− 1

3
Scp

)]
= 24A

(
Ric(Θ,Θ)− 1

3
Scp

)

Therefore, we take A =− 1
6 , so that

w2 =−
1
6

Ric(Θ,Θ)+
1

18
Scp

We have shown that the ansatz (4.37) yields a solution of (4.25). Therefore, by the uniqueness shown in

step 2, this proves (4.24) provided ‖w‖C4,α (S2) < r.

4.3 The Hawking Mass in an Optimally Perturbed Geodesic Sphere

Proposition 4.3. Let Sp,ρ(w)⊂M be an optimally perturbed geodesic sphere, i.e. w satisfies (4.24). Then

the Hawking mass of Sp,ρ(w) has the following expansion:

mH(Sp,ρ(w)) :=

√
|Sp,ρ(w)|g̊
(16π)3

(
16π−W (Sp,ρ(w))

)
=

√
|Sp,ρ(w)|g̊
(16π)3

(
8π

3
Scpρ

2 +

[
4π

15
∆Sc(p)+

16π

45
‖Sp‖2− 4π

27
Sc2

p

]
ρ

4 +O(ρ5)

)
(4.40)

where Sc is the scalar curvature and S := Ric− 1
3 Sc ·g is the traceless Ricci tensor.

Proof. Step 1 - Computing the Willmore functional integrand.

To compute the Hawking mass we need expansions for the terms in the Willmore functional W (Sp,ρ(w)) :=∫
Sp,ρ (w) H2 dVg̊ =

∫
S2 H2

√
det g̊ dθ 1dθ 2. Using (4.5), the Taylor expansion

√
1+ x = 1+ x

2 −
x2

8 +O(x3)

and the fact that w =O(ρ2), we have
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√
det g̊ = sinθ

1
ρ

2

[
1+

1
2

[
−4w+6w2−4w3 +w4 +gi j

S2wiw j−
1
3

Ric(Θ,Θ)(1−w)6
ρ

2

+
1
6

gi j
S2g(∇ΘR(Θ,Θi)Θ,Θ j)(1−w)7

ρ
3 +

1
20

gi j
S2g(∇2

ΘR(Θ,Θi)Θ,Θ j)(1−w)8
ρ

4

+
2

45
gi j
S2g(R(Θ,Θi)Θ,Eτ)g(R(Θ,Θ j)Θ,Eτ)(1−w)8

ρ
4

− 1
9

g(R(Θ,Θ1)Θ,Θ̄2)
2(1−w)8

ρ
4

+
1
9

g(R(Θ,Θ1)Θ,Θ1)g(R(Θ,Θ̄2)Θ,Θ̄2)(1−w)8
ρ

4
]

− 1
8

[
−4w+6w2−4w3 +w4 +gi j

S2wiw j−
1
3

Ric(Θ,Θ)(1−w)6
ρ

2

+
1
6

gi j
S2g(∇ΘR(Θ,Θi)Θ,Θ j)(1−w)7

ρ
3 +

1
20

gi j
S2g(∇2

ΘR(Θ,Θi)Θ,Θ j)(1−w)8
ρ

4

+
2

45
gi j
S2g(R(Θ,Θi)Θ,Eτ)g(R(Θ,Θ j)Θ,Eτ)(1−w)8

ρ
4

− 1
9

g(R(Θ,Θ1)Θ,Θ̄2)
2(1−w)8

ρ
4

+
1
9

g(R(Θ,Θ1)Θ,Θ1)g(R(Θ,Θ̄2)Θ,Θ̄2)(1−w)8
ρ

4
]2
]
+O(ρ7)

Ignoring higher order terms, we reach

√
det g̊ = sinθ

1
ρ

2

[
(1−w)2 +

1
2

gi j
S2wiw j−

1
6

Ric(Θ,Θ)ρ2 +
2
3

wRic(Θ,Θ)ρ2

+
1
12

gi j
S2g(∇ΘR(Θ,Θi)Θ,Θ j)ρ

3 +
1

40
gi j
S2g(∇2

ΘR(Θ,Θi)Θ,Θ j)ρ
4 (4.41)

+
1
45

gi j
S2g(R(Θ,Θi)Θ,Eτ)g(R(Θ,Θ j)Θ,Eτ)ρ

4− 1
18

g(R(Θ,Θ1)Θ,Θ̄2)
2
ρ

4

+
1

18
g(R(Θ,Θ1)Θ,Θ1)g(R(Θ,Θ̄2)Θ,Θ̄2)ρ

4− 1
72

Ric(Θ,Θ)2
ρ

4

]
+O(ρ7)

Doing the same with (4.20) yields
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H2 =

[
4+4(2+∆S2)w+8w(w+∆S2w)+((2+∆S2)w)2

]
ρ
−2

+

[
2
3

wkgi j
S2gkn

S2gml
S2 g(R(Θ,Θn)Θ,Θm)

(
∂igS

2

jl +∂ jgS
2

il −∂lgS
2

i j

)
− 2

3
wkgi j

S2gkl
S2

(
∂ig(R(Θ,Θ j)Θ,Θl)+∂ jg(R(Θ,Θi)Θ,Θl)−∂lg(R(Θ,Θi)Θ,Θ j)

)
− 2

3
Ric(Θ,Θ)(2+∆S2w)− 4

3
gil
S2gk j

S2 g(R(Θ,Θl)Θ,Θk)(∇
2
S2w)i j

]
(4.42)

+

[
gi j
S2g(∇ΘR(Θ,Θi)Θ,Θ j)

]
ρ

+

[
2
5

gi j
S2g(∇2

ΘR(Θ,Θi)Θ,Θ j)+
16
45

gi j
S2g(R(Θ,Θi)Θ,Eτ)g(R(Θ,Θ j)Θ,Eτ)

− 4
9

gil
S2gk j

S2g(R(Θ,Θi)Θ,Θ j)g(R(Θ,Θl)Θ,Θk)+
1
9

Ric(Θ,Θ)2

]
ρ

2 +O(ρ3)

Multiplying (4.42) by (4.41), we obtain the integrand of the Willmore functional evaluated on a perturbed

geodesic sphere.

H2
√

det g̊ = sinθ
1

[[
4+4∆S2w+4w∆S2w+(∆S2w)2 +2gi j

S2wiw j

]

+

[
2
3

wkgi j
S2gkn

S2gml
S2 g(R(Θ,Θn)Θ,Θm)

(
∂igS

2

jl +∂ jgS
2

il −∂lgS
2

i j

)
− 2

3
wkgi j

S2gkl
S2

(
∂ig(R(Θ,Θ j)Θ,Θl)+∂ jg(R(Θ,Θi)Θ,Θl)−∂lg(R(Θ,Θi)Θ,Θ j)

)
− 4

3
gil
S2gk j

S2g(R(Θ,Θl)Θ,Θk)(∇
2
S2w)i j−2Ric(Θ,Θ)+4wRic(Θ,Θ)

− 4
3

Ric(Θ,Θ)∆S2w

]
ρ

2 +

[
4
3

gi j
S2g(∇ΘR(Θ,Θi)Θ,Θ j)

]
ρ

3

+

[
1
2

gi j
S2g(∇2

ΘR(Θ,Θi)Θ,Θ j)+
4
9

gi j
S2g(R(Θ,Θi)Θ,Eτ)g(R(Θ,Θ j)Θ,Eτ)

− 4
9

gil
S2gk j

S2g(R(Θ,Θi)Θ,Θ j)g(R(Θ,Θl)Θ,Θk)

+
2
9

g(R(Θ,Θ1)Θ,Θ1)g(R(Θ,Θ̄2)Θ,Θ̄2)−
2
9

g(R(Θ,Θ1)Θ,Θ̄2)
2

+
5
18

Ric(Θ,Θ)2

]
ρ

4 +O(ρ5)

]

Inserting w = w2ρ2 +O(ρ3) yields
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H2
√

det g̊ = sinθ
1

[
4+

[
4∆S2w2−2Ric(Θ,Θ)

]
ρ

2 +

[
4
3

gi j
S2g(∇ΘR(Θ,Θi)Θ,Θ j)

]
ρ

3

+

[
4w2∆S2w2 +(∆S2w2)

2 +2gi j
S2(w2)i(w2) j +4w2Ric(Θ,Θ)− 4

3
Ric(Θ,Θ)∆S2w2

+
2
3
(w2)kgi j

S2gkn
S2gml

S2 g(R(Θ,Θn)Θ,Θm)
(

∂igS
2

jl +∂ jgS
2

il −∂lgS
2

i j

)
− 2

3
(w2)kgi j

S2gkl
S2

(
∂ig(R(Θ,Θ j)Θ,Θl)+∂ jg(R(Θ,Θi)Θ,Θl)−∂lg(R(Θ,Θi)Θ,Θ j)

)
− 4

3
gil
S2gk j

S2g(R(Θ,Θl)Θ,Θk)(∇
2
S2w2)i j−

2
9

g(R(Θ,Θ1)Θ,Θ̄2)
2 +

5
18

Ric(Θ,Θ)2

− 4
9

gil
S2gk j

S2g(R(Θ,Θi)Θ,Θ j)g(R(Θ,Θl)Θ,Θk) (4.43)

+
2
9

g(R(Θ,Θ1)Θ,Θ1)g(R(Θ,Θ̄2)Θ,Θ̄2)+
1
2

gi j
S2g(∇2

ΘR(Θ,Θi)Θ,Θ j)

+
4
9

gi j
S2g(R(Θ,Θi)Θ,Eτ)g(R(Θ,Θ j)Θ,Eτ)

]
ρ

4 +O(ρ5)

]

Remark 4.4. This is indeed the same as the unperturbed case if we set w = 0.

Step 2 - Simplifying the integrand.

In order to simplify the integrand we will use the identities in (3.9), which all follow from the definiiton of

the Ricci curvature and the fact that Θ,Θ1 and Θ̄2 make an orthonormal basis of TpM. Throughout, we will

use the symmetries of the Riemann tensor to combine as many terms as possible. We will also use some

computations for the derivatives of w2. We have

(w2)k = ∂k(−
1
6

Ric(Θ,Θ)+
1
18

Scp)

=−1
6

∂k(Ric(Θ,Θ))

=−1
6
(Ric(Θk,Θ)+Ric(Θ,Θk))

=−1
3

Ric(Θ,Θk) (4.44)

(w2)k j = ∂ j(−
1
3

Ric(Θ,Θk))

=−1
3
(Ric(Θ j,Θk)+Ric(Θ,Θk j))

which, combined with the fact that
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Θ11 =−Θ

Θ12 = Θ21 = cotθ
1
Θ2 (4.45)

Θ22 =−sinθ
1 cosθ

1
Θ1− sin2

θ
1
Θ

shows

(w2)11 =−
1
3
(Ric(Θ1,Θ1)−Ric(Θ,Θ))

(w2)12 = (w2)21 =−
1
3
(Ric(Θ1,Θ2)+ cotθ

1Ric(Θ,Θ2)) (4.46)

(w2)22 =−
1
3
(Ric(Θ2,Θ2)− sinθ

1 cosθ
1Ric(Θ,Θ1)− sin2

θ
1Ric(Θ,Θ))

The first and third order terms are identical to the unperturbed case. The second order term looks different

because of the extra 4∆S2w2ρ2, but after integration it is also the same (see below). The difference is with

the fourth order term, which we will now simplify enough so that it can be integrated using similar methods

as before. We begin with the first line and use (4.44) to get

4w2∆S2w2 +(∆S2w2)
2 +2gi j

S2(w2)i(w2) j +4w2Ric(Θ,Θ)− 4
3

Ric(Θ,Θ)∆S2w2

= (−2
3

Ric(Θ,Θ)+
2
9

Scp)(Ric(Θ,Θ)− 1
3

Scp)+(Ric(Θ,Θ)− 1
3

Scp)
2

+2gi j
S2(−

1
6

Ric(Θ,Θ))i(−
1
6

Ric(Θ,Θ)) j +Ric(Θ,Θ)(−2
3

Ric(Θ,Θ)+
2
9

Scp)

− 4
3

Ric(Θ,Θ)(Ric(Θ,Θ)− 1
3

Scp)

=−5
3

Ric(Θ,Θ)2 +
4
9

ScpRic(Θ,Θ)+
1

27
Sc2

p +
2
9
(Ric(Θ,Θ1)

2 +Ric(Θ,Θ̄2)
2) (4.47)

The second line becomes

2
3
(w2)kgi j

S2gkn
S2gml

S2 g(R(Θ,Θn)Θ,Θm)
(

∂igS
2

jl +∂ jgS
2

il −∂lgS
2

i j

)
= ∑

k
−2

3
(w2)kg22

S2gkk
S2g11

S2g(R(Θ,Θk)Θ,Θ1)(2sinθ
1 cosθ

1)

=
4cotθ 1

9
Ric(Θ,Θ1)g(R(Θ,Θ1)Θ,Θ1)+

4cotθ 1

9
Ric(Θ,Θ̄2)g(R(Θ,Θ̄2)Θ,Θ1) (4.48)
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where we have used (4.44) again and the first equality follows because the only non-zero terms occur when

i = j, k = n and m = l (note that ∂igS
2

jk is only non-zero when j = k = 2 and i = 1). The third line simplifies

to

− 2
3
(w2)kgi j

S2gkl
S2

(
∂ig(R(Θ,Θ j)Θ,Θl)+∂ jg(R(Θ,Θi)Θ,Θl)−∂lg(R(Θ,Θi)Θ,Θ j)

)
= ∑

i,k
−2

3
(w2)kgii

S2gkk
S2

(
2∂ig(R(Θ,Θi)Θ,Θk)−∂kg(R(Θ,Θi)Θ,Θi)

)
= ∑

i,k
−2

3
(w2)kgii

S2gkk
S2

[
2
(
g(R(Θ,Θii)Θ,Θk)+g(R(Θ,Θi)Θi,Θk)+g(R(Θ,Θi)Θ,Θki)

)
−g(R(Θk,Θi)Θ,Θi)−g(R(Θ,Θik)Θ,Θi)−g(R(Θ,Θi)Θk,Θi)−g(R(Θ,Θi)Θ,Θik)

]
=−2

3
(w2)2g11

S2g22
S2

[
2
(
g(R(Θ,Θ1)Θ1,Θ2)+g(R(Θ,Θ1)Θ,Θ12)

)
−g(R(Θ2,Θ1)Θ,Θ1)−g(R(Θ,Θ12)Θ,Θ1)−g(R(Θ,Θ1)Θ2,Θ1)−g(R(Θ,Θ1)Θ,Θ12)

]
− 2

3
(w2)1g22

S2g11
S2

[
2
(
g(R(Θ,Θ22)Θ,Θ1)+g(R(Θ,Θ2)Θ2,Θ1)+g(R(Θ,Θ2)Θ,Θ21)

)
−g(R(Θ1,Θ2)Θ,Θ2)−g(R(Θ,Θ21)Θ,Θ2)−g(R(Θ,Θ2)Θ1,Θ2)−g(R(Θ,Θ2)Θ,Θ21)

]
− 2

3
(w2)2g22

S2g22
S2

[
2
(
g(R(Θ,Θ22)Θ,Θ2)+g(R(Θ,Θ2)Θ,Θ22)

)
−g(R(Θ,Θ22)Θ,Θ2)−g(R(Θ,Θ2)Θ,Θ22)

]
=

8
9

Ric(Θ,Θ̄2)g(R(Θ,Θ1)Θ1,Θ̄2)

+
4
9

Ric(Θ,Θ1)
(
− cotθ

1g(R(Θ,Θ1)Θ,Θ1)+2g(R(Θ,Θ̄2)Θ̄2,Θ1)
)

(4.49)

− 4cotθ 1

9
Ric(Θ,Θ̄2)g(R(Θ,Θ1)Θ,Θ̄2)

For the second equality above we have used that Θ11 = −Θ which means that all the i = k = 1 terms are

zero thanks to the symmetries of the Riemann tensor. The last equality is shown by applying (4.45) and

(4.44). Combining (4.48) and (4.49) shows that the second and third lines of the fourth order term become

8
9

(
Ric(Θ,Θ̄2)g(R(Θ,Θ1)Θ1,Θ̄2)+Ric(Θ,Θ1)g(R(Θ,Θ̄2)Θ̄2,Θ1)

)
=

8
9

(
Ric(Θ,Θ̄2)

2 +Ric(Θ,Θ1)
2
)

(4.50)

where we have used the definition of the Ricci tensor and the symmetries of the Riemann tensor to rewrite

Ric(Θ,Θ̄2) = g(R(Θ,Θ1)Θ1,Θ̄2) and Ric(Θ,Θ1) = g(R(Θ,Θ̄2)Θ̄2,Θ1). Turning now to the next term, we

will use some more identities, all of which follow from the definitions of Ric and Sc, and the symmetries of

the Riemann tensor.
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Ric(Θ,Θ) =−g(R(Θ,Θ1)Θ,Θ1)−g(R(Θ,Θ̄2)Θ,Θ̄2) (4.51)

Ric(Θ1,Θ̄2) =−g(R(Θ,Θ1)Θ,Θ̄2) (4.52)

g(R(Θ,Θ1)Θ,Θ1) =−Ric(Θ1,Θ1)−g(R(Θ1,Θ̄2)Θ1,Θ̄2) (4.53)

g(R(Θ,Θ̄2)Θ,Θ̄2) =−Ric(Θ̄2,Θ̄2)−g(R(Θ1,Θ̄2)Θ1,Θ̄2) (4.54)

g(R(Θ1,Θ̄2)Θ1,Θ̄2) =−
1
2

Scp +Ric(Θ,Θ) (4.55)

