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Abstract

Positional information is a central concept in developmental biology. In developing
organs, positional information can be idealized as a local coordinate system that 
arises from morphogen gradients controlled by organizers at key locations. This 
offers a plausible mechanism for the integration of the molecular networks 
operating in individual cells into the spatially-coordinated multicellular responses 
necessary for the organization of emergent forms. Understanding how positional 
cues guide morphogenesis requires the quantification of gene expression and 
growth dynamics in the context of their underlying coordinate systems. Here we 
present recent advances in the MorphoGraphX software (Barbier de Reuille et al., 
2015) that implement a generalized framework to annotate developing organs with 
local coordinate systems. These coordinate systems introduce an organ-centric 
spatial context to microscopy data, allowing gene expression and growth to be 
quantified and compared in the context of the positional information thought to 
control them.

Introduction

Many aspect of animal morphogenesis are thought to be controlled by positional 
information (Wolpert, 1969), where cells can sense their position in a developing 
organ and respond accordingly. This phenomenon may be even more pervasive in 
plants, as cells cannot relocate within organs, and must decide their fate based on 
their location. For example, root morphogenesis appears to be controlled by an 
organizing center at the root tip that provides founder cells and positional 
information to the growing structure (Scheres et al., 2002). Ablation of cortical cell
initials in the root meristem causes the neighboring pericycle cells to divide and fill
the available space, subsequently adopting the fate associated to their new location 
(C. van den Berg et al., 1995). A similar effect has been demonstrated for a variety 
of cell types in the Arabidopsis root (Marhava et al., 2019). In leaves, development
is thought to be coordinated by polarity fields oriented from leaf base to tip 
(Kierzkowski et al., 2019; Kuchen et al., 2012). Over time organs can initiate new 
growth axes, such as when serrations or leaflets develop in more complex leaves 
(Barkoulas et al., 2008; Kierzkowski et al., 2019), or lateral roots emerge from the 
primary root (Scheres et al., 2002). In these cases information from several 
organizers must be integrated to direct cell response.
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To understand how positional information controls morphogenesis, it is necessary 
to quantify cell shape, gene expression and morphogen concentration changes over
time, preferably at the cellular level. This information then needs to be related to 
its position relative to the organizers controlling development within the organ. As 
computational power and imaging methods improve, new software packages for 
cell segmentation and lineage tracking are being developed (Sommer et al., 2011; 
Stegmaier et al., 2016), including many specialized for plants (Barbier de Reuille 
et al., 2015; Eschweiler et al., 2019; Fernandez et al., 2010; Schmidt et al., 2014; 
Wolny et al., 2020). This progress has enabled the segmentation of time-lapse data 
at increasingly higher resolution and throughput (Hervieux et al., 2016; 
Kierzkowski et al., 2019; Sapala et al., 2018; Willis et al., 2016). Although this 
increase in data volume offers tremendous potential to understand how genes 
control form, the analysis of geometric data from thousands of cells is non trivial. 
Information about a cell’s shape, gene expression and growth directions is of 
limited value when the cell’s spatial context within the developing organ is 
unknown. 

MorphoGraphX is a computer software platform that is specialized for image 
processing on surface layers of cells (Barbier de Reuille et al., 2015). It has proven 
especially useful for the analysis of confocal microscopy images from time-lapse 
data in order to quantify the cellular level dynamics of growth, cell division and 
gene expression (e.g. Bringmann & Bergmann, 2017; Feng et al., 2018; Hervieux 
et al., 2016; Hong et al., 2016; Kierzkowski et al., 2019; Louveaux et al., 2016; 
Sapala et al., 2018; Scheuring et al., 2016; Tsugawa et al., 2017; Vlad et al., 2014; 
Zhang et al., 2020; Zhu et al., 2020; Fridman et al., 2021). Key to the approach 
taken in the software is the representation of cell layers as curved, triangulated 
surface meshes that capture the overall 3D shape of organs, which retains much of 
the simplicity of 2D segmentation and lineage tracking. These “2.5D” images 
contain the geometry of the sample at two scales. The global shape of the organ is 
captured by the mesh's geometry, while a cellular-scale representation is obtained 
from the confocal signal projected onto the mesh, which is segmented to extract 
the shape of individual cells on the surface (Fig 1A-C). When combined with time-
lapse data acquisition and cell lineage tracking, MorphoGraphX allows cell growth
and its relationship to gene expression to be quantified (Fig 1D, E; Kierzkowski et 
al., 2019; Sapala et al., 2018; Vlad et al., 2014). In addition to cell surface analysis,
MorphoGraphX also supports the creation and analysis of full 3D meshes with 
volumetric cells (Fig 1S1; Vijayan et al., 2021). Here we describe new methods we
have developed in MorphoGraphX to understand these data by additionally 

5

60

65

70

75

80

85

90

95



annotating cells with positional information. Not unlike the annotation of sequence
data, this allows cellular data to be given spatial context, and a frame of reference 
within the organ relative to its developmental axes and the organizers instructing 
morphogenesis.100



Figure 1: Cellular segmentation and basic quantifications supported by MorphoGraphX 
demonstrated by using a time-lapse series of an A. thaliana flower meristem. (A) Multi-channel 
confocal microscopy images with a cell wall signal (red) and DR5 marker signal (green). Shown 
are the last 3 time points (T1-T3) of a 4-image series (T0-T3). (B-C) Extracted surface mesh of 
T2. Cell wall signal near the surface was projected onto the curved mesh to enable the creation of
the cellular segmentation in (C). The segmented meshes provide the base for further analysis 
within MorphoGraphX as shown in (D) and (E). (D) Top: MorphoGraphX allows the 
quantification of cellular properties such as cell area and shape anisotropy (shown as heat maps). 
The white axes show the max and min axes of the cells. Bottom: Heat map of the quantification 
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of the DR5 marker signal (arbitrary units) projected onto the cell surface mesh. (E) When cell 
lineages are known, time-lapse data can be analyzed. Top: Heat maps of areal growth and growth
anisotropy (computed from T1 to T2). The white lines inside the cells depict the principal 
directions of growth. Bottom: Visualization of the cell lineages from T0 to T2 and a heat map of 
cellular proliferation (number of daughter cells). Scale bars: (A) 50μm; (B - E) 20μm. See also 
user guide sections 1-15 and tutorial videos S1 and S2 available at 
https://doi.org/10.5061/dryad.m905qfv1r.
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Figure 1-figure supplement 1: Basic 3D analysis using MorphoGraphX demonstrated using an 
Arabidopsis ovule.
(A) Confocal microscopy image with cell wall staining. (B) Segmented mesh with volumetric 
cells. (C) The segmented mesh allows cellular geometry to be quantified. Shown is a heat map of
cell volumes. Scale bar: 50μm. See also user guide sections 20-21 and tutorial video S6 available
at https://doi.org/10.5061/dryad.m905qfv1r.
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Results

Most workflows in MorphoGraphX begin by converting 3D image stacks into 
meshes of 2.5D or 3D cellular segmentations, which are created directly on voxels 
in the case of 3D segmentation, or on surface meshes in the case of 2.5D data (Fig 
1A-C; Fig 1S1A, B). Recent advances in voxel classification with convolutional 
neural networks (CNNs) for cell boundary prediction can improve input images 
and the resulting segmentation (Eschweiler et al., 2019, 2021; Wolny et al., 2020), 
especially for 3D segmentations. Although a selection of these and other image de-
noising and pre-processing tools are available directly within MorphoGraphX, it is 
also possible to pre-process and/or segment 3D images in other software, and 
import them into MorphoGraphX for further analysis. After the initial 
segmentation, cellular features can be quantified, such as cell area, shape and gene 
expression for single time points, or cell proliferation and growth for time-lapse 
data (Fig 1D, E). These data can then be annotated with positional information to 
aid the understanding of the development of the organism under study. Even with 
deep learning techniques, image quality needs to be very high for full 3D 
segmentation, and this is often not possible with live imaged data. By enabling 
image processing on 2.5D surface images, MorphoGraphX can be used in many 
systems on live imaged data where full 3D segmentation is currently not possible 
(Hervieux et al., 2016; Kierzkowski et al., 2019; Sapala et al., 2018; Silveira et al., 
2022; Vlad et al., 2014). Annotation with coordinate systems can further reduce 
image quality requirements in cases where growth along a single dimension is 
required (Liu et al., 2022).      

Defining coordinates within an organ

The simplest method to provide positional information for the cells in a sample is 
by aligning the sample with a set of 3D coordinate axes (Fig 2A). For example, a 
developing root meristem can be aligned and positioned such that the organizing 
quiescent center is at the origin with the Y-axis increasing in the longitudinal 
direction of the root. Provided the sample is reasonably straight, this allows 
cellular measures to be compared with their distance from the quiescent center (Fig
2B).

However, for curved organs significant errors will occur, especially in more distal 
regions, further from the origin. In this case, the central axis can be defined by a 
curved line which conforms to the curvature of the organ (Fig 2C; Schmidt et al., 
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2014; Montenegro-Johnson et al., 2015). In MorphoGraphX, this line can be 
represented by a Bezier spline (Bézier, 1968) with control points positioned using 
either interactive manipulation, or automatically from a selected file of cells. 
Distance can then be calculated along the line, and transferred to cells in the cross 
section perpendicular to the line (Fig 2C). MorphoGraphX also allows a 2D Bezier
surface to be positioned next to or within a sample, enabling two directions to be 
aligned with the natural curvature of the sample.

Placing the Bezier curve or surface to curved organs with more complex shape is 
challenging. An alternative method is to select one or more cells at a reference 
position, and calculate the distance relative to the selection (Fig 2D; Video 1). This
offers an easy method to create a distance field, and greatly increases the variety of
organs that can be accommodated. The distance is determined by computing the 
shortest path along cells through the tissue, causing it to naturally follow the 
curvature of the organ.

Once cells have been annotated with positional information, it can be used for the 
analysis of cell-level data, such as growth, cell proliferation, cell shape and gene 
expression. Using the distance measure to define the proximal-distal axis on an 
Arabidopsis sepal (Fig 2D), geometric measures can be plotted against the local 
coordinate system. In Fig 2F cell area extension was plotted against distance from 
the base of the sepal. On the full 7 day sepal time-lapse shown in Fig 2S1 
(Hervieux et al., 2016), initially growth is predominantly located at the distal parts 
of the organ, followed by the progressive displacement of the high growth zone 
towards the base of the sepal (Fig 2S1A). By time point 6, the growth has slowed 
and become more uniform as the organ differentiates. Proliferation is initially more
uniform, but otherwise follows a pattern similar to growth, progressing basally as 
the organ matures (Fig 2S1B). The data can be indexed by position from the base 
of the sepal and plotted, showing how growth and proliferation vary along the 
proximal-distal developmental axis as a percentage of the total sepal length (Fig 
2S1D, E). It can be seen in the graphs that although the sepal appears to undergo a 
similar growth arrest starting at the tip as the Arabidopsis leaf, there are subtle 
differences. The growth in the early stages is more distal in the sepal, along with 
the proliferation, and the zone of higher growth moves towards the base as the 
sepal develops. This is in contrast to the Arabidopsis leaf where the growth and 
proliferation zones remain relatively fixed with respect to the total leaf length (cf. 
Fig 1K, M; Kierzkowski et al., 2019). The use of relative coordinates also makes it 
possible to pool data from multiple samples (Vijayan et al., 2021; Zhang et al., 
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2020) and to compare data from different genotypes (Kierzkowski et al., 2019; 
Montenegro-Johnson et al., 2019; Zhang et al., 2020).
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Deriving directions from organ coordinates

In addition to scalar information such as areal growth rate or cell volume, 
MorphoGraphX can also quantify directional information, such as the Principal 
Directions of Growth (PDGs) that represent the maximal and minimal directions of
growth for each cell (Fig 3A-C). A common problem with the interpretation of 
such directional information is the tendency for directions to be locally 
heterogeneous when growth is nearly isotropic. This happens because the maximal 
and minimal growth amounts are almost the same, and the displayed directions 
become arbitrary, and heavily influenced by noise. This can make the comparison 
of growth directions between neighboring cells difficult. A more informative 
approach is to look at growth with respect to the directions of the developmental 
axes. This can be done by first setting up an axis defining the positional 
information for the leaf, for example by using the previously introduced distance 
field (Fig 2D; 3B). The growth directions are then projected onto this 
developmental axis, and separated into components that are parallel (Fig 3D) and 
perpendicular (Fig 3E) to the axis. Using this method on the A. thaliana leaf 
primordium different developmental zones with varying growth rates along the 
proximal-distal (P-D) and medial-lateral (M-L) axis can be revealed (Fig 3C-E): 
While the area extension differs greatly in midrib/petiole (low) and leaf blade cells 
(high), it can be seen that those differences mainly follow from the M-L growth 
rate, whereas the P-D growth map is more similar in these domains. Moreover, an 
increase in M-L growth around the forming serration can be seen, separating it 
from the surrounding leaf blade cells which show less growth along this direction 
(Fig 3E). From the original PDG visualization it is not immediately apparent that 
the varying M-L growth is the main cause for the differences in the domains (Fig 
3C).

