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Abstract

Utilising genetic sequencing data to infer the biological parameters that

govern the evolution of a population is an important goal of population ge-

netics. Common features of viral evolution mean that widely used modelling

assumptions do not hold, such as that the population size is deterministic, that

each site of the genome undergoes at most one mutation, or that recombination

(individuals inheriting genetic material from two different parent genomes) is

absent. In this thesis, models and methods are developed that relax these as-

sumptions, and are thus particularly suited for the analysis of viral sequencing

data.

Birth-death process models naturally capture the stochastic variation and

exponential growth in population size that is commonly seen, for instance, with

intra-host viral populations. I investigate the properties of sample genealogies

when the population evolves according to a birth-death process, and focus in

particular on the setting of the population size growing to infinity. Through

utilising a time rescaling formalism, distributions characterising the process are

derived explicitly, and the results show that the genealogy has an interesting

structure in this setting.

The reconstruction of possible histories given a sample of genetic data in

the presence of recombination is a challenging problem, and existing meth-

ods commonly assume the absence of recurrent mutation. I present KwARG,

which implements a heuristic-based algorithm for finding plausible genealogical

histories that are minimal or near-minimal in the number of posited recombina-

tion and recurrent mutation events. Through applying KwARG to reconstruct

possible histories for samples of SARS-CoV-2 data, and combining the results

with a principled statistical framework for recombination detection, I present

evidence of ongoing recombination of SARS-CoV-2 within human hosts.

x



Chapter 1

Introduction

The field of population genetics was pioneered in the 1920s and 30s by

Wright, Fisher and Haldane, whose work set out to quantify how evolutionary

forces drive the accumulation of genetic variation in a population. Through the

subsequent decades, advances were driven by using stochastic processes and

diffusion theory to capture and understand the importance of random factors

in molecular evolution. Following the improvement of sequencing technology

in the latter half of the 20th century, the focus shifted from the classical aim

of understanding the future evolutionary trajectory of an entire population, to

the fundamental modern goal of utilising genetic sequencing data to infer the

evolutionary history of a sample.

The central object of interest in mathematical population genetics is the

genealogy of a sample: a graph that describes the relationships between the

sequences by connecting them through shared ancestors in the past. This

encodes all of the evolutionary events that have led to the observed present-

day genetic diversity, which is created by the complex processes of genetic

drift, mutation, recombination and other factors. In practice, the genealogy is

unobserved, and methods must leverage the traces of shared history contained

within sequencing data to understand the magnitude and interplay of these

forces.

The main contributions of this thesis are in introducing methods for infer-

ring genealogies and evolutionary parameters when analysing sequencing data

sampled from viral populations. Many of the common modelling assumptions

that might hold for other organisms (such as humans or bacteria) break down

for viral genomes, such as constant or deterministically changing population

size, or the absence of recurrent mutation. In addition, many methods that

1



exist for the analysis of viral data adopt the simplifying assumption that re-

combination, an important evolutionary process that shapes the genetic diver-

sity of many viruses, is absent. The methods developed in this thesis seek to

address these shortcomings.

1.1 Sample genealogies

The notion of a genealogy will be explained through considering the Wright–

Fisher model, a classical model of population dynamics. Starting with an ini-

tial population of N individuals, they reproduce in discrete non-overlapping

generations, keeping the total population size constant, with each new indi-

vidual selecting a parent uniformly at random from the previous generation

and copying its genome. The genome consists of a number of linked sites (nu-

cleotides or genetic loci); with some fixed probability u, each site is not copied

exactly from the parent, but undergoes a mutation. An illustration of this

population process is given in Figure 1.1.

The population is allowed to evolve for a large number of generations, before

a sample of n < N individuals is selected. If the history of the population is

known, the genealogy of this sample is easily obtained through tracing the

lineages ancestral to the sample backwards in time, to recover the timing of

common ancestors and mutation events. An example of such a genealogy is

illustrated in Figure 1.1: the sample of three individuals at the present time

(outlined in red) is connected by the genealogy shown in red.

Unfortunately, the history of the population is unobserved in most usual

settings, so the timing or sequence of evolutionary events in the sample’s his-

tory must be inferred from the data at hand. There are two main categories

of methods for doing this. Model-based inference requires the user to select a

generative model, and relies on the estimation of mutation and recombination

rates as model parameters. This generally involves integrating over the space of

possible histories, which is usually intractable; methods rely on Markov chain

Monte Carlo (MCMC) (e.g. Rasmussen et al., 2014) or importance sampling

(e.g. Jenkins and Griffiths, 2011), but the problem remains computationally

difficult. Moreover, model misspecification can play an important role, for in-

stance when modelling viral evolution over a transmission network, where the

relative importance of factors such as geographical structure, social clustering,

and the impact of interventions may be difficult to ascertain.

2



Present time

Figure 1.1: Illustration of the Wright–Fisher model, for a population of N =
5 individuals with 5 sites. Mutations shown as colours. Sample of n = 3
individuals sampled at the present time outlined in red, their genealogy is
shown as red edges; MRCA outlined in blue.
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The alternative is to constrain the problem by imposing restrictions on

the solution space, for instance through searching for the most parsimonious

solutions that minimise the complexity of the evolutionary history, or imple-

menting heuristic methods to reconstruct the genealogy. In general, this means

that event rates cannot be inferred, and interpretability of results and quan-

tification of uncertainty are difficult to achieve. However, such methods can be

very useful when it is not possible to select an appropriate model, and heuristic

methods can be very efficient.

1.2 Models for sample genealogies

1.2.1 The coalescent

It may seem that there are myriad reasonable models that can describe the

individual-level dynamics governing the reproductive behaviour of a popula-

tion, and that the genealogy of a sample will thus depend on the particular

choice of model. The groundbreaking work of Kingman (1982b,a) showed that,

in fact, often the small-scale details are not important when the population

size is large compared to the sample size. For many population models (in-

cluding Wright–Fisher), under a suitable time rescaling, sample genealogies

are described by a particular stochastic process called the coalescent. The im-

portant modelling assumptions for convergence to the basic coalescent are that

the population is selectively neutral, and that there is no population structure

(however, these assumptions can be relaxed, leading to modified versions of

the coalescent).

1.2.1.1 Standard coalescent

The coalescent arises as a limiting process for the Wright–Fisher model by

taking the limit N →∞ and rescaling time. It is straightforward to show (see

e.g. Hein et al., 2004, Section 1.7.2) that the probability that k ≤ n sequences

have k different parent genomes is

1−
(
k

2

)
1

N
+O(N−2).

Then, the probability that a coalescence occurs in a given generation is ap-

proximately
(
k
2

)
/N . The distribution of the time Tk (measured in generations)

4



at which two of the k sequences had a common ancestor is then

P(Tk ≤ j) ≈ 1−
(

1−
(
k

2

)
1

N

)j
,

for j = 1, 2, . . . and large N . Measuring time in units of N generations (so

t = j/N) and taking N →∞ gives

P(T ck ≤ t) ≈ 1−
(

1−
(
k

2

)
1

N

)Nt
→ 1− exp

(
−
(
k

2

)
t

)
.

Looking backwards in time, the number of lineages ancestral to the sample thus

decreases by one after an exponentially distributed waiting time with rate
(
k
2

)
,

when there are k = n, . . . , 2 remaining ancestral lineages. A realisation of the

coalescent can be associated with a genealogy in the form of a binary tree on

n leaves, by starting with n lineages and merging a randomly selected pair at

each event time. Then a point at which two edges merge represents the time

when sequences in the sample had a common ancestor, and the root of the

tree corresponds to the most recent common ancestor (MRCA) of the entire

sample (which is found with probability 1).

If each offspring individual undergoes a mutation with probability u in the

Wright–Fisher model, then it is straightforward to show that on the coalescent

time scale, mutations will occur on the branches of the genealogy according to

a Poisson process with rate θ/2, where θ := 2Nu.

1.2.1.2 Changing population size

The assumption that the population size is constant can be relaxed by mod-

elling the population size, backwards in time, by a positive function N(t), with

N(0) = N . While for the standard coalescent, time is rescaled in units of N

generations, the effects of a changing population size will mean that genealogies

will be stretched or compressed according to N(t), as when the population size

is low (resp. high), the probability of coalescence increases (resp. decreases).

Griffiths and Tavaré (1994) defined the coalescent with variable population

size through defining a population size intensity

Λ(t) =

∫ t

0

λ(u)du,

5



where λ(t) = N/N(t). Letting T pn , . . . , T
p
2 be the waiting times while there are

n, . . . , 2 lineages, the joint density of (T pn , . . . , T
p
2 ) is given by

f(tpn, . . . , t
p
2) =

n∏
j=2

(
j

2

)
λ(vj) exp

(
−
(
j

2

)
(Λ(vj)− Λ(vj+1))

)
,

where vn+1 = 0 and vi =
∑n

j=i t
p
i .

To simulate a realisation of the coalescent with population size N(t), one

can:

1. draw waiting times T cn = tcn, . . . , T
c
2 = tc2, where T ck is exponentially

distributed with rate
(
k
2

)
;

2. set vk =
∑n

j=k t
c
j, vn+1 = 0;

3. solve Λ(tpk + vk+1)− Λ(vk+1) = tck for each tpk.

The tpn, . . . , t
p
2 are then the inter-event waiting times for the coalescent with

the given variable population size (Hein et al., 2004, Section 4.2.2).

There are also stochastic formulations of the coalescent, with the popu-

lation size function allowed to be stochastic (Kaj and Krone, 2003; Parsons

et al., 2010).

1.2.2 Birth-death models

In some settings, the dynamics of a population where individuals replicate

and die independently of each other may be better modelled as a birth-death

process, which, unlike the coalescent, naturally captures the stochasticity and

exponential growth of the population size (Boskova et al., 2014; Stadler et al.,

2015). The simple linear birth-death process (BDP) studied by Kendall (1948)

is a popular neutral population model, in which individuals independently di-

vide at rate λ and die at rate µ. A realisation of this process can be repre-

sented as a tree relating the individuals, with bifurcations corresponding to

birth events, and terminating branches corresponding to death events. The

process models the entire population, creating a birth-death tree such as that

shown in the left panel of Figure 1.2, where lineages can go extinct before

the present. The genealogy of surviving individuals can then be obtained by

pruning these extinct lineages, shown in the middle panel. The process tracing

out the genealogy is termed the reconstructed process (RP) (Nee et al., 1994).

6



Figure 1.2: Left: birth-death tree with λ = 0.1, µ = 0.05 and 18 individuals
surviving to the present time. Middle: corresponding genealogy with com-
plete sampling. Right: genealogy with incomplete sampling: each surviving
individual is sampled independently with fixed probability ψ = 1

3
; blue stars

indicate sampled individuals

1.2.2.1 Reconstructed process

Gernhard (2008a) considered the RP conditioned on having n extant in-

dividuals at the present and a given time of origin T . Gernhard noted a

correspondence between this conditioned reconstructed process and a point

process termed the coalescent point process (CPP), as introduced by Aldous

and Popovic (2005) for critical branching processes. The main idea is that,

viewing the genealogy backwards in time, the death times of each sampled

lineage are i.i.d with a given distribution. Instead of considering each coales-

cence event sequentially backwards in time as is natural for the coalescent, the

genealogy can thus be constructed by drawing n realisations of a particular

random variable with support (0, T ], giving the event times.

With this CPP formulation, and using the results of Thompson (1975),

Gernhard (2008a) then derived the density of the k-th bifurcation time in the

RP: first conditioned on T , then integrating it out with an improper uniform

(0,∞) prior.

1.2.2.2 Sampling

Birth-death models additionally differ from the coalescent in that they must

explicitly incorporate the method of selecting the sample. Two main sampling

regimes have been considered in the literature. Bernoulli-type sampling as-

sumes that each extant individual is sampled independently at the present
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time with some fixed probability ψ (Stadler, 2009; Wiuf, 2018; Stadler and

Steel, 2019; Lambert, 2018). The other case is that of n-sampling, where n in-

dividuals are sampled from the full population of size N , which is conditioned

to be greater than n (Stadler, 2009; Lambert, 2018).

1.2.2.3 Branching processes

There is also a substantial related body of work concerning Bienaymé–

Galton–Watson (BGW) processes, considered in either discrete or continuous

time, in which individuals reproduce independently according to a specified

offspring distribution (in continuous time, when the number of offspring is ei-

ther zero or two, this reduces to the special case of a birth-death process).

Work on reduced trees (tracing the genealogy of a sample) goes back several

decades; Fleischmann and Siegmund-Schultze (1977) showed that the reduced

tree associated with a BGW process is itself a time-inhomogeneous BGW pro-

cess.

Several papers have considered the question of coalescence times for a finite

sample (e.g. O’Connell, 1995; Harris et al., 2020; Grosjean and Huillet, 2018;

Burden and Soewongsono, 2019). O’Connell (1995) derives an expression for

the coalescence time of a sample of size 2, as a fraction of the time since origin

of the process. Harris et al. (2020) generalise these results to any sample

size, and consider continuous-time BGW processes sampled after time T , with

n-sampling, assuming that sampling happens a fixed time after the origin

of the process; the exposition of their results explicitly applied to birth-death

processes is restricted to the limit T →∞ for n = 2. Burden and Soewongsono

(2019) consider the infinite-population limit of near-critical Galton–Watson

process, arriving at the Feller diffusion and using this to derive properties of

genealogies in the large population limit.

1.3 Recombination

For many species, the evolution of genetic variation within a population is

driven by the processes of mutation and recombination, in addition to genetic

drift. As described above, a typical mutation affects the genome at a single

position, and may or may not spread through subsequent generations by in-

heritance. Recombination, on the other hand, occurs when a new haplotype

is created as a mixture of genetic material from two different sources, which
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can drive evolution at a much faster rate through creating hybrids that carry

phenotypic features of both parent genomes. In the context of viruses, recom-

bination is a particularly important factor to consider in the development of

treatments and vaccines, as it has the potential to have a drastic impact on

the evolution of virulence, transmissibility, and evasion of the host’s immunity

(Simon-Loriere and Holmes, 2011).

A common restriction on how recombination operates is that of considering

crossover recombination. Looking back at the Wright–Fisher model, recombi-

nation can be incorporated by allowing each offspring to inherit material from

not one, but two parent genomes, with some fixed probability r. A recombina-

tion breakpoint is then chosen at random between loci, and genetic material

to the left of the breakpoint is inherited from one parent, and that to the right

from the other parent. This is illustrated in Figure 1.3.

Figure 1.3: Illustration of crossover recombination. Third offsping indi-
vidual has two parent genomes; material to the left (resp. right) of the
recombination breakpoint just after site 3 is inherited from the parent on
the left (resp. right).

This offers the simplest model of recombination; a common extension is

to consider gene conversion, whereby a stretch of the genome (not necessarily

including the endpoints) is inherited from one parent, and the rest from another

parent genome.

1.3.1 Ancestral recombination graphs (ARGs)

An extension of the coalescent in the presence of recombination introduced

by Griffiths and Marjoram (1997) is the ancestral recombination graph (ARG).

The topology of a genealogy in the presence of recombination can be a network

with loops, rather than necessarily a binary tree. On the coalescent time scale,

recombination events occur at the population scaled rate ρ/2, where ρ := 2Nr.

The exact definition of an ARG varies somewhat in the literature: here,

an ARG is defined as a rooted, directed acyclic graph with recombination

nodes (of in-degree two and out-degree one) as well as coalescent nodes (of

in-degree one and out-degree two), with leaves corresponding to the sampled
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sequences. The graph is ultrametric, in the sense that the distances between

each sampled sequence and the root are equal. The ARG topology refers to the

graph when the branch lengths are ignored. An example of an ARG topology

can be seen in the left panel of Figure 1.4. Mutations are represented as

points on the edges, labelled by the sites they affect. Considering the graph

backwards in time (from the bottom up), the point at which two edges merge

represents the time at which some sequences in the data coalesced, or have

found a common ancestor. A point at which an edge splits into two corresponds

to a recombination: the parts of the genome to the left and to the right of

the breakpoint (whose site number is labelled inside the blue recombination

node) are inherited from two different parent particles. The network thus fully

encodes the evolutionary events in the history of a sample.

Figure 1.4: Three examples of ARGs. The dataset is shown on the left
in binary format, with 0’s and 1’s corresponding to the ancestral and mu-
tant state at each site, respectively. Mutation events are shown as black
dots and labelled by the site they affect; green filled circles correspond to
recurrent mutations. Recombination nodes (in blue) are labelled with the
recombination breakpoint; material to the right (left) of the breakpoint is
inherited from the parent connected by the edge labelled S (P ) for “suffix”
(“prefix”).

Note that if we consider a region of the genome that falls between two

recombination breakpoints, the restriction of the ARG to the genealogy of this

region is a binary tree. Thus, the ARG can be broken up into a sequence of local

or marginal trees. Wiuf and Hein (1999) introduced the idea of reframing the

coalescent with recombination in terms of moving spatially along the sequence,

rather than backwards in time. Unlike the backwards-in-time formulation,

this spatial process does not have the Markov property, due to dependencies

between local trees that are far apart on the genome. The sequentially Markov

coalescent (SMC) is an approximation to the coalescent with recombination
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that imposes a Markov structure between adjacent local trees, introduced by

McVean and Cardin (2005). Their simulation results suggest that genealogical

events which contradict this Markov structure have relatively low probability,

and so the SMC model has very similar properties to the coalescent with

recombination.

1.3.2 Recombination detection

The detection of recombination from sequencing data is an important but

notoriously difficult problem. Past recombination events can only be detected

through considering the observed patterns of mutation, and the effects of re-

combination are not always obvious.

Crossover recombination can occur anywhere along a sequence, and the

breakpoint position is also generally unobserved. Recombination can be unde-

tectable unless mutations appear on specific branches of the genealogy (Hein

et al., 2004, Section 5.11). Moreover, recombination events can produce pat-

terns in the data that are indistinguishable from the effects of recurrent (or

homoplasic) mutation (McVean et al., 2002): that is, two or more mutation

events in a genealogical history that affect the same locus. In general, many

different ARG topologies can generate the same input dataset.

1.3.2.1 Four gamete test

A commonly used assumption on the mutation process is that of infinite

sites : that each site of the genome has only undergone at most one mutation;

then the allele at each site can be denoted 0 (if it is ancestral) or 1 (if it is

derived). The four gamete test (Hudson and Kaplan, 1985) can then detect

the presence of recombination: if all four of the configurations 00, 01, 10, 11

are found at any pair of sites, the data could not have been generated through

replication and mutation alone, and at least one recombination event must

have occurred between the two corresponding sites. The sites are then termed

incompatible. The dataset in Figure 1.4 consists of five sequences (rows labelled

A-E) with four variable sites (columns labelled 1-4). Sites 3 and 4 contain the

configurations 00 (in sequence B), 01 (in sequence C), 10 (in sequence D) and

11 (in sequence E); this means that these two sites are incompatible, and there

must have been at least one recombination with a breakpoint between these

two sites.
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If the infinite sites assumption is violated, the four gamete test no longer

necessarily indicates the presence of recombination, as the incompatibilities

could instead have been generated through recurrent mutation (McVean et al.,

2002). This is illustrated in Figure 1.4, where the same set of sequences is com-

patible with three different ARG topologies, containing different combinations

of recombination and/or recurrent mutation events.

The infinite sites assumption may be reasonable for human DNA, for in-

stance, as the mutation rate per nucleotide is relatively low, so mutations are

unlikely to occur multiple times at the same position (in the absence of com-

plicating biological factors). However, the genomes of RNA viruses are much

shorter (Flint et al., 2009), and the mutation rate per site much higher, making

recurrent mutation a common occurrence. For instance, multiple recurrent mu-

tations were known to have arisen independently on the SARS-CoV-2 genome

within months of the beginning of the COVID-19 pandemic (van Dorp et al.,

2020a). As recombination is also common in RNA viruses (Simon-Loriere and

Holmes, 2011), this complicates the detection of recombination from viral se-

quencing data.

1.3.2.2 Lower bound on number of recombinations

If recombination is detectable from a sample of sequencing data, a natural

question to ask is how many recombination events must have occurred. The

minimal number of (crossover) recombination events required to reconstruct a

given dataset, denoted Rmin, cannot be computed exactly in most cases, but

several methods exist for computing a lower bound on Rmin.

The Hudson-Kaplan bound (Hudson and Kaplan, 1985) can be viewed as

an extension of the four gamete test. First, all incompatible pairs of sites in

the dataset are identified: in Figure 1.5, incompatibilities for the dataset in

Figure 1.4 are illustrated by drawing horizontal segments connecting pairs of

incompatible sites. The lower bound can then be computed by adding the min-

imum number of recombination breakpoints so that all pairs of incompatible

sites are separated by at least one recombination; this is a version of a classical

optimisation problem that can be solved in linear time (Gusfield, 2014, Section

5.2.2.2). Figure 1.5 demonstrates one possible solution, giving a lower bound

of two. In this case, the lower bound is equal to Rmin, as Figure 1.4 demon-

strates that it is possible to construct an ARG with two recombinations for

this dataset. In general, however, the quality of the bound can be poor, signif-
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icantly underestimating the number of recombinations that might be required

to generate a valid ARG for the data (Gusfield et al., 2007).

1 2 3 4

1 1 1 1

A
B
C
D
E

1 0 0 1
01 1 1

0 0 0 1
0 1 0 0

Figure 1.5: Computation of the Hudson-Kaplan lower bound. Horizontal
segments link pairs of incompatible sites. Red vertical lines show possible
locations of recombination breakpoints.

The haplotype bound (Myers, 2003; Myers and Griffiths, 2003) utilises

the observation that each mutation and recombination event can generate at

most one new sequence. Let r(D) and c(D) be the number of distinct rows

and columns of a data matrix D, respectively. Then the haplotype bound is

defined to be r(D)−c(D)−1. Myers and Griffiths introduced a number of ways

to improve the bound; the most potent is through computing the haplotype

bound locally on subsets of the data matrix, and using a composition method

to then calculate a global bound. There is a trade-off between accuracy and

computational time in choosing the number of subsets considered in calculating

the local bounds.

1.4 ARG inference

Several methods have been developed that seek to reconstruct ARGs or

sequences of local trees from the data. Some, in particular ARGweaver (Ras-

mussen et al., 2014), aim to infer a distribution over ARGs using computational

methods, given a prior model. Other tools, including RENT+ (Mirzaei and

Wu, 2017), tsinfer (Kelleher et al., 2019), and Relate (Speidel et al., 2019),

instead output one set of local trees for each input dataset, using heuristic

approaches. Finally, some methods impose a well-defined optimisation crite-

rion on the ARG reconstruction problem through aiming to identify the most

parsimonious histories, i.e. minimising the number of recombination events;
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these include Beagle (Lyngsø et al., 2005), SHRUB (Song et al., 2005) and

SHRUB-GC (Song et al., 2006). There also exist numerous other methods

for the inference of recombination (e.g. Martin and Rybicki, 2000; Li and

Stephens, 2003; Kosakovsky Pond et al., 2006; Boni et al., 2007) which do not

explicitly reconstruct ARGs.

1.4.1 Model-based methods

ARGweaver infers a posterior distribution over ARGs compatible with a

given dataset using MCMC techniques, assuming the SMC model and prior

values for the population size and evolutionary rates. The main idea is to move

spatially along each sequence, and form local trees assuming a Markov depen-

dency structure, sequentially constructing ARGs for k sequences conditional

on ARGs for k−1 sequences. By removing and re-adding individual sequences

(or, more efficiently, entire subtrees) with an operation called threading, a

Gibbs (resp. Metropolis-Hastings) sampler can be constructed.

ARGweaver infers the timing of each coalescence event as well as the ARG

topology. By discretising time and enumerating tree topologies, the SMC is

approximated by a model with a finite state space, enabling the use of hidden

Markov model methods for threading; the level of time discretisation affects

computational efficiency. The program generally runs in reasonable time for

samples of under 100 sequences (Hubisz and Siepel, 2020), scaling poorly as

the sequence length increases (Speidel et al., 2019), meaning that generally

genome-scale data requires splitting into shorter segments and running ARG-

weaver on each segment separately (Hubisz and Siepel, 2020). Although this

approach is more computationally intensive than heuristic methods, the key

advantage of inferring a distribution over ARGs is that this allows for a broader

range of questions to be addressed: for instance, the timing of genealogical

events can be estimated, local trees can be examined explicitly, and uncer-

tainty over the ARG topology and branch lengths can be quantified, allowing

for more meaningful interpretation of the results of inference.

1.4.2 Heuristic methods

A number of methods have been developed recently that can utilise the ef-

ficiency of heuristics to generate plausible genealogies for very large datasets.

The program tsinfer reconstructs a sequence of local trees compatible with an
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input dataset, utilising the tree sequence data format (Kelleher et al., 2016) to

achieve impressive efficiency. First, a set of possible ancestors for the sampled

sequences is generated, then a sequence of local trees is constructed connecting

these ancestors, and finally the sampled sequences are matched against this

tree sequence. The output differs from an ARG in that the location of re-

combination nodes is not specified (so it is not possible to tell how exactly the

recombination event has transformed one local tree to the next), and (with the

default settings) inferred trees can contain polytomies : nodes with in-degree

one and out-degree greater than two.

RENT+ implements efficiency improvements for an earlier version of the

algorithm called RENT (Wu, 2009). This also infers a sequence of local trees

(rather than a full ARG) compatible with the data, through first constructing

local trees for each site of the genome, and then refining this through a series

of steps. The key idea of the method is that the local trees are improved

jointly, with each local tree being affected by updates to neighbouring trees,

made according to a set of pre-defined rules.

While tsinfer and RENT+ focus on inferring the local tree topologies (that

is, without estimating branch lengths), Relate also incorporates a method for

estimating the event times. First, a hidden Markov model approach similar

to that of Li and Stephens (2003) is used to calculate a distance matrix that

estimates the ordering of coalescence events. A custom algorithm then uses

this to reconstruct local trees at each site. Branch lengths are estimated as a

separate step, using MCMC with a coalescent prior.

1.4.3 Parsimony

As noted above, a sample of genetic sequences may have many possible

histories, with many different corresponding ARGs. The parsimony approach

to reconstructing ARG topologies given a sample of genetic data focusses on

minimising the number of recombination and/or recurrent mutation events.

This does not necessarily produce the most biologically plausible histories, but

it does provide a useful lower bound on the number of events that must have

occurred in the evolutionary pathway generating the sample. Thus, recom-

bination can be detected in the history of a sample by considering whether

the most plausible parsimonious solutions contain at least one recombination

node.

Crucially, the parsimony approach does not require the assumption of a
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particular generative model for the data (such as the coalescent with recom-

bination) beyond specifying the types of events that can occur. While this

means that mutation and recombination rates cannot be inferred, it circum-

vents the need to specify a detailed model of population dynamics, which can

be particularly challenging, for instance when working with viral datasets at

the level of between-host transmission. A parsimony-based approach is par-

ticularly appropriate when the focus is on interrogating the hypothesis that

recombination is present at all. It also allows for the explicit reconstruction of

possible events in the history of a sample, and thus allows for the identification

of recombinant sequences and discovery of patterns consistent with the effects

of sequencing errors.

Previous work on reconstructing histories using parsimony has tackled re-

combination and recurrent mutation separately. Algorithms for reconstructing

minimal ARGs generally make the infinite sites assumption, thus precluding

recurrent mutation events, and the goal is to calculate the minimum num-

ber of crossover recombinations required to explain a dataset. Even with this

constraint, the problem is NP-hard (Wang et al., 2001); exact algorithms are

practical only for small datasets (Hein, 1990; Lyngsø et al., 2005), and gen-

eral methods rely on heuristic approximations (Hein, 1993; Song et al., 2005;

Minichiello and Durbin, 2006; Parida et al., 2008; Thao and Vinh, 2019).

1.4.3.1 Exact methods

In the absence of recombination, the goal of the maximum parsimony prob-

lem is to calculate the minimum number of recurrent mutations required to

reconstruct a tree consistent with the data (denoted Pmin). The problem of

reconstructing maximally parsimonious trees is also NP-hard (Foulds and Gra-

ham, 1982); likewise, methods can only handle small datasets or are based on

heuristics (Semple and Steel, 2003, Section 5.4). PAUP* (Swofford, 2003) is

a program that implements exact (and a number of heuristic) methods for

reconstructing parsimonious trees.

