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Abstract 10 

Deep learning-based methods have recently provided a means to rapidly and effectively extract various 11 

plant traits due to their powerful ability to depict a plant image across a variety of species and growth 12 

conditions. In this paper, we focus on dealing with two fundamental tasks in plant phenotyping, i.e., plant 13 

segmentation and leaf counting, and propose a two-steam deep learning framework for segmenting plants 14 

and counting leaves with various size and shape from two-dimensional plant images. In the first stream, 15 

a multi-scale segmentation model using spatial pyramid is developed to extract leaves with different size 16 

and shape, where the fine-grained details of leaves are captured using deep feature extractor. In the 17 

second stream, a regression counting model is proposed to estimate the number of leaves without any 18 

pre-detection, where an auxiliary binary mask from segmentation stream is introduced to enhance the 19 

counting performance by effectively alleviating the influence of complex background. Extensive pot 20 

experiments are conducted on the CVPPP 2017 Leaf Counting Challenge dataset, which contains images 21 

of Arabidopsis and tobacco plants. Experimental results demonstrate that the proposed framework 22 

achieves a promising performance both in plant segmentation and leaf counting, providing a reference 23 

for the automatic analysis of plant phenotypes. 24 
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1. Introduction 

 

30 

Plant phenotype is a set of observable traits of a plant, which is heavily influenced by the interaction 31 

between plant gene expression and environmental factor (Siebner et al., 2009). The accurate and efficient 32 

monitoring of phenotypes is essential for plant cultivation, which is a prerequisite for intelligent 33 

production and planting, and information/data management. The traditional monitoring of plant 34 

phenotype mainly requires manual observation and measurement to analyse the appearance of plants in 35 

terms of their shape, texture, colour and other characteristic morphological phenotypes (Minervini et al., 36 

2015; Montero et al., 2000). Such an approach is labour intensive, which is time-consuming and prone 37 

to error due to the reliance on subjective perception (Yang et al., 2020). Image-based plant phenotyping 38 

allows non-invasive and distant observation, reducing the effects of manual interference and vastly 39 

increasing the scale and throughput of plant phenotyping activities. However, it still requires a robust 40 

algorithm to automatically process the input image to provide accurate and reliable phenotypic estimation 41 

(Scharr et al., 2016). In addition, such an algorithm should be able to estimate a wide diversity of 42 

phenotypes, which allows for a range of different scientific applications. The current trend of image-43 

based plant phenotyping attempts to combine image processing (e.g., noise removal and image 44 

enhancement), feature extraction and machine learning to obtain effective and efficient estimation 45 

(Tsaftaris et al., 2016). In recent years, deep learning-based methods have made remarkable progress in 46 

the field of computer vision such as semantic segmentation, classification and object detection (Lecun et 47 

al., 2015). They integrate feature extraction and classification using a single convolutional neural 48 

network (CNN) based framework, which is trained in an end-to-end fashion. Due to their powerful ability 49 

to capture meaningful feature representation, deep learning-based methods are drawing more attention 50 

in the plant research community (Kundu et al., 2021, Dhaka et al., 2021) and have also been applied to 51 

deal with different tasks in plant phenotyping (Choudhury et al., 2019). 52 

Plant segmentation and leaf counting are two fundamental tasks of plant phenotyping as they are 53 

relevant to the developmental stage of a plant, and are considered essential means of providing vital 54 

indicators for the evaluation of plant growth (e.g., growth regulation and flowering time), yield potential 55 

and plant health. Moreover, they help farmers and horticulturists to make better decision regarding 56 

cultivation strategic and timely horticulture adjustments. Plant segmentation aims to extract the plant 57 

area, shape and size from a visual perspective by segmenting an entire plant from the scene background 58 

in an image. Such a task closely relates to the semantic/instance segmentation problems, and some59     



researchers have addressed this task using instance/semantic segmentation (Ren and Zemel, 2017; 

 

60 

Romera-Paredes and Torr, 2016; Ward et al., 2018; Zhu et al., 2018), achieving promising performance. 61 