Another benefit of looking at PDGs in the context of a local coordinate system is 
that it can provide a more direct comparison to the outputs of computational 
simulations. Developmental models of emergent organ shape often use 
morphogens that are thought to specifically control growth in parallel and 
perpendicular to a developmental axis (Kierzkowski et al., 2019; Kuchen et al., 
2012; Whitewoods et al., 2020). By projecting the PDGs onto this axis, it is 
possible to directly compare model growth rates in the different directions to 
experiments. Since MorphoGraphX can load a wide variety of mesh formats, this 
allows the direct comparison of similar quantifications made on templates 
extracted from model simulations from various sources.
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Figure 3F-K shows a similar growth quantification for the tomato meristem 
(Kierzkowski et al., 2012), where local organ coordinates were created by using 
cell distance measures around each emerging leaf primordium with directions 
pointing towards (radial) and around (circumferential) their respective center. In 
addition to growth, the signal intensity of the auxin reporter DR5 was quantified in 
the same sample, allowing a direct comparison to auxin signaling levels and 
cellular growth. For both primordia we found radial growth to have a high negative
correlation with DR5 signal intensity. Figure 3J shows that the growth (red) peaks 
on the abaxial side of the emerging primordium, whereas the DR5 signal (blue) is 
higher on the adaxial side. Circumferential growth was more or less constant. The 
DR5 maximum tends to be on the adaxial side of the initiating leaf, whereas 
growth is much higher on the opposing abaxial side. This supports the idea that 
auxin acts as a trigger for primordium initiation (Reinhardt et al., 2003; Smith et 
al., 2006), rather than via controlling growth rates directly.
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Figure 2: Methods to define positional information and their application to data analysis in plant
organs. (A) Y-axis aligned A. thaliana root. The cells are colored according to the y-coordinate 
of their centroid position. (B) Plot of cell volumes of epidermis cells of the root in (A) along the 
y-axis with a fitted trend line. (C) Seedling of A. thaliana with a surface segmentation of the 
epidermis. A manually defined Bezier curve (white) allows the assignment of accurate cell 
coordinates along a curved organ axis. (D) Side and top view of an A. thaliana sepal with a 
proximal-distal (PD) axis heat coloring. The cell coordinates were assigned by computing the 
distance to manually selected cells (outlined in red) at the organ base. This method allows organ 
coordinates to be assigned in highly curved tissues. (E) Side and top view of (D) with a heat map
coloring based on cellular growth to the next time point. (F) Plot summarizing the growth data of
(E) using the PD-axis coordinates from (D). See Figure 2-figure supplement 1 for the analysis of 
the complete time-lapse series. Scale bars: (A) 20 μm;  (C) 100 μm;  (D, E) 50 μm. See also user 
guide section 23 “Organ-centric coordinate systems” and tutorial video S3 available at 
https://doi.org/10.5061/dryad.m905qfv1r.
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Figure 2-figure supplement 1: From cellular resolution heat maps to a global analysis of A. 
thaliana sepal development using organ-centric coordinates. (A-B) Heat maps of cell area 
extension (A) and cell proliferation (B) for each time point (visualized on the earlier point). (C) 
Plot of the heat map data from (A) vs the distance of cells to the base of the organ (see also Fig 
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2D). The distance of the maximum of the growth zone from the base or the organ is relatively 
constant. However, organ length is increases about 10x between the first and last time points, 
making a comparison of the different curves difficult. (D-F) When plotting the same data with 
normalized cell distance values averaged using 20 bins along the proximal-distal axis it becomes 
more apparent that the growth zone moves from the proximal to the distal regions over the 
course of development (D). The trend of lower and more proximal maxima (highlighted with 
arrows) is even clearer when proliferation is plotted in the same way (E). (F) Cell area data 
plotted as in (D) and (E). Average cell areas increase mainly at the distal end during later time 
points. Scale bars: (A, B) 100 μm.
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Figure 3: Examples of data analyses using organ coordinate directions. (A-E) Quantification of 
cellular growth along organ axes in a young A. thaliana leaf. (A) Segmented meshes of the leaf 
primordium at 3 and 6 days after initiation shown with cell labels and lineages of the earlier time 
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point (3 days). (B) Earlier time point of (A) with proximal-distal (PD) axis coordinates (heat 
map) and directions (white lines) computed from selected cells at the leaf base. (C) Area 
extension (heat map) and Principal Directions of Growth (PDGs, white lines) between the time 
points of (A). PDG axes are computed per cell and can point in different directions. (D-E) 
Computation of the growth component of (C) that is directed along the PD and the orthogonal 
medial-lateral (ML) axis. (F-K) Quantification of locally directed growth in leaf primordium and 
initiation site of a tomato meristem. (F) Smoothed heat map of cell curvature. Local maxima in 
this heat map (green & cyan cells) were selected as meristem center (M), primordium center (P) 
and initiation site (I) as shown in (G). (H) To analyze the data we defined a circumferential 
coordinate system with its axes directions (white lines) around the primordium and initiation 
center (not shown), and aligned them towards the meristem center. (I) Heat maps of cell distance,
area extension, radial and circumferential growth and normalized DR5 signal intensity of the 
aligned primordium and initiation site. (J) Plotting the data of (I) reveals a negative correlation of
the DR5 signal intensity and radial growth around the developing primordium. (K) Detailed plots
of radial (red) and circumferential growth (orange) as well as the normalized DR5 signal 
intensity of the primordium and initiation site. Scale bars: (A) 50 μm;  (B - H) 20 μm;  (I) 10 μm.
See also user guide sections 16 “Custom axis directions”, 23 “Organ-centric coordinate systems”
and tutorial video S3 available at https://doi.org/10.5061/dryad.m905qfv1r.

Combining directions

In 2D or on 2.5D surfaces, local directions can be fully defined by a single distance
measure, by taking one direction aligned with the gradient of the distance field or a
Bezier curve, and the other perpendicular to the first. This is similar to methods 
used to specify directions in developmental modeling in plants (Green et al., 2010; 
Kennaway & Coen, 2019; Kierzkowski et al., 2019; Kuchen et al., 2012; 
Whitewoods et al., 2020), and thus facilitates direct comparison between models 
and experimentally observed patterns of growth and gene expression.

In 3D, a third direction must be defined (Kennaway & Coen, 2019; Whitewoods et 
al., 2020). In MorphoGraphX this can be done by combining the directions defined
by different distance measures. The 3D Cell Atlas add-on  (Montenegro-Johnson et
al., 2015) combines several distance measures for radially symmetric structures 
such as root and hypocotyls. A Bezier curve is placed along the center in the 
longitudinal direction and combined with a surface mesh to obtain radial directions
(Figure 4B). This also puts bounds on the radial direction (and also implicitly on 
the circumferential direction) which allows relative coordinates to be assigned to 
cells in addition to absolute values. The relative radial coordinate will follow the 
layer as the root narrows towards the tip. The relative distance between the central 
axis and the organ surface can then be used to annotate and classify 3D segmented 
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cells in organs with a layered cellular organization. Figure 4D shows classification 
of layers with relative coordinates on an Arabidopsis root (Montenegro-Johnson et 
al., 2015). Figure 4C shows layer classification using absolute distance from a 
surface mesh (Montenegro-Johnson et al., 2019), which can be used as a starting 
point for layer classification in any organ.    

The mature ovule in Arabidopsis shows a more complicated structure than a root or
sepal, with five layers of integument cells encapsulating the nucellus that contains 
the embryo sac (Schneitz et al., 1995; Vijayan et al., 2021; Fig 1S1; Fig 5). In this 
example, combining different directions allows the establishment of organ-centric 
coordinates in the outermost layer of cells in the ovule (the outer integuement). 
After segmentation and 3D mesh extraction in MorphoGraphX, directions normal 
to the surface (Fig 5A) were combined with those of a Bezier curve computed from
a user-selected cell file (Fig 5B,C). Similar to the root data, relative coordinates 
facilitate the classification of cells into layers.

The Bezier curve defined the longitudinal direction whereas the surface directions 
obtained from the organ surface mesh were used to compute perpendicular width 
and depth axes and distances. Cell volume and geometry acquired from 3D 
segmentation and mesh extraction (Fig 1S1) were calculated along the various 
directions of the organ axes and analyzed (Fig 5D-G).

Moving along the proximal-distal axis from 0-260 μm, we found variations in cell 
volume with a clear minimum at around 100 μm and a steady increase towards 
proximal and distal end (Fig 5G). Measuring the length, width and depth of cells 
separately revealed the underlying cause for differences in cell volume between 
different proximal-distal regions of the outermost integuement layer. At the 
proximal end (at 0 μm) the cell shape is relatively isotropic with similar values in 
cell length, width and depth. Moving along the proximal-distal axis, cell anisotropy
slowly increased, first mostly due the decreasing depth and width (until around 100
μm), later mainly due to the increased cell length (from about 150 μm). The 
increased cell length suggests a highly anisotropic growth along the longitudinal 
axis in this area. A potential proliferative region could be suspected in the region 
between 100-150 μm, where cell volume and length are the smallest. The 
quantification using the organ coordinates in this study allows spatial information 
to be linked to 3D cellular properties such as cell volumes and the associated shape
anisotropies along different cell axes.
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Figure 4: Methods to create organ coordinates for 3D meshes and to label different cell types. 
(A-D) Organ coordinates and cell types for volumetric meshes. (A) Heat map of the surface 
distance for cell centroids in an A. thaliana shoot apical meristem. (B) For volumetric tissues 
often a single direction is not enough to capture the geometry of the organ. Different methods 
can be combined such as a Bezier curve (white dashed line) with a surface mesh (grey) to create 
a heat map of the relative radial distance of cells in the A. thaliana root. (C-D) Organ coordinates
can be used to assign cell type labels as demonstrated in the 3D Cell Atlas plugin for meristem 
and root. See also Figure 3-figure supplement 1. (E-H) Different methods to create cell type 
labellings. (E) A. thaliana gynoecium (fruit epidermis) surface segmentation with a heat map of 
the length of the minor cell axis as obtained from a PCA on the cells’ triangles. The heat values 
can be thresholded to assign two cell types. (F) The same principle can be used on organ 
coordinates which results in a clean separation of replum (green) and valve tissue (blue). (G) We 
generalized the 2D clustering approach of 3D Cell Atlas (see Figure 3-figure supplement 1) so 
that it can be used for any measure pair and on subset selections of cells. Shown is a 2D plot of 
the minor axis length (x-coord) and cell signal intensity (y-coord) on the valve tissue in (F). 
Manually assigning clusters can separate the stomata, which are typically smaller with higher 
signal values (yellow) and the remaining valve cells (blue) efficiently. See also Figure 3-figure 
supplement 1 for 2D plots of all cells. (H) The Support Vector Machine (SVM) classification is 
able to separate the 3 shown cell types in a higher dimensional space by using a variety of 
different measures and a relatively small training set. Scale bars: (A-D) 20 μm; (E-H) 50 μm. See

370

375

380

385



also user guide section 24 “Cell atlas and cell type classification” and  tutorial videos S3 and S4 
available at https://doi.org/10.5061/dryad.m905qfv1r.
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Figure 4-figure supplement 1: Cell type labeling methods and their use them in the data 
analysis. (A-C) Methods supported by the 3D Cell Atlas Add-on demonstrated on a A. thaliana 
root (Montenegro-Johnson et al., 2015). (A) Longitudinal cross section with a heat map of 
circumferential cell size. The white dashed line is the manually defined central axis. (B) The 2D 
heat plot of radial distance (heat map: in Fig 4B) and circumferential cell size (heat map in (A)) 
reveals a distinct clustering and can be used directly to assign the different cell types (dashed 
ellipses). (C) Final result of the cell type assignment. (D) The 3D cell atlas meristem 
(Montenegro-Johnson et al., 2019) allows the assignment of cell layers (as also seen in Figure 
4C) and types in the meristem. (E-G) Cell type specific data analysis on the example of the A. 
thaliana gynoecium (Figure 4E-H). (E) Violin plot of the rectangularity of different cell types. 
Valve tissue cells are less rectangular and have higher variance compared to replum cells and 
stomata. (F-G) 2D scatter plots with fitting ellipses. Choosing different measures as x- or y-axis 
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allows the separation of different cell types as demonstrated in Figure 4G. Scale bars: (A, C, D) 
20μm.