In the presence of recombination, Beagle is a method that reconstructs

ARGs that are guaranteed to contain Rmin recombination nodes, using a

branch-and-bound approach. Given an input dataset, Beagle constructs se-

quences of coalescence, mutation and recombination events that could have

generated the dataset, proceeding backwards in time until the MRCA is reached.

By utilising lower bounds, the search space among possible histories is reduced,
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by abandoning any partially generated histories that are clearly not the most

parsimonious.

1.4.3.2 Heuristic methods

Heuristic algorithms for reconstructing parsimonious ARGs generally im-

plement the same ideas as for exact algorithms, but with various shortcuts to

improve efficiency. SHRUB is a program implementing a heuristic algorithm

to compute an upper bound on Rmin and output a single ARG compatible with

an input dataset (although due to stochastic steps within the search algorithm,

each run of the program may produce different output ARGs). Like Beagle,

SHRUB reconstructs histories backwards in time, but does not exhaustively

search through all possible sequences of events. Studies of accuracy using sim-

ulated and real data (Song et al., 2005) have demonstrated that the computed

upper bounds are reasonably close to Rmin for moderate sample sizes (under

100) and relatively low values of θ and ρ.

SHRUB-GC is an extension of SHRUB incorporating gene conversion events:

rather than computing an upper bound on Rmin, it seeks to minimise Tmin, de-

fined as the total number of crossover recombination or gene conversion events

required to reconstruct a dataset. The maximum gene conversion tract length

can be specified as an input parameter; note that setting this to 1 is effectively

equivalent to introducing recurrent mutation events. The program outputs

a single most parsimonious ARG identified, although as with SHRUB, due

to stochastic steps in the search algorithm, each run might produce different

results.

1.5 Recombination of SARS-CoV-2 genomes

Viral recombination occurs when a single host cell is co-infected with dif-

ferent strains of the same virus, and during replication the genomes are reshuf-

fled and combined before being packaged and released as new offspring virions,

now potentially possessing very different pathogenic properties. The COVID-

19 pandemic began following the emergence of the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2 virus) in late 2019. While the role of

recombination between different coronaviruses in the origins of SARS-CoV-2

has been widely studied, understanding its potential for ongoing recombination

within human hosts has proved difficult.
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As noted in Section 1.3.2, the detection of ongoing recombination from a

sample of genetic data is, in general, a very challenging problem. In evolu-

tionary terms, a relatively short time period has passed since the start of the

pandemic, so typical SARS-CoV-2 sequences differ only by a small number of

mutations, meaning that recombination events are likely to be undetectable

or leave only faint traces. Coronaviruses are known to have relatively high re-

combination rates (Su et al., 2016), and cell culture studies indicate that this

holds true for SARS-CoV-2 (Gribble et al., 2021). This suggests that ongoing

intra-host recombination since the start of the pandemic should be common-

place, but detection efforts have been thwarted by the slow accumulation of

genetic diversity.

Early evidence of ongoing recombination in SARS-CoV-2 was presented

by Yi (2020), who identified the presence of loops in reconstructed phyloge-

netic networks, which can arise as a consequence of recombination. A number

of more recent reports have utilised methods based on classifying sequences

into clades, and searching for those that appear to carry a mix of mutations

characteristic to more than one clade. VanInsberghe et al. (2021) identified

1 175 possible recombinants out of 537 000 analysed sequences; Varabyou et al.

(2021) identified 225 possible recombinants out of 84 000; Jackson et al. (2021)

have identified a small number of putative recombinants circulating in the UK.

These methods are sensitive to the classification of sequences into clades, do

not allow for the detection of intra-clade recombinants (thus underestimating

the overall extent of recombination), and do not incorporate a framework for

quantifying how likely it is that an observed pattern of incompatibilities has

arisen through recombination rather than recurrent mutation. A number of

studies have also failed to detect recombination signal, through the analysis of

linkage disequilibrium and similar techniques (De Maio et al., 2020; van Dorp

et al., 2020b; Nie et al., 2020; Tang et al., 2020; Wang et al., 2020; Richard et al.,

2020). In general, a relatively small number of putative recombinant sequences

have been identified to date, and there is a lack of compelling evidence for

widespread recombination in SARS-CoV-2. Given the aforementioned causes

for studies to be underpowered, the overall extent and importance of ongoing

recombination for SARS-CoV-2 remains not fully resolved.

Phylogenetic analysis of SARS-CoV-2 data largely assumes the absence of

recombination. Recombination can significantly influence the accuracy of phy-

logenetic inference (Posada and Crandall, 2002), distorting the branch lengths

of inferred trees and making mutation rate heterogeneity appear stronger

18



(Schierup and Hein, 2000). Moreover, when analysing data at the level of

consensus sequences, the genealogy of a sample is related to the transmission

network of the disease, with splits in the genealogy relating to the transmis-

sion of the virus between hosts. Models used for constructing genealogies and

inferring evolutionary rates for this type of data cannot fully incorporate po-

tentially important factors, such as geographical structure, patterns of social

mixing, travel restrictions, and other non-pharmaceutical interventions, with-

out making inference intractable. Relying on standard tree-based models can

easily lead to biased estimates, with the extent of the error due to model

misspecification being very difficult to quantify.

1.6 Overview

In Chapter 2, birth-death models for sample genealogies are considered. A

stochastic process is defined which is the time reversal of the RP, simplifying

the derivation of distributions characterising the event times in the genealogy

(some of which are known, but were computed by substantially more cumber-

some means in the literature). Then, the large population limit of the process

is considered, as the Bernoulli sampling probability tends to 0, and properties

of the genealogy are analysed in this setting.

In Chapter 3, KwARG, a heuristic parsimony-based method for recon-

structing ARG topologies, is presented. KwARG outputs ARGs that are min-

imal or near-minimal in the number of posited recombination and/or recurrent

mutation events, dropping the infinite sites assumption, differentiating it from

other existing methods. Given an input dataset of aligned sequences, KwARG

outputs a list of possible candidate solutions, each comprising a list of mu-

tation and recombination events that could have generated the dataset; the

relative proportion of recombinations and recurrent mutations in a solution

can be controlled via specifying a set of ‘cost’ parameters. Analysis using sim-

ulated data shows that the algorithm performs well when compared against

the existing methods described above, both in terms of providing close upper

bounds on Rmin and Pmin, and reconstructing local trees with good accuracy.

In Chapter 4, KwARG is used to reconstruct possible genealogical histories

for samples of SARS-CoV-2 sequences, with the goal of detecting ongoing

recombination. A statistical framework is introduced for disentangling the

effects of recurrent mutation from recombination in the history of a sample,
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providing a way of estimating the probability that ongoing recombination is

present. Applying this to samples of sequencing data collected in England and

South Africa, evidence of ongoing recombination is identified.

Discussion follows in Chapter 5.
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Chapter 2

Birth-death models for

genealogies

2.1 Introduction

In this chapter, I consider the genealogy of a sample from a population

evolving according to a birth-death process. The time to origin is assumed

to be random, with a uniform prior, and the sample size is conditioned to be

n at the present, under Bernoulli-type sampling with sampling probability ψ.

The reversed reconstructed process (RRP) is defined as a time reversal of the

RP described in Section 1.2.2. Properties of the RRP are easily derived using

standard methods for stochastic processes; this is used to re-derive several

results, such as densities of event times, which have been given elsewhere

in the literature (but the resulting proofs are significantly simpler and more

intuitive).

A simulation algorithm is proposed for (incompletely) sampled RRPs using

time rescaling. This is an alternative to existing algorithms (Hartmann et al.,

2010; Stadler, 2011), which instead utilise a CPP formulation. The relationship

between these two approaches is discussed.

Further, the correspondence between completely and incompletely sampled

RRPs through time rescaling is derived. In related work, e.g. Stadler and

Steel (2012), the approach taken of transforming birth and death rates meant

that results could be derived only for a restricted set of parameter values, in

particular for 1 − ψ ≤ µ/λ ≤ 1; this is especially restrictive when ψ is small.

Here, it is shown instead that the completely and incompletely sampled RRPs

are time-rescaled versions of each other, so distributions for the incompletely
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sampled case can be derived using a change of variables. This is used to derive

the distribution of the length of a randomly chosen pendant edge, presented

for a restricted range of λ and µ by Stadler and Steel (2012), for all parameter

values.

Next, the scenario is considered in which the underlying population size in

a birth-death process grows to infinity, but a finite sample of size n is obtained.

This can be thought of as taking the limit ψ → 0 for the Bernoulli sampling

probability; the connection is discussed with the limit as the total population

size tends to infinity for n-sampling, using results of Lambert (2018). The time

transformation between the RRP in this setting and a pure-death process with

rate 1 is discussed in detail; in this scenario, there are two distinct timescales,

separating the time of the first event from the events nearer the root of the tree.

The RRP tree becomes almost star-shaped: the terminal branch lengths tend

to infinity, while the inter-event times at the top of the tree are approximately

exponentially distributed, with rate depending on the remaining number of

lineages. The time rescaling formalism is then used to derive, analytically,

the density of the inter-event times, both for any ψ ∈ (0, 1] and in the limit

ψ → 0; both results are new. It is then demonstrated that in the limit ψ → 0,

the event times are distributed as the order statistics of n logistic random

variables, with mode log(1/ψ) (after a simple, linear, time rescaling). Further,

it is shown that the inter-event times (thus distributed as the spacings between

consecutive order statistics of n logistic random variables) are approximately

exponentially distributed, with error bounded by 1/n in terms of Kolmogorov-

Smirnov distance. The expectation of inter-event times is also shown to agree

exactly with the expectation under this approximation.

In Section 2.2, the birth-death processes being considered are formally de-

fined, and the notation used throughout is introduced. In Section 2.3, several

known results are stated for inhomogeneous birth-death processes, and the no-

tion of time rescaling for these processes is reviewed. In Section 2.4, the RRP

of birth-death processes with Bernoulli sampling is considered. In Section 2.5,

the limit of the sampling probability approaching 0 is investigated. Compari-

son between the RRP in the ψ → 0 limit and the coalescent with exponential

growth is presented in Section 2.6. Finally, discussion is presented in Section

2.7.

Illustrations of trees throughout were made using the R package ape (Par-

adis and Schliep, 2018).
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2.2 Birth-death processes and time reversal

Consider a birth-death process B with birth rate λ and death rate µ 6= λ

(shortened as BDP(λ, µ)). The process starts with one individual at time 0

and is run for time T since origin, at which point all n extant individuals

are sampled. I assume a uniform (improper) prior on T , reiterating that this

choice of prior is not novel, and has been treated, for instance, by Aldous and

Popovic (2005) for the critical case λ = µ, and Gernhard (2008a) and Wiuf

(2018) for the supercritical case. In this section, calculations are given to show

that with this choice of improper prior, after conditioning on the number of

sampled individuals n, the time since origin T ∗n of the conditioned process is

random with a particular, proper distribution. It is then demonstrated that the

BDP(λ, µ) sampled a time T ∗n since origin and conditioned to have n sampled

individuals is dual to the BDP(µ, λ), initialised with n individuals and run

until first hitting state 0. This is not a new result, but it is crucial to the idea

of considering the reconstructed process backwards in time from sampling, so

it is included for completeness.

2.2.1 Prior on the time of origin

Let Bn denote the process B conditioned to have n sampled individuals,

and denote by Bn,s this process with the sampling step happening at time s

since origin. Both the subcritical (µ > λ) and supercritical (λ > µ) cases are

considered here. Let N(s) denote the number of individuals alive in Bn at time

s since origin. Then the generating function of N(s) is given by (Athreya and

Ney, 1972, Chapter III, Section 5):

G(z) = E(zN(s)) =
µ(z − 1)e(λ−µ)s − λz + µ

λ(z − 1)e(λ−µ)s − λz + µ
.

Then

ps := P(N(s) = 0) = G(0) =

µ
λ−µ(e(λ−µ)s − 1)

1 + λ
λ−µ(e(λ−µ)s − 1)

,

and

P(N(s) = j) = (1− ps)
(

1− λ

µ
ps

)
pj−1
s .
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Analogously to Aldous and Popovic (2005, Section 2), define the probability

measure

P∗(Bn ∈ ·) :=

∫∞
0

P(Bn,s ∈ ·)P(N(s) = n)ds∫∞
0

P(N(s) = n)ds
. (2.2.1)

Making the observation that P(N(s) = j) = 1
µ

(
d
ds
ps
)

(ps)
j−1 = 1

jµ
d
ds

(pjs),

∫ ∞
0

P(N(s) = n) ds =
1

nµ
[pns ]∞0 =

 1
nµ

if µ > λ

1
nµ

(
µ
λ

)n
if λ > µ.

Then the function

fT ∗n (s) =
P(N(s) = n)∫∞

0
P(N(x) = n)dx

=


nµe(µ−λ)s[ µ

µ−λ (e(µ−λ)s−1)]
n−1

[1+ µ
µ−λ (e(µ−λ)s−1)]

n+1 if µ > λ

nλe(λ−µ)s[ λ
λ−µ (e(λ−µ)s−1)]

n−1

[1+ λ
λ−µ (e(λ−µ)s−1)]

n+1 if λ > µ

(2.2.2)

is a probability density on [0,∞) for the time since origin T ∗n , and (2.2.1) can

be rewritten as

P∗(Bn ∈ ·) =

∫ ∞
0

fT ∗n (s) P(Bn,s ∈ ·)ds.

Thus, after conditioning on the sample size n, fT ∗n (s) is a proper density for

T ∗n .

2.2.2 Time reversal

The population size of the BDP(λ, µ) is a continuous-time Markov chain

with the transition rates

qi,i+1 = λi, qi,i−1 = µi.

As above, denote by {N(s), 0 ≤ s ≤ T ∗n} the corresponding process associated

with the complete tree, counting the population size up to the time of sampling,

making the jump from 0 to 1 at time 0. Consider also the continuous-time

Markov chain {N̂n(τ), 0 ≤ τ ≤ Tn}, which has the reversed transition rates

qi,i+1 = µi, qi,i−1 = λi,

started in state N̂n(0) = n and run until the first hitting time Tn of state 0.

Then, mirroring Aldous and Popovic (2005, Lemma 2) for the critical case,
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the following holds:

Lemma 2.2.1.

{N(T ∗n − τ), T ∗n ≥ τ ≥ 0} d
= {N̂n(τ), 0 ≤ τ ≤ Tn},

and in particular T ∗n
d
= Tn, where

d
= denotes equality in distribution.

Proof. Fix the event times τ0, . . . , τM , with τM > τM−1 > . . . τ1 > τ0 = 0. De-

fine the corresponding sequence of positive integers kM = 1, kM−1, . . . , k2, k1 =

n, with |km − km−1| = 1 and kM+1 = 0, describing the population size trajec-

tory of the realisation of the birth-death process; reading from left to right,

this has b + 1 increases of size 1, and n − 1 + b decreases of size 1 for some

integer b ≥ 0 with n+ 2b = M . Then the event

{as τ decreases, N(T ∗n−τ) jumps from km+1 to km for τ ∈ [τm, τm+

dτm] (for all M ≥ m ≥ 1) and makes no other jumps}

has measure

dτM ·
2∏

m=M

(
e−km(λ+µ)(τm−τm−1) km dτm−1

)
· λb+1 µn−1+b · e−k1τ1 , (2.2.3)

where dτM comes from the uniform prior, and ignoring terms of o(dτm). For

the reversed process N̂n(τ), the event

{as τ increases, N̂n(τ) jumps from km to km+1 in the interval τ ∈
[τm, τm + dτm] (for all 1 ≤ m ≤M) and makes no other jumps}

has probability

M∏
m=1

(
e−km(λ+µ)(τm−τm−1) kmdτm

)
· µn−1+b λb+1, (2.2.4)

ignoring terms of o(dτm); this is because reading the sequence of km’s from

right to left, there are n− 1 + b increases of size 1 and b + 1 decreases of size

1. The measure (2.2.3) is 1/k1 = 1/n times (2.2.4), so after conditioning the

probability measures of the two events are equal.

This demonstrates the duality between the BDP(λ, µ) started with 1 indi-

vidual at time 0 and reaching n individuals after the random time T ∗n (running
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“forwards” to the time of sampling), and the BDP(µ, λ), started from n in-

dividuals at time 0 and run until it reaches state 0 (running “backwards in

time” from the sample). Next, the reconstructed process is considered, which

tracks the genealogy of only the sampled individuals, making use of the duality

between the forwards-in-time and backwards-in-time formulations.

2.2.3 The reversed reconstructed process (RRP)

The RP (forwards in time) describes the number of lineages in the BDP(λ, µ),

which will have at least one surviving descendant in the sample. Nee et al.

(1994) identified that the RP forwards in time is generated by an underlying

time-inhomogeneous pure birth process, with birth rate per lineage at time s

given by

λP1(s, T ) := λ · P(a single lineage born at time s is not extinct by time T )

=
λ(λ− µ)

λ− µe−(λ−µ)(T−s)

=
λe(λ−µ)(T−s)

1 + λ
λ−µ(e(λ−µ)(T−s) − 1)

, (2.2.5)

where T is the time of sampling and P1(s, T ) is given by Kendall (1948). The

state of the process at time s is the number of individuals alive at s with at

least one descendant at T , with events corresponding to transitions from state

j to j + 1, j ≥ 1.

It is advantageous to consider the process running backwards in time from

the present, conditioning on the sample size n, and not explicitly conditioning

on the time of origin of the process (which is generally unknown, and for

which a uniform improper prior is imposed). The focus will thus be on the

properties of the reversed reconstructed process, which is defined as the process

tracking the genealogy of the initial population of the BDP(µ, λ), initialised at

n individuals and run until the first hitting time of state 0. It is straightforward

to show, similarly to Lemma 2.2.1, that the RP with birth rate (2.2.5) run for

time T ∗n and reaching state n at the time of sampling is dual to the RRP which

is started in state n at time 0 and stopped at the first hitting time of state 0,

with death rate obtained by replacing T − s by τ in (2.2.5) to account for the

time reversal. Note that the time index τ increases into the past, and τ = 0

denotes the time of sampling. The RRP is thus an inhomogeneous pure-death
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process, with death rate per lineage given by

mβ(τ) =
λe(λ−µ)τ

1 + λ
λ−µ(e(λ−µ)τ − 1)

. (2.2.6)

The subscript β refers to the time scale on which the RRP is measured.

To obtain the death rate of the RRP with Bernoulli sampling (where each

lineage is sampled with a fixed probability ψ at time 0), replace P1(s, T ) with

the relevant probability Pψ(s, T ) as derived by Yang and Rannala (1997):

Pψ(s, T ) =
ψ(λ− µ)

ψλ− (µ− (1− ψ)λ)e−(λ−µ)(T−s) =
ψe(λ−µ)(T−s)

1 + ψλ
λ−µ

(
e(λ−µ)(T−s) − 1

) ,
which, following the same reasoning as for the case of complete sampling, gives

the RRP death rate:

mγ(τ) =
ψλe(λ−µ)τ

1 + ψλ
λ−µ(e(λ−µ)τ − 1)

. (2.2.7)

The subscript γ now refers to the units in which time is measured for the RRP

with Bernoulli sampling. It will later be described how the two processes are

linked through transformation of time, i.e. that a realisation of the completely

sampled RRP can be transformed to a realisation of the Bernoulli sampled

RRP, through rescaling time by some function g such that g(γ) = β. Thus,

the subscripts denote the time scale of the corresponding process: Table 2.1

summarises the time units corresponding to each type of RRP, and introduces

the notation used throughout.

For instance, denote by BDP(λ, µ, ψ) the birth-death population process

where each individual divides independently with rate λ, dies independently

with rate µ < λ, with the rates measured in time units γ; at time 0, each

surviving individual is sampled with a fixed probability ψ. The corresponding

RRP, i.e. the process tracing out the genealogy of the sample from this popu-

lation backwards in time from 0, is denoted by Xγ
ψ := (Xγ

ψ(τ) : τ ≥ 0). Let Xξ
ψ

denote the same process, but with time rescaled to units of ξ = g(γ) for some

time transformation g, i.e. Xξ
ψ(g(τ)) = Xγ

ψ(τ). The death rates of Xγ
ψ and Xξ

ψ

are denoted mγ and mξ, respectively, with the subscripts denoting the time

scale on which the rates are measured. The relationships between the time

scales for the RRPs in Table 2.1 are presented in Appendix A for reference.

For the case of a critical branching process, measured in time units of α,
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Population process Time unit Notation RRP notation
Yule process,
birth rate 1

t Yule(1) Y

Critical branching process,
birth = death rate λ, sam-
pling probability ψ

α CBP(λ, ψ) Zα
ψ

Birth-death process,
birth rate λ, death rate µ,
complete sampling

β BDP(λ, µ, 1) Xβ
1

Birth-death process,
birth rate λ, death rate µ,
sampling probability ψ

γ BDP(λ, µ, ψ) Xγ
ψ

Birth-death process,
birth rate λ′, death rate µ′,
with λ′ − µ′ = 1
sampling probability ψ

δ BDP(λ′, µ′, ψ) Xδ
ψ

Table 2.1: Summary of RRP notation

the death rate is given by taking the limit λ→ µ in (2.2.7):

mα(τ) =
ψλ

1 + ψλτ
.

Note that for the case of a subcritical process (with λ < µ), the popula-

tion process backwards in time is supercritical. To ensure that the population

reaches a common ancestor, the process must be conditioned on ultimate ex-

tinction; it can be shown that this is equivalent to swapping the birth and

death rate (Waugh, 1958), indeed this is clear from (2.2.2) for the time of

origin. Thus, the RRP death rate in the subcritical case will be the same as

(2.2.7) but with λ and µ interchanged.

2.3 Background

In this section, the relevant known technical results, which will later be

relied on, are reviewed.

2.3.1 Inhomogeneous pure-death processes

Consider a time-inhomogeneous pure-death process, with time measured

in units ξ, starting with n individuals alive at time 0. Each individual dies
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independently at rate mξ(τ); if there are j individuals at time τ , the intensity

is jmξ(τ). The rate function of the process is given by

ρξ(τ) =

∫ τ

0

mξ(x)dx.

The transition probabilities, i.e. the probability of going from n to j individuals

in time τ , are given by a binomial distribution (Bailey, 1964, p.112):

Pnj(τ) =


(
n
j

)(
1− e−ρξ(τ)

)n−j(
e−ρξ(τ)

)j
for j ≤ n,

0 otherwise,
(2.3.1)

with e−ρξ(τ) being the probability that a lineage has not died by time τ . The

distribution of time to origin is (Bailey, 1964, p.112):

FTn(τ) = P (Tn < τ) =
(
1− e−ρξ(τ)

)n
, (2.3.2)

and, by differentiating, the pdf is

fTn(τ) = nmξ(τ)e−ρξ(τ)
(
1− e−ρξ(τ)

)n−1
. (2.3.3)

The density of the time of the k-th event is given by

fTk(τ) =

(
n

k

)
· kmξ(τ)e−ρξ(τ)

(
1− e−ρξ(τ)

)k−1︸ ︷︷ ︸
k-th lineage dies at τ

·
(
e−ρξ(τ)

)n−k︸ ︷︷ ︸
n− k survive for at least τ

=

(
n

k

)
k mξ(τ)

(
1− e−ρξ(τ)

)k−1(
e−ρξ(τ)

)n−k+1
. (2.3.4)

2.3.2 Time rescaling

Consider a pure-death inhomogeneous process with death rate mξ(τ), with

time measured in units of ξ. Suppose that time is rescaled in units of ζ = g(ξ),

where g is strictly monotonic and differentiable. The death rate of the process

then becomes, using a change of variables:

mζ(τ) = mξ(g
−1(τ))

∣∣∣∣ ddτ g−1(τ)

∣∣∣∣.
The time rescaling theorem (Meyer, 1971; Papangelou, 1972) states that

any inhomogeneous point process with an integrable intensity function can be
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rescaled to a Poisson process with unit rate. The RRP can be thought of as

a point process, with intensity given by its inhomogeneous death rate times

the number of lineages. If the RRP (of any population process) has death rate

mξ(τ), then rescaling time via the transformation g = ρξ rescales the RRP

to a homogeneous pure-death process with death rate per lineage equal 1 (a

time-reversed Yule rate 1 process).

2.3.3 Time-reversed Yule rate 1 process

Define the time-reversed Yule rate 1 process as a pure death process where

each lineage dies independently at rate 1, denoted Y . This is the RRP of a

forwards-in-time Yule process with birth rate 1. The inter-event time during

which there are exactly j lineages is exponentially distributed with rate j.

Using (2.3.3), the time to origin has density:

fTn(τ) = ne−τ (1− e−τ )n−1,

and using (2.3.4), the time to k-th event has density:

fTk(τ) =

(
n

k

)
k
(
1− e−τ

)k−1(
e−τ
)n−k+1

. (2.3.5)

The expectation of time to origin is
∑n

j=1
1
j
. These results are identical to

those derived by Gernhard (2008b).

2.4 Birth-death process with Bernoulli sam-

pling

The RRP Xγ
ψ of a supercritical birth-death process is now considered in

detail. First, using the formulation introduced in Section 2.2.3, some known

properties of the process are re-derived, which will be readily available from

the results given in Section 2.3. Then, using the fact that the RRP Xγ
ψ is a

time rescaling of the RRP associated with a Yule rate 1 process, a simulation

algorithm is proposed. Finally, using time rescaling, the relationship between

completely and incompletely sampled RRPs is considered.

30



2.4.1 Properties of the process

Set T0 = 0 and for k ∈ {1, . . . , n} denote by Tk the time of the k-th event,

backwards from the present time 0. At Tk, the number of lineages decreases

from n− k+ 1 to n− k. For k ∈ {0, . . . n− 1}, let Wk := Tk+1−Tk denote the

inter-event time.

2.4.1.1 Transition probabilities and densities of event times

The pure-death process formulation of Xγ
ψ is used to derive distributions

characterising this process. The transition probabilities are, using (2.3.1):

Pij(τ) =


(
i
j

)(
1− e−ργ(τ)

)i−j(
e−ργ(τ)

)j
for j ≤ i

0 otherwise,

where, by integrating the death rate in (2.2.7),

ργ(τ) =

∫ τ

0

mγ(x)dx = log

(
1 +

ψλ

λ− µ

(
e(λ−µ)τ − 1

))
, (2.4.1)

and

e−ργ(τ) =
1

1 + ψλ
λ−µ(e(λ−µ)τ − 1)

.

For τ →∞ and fixed ψ ∈ (0, 1], ργ(τ)→∞ and e−ργ(τ) → 0, so Pij(τ)→ 0 for

all j 6= 0, and Pi0(τ) → 1. This implies that two individuals sampled at the

present will eventually find a common ancestor in the past with probability 1.

The distribution of time to origin, using (2.3.2), is given by:

Fψ
Tn

(τ) = P (Tn < τ) =
(
1− e−ργ(τ)

)n
=

(
ψλ
λ−µ(e(λ−µ)τ − 1)

1 + ψλ
λ−µ(e(λ−µ)τ − 1)

)n

,

and its density, using (2.3.3), is

fψTn(τ) =
n · ψλe(λ−µ)τ

1 + ψλ
λ−µ(e(λ−µ)τ − 1)

· 1

1 + ψλ
λ−µ(e(λ−µ)τ − 1)

(
ψλ
λ−µ(e(λ−µ)τ − 1)

1 + ψλ
λ−µ(e(λ−µ)τ − 1)

)n−1

= nψλe(λ−µ)τ

[
ψλ
λ−µ

(
e(λ−µ)τ − 1

)]n−1

[
1 + ψλ

λ−µ

(
e(λ−µ)τ − 1

)]n+1 . (2.4.2)

Note that this agrees with (2.2.2) for the case ψ = 1. This result is also
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obtained in Stadler (2009, Lemma 3.1). Although the outcome is identical, the

derivation given above is significantly simpler, and follows directly from the

properties of the RRP as a stochastic process. In particular, the distribution

function is immediately obtained from knowing the death rate; moreover, to

obtain the pdf there is no need to integrate over the prior for the time of origin,

as this is implicit in the time reversal.