Ric(Θ1,Θ1)+Ric(Θ̄2,Θ̄2) = Scp−Ric(Θ,Θ) (4.56)

Ric(Θ1,Θ1)
2 +Ric(Θ̄2,Θ̄2)

2 =
(
Scp−Ric(Θ,Θ)

)2−2Ric(Θ1,Θ1)Ric(Θ̄2,Θ̄2) (4.57)

We have

− 4
3

gil
S2gk j

S2g(R(Θ,Θl)Θ,Θk)(∇
2
S2w2)i j

=−4
3

g(R(Θ,Θ1)Θ,Θ1)
(
(w2)11−Γ

i
11(w2)i

)
− 8

3sin2
θ 1

g(R(Θ,Θ1)Θ,Θ2)
(
(w2)12−Γ

i
12(w2)i

)
− 4

3sin4
θ 1

g(R(Θ,Θ2)Θ,Θ2)
(
(w2)22−Γ

i
22(w2)i

)
=

4
9

g(R(Θ,Θ1)Θ,Θ1)
(
Ric(Θ1,Θ1)−Ric(Θ,Θ)

)
+

8
9

g(R(Θ,Θ1)Θ,Θ̄2)Ric(Θ̄2,Θ1)

+
4
9

g(R(Θ,Θ̄2)Θ,Θ̄2)
(
Ric(Θ̄2,Θ̄2)−Ric(Θ,Θ)

)
=

4
9
(
g(R(Θ,Θ1)Θ,Θ1)Ric(Θ1,Θ1)+g(R(Θ,Θ̄2)Θ,Θ̄2)Ric(Θ̄2,Θ̄2)

)
+

4
9

Ric(Θ,Θ)2

− 8
9

Ric(Θ̄2,Θ1)
2

=−4
9

[
Ric(Θ1,Θ1)

(
Ric(Θ1,Θ1)+g(R(Θ1,Θ̄2)Θ1,Θ̄2)

)
+Ric(Θ̄2,Θ̄2)

(
Ric(Θ̄2,Θ̄2)+g(R(Θ1,Θ̄2)Θ1,Θ̄2)

)]
+

4
9

Ric(Θ,Θ)2− 8
9

Ric(Θ̄2,Θ1)
2

=−4
9
(
Ric(Θ1,Θ1)

2 +Ric(Θ̄2,Θ̄2)
2)+ 2

9
Scp
(
Ric(Θ1,Θ1)+Ric(Θ̄2,Θ̄2)

)
− 4

9
Ric(Θ,Θ)

(
Ric(Θ1,Θ1)+Ric(Θ̄2,Θ̄2)

)
+

4
9

Ric(Θ,Θ)2− 8
9

Ric(Θ̄2,Θ1)
2

=−2
9

Sc2
p +

2
9

ScpRic(Θ,Θ)+
8
9

Ric(Θ1,Θ1)Ric(Θ̄2,Θ̄2)+
4
9

Ric(Θ,Θ)2− 8
9

Ric(Θ̄2,Θ1)
2 (4.58)

where for the second equality we used (4.44), (4.46) and the Christoffel symbols for S2, which are Γ2
12 =

Γ2
21 = cotθ 1, Γ1

22 = −sinθ 1 cosθ 1 and Γi
11 = Γ1

22 = Γ1
12 = Γ1

21 = 0. For the third equality we used (4.51)

and (4.52), the fourth (4.53) and (4.54), and the fifth (4.55). The final equality follows by (4.56) and (4.57)

and collecting like terms. Next, we note that the eleventh and fourteenth fourth order terms cancel because
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4
9

gi j
S2g(R(Θ,Θi)Θ,Eτ)g(R(Θ,Θ j)Θ,Eτ)

=
4
9

gi j
S2

[
g(R(Θ,Θi)Θ,Θ1)g(R(Θ,Θ j)Θ,Θ1)+g(R(Θ,Θi)Θ,Θ̄2)g(R(Θ,Θ j)Θ,Θ̄2)

]
=

4
9

gi j
S2glk

S2g(R(Θ,Θi)Θ,Θl)g(R(Θ,Θ j)Θ,Θk)

where we have used the orthonormal basis {E1 = Θ,E2 = Θ1,E3 = Θ̄2}. The ninth term becomes

−2
9

g(R(Θ,Θ1)Θ,Θ̄2)
2 =−2

9
Ric(Θ1,Θ̄2)

2 (4.59)

and, finally, the twelfth

2
9

g(R(Θ,Θ1)Θ,Θ1)g(R(Θ,Θ̄2)Θ,Θ̄2)

=
2
9
[
−Ric(Θ1,Θ1)−g(R(Θ1,Θ̄2)Θ1,Θ̄2)

][
−Ric(Θ̄2,Θ̄2)−g(R(Θ1,Θ̄2)Θ1,Θ̄2)

]
=

2
9

Ric(Θ1,Θ1)Ric(Θ̄2,Θ̄2)+
2
9

g(R(Θ1,Θ̄2)Θ1,Θ̄2)
(
Ric(Θ1,Θ1)+Ric(Θ̄2,Θ̄2)

)
+

2
9

g(R(Θ1,Θ̄2)Θ1,Θ̄2)
2

=
2
9

Ric(Θ1,Θ1)Ric(Θ̄2,Θ̄2)+
2
9
(
− 1

2
Scp +Ric(Θ,Θ)

)(
Scp−Ric(Θ,Θ)

)
+

2
9
(
− 1

2
Scp +Ric(Θ,Θ)

)2

=
2
9

Ric(Θ1,Θ1)Ric(Θ̄2,Θ̄2)−
1

18
Sc2

p +
1
9

ScpRic(Θ,Θ) (4.60)

where we have used (4.53) and (4.54) for the first equality, and (4.55) and (4.56) for the third equality.

Substituting (4.47), (4.50), (4.58), (4.59) and (4.60) into (4.43) yields

H2
√

det g̊ = sinθ
1

[
4+

[
4∆S2w2−2Ric(Θ,Θ)

]
ρ

2 +

[
4
3

gi j
S2g(∇ΘR(Θ,Θi)Θ,Θ j)

]
ρ

3

+

[
− 17

18
Ric(Θ,Θ)2− 13

54
Sc2

p +
7
9

ScpRic(Θ,Θ)+
10
9

(
Ric(Θ,Θ1)

2 +Ric(Θ,Θ̄2)
2
)

+
10
9

(
Ric(Θ1,Θ1)Ric(Θ̄2,Θ̄2)−Ric(Θ1,Θ̄2)

2
)
+

1
2

gi j
S2g(∇2

ΘR(Θ,Θi)Θ,Θ j)

]
ρ

4

+O(ρ5)

]
(4.61)
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Step 3 - Integrate.

We now integrate each term in (4.61) using the same methods as in the unperturbed case.

• Terms of order ρ0 - ρ3.

The only difference with the unperturbed case is the 4∆S2w2ρ2 term. However, since ∂S2 = /0, by Green’s

identity we have

∫
S2

4∆S2w2 dVgS2 =−4
∫
S2

gS2(gradS21,gradS2 w2)dVgS2 = 0

and so in fact all the terms of order ρ0 - ρ3 are the same as in (3.12).

• Terms of order ρ4.

Most of these terms are also the same as in the unperturbed case, but with different constants. See (3.10).

The only completely new term is the one containing Ric(Θ,Θ1)
2 +Ric(Θ,Θ̄2)

2, which we now integrate.

Recall that if

Θ = (sinθ
1 cosθ

2,sinθ
1 sinθ

2,cosθ
1) = (x,y,z)

then

Θ1 = (cosθ
1 cosθ

2,cosθ
1 sinθ

2,−sinθ
1) =

(
xz√

x2 + y2
,

yz√
x2 + y2

,−
√

x2 + y2

)

Θ̄2 = (−sinθ
2,cosθ

2,0) =

(
− y√

x2 + y2
,

x√
x2 + y2

,0

)

Therefore, we can expand the following terms (taking into account that Ri j = R ji):

Ric(Θ,Θ1)
2 =

(
R11

x2z√
x2 + y2

+R12
2xyz√
x2 + y2

+R13
z2x− x(x2 + y2)√

x2 + y2
+R22

y2z√
x2 + y2

+R23
z2y− y(x2 + y2)√

x2 + y2
−R33z

√
x2 + y2

)2
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Ric(Θ,Θ̄2)
2 =

(
−R11

xy√
x2 + y2

+R12
x2− y2√
x2 + y2

+R22
xy√

x2 + y2

−R31
yz√

x2 + y2
+R32

xz√
x2 + y2

)2

As in the w = 0 case, we can ignore any polynomial term in the integrand which has an odd power, since it

will integrate to zero. Inspection shows that after the brackets are expanded, the only terms that will consist

entirely of even powers of x, y and z are those containing the coefficients of the Ricci tensor displayed

below:

R2
11, R11R22, R11R33, R2

12, R2
13, R2

22, R22R33, R2
23, R2

33

We compute these terms as follows, using that x2 + y2 + z2 = 1:

(
R11

x2z√
x2 + y2

)2
+
(
−R11

xy√
x2 + y2

)2
= R2

11

(x4z2 + x2y2

x2 + y2

)
= R2

11

(x2(x2(1− x2− y2)+ y2)

x2 + y2

)
= R2

11

(x2(x2 + y2)(1− x2)

x2 + y2

)
= R2

11(x
2− x4)

2
(

R11
x2z√

x2 + y2

)(
R22

y2z√
x2 + y2

)
−2
(

R11
xy√

x2 + y2

)(
R22

xy√
x2 + y2

)
= 2R11R22

(x2y2(z2−1)
x2 + y2

)
=−2R11R22x2y2

−2
(

R11
x2z√

x2 + y2

)(
R33z

√
x2 + y2

)
=−2R11R33x2z2
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(
R12

2xyz√
x2 + y2

)2
+
(

R12
x2− y2√
x2 + y2

)2
= R2

12

(4x2y2z2 + x4 + y4−2x2y2

x2 + y2

)
= R2

12

(4x2y2(1− x2− y2)+ x4 + y4−2x2y2

x2 + y2

)
= R2

12

(x4 + y4 +2x2y2−4x4y2−4x2y4

x2 + y2

)
= R2

12

( (x2 + y2)2−4x2y2(x2 + y2)

x2 + y2

)
= R2

12(x
2 + y2−4x2y2)

= R2
12(1− z2−4x2y2)

(
R13

z2x− x(x2 + y2)√
x2 + y2

)2
+
(
−R31

yz√
x2 + y2

)2
= R2

13

( (z2x− x(1− z2))2 + y2z2

1− z2

)
= R2

13

(4z4x2−4z2x2 + x2 + y2z2

1− z2

)
= R2

13

(4z4x2−4z2x2 +1− y2− z2 + y2z2

1− z2

)
= R2

13

(4z2x2(z2−1)+(1− z2)(1− y2)

1− z2

)
= R2

13(1− y2−4z2x2)

−2
(

R22
y2z√

x2 + y2

)(
R33z

√
x2 + y2

)
=−2R22R33y2z2

(
R22

y2z√
x2 + y2

)2
+
(

R22
xy√

x2 + y2

)2
= R2

22

(y4z2 + x2y2

x2 + y2

)
= R2

22

(y2(y2(1− x2− y2)+ x2)

x2 + y2

)
= R2

22

(y2(x2 + y2)(1− y2)

x2 + y2

)
= R2

22(y
2− y4)
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(
R23

z2y− y(x2 + y2)√
x2 + y2

)2
+
(

R32
xz√

x2 + y2

)2
= R2

23

( (z2y− y(1− z2))2 + x2z2

1− z2

)
= R2

23

(4z4y2−4z2y2 + y2 + x2z2

1− z2

)
= R2

23

(4z4y2−4z2y2 +1− x2− z2 + x2z2

1− z2

)
= R2

23

(4z2y2(z2−1)+(1− z2)(1− x2)

1− z2

)
= R2

23(1− x2−4z2y2)

(
−R33z

√
x2 + y2

)2
= R2

33z2(x2 + y2) = R2
33z2(1− z2) = R2

33(z
2− z4)

Thus, we get
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∫
S2

Ric(Θ,Θ1)
2 +Ric(Θ,Θ̄2)

2dVgS2 =
∫
S2

(
R2

11(x
2− x4)−2R11R22x2y2−2R11R33x2z2

+R2
12(1− z2−4x2y2)+R2

13(1− y2−4z2x2)

+R2
22(y

2− y4)−2R22R33y2z2

+R2
23(1− x2−4z2y2)+R2

33(z
2− z4)

)
dVgS2

= R2
11(

4π

3
− 4π

5
)−R11R22

8π

15
−R11R33

8π

15

+R2
12(4π− 4π

3
− 16π

15
)+R2

13(4π− 4π

3
− 16π

15
)

+R2
22(

4π

3
− 4π

5
)−R22R33

8π

15

+R2
23(4π− 4π

3
− 16π

15
)+R2

33(
4π

3
− 4π

5
)

=
8π

15
R2

11−
8π

15
R11R22−

8π

15
R11R33 +

8π

5
R2

12

+
8π

5
R2

13 +
8π

15
R2

22−
8π

15
R22R33

+
8π

5
R2

23 +
8π

15
R2

33

=
8π

15
(R2

11 +R2
22 +R2

33−R11R22−R11R33−R22R33)

+
8π

5
(R2

12 +R2
13 +R2

23)

=
8π

15
(R2

11 +R2
22 +R2

33 +3R2
12 +3R2

13 +3R2
23)

− 8π

15
(R11R22 +R11R33 +R22R33)

=
4π

5
(R2

11 +R2
22 +R2

33 +2R2
12 +2R2

13 +2R2
23)

− 4π

15
(R2

11 +R2
22 +R2

33 +2R11R22 +2R11R33 +2R22R33)

=
4π

5

[
‖Ric‖2− 1

3
Sc2

p

]
=

4π

5
‖Sp‖2 (4.62)

where we have again used

∫
S2
(xµ)2 dVgS2 =

4π

3∫
S2
(xµ)2(xν)2 dVgS2 =

4π

15
µ 6= ν∫

S2
(xµ)4 dVgS2 =

4π

5

Step 4 - Obtain Hawking mass expansion.
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Combining the calculations in Section 3.2 with (4.62) yields the integral of (4.61).

W (Sp,ρ(w)) =
∫
S2

H2
√

det g̊ dθ
1dθ

2

= 16π− 8π

3
Scpρ

2 +

[
− 34π

135
(2‖Ric‖2 +Sc2

p)−
26π

27
Sc2

p +
28π

27
Sc2

p

+
8π

9
‖Sp‖2− 20π

27
(‖Ric‖2−Sc2

p)−
4π

15
∆Sc(p)

]
ρ

4 +O(ρ5)

= 16π− 8π

3
Scpρ

2 +

[
− 56π

45
‖Ric‖2 +

76π

135
Sc2

p +
8π

9
‖Sp‖2− 4π

15
∆Sc(p)

]
ρ

4 +O(ρ5)

= 16π− 8π

3
Scpρ

2 +

[
− 56π

45
(
‖Ric‖2− 1

3
Sc2

p
)
+

4π

27
Sc2

p +
8π

9
‖Sp‖2− 4π

15
∆Sc(p)

]
ρ

4

+O(ρ5)

= 16π− 8π

3
Scpρ

2 +

[
4π

27
Sc2

p−
16π

45
‖Sp‖2− 4π

15
∆Sc(p)

]
ρ

4 +O(ρ5) (4.63)

Where we have used the traceless Ricci tensor S and the fact that ‖S‖2 = ‖Ric‖2− 1
3 Sc2 (see Section 2.1).

Finally, substituting (4.63) in to the definition of Hawking mass gives (4.40).

Remark 4.5. We note that (4.40) actually gives a strictly positive (even though small) lower bound on

the Hawking mass of the optimally perturbed geodesic sphere Sp,ρ(w) at some p inside a connected, 3D

Riemannian manifold, if either Scp > 0 or both Sc ≡ 0 and ‖Sp‖ 6= 0. In particular, Schur’s lemma (see

Corollary 5.4) implies that there will always be such a point if the manifold has Sc ≥ 0 and non-constant

sectional curvature.
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5 Proof of Theorems 1.28 and 1.33

First, we recall some well-known results that will be used in the subsequent proof. See, for example,

[Lee18].

Theorem 5.1 (Killing-Hopf [Kil91; Hop26]). Let (M,g) be a complete, simply connected Riemannian man-

ifold of dimension n≥ 2 and constant sectional curvature. Then (M, g) is isometric to either Rn, Sn
r or Hn

r .

Corollary 5.2. Let (M,g) be a connected, complete Riemannian manifold of dimension n≥ 2 and constant

sectional curvature (i.e. a space-form). Then (M, g) is isometric to either

Rn
�Γ , Sn

r�Γ or Hn
r�Γ

where Γ is a discrete group of isometries of the corresponding space which acts freely.

Lemma 5.3 (Schur). Let (M,g) be a connected Riemannian manifold of dimension n≥ 3 and Ric = φg for

some φ ∈C∞(M). Then φ is a constant.

Corollary 5.4. Let (M,g) be a connected, 3D Riemannian manifold. If the traceless Ricci tensor is zero,

then the sectional curvature K is constant. In particular K = Sc
6 , where Sc is the scalar curvature.