Figure 5: Quantification of volumetric cell sizes along organ axes in the outer layer of the outer 
integuement of an A. thaliana ovule. (A) Extraction of cell layer of interest (colored in green) 
using an organ surface mesh. (B) Selection of the central cell file (in red) with cell distance heat 
map to exclude lateral cells (heat values >40um). (C) The centroids of the selected cells from (B)
were used to specify a Bezier curve defining the highly curved organ axis from the proximal to 
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the distal side. Heat coloring of the cells according to their coordinate along the Bezier. (D-F) 
Analysis of the cellular geometry in 3D. (D) Heat map of cell volume and the tensor of the three 
principal cell axes obtained from a Principal Component Analysis on the segmented stack. (E) 
Bezier directions and associated cell length. (F) Directions perpendicular to the surface and 
associated cell depth. (G) Plots of the various cellular parameters relative to the Bezier 
coordinate. A few small cells at the distal tip of the integuments were removed from the analysis.
Scale bars: 20μm. See also user guide sections 21-24 and tutorial video S3 available at 
https://doi.org/10.5061/dryad.m905qfv1r.
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Using positional information for automatic cell type classification

Plant organs typically emerge as primordia consisting of undifferentiated tissue. 
Cells subsequently differentiate, acquiring a unique identity that depends on their 
location within the organ, via genetic processes that integrate spatial and 
environmental cues. Although cell differentiation is ultimately controlled by 
differential gene expression, it is often the case that cell fate can be predicted by 
geometry, even at very early stages (Yoshida et al., 2014). It is rare that cells with 
different cell type have identical morphological features.

MorphoGraphX supports a large variety of measures to quantify different features 
of cell morphology, including simple geometric measures (area, volume, perimeter,
surface area, min and max axis), shape quantifiers (convexity, circularity, 
lobeyness, largest empty circle, aspect ratio), neighborhood measures (number of 
neighbors, variability), gene expression (average, total, near boundary), and cell 
network measures (betweenness centrality, betweenness current flow). Most 
measures can be used on time-lapse data to quantify changes over time (growth 
rates, gene expression changes, cell proliferation). For a complete list of the 
measures implemented in MorphoGraphX, see Tables 1 and 2. The modular 
architecture of the software also allows custom measures tailored to specific 
problems to be easily added through its plug-in interface. More sophisticated 
calculations, for example the averaging of data over multiple samples, can be 
calculated externally in packages such as R and imported back into 
MorphoGraphX for visualization on segmented meshes. Here, the development of 
more complex data-flows is enabled by the use of a standardized attribute system 
to store and visualize cell data, for both scalar values and tensor (directional) 
information.

During the segmentation process MorphoGraphX assigns a unique label to each 
cell. When tracking cell lineages over multiple time points, a secondary label 
called the “parent label” is provided. Other secondary labelings are also possible, 
for example for cell type, cell layer, or zones within an organ. MorphoGraphX has 
several methods to assign these labels to classify cell types and layers. These labels
can be assigned manually by interactively selecting cells, or by employing a 
number of processes that use heat map measure data to assign secondary labels 
(Fig 4E-H). Positional information from the distance measures can be combined 
with measures of cell morphology and gene expression, where a secondary 
labeling can be used to provide additional context.

420

425

430

435

440

445

450

50



Since cells of a common biological cell type have similarities in one or more 
geometrical, positional or gene expression attributes, the values of these attributes 
will often form a cluster, facilitating their automatic classification. An example can
be seen in the 3D Cell Atlas addon for MorphoGraphX (Fig 4S1A-C; T. D. 
Montenegro-Johnson et al., 2015) that clusters cells by relative radial distance and 
cell size to classify the cell layers of the root, hypocotyl, mature embryo, or other 
radially symmetric plant organs. To aid in optimizing cell clustering, 
MorphoGraphX offers a two dimensional interactive heat map, where information 
from two independent measures can be visualized, and clusters selected (Fig 4S1B,
4G). These methods can be used repeatedly on sub-sets of cells to enable a 
classification of cells that differ across more than 2 features.

Multi-feature classifications tasks can be solved automatically by machine learning
approaches (Cortes & Vapnik, 1995) when provided with sufficient training data. 
Of particular relevance are Support Vector Machines (SVMs) which have been 
used to classify cell types based on geometrical features of plant cells (de Reuille 
& Ragni, 2017; Sankar et al., 2014) . MorphoGraphX provides a simple interface 
to the libSVM support vector machines library (Chang & Lin, 2011). Cells can be 
selected and classified into different cell types for use as training data (Fig 4H, 
Video 2). Any cell attribute or measure that can be quantified in MorphoGraphX 
can be used by the classifier. These include all the morphological and gene 
expression measures, time-lapse measures, positional information created via 
distance maps or other coordinate systems, and even custom measures created via 
plugins or calculated externally with R or MATLAB. Once trained on a small 
group of cells with the desired measures, the classifier can be used to classify all 
the cells in a sample (Fig 4H). After manual curation, the classification can then be
used as additional training data, improving the power of the classifier. Figure 4G,H
and 4-figure supplement 1F-G shows the cell types of the Arabidopsis gynoecium 
which consists of the lateral valve tissues which are fused to the replum. Within the
valve stomata are homogeneously distributed, consistent with the uniform growth 
and differentiation of this tissue. In contrast, no stomata cells can be found within 
the replum, which is made up of smaller, more homogenously sized cells. Cell 
typing this organ can be useful to identify the region of the valve margin, where 
the fully matured fruit will dehisce to release the seeds (Eldridge et al., 2016; 
Ripoll et al., 2019).
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Figure 6: Deformation functions in MorphoGraphX. (A) Deformation functions allow a direct 
mapping of arbitrary points (blue) between two meshes. They require the definition of common 
landmarks (red stars). (B-C) Semi-automatic parent labelling using deformation functions. (B) 
Two consecutive time points of an A. thaliana leaf primordium segmented into cells. (C) The 
automatic parent labelling function requires the definition of a few manually labelled cells as 
initial landmarks. From this sparse correspondence, a mapping between the meshes can be 
created and new cell associations between the two meshes are added and checked for 
plausibility. With more cells found, the mapping between the meshes is improved for the next 
iteration. (D-E) Comparison of the classic Principal Directions of Growth (PDGs) in (D) with the
gradient of a deformation function computed using the cell junctions from a complete cell 
lineage in (E) on an A. thaliana sepal. The classic PDGs compute a deformation for each cell 
individually and are shown with a heat map of areal extension for each cell. In contrast, the 
deformation function is a continuous function on the entire mesh. Here heat values are derived 
by multiplying the amount of max and min growth. Using the deformation function gradient 
reveals subcellular growth patterns that were previously hidden, such as differential growth 
within a single giant cell. Scale bars: (B, D, E) 50μm; (C & zoomed regions in D & E) 20μm. 
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See also user guide section 17 “Mesh Deformation and Growth Animation” and  tutorial videos 
S1 and S2 available at https://doi.org/10.5061/dryad.m905qfv1r.

Figure 6-figure supplement 1: Deformation functions allow the interpolation of intermediate 
steps which can be turned into a continuous sequence or animation. (A) Animation of the early 
leaf development of A. thaliana created from T2 and T5 of Figure 5, shown with the lineages of 
T2. (B) Intermediate stages of the animation of the sepal growth of A. thaliana. For the actual 
timepoints see Figure 2-figure supplement 1. Scale bars: 100μm. See also user guide section 17 
“Mesh Deformation and Growth Animation” and tutorial video S5 available at 
https://doi.org/10.5061/dryad.m905qfv1r.
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Mapping positional information through time

In the analysis of morphogenesis, many key quantifications such as growth depend 
on the ability to track samples through time. In MorphoGraphX this can be done 
following cell segmentation by manually assigning parent labels to the second time
point, a process that has been highly streamlined in the user interface for 2.5D 
surfaces. However for full 3D samples, or large 2.5D samples with multiple time 
points, this method can be cumbersome. One method to address this problem is to 
find a non-linear coordinate transformation or deformation that maps all the points 
from one time point onto the next. Parent labeling can then be determined by 
mapping cell centers of the later time point to an earlier one, allowing the cell they 
came from to be identified. This can be used to directly assign lineage, or to seed 
algorithms that use more involved methods, such as the minimization of the total 
distances between the mapped cells (Fernandez et al., 2010). In MorphoGraphX, to
define a mapping between the meshes of two successive time points (Fig 6A) we 
have implemented a 3D deformation function based on scattered data point 
interpolation (using cubic radial-basis functions; Duchon, 1977; Turk & O’Brien, 
1999). An initial transformation is computed based on a few preassigned 
landmarks, by matching several cells with their parents in the previous time point 
(Fig 6C). A deformation field is then calculated which provides a mapping for all 
points in 3D. This is then used to assign parent labels in the second time point 
based on their closest match in the previous time point. Close to the landmark 
points, this mapping will be very accurate, with accuracy decreasing with distance 
from the landmarks. The decrease in accuracy away from landmarks is larger if the
deformation between the time points is highly non-uniform. After assigning all the 
cells their closest parent, the mapping is then verified by checking the 
correspondence of neighborhoods between each cell and its parent. The labeling 
for cells which do not match is cleared, and the process is repeated. This causes 
correctly labeled regions to “grow” out from the initially placed landmarks, until 
the entire sample is correctly labeled (Fig 6C; Video 3). At each step, only 
correctly labeled cells remain. Sometimes the iterative cell-labeling process can get
stuck in highly proliferative areas where cells have divided repeatedly between 
time points.  In this case a few additional landmarks can be manually added at 
trouble spots. One significant advantage of the method is that incorrect cells 
remain unlabeled, making manual curation straightforward. Once all of the parents 
are assigned and have passed the neighborhood correspondence check, one can be 
assured that both the lineage and the underlying segmentations are correct.
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Deformation functions can also be used to create animations of organ development
from 2.5D or 3D time-lapse data. This requires two or more time points of a 
segmented mesh with corresponding cell lineages. The cell centers and/or junctions
are used as the landmarks defining the deformation function that maps one mesh 
onto the other. Interpolating mesh vertices between stages creates a smooth 
animation with as many intermediary steps as desired (Fig 6S1; Video 4). 
MorphoGraphX has a user-friendly pipeline to record animations directly from the 
GUI with options to adjust the camera angle and to visualize cell lineages, heat 
maps and cell outlines during the animation. Temporal smoothing of morphing 
animations created from more than two time points is achieved using Catmull-Rom
splines to interpolate the position of mesh vertices over time (Catmull & Rom, 
1974). Heat and signal values in the mesh, such as cell area, growth rates or gene 
expression can also be interpolated along with vertex positions.