Using (2.3.4), the waiting time to the k-th event is given by:

fψTk(τ) =

(
n

k

)
k mγ(τ)

(
1− e−ργ(τ)

)k−1(
e−ργ(τ)

)n−k+1

=

(
n

k

)
k

ψλe(λ−µ)τ

1 + ψλ
λ−µ(e(λ−µ)τ − 1)

(
ψλ
λ−µ(e(λ−µ)τ − 1)

1 + ψλ
λ−µ(e(λ−µ)τ − 1)

)k−1

·

·

(
1

1 + ψλ
λ−µ(e(λ−µ)τ − 1)

)n−k+1

=

(
n

k

)
k ψλe(λ−µ)τ

[
ψλ
λ−µ

(
e(λ−µ)τ − 1

)]k−1

[
1 + ψλ

λ−µ

(
e(λ−µ)τ − 1

)]n+1 . (2.4.3)

This agrees with the result derived in Gernhard (2008a, Theorem 4.1) for the

case of complete sampling; again, note that the result follows almost immedi-

ately from the properties of the RRP, which removes the need for deriving the

related distributions by hand.

2.4.1.2 Simulating from the RRP

As described in Section 2.3.2, applying the time transformation g1 = ργ

rescales the RRP Xγ
ψ to the time-reversed Yule rate 1 process Y . From (2.4.1),

this transformation is given by:

t = g1(γ) = log

(
1 +

ψλ

λ− µ

(
e(λ−µ)γ − 1

))
,

γ = g−1
1 (t) = ρ−1

γ (t) =
1

λ− µ
log

(
1 +

λ− µ
ψλ

(
et − 1

))
, (2.4.4)

and

Xγ
ψ(g−1

1 (τ)) = Y (τ) and Xγ
ψ(τ) = Y (g1(τ)),

meaning that Xγ
ψ rescaled in time units g1(γ) has the same death rate as Y .

To see why this works, the death rate of Xγ
ψ when measured in units t = g1(γ)
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becomes:

mt(τ) = mγ(g
−1
1 (τ))

∣∣∣∣ ddτ g−1
1 (τ)

∣∣∣∣
= mγ(ρ

−1
γ (τ))

∣∣∣∣ ddτ ρ−1
γ (τ)

∣∣∣∣
= mγ(ρ

−1
γ (τ))

/
mγ(ρ

−1
γ (τ))

= 1.

Note also that in the complete process, birth, death, and sampling events

affect all individuals with equal probability, so the topologies of RRP trees

are equal in law to those of Yule and coalescent trees (Aldous, 1996), and

can thus be generated backwards in time by merging pairs of lineages selected

uniformly at random. This suggests that to simulate from Xγ
ψ, it is possible to

first simulate from Y , and then rescale the event times using the transformation

given by (2.4.4). The method is summarised as Algorithm 1. This provides

an alternative to the algorithms of Hartmann et al. (2010) and Stadler (2011),

where first the time of origin is drawn from its distribution, and then the

coalescent point process formulation is used to obtain the event times.

Algorithm 1: Simulating from the RRP Xγ
ψ

Input: n individuals at time 0
Output: Realisation of a genealogy from the RRP Xγ

ψ

1 Draw W̃j ∼ Exp(n− j) for j = 0, . . . , n− 1, being the waiting times of
Y ;

2 Compute the event times T̃j+1 =
∑j

i=0 W̃i;

3 Rescale the event times as Tk = 1
λ−µ log

(
1 + λ−µ

ψλ

(
exp
(
T̃k

)
− 1
))

for

k = 1, . . . , n;
4 Construct a tree from T1, . . . , Tn by choosing a pair of lineages

uniformly at random to coalesce at each event time.

Note that one can first derive distributions of interest for Y , and then

use the change of variables given by (2.4.4) to obtain the equivalent results

for Xγ
ψ. This will be used to derive the distribution of inter-event times Wk,

analytically, in Section 2.5.3.
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2.4.1.3 Relationship with coalescent point processes

Gernhard (2008a) gives the following CPP formulation for a supercritical

process. To simulate an RRP for a sample of size n, first condition on the

sample size and a time of origin Tn (possibly drawn from the distribution

(2.3.2)), and then draw the times of the n−1 bifurcations in the tree i.i.d. from

some specific density depending on Tn. Lambert and Stadler (2013) further

give this density for the case of Bernoulli sampling. In a sense, conditioning

on the time of origin, the event times can thus be simulated “horizontally”,

one-by-one for each sampled lineage, rather than “vertically”, i.e. forwards or

backwards in time.

The formulation of the RRP as a pure-death process also allows for simu-

lation of the RRP lineage-by-lineage, conditioning on the sample size but not

on the time of origin (producing a tree including the root edge). Because each

lineage dies independently from the others, in order to simulate from Xγ
ψ for a

sample of size n, the death times of each of the n lineages can be simulated in-

dependently, and then the lineages merged uniformly at random at each event

time to create the tree. The death time of one lineage has density:

fψT(1)(τ) =
ψλe(λ−µ)τ[

1 + ψλ
λ−µ

(
e(λ−µ)τ − 1

)]2 , (2.4.5)

which is obtained from (2.4.2) by substituting n = 1; this can be simulated by

drawing from an exponential rate 1 density, and rescaling time using (2.4.4).

Therefore the relationship between CPP and the pure-death formulation is

very direct. With the pure-death formulation, each of the n lineages dies

independently with the same death rate. Conditioning on a time of origin Tn,

the lineages still die independently, with death rate amended so that each event

happens before Tn. The latter is exactly the CPP formulation of Gernhard

(2008a).

The CPP formulation described by Lambert and Stadler (2013) also gives

a method for simulating a Bernoulli RRP without conditioning on the sample

size, as follows. Given a time of origin T , draw realisations Hψ
1 , . . . , H

ψ
N of a

random variable Hψ, with the stopping criterion that Hψ
N is the first realisation

that is greater than T . Then the Hψ
1 , . . . , H

ψ
N−1 are the event times up to the

MRCA for a sample of N lineages in a Bernoulli sampled RRP, conditioned on

time of origin T . Note that in this case, setting p = P (Hψ > T ), the number of
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sampled lineages is geometric with mass function (1− p)n−1p, and the density

of Hψ given in Lambert and Stadler (2013, p.122) is exactly that in (2.4.5).

The pure-death formulation of the RRP highlights two differences between

the genealogy of a birth-death process and the coalescent. Firstly, viewing the

basic coalescent as a backwards in time pure-death process with rate j(j−1)
2

when there are j lineages, at each point in time the death rate of each individ-

ual lineage depends on the total number of lineages remaining; this dependence

cannot be removed by conditioning on the time of origin (for n > 2). This

implies that the process cannot be simulated by drawing the death time of

each lineage independently from some density, as for the RRP. It is conjec-

tured (Lambert and Stadler, 2013) that the coalescent does not have a CPP

representation.

Secondly, the coalescent with variable population size, as described by Grif-

fiths and Tavaré (1994), can be described as an inhomogeneous pure-death pro-

cess, where the death rate is quadratic in the number of lineages and depends

on a population size function. Because the death rate of the RRP is linear in

the number of lineages, there is no population size function which would equate

the two models exactly. The differences between the RRP and the coalescent

with exponential growth is investigated in further detail in Section 2.6.

2.4.2 Relationship between completely and incompletely

sampled RRPs

Stadler (2009) noted that there is a relationship between the RRP of the

incompletely sampled BDP(λ, µ, ψ), and the RRP of the completely sampled

BDP(λ̂, µ̂, 1), through the following transformation of the birth and death

parameters:

λ̂ = ψλ, µ̂ = µ− λ(1− ψ). (2.4.6)

Substituting (2.4.6) as the birth and death rates into (2.2.6) gives (2.2.7).

Thus, the resulting process looks like the RRP of an incompletely sampled

BDP(λ, µ, ψ) population process. However, as noted by Stadler and Steel

(2012), µ̂ can be negative (in particular, for very small values of ψ); for in-

stance, with the parameters used in Figure 1.2, µ̂ = −1/60. In this case, the

interpretation as an RRP of some birth-death process is problematic. Stadler

and Steel (2012, 2019) discuss that when distributions are derived for the com-
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pletely sampled process, this reparameterisation trick can be used to obtain

the equivalent distributions for a process with incomplete sampling, but only

for µ
λ
≥ 1 − ψ. Thus, this method of transforming the birth and death rates

does not always produce a valid mapping between completely and incompletely

sampled RRPs.

To avoid this issue, instead of transforming the birth and death parame-

ters directly, I use a transformation of time, and demonstrate the relationship

between the RRPs Xγ
ψ and Xβ

1 . This avoids introducing restrictions on the

values of the parameters (λ, µ, ψ), and so allows distributions derived for the

completely sampled process to be transformed for the case of incomplete sam-

pling.

2.4.2.1 Time transformation from Xψ to X1

Define the transformation of time units g2 as:

β = g2(γ) =
1

λ− µ
log
(
1 + ψ(e(λ−µ)γ − 1)

)
, (2.4.7)

γ = g−1
2 (β) =

1

λ− µ
log

(
1 +

1

ψ
(e(λ−µ)β − 1)

)
.

This is a valid time transformation with γ = 0 ⇐⇒ β = 0, and γ = β when

ψ = 1. Using a change of variable in (2.2.7), the death rate is:

mβ(τ) = mγ(g
−1
2 (τ)) ·

∣∣∣∣dg−1
2 (τ)

dτ

∣∣∣∣
=
ψλ(1 + 1

ψ
(e(λ−µ)τ − 1))

1 + λ
λ−µ(e(λ−µ)τ − 1)

·
1
ψ
e(λ−µ)τ

1 + 1
ψ

(e(λ−µ)τ − 1)

=
λe(λ−µ)τ

1 + λ
λ−µ(e(λ−µ)τ − 1)

.

This is the death rate of the completely sampled RRP Xβ
1 as given in (2.2.6).

Thus,

Xβ
1 (τ) = Xγ

ψ(g−1
2 (τ)),

Xβ
1 (g2(τ)) = Xγ

ψ(τ).

The RRP of a BDP(λ, µ, ψ) process is a time rescaled version of the RRP of

a completely sampled BDP(λ, µ, 1) process. In effect, introducing incomplete
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sampling is equivalent to non-linearly rescaling the RRP of the BDP(λ, µ, 1)

process using the time transformation (2.4.7).

2.4.2.2 Deriving results for Xψ from X1

Using the time transformation approach, distributions can be derived for

Xβ
1 with complete sampling, and then the equivalent distribution results for

Xγ
ψ can be obtained through a simple change of variables. As an example,

Stadler and Steel (2012) derive the density of the length of a randomly chosen

pendant edge (an edge adjacent to a sampled individual) for an incompletely

sampled tree with the restriction 1− ψ ≤ µ
λ
≤ 1; I complete the proof for the

case 0 ≤ µ
λ
≤ 1− ψ.

Proposition 2.4.1. The density of the length of a randomly chosen pendant

edge, E, of the RRP Xγ
ψ for any 0 ≤ µ < λ and ψ ∈ (0, 1] is

fψE (τ) =
2ψλ(λ− µ)3e(λ−µ)τ(

λψe(λ−µ)τ − [µ− λ(1− ψ)]
)3 .

Proof. Mooers et al. (2012) give the density of the length of a pendant edge

of a completely sampled RRP Xβ
1 as:

f 1
E(τ) =

2λ(λ− µ)3e(λ−µ)τ

(λe(λ−µ)τ − µ)3
. (2.4.8)

Using the time rescaling (2.4.7) and a change of variable, for Xγ
ψ this becomes:

fψE (τ) = f 1
E(g2(τ))

∣∣∣∣d g2(τ)

dτ

∣∣∣∣
=

2λ(λ− µ)3[1 + ψ(e(λ−µ)τ − 1)](
λ
[
1 + ψ(e(λ−µ)τ − 1)

]
− µ

)3 ·
ψe(λ−µ)τ

1 + ψ(e(λ−µ)τ − 1)

=
2ψλ(λ− µ)3e(λ−µ)τ(

λψe(λ−µ)τ − [µ− λ(1− ψ)]
)3 .

Equivalence with the result of Stadler and Steel (2012, Section 4) for µ
λ
≥

1− ψ is easily checked by substituting the birth rate λ̂ and death rate µ̂ into

(2.4.8).
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2.5 Sampling from large populations

In this section, the setting is considered where the total population size is

very large compared to the sample size n. This is a scenario often encountered

in practice when collecting genetic data, particularly from viral populations,

when the population size is unknown but can be presumed very large. An

example will be mentioned within the discussion in Section 2.7.

This situation is to be distinguished from the limit as the sample size grows

to infinity, which has been considered by Wiuf (2018). The scenario of interest

here is when the total population tends to infinity, but a finite sample of

size n is obtained. This can be interpreted as either the Bernoulli sampling

probability ψ going to 0, or the total population size growing to infinity in the

case of n-sampling. The similarity between these two regimes will be discussed

in the following section.

In this section, for the sake of readability of the expressions, time is rescaled

linearly in units of δ = (λ − µ)γ, writing λ′ = λ
λ−µ , µ

′ = µ
λ−µ with λ′ − µ′ =

1. This simplifies the formulae, and is easy to reverse within any derived

expressions. The RRP on this timescale is denoted Xδ
ψ, with death rate

mδ(τ) =
ψλ′eτ

1 + ψλ′(eτ − 1)
.

The time transformation between Xδ
ψ and Y is given by g3 = ρδ, with

t = g3(δ) = log
(
1 + ψλ′(eδ − 1)

)
, (2.5.1)

δ = g−1
3 (t) = ρ−1

δ (t) = log

(
1 +

1

ψλ′
(et − 1)

)
. (2.5.2)

2.5.1 Sampling method

Lambert (2018) showed the following relationship between the two sam-

pling scenarios when considered from a CPP perspective. Bernoulli sampled

trees can be generated using the CPP formulation; that is, conditioning on a

time of origin T , the event times are i.i.d. according to a specific density (as

described in Section 2.4.1.3). For n-sampling, if a CPP tree was generated with

complete sampling (conditioned to have size at least n), and then n lineages

chosen uniformly at random, then this would not have a CPP formulation

(Lambert and Stadler, 2013). However, the genealogy of such an n-sample

can be obtained by first drawing a sampling probability Ψ = y from a specific
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distribution, and then generating a Bernoulli CPP of size n with sampling

probability y. The distribution of Ψ has the form (Lambert, 2018, Theorem

3)
n(1− a)yn−1

(1− a(1− y))n+1
,

where a = P (H < T ) is the probability that the random variable corresponding

to event times (in the complete tree) takes a value less than the specified time

of origin.

The underlying population (of the complete tree) growing to infinity can

be seen to correspond to the time of origin of the complete process growing

to infinity, and thus the probability a = P (H < T ) approaching 1. In this

case, the density of Ψ tends to a point mass at y = 0. This argument implies

that the behaviour of the RRP for Bernoulli sampling with ψ → 0, and for

n-sampling when the underlying population grows to infinity, should be the

same.

2.5.2 Relationship between Xδ
ψ and Y for small ψ

The effect of the time rescaling between Xδ
ψ and the time-reversed Yule

rate 1 process Y is examined when ψ → 0. In the following, it is assumed that

λ′ is fixed and very small compared to 1/ψ.

Figure 2.1: Left: realisation of Xδ
ψ with ψ = e−20, λ′ = 2. Right: same tree,

rescaled in time units given by (2.5.1). Intervals delineated by blue lines in
the left panel are rescaled to intervals of equal length in the right panel.

Consider the time rescaling given by (2.5.1): the process Xδ
ψ rescaled in

units of g3(δ) is a time-reversed Yule rate 1 process. This rescaling is illustrated
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in Figure 2.1 for a small value of ψ; the left panel shows a realisation of Xδ
ψ

for n = 10. The right panel shows the same tree, but the intervals delineated

by blue lines in the left panel are rescaled to intervals of equal length in the

right panel.

Using the identity log(1 + x) = log(x) + log(1 + 1/x) and a Taylor expan-

sion in ψλ′ around 0, (2.5.2) gives:

δ − log

(
1

ψλ′

)
= log

(
et − 1

)
+O(ψλ′). (2.5.3)

For small t, et − 1 ≈ t and the transformation behaves as δ − log(1/(ψλ′)) ≈
log(t). For large t, log(et − 1) ≈ t, so δ − log(1/(ψλ′)) ≈ t. Thus, there are

two time regimes, with a smooth transition between them.

0 1 2 3 4 5 6
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δ

Figure 2.2: Left: solid black line shows time rescaling between δ and t (time
units of Y ). In blue: line δ = t−log(ψλ′). In red: curve δ = log(t)−log(ψλ′).
Dashed black line shows δ = − log(ψλ′). Dots show simulated event times.
Right: tree corresponding to the simulated event times. Parameters used:
ψ = e−20, λ′ = 2, µ′ = 1.

This can be understood as follows. Under Bernoulli sampling, the sample

size n is of order ψN , where N is the underlying population size in the complete

tree. In the limit ψ → 0, N is therefore O(ψ−1); this is very large compared to

n, and no coalescences happen for a very long time: the probability of going

from n to n− 1 individuals in time τ is, from (2.3.1):

Pn,n−1(τ) =
(
1− e−ρδ(τ)

)(
e−ρδ(τ)

)n−1
,
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where

e−ρδ(τ) =
1

1 + ψλ′(eτ − 1)

is the probability of no event happening. This is very close to 1 until τ grows

to the order of log(1/ψ).

With the time transformation above, a step of one unit of t approximately

corresponds to taking a time step of log(1/ψ) in units of δ. At this point,

e−ρδ(τ) ≈ (1 + λ′)−1 and the sample starts to coalesce. Then steps in t become

roughly equal to steps in δ. In essence, we zoom back to a time when the

underlying population was of order n, and then slow back down to linear time.

Figure 2.2 shows an example of the time rescaling (2.5.2) for ψ = e−20, λ′ =

2, µ′ = 1. The left panel shows δ against t; the horizontal axis is the time scale

of the Y process, the vertical axis is the time scale of Xδ
ψ. The red line shows

the curve δ = log(t) + log(1/(ψλ′)); the blue line shows δ = t + log(1/(ψλ′)).

The circles indicate a set of simulated event times for a sample size n = 10.

For instance, the time to first event is T1 ∼ Exp(n) on the horizontal axis;

this is rescaled using (2.5.2) to get the corresponding time on the vertical axis.

The right panel shows the corresponding RRP tree.

As ψ → 0, log(1/(ψλ′))→∞, so the rescaled time of the first event in units

of δ grows to infinity, and the reconstructed tree of Xδ
ψ becomes almost star-

shaped. The terminal branches dominate the tree, but the inter-event times

near the origin of the tree are still approximately exponentially distributed with

rate depending on the remaining number of lineages, as the time rescaling for

large t is approximately linear.

2.5.3 Density of inter-event times in the limit ψ → 0

The density of inter-event times is now derived analytically, first for any

ψ ∈ (0, 1], then for the limit ψ → 0.

Theorem 2.5.1. The density of waiting times Wk = Tk+1−Tk between events

k and k + 1, k ∈ {0, . . . , n− 1}, for the RRP Xδ
ψ with ψ ∈ (0, 1], is:

fψWk
(w) =

(n− k)

(n+ 1)
e−(n−k)w

[
(n+1)2F1(n−k+1, n−k+1;n+1; (1−ψλ′)(1−e−w))

− (1− ψλ′)(n− k + 1)2F1(n− k + 1, n− k + 2;n+ 2; (1− ψλ′)(1− e−w))
]
,

(2.5.4)
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where 2F1 is the ordinary hypergeometric function. In the case of a critical

branching process with birth and death rate λ and RRP Zα
ψ , this becomes:

f̂ψWk
(v) =

(n− k + 1)(n− k)

n+ 1
ψλ · 2F1(n− k + 1, n− k + 2;n+ 2;−ψλv).

Proof. In the time-reversed Yule rate 1 process, the density of waiting times

between the k-th and (k+ 1)-th event, k = 0, . . . , n− 1, conditional on Tk = s

is

fWk
(t|s) = (n− k)e−(n−k)((s+t)−s) = (n− k)e−(n−k)t. (2.5.5)

Using the time transformation (2.5.1), in units of δ the waiting time is

w = ρ−1
δ (s+ t)− ρ−1

δ (s) = log

(
ψλ′ + es+t − 1

ψλ′ + es − 1

)
.

Rearranging, this gives

t = log
(
ew
[
1− (1− ψλ′)e−s

]
+ (1− ψλ′)e−s

)
,

and
dt

dw
=

ew(1− (1− ψλ′)e−s)
ew(1− (1− ψλ′)e−s) + (1− ψλ′)e−s

.

Thus, by using a change of variables in (2.5.5) and writing φ = 1− ψλ′,

fψWk
(w|s) = (n− k)ew

[
1− (1− ψλ′)e−s

]
·

·
[
ew(1− (1− ψλ′)e−s) + (1− ψλ′)e−s

]−(n−k+1)

= (n− k)ew
[
1− φe−s

][
ew(1− φe−s) + φe−s

]−(n−k+1)
.

Since s is the time of the k-th event in the time-reversed Yule rate 1 process,

it has density given by (2.3.5):

fTk(s) =

(
n

k − 1

)
(n− k + 1)

(
1− e−s

)k−1(
e−s
)n−k+1

.
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The marginal distribution of Wk is thus

fψWk
(w) =

∫ ∞
0

fψWk
(w|s) fTk(s)ds

=

(
n

k − 1

)
(n− k + 1)(n− k)

∫ ∞
0

ew
(1− φe−s)(1− e−s)k−1(e−s)n−k+1(

ew(1− φe−s) + φe−s
)n−k+1

ds︸ ︷︷ ︸
A

.

Integrating using the change of variables u = e−s:

A = ew
∫ 1

0

(1− φu)(1− u)k−1un−k(
ew(1− φu) + φu

)n−k+1
du

= e−(n−k)w

∫ 1

0

(1− φu)(1− u)k−1un−k(
1− φu(1− e−w)

)n−k+1
du

= e−(n−k)w

∫ 1

0

[
(1− u)k−1un−k(

1− φu(1− e−w)
)n−k+1

− φ (1− u)k−1un−k+1(
1− φu(1− e−w)

)n−k+1

]
du.

Using the following identity for the ordinary hypergeometric function (Abramowitz

and Stegun, 1964, p.558)

2F1(a, b, c, x) =
Γ(c)

Γ(c− a)Γ(a)

∫ 1

0

(1− t)c−a−1ta−1

(1− xt)b
dt

gives

A = e−(n−k)w (k − 1)!(n− k)!

(n+ 1)!

[
(n+ 1)2F1(n− k + 1, n− k + 1;n+ 1;φ(1− e−w))

− φ(n− k + 1)2F1(n− k + 1, n− k + 2;n+ 2;φ(1− e−w))
]
.

Thus,

fψWk
(w) =

(n− k)

(n+ 1)
e−(n−k)w

[
(n+1)2F1(n−k+1, n−k+1;n+1; (1−ψλ′)(1−e−w))

− (1− ψλ′)(n− k + 1)2F1(n− k + 1, n− k + 2;n+ 2; (1− ψλ′)(1− e−w))
]
.

For the RRP of a critical branching process, Zα
ψ , the derivation is very

similar. Using instead the time transformation

v = ρ−1
α (s+ t)− ρ−1

α (s) =
1

ψλ

[
es+t − 1− es + 1

]
=

1

ψλ
es(et − 1)
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and following the same steps, the equivalent result is

f̂ψWk
(v) =

(n− k + 1)(n− k)

n+ 1
ψλ · 2F1(n− k + 1, n− k + 2;n+ 2;−ψλv).

Note that for k = 0, fψW0
(w) reduces to the density of the first event,

obtained by substituting k = 1 in (2.4.3). For ψ → 0, the following holds:

Corollary 2.5.1. The density of waiting times Wk between events k and k+1,

k ∈ {1, . . . , n− 1}, in the limit ψ → 0, is:

f 0
Wk

(w) =
k(n− k)

n+ 1
e−(n−k)w

2F1(n− k + 1, n− k + 1;n+ 2; 1− e−w). (2.5.6)

This is not a density for k = 0, i.e. for the waiting time to the first event:

recall that for ψ → 0 the first event time goes to infinity.

Proof. Substituting ψ = 0 into (2.5.4):

f 0
Wk

(w) =
(n− k)

(n+ 1)
e−(n−k)w

[
(n+ 1)2F1(n− k + 1, n− k + 1;n+ 1; 1− e−w)

− (n− k + 1)2F1(n− k + 1, n− k + 2;n+ 2; (1− e−w))
]
.

Identity (15.2.16) of Abramowitz and Stegun (1964, p. 558) gives:

ac(1− z) 2F1(a+ 1, b; c; z) =c[a− (c− b)z] 2F1(a, b; c; z) +

(c− a)(c− b)z 2F1(a, b; c+ 1; z) (2.5.7)

Substituting a+ 1 instead of a in identity (15.2.20) of Abramowitz and Stegun

(1964, p. 558) gives:

c(1−z) 2F1(a+1, b; c; z) = c 2F1(a, b; c; z)−(c−b)z 2F1(a+1, b; c+1; z). (2.5.8)

Multiplying (2.5.8) by a, equating with (2.5.7) and simplifying gives:

c 2F1(a, b; c; z)− a 2F1(b, a+ 1; c+ 1; z) = (c− a) 2F1(a, b; c+ 1; z).

Thus,

f 0
Wk

(w) =
k(n− k)

(n+ 1)
e−(n−k)w

2F1(n− k + 1, n− k + 1;n+ 2; 1− e−w).
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Note that using the transformation (Erdélyi et al., 1953, p.64)

2F1(a, b; c; z) = (1− z)c−a−b2F1(c− a, c− b; c; z),

the densities of the k-th and (n− k)-th waiting times are equal:

f 0
Wk

(w) =
k(n− k)

n+ 1
e−(n−k)w

2F1(n− k + 1, n− k + 1;n+ 2; 1− e−w)

=
k(n− k)

n+ 1
e−(n−k)we−(2k−n)w

2F1(k + 1, k + 1;n+ 2; 1− e−w)

=
k(n− k)

n+ 1
e−kw2F1(k + 1, k + 1;n+ 2; 1− e−w) (2.5.9)

= f 0
Wn−k

(w).

This is an interesting property of the RRP tree in the limit. The inter-event

times are symmetric, for instance the time it takes to go from n − 1 to n −
2 lineages, and the time it takes for the last lineage to die, have the same

distribution.

To gain some insights into why this is true, consider the event times of the

time-reversed Yule rate 1 process, which are distributed as the order statistics

of n exponential rate 1 random variables, say X1 ≤ X2 ≤ . . . ≤ Xn. The form

of equation (2.5.3) implies that in the limit ψ → 0, the k-th event time Tk

can be obtained via the transformation Tk = log(1/(ψλ′)) + log
(
eXk − 1

)
. If

X ∼ Exp(1), then log
(
eX − 1

)
has the standard logistic distribution (George

and Mudholkar, 1981). It thus follows that, in the limit, the shifted event time

defined as T ′k := Tk − log(1/(ψλ′)) is distributed as the k-th order statistic of

n draws from the standard logistic distribution, which has pdf

f 0
T ′
(1)

(τ ′) =
eτ
′

(1 + eτ ′)2
. (2.5.10)

Note that this is equivalent to saying that Tk is distributed as the k-th or-

der statistic of n draws from the logistic distribution with location parameter

(mode) log(1/(ψλ′)) and scale 1. The same conclusion can also be reached by

considering the CPP density (2.4.5), writing τ = τ ′ + log(1/(ψλ′)) and taking

the limit ψ → 0, which gives the density (2.5.10).

The limiting density of T ′k can also be obtained by applying the rescaling
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δ = (λ− µ)γ and writing λ′ = λ
λ−µ in the density (2.4.3),

fψTk(τ) =

(
n

k

)
k
ψλ′eτ [ψλ′(eτ − 1)]k−1

[1 + ψλ′(eτ − 1)]n+1
,

writing T ′k = Tk − log(1/(ψλ′)) and taking the limit ψ → 0 gives

f 0
T ′k

(τ ′) = lim
ψ→0

(
n

k

)
k
eτ
′
[eτ
′ − ψλ′]k−1

[1 + eτ ′ − ψλ′]n+1
=

(
n

k

)
k

[eτ
′
]k

[1 + eτ ′ ]n+1
, (2.5.11)

which, again, is the density of the k-th order statistic for the standard logistic

distribution.
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Figure 2.3: x-axis shows time shifted by log(1/(ψλ′)). Black solid line:
standard logistic density (2.5.10). Dashed lines: density (2.5.11) of shifted
time to first and last event for n = 100 (red) and n = 10 000 (blue). Faint
solid lines: Gumbel density with parameters (log n, 1) for n = 100 (red) and
n = 10 000 (blue).