Leaf counting aims to estimating the precise number of leaves of a plant. There are two mainstream ways 62 

to infer the leaf count or leaf number: 1) estimating the leaf number as a sub-product of leaf segmentation 63 

or detection (Girshick, 2015; Lu and Cao, 2020; Kumar and Domnic, 2020; Kong et al., 2020; Lin and 64 

Guo, 2020; Tassis et al., 2021); and 2) directly regarding the task as a holistic regression problem 65 

(Dobrescu et al., 2017; Itzhaky et al., 2018; Ubbens et al., 2018; Mishra et al., 2021; Giuffrida et al., 66 

2018). The methods have successfully addressed the tasks of leaf segmentation and counting using 67 

machine learning and especially deep learning methods, which uncover the intrinsic information from 68 

plant images, even when they contain complex structure. However, they merely focus on a single task, 69 

i.e., learn one plant trait at a time. Thus, they might ignore the facts that plant phenotype traits tend to be 70 

associated with each other and lack the insight to the potential relationship between different traits 71 

(Gomes and Zheng, 2020). For instance, the leaf number is associated with the leaf area, age and 72 

genotype. We believe that incorporating multiple traits in the deep CNN architecture could be beneficial 73 

for learning more reliable and discriminative information than using only one trait. Dobrescu et al. (2020) 74 

presented a multi-task framework for leaf count, projected leaf area and genotyping, where they compute 75 

three plant traits at the same time by using the share representation layers. However, they did not address 76 

the tasks of plant segmentation that is more challenging due to the requirement of classifying all the 77 

leaves (foreground) pixel by pixel. 78 

CNN based methods have been applied to plant and leaf segmentation in plant phenotyping. Aich 79 

and Stavness (2017) used a CNN based deconvolutional network for plant (foreground) and leaf 80 

segmentation. Kuznichov et al. (2019) utilised data augmentation technology to maintain the geometric 81 

structure and physical appearance of plant in images to improve the leaf segmentation. Bell et al. (2019) 82 

employed a relatively shallow CNN model to classify image edges extracted using Canny edge detector, 83 

which distinguished the occluding pairs of leaves. Ren and Zemel (2017) adopted recurrent neural 84 

network (RNN) to generate a single segmented template for each leaf and combined convolutional long 85 

short-term memory (LSTM) network using spatial inhibition modules. They then used dynamical non-86 

maximal suppression to leverage the previously segmented instances to enhance the segmentation. 87 

Although achieving promising results, these methods use the shallow CNN model, which is inadequate 88 

to capture the meaningful information of the diversity of plant images. Moreover, all methods concentrate89     



on addressing the single task, i.e., leaf/plant segmentation in an independent pipeline. 

    

90 

Image segmentation using deep learning has gained a significant advance, and a few benchmark 91 

methods have been proposed. Fully convolutional networks (FCN) (Long et al., 2015) and U-Net 92 

(Ronneberger et al., 2015) are two representative models that are based on the encoder-decoder network 93 

architecture. Both of them share a similar idea, i.e., using skip connection, that shows the capability to 94 

capture the fine-grained characteristics of the target images. FCN summed the up-sampled feature maps 95 

with feature maps skipped from the encoder, while U-Net modified the way of feature concatenation by 96 

adding convolutions and non-linearities during each up-sampling step. Another mainstream work is using 97 

spatial pyramid pooling ideas. PSPNet employed a pyramid parsing operation that captures global 98 

context information by region feature aggregation (Zhao et al., 2017). DeepLab (Chen et al., 2017) 99 

introduced the atrous convolution with up-sampling filter for feature extraction, and extended it using 100 

spatial pyramid pooling to encode the multi-scale contextual semantics. However, the various scale 101 

pooling operations tend to lose local spatial details and will fail to maintain leaf target with high density 102 

if a small input size is adopted. The Mask Region Convolutional Neural Network (Mask-RCNN), 103 

proposed by He et al. (2017), extended the region proposal network by integrating a branch to predict 104 

segmentation mask on each ROI. Mask RCNN can segment the object with pixel-wise mask from a 105 