Proof. If S = 0 then we have Ric = Sc
3 g and so by Schur’s Lemma we have Sc = constant. Now we can use

the following formula for the Riemann curvature tensor in terms of the Kulkarni-Nomizu product ([Lee18],

Corollary 7.26):

Rm = Ric©∧ g− Sc
4

g©∧ g

which, after substituting Ric = Sc
3 g, becomes

Rm =
Sc
12

g©∧ g

Unpacking the definitions we see that at any point p ∈ M and for any plane section SΠ with orthonormal

basis (Xp,Yp) for TpSΠ, the sectional curvature is

K(SΠ) = Rm(Xp,Yp,Yp,Xp)

=
Sc
12

(g©∧ g)(Xp,Yp,Yp,Xp)

=
Sc
12

(
2g(Xp,Xp)g(Yp,Yp)−2g(Xp,Yp)g(Yp,Xp)

)
=

Sc
6

Proof of Theorem 1.28. We prove that the sectional curvature K vanishes on Ω\∂M.

92



Assume (1.14) holds. Firstly, we insert (4.24) into (1.4) to yield the following expansion for the area of

optimally perturbed spheres:

|Sp,ρ(w)|g̊ = |S2|gS2 ρ
2
[

1− 1
18

Scpρ
2 +O(ρ4)

]
Note that the −2

∫
S2 wdVS2ρ2 term in (1.4) evaluates to zero because

w ∈ Ker[∆S2(∆S2 +2)]⊥ ⊂ L2(S2)

Combining this with the Taylor expansion of
√

1+ x yields

√
|Sp,ρ(w)|g̊ =

√
|S2|gS2 ρ

[
1− 1

36
Scpρ

2 +O(ρ4)

]
(5.1)

Now, substituting (4.40) and (5.1) into (1.14) gives

limsup
ρ↓0

√
|S2|gS2 ρ−4√
(16π)3

[
1− 1

36
Scpρ

2 +O(ρ4)

]
×
[

8π

3
Scpρ

2 +

(
4π

15
∆Sc(p)+

16π

45
‖Sp‖2− 4π

27
Sc2

p

)
ρ

4 +O(ρ5)

]
≤ 0

for all p ∈Ω\∂M. Simplifying yields

limsup
ρ↓0

[
8π

3
Scpρ

−2 +

(
4π

15
∆Sc(p)+

16π

45
‖Sp‖2− 2π

9
Sc2

p

)
+O(ρ)

]
≤ 0 (5.2)

Since Sc is assumed to be non-negative, letting ρ ↓ 0 and looking at the dominating 8π

3 Scpρ−2 term in (5.2),

we first infer that

Sc≡ 0 on Ω\∂M (5.3)

Plugging (5.3) into (5.2), the dominant term becomes 16π

45 ‖Sp‖2, which is constant in ρ and non-negative.

We deduce

S≡ 0 on Ω\∂M (5.4)

Then, Corollary 5.4 applied to Ω\∂M (or to its connected components if Ω\∂M is not connected) implies
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that K ≡ 0 on Ω\∂M. Equivalently, Ω\∂M is locally isometric to (R3, ḡ).

Proof of Theorem 1.33. In particular, Theorem 1.28 applies when (M,g) is complete and has no boundary.

Thus, in this case, the previous proof gives K ≡ 0 on M. Now, Corollary 5.2 implies (M,g) is isometric to

the space-form R3/Γ, for some Γ.

For the second part of the theorem we also assume that (M3,g) is ALSC. First, denote with π the covering

map.

π : R3→ R3/Γ'M

The full isometry group of R3 is isomorphic to the semi-direct product O(3)nR3 and so we can write

γ = (r,a) ∈ Γ where r ∈ O(3) and a ∈ R3. Since Γ is a discrete group of isometries of R3, acting freely,

Theorems 3.3.3 and 3.5.1 in [Wol11] show that each γ ∈Γ can be split uniquely as δ×ψ where δ =(r|Rn ,a)

and ψ = (r|R3−n ,0), and now a ∈Rn. Here n ∈ {0,1,2,3} is the rank of the maximal abelian subgroup of Γ

(i.e. the subgroup generated by the translations) and we use an orthonormal basis adapted to this subgroup

to write R3 = Rn×R3−n. We can now finish the proof by considering different values of n separately.

• n = 0

In this case we have γ = ψ and it consists of purely an orthogonal transformation. Any such transformation

has a fixed point and therefore contradicts the fact that Γ acts freely, unless it is the identity transformation.

Therefore Γ is trivial and we get M ' R3.

• n = 1

If n = 1 then we have R3 = R×R2 and δ = (r|R,a) where a is a translation in the R direction. Now let

s ∈ [0,1] and (u,v) ∈ R×R2 and consider the curve α(s) = (u+ sa,v) ⊂ R3. Then for any fixed radius

R > |a|, the ball Bg
R(π(u,v))⊂M contains the loop π(α). For a 6= 0, this loop cannot be homotopic to the

constant loop c(s) ≡ π(u,v). If it was, then by the uniqueness of path liftings in the covering space (see

[Mun00, Chapter 9] or [Lee11, Theorem 11.15]), the lifts of c(s) and π(α(s)) starting at (u,v) must end

at the same point. But this is not true because the lift of c(s) is the constant loop in R×R2, so it ends

at (u,v), whereas the lift of π(α(s)) is α(s), which ends at (u+ a,v). Therefore π(α(s)) is a non-trivial

loop and so Bg
R(π(u,v)) is not simply connected. Similarly, Bg

R(π(u,vi)) ⊂ M contains π(αi(s)) where

αi(s) = (u+ sa,vi) and vi ∈R2 such that d(π(vi),π(v))→∞. These Bg
R(π(u,vi)) are not simply connected,

which contradicts the ALSC assumption. Thus a = 0 and so γ must be the identity for the same reason as

before.

• n = 2

This time we have R3 = R2×R and δ = (r|R,a) where a ∈ R2. Now let s ∈ [0,1] and (u,v) ∈ R2×R and
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consider the curve α(s) = (u+ sa,v)⊂ R3. Then the same argument as for the n = 1 case works, but now

R > |a|R2 and vi ∈ R.

• n = 3

If n = 3 and a ∈R3 \{0} then the quotient M 'R3/Γ is compact, which contradicts the ALSC assumption.

Therefore a = 0 and we can again conclude that Γ = {Id}.

95



6 Bartnik Mass Theorems

In this section we will prove Theorems 1.34 and 1.35. First, recall the variant of the Bartnik mass used in

this thesis.

Definition 6.1. Let (M,g) be an AF, complete, 3D Riemannian manifold with non-negative scalar curvature

where ∂M is the only compact, minimal surface in M. For a bounded, open set Ω⊂M with smooth, outer-

minimising topological boundary ∂Ω, the Bartnik mass of Ω is

mB(Ω) := inf{mADM(N) : N ∈ A}

where A is the set of AF, complete, 3D Riemannian manifolds with non-negative scalar curvature, into

which Ω isometrically embeds, where ∂N is the only compact, minimal surface in N and ∂Ω⊂ N is outer-

minimising.

As outlined in the summarising Section 1.5, our choice of Bartnik mass allows us to prove the next propo-

sition, which will be the key ingredient in the proof of Theorems 1.34 and 1.35.

Proposition 6.2. Let (M,g) be an AF, complete, 3D Riemannian manifold with non-negative scalar cur-

vature where ∂M is the only compact, minimal surface in M. Fix p ∈ M \ ∂M and consider an arbitrary

sequence of perturbed geodesic spheres Sp,ρn(wn) satisfying ρn→ 0 and ‖wn‖C1(S2)→ 0 as n→ ∞. Then

there exist N(p)> 0 such that Sp,ρn(wn) is outer-minimising for every n≥ N.

The main proof of Proposition 6.2 will take place in Section 6.3, and then we will use it to complete the

proof of the Bartnik mass theorems in Section 6.4. To begin, two preliminary sections provide some results

we will need.

6.1 Convergence of Manifolds

Here, we state a few definitions concerning the convergence of manifolds, which will be helpful because

they describe properties which apply, in particular, to AF manifolds.

Definition 6.3. A complete n-dimensional Riemannian manifold (M,g) has bounded geometry if there exists

positive constants C and V such that the sectional curvature is bounded

|K| ≤C

and the injectivity radius is bounded below

injM ≥V > 0

Definition 6.4 ([Pet16]). Let m ∈ N, β ∈ [0,1], (M,g) be a Cm+1,β -manifold with the Cm,β -metric g and
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let p ∈ M. A sequence of pointed, smooth, complete Riemannian manifolds (Mn,gn, pn) converges in the

pointed Cm,β -topology to the manifold (M,g, p), written (Mn,gn, pn)→ (M,g, p), if for every R > 0 we can

find a domain ΩR with Bg
R(p)⊂ΩR ⊂M together with maps Fn,R : ΩR→Mn, and a natural number nR ∈N

such that Bgn
R (pn) ⊂ Fn,R(ΩR) and Fn,R are Cm+1,β -embeddings for all n ≥ nR, and F∗n,R(gn)→ g on ΩR in

the Cm,β -topology.

Definition 6.5. A complete Riemannian manifold (M,g) has Cm,β -bounded geometry if it has bounded

geometry and for every diverging sequence of points pn there exists a subsequence pnl and a pointed Cm+1,β -

manifold (M∞,g∞, p∞) with Cm,β -metric such that (M,g, pnl )→ (M∞,g∞, p∞) in the pointed Cm,β -topology.

Lemma 6.6. If (M3,g) is AF, then it has C2,α -bounded geometry.

Proof. For the sectional curvature bound, first note that in the AF chart the metric g has the representation

gµν = δµν +O(|x|−τ), where τ > 1
2 . This implies the same decay on the inverse metric gµν = δ µν +

O(|x|−τ). Using this, together with the decay on the first derivatives ∂g =O(|x|−τ−1) and the formula for

the Christoffel symbols, yields

Γ
η

µν =
1
2

gηλ (∂µ gνλ +∂ν gµλ −∂λ gµν) =O(|x|−τ−1) as |x| → ∞ (6.1)

Recalling the formula for the Riemann curvature tensor in coordinates and using the AF condition again,

gives

Rµνηλ = gλζ

(
∂µ Γ

ζ

νη −∂ν Γ
ζ

µη +Γ
α
νη Γ

ζ

µα −Γ
α
µη Γ

ζ

να

)
=O(|x|−τ−2) as |x| → ∞ (6.2)

Finally, plugging (6.1) and (6.2) in to the formula for the sectional curvature K(SΠ) of a plane section SΠ

at a point p ∈M with respect to an orthonormal basis Xp,Yp ∈ TpSΠ ⊂ TpM, reveals

K(SΠ) = Rm(Xp,Yp,Yp,Xp) =O(|x|−τ−2) as |x| → ∞

Thus the sectional curvature is bounded.

For the bound on injM , consider the complement of the compact set K ⊂M where we have the AF chart.

Using (6.1), the geodesic equation for curves γ(t) becomes

0 = γ̈
η(t)+ γ̇

µ(t)γ̇ν(t)Γη

µν(γ(t))

= γ̈
η(t)+ γ̇

µ(t)γ̇ν(t)O(|x|−τ−1)
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As this is a system of (non-linear) second order ODEs with a smooth function of the perturbation parameter

|x|, we know that the solutions (i.e. the g-geodesics), depend smoothly on |x|, as |x| → ∞. See [Lee13,

Appendix D] or [Har02, Chapter 5]. Thus, for a diverging sequence pn, the g-exponential map, which is

defined by the g-geodesics, satisfies

‖expg
pn
−expḡ

pn
‖Ck =O(|pn|−τ−1) ∀k

where we consider both maps (for expg
pn , via the pullback metric) as maps on the complement of a ball

in R3. Hence the maximal domain where the exponential map at pn is a diffeomorphism onto its image

increases without bound as n→∞ (i.e. inj(pn)→∞). Enlarging K as necessary so that injM\K ≥C > 0 for

some positive constant C, by compactness we have a finite covering of K made of uniformly normal neigh-

bourhoods [Lee18, Lemma 6.16]. This gives a finite set of positive constants {C1, ...,C j} such that each

point q∈K satisfies inj(q)≥Ck for some 1≤ k≤ j. Therefore injK = infq∈K(inj(q))≥min(C1, ...,C j)> 0

and injM ≥min(C,C1, ...,C j)> 0.

Again, take a diverging sequence of points pn ∈M. We will show that (M,g, pn)→ (R3, ḡ,0). Let R > 0.

Define T a and Sλ , the translation and scaling maps on R3, where a ∈ R3 and λ > 1, by

T a : R3→ R3 x 7→ x+a

Sλ : R3→ R3 x 7→ λ · x

Since (M,g) is AF, we have the chart φ as in Definition 1.2. Thus we can define the following map:

φn,R := φ
−1 ◦T φ(pn) ◦Sλ : Bḡ

R(0)→M

Since pn diverges, so does φ(pn), and for |φ(pn)|ḡ > λR+1 the image T φ(pn) ◦Sλ (B
ḡ
R(0)) is contained in

the domain of the diffeomorphism φ−1. That is

T φ(pn) ◦Sλ (B
ḡ
R(0)) = Bḡ

λR(φ(pn))⊂ R3 \Bḡ
1(0)

Thus we can find an n
′
R ∈N such that φn,R will be a diffeomorphism onto its image for n > n

′
R. We also have

φn,R(0) = pn and φ ∗n,Rg→ ḡ on Bḡ
R(0) in the C2,β -topology for all β ∈ [0,1], because n→ ∞ corresponds to

|x| → ∞ in the AF chart φ . Finally, we need to show that
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Bg
R(pn)⊂ φn,R(B

ḡ
R(0))

for large enough n. Since φ is a diffeomorphism, this is equivalent to showing

φ
(
Bg

R(pn)
)
⊂ Bḡ

λR(φ(pn))

Using the pull back metric, so that φ is an isometry, this means showing

B(φ−1)∗g
R (φ(pn))⊂ Bḡ

λR(φ(pn))

But we know from the above argument that expg
pn → expḡ

pn and inj(pn)→ ∞. Therefore the metric balls

B(φ−1)∗g
R (φ(pn)) are geodesic balls when n is large enough, and for any small ε > 0 there is an n

′′
R ∈ N such

that

B(φ−1)∗g
R (φ(pn))⊂ Bḡ

R+ε
(φ(pn))

for n > n
′′
R. Taking ε < λR−R, we have λR > R+ ε , and thus

B(φ−1)∗g
R (φ(pn))⊂ Bḡ

R+ε
(φ(pn))⊂ Bḡ

λR(φ(pn))

for n > n
′′
R. Taking nR = max(n

′
R,n

′′
R) finishes the proof.

Now we consider the rescaled Riemannian metrics gρ := ρ−2g.

Lemma 6.7. The pointed Riemannian manifolds (M3,gρ , p) converge to (R3, ḡ,0) in the pointed Cm,β -

topology for every m as ρ ↓ 0 (i.e. we have smooth Cheeger-Gromov convergence).

Proof. Explicitly, consider the (inverse of the) normal coordinate charts with respect to the metrics gρ .

Lemma 2.6 implies the constant scaling gρ := ρ−2g yields Γg = Γgρ and therefore ∇g = ∇gρ . Thus (M,g)

and (M,gρ) have the same geodesics and exponential maps. However, using expg
p and expgρ

p to obtain

normal coordinates for (M,g) and (M,gρ) respectively requires choosing orthonormal bases of TpM. To

this end, if {E1,E2,E3} is a g-orthonormal basis of TpM, then {ρE1,ρE2,ρE3} is a gρ -orthonormal basis

of TpM because
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gρ(ρEµ ,ρEν) = ρ
−2g(ρEµ ,ρEν) = g(Eµ ,Eν) = δµν at p

Using these bases we get the normal coordinate charts (diffeomorphisms) φg and φgρ
such that φ−1

g (ρx) =

φ−1
gρ

(x). Furthermore, by Lemma 6.6 we know that, for any p, the domain of φ−1
g contains Bḡ

R̄(0)⊂ R
3 for

some R̄ > 0. Therefore, for any p, the domain of φ−1
gρ

contains Bḡ
ρ−1R̄(0)⊂ R

3. Note that the sets Bḡ
ρ−1R̄(0)

exhaust R3 as ρ → 0.

Let (gρ)µν and gµν be the components of the metrics gρ and g in their respective normal coordinate charts

and q = φ−1
gρ

(x) = φ−1
g (ρx) a point near p. From (3.1)

g(∂µ ,∂ν)(φ
−1
g (x)) = gµν(x) = δµν +O(|x|2)

where ∂µ are the coordinate vector fields induced by the chart φg. Thus

(gρ)µν(x) = gρ(∂
ρ

µ ,∂
ρ

ν )(φ
−1
gρ

(x))

= ρ
−2g(∂ ρ

µ ,∂
ρ

ν )(φ
−1
gρ

(x))

= g(∂µ ,∂ν)(φ
−1
gρ

(x))

= g(∂µ ,∂ν)(φ
−1
g (ρx))

= gµν(ρx)

= δµν +O(|ρx|2) (6.3)

In particular, (gρ)µν(x) = δµν +O(ρ2). Therefore, given R > 0, any of the diffeomorphisms φ−1
gρ

with

ρ < R̄
R satisfy the requirements for the maps in Definition 6.4, where we can take ΩR = Bḡ

R(0). Since

geodesic balls are also metric balls, the containment requirement is true for φ−1
gρ

. Finally, (6.3) also shows

(φ−1
gρ

)∗gρ → ḡ in Ck(Bḡ
R(0))-norm as ρ → 0. Therefore we can find a sequence φ−1

gρn
, where ρn → 0 as

n→ ∞, such that the lemma is true.

6.2 Sets of Finite Perimeter

In this section we prove some properties of finite perimeter sets which will help in the proof of Proposition

6.2. Let (M,g) be a 3D Riemannian manifold. For a Borel subset E ⊂M, recall that we denote its volume

by |E|g and its perimeter by Pg(E). Also, recall that E∆F is the symmetric difference of the sets E and F .