In large cells, growth can vary significantly within the same cell (Armour et al., 
2015; Elsner et al., 2018). As the deformation function provides a smooth mapping
between time-points, its gradient can be used to create a continuous growth map at 
any point on a mesh. This enables the approximation of areal expansion and PDGs 
at a sub-cellular level, where the quality of the approximation is limited by the 
number and placement of landmarks (junctions). It is also possible to apply the 
process to subcellular landmarks, such as those obtained by tracking microbeads, 
as done previously for 2D images (Armour et al., 2015; Elsner et al., 2018). Our 
3D implementation of this method has been used to compute growth directions on 
curved surface meshes (Fig 6E) and volumetric meshes (Fig 7I).

A comparison of the areal growth and PDGs calculated with deformation functions
vs the cell-based method is shown in Figure 6D, E. The deformation function 
captures differences in growth within single cells, as is often apparent in larger 
cells that straddle areas of fast and slow growth. Figure 7A-I shows a 3D time-
lapse of the Arabidopsis root where the deformation functions have been used to 
perform lineage tracking in 3D. It can be seen in Fig 7D that the 4 tissue types - 
epidermis, cortex, endodermis and pericyle - all show a similar pattern of cell 
volume increase, with slow growth in the meristem and faster growth near the 
transition zone, which can also be seen when displayed as a function of the 
distance from the root tip (Fig 7E). Most of the volume growth occurs along the 
longitudinal direction and is reflected by the increase in cell length, which is highly
synchronized due to the physical connections of the cell layers (Fig 7F). Growth 
along width and depth directions are less synchronized, but much smaller than the 
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length increase, reflecting the strong anisotropic growth of this system (Fridman et 
al., 2021).



Figure 7: Time-lapse analysis and visualization of 3D meshes. (A) Cross section of the confocal 
stack of the first time point of a live imaged A. thaliana root.  (B-C) The 3D segmentations of 
two time points imaged 6 hours apart. Shown are the cell lineages which were generated using 
the semi-automatic procedure following a manual correction. (D) Exploded view of the second 
timepoint with cells separated by cell types (see also Figure 4D). Cells are heat colored by their 
volume increase between the two time points. (E-H) Quantification of cellular growth along 
different directions within the organ. (E) Plot of the heat map data of (D). The cellular data was 
binned based on the distance of cells from the QC. Shown are mean values and standard 
deviations per bin. (F-H) Similarly binned data plots of the change in cell length (F), width (G) 
and depth (H). It can be seen that the majority of growth results from an increase in cell length. 
See Figure 7-figure supplement 1 for a detailed analysis of the cells in the endodermis. (I) 
Different ways to visualize 3D growth demonstrated using a single cortex cell: PDGs averaged 
over the cell volume (left), PDGs averaged over the cell walls projected onto the walls (top 
right), subcellular vertex level PDGs projected onto the cell walls (bottom right). Scale bars: (A-
D) 20 μm;  (I) 5 μm. See also user guide section 21 “Mesh 3D analysis and quantification” and  
tutorial video S6 and S7 available at https://doi.org/10.5061/dryad.m905qfv1r.
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Figure 7-figure supplement 1: Time-lapse analysis of cellular geometry in the A. thaliana root 
endodermis. (A) Cross section of the confocal image of time point 1. (B) Segmentation with 
extended cell type labelling in the endodermis. The root cell type labelling of Fig. 3D was 
extended by identifying the xylem cells (light purple) in the stele (cyan), their adjacent pericycle 
cells (blue) and assigned the endodermis cells neighboring those pericycle cells as xylem file 
cells (X, red). Then the endodermis cells at right angles to the xylem files were assigned phloem 
file (P, purple) and the remaining other endodermis cells (E, yellow). (C) Side view of one cell 
file of each cell type. As the cell types do not change along the cell file, it was possible to 
automatically assign the cell files based on their circumferential coordinate. (D) Cell files of (G) 
with a heat map of cell length indicating smaller cells in the xylem pole. (E-J) Quantifications of 
cell geometry and development in the endodermis cell types. Cellular data was binned according 
to their distance from the quiescent center (QC) (E-H). Shown are mean values and standard 
deviations per bin (E-H) or cell type (I,J). Phloem file cells showed a larger volume (E), which 
was caused by a greater cell length (F), an observation which has been made before by 
(Andersen et al., 2018). In contrast, xylem file and other endodermis cells were smaller in 

65

610

615

620



volume due to different reasons: While xylem file cells were the shortest (E), rest endodermis 
cells showed a lower cell width with increasing distance from the QC (G). The time-lapse 
analysis confirmed above observations: While volume change was similar across the cell type 
(I), phloem file cells showed a lower proliferation rate (H), whereas rest endodermis cells 
showed the smallest extension of cell width (J).Scale bars: (A, B) 20 μm;  (C, D) 50 μm.

625



Advanced geometric analysis

In addition to tools for creating organ coordinates and deformation functions we 
have implemented a range of additional new processes in MorphoGraphX 2.0 for 
advanced image analysis.

3D lineage tracking and growth analysis. While MorphoGraphX was created to 
work with 2.5D surface projections, it now supports a complete set of tools for full 
3D image processing, and in many samples advantages can be gained from 
combining both techniques. One example is automated cell lineage tracking, 
originally implemented for surfaces, that has now been extended to facilitate 
growth analysis in full 3D. Lineage tracking in 3D is a much harder task than on 
2.5D surface images, as 3D cellular meshes lack the cellular junctions that serve as
material points for surfaces. However in many cases entire organs are well defined 
by their surfaces meshes, allowing landmarks on the surface to be used to construct
a 3D deformation function to aid lineage tracking in full 3D. Surface landmarks 
can also be combined with 3D cell centers and/or face centers as material points to 
improve the internal resolution of the deformation functions for full 3D samples. 
These techniques allow the methods used to calculate growth rates and PDGs in 
2.5D to be extended to full 3D (Fig 7; Fridman et al., 2021). Cell proliferation and 
most of the other measures can also be quantified from 3D time-lapse data (Fig 
7S1). In addition to the automated tools, improved manual 3D parent labeling and 
the ability to relabel cells so that adjacent cells are always a different color, aid in 
the manual curation of 3D lineage maps.

Cell division analysis. One of the more advanced quantifications from time-lapse 
data is the analysis of cell division. As plant cells cannot move, cell division and 
growth are the main determinants of morphogenesis. MorphoGraphX has 
processes to identify dividing cells from time-lapse data, and quantify the 
orientation of the division wall in both 2.5D and 3D (Fig 8A-I, Fig. 8S1). In 2.5D 
the best fit line to the division wall is calculated (Fig 8A,D), whereas in 3D the 
best fit plane is used (Fig 8B,C,G). There are also measures to determine the 
asymmetry of the daughter cells. The use of positional information to give organ 
context is especially important for directional information, such as the orientation 
of cell division. Quantifying the orientation of the division plane is of little use 
without knowing how it relates to the developmental axes. Orientations can be 
computed with respect to the axes of a local coordinate system defined for the 
organ, along with its associated positional information (Fig 8E,I, Fig 8S1A). It is 
also possible to quantify how close cell divisions are to common division rules 
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proposed in the literature, such as the shortest wall through the center of the cell 
including local minima (Fig 8H; Besson & Dumais, 2011, Yoshida et al. 2014, 
Valdepalli et al. 2021) along the principal directions of growth (Hejnowicz, 1984), 
or rules based on network measures (Jackson et al., 2019). 

Cell connectivity networks. The organization of cells in organs may be analyzed 
through the extraction of cell connectivity networks from 2.5D or 3D segmented 
data. The physical associations between cells (cell-cell wall areas) can be extracted
and converted into networks where they are analyzed using network measures (Fig 
8J-K). Local measures such as the number of immediate neighbors (degree) can be 
calculated, along with more global measures, such as betweenness centrality based 
on the number of shortest paths cells lie upon, or random walk centrality (Fig 8K). 
These global measures are central to understanding how information flows within 
tissues (Jackson et al., 2017, 2019). The use of these measures uncovered the 
presence of a global property in cellular organization within the Arabidopsis SAM 
(Jackson et al., 2019). Namely, the length of paths between cells is maximized, 
whereby cells which lie upon more shortest paths have a great propensity to divide,
and the orientation of this division tends to leave the two daughter cells on the 
fewest number of shortest paths. Using this approach, the local geometric 
properties of cells can be related to the emergent global organization of cellular 
arrangements. Perturbation of cell shape in the katanin1 mutant led to alterations in
path length in the SAM, which correlated with defects in phyllotaxis (Jackson et 
al., 2019).

Cell polarity. Cellular signals, such as proteins tagged with fluorescent reporters, 
can also be quantified in MorphoGraphX. After segmenting a surface into cells by 
using a cell wall stain or marker line, a signal collected in a second channel can be 
projected onto the surface mesh, and the abundance, orientation and polarity of 
signals can be computed. Examples are the PIN-FORMED (PIN) auxin transporter 
report line (Benková et al., 2003) or the GFP:MBD (Van Bruaene et al., 2004) line 
that tags microtubules (MTs), (Fig 8L-N, 8S2). For the quantification of cell 
polarity, MorphoGraphX implements a process where the projected signal along 
the cell border is binned based on its position in relation to the the cell center to 
obtain its predominant direction and its intensity. Figure 8L shows an example of 
the PIN1 polarity quantification at the cell wall of surface segmented cells in the 
SAM. A similar quantification can be performed for 3D meshes as shown in Figure
8N and Figure 8-figure supplement 2A,B where we computed the PIN2 polarity in 
epidermis and cortex cells of an Arabidopsis root. Again, this directional 
information can be combined with the organ coordinates to compute the angle 
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between cell polarity and the organ axis (Fig 8S2C). Another example is the 
quantification of MT alignment using our implementation of FibrilTool (Boudaoud
et al., 2014) that has been adapted for processing on surfaces. After projecting the 
MT signal onto the surface, the alignment direction and strength of the signal can 
be quantified at the sub-cellular level (Fig 8M) or for entire cells (Fig 8S2E). 
Again, this information can be interpreted using organ coordinates, as we 
demonstrate on cells of a SAM which tend to have their MTs aligned 
circumferentially from the meristem center (Fig 8S2E).
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Figure 8: Advanced data analysis and visualization tools. (A) Division analysis of a cell from a 
surface segmentation of an A. thaliana sepal. A planar approximation of the actual plane is 
shown in red and other potential division planes in white/blue. The actual wall is very close to 
the globally shortest plane. (B-C) Top and side view of a recently divided 3D segmented cell. 
The daughter cells are colored yellow and cyan. The red circle depicts the flat approximation 
plane of the actual division wall. The two white rings depict the two smallest area division planes
found by simulating divisions through the cell centroid of the mother cell (i.e. the combined 
daughter cells). (D) Visualization of the actual planes (white lines) between cells that divided 
into 2 daughter cells in the A. thaliana sepal. (E) Density distribution and median (dashed line) 
of the angle between the division plane and the primary organ axis in sepal (see D) and root (see 
Fig 8S1A). The division in sepals are less aligned with the organ axis. (F) Half of an A. thaliana 
wild type embryo in the 16 cell stage. This view shows that the divisions leading to this stage are
precisely regulated to form 2 distinct layers in the embryo. (G) A visualization of the actual 
planes (red circles) and the shortest planes (white circles) in the wild type. Cells are colored 
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according to the label of the mother cells. (H-I) Violin plots of quantifications of the planes show
that the wild type does not follow the shortest wall rule, unlike the auxin insensitive inducible 
bdl line RPS5A>>bdl. The bdl divisions are almost orthogonal to the organ surface (see Fig 
8S1B, D, E), whereas the wild type divides parallel to the surface. Consequently, the  bdl fails to 
form a distinct inner layer. (J-K) Cellular connectivity network analysis. (J) Cell connectivity 
network analysis on a young A.thaliana leaf. Cells are heat colored based on the number of 
neighbors. (K) Heat map of betweenness centrality. The betweenness reveals pathways which 
might be of importance for information flow, potentially via the transport of auxin. (L-N) Cell 
based signal analysis. (L) Analysis of cell polarization on a surface mesh. (M) Microtubule 
signal analysis on a surface mesh. (N) Top and side view of a cell polarization analysis on a 
volumetric mesh (root epidermis PIN2, see Figure 8-figure supplement 2A-D for details). Scale 
bars: (A,B,C,L,M) 2 μm;  (D) 50 μm;  (F,G,J,N) 5 μm; (K) 100 μm. See also user guide section 
25 “Cell division analysis”.
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Figure 8-figure supplement 1: Details of the cell division analysis examples from Figure 8. (A) 
Second time point of an A. thaliana root (see Fig 7C) that was used for the division plane 
analysis in Figure 8E. Cells are shown semi-transparently (grey) with their longitudinal organ 
axis (cyan) obtained from the analysis using 3D Cell Atlas in Figure 4B. Planar approximations 
of the division planes between cells that divided between the 2 time points are shown as red 
circles. Consistent with the quantitative analysis in Figure 8E most planes are aligned with the 
organ axis. (B-C) Wild type embryo at the 16-cell stage segmented into volumetric cells shown 
with an organ surface mesh (grey, semi-transparent, B) and shown in an exploded view (C) to 
enable the visualization and access of inner layers. (D-E) Corresponding panels to Figure 8F-G 
for bdl embryo. Scale bars: (A,B,C) 10 μm; (D,E) 5 μm.
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Figure 8-figure supplement 2: Example analyses of cell polarity and microtubule signals of the 
data shown in Fig 8M-N. (A-D) Quantification of PIN2 polarity in volumetric cells. (A-B) Heat 
map of PIN2 concentration on epidermis and cortex of an A. thaliana root. Green lines depict 
directionality and strength of the PIN2 concentration. (C-D) Violin plots of the orientation data 
for division planes and PIN2 polarity for epidermis and cortex cells. Epidermis cells show 
considerably stronger polarity (D) and are more aligned with the (longitudinal) organ axis (C). 
(E-F) Microtubule analysis on a Shoot Apical Meristem (SAM) of A. thaliana. (E) The cells on 
the SAM were binned according to their distance to the SAM center. Cells are heat colored 
according to their bin. Yellow lines show the direction and strength of the microtubule 
orientation. (F) Boxplot of the angular difference between microtubule orientation and the 
circumferential direction around the center of the SAM (similar to Fig 5H). Scale bars: (A,B) 20 
μm; (E) 10 μm. See also user guide section 18 “Quantifying signal orientation”.
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3D visualization and interactive tools