complicated background, which is suitable for the leaf segmentation. Thus, we developed our network 106 

model based on the backbone architecture in Mask-RCNN and simply replaced the plain skip connection 107 

with a nested dense skip pathway to enhance the ability to extract more fine-grained features in leaf 108 

images. 109 

Leaf counting is also an important task in plant phenotyping, since leaf count is considered as an 110 

indicator for yield potential and plant health (Rahnemoonfar and Sheppard, 2017). From the perspective 111 

of computer vision, leaf counting can be addressed along two different lines: 1) Regarding leaf counting 112 

as the sub-product of leaf segmentation or detection, leading to the leaf number following the 113 

segmentation module; and 2) Directly learning an image-to-count model to estimate the leaf number 114 

using training samples. 115 

Direct count. Leaf counting is regarded as a holistic regression task, in which a counting model estimates 116 

the leaf number for a given plant image. In this way, the machine learning based regression model solely 117 

needs the annotation of leaf number, which is an easier way to obtain compared with the pixel-wise 118 

annotations using segmentation. Dobrescy et al. (2017) presented a counting framework employing the 119 



ResNet50 backbone (He et al., 2016), in which the learning of leaf counting is performed by gathering 

    

120 

samples from multiple sources. Itzhaky et al. (2018) proposed to estimate the leaf number using multi-121 

scale representations and fuse them to make the final predictions. Ubbens et al. (2018) presented an open-122 

source platform which aims to introduce a more generalised system for plant breeders, which can be used 123 

to count leaves across different datasets, as well as to assist other tasks e.g., projected leaf area and 124 

genotype classification. Silva and Goncalves (2019) constructed a CNN based regression model to learn 125 

from images, where the skip connections of Resent50 (He et al., 2016) are considered efficient for leaf 126 

counting. Direct count could be a natural and easy selection as it is not necessary to annotate the image 127 

when training. 128 

Counting via detection or segmentation. This approach regards the leaf counting problem as a sub-129 

product of detection or segmentation, where the exact locations and number of the leaves are also 130 

obtained after detection or segmentation. Romera-Paredes add Torr (2016) proposed to learn an end-to-131 

end segmentation model using RNN, that segments each leaf sequentially and then estimate the number 132 

of segmented leaves. Aich and Stavness (2017) used a CNN based deconvolutional network for leaf 133 

segmentation and a convolutional network for leaf counting. Kumar and Domnic (2019) developed a 134 

counting model with the combination of CNN and traditional methods, where graph-based method is 135 

used for U-Net segmentation and CNN-based is then used for leaf counting via a fine-tuned AlexNet. 136 

Ren and Zemel (2017), propose a neural network using which visual attention operation to jointly learn 137 

the instance segmentation and counting model, where sequential attention using LSTM cell is created by 138 

using temporal chain to output one instance at a time. However, such a segmentation or detection-based 139 

method has one limitation for counting. That is, only successfully segmented leaves are counted, and 140 

imperfect detection will result in reduced accuracy in counting. Unlike the aforementioned methods, we 141 

employ the segmented binary image to guide the learning of leaf counting, i.e., not counting directly 142 

from the segmented image, thus avoiding the effect of inaccurate detection or segmentation on the 143 

counting task. 144 

In this paper, we present in this paper a two-steam framework, one stream for plant segmentation 145 

and the other stream for leaf counting based on regression. The resultant mask from segmentation stream 146 

is leveraged to guide the learning of leaf counting, which help to alleviate the inference of complex 147 

background. In order to obtain more semantic and meaningful feature representation of plant images, we 148 

employ the deep CNN as the model backbones of both two streams. By using the CNN paradigm, the 149 



two-stream model is robust and generalizes well regardless of the plant species and the quality of the 

 

150 

acquired image data. This is achieved by one stream task supervises the training of the other stream task 151 

via sharing certain knowledge. To this end, we employ the segmented binary mask from the plant 152 

segmentation stream as an auxiliary cue to optimise the training process of the leaf counting stream. 153 