The isoperimetric profile function I(M,g) : [0,∞)→ [0,∞) of (M,g) is defined by
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I(M,g)(v) := inf{Pg(E) : E ⊂M is a finite perimeter set with |E|g = v}. (6.4)

In the Euclidean case, where (M,g)= (R3, ḡ), we know that the round spheres are the solutions to the related

isoperimetric problem. Therefore, given a volume v, we can rearrange the volume formula |Bḡ
r (p)|ḡ =

4π

3 · r
3 to find the radius of the round ball of volume v is r =

( 3v
4π

) 1
3 , which implies that (for any p ∈ R3)

Pḡ(B
ḡ
r (p)) = |Sp,r(0)|gSp,r(0)

= |S2
r |gS2r

= 4π · r2 = 4π ·
( 3v

4π

) 2
3 = (36π)

1
3 v

2
3 . Thus I(R3,ḡ)(v) = (36π)

1
3 v

2
3 for

all v > 0. The next result generalises this to AF manifolds.

Lemma 6.8. If (M,g) is an AF, complete, 3D Riemannian manifold, then

lim
v↓0

v−
2
3 I(M,g)(v) =

(36π)
1
3 if ∂M = /0

(18π)
1
3 if ∂M 6= /0

(6.5)

Proof. First we assume ∂M = /0. Thanks to Lemma 6.6, we can apply the following theorem of Nardulli

[Nar14, Theorem 1].

Theorem 6.9. Let (M,g) be a complete, 3D Riemannian manifold with C2,α -bounded geometry. There

exists v̄(α) = v̄ > 0 such that for all 0 < v < v̄

I(M,g)(v) = min
{
|Sp∞,ρ(w)|g∞

: (M,g, pn)→ (M∞,g∞, p∞)
}

(6.6)

Here, Sp∞,ρ(w) is the unique perturbed sphere in (M∞,g∞, p∞), centered at p∞, of volume v. Note that the

function space used in [Nar14] (see also [Nar09] and [PX09]) for the perturbation w is different to that used

in this thesis. They take

w ∈C2,α(S2)∩Ker[∆S2 +2]⊥ ⊂ L2(S2)

together with an additional conditon on the mean curvature of Sp,ρ(w). The author proves that such per-

turbed spheres (called pseudo-bubbles or pseudo-balls) satisfy

w = w2ρ
2 +O(ρ3) and

∫
S2

w2 dVS2 =
2π

9
Scp (6.7)

In [Nar09, Theorem 1], the same author proves that for small enough v and all p ∈ M there is a unique

Sp,ρ(w) such that |Bp,ρ(w)|g = v. We also note that Theorem 6.9 is in fact a simplified version of the original
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in [Nar14, Theorem 1], where the author works with the larger class of manifolds that have bounded norm,

in the sense of Petersen [Pet16, Section 11.3].

Case 1: pn diverges.

In this case we know there is only one limit manifold and (M∞,g∞, p∞) = (R3, ḡ,0). In Euclidean space the

isoperimetric regions are just the round spheres. Therefore the round spheres are the only pseudo-bubbles

we need to consider for diverging sequences in (6.6), and they all yield |Sp∞,ρ(w)|g∞
= |S2

ρ |gS2
ρ

= (36π)
1
3 v

2
3 .

Case 2: pn converges.

For converging sequences, (M∞,g∞, p∞) = (M,g, p) for some p∈M. In this case we can apply the formulas

(1.4) and (1.5) to the unique pseudo-bubble Sp,ρ(w) of volume v (the formulas are true for any small function

w∈C2,α(S2). See [PX09]). Applying the properties (6.7) of the perturbation function to the formulas yields

|Sp,ρ(w)|g̊ = |S2|gS2

[
1− 1

6
Scpρ

2
]

ρ
2 +O(ρ6)

|Bp,ρ(w)|g =
|S2|gS2

3

[
1− 1

5
Scpρ

2
]

ρ
3 +O(ρ7)

We can now proceed as in the Euclidean case and rearrange to get ρ in terms of v = |Bp,ρ(w)|g. We use the

same method as in [Nar09, Lemma 3.10]. Setting A =
|S2|gS2

3 yields

v = A
[
1+O(ρ2)

]
ρ

3

Then, with a Taylor expansion

ρ
3 =

v
A

[
1+O(ρ2)

]−1

=
v
A

(
1+O(ρ2)

)

Therefore, after another Taylor expansion
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ρ
2 =

( v
A

) 2
3 (

1+O(ρ2)
) 2

3

=
( v

A

) 2
3 (

1+O(ρ2)
)

=
( v

A

) 2
3
+O(ρ4)

where we have used that v =O(ρ3). Now sub this into the equation for |Sp,ρ(w)|g̊, to get

|Sp,ρ(w)|g̊ = |S2|gS2 ρ
2 +O(ρ4)

= |S2|gS2

[( v
A

) 2
3
+O(ρ4)

]
+O(ρ4)

= (36π)
1
3 v

2
3 +O(ρ4)

where we substituted A =
|S2|gS2

3 = 4π

3 .

Therefore, combining both cases, we get

lim
v↓0

v−
2
3 I(M,g)(v) = lim

v↓0
v−

2
3 min

{
(36π)

1
3 v

2
3 ,(36π)

1
3 v

2
3 +O(ρ4)

}
= (36π)

1
3

Finally, if ∂M 6= /0 then the only difference is that the sequence pn could converge to a point on the boundary.

In the limit as v→ 0, a sphere centered on the boundary with the same volume as a sphere contained

in M \ ∂M will have less surface area, by a factor of 2−
1
3 . Hence the minimum in (6.6) decreases to

(18π)
1
3 v

2
3 .

Lemma 6.10. If (M,g) is an AF, complete, 3D Riemannian manifold, then for every v0 > 0 there exists

C =C(v0)> 0, such that

Pg(E)≥C|E|
2
3
g for every subset E ⊂M of finite perimeter, with |E|g ∈ (0,v0]. (6.8)

Proof. Thanks to Lemma 6.6, we can apply the following theorem of Nardulli and Flores [MN19, Theorem

2].

Theorem 6.11. Let (M,g) be a complete Riemannian manifold with bounded geometry. Then I(M,g) is

continuous on the interval [0, |M|g).
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We note again that Theorem 6.11 is a simplified version of the original in [MN19, Theorem 2] where the

authors prove Hölder continuity by using the bounds coming from the bounded geometry assumption. Thus,

in our case

I : [0,∞)→ [0,∞)

is a continuous function. Therefore, considering (6.5), we have

v−
2
3 I(v) : [0,∞)→ (0,∞)

is also continuous. As a non-vanishing continuous function on the closed interval [0,v0], v−
2
3 I(v) must

attain its minimum 0 <C =C(v0)≤ (36π)
1
3 , which depends on v0. Thus, we have

v−
2
3 I(v)≥C ∀v ∈ [0,v0]

and then

I(v)≥Cv
2
3 ∀v ∈ (0,v0]

Therefore

Pg(E)≥ I(v)≥C|E|
2
3
g ∀ E such that |E|g = v ∈ (0,v0]

For the rest of this subsection, (M,g) is an arbitrary 3D Riemannian manifold. Once again considering the

rescaled metrics gρ := ρ−2g on M, we have the following useful lemma.

Lemma 6.12. Let E ⊂M be measurable and V ⊂M open. Then Pgρ
(E,V ) = ρ−2Pg(E,V ).

Proof. First, since
√

detgρ =
√

detρ−2g = ρ−3√detg, we have dVgρ
= ρ−3dVg. Second, the conformal

factor ρ−2 is constant with respect to any coordinates and so, for any vector field X ∈C1
c (V,T M)

divgρ
(X) =

1√
detgρ

∂

∂xµ
(X µ

√
detgρ) =

1
ρ−3
√

detg
∂

∂xµ
(ρ−3X µ

√
detg) = divg(X)

where we have used the standard formula for its divergence. Therefore
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∫
E∩V

divgρ
(X)dVgρ

= ρ
−3
∫

E∩V
divg(X)dVg

Next, we confirm that the vector field is scaled by ρ−1 by computing in normal coordinates at p ∈V

||Xp||gρ
=
[
gρ(Xp,Xp)

] 1
2

=
[
gρ(ρEµ ,ρEν) ·Xp(ρ

−1
φ

µ
g ) ·Xp(ρ

−1
φ

ν
g )
] 1

2

=
[
g(Eµ ,Eν) ·Xp(ρ

−1
φ

µ
g ) ·Xp(ρ

−1
φ

ν
g )
] 1

2

=
[
ρ
−2g(Eµ ,Eν) ·Xp(φ

µ
g ) ·Xp(φ

ν
g )
] 1

2

= ρ
−1||Xp||g

where we used φgρ
= ρ−1φg.

Thus, for any p ∈V , ||Xp||gρ
≤ 1 ⇐⇒ ||Xp||g ≤ ρ . Hence ||X ||∞,gρ

≤ 1 ⇐⇒ ||X ||∞,g ≤ ρ . Therefore

Pgρ
(E,V ) := sup

||X ||∞,gρ≤1

{∫
E∩V

divgρ
(X)dVgρ

}
= sup
||X ||∞,g≤ρ

{
ρ
−3
∫

E∩V
divg(X)dVg

}
= sup
||X ||∞,g≤1

{
ρ
−3
∫

E∩V
divg(ρX)dVg

}
= ρ

−2 sup
||X ||∞,g≤1

{∫
E∩V

divg(X)dVg

}
= ρ

−2Pg(E,V )

Using (6.3), in gρ -normal coordinates at a point q, we have

(gρ)µν = δµν +O(ρ2r2) (6.9)

where r ∈ (0, inj(q)] is the radial distance from q. Recall that this means

‖(gρ)µν −δµν‖Ck(B
gρ

rρ−1 (q))
≤Cρ

2r2
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for some suitable C(q,k)> 0.

We now look for a relationship between the relative perimeters Pgρ
(F,Bgρ

r (q)) and Pḡ(φgρ
(F),Bḡ

r (φgρ
(q))),

of a finite perimeter set F ⊂ M and its image φgρ
(F) ⊂ R3. We remark that, in such relative perimeter

calculations, we can ignore the fact that F may not be contained in the domain of φgρ
because it is enough

that Bgρ

r (q) is contained there (which, for small ρ , it will be). To achieve the desired relationship we will

distinguish between the normal coordinate charts centered at either p or a point q nearby, denoting them

φ
p
gρ

and φ
q
gρ

respectively. First, a preparatory lemma.

Lemma 6.13. Let F ⊂ (M,gρ) be a set of finite perimeter and φ
p
gρ

and φ
q
gρ

be the normal coordinate charts

centered at p and q respectively. Then

Pḡ(φ
p
gρ
(F),Bḡ

r (φ
p
gρ
(q))) = (1+O(ρ2r2))Pḡ(φ

q
gρ
(F),Bḡ

r (φ
q
gρ
(q))) (6.10)

Proof. From (6.9), in the chart φ
p
gρ

, we have both (gρ)µν = δµν +O(ρ2r2) and (gρ)
µν = δµν +O(ρ2r2).

Therefore, the Christoffel symbols satisfy

(Γgρ
)λ

µν =
1
2
(gρ)

λη(∂µ(gρ)νη −∂ν(gρ)µη +∂η(gρ)µν) =
1
2
(δλη +O(ρ2r2))O(ρ2r2)

=O(ρ2r2)

everywhere in the domain of φ
p
gρ

. Then, for curves γ(t), the geodesic equation becomes

0 = γ̈
λ (t)+ γ̇

µ(t)γ̇ν(t)(Γgρ
)λ

µν(γ(t))

= γ̈
λ (t)+ γ̇

µ(t)γ̇ν(t)O(ρ2r2)

Just as we argued in the proof of Lemma 6.6, this is a system of (non-linear) second order ODEs with a

smooth function of the perturbation parameter ρ , we know that the solutions (i.e. the gρ -geodesics), depend

smoothly on ρ , as ρ → 0. See [Lee13, Appendix D] or [Har02, Chapter 5]. Thus, for any point p′ in the

domain of φ
p
gρ

, the gρ -exponential map, which is defined by the gρ -geodesics, satisfies

‖expgρ

p′ −expḡ
φ

p
gρ (p′)

‖Ck(B
gρ

rρ−1 (q))
≤Cρ

2r2

where we consider both maps (for expgρ

p′ , via the pullback metric) as diffeomorphisms on a ball in R3.

Note that expḡ
φ

p
gρ (p′)

= T
φ

p
gρ (p′), where T

φ
p
gρ (p′) is the translation map by vector φ

p
gρ
(p′). Since the normal
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coordinate chart is the inverse of the exponential map, this means

‖φ p′
gρ
−T −φ

p
gρ (p′)‖Ck(B

gρ

rρ−1 (q))
≤Cρ

2r2

Setting p′ = p and p′ = q gives φ
p
gρ
→T −φ

p
gρ (p) = T 0 = Id and φ

q
gρ
→T −φ

p
gρ (q)

respectively. Therefore

‖φ p
gρ
−T

φ
p
gρ (q)
◦φ

q
gρ
‖Ck(B

gρ

rρ−1 (q))
= ‖φ p

gρ
− Id + Id−T

φ
p
gρ (q)
◦φ

q
gρ
‖Ck(B

gρ

rρ−1 (q))

≤ ‖φ p
gρ
− Id‖Ck(B

gρ

rρ−1 (q))
+‖Id−T

φ
p
gρ (q)
◦φ

q
gρ
‖Ck(B

gρ

rρ−1 (q))

≤Cρ
2r2 (6.11)

In other words, φ
p
gρ

tends towards the identity, where φ
q
gρ

differs from it by a translation. In particular

sup|φ p
gρ
(x)−T

φ
p
gρ (q)
◦φ

q
gρ
(x)|R3 = ‖φ p

gρ
−T

φ
p
gρ (q)
◦φ

q
gρ
‖C0 ≤Cρ

2r2

and so, for any set F̂ in the domain of φ
p
gρ

the symmetric difference φ
p
gρ
(F̂)∆T

φ
p
gρ (q)
◦φ

q
gρ
(F̂) is contained

in a union of balls of radius O(ρ2r2). Thus

|φ p
gρ
(F̂)∆T

φ
p
gρ (q)
◦φ

q
gρ
(F̂)|ḡ ≤Cρ

2r2

By (6.11) with k = 1 we have φ
p
gρ
◦ (T

φ
p
gρ (q)
◦φ

q
gρ
)−1 = Id +O(ρ2r2). Its jacobian is 1+O(ρ2r2) and so,

by the change of variables formula

∫
φ

p
gρ (F∩B

gρ
r (q))

divḡ(X) dVḡ =
∫
T

φ
p
gρ

(q)◦φ
q
gρ (F∩B

gρ
r (q))

divḡ(X)(1+O(ρ2r2)) dVḡ

= (1+O(ρ2r2))
∫
T

φ
p
gρ

(q)◦φ
q
gρ (F∩B

gρ
r (q))

divḡ(X) dVḡ (6.12)

where the constant in O(ρ2r2) depends on ‖φ p
gρ
−T

φ
p
gρ (q)
◦φ

q
gρ
‖C1 .

To proceed we use the correspondence between vector fields on φ
p
gρ
(Bgρ

r (q)) and their push forward on

T
φ

p
gρ (q)
◦φ

q
gρ
(Bgρ

r (q)) via the transition chart (diffeomorphism) T
φ

p
gρ (q)
◦φ

q
gρ
◦(φ p

gρ
)−1 = Id+O(ρ2r2) :=Ψ.

This implies
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Ψ∗X = X µ(∂µ Ψ
ν)∂ν = X µ(δ ν

µ +σ
ν
µ )∂ν = X µ

∂µ +X µ
σ

ν
µ ∂ν

where, for each µ and ν , σν
µ =O(ρ2r2). Thus

Ψ∗X = X +O(ρ2r2)||X ||∞,ḡ ∑
µ

∂µ

Comparing the length of a vector field (at a point) with its push forward via Ψ, shows

ḡ(Ψ∗X ,Ψ∗X) = ḡ(X +O(ρ2r2)∑
µ

∂µ ,X +O(ρ2r2)∑
µ

∂µ) = ḡ(X ,X)+O(ρ2r2)

and therefore ||Ψ∗X ||∞,ḡ = (1+O(ρ2r2))||X ||∞,ḡ.