MorphoGraphX has a flexible rendering engine that can handle meshes containing 
millions of triangles. It supports the independent rotation and translation of 
different stacks and meshes in the same world space and the ability to render both 
voxel and geometric data together with blending and transparency. It has 
adjustable clipping plane pairs and a bendable Bezier cutting surface that can be 
used to look inside 3D samples, and an interface to support the creation of 
animations (Video 5). However, visualizing and interacting with 3D data on a 2D 
computer screen still remains a challenge. A particular problem is the validation 
and correction of 3D segmentations of organs, as internal cells are obscured by 
outer layers. 3D segmentation curation and correction is a bottleneck when 
developing training sets for deep learning tools, and MorphoGraphX has become a 
useful tool for this purpose (Wolny et al., 2020). In addition to clipping planes, 
exploded views are a commonly used method to visualize the internal structure of 
multi-component 3D objects (Li et al., 2008), which can be used on mesh data in 
MorphoGraphX. These are particular useful for visualizing the internal structure of
entire organs with small cell numbers such as embryos (Fig 8S1C), and can be 
used in combination with multiple clipping planes for larger samples. To add 
biological meaning to the exploded visualization, cells can be bundled by their 
parent or cell type label to visualize key aspects of biological data sets such as cell 
divisions or to separate organs into cell layers or by cell type (Fig 7D, 8S1C). 
Furthermore, cells sharing the same cell type label can be easily manually selected,
moved or deleted for improved visualization of specific tissues and groups of cells.
These processes can also aid user interactions, making cell selection and 
annotation more straightforward when users are curating 3D cellular segmentations
and lineage maps.

In addition to mesh editing tools, MorphoGraphX has several tools to edit voxel 
data. The simplest is an eraser tool which can be used to remove portions of the 
stack that would otherwise interfere with processing. An example is the digital 
deletion of the peripodial membrane overlying the Drosophila wing disc, which 
needs to be removed to allow for the extraction of the organ’s surface (Aegerter-
Wilmsen et al., 2012). A typical workflow for 3D segmentation starts with a 3D 
image of a cell boundary marker. This is then pre-processed with operations such 
as blurring to reduce noise or background removal filters, before segmentation 
with algorithms such as the Insight Toolkit's (ITK) Morphological Watershed filter
(www.itk.org). More recently, deep learning methods with convolutional neural 
networks (CNN) have been developed to predict cell boundaries, such as the 3D U-
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Net model (Çiçek et al., 2016), that can improve the stacks for downstream 
segmentation. The modular structure of MorphoGraphX has allowed us to interface
an implementation of the 3D U-Net model developed by Eschweiler et al. (2019). 
This enables the interactive use of the CNN boundary prediction tool from within 
MorphoGraphX (Video 6), and simplifies experimentation with different networks 
or downstream segmentation strategies. Several networks are currently 
implemented (Eschweiler et al., 2019, 2021; Wolny et al., 2020), although the add-
on should work with any libtorch traced model. It also avoids the requirement to 
set up a full Python environment, and comes stand-alone as a package built for the 
most common nVidia GPU architechtures. 

Once data is segmented, it often requires some manual correction before it is ready 
for final analysis in a chosen coordinate system. MorphoGraphX has interactive 
tools that operate on voxel data both to combine and split labels (cells), although 
typically it is easier to over-segment and combine, rather than under-segment and 
split (Video 6). This can be used to correct segmentations, which can then be used 
to help train deep learning networks to further improve automatic segmentation 
(Vijayan et al., 2021). In this context MorphoGraphX has been used to segment 
and curate Arabidopsis ovule data to create ground truth for confocal prediction 
networks (Wolny et al., 2020). 

Software design

The internal architecture of MorphoGraphX has been designed to make it easily 
extendable, while retaining the speed of the fully compiled, statically typed 
language C++. The relatively small visualization and data management core is 
augmented with processes that are loaded dynamically at startup and provide 
almost all of the software's functionality. MorphoGraphX has grown to provide a 
wealth of custom processes for 2.5D and 3D image processing and coordinate 
system creation. Additionally, it has become a platform to integrate published tools
and methods that have no visual interface to the data of their own, which increases 
their accessibility and ease of exploration for biologists. Examples include the 
previously mentioned deep learning tools, and the processes that interface to the 
Insight Toolkit (ITK) C++ image processing libraries. This greatly reduces the 
learning curve required to use ITK tools, such as the popular Morphological 
Watershed filter, which can be run from MorphoGraphX with a click of the mouse.
For more advanced ITK pipelines, we have recently integrated an open source tool 
that provides an XML Pipeline Wrapper for the Insight Toolkit (XPIWIT) that 
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allows the development of ITK image processing pipelines interactively without 
any C++ programming required (Bartschat et al., 2016). These pipelines can be 
packaged into processes and called directly from the MorphoGraphX gui, allowing
the easy exploration of complex ITK image processing pipelines. An example is 
the "Threshold of weighted intensity and seed-normal gradient dot product image" 
(TWANG) pipeline (Stegmaier et al., 2014), a fast parallel algorithm for nuclear 
segmentation. A selection of pipelines along with the XPIWIT software is bundled 
as an add-on for MorphoGraphX, and requires no additional installation.

Another example of software integration with popular open source tools is the 
processes we have developed to interface with R (Video 7) that provide plots for 
basic statistical analysis on attributes created in MorphoGraphX, including 
positional information provided by organ-centric coordinate systems. This 
simplifies the creation of the most commonly used plots without the need for 
export files and the mastery of ggplot. In addition to directly linking to C++ 
libraries, MorphoGraphX can be scripted with Python, allowing repetitive 
functions to be performed in batch, and the possibility to integrate Python-based 
tools. Operations interactively performed in MorphoGraphX are written to a 
Python log file for reproducibility and logging, and to allow easy cut-paste script 
creation.

Since its inception, a major focus of MorphoGraphX has been in the creation, 
manipulation and visualization of geometry in the form of surface meshes for 
2.5D, and full 3D cellular meshes. This is in addition to the 3D voxel source data 
from microscopy images. There is currently very little software available that can 
handle both, and enable the interaction between the two. Most image processing 
software works only with voxels, whereas most computer graphics, animation and 
engineering software deals only with meshes. If the goal is simply to segment 2D 
or 3D cells, there are many options available, for example Fiji (Schindelin et al., 
2012) or ilastik (S. Berg et al., 2019). If the processing of surface projections is 
required, advanced geometrical quantification like cell division analysis, or 
annotation with custom designed coordinate systems, then MorphoGraphX should 
be considered.

Conclusion

Similar to sequencing data, geometric data on the shape and sizes of hundreds or 
thousands of cells is of limited value without annotation. For many developmental 
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questions, the spatial context for information on cell shape, division and gene 
expression is paramount. However it is not enough to know the 3D position of 
cells, but rather their position in a coordinate system relative to the developing 
tissue or organism. These coordinates typically reflect the developmental axes of 
the organism or tissue, allowing the direct comparison of cell and organ shape 
changes with the gene expression controlling their morphology. In addition to 
putting data in a mechanistic context, organ-centric relative coordinates can be 
used to compare samples with different morphologies (Thompson, 1942), such as 
different mutants, or even in different species (Kierzkowski et al., 2019). This also 
applies to changes in morphology over time, where organ coordinate systems can 
be used to determine the correspondence between cells at different stages of 
development. Several tools have been published that successfully harness organ-
centric coordinates for specific problems, for example in roots and hypocotyls 
(Montenegro-Johnson et al., 2015; Schmidt et al., 2014), the shoot apex 
(Montenegro-Johnson et al., 2019) and the Arabidopsis ovule and similar shaped 
organs (Vijayan et al., 2022). MorphoGraphX provides a generalized framework to
create such tools by enabling the development of coordinate systems customized to
the particular organ or organism of interest. Possibilities vary from simple 
distance-based systems to analyze leaf growth on surfaces from time-lapse images 
(Kierzkowski et al., 2019) to more involved methods for more complex organs in 
full 3D from fixed samples (Vijayan et al., 2021).

MorphoGraphX is unique in that it is the only software that we are aware of that 
allows image processing on surface meshes, which we informally refer to as 2.5D 
image processing. These meshes are most often created from 3D confocal images 
of a cell boundary signal. Images obtained from the microscope in proprietary 
formats are typically loaded into Fiji or ImageJ with BioFormats/LOCI-Tools 
(Linkert et al., 2010), and the converted to tiff for import into MorphoGraphX. 
Denoising of images and other pre-processing can be performed before import, 
however, most common pre-processing steps are now available directly in 
MorphoGraphX. Although originally targeted at 2.5D image processing, the 
necessity to handle full 3D image processing has meant that it has become 
convenient to implement a wide array of processing filters for full 3D in 
MorphoGraphX, many of which are GPU accelerated. The number of processes 
available in MorphoGraphX has swelled to over 540 in the current version, 
compared to just over 160 in the previously published version (Barbier de Reuille 
et al., 2015). This includes a comprehensive toolkit for cell shape analysis, growth 
tracking, cell division analysis, and the quantification of polarity markers, both on 

880

885

890

895

900

905

910

90



2.5D image meshes, and for full 3D. All of these measures can be calculated and 
stored within the mesh, or exported to files for further processing with other 
software. Custom measures can also be calculated and imported for visualization 
within MorphoGraphX. Cell shape measures in combination with positional 
information provide a powerful framework for cell type classification, both with 
machine learning methods (Fig 4G-H) as well as clustering techniques 
(Montenegro-Johnson et al., 2019). Although organ-centric positional information 
provides important features for cell classification, it is unavailable in most machine
learning cell classification software that typically can only deal with voxel 
information and limited annotation.