Introducing the binary mask to supervise the learning of leaf counting is based on two issues that 154 

exclusively exist in plant leaf counting: 1) some leaves might be partially occluded by other leaves, or 155 

are incomplete and fragmentary on their own, making them difficult to detect; and 2) the leaves 156 

sometimes contain the complex background, increasing the challenge in leaf counting. These two issues 157 

led to incorrect or missing count where the meaningful and useful information of leaf is hard to maintain 158 

during the leaf counting. The binary mask effectively deals with these two issues by precisely locating 159 

all individual leaves while alleviating the effect of complex background. In addition, the binary mask of 160 

image samples brings more diversity of the input images by increasing the number of samples, which 161 

could be regarded as an implicit data augmentation. 162 

Specifically, in our proposed framework, a two-stream deep neural network model segments the 163 

leaves and counts the number of leaves, where the segmented binary mask is employed as an auxiliary 164 

cue to supervise the learning of leaf counting. In the stream for segmentation, a multi-scale based 165 

segmentation network is proposed to extract fine-grained characteristics of leaves. In the stream for leaf 166 

counting, we propose to learn a regression model based on the fine-tuned CNN model. During the 167 

learning of leaf counting, the segmented mask is utilized to highlight the target leaf region (foreground) 168 

of interest (ROI) from the entire image by removing the disturbance of complex background (i.e., non-169 

leaf area, thus facilitating the counting process. 170 

The contributions of this study are summarized as follows: 171 

1) we propose to explore fine-grained characteristics, i.e., high inter-class similarity and low intra-172 

class variations, widely existing in high throughput plant phenotyping that cause the failure in localizing 173 

the leaves within small area during segmentation. To address this issue, we introduce a multi-scale U-174 

Net segmentation model which compensates the upper-lower semantics difference by concatenating 175 

features in various scales. This model is learned in an end-to-end fashion, allowing for efficient 176 

segmentation of the leaves with different areas. 177 

2) we propose a two-stream network based on deep CNN architecture to complete the leaf 178 

counting together with plant segmentation, in which the model outputs the segmentation results and179 

 

 

    



directly estimates the leaf number. 

 

180 

3) we enhance the leaf counting by introducing the auxiliary binary information. The binary mask 181 

is utilised to supervise the leaf counting, which increases the contrast between the leaf target from 182 

background interference, and significantly aids the convergence of the counting regression model. 183 

The remainder of the paper is presented as follows: we review related work in Section 2, present 184 

our method in Section 3, provide the experimental results in Section 4 and discuss the conclusions and 185 

further work in Section 5. 186 

2. Proposed method 187 

We present a parallel two-stream network for determining leaf count and undertake segmentation 188 

simultaneously for the rosette-shaped plants as shown in Figure 1. The stream for segmentation adopts 189 

the nested U-Net (U-Net++) architecture (Zhou et al., 2018) as backbone to extract the target leaf region 190 

from the entire image using a binary mask. The stream for leaf counting learns the CNN based regression 191 

model which is customized by modifying its last layer to directly estimate the number of leaf where the 192 

segmented mask and original colour images with the leaf number label are mixed as input of the 193 

regression model. The streams for plant segmentation and count are designed separately first. The 194 

segmented binary mask denoting the area of leaf is used as a complementary cue to supervise the learning 195 

of the count regression stream. This is because the two key traits of the two streams, i.e., the area and 196 

leaf number are often related to each other. Incorporating the leaf area into the estimation of leaf number 197 

during the learning of deep neural network aids not only to learn more meaningful and essential 198 

information, but also alleviates the influence of complex background 199 
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Figure 1: The proposed parallel two-stream network combines leaf counting and segmentation tasks. Top 

 

210 

row: the modified Resnet50 regression model for leaf counting with 16 residual blocks. Remaining rows: 211 