Now, taking the supremum over all X ∈C1
c (φ

p
gρ
(Bgρ

r (q)),R3) with ||X ||∞,ḡ ≤ 1 in (6.12) yields

Pḡ(φ
p
gρ
(F),φ p

gρ
(Bgρ

r (q))) = (1+O(ρ2r2))S p,q,ρ (6.13)

where

S p,q,ρ := sup
||X ||∞,ḡ≤1

X∈C1
c (φ

p
gρ (B

gρ
r (q)),R3)


∫
T

φ
p
gρ

(q)◦φ
q
gρ (F∩B

gρ
r (q))

divḡ(X) dVḡ


Thanks to the correspondence and norm comparison described above, we have

S p,q,ρ = sup
||X ||∞,ḡ≤1+O(ρ2r2)

X∈C1
c (T φ

p
gρ

(q)◦φ
q
gρ (B

gρ
r (q)),R3)


∫
T

φ
p
gρ

(q)◦φ
q
gρ (F∩B

gρ
r (q))

divḡ(X) dVḡ



= sup
||X ||∞,ḡ≤1

X∈C1
c (T φ

p
gρ

(q)◦φ
q
gρ (B

gρ
r (q)),R3)


∫
T

φ
p
gρ

(q)◦φ
q
gρ (F∩B

gρ
r (q))

divḡ((1+O(ρ2r2))X) dVḡ


= (1+O(ρ2r2))Pḡ(T φ

p
gρ (q)
◦φ

q
gρ
(F),T

φ
p
gρ (q)

(Bḡ
r (φ

q
gρ
(q))) (6.14)

Substituting (6.14) into (6.13) yields
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Pḡ(φ
p
gρ
(F),φ p

gρ
(Bgρ

r (q))) = (1+O(ρ2r2))(1+O(ρ2r2))Pḡ(T φ
p
gρ (q)
◦φ

q
gρ
(F),T

φ
p
gρ (q)

(Bḡ
r (φ

q
gρ
(q)))

= (1+O(ρ2r2))Pḡ(T φ
p
gρ (q)
◦φ

q
gρ
(F),T

φ
p
gρ (q)

(Bḡ
r (φ

q
gρ
(q))) (6.15)

However, we can ignore the translation in the perimeter term on the right hand side of (6.15) because it

does not affect Pḡ. On the left hand side of (6.15) we can use that ‖φ p
gρ
− Id‖Ck(B

gρ

rρ−1 (q))
≤Cρ2r2 implies

|φ p
gρ
(Bgρ

r (q))∆Bgρ

r (φ p
gρ
(q))|ḡ ≤ Cρ2r2 (for the same reason as before) and |Bgρ

r (φ p
gρ
(q))∆Bḡ

r (φ
p
gρ
(q))|ḡ ≤

Cρ2r2 (by (6.9)), where we again view Bgρ

r (q) as a subset of R3. This yields

Pḡ(φ
p
gρ
(F),Bḡ

r (φ
p
gρ
(q))) = (1+O(ρ2r2))Pḡ(φ

q
gρ
(F),Bḡ

r (φ
q
gρ
(q)))

Now we have the necessary components for proving the perimeter relationship described earlier. We prove

it in the next lemma.

Lemma 6.14. Let F ⊂ (M,gρ) be a set of finite perimeter and φ
p
gρ

be the normal coordinate chart centered

at p. Then

Pḡ(φ
p
gρ
(F),Bḡ

r (φ
p
gρ
(q))) = (1+O(ρ2r2))Pgρ

(F,Bgρ

r (q))+O(ρ2r4) (6.16)

Proof. Working in gρ -normal coordinates, centered at a point q near p, by (6.9) we have (gρ)µν = δµν +

O(ρ2r2) in Bḡ
rρ−1(φ

q
gρ
(q)). Note that in this proof the notation will suppress the difference between a vector

field on M and its image in the normal coordinate chart; we write X for both.

We now compute, for X ∈C1
c (φ

q
gρ
(Bgρ

r (q)),R3) with ||X ||∞,ḡ ≤ 1, again using the formula for the divergence

of a vector field.

∫
F∩B

gρ
r (q)

divgρ
(X) dVgρ

=
∫

φ
q
gρ (F∩B

gρ
r (q))

1√
detgρ

∂

∂xµ
(X µ

√
detgρ)

√
detgρ dVḡ

=
∫

φ
q
gρ (F∩B

gρ
r (q))

∂

∂xµ
(X µ)

√
detgρ +(X µ)

∂

∂xµ

√
detgρ dVḡ

=
∫

φ
q
gρ (F∩B

gρ
r (q))

∂

∂xµ
(X µ)(1+O(ρ2r2))+(X µ)

∂

∂xµ
(1+O(ρ2r2)) dVḡ

=
∫

φ
q
gρ (F∩B

gρ
r (q))

divḡ(X)+O(ρ2r2)divḡ(X)+O(ρ2r) dVḡ

where we have used the formula detB = 1
6 [(tr(B))

3−3tr(B)tr(B2)+2tr(B3)] for the determinant of a 3 by
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3 matrix, with B = (gρ)µν , combined with the Taylor expansion of
√

1+ .... Therefore

|
∫

F∩B
gρ
r (q)

divgρ
(X) dVgρ

−
∫

φ
q
gρ (F∩B

gρ
r (q))

divḡ(X) dVḡ|

≤Cρ
2r2
∫

φ
q
gρ (F∩B

gρ
r (q))

|divḡ(X)| dVḡ +Dρ
2r|φ q

gρ
(F)∩Bḡ

r (φ
q
gρ
(q))|ḡ

≤Cρ
2r2

(∫
φ

q
gρ (F∩B

gρ
r (q))∩{divḡ(X)>0}

divḡ(X) dVḡ +
∫

φ
q
gρ (F∩B

gρ
r (q))∩{divḡ(X)<0}

−divḡ(X) dVḡ

)
+Dρ

2r4

≤Cρ
2r2
(

Pḡ(φ
q
gρ
(F),φ q

gρ
(Bgρ

r (q))∩{divḡ(X)> 0})+Pḡ(φ
q
gρ
(F),φ q

gρ
(Bgρ

r (q))∩{divḡ(X)< 0})
)

+Dρ
2r4

≤Cρ
2r2Pḡ(φ

q
gρ
(F),φ q

gρ
(Bgρ

r (q)))+Dρ
2r4

where in the second inequality we used |φ q
gρ
(F)∩Bḡ

r (φ
q
gρ
(q))|ḡ ≤ |Bḡ

r (φ
q
gρ
(q))|ḡ = Cr3. In the third in-

equality we have used that X is admissible in (2.8) if and only if −X is, and in the last line we used the

monotonicity of perimeter.

Taking the supremum over all X ∈C1
c (φ

q
gρ
(Bgρ

r (q)),R3) with ||X ||∞,ḡ ≤ 1 yields

sup
||X ||∞,ḡ≤1

X∈C1
c (φ

q
gρ (B

gρ
r (q)),R3)

{∫
F∩B

gρ
r (q)

divgρ
(X) dVgρ

}
= (1+O(ρ2r2))Pḡ(φ

q
gρ
(F),Bḡ

r (φ
q
gρ
(q)))+O(ρ2r4)

(6.17)

By the same arguments we used near the end of Lemma (6.13), we have a correspondence between

vector fields in C1
c (B

gρ

r (q),T M) and C1
c (φ

q
gρ
(Bgρ

r (q)),R3) via the chart φ
q
gρ

such that the norms satisfy

||(φ q
gρ
)∗X ||∞,ḡ = (1+O(ρ2r2))||X ||∞,gρ

.

Therefore, the left hand side of (6.17) becomes
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sup
||X ||∞,ḡ≤1

X∈C1
c (φ

q
gρ (B

gρ
r (q)),R3)

{∫
F∩B

gρ
r (q)

divgρ
(X) dVgρ

}

= sup
||X ||∞,gρ≤1+O(ρ2r2)

X∈C1
c (B

gρ
r (q),T M)

{∫
F∩B

gρ
r (q)

divgρ
(X) dVgρ

}

= sup
||X ||∞,gρ≤1

X∈C1
c (B

gρ
r (q),T M)

{∫
F∩B

gρ
r (q)

divgρ
((1+O(ρ2r2))X) dVgρ

}

= (1+O(ρ2r2))Pgρ
(F,Bgρ

r (q)) (6.18)

Substituting (6.18) into (6.17) gives

(1+O(ρ2r2))Pgρ
(F,Bgρ

r (q)) = (1+O(ρ2r2))Pḡ(φ
q
gρ
(F),Bḡ

r (φ
q
gρ
(q)))+O(ρ2r4)

To switch φ
q
gρ

with φ
p
gρ

, we use (6.10). Thus

(1+O(ρ2r2))Pgρ
(F,Bgρ

r (q)) = (1+O(ρ2r2))(1+O(ρ2r2))Pḡ(φ
p
gρ
(F),Bḡ

r (φ
p
gρ
(q)))+O(ρ2r4)

which, simplified and rearranged, gives (6.16).

The next result relies on the theory of rectifiable varifolds, as described in [Sim83].

Lemma 6.15. Let F ⊂ (M,gρ) be a set of finite perimeter which is stationary for perimeter in a bounded

open set U ⊂M (i.e. zero first variation and, in particular, zero mean curvature). Then there exists constants

C =C(U,Pgρ
(F,U)) and r0 = r0(U,Pgρ

(F,U))> 0 such that, for r < r0, we have

Pgρ
(F,Bgρ

r (q))≤Cr2 (6.19)

where Bgρ

r (q)⊂U.

Remark 6.16. The notation in the first part of the proof below matches that of Simon [Sim83] and is not

the same as in the rest of this thesis.

Proof. The vital part of the proof is the so-called monotonicity formula for varifolds in Euclidean space.

Simon shows [Sim83, Theorem 3.18] that for a rectifiable n-varifold V = v(M′,θ) (where M′ ⊂ Rn+k is

Hn
ḡ-measurable and θ is the multiplicity function), with generalised mean curvature HM′⊂Rn+k

bounded by

some constant Λ inside an open set U ⊂ Rn+k (in fact an Lp bound suffices), we have that
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F(s)µV (B
ḡ
s [ξ ])

sn (6.20)

is increasing in s for 0 < s < R for some constant R, where µV (B
ḡ
s [ξ ]) is the mass of V contained in Bḡ

s [ξ ],

Bḡ
s [ξ ] ⊂ U is a closed ball in Rn+k centered at ξ with radius s, and F(s) ∈ [e−ΛR,eΛR]. In particular,

this holds in the case where M′ is stationary for the mass in U ∩Nn+l , where Nn+l ⊂ Rn+k is a smooth

submanifold with bounded second fundamental form, hN , in U ∩Nn+l . This is shown in [Sim83] where the

author computes the first variation, revealing that HM′⊂Rn+k
= HN⊂Rn+k

M′ , where HN⊂Rn+k

M′ is just HN⊂Rn+k

"restricted to M′", defined at a point p ∈M′ by

HN⊂Rn+k

M′ :=
n

∑
µ=1

hN(Eµ ,Eµ)

for an orthonormal basis Eµ of TpM′. By (6.20), we have, for 0 < σ < s < R

µV (B
ḡ
σ [ξ ])≤

F(s)
F(σ)

µV (B
ḡ
s [ξ ])

sn σ
n ≤ e2ΛR µV (Rn+k)

sn σ
n (6.21)

Returning to the present work, consider a set of finite perimeter (rectifiable current of codimension 0)

F ⊂ (M3,gρ) which is stationary inside some bounded U ⊂ M. By De Giorgi’s Theorem [De 61], the

reduced boundary ∂ ∗F is countably 2-rectifiable with θ ≡ 1 and Pgρ
(F,A) = H2

gρ
(∂ ∗F ∩A), for A ⊂ M.

Therefore ∂ ∗F (rectifiable current of codimension 1 in M) plays the role of the rectifiable 2-varifold V

above (take n = 2 and l = 1), by Nash-embedding (M,gρ) in to R2+k for some k (i.e. gρ is equal to the

induced metric from (R2+k, ḡ) under the embedding) [Nas56]. Assuming we have a Nash-embedding for

(M,g) given by

ϕ : (M,g)→ (R2+k, ḡ)

then we get one for (M,gρ) by using ϕρ := ρ−1ϕ , since this gives

gρ(X ,Y ) = ρ
−2g(X ,Y ) = ρ

−2ḡ(dϕ(X),dϕ(Y )) = ρ
−2ḡ(ρdϕρ(X),ρdϕρ(Y ))

= ḡ(dϕρ(X),dϕρ(Y ))

at any p ∈M, where X ,Y ∈ TpM. Equivalently, we have the isometric embedding
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ϕ : (M,gρ)→ (R2+k, ḡρ := ρ
−2ḡ)

From this point of view, we can compute the change in the second fundamental form induced by the confor-

mal change of metric in the ambient Euclidean space. First, let Eµ be a g-orthonormal frame and N a unit

normal with respect to ḡ. Then ρEµ is a gρ -orthonormal frame and ρN is the corresponding unit normal

with respect to ḡρ . Thus

h(M,gρ )
ρN (ρEµ ,ρEν) = ḡρ(∇

ḡρ

ρEµ
ρEν ,ρN)

= ρ
−2ḡ(ρ2

∇
ḡρ

Eµ
Eν ,ρN)

= ρ ḡ(∇ḡ
Eµ

Eν ,N)

= ρh(M,g)
N (Eµ ,Eν) (6.22)

where in the third line we used (2.9) and the fact that ρ−2 is constant.

Since U is contained in a compact set, h(M,g)
N will be bounded on U . Thus ‖h(M,g)

N ‖ ≤ Λ and so, by (6.22),

‖h(M,gρ )
ρN ‖ ≤ ρΛ. Therefore the constant Λ in (6.21) can be chosen independent of, say, ρ < ρ0.

Thus, the monotonicity formula above applies to ∂ ∗F where, for B⊂ R2+k

µ∂ ∗F(B) =H2
ḡ(∂
∗F ∩B) =H2

gρ
(∂ ∗F ∩B∩M) = Pgρ

(F,B∩M)

Thus, we can rewrite (6.21) using our notation and fixing s = r0, to yield, for all r < r0

Pgρ
(F,Bḡ

r (ξ )∩M)≤ e2ΛR Pgρ
(F)

r2
0

r2 ≤C1r2 (6.23)

for some constant C1(Λ,R,r0,ρ0). Since M is a smooth submanifold of R2+k, we have

Pgρ
(F,Bgρ

r (ξ ))≤ Pgρ
(F,Bḡ

C2r(ξ )∩M) (6.24)

This is true because, using the normal coordinate chart centered at ξ ∈M, we have

φ
ξ
gρ
(Bgρ

r (ξ ))⊂ Bḡ
Ĉr
(ξ )∩Tξ M
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for any Ĉ ≥ 1, and so

Bgρ

r (ξ )⊂ Bḡ
C2r(ξ )∩M

for some C2(r0). Combining (6.23) and (6.24), we get

Pgρ
(F,Bgρ

r (ξ ))≤C1C2
2r2

which is inequality (6.19), up to relabelling constants and ξ = q.

Finally, we have the following result, whose proof is along the lines of the proof of (6−9) in [MS17].

Lemma 6.17. Let B ⊂ (M,gρ) be a bounded open set with C2 boundary. Then, for small enough r, there

exists a constant C =C(B)> 0 such that, for every q ∈ B

Pgρ
(B)≤ Pgρ

(G)+Cr3 ∀ G∆B⊂⊂ Bgρ

r (q)

Proof. For q in the interior of B the inequality is clear because, for small r, Bgρ

r (q)∩ ∂B = /0 so in fact

Pgρ
(B)≤ Pgρ

(G).

Let ϕ be a chart adapted to the submanifold ∂B [Lee13]. This means the image of a ball centered at a point

q ∈ ∂B will be sent to a ball centered at the origin in R3 where ϕ(∂B) ⊂ {x3 = 0}. By a linear change

in coordinates we can find a new chart ϕ̃ in which the coefficients of the metric satisfy (gρ)µν(q) = δµν .

Since the change is linear we will get ϕ̃(∂B)⊂ Π̃, where Π̃ is another plane through the origin.

Now, by a Taylor expansnion centered at q we can write the metric as (gρ)µν = δµν +O(r) (note the

difference with normal coordinates). Applying the same method as in Lemma 6.14, we get the next two

inequalities for a set of finite perimeter G:

Pgρ
(G,Bgρ

r (q))≤ (1+C̃r)Pḡ(ϕ̃(G), ϕ̃(Bgρ

r (q)))+Dr3 (6.25)

Pgρ
(G,Bgρ

r (q))≥ (1−C̃r)Pḡ(ϕ̃(G), ϕ̃(Bgρ

r (q)))−Dr3 (6.26)

Let G = B in (6.25). Since ϕ̃(∂B)⊂ Π̃, we have

Pḡ(ϕ̃(B), ϕ̃(B
gρ

r (q))) = |ϕ̃(∂B)∩ ϕ̃(Bgρ

r (q))|ḡ
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Thus

Pgρ
(B,Bgρ

r (q))≤ (1+C̃r)|ϕ̃(∂B)∩ ϕ̃(Bgρ

r (q))|ḡ +Dr3 (6.27)

Next, restrict to G such that G∆B⊂⊂ Bgρ

r (q) in 6.26, which in particular means that proj
Π̃
(G) = proj

Π̃
(B)

where proj
Π̃

is the projection map onto the plane Π̃. Since this map is 1-Lipschitz, we have

Pḡ(ϕ̃(G), ϕ̃(Bgρ

r (q)))≥ |proj
Π̃
(B)∩ ϕ̃(Bgρ

r (q))|ḡ = |ϕ̃(∂B)∩ ϕ̃(Bgρ

r (q))|ḡ (6.28)

Therefore, (6.26) becomes

Pgρ
(G,Bgρ

r (q))≥ (1−C̃r)|ϕ̃(∂B)∩ ϕ̃(Bgρ

r (q))|ḡ−Dr3 (6.29)

Combining (6.27) and (6.29) yields

Pgρ
(B,Bgρ

r (q))≤ Pgρ
(G,Bgρ

r (q))+2C̃r|ϕ̃(∂B)∩ ϕ̃(Bgρ

r (q))|ḡ +2Dr3

≤ Pgρ
(G,Bgρ

r (q))+Cr3

6.3 Perturbed Geodesic Spheres Are Outer-Minimising

The goal of this section is to prove Proposition 6.2, which will allow us to use the expansion for the Hawking

mass of perturbed spheres to get a lower bound on the Bartnik mass in Theorems 1.34 and 1.35.

Recall that we denote by Bp,ρ(w) the perturbed geodesic ball enclosed by the perturbed geodesic sphere

Sp,ρ(w), inside a 3D Riemannian manifold (M,g).