As the logistic density (2.5.10) is symmetric around 0, the order statistics

are also symmetric, with T ′k
d
= −T ′n−k+1 (Arnold et al., 1992, pp. 26). This is

illustrated in Figure 2.3: the black solid line shows the logistic density (2.5.10),

and the red (blue) dashed lines show the densities of the first and last event

times for n = 100 (n = 10 000). Thus, the densities of the event times Tk and

Tn−k+1 are symmetric around log(1/(ψλ′)).

Moreover, as T ′k+1
d
= −T ′n−k, this demonstrates that the inter-event times

Wk = Tk+1 − Tk = T ′k+1 − T ′k and Wn−k = Tn−k+1 − Tn−k = T ′n−k+1 − T ′n−k are

equal in distribution. The density derived in Corollary 2.5.1 is hence that of

the gap between the k-th and (k + 1)-th order statistic of n standard logistic

random variables. See, for instance, Mahmuod and Ragab (1973, pp. 84): their
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equation (4.1) gives the density of the gap between the k-th and (k + 1)-th

order statistics for the logistic distribution, which appears in very different

form, but becomes the density in Corollary 2.5.1 after some algebra. I am not

aware of a simpler expression for this particular density.

Corollary 2.5.2. The distribution function of the waiting time Wk between

events k and k + 1, k ∈ {1, . . . , n− 1}, with ψ → 0, is given by:

F 0
Wk

(w) = 1− e−kw2F1(k, k + 1;n+ 1; 1− e−w). (2.5.12)

Proof. By integrating the density in (2.5.9):

F 0
Wk

(w) =
k(n− k)

n+ 1

∫ w

0

e−ku2F1(k + 1, k + 1;n+ 2; 1− e−u)du

=
k(n− k)

n+ 1

∫ w

0

e−ue−(k−1)u
2F1(k + 1, k + 1;n+ 2; 1− e−u)du

=
k(n− k)

n+ 1

∫ 1−e−w

0

(1− z)k−1
2F1(k + 1, k + 1;n+ 2; z)dz

=
k(n− k)

n+ 1

[
− (1− z)k(n+ 1)

k(n− k)
2F1(k, k + 1;n+ 1; z)

]1−e−w

0

= 1− e−kw2F1(k, k + 1;n+ 1; 1− e−w),

having used the substitution z = 1−e−u, and the identity (Erdélyi et al., 1953,

p.102, eq. (25) with n = 1)∫ z

(1−x)a−2
2F1(a, b, c, x) dx =

c− 1

(a− 1)(b− c+ 1)
(1−z)a−1

2F1(a−1, b, c−1, z).

Another interesting property of this distribution is that it does not depend

on the scaled birth rate λ′ = λ
λ−µ , as this parameter only appears as a factor

in ψλ′. In particular, take λ′ = 1 =⇒ µ′ = 0. Thus, the inter-event times for

the RRP Xδ
ψ have the same distributions as those of an incompletely sampled

time-reversed Yule rate 1 process, in the limit ψ → 0.
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2.5.4 Time to origin

The distribution of shifted time to origin T ′n = Tn − log(1/(ψλ′)) is now

considered in the limit ψ → 0. Integrating the density in (2.5.11) for k = n,

the distribution function of T ′n is given by

F 0
T ′n

(τ ′) = (1 + e−τ
′
)−n.

As n increases, the density of time to origin shifts to the right, away from

log(1/(ψλ′)), so with high probability T ′n is much larger than 0. Figure 2.3

demonstrates this visually with examples of the density of T ′n for n = 100

and n = 10 000. Thus, for n large enough, this justifies introducing the

approximation 1 + e−τ
′ ≈ exp

(
e−τ

′)
, so the distribution of shifted time to

origin can be approximated by

F̃ 0
T ′n

(τ ′) =
[
exp
(
e−τ

′
)]−n

= exp
(
−e−(τ ′−logn)

)
.

This is a Gumbel distribution with location parameter (mode) log n and scale

parameter 1. Figure 2.3 shows that this approximation provides a good fit, for

n = 100 and n = 10 000.

This links to the results of Burden and Soewongsono (2019), who consider

the diffusion limit (as the population size grows to infinity) of a near-critical

Bienaymé-Galton-Watson process. Burden and Soewongsono (2019, Section 6)

calculate numerically and plot the distribution of time to the MRCA, similarly

shifted by the log of the population size at the time of sampling, and comment

that as n→∞ this appears to converge to what looks like a Gumbel distribu-

tion. I have shown, analytically, that in the case of a supercritical birth-death

process in the limit as ψ → 0, the time to origin shifted by log(1/(ψλ′)) also

converges to a Gumbel distribution, and in this case the location parameter

depends on n.

2.5.5 Exponential approximation of inter-event times

Although Corollary 2.5.2 completely solves the question of what is the dis-

tribution of Wk as ψ → 0, the appearance of 2F1 in (2.5.12) somewhat obscures

our insight into Wk. Here, it is shown that these waiting times are well ap-

proximated by exponential distributions with simple, time-homogeneous event

rates.
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Consider an exponential approximation to f 0
Wk

(w) with rate k(n− k)/n:

f̃ 0
Wk

(w) =
k(n− k)

n
exp

(
−k(n− k)

n
w

)
, F̃ 0

Wk
(w) = 1− exp

(
−k(n− k)

n
w

)
,

(2.5.13)

for k ∈ {1, . . . , n − 1}. The following result quantifies the accuracy of this

approximation:

Proposition 2.5.1. Suppose the waiting time distribution Wk, with distribu-

tion function (2.5.12) for ψ → 0, is approximated by an exponential distribu-

tion (2.5.13). Then the approximation error is bounded, uniformly in k, in

terms of Kolmogorov-Smirnov distance:

sup
w

∣∣∣F 0
Wk

(w)− F̃ 0
Wk

(w)
∣∣∣ < 1

n
.

Proof. Noting that

e−kw = exp

(
−k(n− k)

n
w

)
· exp

(
−k

2

n
w

)
,

it follows that

∣∣F̃ 0
Wk

(w)− F 0
Wk

(w)
∣∣ =

=

∣∣∣∣∣1− e−kw2F1(k, k + 1;n+ 1; 1− e−w)− 1 + exp

(
−k(n− k)

n
w

)∣∣∣∣∣
= exp

(
−k(n− k)

n
w

)
·

∣∣∣∣∣ exp

(
−k

2

n
w

)
2F1(k, k + 1;n+ 1; 1− e−w)︸ ︷︷ ︸

=:h(w)

−1

∣∣∣∣∣.
(2.5.14)

An upper bound on the maximum of this distance is required. The first ex-

ponential term decays rapidly to 0, while h(0) = 1 and h initially increases;

the global maximum of h occurs near w = 0, where h(w) − 1 ≥ 0. First, an

upper bound is obtained for h(w)−1, and then this is used to obtain an upper

bound on (2.5.14). Using the mean value theorem (or, equivalently, Taylor’s

theorem to first order):

h(w) = h(0) + wh′(c) = 1 + wh′(c)
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for some c ∈ (0, w), with

h′(c) =− k2

n
exp

(
−k

2

n
c

)
2F1(k, k + 1;n+ 1; 1− e−c)

+ exp

(
−k

2 + n

n
c

)
.
k(k + 1)

n+ 1
2F1(k + 1, k + 2;n+ 2; 1− e−c).

Differentiating once more and considering the sign of the second derivative,

h′′(0) < 0, so h′ has a maximum at c = 0; h′ has no other extrema before it

reaches 0. Thus,

h′(0) = −k
2

n
+
k(k + 1)

n+ 1
=
k(n− k)

n(n+ 1)
,

so an upper bound on h(w)− 1 is given by

h(w)− 1 ≤ k(n− k)

n(n+ 1)
w.

Substituting this into (2.5.14),

∣∣F̃ 0
Wk

(w)− F 0
Wk

(w)
∣∣ ≤ exp

(
−k(n− k)

n
w

)
·
(
h(w)− 1

)
≤ exp

(
−k(n− k)

n
w

)
· k(n− k)

n(n+ 1)
w. (2.5.15)

This attains the maximum at ŵ = n
k(n−k)

. Substituting this into (2.5.15),

∣∣F̃ 0
Wk

(w)− F 0
Wk

(w)
∣∣ ≤ 1

e(n+ 1)
<

1

n
.

The approximation error is thus bounded by 1
n
.

The density derived in Corollary 2.5.1 is nonintuitive, however this result

shows that up to an error bounded by 1/n, the distribution is actually approx-

imately exponential. Note that the particular form of the exponential rate is

such that f̃ 0
Wk

(w) = f̃ 0
Wn−k

(w), so the symmetry between the k-th and (n− k)-

th inter-event times is preserved in the approximation. Figure 2.4 shows an

example of the (exact) density (2.5.4), for ψ = 1 on the left and very small ψ on

the right; dotted lines in the latter case show the exponential approximations

(2.5.13), demonstrating very close agreement for n = 100.

Wiuf (2018) gives results for the expectation of time to origin, and recur-
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Figure 2.4: Inter-event time density, n = 100, λ′ = 2, µ′ = 1. Left: with ψ =
1, colours (red to purple) correspond to event numbers k = 0, 10, . . . , 90.
Right: with ψ = e−20, colours (red to purple) correspond to event numbers
k = 1, 10, 20, . . . , 50; dotted lines show exponential approximation (2.5.13).
Note that the dotted lines overlay the coloured lines very closely.

sions for calculating the expectation of the other event times, for the RRP with

Bernoulli sampling (not in the limit ψ → 0). These results can be used to show

that the expectation under the exponential approximation, being n/(k(n−k)),

is exact in the limit ψ → 0 (for any n).

Proposition 2.5.2. The expectation of time to origin for ψ → 0 is given by:

E(Tn) = log

(
1

ψλ′

)
+

n−1∑
j=1

1

j
+O(ψ). (2.5.16)

Proof. Wiuf (2018, Appendix F) derives an expression for the expectation of

time to origin, which in the present notation is

E(Tn) = log

(
1

ψλ′

)
+

n∑
i=1

1

i
−

n∑
i=1

1

i

1(
1− 1

ψλ′

)n−i − 1

(1− 1
ψλ′

)n
log

(
1

ψλ′

)
.

(2.5.17)

The third term is

n∑
i=1

1

i

1(
1− 1

ψλ′

)n−i =
1

n
+

1

n− 1

1

1− 1
ψλ′

+
1

n− 2

(
1

1− 1
ψλ′

)2

+ . . . =
1

n
+O(ψ).
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The fourth term in (2.5.17) is

1

(1− 1
ψλ′

)n
log

(
1

ψλ′

)
= (−ψλ′)n(1− ψλ′)−n log

(
1

ψλ′

)
= −(−ψλ′)n[1 +O(ψλ′)] log(ψλ′)

= O((ψλ′)n log(ψλ)),

which is O(ψ) for n > 1. Thus, in the limit ψ → 0,

E(Tn) = log

(
1

ψλ′

)
+

n−1∑
i=1

1

i
+O(ψ).

This is an illuminating result, as the expectation is split into two parts.

The first is log(1/(ψλ′)), corresponding to the first time rescaling regime, as

described in Section 2.5.2. Near 0, a small step in t is equivalent to a step of

order log(1/(ψλ′)) in units of δ. The second part is equivalent to the expecta-

tion of a sum of n−1 exponential waiting times with rate being the remaining

number of lineages, corresponding to the second time rescaling regime, which

is approximately linear.

This result agrees with the discussion in Section 2.5.3: recall that in the

limit ψ → 0, the shifted event time T ′k is distributed as the k-th order statis-

tic of n standard logistic random variables, so Tk = T ′k + log(1/(ψλ′)) has

expectation
k−1∑
j=1

1

j
−

n−k∑
j=1

1

j
+ log

(
1

ψλ′

)
, (2.5.18)

obtained by simplifying equation (4.8.6) in Arnold et al. (1992, p.82). Setting

k = n, this becomes (2.5.16) up to the O(ψ) term. Notice also that using

the Gumbel approximation for large n, as described in Section 2.5.4, gives the

expectation of T ′n as log n+γ̃ (where γ̃ is the Euler–Mascheroni constant). This

is the limit of the harmonic sum in (2.5.16) as n → ∞, so the expectations

agree in this limit.

Wiuf (2018, Appendix D) derives a recursion for the expectations of event

times, which in the present notation is:

En(Tk) =
n

n− k
En−1(Tk)−

k

n− k
En(Tk+1), (2.5.19)
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where En(Tk) denotes the expectation of the k-th event time if the sample is

of size n at time 0. Using this and the expression for time to origin given by

Proposition 2.5.2, the following result is obtained:

Proposition 2.5.3. The expectation of waiting times between events is given

by

E(Wk) = E(Tk+1)− E(Tk) =
n

k(n− k)
+O(ψ).

This agrees exactly with the expectation using the exponential approximation

for ψ → 0. This also agrees, up to the O(ψ) term, with the expectation of

Tk+1 − Tk obtained using (2.5.18) in the limit ψ → 0.

Proof. From Proposition 2.5.2, the expectation of time to origin for a sample

of size n is:

En(Tn) = log

(
1

ψλ′

)
+

n−1∑
j=1

1

j
+O(ψ),

which also implies that, for a sample of size n− 1,

En−1(Tn−1) = log

(
1

ψλ′

)
+

n−2∑
j=1

1

j
+O(ψ).

I proceed by induction on the event number k, to show that

En(Tk) = log

(
1

ψλ′

)
+

n−1∑
j=1

1

j
−

n−1∑
j=k

n

j(n− j)
+O(ψ). (2.5.20)

This holds for event number k = n− 1, as using (2.5.19):

En(Tn−1) = nEn−1(Tn−1)− (n− 1)En(Tn)

= n

(
log

(
1

ψλ′

)
+

n−1∑
j=1

1

j
− 1

n− 1

)
−

− (n− 1)

(
log

(
1

ψλ′

)
+

n−1∑
j=1

1

j

)
+O(ψ)

= log

(
1

ψλ′

)
+

n−1∑
j=1

1

j
− n

n− 1
+O(ψ).

53



Suppose that (2.5.20) holds for some k = n− i, i ∈ {1, . . . , n− 1}:

En(Tn−i) = log

(
1

ψλ′

)
+

n−1∑
j=1

1

j
−

i∑
j=1

n

j(n− j)
+O(ψ),

and so, equivalently, for n− 1 lineages:

En−1(Tn−i−1) = log

(
1

ψλ′

)
+

n−2∑
j=1

1

j
−

i∑
j=1

n− 1

j(n− j − 1)
+O(ψ).

Then

En(Tn−i−1) =

=
n

i+ 1
En−1(Tn−i−1)− n− i− 1

i+ 1
En(Tn−i)

= log

(
1

ψλ′

)
+

n−1∑
j=1

1

j
+O(ψ)︸ ︷︷ ︸

A

− n

i+ 1

[
1

n− 1
+

i∑
j=1

n− 1

j(n− j − 1)
− (n− i− 1)

i∑
j=1

1

j(n− j)

]

= A− n

i+ 1

[
1

n− 1
+

i∑
j=1

(
1

j
+

1

n− j − 1

)
− (n− i− 1)

n

i∑
j=1

(
1

j
+

1

n− j

)]

= A− 1

i+ 1

[
n

n− 1
+ (i+ 1)

i∑
j=1

1

j
+ n

i∑
j=1

1

n− j − 1
− (n− i− 1)

i∑
j=1

1

n− j

]

= A− 1

i+ 1

[
(i+ 1)

i∑
j=1

1

j
+ n

i∑
j=2

1

n− j
+

n

n− i− 1

− (n− i− 1)
i∑

j=2

1

n− j
+
i+ 1

n− 1

]

= A− 1

i+ 1

[
(i+ 1)

i∑
j=1

1

j
+ (i+ 1)

i∑
j=1

1

n− j
+

(n− i− 1) + (i+ 1)

n− i− 1

]

= A− 1

i+ 1

[
(i+ 1)

i+1∑
j=1

1

j
+ (i+ 1)

i+1∑
j=1

1

n− j

]

= log

(
1

ψλ′

)
+

n−1∑
j=1

1

j
−

i+1∑
j=1

n

j(n− j)
+O(ψ).
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Thus,

En(Tk) = log

(
1

ψλ′

)
+

n−1∑
j=1

1

j
−

n−k∑
j=1

n

j(n− j)
+O(ψ)

= log

(
1

ψλ′

)
+

n−1∑
j=1

1

j
−

n−1∑
j=k

n

j(n− j)
+O(ψ),

=⇒ E(Wk) = E(Tk+1)− E(Tk) =
n

k(n− k)
+O(ψ).

2.6 Connections to the coalescent with expo-

nential growth in the large population limit

Looking backwards in time, the mean population size in the complete birth-

death process decreases exponentially, with rate λ − µ. Several studies have

therefore sought to compare the properties of genealogies generated under the

birth-death population model with those arising under the coalescent with

exponential growth. Volz and Frost (2014) considered maximum likelihood es-

timates of the growth rate for simulated birth-death and coalescent trees, and

found them to give very similar results. Boskova et al. (2014) used Bayesian

estimation of birth-death parameters to compare the results of inference with

birth-death and coalescent priors; the study found differences due to the coa-

lescent having on average “longer” trees, although this effect appears to reduce

as the sampling probability decreases.

Stadler et al. (2015) considered the distribution of the coalescence time for

a sample of size two, comparing the birth-death model to the coalescent with

exponential growth (finding them to be very different), and to some extensions

of the coalescent incorporating stochastic population size trajectories. The

method was to fix a time of origin for the birth-death process to be the time

at which the expected population size for a birth-death tree is N , and use this

to derive the event time density. This was then compared to the event time

density for the coalescent with exponential growth with an initial population of

size N . This approach may be problematic, however, as it induces an inherent

difference in the models being considered: the total population size in the

birth-death process at the time of sampling is stochastic, so is not directly
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comparable to the coalescent with a fixed initial population size. Conditional

on n and ψ, the number of unsampled lineages N − n is negative binomial (as

this gives the number of failures before n successes with probability ψ). Thus,

the total population size has density

f(N |n, ψ) =

(
N − 1

n− 1

)
ψn(1− ψ)N−n. (2.6.1)

A proof of this result using direct density calculations can be found in Stadler

(2009, proof of Lemma 3.1).

In this section, the time to first event for the RRP in the ψ → 0 limit is

shown to be approximately Gompertz distributed, as is the time to first event

for the coalescent with exponential growth, allowing for the two densities to

be equated by matching up the parameters. The difference in event times

between the two models is then investigated. Then, the approximate expected

inter-event times derived in Section 2.5.5 are used to calculate the expected

site frequency spectrum for the RRP, under the infinite sites assumption.

2.6.1 Time of first event

Define the time transformation

gK(τ) =
1

b
log(1 + abNτ), (2.6.2)

g−1
K (τ) =

1

abN
(ebτ − 1). (2.6.3)

This is the usual rescaling for the coalescent with exponential growth (Slatkin

and Hudson, 1991), with growth rate b, generation time a and initial pop-

ulation size N . Event times for the coalescent with exponential growth can

be simulated by drawing the sequence t1, . . . , tn−1 of inter-event times for the

standard coalescent, setting vi =
∑i

j=1 ti, and then rescaling using (2.6.2) to

get the event times ṽi = gK(vi) (e.g. Hein et al., 2004, Section 4.3).

The distribution of the time to first event is then

FK
T1

(τ) = P(T1 ≤ τ) = 1− exp

(
−
(
n

2

)
1

abN
(ebτ − 1)

)
= 1− exp

(
−n(n− 1)

2abN
(ebτ − 1)

)
. (2.6.4)

This is a Gompertz distribution with shape parameter n(n−1)
2abN

and scale b, which
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is a well known result for the coalescent with exponential growth (Slatkin and

Hudson, 1991; Polanski et al., 2003).

For the RRP Xγ
ψ, the time to first event has distribution

Fψ
T1

(τ) = 1−
(

1 +
ψλ

λ− µ
(e(λ−µ)τ − 1)

)−n
, (2.6.5)

recalling the results of Section 2.4.1.1. Using the approximation 1 +x ≈ ex for

small x, in the limit ψ → 0

Fψ
T1

(τ) ≈ 1− exp

(
− nψλ

λ− µ
(e(λ−µ)τ − 1)

)
, (2.6.6)

this is also a Gompertz distribution. Setting the growth rate to be b = λ− µ,

the generation time to be a = 1/(2λ) (deduced to be the correct scaling by Volz

et al., 2009), and the initial population size to be N = (n− 1)/ψ equates the

distribution of time to first event for the RRP (2.6.6) to that for the coalescent

with exponential growth (2.6.4). Thus, the idea of equating the two models

by connecting the sampling probability of the RRP to the population size for

the coalescent is explored next.

2.6.2 Effective sampling probability for the RRP

Consider the RRP Xγ
ψ0

, with parameters (λ, µ, ψ0). The RRP is related

to the complete tree at time 0 by the sampling probability ψ0, which gives a

sense of how the sample size compares to the total population size (which has

density (2.6.1)). After some time τ > 0 has passed, the parameters λ and µ

remain fixed, but the relationship between the number of extant lineages in the

sample and the total population size will have changed. This can be captured

by defining the effective sampling probability at time τ , denoted ψ̃(τ), with

ψ̃(0) = ψ0 and ψ̃(s) = 1 as s → ∞ (as the process becomes equivalent to

a completely sampled process in the limit, when all non-sampled lineages die

out). In essence, this captures the Markov property of the process: after the

first coalescence event, the RRP can be restarted with n − 1 lineages and a

different sampling probability ψ1 6= ψ0.

This is similar to a result derived by Wiuf (2018, Section 6), with the

following distinction: in Wiuf’s parametrisation, the sampling probability ap-

proaches ψ̃(s) = λ
λ−µ as s → ∞, because the limiting process for the RRP is

implicitly taken to be the time-reversed Yule rate 1 process (rather than the
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RRP with complete sampling). The proof by Wiuf (2018) considers joint den-

sities of event times to derive this property; here, it follows from considering

the properties of the time rescaling between Xγ
ψ and the completely sampled

RRP Xβ
1 .

Consider the time rescaling between the RRPs Xβ
1 and Xγ

ψ, given by (2.4.7):

γ = gψ(β) =
1

λ− µ
log

(
1 +

1

ψ
(e(λ−µ)β − 1)

)
(2.6.7)

β = g−1
ψ (γ) =

1

λ− µ
log
(
1 + ψ(e(λ−µ)γ − 1)

)
(2.6.8)

If w0 is the waiting time to the first event on the time scale of Xβ
1 , it must be

that ψ0 and the new effective sampling probability ψ1 are related by

gψ0(w0 + s)− gψ0(w0) = gψ1(s),

for all s > 0. Substituting into (2.6.7),

log

(
1 + 1

ψ0
(e(λ−µ)(w0+s) − 1)

1 + 1
ψ0

(e(λ−µ)(w0) − 1

)
= log

(
1 +

1

ψ1

(e(λ−µ)s − 1)

)
,

ψ0 + e(λ−µ)(w0+s) − 1

ψ0 + e(λ−µ)w0 − 1
= 1 +

1

ψ1

(e(λ−µ)s − 1).

Solving this,

ψ1 = 1− 1− ψ0

e(λ−µ)w0
, (2.6.9)

which can be verified by substitution. Note that this is self-consistent, in the

sense that if the waiting time to the second event is w1, the effective sampling

probability at the time of the second event is

ψ2 = 1− 1− ψ1

e(λ−µ)w1
= 1−

1− 1 + 1−ψ0

e(λ−µ)w0

e(λ−µ)w1
= 1− 1− ψ0

e(λ−µ)(w0+w1)
, (2.6.10)

and in general

ψk = 1− 1− ψ0

e(λ−µ)tk
, (2.6.11)

where tk = w0 + . . . + wk−1 is the time of the k-th event on the time scale

of Xβ
1 . More generally, at any time t measured in time units β, the effective

sampling probability is

1− 1− ψ0

e(λ−µ)t
. (2.6.12)
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Finally, applying the rescaling (2.6.8) to (2.6.12), the effective sampling prob-

ability at time τ on the time scale of Xγ
ψ is

ψ̃(τ) = 1− 1− ψ0

1 + ψ0(e(λ−µ)τ − 1)
=

ψ0e
(λ−µ)τ

1 + ψ0(e(λ−µ)τ − 1)
. (2.6.13)

This is equal to ψ0 at τ = 0 and tends to 1 as τ →∞, as expected. Figure 2.5
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Figure 2.5: Effective sampling probability against time, with ψ0 = e−20, λ =
2, µ = 1. Red dotted line: expected time of first event for n = 100. Blue
dotted line: expected time of origin for n = 100.

shows a plot of this for ψ0 = e−20. The effective sampling probability starts

increasing from near 0 by the expected time of the first event (red dotted

line), so the total population at this stage is very large. At the expected time

of origin (blue dotted line), the effective sampling probability is close to 1, so

the total population size is close to the remaining number of sampled lineages.

The effective sampling probability is 0.5 at approximately − log(ψ0)/(λ− µ).

Finally, (2.6.9) implies that to simulate ψ1 given ψ0, one can draw Y ∼
Exp(n) and set

ψ1 = 1− 1− ψ0

1 + λ−µ
λ

(eY − 1)
.

In summary, if the k-th event of the RRP Xγ
ψ0

occurs at time tk, the waiting

time to the next event will have the same distribution as that of Xγ

ψ̃(tk)
started

with n− k lineages, with ψ̃(tk) given by (2.6.13).
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2.6.3 Population size for the coalescent

A similar property holds for the coalescent with exponential growth: given

an initial population size N0, after the first coalescence the process can be

restarted with n − 1 lineages and a new initial population size N1 (Ohtsuki

and Innan, 2017). The distribution of N1 can be found by considering

N1 = N0e
−(λ−µ)T1 ,

where T1 has the Gompertz distribution given by (2.6.4). Then

T1 = − 1

λ− µ
log

(
N1

N0

)
=

1

λ− µ
log

(
1 +

(
N0

N1

− 1

))
.

By inverting the Gompertz cdf, it can be deduced that

N0

N1

− 1 ∼ Exp

(
n(n− 1)λ

(λ− µ)N0

)
. (2.6.14)

Thus, N1 can be simulated by drawing Y ∼ Exp
(
n(n−1)λ
(λ−µ)N0

)
and setting N1 =

N0/(1 + Y ).

2.6.4 Time of k-th event

As described above, in the limit ψ → 0, the distributions of the time to

first event for the two models can be equated by setting the initial population

size N0 for the coalescent with exponential growth to be equal to (n− 1)/ψ0,

where ψ0 is the sampling probability for the RRP. However, the distributions of

subsequent event times can only be the same if the sequence of population sizes

for the coalescent N = {N1, N2, . . .} and the sequence P = {(n− 2)/ψ1, (n−
3)/ψ2, . . .} for the RRP are equal in distribution. In other words, the two

models will diverge if the entries of P and N have different distributions.

Moreover, the quality of the approximation in (2.6.6) will degrade when the

effective sampling probability becomes relatively large.

Figure 2.6 shows the percentage difference in median event times between

the RRP and the coalescent with exponential growth (setting the initial size

to N0 = (n − 1)/ψ0), for three values of ψ0. When ψ0 is small, the event

times agree very closely, up to the last few events. The left panels of Figure

2.7 demonstrates that this is because the population size sequences P and

N agree closely for small ψ0. For the last few events, the effective sampling
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Figure 2.6: y-axis shows percentage difference in median event times for
the coalescent with exponential growth and the RRP, against event number
(x-axis). Parameters: n = 100, λ = 2, µ = 1, based on 100 000 simulations
for each event number. Black line: ψ = 0.1, blue line: ψ = 0.001, red line:
ψ = 10−10.

probability becomes large, and the remaining number of lineages small, causing

the quality of the Gompertz approximation in (2.6.6) to deteriorate.

This investigation demonstrates that after matching up the time scaling

parameters at time 0, the coalescent with exponential growth and the RRP

are very similar, when the sample size is moderate to large. This suggests that

the stark differences between the two models identified by Stadler et al. (2015)

were likely to be due to restricting the study to n = 2, and not appropriately

matching up the initial population sizes.

2.6.5 Site frequency spectrum

In this section, the expected site frequency spectrum (SFS) for the RRP is

derived in the ψ → 0 limit; this is a commonly used summary statistic cap-

turing the extent to which mutations are shared by individuals in the sample.