A key strength of MorphoGraphX is that it offers both manual and automatic tools 
for segmentation, lineage tracking and data analysis. Although fully automated 
methods are improving, streamlined methods for manual and semi-automatic 
segmentation and analysis provide a path to completion for many samples where 
the automatic methods are "almost" good enough. For example, the automatic 
lineage tracking now available in MorphoGraphX benefits from the streamlined 
tools we developed previously to do the process manually, as these are now used to
correct and fill in missing portions when the automatic segmentation is incomplete.
This reflects the interactive nature of MorphoGraphX and its focus on low-
throughput but high-quality data sets.

As more and more imaging datasets are becoming available for community use, 
their annotation with positional information and gene expression data will be 
critical to help understand how the cell-level action of different genes and genetic 
networks is translated into the 3D forms of tissues and organs of different species 
(https://www.plantcellatlas.org). In this context MorphoGraphX provides a tool set
to help maximize the attainable information from these datasets, in an accessible 
platform tailored to the experimental biologist.
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Material and Methods

Software Availability

MorphoGraphX is open source software, and runs on Linux and Windows. 
Binaries and source code can be downloaded from:

www.MorphoGraphX.org  /software  

There are binaries available for recent versions of Ubuntu, as well as Windows. 
We recommend Linux as some add-ons are not available for Windows. For Linux 
we provide a Cuda version for machines with a compatible nVidia graphics card, 
and a non-Cuda version for those without. Currently there is only a non-Cuda 
version for Windows. Although there is no Mac version, some have had success 
running it in a virtual machine.

Support for the software can be found on the Help page of the MorphoGraphX web
site, and the MorphoGraphX user forum on forum.image.sc. 

With the growing number of processes in MorphoGraphX the complexity of the 
software has increased. We aim to provide novel users with sufficient 
documentation to do their first steps in MorphoGraphX. We previously published a
detailed guide on how to generate cellular segmentations and do basic 
quantifications as shown in Figure 1 (Strauss et al., 2019). MorphoGraphX 2.0 also
comes with an extended manual which contains step by step guides for all 
workflows presented in this paper (Table 3).

Data Availability

All new data collected for this manuscript, along with the specific version of 
MorphoGraphX used for analysis, and the tutorial videos are available online, and 
can be downloaded from Dryad here:

 https://doi.org/10.5061/dryad.m905qfv1r.

Data Acquisition

Arabidopsis Flower Meristem (Fig 1)
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pUBQ10::acyl:TDT  (Segonzac  et  al.,  2012) and  DR5v2::n3eGFP  (Liao  et  al.,
2015)  were  crossed.  F3  double  homozygote  line  was  used  for  imaging.  Floral
meristems were dissected from 2 weeks old plants grown on soil under the long-
day condition (16 h light/ 8h dark), at 20°C ± 2°C using injection needle. Dissected
samples were cultivated in 1/2 Murashige and Skoog medium with 1% sucrose
supplemented with 0.1% plant protective medium under the long-day condition (16
h light/  8h dark),  at  20°C ± 2°C. Confocal  imaging was performed with Zeiss
LSM800  with  a  40×  long-distance  water  immersion  objective  (1  NA,
Apochromat). Excitation was performed using a diode laser with 488 nm for GFP
and  561  nm  for  TDT.  Signal  was  collected  at  500-550  and  600-660  nm,
respectively. Images of 3 replicates were obtained every 24 hours for 4 days.

Arabidopsis Ovule (Fig 1S1, Fig 5A-F)

Data previously published in (Vijayan et al., 2021).

Arabidopsis Root (Fig 2A, Fig 4B,D, Fig 4S1A,C, Fig 7A-D,I, Fig 7S1A-D, Fig 
8S1A)

Root imaging: pUBIQ10::H2B-RFP pUBQ10::YFP-PIP1;4 was described 
previously (von Wangenheim et al. 2016). The seeds were stratified for 1 day at 
4°C, grown on 1/2 Murashige and Skoog medium with 1% sucrose under the long-
day condition (16 h light/ 8h dark) at 20°C ± 2°C. Confocal imaging was 
performed with Zeiss LSM780 with two-photon laser (excitation 960nm) with a 
band pass filter 500/550nm for YFP. Images of 3 replicates were obtained.

Arabidopsis Mature Embryo (Fig 2C)

Arabidopsis thaliana Col-0 seeds were sterilized in 70% ethanol with Tween20 for
two minutes, replaced with 95% ethanol for 1 minute and left until dry. Seeds were
placed on the Petri plates containing 1/2 MS medium including vitamins (at pH 
5.6) with 1.5% agar and stratified at 4°C for 3 days in darkness. Next, seeds were 
imbibed for 3 hours, and the mature seed embryo was isolated from the seed coat. 
For live imaging, the embryos were stained with propidium iodide 0.1% (Sigma-
Aldrich) for 3 minutes and imaged with Leica SP8 laser scanning confocal 
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microscope with a water immersion objective (x20). Excitation wavelengths and 
emission windows were 535 nm and 617 nm. Confocal stacks were acquired at 
1024x1024 resolution, with 0.5-μm distance in Z-dimension. Images were acquired
at 48 hours intervals and samples were kept in a growth chamber under long-day 
condition (22°C, with 16 h of light per day) between imaging.

Marchantia Time-lapse (Video 3)

Marchantia polymorpha gemmaling Cam-1 PM::GFP reporter line (Shani et al., 
2010) were transferred on a Petri plate containing 1/2 Gamborg’s B5 medium 
including vitamins (pH 5.5) with 1.2% agar and grown for 24 hours. For live 
imaging, the gemmaling were imaged with Leica SP5 laser scanning confocal 
microscope with a water immersion objective (x25/0.95). Excitation wavelengths 
and emission windows were 488 nm and 510 nm. Confocal stacks were acquired at
1024x1024 resolution, with 0.5-μm distance in Z-dimension. Images were acquired
at 24 hours intervals and samples were kept in a growth chamber under constant 
light between imaging. For the move we selected a representative sample from 6 
total replicates. To quantify the cell area, change and anisotropy, the fluorescence 
signal was segmented and semi-automated parent labelling as performed to couple 
the cells at two successive time points. Heat-maps are displayed on the later time-
point (after 24 hours of growth). Scale bars are displayed on the image.

Arabidopsis Sepal (Fig 2D,E, Fig 2S1A,B, Fig 6D,E, Fig 6S1B, Fig 8A,D)

Data previously published in (Hervieux et al., 2016).

Arabidopsis Leaf (Fig 3A-E, Fig 6S1A, Fig 8J,K)

Data previously published in (Kierzkowski et al., 2019).

Tomato Shoot Apical Meristem (Fig 3F-I)

Data previously published in (Kierzkowski et al., 2012).
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Arabidopsis Shoot Apical Meristem (Fig 4A,C, Fig 4S1D)

Data previously published in (Montenegro-Johnson et al., 2019).

Arabidopsis Gynoecium (Fig 4E-H) and Leaf (Fig 6B,C)

pUBQ10::acyl:YFP has been described previously (Willis et al., 2016). Plants were
cultivated on soil under the long-day condition (16 h light/ 8h dark), and 20°C ± 
2°C. Flowers at post-anthesis stage from 5 weeks-old plants were dissected with 
fine tweezers to remove sepals and stamens to expose gynoecium and mounted on 
the 60 mm plastic dish filled with 1.5% agar. Confocal imaging was performed 
with a Zeiss LSM800 upright confocal microscope, equipped with a long working-
distance water immersion objective 40X (1 NA, Apochromat). Excitation was 
performed using a diode laser with 488 nm for YFP and the signal was collected 
between 500 and 600 nm. For both organs images of 3 replicates each were 
obtained.

Arabidopsis Embryo (Fig 8B,C,F,G, Fig 8S1B-E)

Data previously published in (Yoshida et al., 2014).

Arabidopsis Shoot Apical Meristems for PIN1 and MT (Fig 8L,M, Fig 8S2A-
C)

pUBQ10::acyl:TDT (Segonzac et al., 2012) and GFP:MBD (Van Bruaene et al., 
2004) were crossed. F3 double homozygote line was used for imaging. 

Floral organs were removed with fine tweezers about 21 days after germination to 
expose inflorescence meristem. Meristems were mounted on the 60 mm plastic 
dish filled with 1.5% agar and imaged with a Zeiss LSM800 upright confocal 
microscope, equipped with a long working-distance water immersion objective 
60X (1 NA, Apochromat). Excitation was performed using a diode laser with 488 
nm for GFP and 561 nm for TDT. Signal was collected at 500-550 and 600-660 
nm, respectively. Images of 3 replicates were obtained.
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Arabidopsis Root for PIN2 in 3D (Fig 8N-O, Fig8S2 E)

pPIN2::PIN2:GFP was previously described (Xu & Scheres, 2005). The seeds 
were stratified for 2 days at 4°C, grown on 1/2 Murashige and Skoog medium with
1% sucrose under the long-day condition (16 h light/ 8h dark) at 20C° ± 2°C. The 
roots were stained by 10mM propidium iodide (Sigma-Aldrich), and observed by 
Zeiss LSM780 with two-photon laser (excitation 990nm) with a band pass filter 
500/550nm for GFP and 575-600nm for PI. Images of 3 replicates were obtained.

Data Analysis

For the data analysis examples in the paper we computed all necessary cellular data
within MorphoGraphX and exported them as csv files (see MorphoGraphX user 
guide chapter 12 “Attribute maps & data export”). Those files were imported to 
RStudio for further processing or directly plotted using ggplot2 (R Core Team, 
2020; RStudio Team, 2020; Wickham, 2016).

In the following, we provide a detailed description of the necessary processing 
steps for each data set shown in the figures. Hereby we refer to the relevant 
chapters in the extensive MorphoGraphX user guide for a step by step guide for 
more information.

Arabidopsis Flower Meristem (Fig 1)

We selected one sample for segmentation and further analysis. The segmentation, 
cell lineages and heat maps were generated following the standard workflow as 
described in (Strauss et al., 2019) and in the MorphoGraphX user guide (chapters 5
to 11).

Arabidopsis Ovule (Fig 1S1, 5)

We selected one sample of the published data for segmentation and further analysis
(Vijayan et al., 2021). Segmentation was obtained by back blending the raw 
images to CNN boundary predictions (Wolny et al., 2020) as described in (Vijayan
et al., 2021).
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Following the segmentation (see also user guide chapter 20 “3D segmentation”), 
for Fig 1S1 we simply generated the heat map of the cell volumes (see user guide 
chapter 21.1 “Heat maps & Measures 3D”).

For the additional analysis in Fig. 5, we first generated a trimmed surface mesh 
(using the process “Mesh/Creation/Marching Cubes Surface” on the segmented 
stack) and then used it to label the outermost layer using the process “Mesh/Cell 
Atlas 3D/Ovule/Detect Cell Layers” which is based on the method described in 
(Montenegro-Johnson et al., 2019). Next we selected the cells of the cell type (or 
parent) label of the outermost layer, inverted the selection and deleted this 
selection. At this stage only the cells of the outer layer remained.

For each cell, its longitudinal organ axis (as custom cell axis X) was defined by a 
Bezier curve obtained from a manually selected central cell file using the processes
“Misc/Bezier/Bezier From Cell File” and “Mesh/Cell Axis 3D/Custom/Create 
Bezier Line Directions” (see user guide chapter 16.1 “Custom Directions with 
Bezier” for general information about how to handle the Bezier in MorphoGraphX 
and chapter 21.6 “Custom Directions for 3D meshes” for its application for organ 
coordinates). Next, the surface organ axis (as custom cell axis Y) was computed 
using the surface mesh and the process “Mesh/Cell Axis 3D/Custom/Create 
Surface Direction”. Finally, the width direction (as custom cell axis Z) was 
computed as orthogonal direction of the other two using the process “Mesh/Cell 
Axis 3D/Custom/Create Orthogonal Direction”.