For each Bp,ρ(w), consider the set

S := {Ω⊂M : Pg(Ω)< ∞, |Ω|g < ∞, Bp,ρ(w)⊂Ω}

and let s := inf{Pg(Ω) : Ω ∈ S}. Let Ωi be a sequence such that Pg(Ωi)→ s. To get a limit of this sequence

we cannot apply compactness directly because it is not necessarily uniformly bounded. Thus, we use a

diagonal argument, outlined below.
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Take a sequence of balls Bg
Rn
(p)⊂M, where Rn→ ∞. For a given n, consider the sequence

Ω
n
i := Ωi∩Bg

Rn
(p)

This new sequence is now uniformly bounded and by Theorem 2.5 there is a limit, say Ωn ⊂ Bg
Rn
(p), of a

subsequence Ωn
i j

. We then use the subsequence Ωi j to obtain another bounded sequence

Ω
n
i j

:= Ωi j ∩Bg
Rn+1

(p)

This has a convergent subsequence, with limit Ωn+1 ⊂ Bg
Rn+1

(p), such that Ωn+1∩Bg
Rn
(p) =Ωn. Continuing

in this manner we construct a (subsequential) limit of Ωi, denoted Ωp,ρ,w, where

|Ωi∆Ωp,ρ,w|g→ 0 and Bp,ρ(w)⊂Ωp,ρ,w

Furthermore, by lower-semicontinuity (Theorem 2.4) we have Pg(Ωp,ρ,w) = s.

The following inequalities hold:

Pg(Ωp,ρ,w)≤ Pg(Bp,ρ(w)), 0 < |Bp,ρ(w)|g ≤ |Ωp,ρ,w|g (6.30)

We will show that, under the conditions of Proposition 6.2, ∂Ωp,ρ,w = Sp,ρ(w) for any ρ,‖w‖C1 small

enough, and thus Sp,ρ(w) is outer-minimising. As summarized in Section 1.5, this will be achieved in

four steps. First we will prove that we have some control over the volume of the sequence Ωp,ρ,w as ρ→ 0.

Then we will show that the normal coordinate image of the sequence locally converges to Bḡ
1(0) in Euclidean

space in the sense of finite perimeter sets. Then, using a regularity result of Tamanini, we show that in fact

the boundaries of the elements of the sequence converge as C1, 1
2 -graphs to ∂Bḡ

1(0) = S
2. Finally we prove

that these boundaries are in fact the corresponding perturbed spheres.

Remark 6.18. We note that in particular Ωp,ρ,w is a finite perimeter set minimising perimeter amoung all

sets containing Bp,ρ(w) of fixed volume |Ωp,ρ,w|g. Therefore we know that, up to measure zero, Ωp,ρ,w is

open and ∂Ωp,ρ,w is C1,1-regular thanks to the result [MS17, Theorem 6.15] (this result requires the obstacle

to have C2-boundary, which is satisfied by Bp,ρ(w)). This means that in fact the reduced boundary and the

topological boundary coincide, i.e. ∂ ∗Ωp,ρ,w = ∂Ωp,ρ,w. This will be proven independently in Step 3 below

via Theorem 6.24.

Proof. (of Proposition 6.2)
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Step 1 - Volume control.

In this step we will prove that, for small ρ , we have some control over the volume of the sets Ωp,ρ,w

corresponding to Sp,ρ(w). This will be useful in the next step when we consider a scaled metric and the

normal coordinate image of the sequence. In particular, it will allow us to apply the Euclidean Isoperimetric

Inequality.

Lemma 6.19. Let (M,g) and Sp,ρn(wn) be as in Proposition 6.2. For the corresponding sequence of finite

perimeter sets Ωp,ρn,wn , there exists a constant Ĉ such that

0 < Ĉ−1 ≤ liminf
n→∞

|Ωp,ρn,wn |g
ρ3

n
≤ limsup

n→∞

|Ωp,ρn,wn |g
ρ3

n
≤ Ĉ < ∞ (6.31)

Proof. First note that (1.4) and (1.5) yield

Pg(Bp,ρn(wn)) =

(
|S2|gS2 +

∫
S2

w2
ndVgS2 +

1
2

∫
S2
|∇wn|2dVgS2 −2

∫
S2

wndVgS2

)
ρ

2
n +O(ρ4

n ) (6.32)

|Bp,ρn(wn)|g =

(
|S2|gS2

3
+
∫
S2

w2
ndVgS2 −

∫
S2

wndVgS2

)
ρ

3
n +O(ρ5

n ) (6.33)

To get a lower bound in (6.31), we use (6.33) and the second inequality in (6.30), which imply

liminf
n→∞

|Ωp,ρn,wn |g
ρ3

n
≥ liminf

n→∞

|Bp,ρn(wn)|g
ρ3

n
=
|S2|gS2

3

since ρn→ 0 and ‖wn‖C1(S2)→ 0 as n→ ∞. For an upper bound in 6.31, first we use the following lemma,

proved in [Cho+21, Theorem C.2].

Lemma 6.20. Let (M,g) be an AF, complete, 3D Riemannian manifold with non-negative scalar curvature

where ∂M is the only compact, minimal surface in M. Then

mADM(M) = lim
v→∞

2
I(v)

(
v− I(v)

3
2

6
√

π

)

In particular the lemma shows that if I(v) was bounded then mADM(M) = ∞. But we know that, under the

conditions of the lemma, mADM(M) < ∞, hence limv→∞I(v) = ∞. This means that for any sequence Ωn,

we have
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lim
n→∞
|Ωn|g = ∞ =⇒ lim

n→∞
Pg(Ωn) = ∞ (6.34)

But (6.32) and the first inequality in (6.30) imply

limsup
n→∞

Pg(Ωp,ρn,wn)≤ limsup
n→∞

Pg(Bp,ρn(wn)) = 0

Therefore, (6.34) implies the |Ωp,ρn,wn |g are eventually bounded by, say v0. Hence, (6.8) and (6.30) yield

limsup
n→∞

|Ωp,ρn,wn |g
ρ3

n
≤C−

3
2 limsup

n→∞

Pg(Ωp,ρn,wn)
3
2

ρ3
n

≤C−
3
2 limsup

n→∞

Pg(Bp,ρn(wn))
3
2

ρ3
n

=C−
3
2 limsup

n→∞

(
Pg(Bp,ρn(wn))

ρ2
n

) 3
2

=C−
3
2 |S2|

3
2
gS2

where 0 <C =C(v0)≤ (36π)
1
3 . Using |S2|gS2 = 4π , note that

C−
3
2 |S2|

3
2
gS2 ≥

|S2|gS2

3
and C−

3
2 |S2|

3
2
gS2 ×

|S2|gS2

3
> 1

Therefore the lemma is true with Ĉ =C(v0)
− 3

2 |S2|
3
2
gS2 .

Remark 6.21. In fact Lemma 6.19 is true for all w satisfying ‖w‖C1(S2) ≤ C̄, for some bound C̄. The

resulting constant then depends on C̄ due to the terms containing w in (6.32) and (6.33).

Step 2. Blow-up and local convergence to a Euclidean ball.

In this step we "blow-up" the Riemannian manifold (M,g) at p with scaling rate ρ−1 as ρ ↓ 0, by considering

the rescaled metrics gρ = ρ−2g. We will show that, in gρ -normal coordinates, the images φgρ
(Ωp,ρ,w)

converge locally to the Euclidean ball of unit radius Bḡ
1(0)⊂ R3, in the sense of finite perimeter sets.

Since Ωp,ρ,w may not be contained in the domain of φgρ
, we define

Aρ,w := Ωp,ρ,w∩Bgρ

ρ−1R̄(p) and Bρ,w := Bp,ρ(w)∩Bgρ

ρ−1R̄(p)
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where Bg
R̄(p) is contained in the domain of φg. Now consider any sequence φgρn (Aρn,wn) in R3, where

ρn,‖wn‖C1(S2)→ 0 as n→ ∞. We have the following estimate:

limsup
n→∞

Pgρn (Aρn,wn) = limsup
n→∞

Pgρn (Ωp,ρn,wn)

= limsup
n→∞

ρ
−2
n Pg(Ωp,ρn,wn)

≤ limsup
n→∞

ρ
−2
n Pg(Bp,ρn(wn))

= limsup
n→∞

Pgρn (Bp,ρn(wn))

= limsup
n→∞

Pḡ(φgρn (Bp,ρn(wn)))

= Pḡ(B
ḡ
1(0))

< ∞

where the second to last line is true from the definition of Bp,ρn(wn) and the fact that φgρn = ρ−1
n φg. The

third to last line follows from (6.16) with q = p and the fact that Pḡ(φgρ
(Bp,ρ(w))) is uniformly bounded as

ρ → 0. Thus Pgρn (Aρn,wn) is uniformly bounded and then, by another application of (6.16)

limsup
n→∞

Pḡ(φgρn (Aρn,wn)) = limsup
n→∞

Pgρn (Aρn,wn)< ∞ (6.35)

This gives a uniform bound on the perimeter, required for compactness and lower semi-continuity. However,

we still cannot apply compactness directly because the sequence itself is not necessarily uniformly bounded.

Thus we use the same diagonal argument as before, when we found the limit Ωp,ρ,w, to extract a limit of

φgρn (Aρn,wn), denoted Ω̄.

Arguing in a similar way as we did to reach (6.35), we also have
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Pḡ(Ω̄) = lim
R→∞

Pḡ(Ω̄,Bḡ
R(0))

≤ lim
R→∞

liminf
n→∞

Pḡ(φgρn (Aρn,wn),B
ḡ
R(0))

= lim
R→∞

liminf
n→∞

Pgρn (Aρn,wn ,φ
−1
gρn

(Bḡ
R(0)))

= lim
R→∞

liminf
n→∞

Pgρn (Ωp,ρn,wn ,φ
−1
gρn

(Bḡ
R(0)))

≤ lim
R→∞

liminf
n→∞

Pgρn (Ωp,ρn,wn)

= liminf
n→∞

ρ
−2
n Pg(Ωp,ρn,wn)

≤ liminf
n→∞

ρ
−2
n Pg(Bp,ρn(wn))

= liminf
n→∞

Pgρn (Bp,ρn(wn))

= liminf
n→∞

Pḡ(φgρn (Bp,ρn(wn)))

= Pḡ(B
ḡ
1(0)) (6.36)

where the second line follows by lower semi-continuity of perimeter, and the fourth line is true because, for

a given R

(Aρn,wn∆Ωp,ρn,wn)∩φ
−1
gρn

(Bḡ
R(0)) = /0

for n large enough, and so

Pgρn (Aρn,wn ,φ
−1
gρn

(Bḡ
R(0))) = Pgρn (Ωp,ρn,wn ,φ

−1
gρn

(Bḡ
R(0)))

Furthermore, since Bρn,wn ⊂ Aρn,wn , we also have φgρn (Bρn,wn)⊂ φgρn (Aρn,wn). Then φgρn (Bρn,wn)→ Bḡ
1(0)

and φgρn (Aρn,wn)→ Ω̄ imply

Bḡ
1(0)⊂ Ω̄ (6.37)

By Lemma 6.19 we know that |Ωp,ρn,wn |gρn is uniformly bounded and therefore so are |Aρn,wn |gρn . Using

normal coordinates shows that this implies |φgρn (Aρn,wn)|ḡ are uniformly bounded too. Thus |Ω̄|ḡ < ∞ and

we can appeal to the rigidity of the Euclidean isoperimetric inequality (considering (6.37) and (6.36)) to get

|Ω̄∆Bḡ
1(0)|ḡ = 0. Therefore, by the arbitrariness of the sequences ρn and wn, we conclude
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|φgρ
(Aρ,w)∆Bḡ

1(0)|ḡ→ 0 as ρ,‖w‖C1(S2)→ 0

Finally, for any compact K ⊂ R3 we have (Aρ,w∆Ωp,ρ,w)∩φ−1
gρ

(K) = /0 for ρ small enough. Thus, we also

get

|(φgρ
(Ωp,ρ,w)∆Bḡ

1(0))∩K|ḡ→ 0 as ρ,‖w‖C1(S2)→ 0

giving the desired local convergence.

Step 3. Improving the convergence via regularity theory.

First, we specialise Lemma 6.14 by letting F = Ωp,ρ,w.

Lemma 6.22. Let (M,g) be a 3D Riemannian manifold and p ∈M. Then

Pḡ(φ
p
gρ
(Ωp,ρ,w),Bḡ

r (φ
p
gρ
(q))) = Pgρ

(Ωp,ρ,w,B
gρ

r (q))+O(ρ2r4) (6.38)

Proof. First, for any part of ∂Ωp,ρ,w coinciding with the submanifold Sp,ρ(w) we can use normal coordi-

nates to approximate the relative area inside a small ball by the area of a disk in the tangent space. Thus,

for q ∈ Sp,ρ(w) and small r, we have

Pgρ
(Ωp,ρ,w,B

gρ

r (q)) = A(Sp,ρ(w)∩Bgρ

r (q))≤Cr2

In gρ -normal coordinates Sp,ρ(w) is a graph over the unit sphere with graph function w→ 0 as ρ → 0, so

the constant in the above inequality does not depend on ρ .

Second, away from the intersection points with Sp,ρ(w), by construction Ωp,ρ,w is locally perimeter min-

imising. Thus, we apply Lemma 6.15 with F = Ωp,ρ,w to again yield

Pgρ
(Ωp,ρ,w,B

gρ

r (q))≤Cr2 (6.39)

The constant coming from Lemma 6.15 is independent of ρ because the Ωp,ρ,w have uniformly bounded

perimeter (by the argument near the beginning of Step 2). Using (6.16) (with F = Ωp,ρ,w) gives

Pḡ(φ
p
gρ
(Ωp,ρ,w),Bḡ

r (φ
p
gρ
(q))) = (1+O(ρ2r2))Pgρ

(Ωp,ρ,w,B
gρ

r (q))+O(ρ2r4)
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Applying (6.39) and simplifying yields (6.38).

Now we consider the regularity and convergence of the (reduced) boundaries in the sequence φ
p
gρ
(Ωp,ρ,w)

by using a result of Tamanini [Tam82, Theorem 1].

Definition 6.23. Let E ⊂ Rn be a set of finite perimeter and V ⊂ Rn open and bounded. Then

Ψ(E,V ) := Pḡ(E,V )− inf{Pḡ(F,V )|F∆E ⊂⊂V}

Theorem 6.24 ([Tam82]). Let U be an open subset of Rn, and E a set of finite perimeter satisfying

Ψ(E,Br(q))≤Crn−1+2α (6.40)

for some α ∈ (0,1) and for all q∈U and r ∈ (0,R), where C and R are positive constants. Then the reduced

boundary ∂ ∗E is a C1,α -hypersurface in U and

Hk((∂E \∂
∗E)∩U) = 0 ∀k > n−8

Moreover, assuming that (6.40) holds uniformly for a sequence Eh, L1-locally convergent to E∞, then for

any sequence of points qh ∈ ∂Eh converging to q∞ ∈ ∂ ∗E∞, there is an h′ such that qh ∈ ∂ ∗Eh for h > h′ and

the unit outer normal to ∂Eh at qh converges to the unit outer normal to ∂E∞ at q∞.

Lemma 6.25. Let (M,g) be a 3D Riemannian manifold and p ∈M. Then the sets φ
p
gρ
(Ωp,ρ,w) eventually

satisfy the bound (6.40) in Theorem 6.24.

Proof. Fix R > 0 and let U = Bḡ
R+1(0). Below we will consider ρ small enough, say ρ < ρ̄(p), that we have

U = φ
p
gρ
(Bgρ

R+1(p)). For q ∈ Bgρ

R+1(p), we split the calculation of Ψ into three cases, according to whether

Bḡ
R(φ

p
gρ
(q)) is completely inside, intersects or is completely outside φ

p
gρ
(Sp,ρ(w)). In order to utilise the

minimising assumption on Ωp,ρ,w, we will rewrite Euclidean perimeters in terms of their corresponding

perimeters in (M,gρ) using (6.16) and (6.38). Lemmas 2.3 and 6.17 will also be useful.

Firstly, let Bḡ
R(φ

p
gρ
(q))⊂ φ

p
gρ
(Bp,ρ(w)). Then for all r < R

Bḡ
r (φ

p
gρ
(q))⊂ φ

p
gρ
(Bp,ρ(w))⊂ φ

p
gρ
(Ωp,ρ,w)

so Pḡ(φ
p
gρ
(Ωp,ρ,w),B

ḡ
r (φ

p
gρ
(q))) = 0 and therefore Ψ = 0.

Secondly, let Bḡ
R(φ

p
gρ
(q)) ⊂ φ

p
gρ
(Bp,ρ(w))

c
. Then, for all r < R, we can restrict to only F which contain

Bp,ρ(w) because, otherwise, φ
p
gρ
(F)∆φ

p
gρ
(Ωp,ρ,w) 6⊂ Bḡ

r (φ
p
gρ
(q)). Thus, using (6.16) and (6.38)
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Ψ(φ p
gρ
(Ωp,ρ,w),Bḡ

r (φ
p
gρ
(q)))

= Pḡ(φ
p
gρ
(Ωp,ρ,w),Bḡ

r (φ
p
gρ
(q)))

− inf{Pḡ(φ
p
gρ
(F),Bḡ

r (φ
p
gρ
(q)))|F ⊃ Bp,ρ(w),φ p

gρ
(F)∆φ

p
gρ
(Ωp,ρ,w)⊂⊂ Bḡ

r (φ
p
gρ
(q))}

= Pgρ
(Ωp,ρ,w,B

gρ

r (q))+O(ρ2r4)− inf{(1+O(ρ2r2))Pgρ
(F,Bgρ

r (q))+O(ρ2r4)}

= Pgρ
(Ωp,ρ,w,B

gρ

r (q))+O(ρ2r4)−
(
(1+O(ρ2r2))Pgρ

(Ωp,ρ,w,B
gρ

r (q))+O(ρ2r4)
)

ρ<ρ̄
= Pgρ

(Ωp,ρ,w,B
gρ

r (q))+O(r4)−
(
(1+O(r2))Pgρ

(Ωp,ρ,w,B
gρ

r (q))+O(r4)
)

=O(r2)Pgρ
(Ωp,ρ,w,B

gρ

r (q))+O(r4)

=O(r4)

where we have used the assumption that Ωp,ρ,w is minimising among all sets containing Bp,ρ(w) to evaluate

the infimum, and the inequality (6.39) on the final line.