Suppose that mutations occur on the branches on the genealogy with fixed

rate θ, under the infinite sites assumption. Let Sn(j) =: ξj be the number of

mutations shared by j individuals in a sample of size n (assuming that the

ancestral type is known), and let the weight of an edge l at stage k, denoted
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Figure 2.7: Left panels: median population size trajectory N for the coales-
cent with exponential growth (blue lines) and median P for the RRP (red
lines), based on 1 000 simulations for each event number. Note log scale on
the y-axis. Right panels: effective sampling probability for the RRP, versus
event number. Parameters: n = 100, λ = 2, µ = 1.
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ωkl, be the number of leaves it subtends, as illustrated in Figure 2.8.

Stage
4 3 2

2 1 3

1 1 4
1 3 5

1 2 6

1 1 7

!"#=4 !"$=2

Figure 2.8: Shaded regions delineate the stages. Red labels beside edges
show their weight. Black dots show mutations. Here Sn = (ξ1, ξ2, . . . , ξ6) =
(2, 1, 0, 2, 0, 0)

Recall that in the limit ψ → 0, the time to first event grows to infinity,

hence the number of mutations with multiplicity one in the sample grows to

infinity. Again fixing λ−µ = 1 for simplicity, the following holds for mutations

shared by between 2 and n− 1 individuals in the sample:

Proposition 2.6.1. The expectation of ξj for j ∈ {2, . . . , n − 1} in the limit

ψ → 0 is given by

E(ξj) =
nθ

j(j − 1)
. (2.6.15)

Proof. The proof follows the approach of Fu (1995), by considering the number

of lineages in the tree when the mutations occur (see Hudson (2015) for a

somewhat simpler argument). Call the time at which there are k lineages ‘stage

k’. At each stage, assign to each lineage l a weight ωkl, being the number of

individuals in the sample that are its descendants; note that
∑k

l=1 ωkl = n.

Then (ωk1, . . . , ωkk) is uniformly distributed over all vectors of length k with

positive integer entries summing to n, and there are
(
n−1
k−1

)
such vectors (Fu,
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1995). This gives

P(ωkl = j) =: p(k, j) =

(
n− j − 1

k − 2

)/(
n− 1

k − 1

)
=
j!

j!

(n− j − 1)!

(k − 2)!(n− k − j + 1)!

(k − 1)!(n− k!)

(n− 1)!

=
(n− k)

j(j − 1)

(k − 1)(n− k − 1)!

((n− k − 1)− (j − 2))!(j − 2)!

j!(n− j − 1)!

(n− 1)!

=
(n− k)

j(j − 1)
(k − 1)

(
n− k − 1

j − 2

)/(n− 1

j

)
. (2.6.16)

Let Lm be the sum of the lengths of all branches with weight m. The mean

duration of stage k (while there are k lineages) is n/(k(n− k)) by Proposition

2.5.3, so for j ≥ 2

E[ξj] = θ E[Lj]

= θ
n−1∑
k=2

k
n

k(n− k)
p(k, j)

=
nθ

j(j − 1)

[
n−1∑
k=2

(k − 1)

(
n− k − 1

j − 2

)]/(
n− 1

j

)
. (2.6.17)

The sum can be computed by using a version of the Chu–Vandermonde iden-

tity:
b∑

a=0

(
a

c

)(
b− a
d− c

)
=

(
b+ 1

d+ 1

)
.

Setting c = 1, a = k − 1, b = n− 2, d = j − 1, and noting that the summand

with k = (n− 1) is zero,

n−1∑
k=2

(k − 1)

(
n− k − 1

j − 2

)
=

(
n− 1

j

)
,

which completes the proof.

The expected number of polymorphic sites with non-singleton mutations is

n−1∑
j=2

nθ

j(j − 1)
=
n(n− 2)θ

n− 1
,
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this is approximately nθ for large n.

Proposition 2.6.2. The expectation of ξ1 is given by

E(ξ1) = nθ

(
log

(
1

ψλ′

)
− 1

)
+O(ψ). (2.6.18)

Proof. The expectation of the time to first event is

E(W0) = E(Tn)−
n−1∑
k=1

E(Wk)

= log

(
1

ψλ′

)
+

n−1∑
j=1

1

j
−

n−1∑
k=1

n

k(n− k)
+O(ψ)

= log

(
1

ψλ′

)
−

n−1∑
j=1

1

j
+O(ψ). (2.6.19)

Thus,

E(L1) =
n−1∑
k=2

k
n

k(n− k)
p(k, 1) + n log

(
1

ψλ′

)
− n

n−1∑
j=1

1

j
+O(ψ)

=
n−1∑
k=2

n(k − 1)

(n− k)(n− 1)
+ n log

(
1

ψλ′

)
− n

n−1∑
j=1

1

j
+O(ψ)

=
n

n− 1

n−1∑
k=2

k − 1

n− k
+ n log

(
1

ψλ′

)
− n

n−1∑
j=1

1

j
+O(ψ)

= n
n−1∑
j=2

1

j
+ n log

(
1

ψλ′

)
− n

n−1∑
j=1

1

j
+O(ψ)

= n log

(
1

ψλ′

)
− n+O(ψ). (2.6.20)

Multiplying by θ gives the result.

Durrett (2013, Theorem 2) derives the expected SFS for the Moran model

with exponential growth; the resulting formulas are the same as (2.6.15) and

(2.6.18) asymptotically as N →∞:

E(ξi)

→ nθ
bi(i−1)

for i ≥ 2,

∼ nθ
b

log(Nb) for i = 1,
(2.6.21)

where b is the population growth rate (which here was fixed to be 1 for sim-
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plicity), N the current population size, and aN ∼ bN means aN/bN → 1 as

N → ∞. This implies that, similarly to the event times, in the large popula-

tion limit the expected SFS under the RRP converges to that of the coalescent

with exponential growth.

Lambert (2008) derives an explicit expression for the expected SFS for gen-

eral coalescent point processes, and Dinh et al. (2020) integrates this formula

for a birth-death process with Bernoulli sampling. Taking the limit 1− ψλ
λ−µ → 1

in their equation (8) gives

E[ξj] = θ
n+ j − 1

j(j − 1)
.

The difference with (2.6.15) is due to the treatment of time of origin. In

Lambert (2008), when a CPP is constructed, one of the n individuals in the

sample is conditioned to survive forever (in effect, conditioning on the time of

origin going to ∞). This differs from the model considered here, as the time

of origin is random, being the maximum of the n i.i.d. draws of individual

lifetimes.

2.7 Discussion

Previous work on the applications of birth-death processes to modelling

genealogies has largely concentrated on studying the evolution of species, or

the transmission of pathogens. Intra-host viral infection is another setting

where birth-death models may be very appropriate, but evolution happens on

a different scale, both in terms of time (infections are relatively short-term)

and population size, which can grow very large. For instance, the viral load of

SARS-CoV-2 ranges between around 104 − 107 copies per ml in throat swabs

of infected patients (Pan et al., 2020). This motivates the development of

birth-death models that consider sample genealogies in the large-population

limit.

In this chapter, I have demonstrated that viewing the RRP as an inhomo-

geneous pure-death process allows for relatively simple and intuitive deriva-

tions of its properties. The time rescaling approach allows for results derived

for completely sampled RRPs to be transformed to those for incomplete sam-

pling, using a simple change of variables, with no restrictions on the parameter

values. Moreover, the time rescaling between the time-reversed Yule rate 1 pro-
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cess and the RRP can be used to simulate the RRP in a straightforward way,

by simulating each event time sequentially.

In the limit ψ → 0, this rescaling can be decomposed into two timescales.

The RRP tree becomes star-shaped, with terminal branch lengths tending

to infinity, but inter-event times at the top of the tree are approximately

exponential with a rate depending on n and the event number. This has

interesting implications for data analysis, as it suggests that the number of

singleton mutations in a small sample from a very large population tends to

infinity, but the number of shared mutations does not. Indeed, Dinh et al.

(2020) consider the expected frequency spectrum of mutations using a birth-

death model with the infinite sites assumption. Although this is not explicitly

discussed, the results of their simulations show that for small values of ψ,

the expected number of singletons is orders of magnitude larger than that of

mutations shared by multiple individuals. In applying their method to cancer

data, Dinh et al. (2020) consider small values of ψ with the population size

being very large compared to the sample size—the results presented in Section

2.5 provide an insight into the properties of the genealogy in this case.

As can be seen from the results presented in this chapter and related work,

properties of the genealogy of a sample obtained from a population following

a birth-death process are notably different from those arising under the coa-

lescent, particularly when ψ is large and the sample size is close to being of

the same order as the population size. The coalescent is widely used in statis-

tical inference for intra-host viral populations (e.g. Dialdestoro et al., 2016).

However, the choice of model should be appropriate to the relative scale of

the biological application, and the individual-level population dynamics are

arguably likely to be better modelled by a birth-death process. When consid-

ering the scenario of a small sample obtained from a very large population,

the differences between the coalescent with exponential growth and the small-ψ

limit of the birth-death model appear to fade.

An important question is thus whether, for samples of viral genetic sequenc-

ing data, birth-death models can provide better inference on the evolutionary

dynamics of such populations. Answering this would require development of

new methods for statistical inference that condition on the data and incorpo-

rate the natural processes governing such populations, such as high rates of

mutation, recombination, and rapid demographic changes. This also presents

interesting challenges in making full use of the increasingly rich and plentiful

sequencing data available for viral organisms.
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Chapter 3

Reconstruction of parsimonious

ARGs with KwARG

3.1 Introduction

In this chapter, I introduce KwARG (“quick ARG”), a software tool (writ-

ten in C) which implements a greedy heuristic-based parsimony algorithm for

reconstructing histories that are minimal or near-minimal in the number of

posited recombination and mutation events. The algorithm starts with the

input dataset and generates plausible histories backwards in time, adding co-

alescence, mutation, recombination, and recurrent mutation events to reduce

the dataset until the common ancestor is reached. By tuning a set of cost

parameters for each event type, KwARG can find solutions consisting only

of recombinations (giving an upper bound on Rmin), only of recurrent muta-

tions (giving an upper bound on Pmin), or a combination of both event types.

KwARG handles both the ‘infinite sites’ and ‘maximum parsimony’ scenarios,

as well as interpolating between these two cases by allowing recombinations as

well as recurrent mutations and sequencing errors, which is not offered by ex-

isting methods. Recalling Figure 1.4, KwARG finds all three types of solution

for the given dataset.

KwARG shows excellent performance when benchmarked against exact

methods on small datasets, and outperforms existing parsimony-based heuris-

tic methods on large, more complex datasets while maintaining computational

efficiency; KwARG also achieves very good accuracy in reconstructing local

tree topologies. The source code and executables are available on GitHub

at https://github.com/a-ignatieva/kwarg, along with documentation and
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usage examples.

Details of the algorithm underlying KwARG are given in Section 3.2, with

an explanation of the required inputs and expected outputs. In Section 3.3,

the performance of KwARG on simulated data is benchmarked against exact

methods and existing programs. An application of KwARG to a widely studied

Drosophila melanogaster dataset (Kreitman, 1983) is described in Section 3.4.

Discussion follows in Section 3.5.

3.2 Technical details

Consider a sample of genetic data, where the allele at each site can be

denoted 0 or 1. The infinite sites assumption is not required, so that each site

can undergo multiple mutation events. However, it is assumed that mutations

correspond to transitions between exactly two possible states, excluding, for

instance, triallelic sites.

3.2.1 Input

KwARG accepts data in the form of a binary matrix, or a multiple align-

ment in nucleotide or amino acid format. The sequence and site labels can be

provided if desired. It is possible to specify a root sequence, or leave this to be

determined. The presence of missing data is permitted; regardless of the type

of input, the data is converted to a binary matrix D, with entries ‘?’ denoting

missing entries or material that is not ancestral to the sample.

3.2.2 Methods

KwARG reconstructs the history of a sample backwards in time, by start-

ing with the data matrix D and performing row and column operations corre-

sponding to coalescence, mutation, and recombination events, until only one

ancestral sequence remains. By reversing the order of the steps, a forward-in-

time history is obtained, showing how the population evolved from the ancestor

to the present sample. When a choice can be made between multiple possible

events, a neighbourhood of candidate ancestral states is constructed, using the

same general method as that employed in the program Beagle (Lyngsø et al.,

2005). A backwards-in-time approach has also been implemented in the pro-

grams SHRUB (Song et al., 2005), Margarita (Minichiello and Durbin, 2006)
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and GAMARG (Thao and Vinh, 2019), all of which adopt the infinite sites

assumption but use different criteria for choosing amongst possible recombi-

nation events.

3.2.2.1 Construction of a history

For convenience, assume that the all-zero sequence is specified as the root,

and 0 (resp. 1) entries of D correspond to ancestral (resp. mutated) sites.

Suppose Dt is the data matrix obtained after t− 1 iterations of the algorithm.

Say that two rows (columns) agree if they are equal at all positions where

both rows (columns) contain ancestral material, and the sites (sequences) car-

rying ancestral material in one are a subset of the sites (sequences) carrying

ancestral material in the other. At the beginning of the t-th step, KwARG

first reduces Dt, by repeatedly applying the ‘Clean’ algorithm (Song and Hein,

2003) through:

• deleting uninformative columns (consisting of all 0’s);

• deleting columns containing only one 1 (corresponding to “undoing” a

mutation present in only one sequence);

• deleting a row if it agrees with another row (corresponding to a coales-

cence event);

• deleting a column if it agrees with an adjacent column.

A run of the ‘Clean’ algorithm repeatedly applies these steps to Dt, ter-

minating when no further reduction is possible. Suppose the resulting data

matrix is Dt. KwARG then constructs a neighbourhood Nt of candidate next

states, each one obtained through one of the following operations:

• Pick a row and split it into two at a possible recombination point (as il-

lustrated in Figure 3.1). Only a subset of possible recombining sequences

and breakpoints needs to be considered; see Lyngsø et al. (2005, Section

3.3) for a detailed explanation.

• Remove a recurrent mutation, by selecting a column and changing a 0

entry to 1, or a 1 entry to 0. This is the event type that is disallowed by

algorithms applying the infinite sites assumption.
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Suppose a neighbourhood Nt = {N 1
t , . . . ,NN

t } is formed, consisting of all

possible states that can be reached from Dt through applying one of these

operations. Then the reduced neighbourhood Nt = {N 1
t , . . . ,NN

t } is formed

by applying ‘Clean’ to each state in turn. Each stateN i
t is then assigned a score

S(N i
t ,N i

t ,Dt), combining (i) the cost C
(
N i
t ,Dt

)
, defined below, of reaching

the configuration N i
t from Dt, (ii) a measure AM

(
N i
t

)
of the complexity of

the resulting data matrix N i
t , and (iii) a lower bound L(N i

t ) on the remaining

number of recombination and recurrent mutation events still required to reach

the ancestral sequence from N i
t . Finally, a state is selected, say N j

t , based on

its score, setting Dt+1 = N j
t . The process of reducing the dataset followed by

constructing a neighbourhood and choosing the best move is repeated, until all

incompatibilities are resolved and the root sequence is reached. Pseudocode

for the ‘Clean’ algorithm and KwARG is given in Section 3.2.4.

The construction of a history for the dataset given in Figure 1.4 is illus-

trated in Figure 3.1. The first step corresponds to the construction of a neigh-

bourhood, two of the states N 1
1 ,N 2

1 ∈ N1 are pictured. Then, the ‘Clean’

algorithm is applied to each state in the neighbourhood (illustrated as a se-

ries of steps following blue arrows). From the resulting reduced neighbourhood

{N 1
1 ,N 2

1 , . . .}, the stateN 2
1 is selected; the other illustrated path is abandoned.

This process is repeated until all incompatibilities are resolved and the empty

state is reached. Following the path of selected moves in this figure left-to-right

corresponds to the events encountered when traversing the leftmost ARG in

Figure 1.4 from the bottom up. If instead the state N 1
2 were selected at the

second step of the algorithm, the resulting path would correspond to the ARG

in the centre of Figure 1.4.

3.2.2.2 Score

When considering which next step to take, better choices can be made

by considering not just the cost of the step itself, but also the complexity of

the configuration it leads to. This is the principle behind the well-known A*

algorithm (Hart et al., 1968), where the choice of the next node to explore while

traversing a graph is informed by using a heuristic estimate of the remaining

distance. KwARG applies the same principle in a greedy fashion, attempting to

find a minimal history by following a path of moves selected with probability

proportional to a heuristic quality score (as described further on in Section

3.2.2.5).
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Figure 3.1: Example of a reconstructed history for the dataset in Figure 1.4.
Stars ‘?’ denote non-ancestral material. SE: recurrent mutation occurring
on a terminal branch of the ARG. R: recombination event. A sequence of
blue arrows corresponds to one application of the ‘Clean’ algorithm. Green
boxes highlight the selected states.

The score implemented in KwARG is

S
(
N i
t ,N i

t ,Dt
)

=
(
C
(
N i
t ,Dt

)
+ L

(
N i
t

))
·maxAM

(
Nt
)

+ AM
(
N i
t

)
, (3.2.1)

where

L(N i
t ) =


Rmin

(
N i
t

)
if maxAM(Nt) < 75,

HB
(
N i
t

)
if 75 ≤ maxAM(Nt) < 200,

HK
(
N i
t

)
otherwise.

Here, C
(
N i
t ,Dt

)
denotes the cost of the corresponding event, defined in Section

3.2.2.3; maxAM(Nt) denotes the maximum amount of ancestral material seen

in any of the states in Nt, and AM(N i
t ) gives the amount of ancestral material

in state N i
t . Incorporating a measure of the amount of ancestral material in a

state helps to break ties by assigning a smaller score to simpler configurations.

The method of computing the lower bound L depends on the complexity

of the dataset, with a trade-off between accuracy and computational cost. For

relatively small datasets, it is feasible to compute Rmin exactly using Beagle.

HB refers to the haplotype bound, employing the improvements afforded by

first calculating local bounds for incompatible intervals, and applying a com-

position method to obtain a global bound. HK refers to the Hudson-Kaplan

bound; this is fast but less accurate, so is reserved for larger, more complex

configurations. Note that these bounds are computed under the infinite sites

assumption.
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The particular form and components of the score were chosen through

simulation testing; it was found that the given formula provides a good level

of informativeness regarding the quality of a possible state.

3.2.2.3 Event cost

Each type of event is assigned a cost, which gives a relative measure of

preference for each event type in the reconstructed history:

• CR: the cost of a single recombination event, defaults to 1.

• CRR: the cost of performing two successive recombinations, defaults to 2.

It is sufficient to consider at most two consecutive recombination events

before a coalescence (Lyngsø et al., 2005); this type of event also captures

the effects of gene conversion.

• CRM : the cost of a recurrent mutation. If N i
t is formed from Dt by

a recurrent mutation in a column representing k agreeing sites, this

corresponds to proposing k recurrent mutation events, so the cost is

C(N i
t ,Dt) = k · CRM .

• CSE: this event is a recurrent mutation which affects only one sequence

in the original dataset, i.e. it occurs on the terminal branches of the

ARG. Thus, the event can be either a regular recurrent mutation, or an

artefact due to sequencing errors. The cost can be set to equal CRM , or

lower if the presence of sequencing errors is considered likely.

KwARG allows the specification of a range of event costs as tuning parame-

ters, as well as the number Q of independent runs of the algorithm to perform

for each cost configuration. The proportions of recombinations to recurrent

mutations in the solutions produced by KwARG can be controlled by varying

the ratio of costs for the corresponding event types.
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3.2.2.4 Default cost configuration

If the number of iterations Q > 1 is specified but no costs are input,

KwARG runs each of the following 13 cost configurations Q times:

(CSE, CRM , CR, CRR) ∈ {(∞,∞, 1.0, 2.0), (1.0, 1.01, 1.0, 2.0), (0.9, 0.91, 1.0, 2.0),

(0.8, 0.81, 1.0, 2.0), (0.7, 0.71, 1.0, 2.0), (0.6, 0.61, 1.0, 2.0),

(0.5, 0.51, 1.0, 2.0), (0.4, 0.41, 1.0, 2.0), (0.3, 0.31, 1.0, 2.0),

(0.2, 0.21, 1.0, 2.0), (0.1, 0.11, 1.0, 2.0), (0.01, 0.02, 1.0, 2.0),

(1.0, 1.1,∞,∞)}. (3.2.2)

The effectiveness of this range of cost configurations will be illustrated on

the Kreitman dataset in Section 3.4.1.

3.2.2.5 Selection probability

The method of selecting the next state from a neighbourhood of candidates

will impact on the efficiency and performance of the algorithm. At one extreme,

selecting at random amongst the states will mean that the solution space is

explored more fully, but will be prohibitively inefficient in terms of the number

of runs needed to find a near-optimal solution. On the other hand, always

greedily selecting the move with the minimal score will quickly identify a small

set of solutions for each cost configuration, at the expense of placing our faith in

the ability of the score to assess the quality of the candidate states accurately.

Thus, a selection method is proposed that is intermediate between these

two extremes, randomising the selection but focussing on moves with near-

minimal scores. A pseudo-score for state N i
t is calculated:

exp
(
T ·
(

1− S̃
(
N i
t ,N i

t ,Dt
)))

, (3.2.3)

where

S̃
(
N i
t ,N i

t ,Dt
)

=
S
(
N i
t ,N i

t ,Dt
)
−minj S

(
N j
t ,N

j
t ,Dt

)
maxj S

(
N j
t ,N

j
t ,Dt

)
−minj S

(
N j
t ,N

j
t ,Dt

) ,
and states in Nt are selected with probability proportional to their pseudo-

score. The annealing parameter T controls the extent of random exploration;

T = 0 corresponds to choosing uniformly at random from the neighbourhood

of candidates, and T =∞ to always choosing a state with the minimal score.
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The default value of T = 30 was chosen following simulation testing, which

showed that this provides a good balance between efficiency and thorough

exploration of the neighbourhood.

3.2.3 Output

The default output consists of the number of recombinations and recurrent

mutations in each identified solution; an example for the Kreitman dataset is

given in Table 3.1. Each iteration is assigned a unique random seed, which

can be used to reconstruct each particular solution and produce more detailed

outputs, such as a detailed list of events in the history, the ARG in several

graph formats, or the corresponding sequence of marginal trees.

3.2.4 Pseudocode

Let D be an input data matrix with entries 0, 1 or ?. Denote by Di,j the

entry of D at position (i, j). Let Rr(D, i) and Rc(D, j) denote the resulting

matrix when the i-th row or the j-th column of D is deleted, respectively. Let

the history H be a set storing all of the intermediate states visited on the path

from D to the root of the ARG. Algorithm 2 shows pseudocode for the ‘Clean’

algorithm with this notation.

Algorithm 2: Clean (adapted from Song and Hein, 2003)

Input: Dataset D, history H
Output: Reduced dataset D, updated history H′
Initialise C ← true, D ← D, H′ ← H;
while C do

if two distinct rows i, j agree: Di,k ∈ {Dj,k , ?} ∀k then
D ← Rr(D, i), H′ ← H′ ∪ D ;

else if there is a column i such that Dk,i = 1 for exactly one k then
D ← Rc(D, i), H′ ← H′ ∪ D ;

else if two distinct neighbouring columns i, j agree:
Dk,i ∈ {Dk,j , ?} ∀k then
D ← Rc(D, i), H′ ← H′ ∪ D ;

else
C ← false;

end

return (D, H′);

Define the following operations:
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1. Recurrent mutation: D̃ = RM(D, i, j) is the result of a recurrent muta-

tion in row i at column j; D̃ is obtained from D by changing the (i, j)-th

entry from 0 to 1 or from 1 to 0.

2. Recombination: D̃ = Rec(D, i, j) is the result of a recombination in row

i with breakpoint just after column j. Namely, D̃ is obtained from D
by inserting a copy of the i-th row just below itself, and setting D̃i,k =

? ∀k ≤ j and D̃i+1,k = ? ∀k > j.

3. Two consecutive recombinations: D̃ = RRec(D, i, j, k, l) is the result of

performing two recombinations, in rows i and k with breakpoints at j

and l, respectively.

Note that for recombination events, not all row and column positions should

to be considered, as some moves are guaranteed not to resolve any incompati-

bilities in the dataset. The ideas detailed by Lyngsø et al. (2005, Section 3.3)

are applied to restrict the rows and breakpoints considered for recombination

events. Suppose that as a result, R is the list of row and column indices (i, j)

to consider for recombination events, and RR is the list of indices (i, j, k, l) to

consider for two consecutive recombination events. Algorithm 3 shows pseu-

docode for constructing the neighbourhood of next candidate states; Algorithm

4 demonstrates the operation of KwARG.

Algorithm 3: Neighbourhood

Input: Dataset D
Output: Neighbourhood N
Initialise N ← {∅};
for (i, j) ∈ R do
N ← N ∪ Rec(D, i, j);

end
for (i, j, k, l) ∈ RR do
N ← N ∪ RRec(D, i, j, k, l);

end
for all rows i do

for all columns j such that Di,j 6= ? do
N ← N ∪ RM(D, i, j);

end

end
return N ;
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Algorithm 4: KwARG

Input: Dataset D
Output: History H
Initialise i← 1, H ← {D}, (D1,H)← Clean(D,H);

while Di 6= ∅ do
Ni ← {∅}, Li ← {∅}, S ← {∅};
Ni ← Neighbourhood(Di) = {N 1

i ,N 2
i , . . .};

for j = 1 to |Ni| do

(N j
i ,L

j
i )← Clean(N j

i ,H ∪N
j
i );

Ni ← Ni ∪N j
i , Li ← Li ∪ L

j
i ;

S ← S ∪ S̃
(
N j
i ,N

j
i ,Di

)
, where S̃

(
N j
i ,N

j
i ,Di

)
is computed

using (3.2.3);

end

Randomly draw an index k from {1, . . . , |Ni|} with probabilities
proportional to entries of S;

Set Di+1 ← N k
i , H ← Lki ;

i← i+ 1;

end
return H;

3.3 Performance on simulated data

The performance of KwARG was tested based on two main criteria. Firstly,

its performance was compared to that of exact methods, PAUP* and Beagle,

to demonstrate that KwARG successfully reconstructs minimal histories in

the mutation-only and recombination-only cases, respectively. Secondly, sim-

ulation studies were carried out to determine how accurately KwARG recon-

structs local trees, compared against three other methods: tsinfer, RENT+,

and ARGweaver. Finally, the performance of KwARG was compared to that

of the parsimony-based heuristic methods SHRUB and SHRUB-GC. The de-

pendence of the run time of KwARG on the number and length of sequences

was also investigated through simulation studies.

3.3.1 Comparison to PAUP*

Disallowing recombination, the quality of computed upper bounds on Pmin

was tested by comparison with PAUP* (Swofford, 2003, version 4.0a168),

which was used to compute the exact minimum parsimony score via branch-

and-bound on 994 datasets simulated as follows.

Using msprime (Kelleher et al., 2016), 1 100 genealogies were simulated
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(parameters: 20 sequences, Ne = 1). For each tree, Seq-Gen (Rambaut and

Grass, 1997) was used to add mutations (parameters: 1 000 sites, mutation

rate per generation per site set by the scaling constant s = 0.01); only transi-

tions were allowed, to fulfil the requirement that sites mutate between exactly

two states. 1 063 datasets exhibited incompatibilities caused by recurrent mu-

tations. KwARG was run for a total of Q = 600 iterations per dataset; 150 of

these were used to estimate Rmin, and 450 were run with a range of costs to

estimate Pmin. The runs were terminated after 10 minutes (if 600 iterations

had not been completed by then, the results were discarded; this happened in

69 cases); a total of 994 successful runs were performed.

KwARG failed to find Pmin in 11 (1.1%) cases out of 994. The results are

illustrated in the left panel of Figure 3.2. Where KwARG failed to find an op-

timal solution, in all 11 cases it was off by just one recurrent mutation. Figure

3.2 also demonstrates that a substantial proportion of recurrent mutations do

not create incompatibilities in the data, and the number of actual events often

far exceeds Pmin.
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Figure 3.2: Left: number of simulated recurrent mutations against Pmin.
Right: number of simulated recombinations against Rmin. Cell colouring
intensity is proportional to the number of datasets generated for each pair of
coordinates. Numbers in each cell correspond to the number of cases where
for a dataset with the true minimum number of events given on the x-axis,
KwARG inferred the number of events given on the y-axis (unlabelled cells
correspond to 0 such cases).
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3.3.2 Comparison to Beagle

Under the infinite sites assumption (disallowing recurrent mutation), the

accuracy of KwARG’s upper bound on Rmin was tested by comparison with

Beagle, on 1 037 datasets simulated as folllows.