Next, the cell sizes were quantified by first doing a PCA on the voxels of cells in 
the segmented stack (“Mesh/Cell Axis 3D/Shape Analysis/Compute Shape 
Analysis 3D”, see also user guide chapter 22.2 “Cell shape analysis using Principal
Component Analysis for 3D meshes”) and finally computing the component of the 
PCA’s tensor aligned with the axes of interest (“Mesh/Cell Axis 3D/Shape 
Analysis/Display Shape Axis 3D” with the appropriate “Custom” heat option), 
with the Bezier direction corresponding to cell length, the surface direction to 
depth and the orthogonal direction to width.

Shape Anisotropy was defined using the equation: (max - 0.5*min - 
0.5*min)/(max+mid+min), with max, mid and min defined by the length of the 
PCA axes. Elongation is defined by max/mid and Flatness by mid/min.

To create the plots, cells with a distance >40μm from the central cell file were 
filtered out. The data of the remaining 213 cells was plotted.
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Arabidopsis Root (Fig 2A, 4B,D, 4S1A,C, 7A-D,I, 7S1A-D, 8S1A)

From the 3 imaged replicates we selected the sample with the best segmentation 
quality for further analysis. The raw images of the two time points of the analyzed 
root data sample were blurred and segmented using the ITK watershed 
segmentation processes in MorphoGraphX (see also (Stamm et al., 2017) and the 
MorphoGraphX user guide chapter 20 “3D Segmentation”). From the segmented 
stack a surface mesh and volumetric cell mesh were created using the processes 
“Mesh/Creation/Marching Cubes 3D” and “Mesh/Creation/Marching Cubes 
Surface”.

For the axis alignment analysis in Fig. 2A, the organ was manually aligned with 
the y-axis and the coordinates of the cell centroids were computed (processes 
“Mesh/Heat Map/Analysis/Cell Analysis 3D” and “Mesh/Heat Map/Measures 
3D/Location/Cell Coordinate” for the heat map; see also user guide chapter 21.1 
“Heat maps and measures 3D” and 22.3 “Further types of organ coordinates”). In 
Fig. 2B the cell volume of the 304 epidermis cells was plotted against the y-
coordinate.

The 3D Cell Atlas pipeline (Montenegro-Johnson et al., 2015; Stamm et al., 
2017) was used to compute cell coordinates, sizes and cell types (Fig4B, D; 
Fig4S1A-C).

For the time-lapse analysis (Fig. 7A-I, Fig 7S1) the cell lineages were determined 
semi-automatically using the pipeline introduced in this paper (Fig. 6) followed by 
a manual error correction (see also user guide chapter 21.2 “Cell Lineage Tracking 
3D”). Change maps were computed from the cells’ volume and size data extracted 
from 3D Cell Atlas from both time points (see user guide chapter 21.3 “Change 
Maps 3D”, chapter 24.1 “Cell Atlas Root” and (Stamm et al., 2017)). PDGs in 3D 
were derived from the deformation function mapping the first onto the second time
point using parent labeled cell centroids and cell wall centers (see user guide 
chapter 21.4 “PDGs 3D”).

For the analysis of the cell types in the endodermis (Fig 7S1), xylem cells in the 
stele and their neighboring pericycle cells were automatically identified by their 
circumferential coordinate obtained from the previously executed 3D Cell Atlas 
pipeline (see above). Endodermis cells touching two xylem-associated pericycle 
cells were determined as xylem pole. The two phloem poles in the endodermis 
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were shifted by 90 degrees (or 2 cells) from the xylem pole. In total, we used 26 
xylem pole, 21 phloem pole and 43 rest endodermis cells for the analysis.

For the analysis in Figures 8E and 8-figure supplement 1A only the second time 
point and its previously created parent labeling was used (see above). We 
computed the proliferation to the previous time point (“Mesh/Heat Map/Lineage 
Tracking/Heat Map Proliferation”), extracted the vertices on each division plane 
between cells that have divided exactly once (proliferation = 2, n=249 mother cells
that divided) and computed a PCA on each set of division plane vertices to extract 
the normals of the planes (using the process “Mesh/Division Analysis/Analysis 
3D/Division Analysis Multi”, see also user guide chapter 25.2 “Division Analysis 
3D”). Then we computed the angle between the longitudinal axis of the organ as 
extracted by 3D Cell Atlas and the division planes (“Mesh/Division 
Analysis/Compute Division Plane Angles”) and exported the data.

Arabidopsis Mature Embryo (Fig 2C)

From more than 10 replicates a sample with curved overall shape was selected for 
the demonstration of the organ coordinates using a Bezier curve. The fluorescence 
signal was segmented on the surface, and cells were parent labeled manually 
between two successive time points following the standard pipeline (see (Strauss et
al., 2019)) and the MorphoGraphX user guide (chapters 5 to 11)). For creating the 
heat map of organ coordinates, a Bezier line was created and manually aligned 
with the organ (see user guide chapter 23.2 “Bezier Line and Grid”). The organ 
coordinate heat map was then created using the process “Mesh/Heat 
Map/Measures/Location/Bezier Line Coord”. The heatmap is displayed on the later
time-point (after 48 hours of growth). Scale bars are displayed on the image.

Arabidopsis Sepal (Fig 2D,E, 2S1A,B, 6 D,E, 6S1B, 8A,D)

For the sepal analysis one replicate of the data from (Hervieux et al., 
2016) consisting of 7 time points was used (see Fig. 2S1A,B).

For the analysis in Fig. 2D-F and Fig. 2S1 for each time point we manually 
determined the organ base based on the cell lineages from the first time point. Cells
at the organ base were selected and used to compute the Euclidean cell distance 
measure (“Mesh/Heat Map/Measures/Location/Cell Distance”, see also the user 
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guide chapter 23.1 “The cell distance measure”). Finally, cell distances, growth, 
proliferation and cell sizes were exported.

For the cell division analysis in Fig. 8A,B we analyzed the divisions that occurred 
between the time point T4 and T5 (n=84). We computed the proliferation between 
these time points, extracted the vertices on each division plane between cells that 
have divided exactly once (proliferation = 2) and computed a PCA on each set of 
division plane vertices to extract the normals of the planes (using the process 
“Mesh/Division Analysis/Analysis 2D/Division Analysis Multi”, see user guide 
chapter 25.1 “Division Analysis 2.5D”). Next, we computed the PD-axis direction 
of the organ using the Euclidean cell distance from the base using the previously 
computed cell distance measure (see above) for creating custom directions along 
the PD-axis (see user guide chapter 16.2 “Custom direction using a distance heat 
map”). Finally we computed the angle between PD-axis and the division planes 
(“Mesh/Division Analysis/Compute Division Plane Angles”) and exported the 
data. 

For the growth analysis in Fig. 6D we computed the PDGs from time point T4 to 
time point T5, visualized on the earlier time point (see user guide chapter 15 
“Principal Directions of Growth (PDGs)”). Fig. 6E shows the same time point, but 
here growth was computed using the gradient of the deformation function obtained
from the cells’ junctions (see user guide chapter 17.6 “Growth analysis using 
deformation functions”).

Arabidopsis Shoot Apical Meristem (Fig 4A,C, 4S1D)

We selected one sample of the published data for analysis. Cell type labels were 
determined using the methods described in 3D Cell Atlas Meristem (Montenegro-
Johnson et al., 2019). See also the user guide chapter 24.2 “Cell Atlas Meristem”. 
We computed the surface distance heatmap using a surface mesh and the process 
“Mesh/Heat Map/Measures 3D/Location/Mesh Distance” (see also user guide 
chapter 23.3 “Further types of organ coordinates”).

Arabidopsis Leaf (Fig 3A-E, 6S1A, 8J-K)

The Arabidopsis leaf data was previously published in (Kierzkowski et al., 2019). 
One replicate of a time-lapse series consisting of 7 time points was selected for 
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analysis, but only time points T2 and T5 were used for the analysis here. The cell 
distance was computed similarly to the Sepal example (Fig. 2D) as distance from 
the organ base (“Mesh/Heat Map/Location/Cell Distance”; see also user guide 
chapter 23.1 “The cell distance measure”). Additionally we computed the heat map
gradient of the cell distance heat map (“Mesh/Cell Axis/Custom/Create Heatmap 
Directions”; see user guide chapter 16.2 “Custom direction using a distance heat 
map”) to obtain custom direction along the proximal distal (PD) axis and 
orthogonal to that the medial-lateral (ML) axis of the organ for each cell. PDGs 
were computed and used to determine the amount of growth along the previously 
computed PD and ML-axis (see user guide chapter 15 “Principal Directions of 
Growth (PDGs)” and chapter 16 “Custom axis directions”).

For the morphing animation in Figure 6-figure supplement 1A we used T2 and T5 
and followed the user guide chapter 17.4 “Morphing Animations”.

For the cell network analysis in Figure 8J-K we computed the cell connectivity 
network of all cells in T5 weighted by the inverse of the length of the cell walls to 
determine the betweenness centrality. This is done by running the process 
“Mesh/Heat Map/Measures/Network/Betweenness Centrality” (Jackson et al., 
2019).

Tomato Shoot Apical Meristem (Fig 3F-I)

For the growth and DR5 signal analysis on the shoot apical meristem we used one 
replicate of the previously published data of (Kierzkowski et al., 2012). To 
objectively find the center of the meristem, the primoridium, and the initiation site,
the curvature of the cells was computed (“Mesh/Cell Axis/Curvature/Compute 
Tissue Curvature”). The resulting heat map was smoothed across neighboring cells
for two rounds and resulting local maxima were identified as centers (“Mesh/Heat 
Map/Heat Map Smooth”). Meshes were manually aligned along the x-axis with 
respect to the meristem center to compute circumferential coordinates  
(“Mesh/Heat Map/Measures/Location/Polar Coord”; see also user guide chapter 
23.3 “Further types of organ coordinates”) around the primordium and initiation 
center. For the analysis only cells in the vicinity of the primordium and initiation 
centers were considered (as obtained by the cell distance towards their center cell 
using “Mesh/Heat Map/Measures/Location/Cell Distance”; see also user guide 
chapter 23.1 “The cell distance measure”). Furthermore, the gradients of the 
Euclidean cell distance heat maps from both centers were used to compute custom 
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directions along the heat (=radial) and orthogonal to the heat (=circumferential) 
(using the process “Mesh/Cell Axis/Custom/Create Heatmap Directions”; see also 
user guide chapter 16.2 “Custom directions using a distance heat map”). Finally 
the growth analysis was done similarly to the leaf, computing PDGs and growth 
along the custom axis (“Mesh/Cell Axis/PDG/Compute Growth Directions”; see 
also user guide chapter 15 “Principal Directions of Growth (PDGs)” and chapter 
16 “Custom axis directions”).

After each step heat maps were exported to attribute maps and in the end exported 
to csv files (see also chapter 12 “Attribute maps & data export”).

Arabidopsis Gynoecium (Fig 4E-H)

We selected one replicate for further analysis. After the surface segmentation (see 
user guide chapters 5-9), we computed the heat map for the length of the minor 
axis in Fig. 4E (process “Mesh/Heat Map/Measures/Geometry/Length Minor 
Axis”; see also user guide chapter 10 “Cell geometry quantification” and chapter 
22 “Cell shape analysis using PCA”). For Fig. 4F, after a manual alignment we 
computed the x-coordinate of the cells (process “Mesh/Heat 
Map/Measures/Location/Cell Coordinate”; see also user guide chapter 23.3 
“Further types of organ coordinates”). For both of these heat maps, cell types were 
generated by determining an appropriate threshold and selecting cells by their heat 
value using the process “Mesh/Heat Map/Heat Map Select” to set their parent label
(=cell type label). For more details see also user guide chapter 24.3 “Cell type 
classification using a single heat map”.

In Figure 4G we created a clustering using the process “Mesh/Cell 
Types/Classification/Tools/Cell Property Map 2D”. See also the user guide chapter
24.5 “Cell type classification using two measures”.

In Fig. 4H we used the SVM training and classification pipeline to generate the cell
type labels from a small training set (as shown in the figure). See also the user 
guide chapter 24.6 “Cell type classification using SVMs. 

Arabidopsis Leaf (Fig 6B-C)
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We selected one replicate for segmentation, parent-labeling and the demonstration 
of the semi-automatic parent labeling. See user guide chapters 5-9 about creating a 
surface segmentation and chapter 17.2 “Semi-automatic parent labeling” for more 
details.