Finally, we let Bḡ
R(φ

p
gρ
(q))∩ φ

p
gρ
(Sp,ρ(w)) 6= /0. Note that in this case we can not immediately apply the

minimising assumption on Ωp,ρ,w because it may be that F 6⊃ Bp,ρ(w). Instead, let F ⊂ M be such that

F∆Ωp,ρ,w ⊂⊂ Bgρ

r (q), and define F ′ := F ∪Bp,ρ(w). Then, by the minimising assumption on Ωp,ρ,w, we

have

Pgρ
(Ωp,ρ,w)≤ Pgρ

(F ′)

Now, recall the inequality in Lemma 2.3

Pgρ
(F ∪Bp,ρ(w))+Pgρ

(F ∩Bp,ρ(w))≤ Pgρ
(F)+Pgρ

(Bp,ρ(w))

and the inequality in Lemma 6.17 (with B = Bp,ρ(w))

Pgρ
(Bp,ρ(w))≤ Pgρ

(G)+Cr3

which is valid when G∆Bp,ρ(w) ⊂⊂ Bgρ

r (q). Letting G = F ∩Bp,ρ(w) and combining the three previous

inequalities gives

Pgρ
(Ωp,ρ,w)≤ Pgρ

(F ′)≤ Pgρ
(F)+Cr3

for all F such that F∆Ωp,ρ,w ⊂⊂ Bgρ

r (q). Since the sets Ωp,ρ,w and F are equal outside of Bgρ

r (q), this is
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equivalent to

Pgρ
(Ωp,ρ,w,B

gρ

r (q))≤ Pgρ
(F,Bgρ

r (q))+Cr3 (6.41)

Again using (6.16) and (6.38), we have

Ψ(φ p
gρ
(Ωp,ρ,w),Bḡ

r (φ
p
gρ
(q)))

= Pḡ(φ
p
gρ
(Ωp,ρ,w),Bḡ

r (φ
p
gρ
(q)))

− inf{Pḡ(φ
p
gρ
(F),Bḡ

r (φ
p
gρ
(q)))|φ p

gρ
(F)∆φ

p
gρ
(Ωp,ρ,w)⊂⊂ Bḡ

r (φ
p
gρ
(q))}

= Pgρ
(Ωp,ρ,w,B

gρ

r (q))+O(ρ2r4)− inf{(1+O(ρ2r2))Pgρ
(F,Bgρ

r (q))+O(ρ2r4)}
ρ<ρ̄
= Pgρ

(Ωp,ρ,w,B
gρ

r (q))+O(r4)− inf{(1+O(r2))Pgρ
(F,Bgρ

r (q))+O(r4)}

≤ Pgρ
(Ωp,ρ,w,B

gρ

r (q))+O(r4)−
(
(1+O(r2))(Pgρ

(Ωp,ρ,w,B
gρ

r (q))−Cr3)+O(r4)
)

=O(r3)

where we have applied (6.41) and (6.39) on the penultimate and final lines respectively. Thus Theorem 6.24

is satisfied with α = 1
2 .

Remark 6.26. In the case where φ
p
gρ
(Ωp,ρ,w) locally converge, the uniformity requirement is satisfied

because the constant implicit in the expansion for Ψ is derived from the one in (6.9) and those from Lemma

6.17 and (6.38), which are independent of ρ .

Step 4. ∂Ωp,ρ,w = Sp,ρ(w)

Finally, we can finish the proof of the outer-minimising property for perturbed geodesic spheres and hence

of Proposition 6.2.

By Step 2, Lemma 6.25 and Remark 6.26, we can apply Theorem 6.24 to the sequence φ
p
gρ
(Ωp,ρ,w) and

conclude that, up to measure zero, ∂ ∗φ p
gρ
(Ωp,ρ,w)= ∂φ

p
gρ
(Ωp,ρ,w) and the unit outer normal of ∂φ

p
gρ
(Ωp,ρ,w)

converges to the unit outer normal of ∂Bḡ
1(0) = S

2, which means that, for ρ < ρ̄(p), we can eventually view

the boundaries ∂φ
p
gρ
(Ωp,ρ,w) as graphs of C1, 1

2 -functions over S2.

For a given ρ , φ
p
gρ
(Sp,ρ(w)) is a graph over S2 too, and so, for ρ < ρ̄(p), we can then consider ∂φ

p
gρ
(Ωp,ρ,w)

as a graph over φ
p
gρ
(Sp,ρ(w)) instead. Thus, ∂Ωp,ρ,w is parametrised by

∂Ωp,ρ,w = {expgρ

q (uρ,w(q)N̂(q)) : q ∈ Sp,ρ(w)}
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for unit normal vector N̂ of Sp,ρ(w) and some function uρ,w ∈C1(Sp,ρ(w)), and, because of the assumption

that Sp,ρ(w) ⊂ Ωp,ρ,w, we know uρ,w ≥ 0. Since both ∂φ
p
gρ
(Ωp,ρ,w) and φ

p
gρ
(Sp,ρ(w)) converge to S2, we

also have

‖uρ,w‖C1 → 0 as ρ,‖w‖C1 → 0

Thus, ∂Ωp,ρ,w is a normal graph over Sp,ρ(w) in (M,gρ) and we have Pgρ
(Ωp,ρ,w) = Agρ

(∂Ωp,ρ,w). With

ρ fixed again, consider the Banach space C1(Sp,ρ(w)) of graph functions over Sp,ρ(w). The area functional

Agρ
: C1(Sp,ρ(w))→ R

is Fréchet differentiable at 0, with derivative d(Agρ
)0 ∈ L(C1(Sp,ρ(w)),R) such that

Agρ
(0+h) = Agρ

(0)+d(Agρ
)0(h)+o(‖h‖C1)

for any h ∈C1(Sp,ρ(w)). In particular, setting h = uρ,w gives

Agρ
(0+uρ,w) = Agρ

(0)+d(Agρ
)0(uρ,w)+o(‖u‖C1)

Comparing this to the first variation (Gateaux derivative) of Agρ
in (2.16), we see that

d(Agρ
)0(uρ,w) =

∫
Sp,ρ (w)

Hgρ

Sp,ρ (w)
uρ,w dVgρ

Therefore

Agρ
(0+uρ,w) = Agρ

(0)+
∫

Sp,ρ (w)
Hgρ

Sp,ρ (w)
uρ,w dVgρ

+o(‖uρ,w‖C1)

The left hand side is just Agρ
(∂Ωp,ρ,w). Furthermore, by (4.4), we know

Hg
Sp,ρ (w)

= 2ρ
−1 +O(ρ)

and so we compute Hgρ

Sp,ρ (w)
by multiplying with ρ , yielding
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Hgρ

Sp,ρ (w)
= 2+O(ρ2)> 0

Thus, recalling that uρ,w ≥ 0 too, for small ρ we get

Agρ
(∂Ωp,ρ,w)≥ Agρ

(0) = Agρ
(Sp,ρ(w))

with equality if and only if uρ,w ≡ 0. But we assumed

Ag(∂Ωp,ρ,w)≤ Ag(Sp,ρ(w))

which implies (via Lemma 6.12)

Agρ
(∂Ωp,ρ,w)≤ Agρ

(Sp,ρ(w))

Therefore, for small ρ

Agρ
(∂Ωp,ρ,w) = Agρ

(Sp,ρ(w))

and hence uρ,w ≡ 0. Therefore ∂φ
p
gρ
(Ωp,ρ,w) = φ

p
gρ
(Sp,ρ(w)) and ∂Ωp,ρ,w = Sp,ρ(w). Hence Sp,ρ(w) is

outer-minimising for small ρ and ‖w‖C1 (smallness depending only on p).

6.4 Proof of Theorems 1.34 and 1.35

Proof of Theorem 1.34. For any p ∈ Ω \ ∂M consider any perturbed geodesic sphere Sp,ρ(w) contained in

Ω\∂M. We have

mH(Sp,ρ(w))≤ mB(Bp,ρ(w))≤ mB(Ω) = 0

where the first inequality is Lemma 1.20 applied to Bp,ρ(w) and the second is by the monotonicity Lemma

1.18, which apply thanks to Proposition 6.2. In particular, this implies

mH(Sp,ρ(w))≤ 0
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for all optimally perturbed spheres (i.e. w is given by (4.24)) contained in Ω\∂M. Therefore, we can apply

Theorem 1.28 to Ω, which proves that Ω\∂M is locally isometric to (R3, ḡ).

Proof of Theorem 1.35. For p ∈Ω\∂M, we use the inequality from the previous proof. That is

mB(Ω)≥ mH(Sp,ρ(w))

for all optimally perturbed spheres Sp,ρ(w) contained in Ω\∂M. Plugging in the expansion (4.40), we get,

for ρ ∈ (0, 1
2 infq∈∂M∪∂Ω d(p,q))

mB(Ω)≥

√
|Sp,ρ(w)|g̊
(16π)3

[
8π

3
Scpρ

2 +

(
4π

15
∆Sc(p)+

16π

45
‖Sp‖2− 4π

27
Sc2

p

)
ρ

4 +O(ρ5)

]

As in the proof of Theorem 1.28 (see (5.1)), we have

√
|Sp,ρ(w)|g̊ =

√
4πρ

[
1− 1

36
Scpρ

2 +O(ρ4)

]

Thus, using
√

4π√
(16π)3

= 1
32π

mB(Ω)≥ ρ

32π

[
1− 1

36
Scpρ

2 +O(ρ4)

]
×
[

8π

3
Scpρ

2 +

(
4π

15
∆Sc(p)+

16π

45
‖Sp‖2− 4π

27
Sc2

p

)
ρ

4 +O(ρ5)

]
=

ρ

32π

[
8π

3
Scpρ

2 +

(
4π

15
∆Sc(p)+

16π

45
‖Sp‖2− 2π

9
Sc2

p

)
ρ

4 +O(ρ5)

]
=

1
12

Scpρ
3 +

(
1

120
∆Sc(p)+

1
90
‖Sp‖2− 1

144
Sc2

p

)
ρ

5 +O(ρ6)

Remark 6.27. Taking into account Remark 4.5, if Ω is non-flat, then we can choose p such that the lower

bound proved above is positive.
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7 Rigidity Results Including Non-Zero Cosmological Constants

The standard Hawking mass (1.1) is relevant when the ambient space is a 3D Riemannian manifold with

non-negative scalar curvature. Such metrics are natural in the case of a zero cosmological constant. When

the cosmological constant Λ is negative (resp. positive), it makes sense to consider metrics with scalar

curvature bounded below by a negative (resp. positive) constant. Indeed, the dominant energy condition

coupled with the Einstein constraint equations implies that the scalar curvature of a totally geodesic space-

like hypersurface (i.e. the so-called time-symmetric case) is bounded below by 2Λ (see Section 9.1). When

Λ is negative (resp. positive) it is standard to choose the normalization Λ = −3 (resp. Λ = 3) and then

compare the geometry of a totally geodesic space-like hypersurface with a space-form of sectional curvature

K =−1 (resp. K = 1).

To account for non-zero cosmological constants, we first generalise the Hawking mass (see, for example,

[Nev10]).

Definition 7.1. The generalized Hawking Mass of an immersed sphere Σ in a 3D Riemannian manifold

(M,g) is

mH(Σ) :=

√
|Σ|gΣ

(16π)3 (16π−
∫

Σ

H2 +4K dVgΣ
) (7.1)

where K ∈ {−1,0,1}.

Using this generalised Hawking mass we can straight away obtain a generalisation of Theorem 1.33.

Theorem 7.2. Let (M,g) be a connected, complete, 3D Riemannian manifold without boundary and with

scalar curvature Sc≥ 6K, where K ∈ {−1,0,1}. If every p ∈M admits a neighbourhood U such that

sup{mH(Σ) : Σ⊂U is an immersed 2-dimensional surface} ≤ 0

or, more generally, if

limsup
ρ↓0

ρ
−5mH(Sp,ρ(w))≤ 0, ∀p ∈M (7.2)

where Sp,ρ(w) is the optimally perturbed geodesic sphere with w as in (4.24), then (M3,g) is isometric to a

space-form of sectional curvature K.

Proof. We can compute the generalised mass of the optimally perturbed geodesic sphere as before. Since

the only difference is the addition of a constant, the variational properties of the functional are the same

and we simply need to consider the new term 4K
∫
S2

√
det g̊ dθ 1dθ 2. This is easily evaluated, up to fourth

order, to be

4K
∫
S2

√
det g̊ dθ

1dθ
2 = 16Kπρ

2− 8Kπ

9
Scpρ

4 +O(ρ5) (7.3)
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Inserting (7.3) and (4.40) into (7.1) gives:

mH(Sp,ρ(w)) =

√
|Sp,ρ(w)|g̊
(16π)3

((
8π

3
Scp−16Kπ

)
ρ

2

+

[
4π

15
∆Sc(p)+

16π

45
‖Sp‖2− 4π

27
Sc2

p +
8Kπ

9
Scp

]
ρ

4 +O(ρ5)

)
(7.4)

Now, substitute (7.4) and (5.1) into (7.2), giving

limsup
ρ↓0

√
|S2|gS2 ρ−4√
(16π)3

[
1− 1

36
Scpρ

2 +O(ρ4)

]
×
[(

8π

3
Scp−16Kπ

)
ρ

2 +

(
4π

15
∆Sc(p)+

16π

45
‖Sp‖2− 4π

27
Sc2

p +
8Kπ

9
Scp

)
ρ

4 +O(ρ5)

]
≤ 0

for all p ∈M. Simplifying yields

limsup
ρ↓0

[(
8π

3
Scp−16Kπ

)
ρ
−2 +

(
4π

15
∆Sc(p)+

16π

45
‖Sp‖2− 2π

9
Sc2

p +
4Kπ

3
Scp

)
+O(ρ)

]
≤ 0 (7.5)

Since we assumed Sc≥ 6K, letting ρ ↓ 0 and looking at the dominating term
( 8π

3 Scp−16Kπ
)

ρ−2 in (7.5),

we first infer that

Sc≡ 6K (7.6)

Plugging (7.6) into (7.5) and cancelling terms, we see the dominant term becomes 16π

45 ‖Sp‖2, which is

constant in ρ and non-negative. We deduce

S≡ 0

Finally, Corollaries 5.4 and 5.2 imply that (M3,g) is isometric to a space-form of sectional curvature K.

Remark 7.3. We note that (7.4) actually gives a positive (even though small) lower bound on the gener-

alised Hawking mass of the optimally perturbed geodesic sphere Sp,ρ(w) at some p inside a connected, 3D

Riemannian manifold, if either Scp > 6K or both Sc ≡ 6K and ‖Sp‖ 6= 0. In particular, Schur’s lemma

implies that there will always be such a point if the manifold has Sc ≥ 6K and non-constant sectional

curvature.
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Despite the use of the AF assumption in the proof of Proposition 6.2, it may also be true that, for ρ > 0

sufficiently small, the surface Sp,ρ(w) is outer-minimising when the ambient manifold is asymptotically

hyperbolic (see Definition 7.8). We did not push in that direction because it does not seem to be useful for

obtaining a lower bound on the hyperbolic analogue of the Bartnik mass by the same methods we used for

Theorems 1.34 and 1.35. Indeed, if for ρ > 0 sufficiently small the surface Sp,ρ(w) is outer-minimising, we

can start the (weak) inverse mean curvature flow in the sense of Huisken-Ilmanen [HI01] and the generalised

Hawking mass along the flow is monotone non-decreasing also in this setting (see for instance [Nev10] for

more details). However, as proved by Neves [Nev10], it may happen that the asymptotic limit of the

Hawking mass along the flow exceeds the hyperbolic-ADM mass of the manifold, thus preventing a repeat

the proof of Theorems 1.34 and 1.35 in the K =−1 case.

7.1 R3 and H3 Rigidity in the Homogeneous Setting

In this section we replace the ALSC assumption in the rigidity Theorem 1.33 with the following homogene-

ity condition.

Definition 7.4. A Riemannian manifold (M,g) is called homogeneous if its isometry group Isom(M,g) acts

transitively on M. In other words, for all p,q ∈M there exists γ ∈ Isom(M,g) such that γ(p) = q.

Even though our spatial universe is not homogenous, at cosmological scales the homogeneity property

provides a useful idealisation. Indeed, spatial homogeneity is a standard assumption in Cosmology. For

instance, it leads to an exact solution of Einstein’s field equations, known as the Robertson-Walker metric

for space-time [Wei08; EH73].

Theorem 7.5. Let (M,g) be a connected, homogeneous, 3D Riemannian manifold with scalar curvature

Sc≥ 6K, where K ∈ {−1,0,1}. If every p ∈M admits a neighbourhood U such that

sup{mH(Σ) : Σ⊂U is an immersed 2-dimensional surface} ≤ 0

or, more generally, if

limsup
ρ↓0

ρ
−5mH(Sp,ρ(w))≤ 0, ∀p ∈M

where Sp,ρ(w) is the optimally perturbed geodesic sphere with w as in (4.24), then (M3,g) is isometric to

one of the following:

• H3 (when K =−1)

• Rm×T3−m, for some 0≤ m≤ 3, where T3−m is a flat torus of dimension 3−m (when K = 0)

• S3/Γ for some finite subgroup of isometries Γ < Isom(S3) acting freely on S3 (when K = 1).