Using msprime, 1 100 datasets were simulated under the infinite sites as-

sumption (parameters: Ne = 1, mutation rate per generation per site 0.02,

recombination rate per site 0.0003, 40 sequences of length 2 000bp). Of the

generated datasets, 38 had no incompatible sites, and runs were terminated if

Beagle took over 10 minutes to complete (which happened in 25 cases), leaving

1 037 datasets for testing. The parameters were chosen to produce datasets on

which Beagle could be run within a reasonable amount of time; the value of

Rmin for the simulated datasets varied between 1 and 10.

Using the default annealing parameter T = 30, KwARG found Rmin in all

cases. In 97% of the runs, this took under 5 seconds of CPU time (on a 2.7GHz

Intel Core i7 processor); all but one run took less than 40 seconds. In 93% of

the runs, 1 iteration was sufficient to find an optimal solution; in 99% of the

runs, 5 iterations were sufficient. Beagle found the exact solution in 5 seconds

or less in 86% of cases; for datasets with a small Rmin Beagle runs relatively

quickly (median run time for Rmin = 5 was 1 second, compared to KwARG’s

0.3 seconds). For more complex datasets, KwARG finds an optimal solution

much faster; for Rmin = 9, the median run time of Beagle was 56 seconds,

compared to KwARG’s 3 seconds.

Setting T = 10 and T =∞ resulted in 5 and 22 failures to find an optimal

solution, respectively, when KwARG was run for Q = 1 000 iterations per

dataset (or terminated after 10 minutes have elapsed), demonstrating that

setting the annealing parameters too low or too high results in deterioration

of performance.

The right panel of Figure 3.2 illustrates the results, and shows the relation-

ship between the true simulated number of recombinations and Rmin. This

demonstrates that in many cases, substantially more recombinations have oc-

curred than can be confidently detected from the data.

3.3.3 Comparison to tsinfer, RENT+, and ARGweaver

The performance of KwARG in recovering the topology of simulated local

trees was tested for a range of recombination and mutation rates (under the

infinite sites assumption). For each combination of rates, 100 datasets were

79



simulated, and from the output of each method, the Kendall–Colijn metric

(Kendall and Colijn, 2016) was calculated between the inferred and true tree

topologies at each variant site position, calculating the mean across all variant

sites and averaging over the datasets. Note that ARGs contain more informa-

tion than local trees, but there is no obvious way of comparing ARG topologies

(and tsinfer only infers local trees, rather than full ARGs).

Datasets were simulated using msprime under the infinite sites assumption

(parameters: Ne = 10 000, 20 sequences of length 1 000bp), with a range of

recombination rates ({1 · 10−7, 2 · 10−7, 4 · 10−7, 8 · 10−7, 1.6 · 10−6} per site per

generation) and mutation rates ({5 ·10−8, 1 ·10−7, 2 ·10−7, 4 ·10−7, 8 ·10−7, 1.6 ·
10−6, 3.2·10−6, 6.4·10−6, 1.28·10−5} per site per generation). These parameters

were chosen to cover a broad range of the simulated number of recombinations

and mutations. 100 datasets were simulated for each combination of rates.

RENT+, tsinfer, ARGweaver, and KwARG were run on each dataset. For

tsinfer, the ancestral state must be specified at each variable site, and was

set to the simulated truth. ARGweaver requires the specification of mutation

and recombination rates; these were set to the simulation parameters used.

ARGweaver was run for 1 200 iterations, discarding the first 1 000 as burn-in,

and then sampling ARGs with intervals of 20 steps (obtaining 10 in total).

KwARG was run for one iteration per dataset, with the parameters T = 30,

CSE = CRM =∞, and the known ancestral sequence set as the root.

For each dataset, the local trees output by each program were then com-

pared to the simulated true trees, by calculating the Kendall–Colijn metric

at each variable site position. As tsinfer can output trees with polytomies,

these were resolved randomly before calculating the metric for the sake of fair

comparison. The mean was then calculated across sites, and for each combi-

nation of recombination and mutation rate the metric was averaged across the

datasets. The results are presented in Figure 3.3. A comparison of the run

times of the programs used is illustrated in Figure 3.4.

All methods show very comparable performance across the range of consid-

ered scenarios, with KwARG slightly outperforming the other methods, based

on the chosen metric, when the recombination rate is relatively low and the

mutation rate relatively high. The same analysis was performed using the

Robinson–Foulds metric (Robinson and Foulds, 1981), and this was found to

give very similar results.
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Figure 3.3: Comparison of performance in local tree recovery. Dashed ver-
tical lines show the value of the recombination rate in each panel. Points
correspond to mean values; error bars show mean ± standard error. ARG-
weaver results not shown past µ = 3.2 · 10−6 due to prohibitively long run
time. Lower K-C distance indicates better accuracy.
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Figure 3.4: Comparison of time taken per dataset. Points show mean run
time averaged over 100 datasets for each combination of rate parameters.
Error bars show mean ± standard error.
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3.3.4 Comparison to SHRUB and SHRUB-GC

The performance of KwARG on larger datasets was tested against the

parsimony-based heuristic methods SHRUB and SHRUB-GC. Both methods

implement a backwards-in-time construction of ARGs, using a dynamic pro-

gramming approach to choose among possible recombination events. SHRUB

produces an upper bound onRmin under the infinite sites assumption. SHRUB-

GC also allows gene conversion events; setting the maximum gene conversion

tract length to 1 makes this equivalent to recurrent mutation. The algorithm

seeks to minimise the total number of events, essentially assigning equal costs

to recombination and recurrent mutation. This differs from KwARG in that

a single solution is produced for a given dataset, rather than a full range of

solutions varying in the number of recombinations and recurrent mutations.

Using msprime and Seq-Gen, 300 datasets of 100 sequences were simulated,

with a range of mutation and recombination rates and sequence lengths of

2 000, 5 000, 8 000 and 10 000 bp. For each dataset, KwARG was run for a total

of Q = 260 iterations, with the default cost configurations and T = 30. The

resulting upper bound on Rmin was compared to that produced by SHRUB,

and the minimum number of events over all identified solutions was compared

to the solution produced by SHRUB-GC (configured to allow length-1 gene

conversions).

KwARG obtained solutions at least as good as SHRUB’s in 292 (97.3%)

of 300 cases, outperforming it in 35 (11.7%) instances. KwARG obtained

solutions at least as good as SHRUB-GC in 296 (98.7%) cases, outperforming

it in 2 instances. The results and the run times are illustrated in Figures

3.5 and 3.6. On average, for relatively small and simple datasets, KwARG

takes approximately the same time per one iteration as a run of SHRUB or

SHRUB-GC, and outperforms both programs on more complex datasets.

3.3.5 Run time analysis

A comparison of the run times of KwARG against tsinfer, RENT+, and

ARGweaver is presented in Figure 3.4. KwARG demonstrates good efficiency

when the recombination and mutation rates are relatively low, and shows

roughly linear growth in run time as the mutation rate increases.

The dependence of the run time of KwARG on the number and length

of sequences was further investigated through simulations. First, the sequence

length was fixed at 5 000bp, and datasets were simulated with varying numbers
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timate produced by KwARG. Instances where equally good solutions were
found lie on the red diagonal line. Size of points is proportional to the
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(left: disallowing recurrent mutations, right: allowing both recombination
and recurrent mutation). Blue lines: mean values. Red line: mean run time
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of sequences (from 2 to 30) using msprime, with the infinite sites assumption

(parameters: Ne = 10 000, mutation rate 2·10−7 per site per generation, recom-

bination rate 2 · 10−7 per site per generation). For each number of sequences,

500 simulations were carried out; for each dataset, KwARG was run once and

the runtime recorded. The results are presented in the left panel of Figure

3.7. KwARG runs very quickly when the number of sequences is very low, and

shows roughly exponential growth in run time when the number of sequences

is 6 or more.
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Figure 3.7: Run time versus number of sequences (left panel) and sequence
length (right panel). Lines show mean run time over 500 (100) datasets;
error bars show mean ± standard error.

Next, the number of sequences was fixed at 20, and datasets were simulated

with varying sequence lengths (from 100 to 15 000bp) using msprime, with

the infinite sites assumption (same parameters as above). For each sequence

length, 100 simulations were carried out; for each dataset, KwARG was run

once and the runtime recorded. The results are presented in the right panel of

Figure 3.7. After an initial exponential increase (due to small datasets taking

very little time per iteration), the run time scales roughly linearly in sequence

length.

3.4 Application to Kreitman data

The performance of KwARG is now illustrated on the classic dataset of Kre-

itman (1983, Table 1); the size of the dataset is not close to the performance
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limit of KwARG, but this data has been widely used for benchmarking algo-

rithms used for ARG reconstruction. The dataset consists of 11 sequences and

2 721 sites, of which 43 are polymorphic, of the alcohol dehydrogenase locus of

Drosophila melanogaster. The data is shown in Figure 3.8, with columns con-

taining singleton mutations removed for ease of viewing. Applying the ‘Clean’

algorithm, as described in Section 3.2.2.1, reduces this to a matrix of 9 rows

and 16 columns.

Figure 3.8: Illustration of the Kreitman dataset. The 11 sequences are
labelled as presented by Kreitman (1983); polymorphic sites are labelled
1–43 and columns with singleton mutations are not shown.

3.4.1 Parameters

KwARG was run with the default parameters, Q = 500 times for each of 13

default cost configurations given in Section 3.2.2.4. An example of the output

is shown in Table 3.1.

The effectiveness of using the default range of cost configurations is illus-

trated in Figure 3.9, which is based on the set of all possible minimal solutions

identified for the dataset. Fixing CR = 1.0 and CRR = 2.0, each tile repre-

sents a pair (CSE, CRM). Each tile is coloured and labelled according to the

corresponding cost-optimal solution, in the form {x, y, z}, giving the number

of SE, RM and recombination events, respectively. For instance, if CSE = 0.5

and CRM = 0.61, the solutions {3, 0, 3} (with cost 3 · 0.5 + 3 · 1.0 = 4.5) and

{5, 0, 2} (with cost 5 · 0.5 + 2 · 1.0 = 4.5) have the lowest costs over all feasible

solutions.

The default cost configuration in (3.2.2) includes all pairs (CSE, CRM) on

the diagonal in this plot, falling on the red line. This line crosses all optimal
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Figure 3.9: Solution tile plot for the Kreitman dataset.

solutions which maximise the number of SE events for each possible number of

recombinations. Such events affect only a single sequence at a single site in the

input dataset, so are, in a sense, more parsimonious than recurrent mutations

occurring on internal branches.

3.4.2 Results

KwARG correctly identified the Rmin of 7 and the Pmin of 10 (confirmed

by running Beagle and PAUP*, respectively). The 6 500 iterations of KwARG

took just under 9 minutes to run. Of these, 1,829 (28%) resulted in optimal

solutions; some are shown in Table 3.1. KwARG identified multiple combi-

nations of recombinations and recurrent mutations that could have generated

this dataset. By default, slightly cheaper costs are assigned to recurrent muta-

tions if they happen on terminal branches, so the results show a bias towards

solutions with more SE events for each given number of recombinations.

The ten recurrent mutations appearing in the solution in row 8 of Ta-

ble 3.1 are highlighted on the dataset in Figure 3.8. It is striking that 7 of

these 10 recurrent mutations affect the same sequence Fl-2S. In fact, these

7 recurrent mutations could be replaced by 3 recombination events affecting
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Seed T CSE CRM CR CRR SE RM R
∑

t |Nt|
1 2263536315 30.0 ∞ ∞ 1.00 2.00 0 0 7 143
2 2347021759 30.0 0.90 0.91 1.00 2.00 1 0 6 853
3 1791455164 30.0 0.80 0.81 1.00 2.00 1 0 5 728
4 1684879495 30.0 0.60 0.61 1.00 2.00 2 0 4 783
5 1884182000 30.0 0.40 0.41 1.00 2.00 3 0 3 806
6 1900122424 30.0 0.20 0.21 1.00 2.00 5 0 2 702
7 2111915557 30.0 0.10 0.11 1.00 2.00 8 0 1 833
8 2888657821 30.0 0.01 0.02 1.00 2.00 10 0 0 715

Table 3.1: Example output of KwARG for the Kreitman dataset. SE:
number of recurrent mutations occurring on terminal branches of the ARG
(possible sequencing errors). RM: number of other recurrent mutations. R:
number of recombinations. Last column gives the total number of neigh-
bourhood states considered.

sequence Fl-2S, with breakpoints just after sites 3, 16, and 35; leaving the

other identified recurrent mutations unchanged yields the solution in row 5 of

Table 3.1. These findings suggest that the sequence may have been affected

by cross-contamination or other errors during the sequencing process, or it

could indeed be a recombinant mosaic of four other sequences in the sample.

This recovers the results obtained by Stephens and Nei (1985), who posited

the recombinant origins of sequence Fl-2S following manual examination of a

reconstructed maximum parsimony tree, which also highlighted the five consec-

utive mutations identified by KwARG. The ARG corresponding to the solution

in row 5 of Table 3.1, visualised using Graphviz (Ellson et al., 2004), is shown

in Figure 3.10.

Examination of the identified solutions also shows that site 36 of sequence

Ja-S “necessitates” two of the seven recombinations inferred in the minimal

solution in the absence of recurrent mutation, while sites 3 and 9 in sequences

Wa-S and Fl-1S, respectively, each create incompatibilities that could be re-

solved by one recombination.

3.5 Discussion

Methods for the reconstruction of parsimonious ARGs generally rely on the

infinite sites assumption. When examining the output ARGs, it is often diffi-

cult to tell by how much the inferred recombination events actually affect the

recombining sequences. As is the case with the Kreitman dataset, sometimes

88



Wa-SFl-1S Af-S Fr-S Fl-2S Ja-SFl-F Fr-F Wa-F Af-F Ja-F

10;*9*3

41;43

17;18

39;40

16-

S

35-

15

42;*36

S

30;32;34

6;7;8;14;21;25

11;12

13;383-

S

P

3

19;20;22;23;24;26;27;28;29

36

P

16;31;33;35;37

P

9

1;2;4;5

Figure 3.10: ARG constructed for the Kreitman data. Edges are labelled
with sites undergoing mutations; recurrent mutations are prefixed with an
asterisk. Recombination nodes, in blue, are labelled with the recombination
breakpoint; material to the right (left) of the breakpoint is inherited from
the parent connected by the edge labelled S (P ) for “suffix” (“prefix”).

further examination reveals that two crossover recombination events have the

same effect as one recurrent mutation, raising questions about which version

of events is more likely. KwARG removes the need for such manual exami-

nation, and provides an automated way of highlighting such cases, which is

particularly useful for larger datasets.

While KwARG performs well in inferring ARGs under the infinite sites

assumption, it can be particularly useful in analysing genetic data from or-

ganisms whose genomes are reasonably likely to undergo recurrent mutation,

such as viruses with relatively high mutation rates and short genomes. One

such application is described further on, in Chapter 4, where the output of

KwARG is combined with probabilistic arguments to investigate the presence

of ongoing recombination in SARS-CoV-2.

The solutions identified by KwARG differ in the proportion of recurrent

mutations to recombinations, ranging from an explanation that invokes only

recombination events to one that invokes only mutation events. As is the

case with other heuristic and parsimony-based methods, KwARG cannot offer

uncertainty quantification for the inferred ARGs. Quantifying the likelihood

of each scenario will be application-specific; for instance, one can choose a
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reasonable model of evolution for the population being studied, and identify the

most likely solution under a range of reasonable mutation and recombination

rates. When the presence or absence of recombination is not certain, then

should the number of recurrent mutations needed to explain the dataset be

infeasibly large, this provides evidence for the presence of recombination; this

is the idea underlying the homoplasy test of Maynard Smith and Smith (1998).

If the largest “reasonable” number of recurrent mutations is then estimated,

KwARG can be used to say how many additional recombination events are

required to explain the dataset.

KwARG performs well when compared against exact parsimony methods

for the ‘recombination-only’ and ‘mutation-only’ scenarios. Because of the

random exploration incorporated within KwARG, it should be run multiple

times on the same dataset before selecting the best solutions; the optimal run

length of KwARG will be constrained by timing and the available computa-

tional resources. To gauge whether KwARG has run enough iterations, one

could proceed by calculating Rmin and Pmin either exactly (if the data is rea-

sonably small) or using other heuristics-based methods (such as SHRUB or

PAUP*), to confirm whether KwARG has found good solutions at these two

extremes.

The range of solutions explored by KwARG is guided by the choice of cost

parameters. As a rule of thumb, simulations have shown that if the muta-

tion and recombination rates are similar, costs near one give good accuracy

of solutions in terms of reconstructing local tree topologies; if the mutation

rate is significantly higher (resp. lower) than the recombination rate, the cost

should be set to less than (resp. greater than) one. As KwARG incorporates

a degree of random exploration, a range of solutions will still be obtained; the

best choice of parameters will depend strongly on the nature and aims of the

analysis being performed.

For model-based inference, the modelling assumptions can clearly affect

the quality of the results; however, a parsimony-based approach also makes

the strong assumption that the minimal ARG can capture useful information

about the history of a sample. The veracity of this assumption will depend on

the true recombination rate. Based on comparisons with RENT+, tsinfer, and

ARGweaver, KwARG achieves very good accuracy of inference of local tree

topologies at least comparable to these other methods, particularly when the

recombination rate is low to moderate and the mutation rate moderate to high.

KwARG demonstrates relatively good accuracy even when the recombination

90



rate is high and even though its express goal is to seek the most parsimonious,

rather than necessarily the most likely, history. Moreover, for datasets with

relatively few incompatibilities, the run time of KwARG is competitive with

that of the other methods. It is also interesting to note that although all four

programs incorporate very different approaches and heuristic algorithms, they

demonstrate very similar performance in inferring local tree topologies over

the range of considered scenarios.

The scalability of KwARG remains a challenge for large and more complex

datasets. Performance gains could be readily achieved by running multiple

iterations of KwARG in parallel, or incorporating more efficient ways of stor-

ing the intermediate states. Further improvements could also be obtained by

amending the calculation of lower bounds within the cost function in order to

account for the presence of recurrent mutation, which should make the scores

more accurate, and hence the neighbourhood exploration more efficient. Other

avenues for further work include explicitly incorporating gene conversion as a

possible type of recombination event with a separate cost parameter, with a

view to developing the underlying model of evolution to even more closely

reflect biological reality.
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Chapter 4

Recombination detection for

SARS-CoV-2

4.1 Introduction

In this chapter, KwARG is used to detect and examine crossover recombi-

nation events in samples of SARS-CoV-2 viral consensus sequences. This ap-

proach provides a concrete way of describing their genealogical relationships,

sidestepping the challenges presented by discrepancies in clade assignment, en-

abling the detection of intra-clade recombination, avoiding the need to specify

a particular model of evolution, and allowing for the explicit identification of

possible recombination events in the history of a sample. The method natu-

rally handles both recombination and recurrent mutation, identifying a range

of possible explicit genealogical histories for the dataset with varying propor-

tions of both events types. Rather than using summary statistics calculated

from the data, or focussing only on patterns of clade-defining mutations, the

method utilises all of the information contained in the patterns of incompati-

bilities observed in a sample, allowing for powerful detection and identification

of possible recombinants. Moreover, a nonparametric framework is presented

for evaluating the probability of a given number of recurrent mutations, thus

quantifying how many recombinations are likely to have occurred in the his-

tory of a dataset. This allows for a more thorough and statistically principled

assessment of the extent to which ongoing recombination is occurring.

The presence of ongoing recombination in SARS-CoV-2 is investigated us-

ing publicly available data from GISAID (Elbe and Buckland-Merrett, 2017),

collected between November 2020 and February 2021. Using data from South
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Africa, the method detects recombination both when the sample contains se-

quences from multiple distinct lineages (‘inter-clade’), as well as all from the

same lineage (‘intra-clade’). Further, the method can accurately detect consen-

sus sequences carrying patterns of mutations that are consistent with recom-

bination, flagging these sequences for further investigation—and, using data

from England, it can identify both sequences arising as a result of sequenc-

ing errors due to sample contamination, aiding in identifying quality control

issues, as well as sequences likely to be true recombinants. The method is val-

idated using extensive simulation studies, and through application to Middle

East respiratory syndrome coronavirus (MERS-CoV) data, for which evidence

of recombination is identified, in agreement with previous studies.

Details of the data used are given in Section 4.2. An outline of the method

is presented in Section 4.3, with details of genealogy reconstruction and eval-

uation of the resulting solutions given in Sections 4.4 and 4.5, respectively.

Results are presented in Section 4.6, and discussion follows in Section 4.7.

4.2 Data

SARS-CoV-2 sequencing data is publicly available from GISAID at gisaid.

org upon free registration. MERS-CoV data is publicly available from the

NCBI Virus database at ncbi.nlm.nih.gov/labs/virus. Code used in pro-

cessing the data and carrying out the analysis (with step-by-step instructions)

is available at github.com/a-ignatieva/sars-cov-2-recombination.

4.2.1 SARS-CoV-2

Sequences were downloaded from GISAID, and aligned as described below.

Masking was applied to sites at the endpoint regions of the genomes, any multi-

allelic sites, regions with many missing nucleotides in multiple sequences, and

sites identified by De Maio et al. (2020) as being highly homoplasic or prone to

sequencing errors. Strict quality criteria were applied to remove any sequences

with a large number of ambiguous nucleotides, excessive gaps, and groups of

clustered mutations; additionally, sites identified by van Dorp et al. (2020a) as

being prone to recurrent mutation were masked. These measures were aimed

at reducing the possibility of including poor quality or contaminated sequences

in the analysed samples, and also masking sites that are known to be highly

homoplasic (either due to recurring sequencing errors, or due to the effects of
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selection).

The timing and location of samples was selected to coincide with periods of

high transmission numbers, as this increases the probability of co-infection of

the same host with multiple strains, which is a requirement for recombination

to occur. Collection dates were also restricted to reasonably narrow windows,

as KwARG assumes that the sequences are sampled contemporaneously. Four

samples were analysed:

• from South Africa, collected in

– November 2020: 50 sequences, with 25 from lineage B.1.351 (Beta

variant), and 25 from other lineages;

– February 2021: 38 sequences, all from lineage B.1.351;

• from England, collected in

– November 2020: 80 sequences, with 40 sequences from lineage B.1.1.7

(Alpha variant) and 40 from other lineages within GISAID clade GR

(which contains B.1.1.7);

– December 2020 – January 2021 (40 sequences within GISAID clade

GR).

A full table of acknowledgements for the data used is provided at github.

com/a-ignatieva/sars-cov-2-recombination/tree/main/GISAID_acknow

ledgements.

4.2.1.1 Alignment and masking

SARS-CoV-2 sequences were downloaded from GISAID, filtering for those

labelled as complete (>29 000bp, out of the total genome length of 29 903bp),

collected from human hosts, and excluding any with more than 5% ambiguous

nucleotides and incomplete collection dates. Although SARS-CoV-2 is an RNA

virus, nucleotides will be referred to by their DNA type for consistency with

the sequencing data (i.e. the base type T corresponds to U on the actual

SARS-CoV-2 genome).

Alignment to the reference sequence collected in Wuhan in December 2019

(Wu et al., 2020) (GISAID accession: EPI ISL 402125, GenBank: MN908947.3)

was performed using MAFFT v7.475 (Katoh and Standley, 2013), with the op-

tions: auto, keeplength, preservecase, addfragments.

The following sites were masked from the data:
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• the endpoint regions with a large number of missing nucleotides (1–55bp

and 29 804–29 903bp);

• 322 further sites identified as problematic by De Maio et al. (2020) (prone

to sequencing errors, known to be excessively homoplasic, or otherwise

of questionable quality);

• any multi-allelic sites.

4.2.1.2 Quality criteria

Any sequences failing the following quality criteria were removed:

• at most 500 missing nucleotides (excluding start and end of alignment);

• at most 1 non-ACTG character;

• at most 25 gaps;

• no mutation clusters (more than 6 mutations in a window of 100 nu-

cleotides, excluding known and verified clusters).

Nextclade (Hadfield et al., 2018, tool available at clades.nextstrain.org) was

used to check sampled sequences against these criteria (and it was ensured

that any sequences assigned a score of “bad” by the tool were removed). In

addition, the 198 sites identified by van Dorp et al. (2020a, Supplementary

Table S5) as potentially highly homoplasic were masked.

4.2.1.3 South Africa (November)

All sequences collected in South Africa in November 2020 were downloaded

and aligned as described in Section 4.2.1.1. Removing 48 sequences flagged

by the submitter as containing long stretches of ambiguous nucleotides, and

applying the quality criteria in Section 4.2.1.2, left a total of 278 sequences.

The aligned sequences were split into the datasets SAN (the 177 sequences

labelled as belonging to variant 501Y.V2 (Beta) in GISAID) and SAO (the

other 101 sequences). A sample of 25 sequences from each of SAO and SAN

was selected at random using SeqKit (Shen et al., 2016).

Masking was carried out as described in Section 4.2.1.1; in addition, sites

22 266–22 745 were masked, as many of the sequences contained a large number

of ambiguous nucleotides at these positions. No further multi-allelic sites were
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identified. Of the total 1 125 masked positions, 28 corresponded to segregating

sites in the dataset.

The resulting sample comprises 50 sequences with 207 variable sites. The

corresponding GISAID accession numbers and collection dates are given in

Appendix B, Table B.1.

4.2.1.4 South Africa (February)

All sequences collected in South Africa in February 2021 were downloaded,

aligned, and masked as described in Section 4.2.1.1, also masking sites 22 266–

22 745; no additional multi-allelic sites were identified. The quality filters

detailed in Section 4.2.1.2 were applied. One sequence in the resulting sample

was not from lineage B.1.351 and was removed. Of the total 1 125 masked

positions, 17 corresponded to segregating sites.

The resulting sample consists of 38 sequences, all from lineage B.1.351,

with 151 variable sites. The corresponding GISAID accession numbers and

collection dates are given in Appendix B, Table B.2.

4.2.1.5 England (November)

All sequences labelled as clade GR, collected in England in November 2020,

were downloaded and aligned as per Section 4.2.1.1. Exact duplicates of se-

quences in the dataset were removed, to avoid including identical sequences in

the sample. The sequences were then split into datasets EN (934 sequences

labelled as belonging to lineage B.1.1.7) and EO (the other 2 650 sequences).

A sample of 40 sequences from each of EO and EN was then selected at

random using SeqKit. Sites were masked as detailed in Section 4.2.1.1. Three

multi-allelic sites were identified and masked, at positions 12 067, 21 724, and

22 992. Of the total 477 masked positions, 10 corresponded to segregating sites

in the dataset. The quality control criteria in Section 4.2.1.2 were not applied

to this sample.

The resulting sample comprises 80 sequences with 363 variable sites. The

corresponding GISAID accession numbers and collection dates are given in

Appendix B, Table B.3.

4.2.1.6 England (January)

All sequences labelled as clade GR, collected in England in December 2020

to January 2021, were downloaded and aligned as per Section 4.2.1.1. Sites
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were masked as detailed in Section 4.2.1.1, and the quality filters detailed in

Section 4.2.1.2 were applied. A sample of 38 sequences was selected at random

using SeqKit, from among sequences uploaded by the COVID-19 Genomics

UK Consortium; additionally, the sequence EPI ISL 994038 (E39) identified

as a potential recombinant by Jackson et al. (2021), and its potential parent

sequence EPI ISL 820233 (E40), were included. Five multi-allelic sites were

identified and masked, at positions 21 255, 23 604, 24 914, 28 310, and 29 227.

Of the total 660 masked positions, 35 corresponded to segregating sites in the

dataset.

The resulting sample comprises 40 sequences with 276 variable sites. The

corresponding GISAID accession numbers and collection dates are given in

Appendix B, Table B.4.

4.2.2 MERS-CoV

MERS-CoV sequences were downloaded from the NCBI Virus database

(Hatcher et al., 2017), filtering for those labelled as complete, human host,

collected in Saudi Arabia in January to March 2015. Alignment to the reference

sequence (HCoV-EMC/2012, accession number NC 019843.3) was performed

using MAFFT, with the same options as in Section 4.2.1.1. Masking of the

first and last 150 sites of the alignment was performed. Of the 300 masked

sites, two were segregating in the dataset; no multi-allelic sites were identified.