U-Net++ for segmentation via multi-use of the features from different semantic levels (layers). Each blue 212 

box corresponds to a multi-channel feature map, and the green boxes represent copied feature maps. The 213 

arrows denote various operations. 214 

2.1 Plant segmentation module 215 

The segmentation module aims to extract the whole leaf area from the background. In order to 216 

enhance the robustness and accuracy of extraction, it is a necessity for the module to be in capacity to 217 

depict the characteristics existing in a plant image, i.e., fine-grained and variation in shape and size. To 218 

this end, we consider the nested U-Net as our backbone network for the segmentation. The nested U-Net 219 

model is proposed based on the U-Net that was originally proposed to meet the requirement on accurately 220 

segmenting medical images. Compared with the original U-Net model proposed by Ronneberger et al. 221 

(2015), the nested U-Net architecture replaces the plain skip connection with nested and dense skip 222 

connections, which can capture fine-grained information of the object in an image. Moreover, due to the 223 

up-sampling scheme, the U-Net model could locate leaves with different size and shape by using feature 224 

maps with different scales. By dealing with the characteristics in leaves, the nested U-Net is thus suitable 225 

for plant segmentation. Another problem needs to be addressed during training, namely the ROIs of plant 226 

segmentation comprise a relatively small segments of the entire image. Thus, negative samples (i.e., 227 

background pixels) are much larger than positive samples (i.e., leaf pixels), which resulted in an 228 

unbalanced binary classification problem. To address the problem, we integrate the binary cross-entropy 229 

(BCE) loss with dice loss together, and jointly guide the learning process of the segmentation. Generally, 230 

the nested U-Net consists of three main modules: encoding, decoding and cross-layers dense 231 

concatenation. The feature maps in the same size are defined to be of the same layer, denoting the layers 232 

as L1-L5 from top to bottom. Each node represents a feature extraction module consisting of two 3 × 3 233 

convolutional layers, followed by a rectified linear unit (ReLU) and a 2 × 2 max pooling that using stride 234 

2 for down-sampling. 235 

The output features from encoder are fused with the next encoder layer via up-sampling features 236 

across layers from top to bottom. The fusion outputs are concatenated with the corresponding up-sampled 237 

features of the next layer, and the process is iterated until there is no corresponding module in the next 238 

layer. The integrated feature maps are defined as239 
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where ℋ(·) denotes a convolution operation followed by an activation function, 𝒰(·) denotes an up-241 

sampling layer, and [] denotes the concatenation layer. Nodes at level j = 0 only receive input from the 242 

previous encoder layer; nodes at level j = 1 receive the encoder and sub-network input from two 243 

consecutive levels; and nodes j > 1 receive j + 1 inputs of which j inputs are the outputs of the previous 244 

j nodes in the same skip pathway and the last input is the up-sampled output from the lower skip pathway. 245 

The dense skip connections between layers in the same dimension pass the output of the current module 246 

to all subsequent modules and fuse it with other input features. Thus, the overall U-Net++ feature fusion 247 

structure is in the form of an inverted pyramid, where the intermediate layer contains more accurate 248 

localisation information, while the in-depth layer captures pixel-level category information. 249 

As a typical binary classification task, the core objective is to segment the plant image into a binary 250 

image by labelling the foreground and background pixels as 1 and 0, respectively. To overcome the class 251 

imbalance problem, BCE loss and Dice loss are combined to form the objective function to optimize the 252 

imbalance between the foreground and background pixels through back-propagation. Dice coefficient is 253 

a measure of the pixel degree of an ensemble, and the original expression takes the form of254 

𝑑 = ;|=∩?|
|=|6|?|

 (2)255 

where X and Y are sets, and s ∈ [0, 1], and the size of s reflects the similarity between the sets X and Y. 256 

The binary cross-entropy and dice coefficient are combined to form the final loss function, which is 257 

defined as258 
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where 𝑌BCL  and 𝑌DEFGL  denote the predict map and ground truth map of b-th image, respectively, and N 260 

denotes the batch size. 261 

The objective function takes the form of a logarithmic logic function as a replacement for the 262 

complex softmax multi-class prediction function. Forward propagation infers the prediction results and 263 

compares them with the true value annotations to generate cross-entropy loss. Backward propagation 264 

updates the model weight parameters. In this way, the task of plant segmentation is transformed into a 265 

binary classification problem that is suitable for plant segmentation. The re-designed skip pathways take 266 

effect on the output of the fused features and simplify the optimisation on the shallow, middle and 267 
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profound output results for varying degrees, via tuning the overall parameter of the network. 268 