Proof. Since homogeneity implies completeness and ∂M = /0, Theorem 7.2 yields that M has constant
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sectional curvature K. The conclusion now follows from the classical classification of homogeneous spaces

of constant sectional curvature [Wol11, Theorem 2.7.1].

Remark 7.6. The proof of [Wol11, Theorem 2.7.1], for K ≤ 0, relies on the fact that (M,g) must be a

quotient of either Rn or Hn by a group of isometries Γ and in fact every γ ∈ Γ is a so-called Clifford

translation. This means that the Riemannian distance between p and γ(p) is constant for all p ∈ Rn or Hn.

In the Euclidean case γ is a usual translation and in the hyperbolic case it turns out that γ = IdHn . When

K > 0 the proof is different and in fact one can be more precise about which quotients appear [Wol11,

Corollary 2.7.2].

7.2 R3 and H3 Rigidity Under Global Asymptotic Volume Growth Assumptions

In this section we replace the ALSC assumption in the rigidity Theorem 1.33 with a global volume growth

assumption. First we recall the framework used in the Riemannian Positive Mass Theorem.

Theorem 7.7 (Riemannian Positive Mass Theorem [SY79; SY81]). If (M,g) is an AF, complete, 3D Rie-

mannian manifold with non-negative scalar curvature, then its total mass mADM ≥ 0 and mADM = 0 if and

only if it is isometric to (R3, ḡ).

This setting is supposed to model an isolated gravitational system, so that far enough away from any given

point, there is no matter and the space resembles Euclidean space. As mentioned above, non-negative scalar

curvature corresponds to the natural physical assumption that the ambient space-time has non-negative local

energy density and (M3,g) is a space-like hypersurface with zero second fundamental form in a universe

with zero cosmological constant (see Section 9.1).

We can also consider the hyperbolic case, which means that we instead assume a negative cosmological

constant and a negative lower bound on the scalar curvature. Now the model space is H3 rather than R3

and we need a hyperbolic version of the AF property. There are various ways to define an asymptotically

hyperbolic manifold. For the conformal compactification approach, see Wang [Wan01]. In closer analogy

to Definition 1.2, we take the asymptotic chart approach (see also [CH03; Sak21; Her05; SZ21]).

Definition 7.8. A 3D Riemannian manifold (M,g) is called asymptotically hyperbolic (AH) if there is a

compact C ⊂M and a diffeomorphism φ : M \C→ R3 \B1(0) such that the metric satisfies

|gµν − (gH3)µν |=O(r−s)

for some s > 0 in the chart φ . Here H3 = (R3,gH3) with gH3 = 1
1+r2 dr2 + r2gS2 in polar coordinates.

In this setting, a natural consideration is how the volume of a metric ball centred at some point p ∈ M

changes with increasing radius. Specifically, we can compare the growth with that of a ball of the same

radius in the relevant model space, as the radius goes to infinity.
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Definition 7.9. Let K ∈ {−1,0} and let (M,g) be a complete, 3D Riemannian manifold without boundary

and with scalar curvature Sc≥ 6K. Let p∈M. We say that (M,g) satisfies the K-Global Asymptotic Volume

property (K-GAVP) if

limsup
r→∞

|Bg
r (p)|g
|BK

r |gK

≥ 1, (7.7)

where gK and BK
r denote the Riemannian metric and metric ball of radius r respectively, in the 3D, simply

connected space of constant sectional curvature K.

Remark 7.10. AF and AH manifolds satisfy the 0-GAVP and −1-GAVP respectively. For the AF case,

consider a straight line inR3, γ(t) =
√

rtâ, for some unit vector â∈R3, parametrised on the interval (0,
√

r).

Clearly we have Lengthḡ(γ) =
∫√r

0
√

rdt = r. But if we compute the length with respect to the AF metric

g = ḡ+σ , where σ =O(r−τ) as r→ ∞, for some τ > 1
2 , we get

Lengthg(γ) =
∫ √r

0

√
ḡ(γ̇, γ̇)+σ(γ̇, γ̇)dt

=
∫ √r

0

√
ḡ(γ̇, γ̇)(1+

1
2

ḡ(γ̇, γ̇)−1
σ(γ̇, γ̇)− 1

8
ḡ(γ̇, γ̇)−2

σ(γ̇, γ̇)2 +O(r−3τ))dt

=
∫ √r

0

√
r(1+

1
2

σ(â, â)− 1
8

σ(â, â)2 +O(r−3τ))dt

= Lengthḡ(γ)
(
1+O(r−τ)

)

This shows that Bḡ
r (p)⊂ Bg

r(1+Cr−τ )
(p) and therefore |Bḡ

r (p)|ḡ ≤ |Bg
r(1+Cr−τ )

(p)|g. Sending r→ ∞ yields

limsup
r→∞

|Bg
r (p)|g
|Bḡ

r (p)|ḡ
≥ 1

The hyperbolic case is analogous if we replace the straight line with a minimising geodesic inH3 and apply

Definition 7.8.

Theorem 7.11. Let (M,g) be a connected, complete, 3D Riemannian manifold without boundary, with

scalar curvature Sc≥ 6K and satisfying K-GAVP, where K ∈ {−1,0}. If every p ∈M admits a neighbour-

hood U such that

sup{mH(Σ) : Σ⊂U is an immersed 2-dimensional surface} ≤ 0

or, more generally, if

limsup
ρ↓0

ρ
−5mH(Sp,ρ(w))≤ 0, ∀p ∈M

where Sp,ρ(w) is the optimally perturbed geodesic sphere with w as in (4.24), then (M3,g) is isometric to

either H3 (when K =−1) or R3 (when K = 0).
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To prove this rigidity theorem we require a well-known volume comparison result, recalled below [BC64;

Gro99].

Theorem 7.12 (Bishop-Gromov). Let (M,g) be a connected, complete, n-dimensional Riemannian mani-

fold without boundary. Let p ∈M. If there is a constant K such that Ric≥ (n−1)Kg, then

lim
r→0

|Bg
r (p)|g
|BK

r |gK

= 1 (7.8)

and the quotient is a non-increasing function of r ∈ (0,∞). Furthermore, if the quotient equals 1 for a

particular r, then Bg
r (p) is isometric to BK

r .

Proof of Theorem 7.11. As in the proof of Theorem 7.2, the assumptions on the scalar curvature and Hawk-

ing mass imply that S≡ 0 and (M3,g) has constant sectional curvature K. Therefore Ric = 2Kg and (M3,g)

satisfies the requirements of the Bishop-Gromov theorem and we have, at p ∈M

limsup
r→∞

|Bg
r (p)|g
|BK

r |gK

≤ 1 (7.9)

Combining (7.9) with the K-GAVP assumption, we get

limsup
r→∞

|Bg
r (p)|g
|BK

r |gK

= 1 (7.10)

In fact, considering (7.8) and that the quotient in (7.10) is non-increasing on (0,∞), we must have

|Bg
r (p)|g
|BK

r |gK

= 1 ∀r ∈ (0,∞)

Therefore, by the final conclusion of the Bishop-Gromov theorem, Bg
r (p) is isometric to BK

r for every

r ∈ (0,∞). Hence (M3,g) is isometric to H3 (when K =−1) or R3 (when K = 0).
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8 Further Work

In this section we mention some possible directions for further research into the relationship between mass

and geometry, based on the work done in this thesis.

• A new quasi-local mass

Considering the results obtained in this thesis, it seems potentially fruitful to define the following variant of

the Hawking mass.

Definition 8.1 (sup-Hawking mass). Let Ω⊂ (M3,g) be open. The sup-Hawking mass of Ω is defined as

mSH(Ω) := sup{mH(Σ) : S2 ∼= Σ⊂Ω such that Σ is smooth and outer-minimising in Ω}

We note that, similar to the Hawking mass mH , this quasi-local mass is likely to be most useful in the case

where M is AF with non-negative scalar curvature such that ∂M is the only compact, minimal surface in M.

It would be interesting to know the connection between this and other quasi-local masses, in particular the

various versions of the Bartnik mass. See the appendix of [MT21] where the authors prove some desirable

properties of mSH .

• Other variants of Bartnik mass

It would be interseting to see if either of the Bartnik mass theorems proved here are true for other versions

of the Bartnik mass [Jau19; McC20]. Any proof using perturbed spheres along the same lines as this thesis,

would have to preserve the following key chain of inequalities:

mH(Sp,ρ(w))≤ mB(Bp,ρ(w))≤ mB(Ω)

However, as mentioned earlier, these inequalities rely on results which require the conditions we assumed in

our version of the Bartnik mass. Therefore, any such proof for a new version would need corresponding new

proofs of these results. In particular, Lemma 1.12 is at the heart of the proof in this thesis (via Lemma 1.20)

and also in the proof of Lemma 6.20 ([Cho+21, Theorem C.2]) which was used in the proof of Proposition

6.2. Finding an analogue of Lemma 1.12 for a different version of the Bartnik mass would be a big step

towards recreating the whole proof. See [Lee19, Theorem 4.53] where the author proves it when Σ is a

connected, outer-minimising component of ∂M, the other components are minimal, and M has first Betti

number equal to zero. This may complement a choice of Bartnik mass where extensions are not allowed to

contain minimal surfaces which enclose the boundary (but others are allowed).

• Hyperbolic rigidity

Note that the rigidity part of Theorem 1.33 was not generalised to the hyperbolic case in Theorem 7.2. This
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is because the ALSC assumption is not enough to exclude all hyperbolic 3-manifolds other than H3 using

a similar argument to the one for the K = 0 case, via the work in [Wol11] (in Theorem 7.11 we replaced

the topological ALSC condition with the geometric K-GAVP, and achieved the same rigidity as before).

Thus, in order to obtain some kind of rigidity statement in the K =−1 case, a deeper understanding of the

topology of space-forms with negative sectional curvature (i.e. hyperbolic 3-manifolds) is required. This is

a topic of much current research.
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9 Appendix

9.1 Space-Like Hypersurfaces in a Space-Time

Here, we use the notation of [Lee18, Problems 8-19 and 8-20]. Let (M̃, g̃) be a 4D Lorentzian manifold and

(M,g) ⊂ (M̃, g̃) a 3D Riemannian submanifold. For vector fields W,X ,Y,Z on M and future pointing unit

normal N along M, we have the Gauss and Codazzi equations

R̃m(W,X ,Y,Z) = Rm(W,X ,Y,Z)+h(W,Z)h(X ,Y )−h(W,Y )h(X ,Z) (9.1)

R̃m(W,X ,Y,N) = ∇h(Y,W,X)−∇h(Y,X ,W ) (9.2)

and Einstein’s field equation

R̃ic− 1
2

S̃cg̃+Λg̃ = T (9.3)

where Λ is the cosmological constant (normalized to -3, 0 or 3) and T is the stress-energy-momentum

tensor such that T (N,N) is the energy density and T (X ,N) the momentum density in the direction X , on

M. Working in an orthonormal basis {N,E1,E2,E3} at a point p ∈M, we take the trace of equation (9.1),

giving

R̃ic(X ,Y )+ R̃m(N,X ,Y,N) = Ric(X ,Y )+Hh(X ,Y )−
3

∑
i=1

h(Ei,Y )h(X ,Ei)

Tracing again yields

S̃c+2R̃ic(N,N) = Sc+H2−|h|2g (9.4)

Now, taking the trace in equation (9.2) gives

R̃ic(W,N) = divgh(W )−∇H(W ) (9.5)

Next, plug in N to equation (9.3) and use g̃(N,N) =−1 to get

S̃c+2R̃ic(N,N) = 2Λ+2T (N,N) (9.6)

Combining equations (9.6) and (9.4) yields

2T (N,N) = Sc−2Λ−|h|2g +H2 (9.7)

Now, plugging W and N into equation (9.3) and using g̃(W,N) = 0 gives

R̃ic(W,N) = T (W,N) (9.8)
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Combining equations (9.8) and (9.5) reveals

T (W,N) = divgh(W )−∇H(W ) (9.9)

Equations (9.7) and (9.9) are called the Einstein constraint equations. Now, the Dominant Energy Condition

states that the observed energy density is non-negative and that the flow of energy cannot be observed to be

faster than the speed of light. In our notation this means that, at p ∈M

T (N,N)≥ |T ( · ,N)|g =

(
3

∑
i=1

T (Ei,N)2

) 1
2

If (M,g) has h≡ 0, then by using equations (9.7) and (9.9), the condition becomes

Sc−2Λ = 2T (N,N)≥ 2

(
3

∑
i=1

T (Ei,N)2

) 1
2

= 0

which finally yields the scalar curvature condition used throughout this thesis.

9.2 Proof of Lemma 2.12

Proof. Note that, in this proof, the notation will suppress the difference between ∂t and its push forward by

F ; we write ∂t for both.

i) Using the properties of the Levi-Civita connection and the fact that the coordinate vector fields satisfy

[∂i,∂t ] = 0, we get

∂t(gt) jk = ∂tg(∂ j,∂k) = g(∇∂ j ∂t ,∂k)+g(∂ j,∇∂k
∂t)

Using the definition of F as a normal variation, the fact that the second fundamental form is symmetric,

and g(Nt ,∂i) = 0, yields

∂t(gt) jk = g(∇∂ j ftNt ,∂k)+g(∂ j,∇∂k
ftNt)

= ft
(

g(∇∂ j Nt ,∂k)+g(∂ j,∇∂k
Nt)
)

= ft
(
(ht) jk +(ht)k j

)
= 2 ft(ht) jk

ii) We have the following Jacobi formula for an invertible matrix B(t):

137



∂t(detB(t)) = tr[Adj(B(t)) ·∂tB(t)] = detB(t)tr[B(t)−1 ·∂tB(t)]

Applying this with B(t) = gt gives

∂tdVgt = ∂t
√

det(gt)dx1dx2

=
∂t det(gt)

2
√

det(gt)
dx1dx2

=
1
2

√
detgt tr[gi j

t ∂t(gt) jk]dx1dx2

= f
√

detgt tr[gi j
t (ht) jk]dx1dx2

= ftHtdVgt

iii) Since g(∇∂t Nt ,Nt) =
1
2 ∂tg(Nt ,Nt) = 0, we know that ∇∂t Nt is tangent to Σt and therefore we can write

it as

∇∂t Nt = (∇∂t Nt)
k
∂k

= δ
i
k(∇∂t Nt)

k
∂i

= (gt)
i j(gt)k j(∇∂t Nt)

k
∂i

= (gt)
i jgt(∇∂t Nt ,∂ j)∂i

= (gt)
i jg(∇∂t Nt ,∂ j)∂i

Since g(∇∂ j Nt ,Nt) =
1
2 ∂ jg(Nt ,Nt) = 0, we also have

0 = ∂tg(Nt ,∂ j)

= g(∇∂t Nt ,∂ j)+g(Nt ,∇∂t ∂ j)

= g(∇∂t Nt ,∂ j)+g(Nt ,∇∂ j ∂t)

= g(∇∂t Nt ,∂ j)+g(Nt ,∇∂ j ftNt)

= g(∇∂t Nt ,∂ j)+∂ j ft

Substituting this into the previous equation gives
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∇∂t Nt =−(gt)
i j

∂ j ft∂i =−gradΣt
ft

iv)

∂t(ht)i j = ∂tg(∇∂iNt ,∂ j)

= g(∇∂t ∇∂iNt ,∂ j)+g(∇∂iNt ,∇∂t ∂ j)

= g(R(∂t ,∂i)Nt +∇∂i∇∂t Nt +∇[∂t ,∂i]Nt ,∂ j)+g(∇∂iNt ,∇∂t ∂ j)

= Rm(∂ j,Nt ,∂t ,∂i)+g(∇∂i∇∂t Nt ,∂ j)+g(∇∂iNt ,∇∂t ∂ j)

= ftRm(∂ j,Nt ,Nt ,∂i)−g(∇∂igradΣt
ft ,∂ j)+g(∇∂iNt ,∇∂ j( ftNt))

=− ftRm(Nt ,∂ j,Nt ,∂i)−g(∇∂igradΣt
ft ,∂ j)+ ftg(∇∂iNt ,∇∂ j Nt)

where we have used the formula for ∇∂t Nt and again that g(∇∂iNt ,Nt) = 0.

v) We have the derivative of the inverse of a matrix, B(t):

∂t(B(t)−1) =−B(t)−1
∂t(B(t))B(t)−1

Using the definition Ht = (gt)
i j(ht)i j, we have

∂tHt = ∂t((gt)
i j)(ht)i j +(gt)

i j
∂t(ht)i j

=−2 ft(gt)
il(ht)lk(gt)

k j(ht)i j

+(gt)
i j
[
− ftRm(Nt ,∂ j,Nt ,∂i)−g(∇∂igradΣt

ft ,∂ j)+ ftg(∇∂iNt ,∇∂ j Nt)
]

=−2 ft |ht |2g− ftRic(Nt ,Nt)−∆Σt ft +(gt)
i j(gt)kl(∇∂iNt)

k(∇∂ j Nt)
l

=−2 ft |ht |2g− ftRic(Nt ,Nt)−∆Σt ft +(gt)
i j(gt)kl(ht)

k
i (ht)

l
j

=−2 ft |ht |2g− ftRic(Nt ,Nt)−∆Σt ft + ft |ht |2g

=−∆Σt ft − ft
(
|ht |2g +Ric(Nt ,Nt)

)
where we have used the fact that gt is the induced metric, and properties of the curvature tensor.
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