Arabidopsis Shoot Apical Meristems (Fig 8L,M, 8S2E,F)

For the MT analysis we selected one sample for segmentation and analysis. We 
determined the center of organ based on a smoothed curvature heat map 
(“Mesh/Cell Axis/Curvature/Compute Tissue Curvature”). The center cell was 
selected and the Euclidean cell distance to the remaining cells was computed 
(“Mesh/Heat Map/Location/Cell Distance”). The circumferential direction around 
the cell center was obtained from the orthogonal direction of the heat map 
directions (“Mesh/Cell Axis/Custom/Create Heatmap Directions”). Cells were then
binned by their Euclidean distance to the center (“Mesh/Heat Map/Operators/Heat 
Map Binning”).

Arabidopsis Embryo (Fig 8F,G, 8S1B-E)

The data for the 3D division analysis in A. thaliana embryos was previously 
published in (Yoshida et al., 2014). From this data set we chose one wild-type and 
one inducible bdl (pRPS5a>>bdl) sample at the 16 cell stage.

A surface mesh was generated from the cells in the embryo and the cells were 
parent labeled according to their predicted mother cell. Then the process 
“Mesh/Division Analysis/Analysis 3D/Division Analysis Multi” performed the 
following steps on all of the parent labelled cells (n=16 cells or 8 divisions in each 
genotype): First a planar approximation of the actual division plane was computed 
by performing a PCA on the vertex positions of the shared wall between the two 
daughter cells. Then 1000 equally distributed division planes were simulated on 
the combined mother cell and different measures were quantified. See also the user
guide chapter 25.2 “Division Analysis 3D” for more details. The actual and the 
best planes were visualized using the process “Mesh/Division Analysis/Display 
and Filter Planes”.
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Arabidopsis Root PIN2 in 3D (Fig 8N, 8S2A,B)

For the analysis of the PIN directions in the A. thaliana root we selected one 
sample for 3D segmentation (see user guide chapter 20 “3D segmentation”). Next, 
we defined the main organ axis using a Bezier curve through the center of the 
organ (“Mesh/Cell Axis 3D/Custom/Create Bezier Line Directions”; see also user 
guide chapter 21.6 “Custom directions for 3D meshes”). Then we computed the 
PIN2 polarity direction (“Mesh/Cell Axis 3D/Polarization/Compute Signal 
Orientation”; see also user guide chapter 21.7 “Signal orientation for 3D meshes”) 
and determined the angle between the polarity direction and the Bezier line 
(“Mesh/Cell Axis 3D/Compute Angles”).
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Table 1: Measures for cells segmented on surface projections (2.5D).

Measure Unit Description

Geometry

Area um2 Area of the Cell (sum of its triangle area)

Aspect Ratio - Ratio of Length Major Axis and Length Minor Axis (see below)

Average Radius um Average distance from the center of gravity of a cell to its border

Junction Distance um Max or min distance between neighboring junctions of a cell

Length Major Axis um
Length of the major axis of the 2D Shape Analysis: (Computes a PCA on the 
triangle positions weighted by their area)

Length Minor Axis um
Length of the minor axis of the 2D Shape Analysis: (Computes a PCA on the 
triangle positions weighted by their area)

Maximum Radius um Maximum distance from the cell center to its border

Minimum Radius um Minimum distance from the cell center to its border

Perimeter um Sum of the length of the border segments of a cell

Lobeyness

Circularity - Perimeter^2/(4*PI*Area)

Lobeyness - Ratio of cell perimeter to convex hull perimeter. 1 for convex shapes

Rectangularity -
Ratio of cell area to the area of the smallest rectangle that can contain the cell. 1
for rectangular shapes, lower values for irregular shapes.

Soldarity -
Ratio of the convex hull area to the cell area. 1 for convex shapes, higher values
for complicated shapes.

Visibility Pavement - Simply 1-(Visibility Stomata) (see below)

Visibility Stomata -
Estimate of visibility in the cell. 1 for convex shapes, decreases with the 
complexity of the contour.

Location

Bezier Coord um Associated Bezier coordinate of a cell. Requires a Bezier grid.

Bezier Line Coord um Associated Bezier coordinate of a cell. Requires a Bezier curve.

Cell Coordinate um Cartesian coordinate of a cell

Cell Distance
um/
cells

Distance to the nearest selected cell (finds the shortest path to a selected cell, 
different distance measures: euclidean, cell number or 1/wall area)

Distance to Bezier um Euclidean distance to the Bezier curve or grid

Distance to Mesh um Euclidean distance to the nearest vertex in the other mesh

Major Axis Theta ° Angle between the long axis of the cell and a reference direction

Polar Coord °/um Polar coordinate around a specified Cartesian axis

Network
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Neighbors count Number of neighbors of a cell

Betweenness Centrality -
Computes the betweenness centrality of the cell connectivity graph. Edges can 
be weighted by the length of the shared wall between neighboring cells

Betweenness Current 
Flow

-
Computes the betweenness current flow of the cell connectivity graph. Edges 
can be weighted by the length of the shared wall between neighboring cells

Signal

Signal Border Average amount of border signal in a cell

Signal Interior Average amount of interior signal in a cell

Signal Parameters
Advanced and general process which allows the setting of parameters to 
compute different kinds of signal quantifications

Signal Total Average amount of total (=border + interior) signal in a cell

Other Measure 
processes

Mesh/Lineage 
Tracking/Heat Map 
Proliferation

cells Proliferation

Mesh/Cell 
Axis/Custom/Custom 
Direction Angle

° Angle between a Cell Axis and a Custom Axis

Mesh/Division 
Analysis/Compute 
Division Plane Angles

° Angle between division planes and/or cell axes



Table 2: Measures for meshes with volumetric (3D) cells.

Measure Unit Description

Cell Atlas

Cell Length 
(Circumferential, Radial, 
Longitudinal)

um
Cell length as determined by 3D Cell Atlas Root (Shoot rays from the cell 
center to the side walls to measure cell size along organ-centric directions)

Coord (Circumferential, 
Radial, Longitudinal)

3D organ coordinates as determined by 3D Cell Atlas Root

Geometry

Cell Length (Custom, X, 
Y, Z)

um
Cell length along the specified direction (cell size is measured as in 3D Cell 
Atlas Root (see above))

Cell Wall Area um2 Total area of the cell wall

Cell Volume um3 Volume of the cell

Outside Wall Area um2 Cell wall area that is not shared with another neighboring cell

Outside Wall Area Ratio % Proportion of Cell Wall Area that is not shared with a neighbor cell

Location

Bezier Coord um Associated Bezier coordinate of a cell. Requires a Bezier curve or grid.

Cell Coordinate um Cartesian coordinate of a cell

Cell Distance
um/
cells

Distance to the nearest selected cell (finds the shortest path to a selected cell, 
different distance measures: euclidean, cell number or 1/wall area)

Distance to Bezier um Euclidean distance to the Bezier curve or grid

Mesh Distance um Euclidean distance to the nearest vertex in the other mesh

Network

Neighbors count Number of neighbors of a cell

Betweenness Centrality -
Computes the betweenness centrality of the cell connectivity graph. Edges can
be weighted by the length of the shared wall between neighboring cells

Betweenness Current 
Flow

-
Computes the betweenness current flow of the cell connectivity graph. Edges 
can be weighted by the length of the shared wall between neighboring cells
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Table 3. MorphoGraphX workflows.

Workflow Description Used in Figure User guide chapter

MorphoGraphX legacy 
workflows

Processes and pipelines introduced in MorphoGraphX 1.0 (Barbier de Reuille 
et al., 2015) 

Surface segmentation Creating a surface mesh, 
projecting epidermal 
signal and segmentation

1A-C The chapters at the 
beginning of the user 
guide deal with these 
basic topics: from chapter
1 “Introduction” to 12 
“Attribute maps & data 
export”

3D segmentation Creating volumetric 
segmentation using ITK 
watershed

1S1A-B 20 “3D segmentation”

Parent labelling Cell lineage tracing 
between two subsequent 
segmented time points of 
the same sample

1D,E 13 “Lineage tracking”

Cell geometry heatmaps Creating heat map of 
cellular data

1D, 1S1C 10 “Cell geometry 
quantification”

Time-lapse heat maps Creating heat maps using
two parent labelled time 
points

1E 14 “Comparing data from
two time points”

Growth directions Computing growth 
directions using time-
lapse data

1E 15 “Principal directions 
of growth (PDGs)”

MorphoGraphX 2 
workflows

New processes and pipelines introduced in this paper

Different methods of 
creating organ 
coordinates 

Using world coordinates 
(X, Y, Z)

2A 23.3 “Further types of 
organ coordinates”

Using polar coordinates 3G-I 23.3 “Further types of 
organ coordinates”
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Using Bezier line or grid 2C 23.2 “Bezier line and 
grid”

Using Cell Distance heat 
maps

2D 23.1 “The cell distance 
measure”

Using a separate organ 
surface mesh

3A 23.3 “Further types of 
organ coordinates”

Different methods of 
creating cell type 
labellings 

Using heat maps or organ
coordinates

4E-F 24.3 “Cell type 
classification using a 
single heat map”

Using 2D clustering 4G 24.5 “Cell type 
classification using two 
measures”

Using support vector 
machines (SVMs)

4H 24.6 “Cell type 
classification using 
SVMs”

Organ directions Deriving directions from 
coordinates or Bezier 
curves

3B,H 16 “Custom axis 
directions” & 21.6 
“Custom directions for 
3D meshes”

Combining directions Combining different kind
of organ coordinates or 
directions

4B, 5D-F 24.1 “Cell Atlas Root” &
21.6 “Custom Directions 
for 3D meshes”

Semi-automatic parent 
labelling

For lineage tracing 6A-C 17.2 “Semi-automatic 
parent labeling”

Morphing animations 6S1A,B 17.4 “Morphing 
animations”

3D growth analysis 7D-I 21.3 “Change Maps 3D” 
& 21.4 “PDGs 3D”

Division analysis Analyzing cell divisions 8A-I, 8S1A,E 25 “Division analysis”

Cell connectivity analysis Analyzing cellular 
connectivity networks

8J,K -

3D visualization Exploded views 8S1C 21.5 “3D visualization 



options”

Signal quantification Quantifying signal 
amount and direction

8L-N, 8S2A-F 18 “Quantifying signal 
orientation” & 21.7 
“Signal orientation for 
3D meshes”
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Video Captions

Video 1. Creation of a simple organ-centric coordinate system and its application 
on cellular data. Starting with two time points of an Arabidopsis sepal that have 
been lineage traced, the principal directions of growth are computed. Next, cells at 
the base of the sepal are selected to create a distance field which is used as a simple
coordinate system. The growth (areal extension) can then be computed along the 
directions defined along the organ-centric coordinate system. The organ 
coordinates can also be exported and used to plot different kinds of cellular data.

Video 2. Cell type classification using Support Vector Machines (SVMs). A 
selection of measures is calculated on a segmented mesh from an Arabidopsis 
gynoecium. A sampling of cells are then are labeled by hand, and used as training 
data. The cell type for the rest of the cells is then predicted automatically.

Video 3. Semi-automatic cell lineage tracking. A few cells from two time points 
from a time lapse of Marchantia are matched by hand. The other cells can then be 
determined automatically. trouble spots can be overcome by selecting a few more 
cells by hand and continuing the process.

Video 4. Animating time lapse data with deformation functions. A time lapse of 
Marchantia is used to demonstrate how deformation functions can be used to 
animate growth. Cells are colored by areal growth rate.

Video 5. Creating an animation. Key frames are saved and used to provide steps 
for an animation which can then be played back. 

Video 6. CNN cell wall prediction and segmentation. Using an Arabidopsis flower 
meristem, a convolution neural network (CNN) is first used to improve the cell 
wall signal. The mersitem is then segmented into cells, and a 3D mesh created. 

Video 7. Calling R from MorphoGraphX. A time lapse of an Arabidopsis leaf is 
used to demonstrate how to create heat map data for analysis and plotting in R.
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