The resulting sample consists of 19 sequences with 197 variable sites. The

corresponding accession numbers are given in Appendix B, Table B.5.

4.3 Methods

The method consists of two main steps. Firstly, using KwARG, plau-

sible genealogical histories are reconstructed for each sample, with varying

proportions of posited recombination and recurrent mutations events. Then,

simulation is used to approximate the distribution of the number of recurrent

mutations that might be observed in a dataset of the same size as each sample.

This is used to establish which of the identified genealogical histories is more

plausible for the data at hand, and thus whether the presence of recombination

events in the history of the given sample is likely.

This can be framed in the language of statistical hypothesis testing. The

‘null hypothesis’ is the absence of recombination. The test statistic T is the
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number of recurrent mutations in the history of the dataset; the null distri-

bution of T is approximated through simulation. The observed value Tobs is

the minimal number of recurrent mutations required to explain the dataset in

the absence of recombination, as estimated by KwARG. The ‘p-value’ is the

probability of observing a number of recurrent mutations equal to or greater

than Tobs. Small p-values allow the null hypothesis to be rejected, provid-

ing evidence that recombination has occurred. The reconstructed genealogies

then allow for the detailed examination of possible recombination events in the

history of the sampled sequences.

Note that very conservative assumptions are made throughout, both in pro-

cessing the data and in estimating the distribution of the number of recurrent

mutations. Moreover, the number of recurrent mutations required to explain

a given dataset computed by KwARG is (or is close to) a lower bound on the

actual number of such events, and is likely to be an underestimate, making

the reported p-values larger (more stringent).

4.4 Reconstruction of genealogies

The first step in the approach is to use KwARG to reconstruct possible

genealogical histories for the given datasets. For each dataset, KwARG was

run Q = 500 times for each combination of the following values of the annealing

parameter T and event costs (CSE, CRM , CR, CRR):

T ∈ {30, 50}

(CSE, CRM , CR, CRR) ∈ {(∞,∞, 1, 2), (1.9, 1.91, 1, 2), (1.8, 1.81, 1, 2),

(1.7, 1.71, 1, 2), . . . (0.1, 0.11, 1, 2),

(0.01, 0.02, 1, 2), (1.0, 1.1,∞,∞)}.

For MERS-CoV, the root was left unspecified. For SARS-CoV-2, the refer-

ence sequence used for alignment was set as the root. This reference sequence

is a genome collected in Wuhan in December 2019 (Wu et al., 2020), giving

the most likely rooting based on the available epidemiological evidence; our

results do not change significantly if the root is left unspecified.

The results are presented in Table 4.1.
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(a) South Africa (Nov)

R RM P(RM) p

10 0 0.28 1.00
8 1 0.35 0.72
6 2 0.23 0.37
4 3 0.10 0.14
3 4 0.03 0.04
2 5 0.01 0.01
1 7 0.00 4 · 10−4

0 9 0.00 7 · 10−6

(b) South Africa (Feb)

R RM P(RM) p

7 0 0.52 1.00
5 1 0.34 0.48
3 2 0.11 0.14
2 3 0.03 0.03
1 4 0.00 5 · 10−3

0 5 0.00 7 · 10−4

(c) England (Jan)

R RM P(RM) p

10 0 0.11 1.00
8 1 0.24 0.89
6 2 0.27 0.65
4 3 0.20 0.38
3 4 0.11 0.19
2 5 0.05 0.08
1 6 0.02 0.03
0 14 0.00 1 · 10−6

(d) MERS-CoV

R RM P(RM) p

9 0 0.42 1.00
7 1 0.36 0.58
6 2 0.16 0.22
5 3 0.05 0.06
4 4 0.01 0.01
3 5 0.00 2 · 10−3

2 10 0.00 < 1 · 10−6

1 12 0.00 < 1 · 10−6

0 16 0.00 < 1 · 10−6

Table 4.1: Summary of solutions identified by KwARG for each sample, and
the probability of observing the corresponding number of recurrent muta-
tions. First column: number of recombinations. Second column: number
of recurrent mutations. Third column: probability of observing a number
of recurrent mutations equal to that in the second column. Fourth column:
corresponding p-values (probability of observing a number of recurrent mu-
tations equal to or greater than that in the second column).
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4.5 Evaluation of solutions

The next step is to determine which of the solutions identified by KwARG

is more likely, by calculating the probability of observing the given number

of recurrent mutations. To avoid making model-based assumptions on the

genealogy of the sample, a nonparametric method is developed, inspired by

the homoplasy test of Maynard Smith and Smith (1998).

The homoplasy test estimates the probability of observing the minimal

number of recurrent mutations required to generate the sample in the absence

of recombination, i.e. if the shape of the genealogy is constrained to be a tree.

If this probability is very small, then it provides evidence for the presence of

recombination. The test is particularly powerful when the level of divergence

between sequences is very low, as is the case with SARS-CoV-2 data, although

it appears prone to false positives in the presence of very strong mutation rate

heterogeneity along the genome (Posada and Crandall, 2001). I calculate an

empirical estimate P̃ of mutation density along the genome using SARS-CoV-2

data, which does not suggest the presence of extreme heterogeneity, and then

use this to simulate the distribution of the number of recurrent mutations that

are observed in a sample.

The i-th entry of the vector P̃ , for i ∈ {1, . . . , 29 903}, gives an estimated

probability that when a mutation occurs, it affects the i-th site of the genome.

Briefly, this estimate is calculated by examining the locations of sites that

have undergone at least one mutation (segregating sites) using GISAID data

collected in February 2021. If the mutation rate were constant along the

genome, one would expect segregating sites to be spread uniformly throughout

the genome; uneven clustering of the mutations gives an indication of mutation

rate heterogeneity. A nonparametric method (wavelet decomposition) is used

to estimate P̃ from the observed positions of segregating sites, taking into

account the dependence of the mutation rate on the base type of the nucleotide

undergoing mutation, which is significant for SARS-CoV-2 (Simmonds, 2020;

Koyama et al., 2020).

The estimate of P̃ is then used to approximate the distribution of the num-

ber of recurrent mutations observed in a sample, using a simulation approach.

The process of mutations falling along the genome is simulated until the sim-

ulated number of segregating sites matches that observed in the sample; the

vector P̃ controls where on the genome each mutation falls. The number of

recurrent mutations (instances where mutations fall on the same site multi-
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ple times) is recorded, and after repeating this procedure a histogram of the

results is constructed.

4.5.1 Distribution of the number of recurrent mutations

Let M be the length of the genome, and let m be the number of observed

variable sites in the sample. The goal is to estimate the distribution of the

number of recurrent mutations that have occurred; that is, the excess number

of mutation events beyond the minimum m needed to explain the variability

in the sample.

Regardless of any modelling assumptions on the evolution of a given sample

or the genealogical relationships between the sequences, it is clear that at least

m mutation or sequencing error events must have occurred in the history of

the sample (here, a ‘sequencing error’ refers to the variant at a site being

incorrectly called during the sequencing process). Suppose that each time

such an event occurs (disregarding which particular sequence is affected), a

position on the genome is selected at random with replacement, according to

a probability vector P of length M. This corresponds to assuming that (i)

such events occur independently from each other, (ii) all sequences have the

same probabilities P of a mutation or sequencing error event occurring at each

particular site. Moreover, assume that (iii) if a site undergoes at least one

mutation in the history of the sample, the site is segregating in the data; and

(iv) any sequencing errors fall on each site with probability proportional to P .

The validity of these assumptions is discussed below in Section 4.5.3.

The number of recurrent mutations in a sample with m variable sites can

then be simulated using Algorithm 5. This is a ‘balls-into-bins’ type simulation,

in which balls are placed one-by-one into M bins, each time selecting a bin

at random with probability proportional to P , until m bins contain at least

one ball; the output is the total number of balls thrown minus m. Executing

Algorithm 5 multiple times and calculating a histogram of the results gives an

approximation to the distribution of the number of recurrent mutations given

the number m of observed segregating sites.

4.5.2 Mutation rate heterogeneity along the genome

Parts of the genome with a relatively higher mutation rate are more likely

to undergo recurrent mutation, so it is important to incorporate the effects
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Algorithm 5: Simulating the number of recurrent mutations conditional
on observing m variable sites

Input: M, m, P
Output: Number of recurrent mutations m̃
Initialise m̃ = 0, S = {∅};
while |S| < m do

Draw s from {0, . . . ,M} with probabilities proportional to P ;
if s /∈ S then

S ← S ∪ s;
end
m̃← m̃+ 1 ;

end
m̃← m̃−m ;
return m̃;

of mutation rate heterogeneity. An empirical estimate of mutation density is

used to approximate the variation in mutation rate along the genome.

4.5.2.1 Data

All 17 908 sequences in GISAID collected around the world between 1 and

3 February 2021 were downloaded, filtering for sequences labelled as complete

(>29 000bp), high coverage, and excluding any with more than 5% ambiguous

nucleotides. Alignment was performed as described in Section 4.2.1.1. SNP-

sites (Page et al., 2016) was used to extract the positions of the 13 747 identified

segregating sites; a vector P of length 29 903 was then formed, with a 1 entry at

position i if there had been at least one mutation at position i of the genome,

and 0 otherwise.

Note that an alternative approach would be to fit a tree to the sequencing

data (using maximum likelihood, for instance), count the minimum number

of mutations required at each site of the genome, and use this to estimate P .

However, this was found to result in very noisy estimates, and provide worse

quantification of mutation rate heterogeneity (which was confirmed through

simulation studies).

4.5.2.2 Smoothing

The mutation density along the genome was then estimated nonparametri-

cally from P by smoothing using wavelet decomposition, as implemented in the

R package wavethresh (Nason et al., 2010). This method was chosen as it does
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not require selecting a particular model, and it captures both fine-scale and

broad variation in mutation density, allowing for the calculation of a smoothed

estimate of P incorporating both local and large-scale rate heterogeneity.

Wavelet decomposition can be used to obtain an estimate of a signal from

a set of discrete observations. The main idea is similar to that of the Fourier

transform, whereby a function is decomposed into a sum of projections onto a

particular basis. The distinction is that while the Fourier transform captures

only global properties of the signal, wavelet decomposition can be used to

analyse variation in the data at both local and increasingly coarser scales

(Nason, 2008).

Given M = 2n observations of sites, corresponding to the entries of P

(padding the vector P to the nearest power of 2 by reflecting the data at the

endpoints), n iterations are performed, and at the i-th iteration, (1) coeffi-

cients are computed using (non-overlapping) subsets of 2i neighbouring obser-

vations, and (2) these coefficients are used to refine a smoothed estimate of the

data using the chosen wavelet basis. The computation of coefficients and the

smoothed approximations is governed by the choice of wavelet shape; I used

Daubechies’ least-asymmetric wavelets (Daubechies, 1988) with six vanishing

moments (other choices of wavelet basis produced similar results).

Wavelet shrinkage can be used to obtain a smoothed estimate of the ob-

servations and remove noise: coefficient selection is performed by only keeping

coefficients with values above a certain threshold and setting the others to zero.

There are myriad ways of calculating such a threshold (Nason, 2008); I applied

the empirical Bayes method of Johnstone and Silverman (2005b) implemented

in the R package EbayesThresh (Johnstone and Silverman, 2005a).

As the mutation rate is dependent on the base type of the nucleotide un-

dergoing mutation (Simmonds, 2020; Koyama et al., 2020), P was split into

four parts by the corresponding base type in the reference sequence, and the

wavelet decomposition and thresholding performed separately for each part be-

fore joining them back together. The resulting smoothed estimate P̃ is shown

in Figure 4.1. The total estimated mutation probability for each base type

closely matches the actual proportion of mutations that fall on sites of each

base type in the data, as desired. The smoothing method has clearly identified

both localised and long-range variation in mutation density along the genome.

To check consistency of the results across time periods, data from September–

November 2020 was also used to produce smoothed estimates of P (consisting

of 41 376 sequences with 14 263 variable sites). The resulting estimate was
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Figure 4.1: Estimate P̃ of the probability of a mutation falling on each
site of the SARS-CoV-2 genome. Blue vertical lines mark endpoints of the
labelled open reading frames (ORFs) and genes as per Wu et al. (2020).

found to agree closely to that obtained using the February data, so the latter

was used in further analysis.

4.5.3 Validity of assumptions

The validity of the assumptions stated in Section 4.5.1 is now considered

in detail. Assumption (i) appears reasonable for the data at hand. Assump-

tion (iii) can be violated if a mutation arising on a branch of the genealogy

subsequently reverses through recurrent mutation: either on the same branch

before it splits, or independently on every child branch subtending the mu-

tation. Note that the probability of such events depends on the distribution

of branch lengths in the genealogy; simulations using the standard coalescent

model show that the probability of such events is small. Moreover, such events

can never create incompatibilities in the data, so their possibility can be ig-

nored, as the solutions identified by KwARG will never include such recurrent

mutation events.

Regarding assumption (ii), as the mutation rates depend on the base type,

it will not be true in reality that all sequences have exactly the same probabili-

ties P of mutating at each particular site, as this will depend on the nucleotides

carried by the sequence. However, the effect of this violation should be negli-

gible, given the relatively low overall rate of mutation for SARS-CoV-2.

To make the approximation even more conservative, m is increased by

adding back the number of masked segregating sites (which are as stated in

Sections 4.2.1.3 to 4.2.1.6), and further the number of sites is multiplied by a

penalty factor of F = 1.1, which is justified in Section 4.5.3.1 below. Thus,

assumption (iv) is addressed by noting that sites that are excessively prone to

sequencing errors have been masked, so correspondingly M is decreased by the

number of masked sites and the corresponding entries of P̃ are deleted. It is
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then reasonable to assume that sequencing errors occurring at the non-masked

sites affect each site with the same probabilities as mutations. The effects of

this assumption being violated are explored further in Section 4.5.3.2.

4.5.3.1 Choice of penalty factor

As noted above, the number of segregating sites in the sample is multi-

plied by a penalty factor F before performing the simulations. This results

in a larger number of recurrent mutations being simulated, skewing the dis-

tribution to the right and thus ensuring that the p-values calculated from the

simulated distribution are reasonably conservative. This is necessary because,

as with any regression method that aims to (partially) de-noise the data, there

is a risk that the fitted curve underestimates the true mutation rate hetero-

geneity, which would result in the expected number of recurrent mutations

being underestimated, leading to false positives.

The choice of F = 1.1 was validated through simulation studies. First, a

“true” mutation rate map Ptrue was simulated for 29,903 sites, as a realisation

of an autoregressive process. Then, 20 000 mutations were simulated to fall

on the genome (allowing sites to mutate multiple times), and the vector P

was re-created by marking which sites had (or had not) undergone at least

one mutation. The method described in Section 4.5.2 was then applied to fit

an estimated mutation density Pfit. Finally, 10 000 simulations of Algorithm

5 were used to get an estimate of the null distribution: first, using Ptrue with

m ∈ {100, 300, 500} sample segregating sites, then using Psim with m·F sample

segregating sites, for F ∈ {1.0, 1.1, 1.2, 1.3, 1.4, 1.5}.
This procedure was repeated 500 times for each combination of m and F .

The results are presented in Figure 4.2. This demonstrates that without the

penalty term, the fitted mutation density may indeed fail to capture all of the

mutation rate heterogeneity that is present; for instance, when considering a

sample with 300 segregating sites, in 46% of cases the 95th percentile of the

simulated distribution will be lower than that of the true distribution. The

results demonstrate that a value of F = 1.1 appears sufficient to negate this

effect, without excessively increasing the false negative rate.

4.5.3.2 Presence of highly homoplasic sites

Violations of assumption (iv) can occur if some (non-masked) sites along the

genome are highly homoplasic, which can occur due to the effects of selection,
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Figure 4.2: Comparison of simulated null distributions using Ptrue and Pfit.
Points show the difference between the true and simulated median (left
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and the number of sample segregating sites m (colours). Ideally, the points
should be concentrated around 0; values above (below) 0 may result in
false positives (false negatives) when using the estimated null distribution.
Percentages show the proportion of cases lying above 0.
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or as an artifact of the sequencing process. If this assumption were violated, the

estimate P̃ would be missing ‘spikes’ of high probability at the corresponding

positions, biasing the simulated null distribution to underestimate the number

of recurrent mutations, and potentially leading to false positive results.

The extent to which a violation of assumption (iv) affects the resulting in-

ference was assessed through simulation studies. For each i ∈ {0, 1, 5, 10, 20, 50,

100, 200}, i sites of the genome were chosen, and the corresponding probabili-

ties in P̃ were multiplied by a factor H ∈ {2, 5, 10, 20, 50} to give the vectors

P̃i,H . This recreates the effect of having i sites which are highly homoplasic

(with the extent of this controlled by H); an example of P̃50,2 is shown in

Figure 4.3.
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Figure 4.3: Mutation density estimate P̃ adjusted by selecting i = 50 sites
and multiplying the corresponding entry of P̃ by H = 2 (resulting values
shown in orange), to recreate the presence of 50 highly homoplasic sites.

For each combination of i and H, 200 datasets of 80 sequences were simu-

lated using msprime, with parameters that appear reasonable for SARS-CoV-2:

• Ne = 1 · 106, exponential growth rate of 1.5 (no appropriate published

estimates of these parameters could be identified, but this choice was

found to give reasonable values of MRCA time and number of segregating

sites for the simulated datasets);

• binary mutation model (finite sites);

• mutation rate per site per generation given by the entries of P̃i,H × 2 ·
10−5 × 29 903. This was calculated based on:

– a mean mutation rate of 8 · 10−4 per site per year (as used by

Nextstrain (Hadfield et al., 2018), accessed through

nextstrain.org/ncov/global);

– a generation time of 7.5 days (Li et al., 2020);

– giving a mean mutation rate of 2 · 10−5 per site per generation.
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Note that some considerations that may affect viral genealogies were not in-

corporated into the model (such as multiple mergers and effects of spatial

structure), both for simplicity and due to the difficulty in identifying realistic

assumptions and reasonable parameters values.

For each dataset, KwARG was run 200 times (parameters: T = 30, Q =

100, (CSE, CRM , CR, CRR) ∈ {(1, 1.1,∞,∞), (0.01, 0.02, 1.00, 2.00)}) to calcu-

late the minimal number of recurrent mutations needed to explain the dataset

in the absence of recombination. A p-value was then calculated, using the null

distribution simulated using the un-adjusted vector P̃ and 10 000 iterations

of Algorithm 5, with m set to the number of segregating sites in the dataset

multiplied by the penalty factor F = 1.1.
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Figure 4.4: Left panel: x-axis shows number of added highly homopla-
sic sites, with the corresponding entries of P̃ multiplied by the factor H
(colours); y-axis shows the proportion of simulated datasets (out of 200 for
each combination of parameters) for which the null hypothesis was (incor-
rectly) rejected with p < 0.05. Right panel: x-axis shows recombination rate
(per site per generation) used to simulate 200 datasets, y-axis shows pro-
portion of datasets for which the null hypothesis was rejected with p < 0.05.

The proportion of times the null hypothesis was (incorrectly) rejected, with

p < 0.05, is shown in the left panel of Figure 4.4. False positives were seen

in only 0.5% of cases when there are no highly homoplasic sites, demonstrat-

ing that the method conservatively overestimates the computed p-values. The

proportion of false positives only increases significantly when a large number

of extremely homoplasic sites is present, showing that the method is reason-

ably robust to violations of this assumption. Having applied several stringent

quality filters and implemented a conservative strategy in masking sites known

to be homoplasic, seeing a large number of extremely hypermutable sites ap-

pears improbable, so the method is unlikely to falsely indicate the presence of

recombination.
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4.5.4 Detection rate vs recombination rate

I now investigate how the proportion of cases in which the null hypothesis is

rejected varies with recombination rate. For several values of the recombination

rate 1·10−7 ≤ ρ ≤ 1·10−5 (per site per generation), 200 datasets were simulated

using msprime with the parameters given in Section 4.5.3.2 (using the un-

adjusted vector P̃ ), and the same method used to calculate a p-value for each

dataset. It was recorded how often the null hypothesis of no recombination

could be rejected (with p < 0.05).

The results are shown in the right panel of Figure 4.4, demonstrating that

this occurred in 4.5% of cases for ρ = 1 · 10−7 per site per generation, ris-

ing to 99.5% of cases for ρ = 1 · 10−5 per site per generation. The simulations

were performed using parameters that appear reasonable for SARS-CoV-2; the

results suggest that the method is sufficiently powerful for detecting recombi-

nation if the recombination rate is higher than around ρ = 1 · 10−6 per site

per generation ≈ 4 · 10−5 per site per year (assuming a generation time of 7.5

days).

4.5.5 Null distribution for MERS-CoV

The same methodology as described above for SARS-CoV-2 was used to

simulate the null distribution for MERS-CoV.
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Figure 4.5: Estimate P̃ of the probability of a mutation falling on each site
of the MERS-CoV genome.

Sequences were downloaded from the NCBI Virus database (Hatcher et al.,

2017), filtering for those of length at least 20 000bp, from human and camel

hosts, across all time periods. Alignment to the reference sequence was per-

formed as described in Section 4.2.2. The alignment comprised 700 sequences

with 14 238 variable sites. The vector P was constructed, and wavelet decom-

position was used to fit the estimate P̃ in the same manner as described in

Section 4.5.2; the result is shown in Figure 4.5.
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4.5.6 Null distribution simulation

The null distribution was simulated using the estimate P̃ , after masking the

appropriate sites for each dataset as stated in Section 4.2. For each dataset,

1 000 000 iterations of Algorithm 5 were run, with the parameters given in

Table 4.2. The resulting probabilities and p-values are shown in the third and

fourth columns of Table 4.1.

SA
(November)

SA
(February)

England
(November)

No. of segregating sites 206 150 363
Plus masked sites 29 18 10
Times penalty factor F 1.1 1.1 1.1

m 259 185 410

Length of genome 29 903 29 903 29 903
Less number of masked sites 1126 1126 477

M (= length of P̃ ) 28 777 28 777 29 426

England
(January)

MERS-CoV

No. of segregating sites 276 197
Plus masked sites 35 2
Times penalty factor F 1.1 1.1

m 342 219

Length of genome 29 903 30 119
Less number of masked sites 660 300

M (= length of P̃ ) 29 243 29 819

Table 4.2: Null distribution simulation parameters for each of the considered
datasets.

4.6 Results

4.6.1 Identification of recombinant sequences

All sequences collected in England in December 2020 – January 2021, la-

belled as belonging to clade GR in GISAID, were downloaded and processed

as described above in Section 4.2.1.6. The resulting sample comprises 40 se-

quences with 276 variable sites.

An illustration of the sample is provided in Figure 4.6. Choosing a solution

with no recombinations, the sites of fourteen recurrent mutations identified by
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Figure 4.6: Summary of the England (January) dataset. Columns corre-
spond to sequences, labelled on the bottom. Rows correspond to positions
along the genome, labelled on the right; uninformative sites (with all 0’s or
1’s) and those with singleton mutations (with exactly one 1) are not shown.
Light blue: ancestral state, dark blue: mutated state, white: missing data.
Red crosses highlight sites of recurrent mutations identified by KwARG lo-
cated on the terminal branches of the ARG (affecting only one sequence).
Yellow crosses highlight recurrent mutations on internal branches (hence
affecting multiple sequences). Sites bearing the characteristic mutations of
lineage B.1.1.7 (Rambaut et al., 2020) are highlighted in green.
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KwARG are highlighted with red (resp. yellow) crosses, where the recurrent

mutations fall on the terminal (resp. internal) branches of the ARG. The se-

quencing protocol used by the COVID-19 Genomics UK Consortium, the sub-

mitters of the data, generates short amplicons of under 400bp in length, and

none of the identified sites of recurrent mutations fall into the same amplicon

region, making it less likely that the results are due to sample contamina-

tion or other sequencing artifacts. The probability of observing the required

Tobs = 14 or more recurrent mutations is p = 1 · 10−6, which strongly indicates

the presence of recombination.
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Figure 4.7: Example of an ARG for the England (January) dataset. Recom-
bination nodes are shown in blue, labelled with the recombination break-
point, with the offspring sequence inheriting part of the genome to the left
(right) of the breakpoint from the parent labelled “P” (“S”). Recurrent
mutations are prefixed with an asterisk. Edge carrying the characteristic
mutations of lineage B.1.1.7 is highlighted in red; nodes corresponding to se-
quences from lineage B.1.1.7 are coloured purple. For ease of viewing, some
parts of the ARG have been collapsed into nodes labelled “E...”. Edges are
labelled by positions of mutations (some mutated sites are not explicitly
labelled and are denoted by a dot instead).

Considering the results in Table 4.1c, three recurrent mutations can have

the same effect as six of the identified recombination events (compare row

(R,RM) = (10, 0) with (R,RM) = (4, 3)), suggesting that recurrent mutation

offers a more parsimonious explanation for at least part of the patterns seen in

the data. One of these recurrent mutations consistently occurs at site 22 227;

the other two can be placed either at the same site 9 693, or at sites 9 693

and 12 067. The probability of observing five or fewer recurrent mutations is
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0.97, which suggests that, with high probability, at least two recombination

have occurred in the history of the sample. An example of an ARG with two

recombination events is shown in Figure 4.7.

It is striking that eight of the recurrent mutations seen in Figure 4.6 can

be placed in the same sequence E39. Indeed, Figure 4.7 shows that the cor-

responding incompatibilities in the data can be resolved by just one recombi-

nation event between sequence E40 and a sequence from lineage B.1.1.7; the

corresponding recombination node is shown in bold. The sequence E39 has

previously been identified as a possible recombinant by Jackson et al. (2021),

demonstrating that the method can clearly highlight mosaic sequences in ad-

dition to quantifying the probability that recombination has occurred in the

history of the dataset.

4.6.2 Detection of intra-clade recombination

All sequences collected in South Africa in February 2021 were downloaded

and processed as described above in Section 4.2.1.4. The resulting sample com-

prises 38 sequences with 151 variable sites, all from the same lineage B.1.351.

Initial examination of the solutions identified by KwARG show that at

least eight recurrent mutations are required to construct a valid ARG for this

sample in the absence of recombination. However, it was noted that three of

these recurrent mutations occur at the same site 28 254. This may imply that

the site is highly mutable, which could be due to repeated sequencing errors,

or as a consequence of selection. Note that this demonstrates the usefulness

of the presented approach in identifying potentially highly homoplasic sites.

This position was masked from the sample before re-running the analy-

sis. The probability of observing the re-calculated value of Tobs = 5 or more

recurrent mutations is p = 7 · 10−4, strongly suggesting the presence of re-

combination. The probability of observing two or fewer recurrent mutations is

0.97, which indicates that with high probability, at least three recombination

events have occurred in the history of the dataset.

4.6.3 Detection of inter-clade recombination

All sequences collected in South Africa in November 2020 were downloaded

and processed as described above in Section 4.2.1.3, to create a sample of 50

sequences with 207 variable sites, with 25 belonging to lineage B.1.351 (labelled
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SAN1-SAN25), and 25 to other lineages (labelled SAO1-SAO25).

An initial run of KwARG demonstrated that, notably, one recurrent muta-

tion occurs at site 28 254, further suggesting that this site is excessively prone

to recurrent mutation. This site was therefore masked before re-running the

analysis. An illustration of the sample is provided in Figure 4.8. The sites

of nine recurrent mutations identified by KwARG are highlighted with red

crosses (choosing a solution with no recombinations, and where the recurrent

mutations fall on the terminal branches of the ARG). The probability of ob-

serving the required Tobs = 9 or more recurrent mutations is p = 7 · 10−6,

strongly suggesting the presence of recombination.