2.2 Learning count model with segmentation 269 

During leaf counting, the estimated number of leaves tends to exceed its ground truth. This is 270 

because the lower part of a leaf might be occluded by other leaves, or the leaves are incomplete and 271 

fragmentary on their own, which would be ignored by the counting model. To address this problem, we 272 

introduced the auxiliary cue, i.e., the segmented mask to guide the learning of the counting model. Also, 273 

it is widely acknowledged the counting model could fail due to the lacking of available samples belonging 274 

to certain class in the training dataset. The labelling for leaf counting is also time-consuming. Such data 275 

scarcity is often met in the data-driven methods such as deep learning. Thus, we augmented the samples 276 

by combining the segmented mask and the original images, which enhance the model to effectively 277 

capture the occluded leaves and the hardly detected leaves in plant image under the assistance of 278 

segmented binary mask. 279 

Inspired by the work by He et al. (2016), we employed Resnet50 network as our backbone 280 

architecture due to its superb performance in image recognition. For our regression task, we modified 281 

the Resnet50 network by replacing the last layer with a fully connected layer with one-dimension output, 282 

which acts as a regression model for leaf counting. The modified network uses the combined samples 283 

from the segmentation mask and the original images as input, and applies convolution with a 7 × 7 filter 284 

followed by a series of convolutions, ending with fully connected layers to determine the number of plant 285 

predictions. Residual learning is also used to overcome the inefficient learning and the possibility of 286 

over-fitting due to deep network, where the skip connections resolve the degradation problem by taking 287 

the output of the previous layers as the input of the latter. For instance, when an input is x and the learned 288 

features are denoted as H(x), then the residual learning features is F(x) = H(x) − x. The stacked-layer 289 

learns new features on top of the input features, and a residual unit is given by 290 

 

𝑦] = ℎ(𝑥]) + 𝐹(𝑥],𝑊]), 𝑥]6* = 𝑓(𝑦])       

     

(4) 291 

where 𝑥] and 𝑥]6* respectively represent the input and output of the l th residual unit, and each residual 292 

unit contains multiple layers of structure. F represents the learned residual block, h(xl) = xl is the constant 293 

mapping, f is the ReLU activation function. Thus, the learned features from shallow l to deep L are 294 

𝑥b = 𝑥] + ∑b)*"3] 𝐹(𝑥",𝑊") (5) 295 

A chain rule is used to aid the reverse process of gradients, i.e.,296 
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where cfghh
cdi

 denotes the gradient of the loss function reaching L, the value 1 in the parentheses indicates 298 

that the shortcut connection mechanism propagates the gradient without loss, while other residual 299 

gradient passes through a layer with weights indirectly. In this context, 1 is selected to make the residual 300 

gradient easier to learn and thus avoid the gradient vanishing. 301 

To better train the regression model, we employed mean squared error (MSE) as the loss function. Given 302 

an image i and the ground truth leaf count 𝑦BC,m" , the loss function Lc is determined by303 

𝐿m =
*
o
∑o"3* .𝑦DEFG,m" − 𝑦BC,m" 8; (7) 304 

where m is the image number and 𝑦DEFG,m"  denotes the predicted leaf count. 305 

With respect to our regression task, the last fully-connected layer with 1000 neurons initially used 306 

for classification is replaced by a layer with a single neuron, which allows for the output estimation of 307 

leaf number. This neuron is to regress the correct leaf numbers given the input images. To obtain the rich 308 

prior knowledge, the regression net- work is pre-trained on ImageNet for parameter initialization, and 309 

then fine-tuned on the used datasets. Our regression model is shown in the top row of Figure 1. Note that 310 

the combination of segmentation and RGB images extends the input channel from 3 to 4. By extending 311 

the channel, an additional binary channel is added to the leaf count regression model to convey pure 312 

semantic information of leaf and suppress bias from features in the background of the training images, 313 

e.g., the soil, moss, pot, etc., that differ between datasets. At the same time, the RGB channels enable the 314 

network to retain the rich local texture and context information that the binary mask fails to capture, thus 315 

enhancing the robustness of our model. In addition, our regression model does not require any bounding 316 

box or centre point annotation, which can be efficiently applied to deal with more complex scenes. 317 

U-Net remains the preferred choice for the maintenance of fine edge binary segmentation. The 318 

design of skip connections greatly enriches the information received by the decoder, and via specially 319 

trained end-to-end, U-Net performs high-precision segmentation for small training samples. When 320 

applied in leaf segmentation, the architecture extracts the edge details, size, and shape diversity in the 321 

low-level information and uncovers the discriminative high-level in- formation of the target leaf. This 322 

advantage reduces the overall size of the dataset required for training. Furthermore, due to the effective 323 

reuse of extracted features and an ability to capture the targets, the architecture achieves an implicit data324 



argumentation and speeds up the convergence for the binary tasks during training. 

 

325 

However, since the leaf dataset (with sub-datasets A1-A4) varies in the degree of occlusion, leaf 326 

numbers and leaf size, we only combined the same-scale information not previously countered. 327 

Designing U-net with different depth for each layer may be an idea but such an approach has not been 328 

widely applied. To address this, we adopt U-Net++ (remaining rows of Figure 1) as the feature extractor 329 

for segmentation, which extends U-Net with denser cross-layer concatenation and shortens the semantic 330 

gap between the encoder and decoder by fusing spatial information from shallow to deep cross layers. 331 

The architecture makes full use of contextual features and semantic information from the same 332 

dimension, and it captures the detailed features of the target. Moreover, using the pruning scheme basing 333 

on the module which receives the best estimation during training, the network is adjustable and 334 

customisable. For instance, it is customised to the most suitable size and saves unnecessary storage space. 335 

This is equivalent to the maintenance of any useful feature we acquired and the distinctive design for 336 

each dataset in one end-to-end network. 337 

3. Experiments 338 

We thoroughly assess the effectiveness of our proposed framework on the widely used plant 339 

phenotyping dataset including its four sub-datasets (see Section 4.1). We conducted extensive 340 

experiments on both plant segmentation and leaf counting, and compared the performance of our method 341 

with the state-of-the-art methods for validation. We explored three segmentation architectures using three 342 

different backbone networks, i.e., MobileNet, ResNet, and VGGNet on the four sub-datasets, and 343 

compared our method with the state-of-the-art leaf segmentation methods. We also performed the 344 

experiments to demonstrate the effectiveness of the proposed leaf counting method, comparing it with 345 

the state-of-the-art leaf counting methods. 346 

3.1 Dataset and data pre-processing 347 

The dataset used in our experiments belongs to the Leaf Segmentation and Counting Challenge 348 

(LCC and LSC) held as part of the Computer Vision Problems in Plant Phenotyping (CVPPP 2017) 349 

workshop (Giuffrida et al., 2015). The dataset is divided into training set and testing set, which consists 350 

of 810 and 275 top-down view RGB images of either Tobacco or Arabidopsis plants, respectively. Both 351 

training and testing images are grouped into four folders, i.e., four sub-datasets which vary from the 352 

species and means of collection such as imaging setups and labs. The training sets include 128, 31, 27, 353 

624 images and the testing sets contain 33, 9, 65, 168 images for A1, A2, A3, and A4 respectively. The354     



sub-datasets A1 and A2 include Arabidopsis images collected from growth chamber experiments with 

 

355 

different field of views covering many plants and then cropped to a single plant image with the size of 356 

approximately 500 × 500 pixels. Sub-dataset A3 contains tobacco images at 2000 × 2500 pixels with the 357 

field of view chosen to encompass a single plant. Sub-dataset A4 is a subset of another public Arabidopsis 358 

dataset. The dataset provides the corresponding annotations in binary segmentation with 1 and 0 359 

respectively denoting plant and background pixels. All the folders contain the ground truth binary mask 360 

used for whole plant segmentation (i.e., semantic segmentation). For the experiment of plant 361 

segmentation, we follow the training strategy from (Aich and Stavness, 2017), and also use the 362 

combination of all sub-datasets (referred as to All) for training to achieve more robust model. 363 