SAO8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SAO15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SAO2 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0
SAO5 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0
SAO11 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0
SAO24 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0
SAO14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SAO6 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1
SAO19 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1
SAO3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
SAO16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
SAO17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
SAO12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
SAO9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SAO1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
SAO13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
SAO20 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SAO23 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SAO10 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SAO25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SAO4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0
SAO7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0
SAO18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0
SAO21 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 x x 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
SAO22 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
SAN1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
SAN4 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
SAN18 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
SAN3 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
SAN5 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
SAN7 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
SAN25 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
SAN2 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0
SAN8 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0
SAN24 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0
SAN22 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
SAN9 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
SAN12 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
SAN16 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0
SAN19 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0
SAN6 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
SAN21 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
SAN10 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
SAN11 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
SAN13 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
SAN14 1 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
SAN17 1 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
SAN23 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
SAN15 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
SAN20 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0174
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Figure 4.8: Summary of the South Africa (November) dataset. Rows corre-
spond to sequences, labelled on the left. Columns correspond to positions
along the genome; uninformative sites (with all 0’s or 1’s) and those with
singleton mutations (with exactly one 1) are not shown. Light blue: an-
cestral state, dark blue: mutated state, white: missing data. Red crosses
highlight sites of recurrent mutations identified by KwARG. Sites bearing
the characteristic (non-synonymous) mutations of lineage B.1.351 (Tegally
et al., 2020) are highlighted in orange.
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The probability of observing three or fewer recurrent mutations is 0.96,

which indicates that, with high probability, at least four recombination events

have occurred in the history of the dataset. Indeed, Table 4.1 shows that three

recurrent mutations can remove the necessity of six recombination events, sug-

gesting that recurrent mutation offers a more parsimonious explanation than

recombination for the remaining incompatibilities in the data. Examination of

the KwARG solutions shows that these recurrent mutations consistently occur

at sites 4 093, 11 230, and 25 273. An ARG with recurrent mutations at these

three sites is shown in Figure 4.9; edges carrying the characteristic mutations

of lineage B.1.351 are highlighted in red.

O1 O2 O3O4 O5 O6O7 O8 O9O10O11 O12O13 O14 O15O16 O17O18 O19 O20 O21O22O23O24 O25N1 N2N3 N4N5N6 N7 N8 N9N10N11 N12N13 N14N15 N16N17N18 N19N20N21 N22N23 N24N25
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Figure 4.9: Example of an ARG for the South Africa (November) dataset
(the “SA” prefix of each sequence reference number is dropped for ease
of viewing). Recombination nodes are shown in blue, labelled with the
recombination breakpoint, with the offspring sequence inheriting part of
the genome to the left (right) of the breakpoint from the parent labelled
“P” (“S”). Recurrent mutations are prefixed with an asterisk. For ease of
viewing, some parts of the ARG have been collapsed into nodes labelled
“O...” and “N...” (containing sequences labelled SAO and SAN, respec-
tively). Edges are labelled by positions of mutations (some mutated sites
are not explicitly labelled and are denoted by a dot instead).

The sequences SAO21 and SAO22 carry three and two of the identified nine

recurrent mutations, respectively, when recombination is prohibited in recon-

structing the genealogy. Both of these sequences carry some of the mutations

characteristic of lineage B.1.351; this is demonstrated in Figure 4.10, where

the two sequences are compared to two other typical sequences from lineage

B.1.351. Examination of the KwARG solutions shows that a recombination in

Sequence SAO21 just after site 22 812 has the same effect as the recurrent mu-
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tations at sites 22 813 and 23 012, and a recombination in Sequence SAO22 just

after site 23 011 has the same effect as the recurrent mutations at sites 23 012

and 23 063. This suggests that the patterns of incompatibilities observed in

these two sequences are consistent with recombination; a possible sequence of

recombination events generating these sequences can be seen in the ARG in

Figure 4.9.
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Figure 4.10: Comparison of sequences SAO21, SAO22 and the characteristic
mutations for lineage B.1.351. Columns correspond to positions along the
genome; uninformative sites (with all 0’s or 1’s) and those with singleton
mutations (with exactly one 1) are not shown. Light blue: ancestral state,
dark blue: mutated state, white: missing data. Red crosses highlight sites of
recurrent mutations identified by KwARG. Sites bearing the characteristic
(non-synonymous) mutations of lineage B.1.351 (Tegally et al., 2020) are
highlighted in orange.

4.6.4 Identification of sequencing errors due to cross-

contamination

All sequences labelled as GISAID clade GR, collected in England in Novem-

ber 2020, were aligned, masked, and processed as detailed above in Section

4.2.1.5. The quality criteria detailed in Section 4.2.1.2 were not applied in

this case. The resulting sample comprises 80 sequences with 363 variable sites,

40 of which belong to lineage B.1.1.7 (labelled EN1-EN40) and 40 to other

lineages (labelled EO1-EO40).

The results showed that in the absence of recombination, at least 15 re-

current mutations were required to explain the incompatibilities observed in

this sample. However, it was identified that six of these recurrent mutations

could be placed in the same sequence EO40, as illustrated in Figure 4.11. The

sequence EO40 appeared to carry some of the mutations carried by sequence

EO32, and some of the mutations characteristic of lineage B.1.1.7, strongly

suggesting that this sequence was a recombinant.

These findings prompted further investigation by the submitters of this

sequence, which revealed the signal to be the result of significant contamination
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Figure 4.11: Comparison of sequences EO32, EO40 and the characteris-
tic mutations of lineage B.1.1.7. Columns correspond to positions along
the genome; uninformative sites (with all 0’s or 1’s) and those with single-
ton mutations (with exactly one 1) are not shown. Light blue: ancestral
state, dark blue: mutated state, white: missing data. Red crosses highlight
locations of the recurrent mutations identified by KwARG. Sites bearing
the characteristic mutations of lineage B.1.1.7 (Rambaut et al., 2020) are
highlighted in green.

of the genetic sample causing multiple errors in the consensus sequence, rather

than a result of intra-host recombination. The sequence has subsequently been

removed from GISAID.

4.6.5 Recombination detection for MERS-CoV data

MERS-CoV sequences collected in Saudi Arabia in January–March 2015

were downloaded from the NCBI virus database, and aligned, masked, and

processed as described in Section 4.2.2. The resulting sample consists of 19

sequences with 197 variable sites.

The dataset is illustrated in Figure 4.12. The locations of recurrent muta-

tions identified by KwARG are shows as red and yellow crosses, corresponding

to recurrent mutations occurring on the terminal and internal branches of the

ARG, respectively. In the absence of recombination, at least Tobs = 16 re-

current mutations are required, which has probability p < 1 · 10−6, strongly

suggesting the presence of recombination. The probability of observing three or

fewer recurrent mutations is 0.99, suggesting that at least five recombinations

have occurred in the history of the sample. An ARG with five recombination

nodes, showing a possible history of the dataset, is shown in Figure 4.13.

A group of four identical sequences (M16–M19, shown in purple in Figure

4.13) appear to carry a characteristic set of shared mutations that strongly dif-

ferentiates them from the other sequences in the sample. Five of the identified

recurrent mutations affect this group, occurring in a relatively short stretch

of the genome, suggesting that these patterns are indicative of recombination

with other sequences in the sample carrying these mutations.

Five of the other identified recurrent mutations can be placed in one se-

quence (M11), which appears to carry a mixture of mutations from the group
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M1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
M5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
M2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
M3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
M10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
M4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
M8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
M9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
M13 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
M15 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
M12 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
M14 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
M6 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
M7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
M11 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
M16 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1
M17 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1
M18 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1
M19 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1241
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M5 1 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 4.12: Summary of the MERS-CoV dataset. Rows correspond to se-
quences, labelled on the left. Columns correspond to positions along the
genome; uninformative sites (with all 0’s or 1’s) and those with singleton
mutations (with exactly one 0 or 1) are not shown. Light blue and dark blue
denote differing allele types. Red crosses highlight sites of recurrent muta-
tions identified by KwARG located on the terminal branches of the ARG
(affecting only one sequence). Yellow crosses highlight recurrent mutations
on internal branches (hence affecting multiple sequences).
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Figure 4.13: Example of an ARG for the MERS-CoV dataset. Recombina-
tion nodes are shown in blue, labelled with the recombination breakpoint,
with the offspring sequence inheriting part of the genome to the left (right)
of the breakpoint from the parent labelled “P” (“S”). Recurrent mutations
are prefixed with an asterisk. Edges are labelled by positions of mutations
(some mutated sites are not explicitly labelled and are denoted by a dot
instead).

identified above and other sequences in the sample, which is consistent with

recombination. This sequence does not match any others in the dataset, so it

is possible that this is the result of sequencing errors or sample contamination.

If this sequence is removed from the sample, at least Tobs = 9 recurrent mu-

tations are still required to explain the observed incompatibilities, which has

probability p < 1 ·10−6, still strongly suggesting that recombination is present.

This agrees with previous reports of within-host recombination for MERS-CoV

(Zhang et al., 2016; Dudas and Rambaut, 2016; Sabir et al., 2016).

4.7 Discussion

The method presented here offers a clear and principled framework for

recombination detection, which can be interpreted as a hypothesis testing ap-

proach. Very conservative assumptions are made throughout, demonstrating

on both real and simulated data that the method achieves a very low rate

of false positive results, while offering powerful detection of recombination at

even relatively low values of recombination rate. Nonparametric techniques

are used at each stage, to avoid making assumptions on the process gener-
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ating the data, and thus circumvent issues with model misspecification. The

method allows us to gain clear insights into the evolutionary events that may

have generated the given sequences, offering easily interpretable results. The

method detects sequences carrying patterns consistent with recombination,

demonstrating its effectiveness as a tool for flagging sequences with distinctive

patterns of incompatibilities for further detailed investigation.

The results clearly indicate the presence of recombination in the history of

the analysed SARS-CoV-2 sequencing data; based on the analysis of statistical

power of the method, this suggests a likely recombination rate greater than

around 4 · 10−5 per site per year. One of the main limitations of the method

is that KwARG does not scale well to large datasets. However, while studies

relying on clade assignment and statistics such as linkage disequilibrium have

identified that recombination occurs at very low levels (VanInsberghe et al.,

2021; Varabyou et al., 2021) or is unlikely to be occurring at a detectable level

(De Maio et al., 2020; van Dorp et al., 2020b; Nie et al., 2020; Tang et al., 2020;

Wang et al., 2020; Richard et al., 2020) even when analysing vast quantities

of sequencing data, the method is powerful enough to detect the presence

of recombination using even relatively small samples. Moreover, the testing

framework could potentially be used in combination with other methods for

reconstructing ARGs, including ones not relying on the parsimony assumption,

with appropriate modifications to control the false positive rate and ensure

validity of the results.

Recombination can occur when the same host is co-infected by two different

strains, which has been noted to occur in COVID-19 patients (Samoilov et al.,

2020), and could become more likely with the emergence of more transmissible

variants. Note that the potential mosaic sequences identified in the South

Africa sample from November are represented only once in the data. This

could be due to a lack of onward transmission, as recombinants are likely

to reach a detectable level at a relatively late stage in the infection cycle.

It could also indicate that the sequences arose due to either contamination

of the sample during processing, or the misassembly of two distinct (non-

recombinant) strains present in the same sample, as was identified to be the

case for one sequence in the England sample from November.

Note that while any sites known to be highly homoplasic were masked, it

cannot be ruled out that some of the identified recurrent mutations did arise

multiple times as a consequence of selection or as a result of repeated sequenc-

ing errors. However, as demonstrated, the solutions presented by KwARG can
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be examined for the presence of highly mutable sites, and it was identified

using both samples from South Africa that this appears to be the case for site

28 254 (located proximal to the stop codon of ORF8).

The findings suggest that care should be taken when performing and inter-

preting the results of analysis based on the construction of phylogenetic trees

for SARS-CoV-2 data. The presence of recombination, as well as other factors

complicating the structure of the transmission network of the virus, strongly

suggests that tree-based models are not appropriate for modelling SARS-CoV-

2 genealogies, and inference of evolutionary rates based on such methods may

suffer from errors due to model misspecification that are difficult to quantify.

Due to the high level of homogeneity between sequences, the effects of re-

combination will be either undetectable or indistinguishable from recurrent

mutation in the majority of cases. However, as genetic diversity builds up

over longer timescales, the effects of recombination may become more pro-

nounced. Particularly in light of the recent emergence of new variants, the

rapid evolution of the virus through recombination between strains with dif-

ferent pathogenic properties is a crucial risk factor to consider.
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Chapter 5

Discussion

Models based on the coalescent commonly assume that the population size

is constant or deterministically changing through time, which is an unrealistic

assumption for many viral populations. Birth-death models offer a useful al-

ternative, naturally capturing the stochastic variation and exponential growth

of the population size. Results presented in Chapter 2 have shed light on in-

teresting theoretical properties of birth-death sample genealogies, in the limit

of the underlying population size growing to infinity—a realistic setting in the

context of viral sequencing data.

Numerous extensions to the birth-death population model have been con-

sidered previously, incorporating different sampling schemes, population struc-

ture, time-dependent branching rates, and other factors. However, these mod-

els ignore the presence of recombination, which in practice can significantly

distort the results of inference. Explicitly incorporating the process of recom-

bination into birth-death models remains a significant open problem. A key

idea of Chapter 2 was to use time rescaling to make deriving the properties

of the relevant stochastic process much more tractable. It may be possible to

apply similar insights to uncover the properties of genealogies in a birth-death-

recombination framework, which would present both interesting theoretical in-

sights into the properties of resulting ARGs, as well as open up the way for

using these models for improved inference of recombination from real data.

In general, the detection of recombination and identification of recombi-

nants in samples of sequencing data is an extremely important but very diffi-

cult problem. The presence of recombination has significant consequences for

understanding the future evolutionary trajectory of a virus, as it can quickly

create new hybrid genomes with unique pathogenic properties. For viral data
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collected at the level of one sequence per infected host, the genealogy is related

to the transmission network of the pathogen, with aspects such as geographical

structure and human interventions making it difficult to choose an appropriate

model for genealogies, motivating the development of model-free genealogical

methods for detecting recombination.

The work presented in Chapter 3 introduced a fundamental computational

tool (KwARG) for reconstructing parsimonious ARG topologies, i.e. those that

are minimal or near-minimal in the number of posited recombination and mu-

tation events. The method does not require assuming a particular model, and

can give a useful lower bound on the number of recombinations that must have

occurred. This work incorporated several theoretical advances into a readily

usable program that can be used by virologists in practice for the analysis

of sequencing data. The usefulness of genealogical reconstruction methods in

making the most of sequencing data to gain scientific insights into the evo-

lution of biological organisms is clear. For example, ARGs generated using

SHRUB have been used in identifying a gene affecting the body size of dogs

(Sutter et al., 2007), and Relate has been used to analyse selection within hu-

man populations (Speidel et al., 2019). KwARG incorporates several aspects

which make it particularly appropriate for the analysis of viral data.

While several methods for inferring ARGs and ARG topologies from data

have been developed in recent years, a central issue with validating and com-

paring performance is the absence of metrics to compare the inferred ARGs.

Several metrics exist for comparing trees, so typically comparisons between

ARGs are performed by first breaking them up into local trees and averag-

ing, as was done for the analysis in Chapter 3. However, this loses valuable

information regarding where and how the recombinations occur in the ARGs.

Moreover, while tree metrics allow for the definition of ‘tree space’, there is no

equivalent formalised notion for ARGs. Developing this would allow several

crucial questions to be addressed: for instance, how different algorithms (both

model-based and heuristic) explore ARG space, how different are the inferred

ARGs from the true ARGs that have generated the data, and how ‘far’ parsi-

monious ARGs are from the true ARGs. Moreover, these insights should help

in designing better search algorithms, and in understanding their theoretical

properties.

The extent of ongoing recombination of SARS-CoV-2 within infected hosts

has been very difficult to quantify, with the problem further complicated by its

relatively slow accumulation of genetic diversity. Through combining KwARG
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with a principled statistical framework for recombination detection, the re-

sults presented in Chapter 4 have demonstrated that ongoing recombination

in SARS-CoV-2 is present at higher levels than previously suggested, high-

lighting serious problems with the widely used tree-based phylogenetic anal-

yses that ignore the presence of recombination. This has significant scientific

implications, of interest to a broad community of researchers within statistics,

epidemiology and microbiology. There is a clear need for continuous monitor-

ing of the sequenced genomes for new variants, to enable the early detection

of novel recombinant genotypes, and for further work on the quantification

of recombination rates and identification of recombination hotspots along the

genome.
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Appendix B

SARS-CoV-2 and MERS-CoV

data

Other lineages Lineage B.1.351
Accession Date Ref Accession Date Ref

EPI ISL 660225 02/11/2020 SAO1 EPI ISL 736958 20/11/2020 SAN1
EPI ISL 660257 18/11/2020 SAO2 EPI ISL 696481 19/11/2020 SAN2
EPI ISL 736993 25/11/2020 SAO3 EPI ISL 660637 03/11/2020 SAN3
EPI ISL 660643 01/11/2020 SAO4 EPI ISL 678632 11/11/2020 SAN4
EPI ISL 660229 16/11/2020 SAO5 EPI ISL 736932 25/11/2020 SAN5
EPI ISL 736985 25/11/2020 SAO6 EPI ISL 678641 12/11/2020 SAN6
EPI ISL 736926 26/11/2020 SAO7 EPI ISL 700422 04/11/2020 SAN7
EPI ISL 696462 19/11/2020 SAO8 EPI ISL 696503 25/11/2020 SAN8
EPI ISL 660655 03/11/2020 SAO9 EPI ISL 700470 12/11/2020 SAN9
EPI ISL 660625 05/11/2020 SAO10 EPI ISL 736983 24/11/2020 SAN10
EPI ISL 660231 16/11/2020 SAO11 EPI ISL 736936 19/11/2020 SAN11
EPI ISL 678608 15/11/2020 SAO12 EPI ISL 700487 06/11/2020 SAN12
EPI ISL 660163 05/11/2020 SAO13 EPI ISL 736935 26/11/2020 SAN13
EPI ISL 660232 17/11/2020 SAO14 EPI ISL 700443 13/11/2020 SAN14
EPI ISL 700488 05/11/2020 SAO15 EPI ISL 736939 24/11/2020 SAN15
EPI ISL 660652 01/11/2020 SAO16 EPI ISL 700554 02/11/2020 SAN16
EPI ISL 660622 07/11/2020 SAO17 EPI ISL 696505 25/11/2020 SAN17
EPI ISL 660651 02/11/2020 SAO18 EPI ISL 696518 24/11/2020 SAN18
EPI ISL 678612 15/11/2020 SAO19 EPI ISL 700589 12/11/2020 SAN19
EPI ISL 696509 24/11/2020 SAO20 EPI ISL 736959 20/11/2020 SAN20
EPI ISL 678595 18/11/2020 SAO21 EPI ISL 696453 20/11/2020 SAN21
EPI ISL 660222 09/11/2020 SAO22 EPI ISL 696521 24/11/2020 SAN22
EPI ISL 696468 18/11/2020 SAO23 EPI ISL 736964 19/11/2020 SAN23
EPI ISL 660230 16/11/2020 SAO24 EPI ISL 736928 24/11/2020 SAN24
EPI ISL 660626 07/11/2020 SAO25 EPI ISL 678629 13/11/2020 SAN25

Table B.1: GISAID accession numbers, collection dates, and references of
sequences in the South Africa (November) sample.
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Accession Date Accession Date
EPI ISL 1048548 01/02/2021 EPI ISL 1371925 15/02/2021
EPI ISL 1048553 02/02/2021 EPI ISL 1371926 09/02/2021
EPI ISL 1048554 02/02/2021 EPI ISL 1371927 19/02/2021
EPI ISL 1048555 02/02/2021 EPI ISL 1371928 21/02/2021
EPI ISL 1048562 01/02/2021 EPI ISL 1371929 20/02/2021
EPI ISL 1366778 02/02/2021 EPI ISL 1371930 09/02/2021
EPI ISL 1366779 02/02/2021 EPI ISL 1371931 21/02/2021
EPI ISL 1366781 01/02/2021 EPI ISL 1371932 17/02/2021
EPI ISL 1366782 18/02/2021 EPI ISL 1371933 23/02/2021
EPI ISL 1366783 25/02/2021 EPI ISL 1371995 05/02/2021
EPI ISL 1366793 04/02/2021 EPI ISL 1371996 15/02/2021
EPI ISL 1366840 05/02/2021 EPI ISL 1371999 09/02/2021
EPI ISL 1366864 05/02/2021 EPI ISL 1372000 07/02/2021
EPI ISL 1366869 05/02/2021 EPI ISL 1372001 08/02/2021
EPI ISL 1366877 05/02/2021 EPI ISL 1372002 09/02/2021
EPI ISL 1366887 06/02/2021 EPI ISL 1372003 24/02/2021
EPI ISL 1366888 05/02/2021 EPI ISL 1372004 18/02/2021
EPI ISL 1371923 23/02/2021 EPI ISL 1372005 17/02/2021
EPI ISL 1371924 21/02/2021 EPI ISL 1372006 17/02/2021

Table B.2: GISAID accession numbers, collection dates, and references of
sequences in the South Africa (February) sample
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Other lineages Lineage B.1.1.7
Accession Date Ref Accession Date Ref

EPI ISL 662468 12/11/2020 EO1 EPI ISL 708881 30/11/2020 EN1
EPI ISL 664402 06/11/2020 EO2 EPI ISL 705071 22/11/2020 EN2
EPI ISL 702752 19/11/2020 EO3 EPI ISL 657548 09/11/2020 EN3
EPI ISL 650455 13/11/2020 EO4 EPI ISL 702338 27/11/2020 EN4
EPI ISL 667977 14/11/2020 EO5 EPI ISL 656730 08/11/2020 EN5
EPI ISL 642566 02/11/2020 EO6 EPI ISL 709730 26/11/2020 EN6
EPI ISL 661404 11/11/2020 EO7 EPI ISL 702093 28/11/2020 EN7
EPI ISL 679726 01/11/2020 EO8 EPI ISL 675080 15/11/2020 EN8
EPI ISL 654967 10/11/2020 EO9 EPI ISL 673518 15/11/2020 EN9
EPI ISL 659205 05/11/2020 EO10 EPI ISL 704716 30/11/2020 EN10
EPI ISL 659013 01/11/2020 EO11 EPI ISL 676036 13/11/2020 EN11
EPI ISL 662253 11/11/2020 EO12 EPI ISL 704695 02/11/2020 EN12
EPI ISL 660027 04/11/2020 EO13 EPI ISL 704619 21/11/2020 EN13
EPI ISL 646293 04/11/2020 EO14 EPI ISL 658341 08/11/2020 EN14
EPI ISL 664758 12/11/2020 EO15 EPI ISL 661750 14/11/2020 EN15
EPI ISL 659140 05/11/2020 EO16 EPI ISL 665414 02/11/2020 EN16
EPI ISL 661929 14/11/2020 EO17 EPI ISL 703736 26/11/2020 EN17
EPI ISL 641906 03/11/2020 EO18 EPI ISL 658292 08/11/2020 EN18
EPI ISL 661483 11/11/2020 EO19 EPI ISL 709568 26/11/2020 EN19
EPI ISL 656165 06/11/2020 EO20 EPI ISL 704601 22/11/2020 EN20
EPI ISL 658415 08/11/2020 EO21 EPI ISL 656409 08/11/2020 EN21
EPI ISL 655916 08/11/2020 EO22 EPI ISL 668252 12/11/2020 EN22
EPI ISL 637180 02/11/2020 EO23 EPI ISL 661854 12/11/2020 EN23
EPI ISL 673482 15/11/2020 EO24 EPI ISL 703229 19/11/2020 EN24
EPI ISL 703087 19/11/2020 EO25 EPI ISL 657799 08/11/2020 EN25
EPI ISL 675115 13/11/2020 EO26 EPI ISL 708945 30/11/2020 EN26
EPI ISL 664943 04/11/2020 EO27 EPI ISL 679428 22/11/2020 EN27
EPI ISL 706068 02/11/2020 EO28 EPI ISL 676194 13/11/2020 EN28
EPI ISL 657282 08/11/2020 EO29 EPI ISL 683471 24/11/2020 EN29
EPI ISL 679916 06/11/2020 EO30 EPI ISL 676012 13/11/2020 EN30
EPI ISL 673815 15/11/2020 EO31 EPI ISL 705063 22/11/2020 EN31
EPI ISL 678719 16/11/2020 EO32 EPI ISL 659491 05/11/2020 EN32
EPI ISL 705061 19/11/2020 EO33 EPI ISL 668018 12/11/2020 EN33
EPI ISL 646457 03/11/2020 EO34 EPI ISL 702918 19/11/2020 EN34
EPI ISL 656970 08/11/2020 EO35 EPI ISL 657622 08/11/2020 EN35
EPI ISL 647347 01/11/2020 EO36 EPI ISL 704698 01/11/2020 EN36
EPI ISL 650406 08/11/2020 EO37 EPI ISL 679302 21/11/2020 EN37
EPI ISL 661700 13/11/2020 EO38 EPI ISL 704606 22/11/2020 EN38
EPI ISL 658474 08/11/2020 EO39 EPI ISL 703148 19/11/2020 EN39
EPI ISL 700654 09/11/2020 EO40 EPI ISL 645527 05/11/2020 EN40

Table B.3: GISAID accession numbers, collection dates, and references of
sequences in the England (November) sample
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Accession Date Ref Accession Date Ref
EPI ISL 878756 13/01/2021 E1 EPI ISL 868555 18/01/2021 E21
EPI ISL 778191 20/12/2020 E2 EPI ISL 885546 18/01/2021 E22
EPI ISL 836766 04/01/2021 E3 EPI ISL 816845 31/12/2020 E23
EPI ISL 720681 02/12/2020 E4 EPI ISL 736552 11/12/2020 E24
EPI ISL 735634 13/12/2020 E5 EPI ISL 731132 10/12/2020 E25
EPI ISL 816235 29/12/2020 E6 EPI ISL 820022 25/12/2020 E26
EPI ISL 799427 22/12/2020 E7 EPI ISL 1054040 30/01/2021 E27
EPI ISL 777127 17/12/2020 E8 EPI ISL 881303 12/01/2021 E28
EPI ISL 811454 01/01/2021 E9 EPI ISL 838888 04/01/2021 E29
EPI ISL 1242096 27/01/2021 E10 EPI ISL 950899 27/12/2020 E30
EPI ISL 735656 13/12/2020 E11 EPI ISL 709038 04/12/2020 E31
EPI ISL 863458 13/01/2021 E12 EPI ISL 842015 01/01/2021 E32
EPI ISL 1178212 25/01/2021 E13 EPI ISL 835329 05/01/2021 E33
EPI ISL 777970 18/12/2020 E14 EPI ISL 741276 08/12/2020 E34
EPI ISL 782374 26/12/2020 E15 EPI ISL 813970 26/12/2020 E35
EPI ISL 868478 07/01/2021 E16 EPI ISL 1051452 22/01/2021 E36
EPI ISL 762877 16/12/2020 E17 EPI ISL 1046024 27/01/2021 E37
EPI ISL 1050650 29/01/2021 E18 EPI ISL 836823 04/01/2021 E38
EPI ISL 708906 04/12/2020 E19 EPI ISL 994038 12/01/2021 E39
EPI ISL 740955 02/12/2020 E20 EPI ISL 820233 14/12/2020 E40

Table B.4: GISAID accession numbers, collection dates, and references of
sequences in the England (January) sample
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Accession Submitters Date Ref
KY688118.1 Paden, C. R., et al. 07/02/2015 M1
KT806044.1 Lu, X., et al. 09/02/2015 M2
KT806045.1 Lu, X., et al. 22/02/2015 M3
KT806047.1 Lu, X., et al. 27/03/2015 M4
KT806048.1 Lu, X., et al. 07/02/2015 M5
KT806049.1 Lu, X., et al. 15/02/2015 M6
KT806051.1 Lu, X., et al. 05/02/2015 M7
KT806052.1 Lu, X., et al. 02/02/2015 M8
KT806053.1 Lu, X., et al. 02/02/2015 M9
KT806054.1 Lu, X., et al. 13/02/2015 M10
KT806055.1 Lu, X., et al. 10/02/2015 M11
KT026453.1 Park, W. B., et al. 10/02/2015 M12
KT026454.1 Park, W. B., et al. 01/03/2015 M13
KT026455.1 Park, W. B., et al. 10/02/2015 M14
KT026456.1 Park, W. B., et al. 01/03/2015 M15
KR011263.1 Lu, X., et al. 21/01/2015 M16
KR011264.1 Lu, X., et al. 21/01/2015 M17
KR011265.1 Lu, X., et al. 26/01/2015 M18
KR011266.1 Lu, X., et al. 06/01/2015 M19

Table B.5: NCBI Virus database accession numbers, collection dates, and
references of sequences in the MERS-CoV sample
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