In our work, we addressed two problems caused by a dataset as follows: 1) Deep learning based 364 

methods require a huge amount of training samples while the availability of the dataset of plant leaf with 365 

annotations is limited, causing data scarcity; and 2) Small and overlapping leaf instances brought a 366 

challenge for plant segmentation and leaf counting. Data augmentation is a widely used technique in 367 

deep learning to increase the number of samples and provide more diversity to the deep neural networks. 368 

In this context, we also employed data augmentation to address the above two problems. 369 

Moreover, we first reshaped the size of training images to 480 × 480 pixels and normalized. 370 

Following the resize operation, we conducted the following scheme for data augmentation: 1) Random-371 

Rotate with an interval of 90 to increase the network invariance to slight angular changes; 2) Flip: 372 

horizontal, vertical and horizontal+ vertical; 3) Resize the images to increase the network invariance to 373 

different image resolutions; 4) Gamma transform to extend the data by changing the image greyscale; 5) 374 

Random-Brightness: the clarity of object depends on scene lighting and camera sensitivity, thus random 375 

changing the image brightness improves the illumination invariance of the network; 6) Random change 376 

in the contrast range to increase the network invariance to shadows and improve the network performance 377 

in low light conditions; 7) Hue Saturation Brightness (HSV): changes in colour channels, degree of 378 

lightness or darkness of a colour; and 8) Normalise a characteristic linear transformation which scales a 379 

specific range of data values retaining the original data distribution. Selected augmentation processes are 380 

shown in Figure 2. 381 
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393 

394 

Figure 2: Augmentation samples for training the segmentation network to avoid the risk of over-fitting. 395 

396 

3.2 Implementation details and evaluation protocol 397 

All images from training set are randomly split into 2 sets for training and validation with the split 398 

ratio of 0.8 and 0.2, respectively. Images from testing set are used for evaluating the segmentation 399 

performance. We used the validation set to verify the hyper-parameters (see Table 1) during the training 400 

of the initial experiments. 401 

402 

Table 1: Hyper-parameters used for training403 

epochs 100 
Batch-size 4 
Optimizer Adam 
Learning rate 1e-3 
factor 0.1

404 

Network parameter setting. All our experiments are performed on the PyTorch platform with NVIDIA 405 

2080Ti GPU. We used the data augmentation to increase the number of samples as in Section 4.1. This 406 

module contributes to preventing over-fitting for the relatively small plant datasets and ensure the model 407 

produces promising results when segmenting on new data via learning multiple variations (Holmberg 408 

2020). The binary mask is transformed the same way, to maintain the consistency between images and 409 

annotations (except for the transform regarding colours). 410 

We randomly sampled 4 samples to form a mini-batch with batch size of 4 to guarantee the convergence 411 



of training. Adam is adopted as the optimizer for its fast convergence rate to train the model for a total 

	

412 

                

 

    

                      

of 100 epochs, where the results remain stable with no further improvement. The weight decay factor is 

 

413 

	

	

set to 0.0001 and the learning rate is constantly set as 0.001. 

 

 

 

414 

 

  

 

Metrics for segmentation. We employed the intersection of union (IoU) as the evaluation metric, which 

 	

415 

is widely used in segmentation. IoU is used to determine the spatial overlap between the segmented leaf 416 

region and its ground truth, i.e., 417 

	

IoU

	

(%) = stuv∩tpred s

 

  			 

stuvs6stpred s

 

 

 

 		 

 (8)418 

where Pgt and Ppred respectively denote the ground truth mask and the prediction mask. Due to the 419 

problem of class imbalance between positive and negative samples, it is insufficient to use accuracy as 420 

evaluation metric. For better evaluation, we introduced two more metrics: Precision and Recall. Precision 421 

is used to determine the portion of segmented leaf region pixels that matches with the ground truth, i.e.,422 

Precision (%) = ~t
~t6�t

× 100（9）423

Recall is used to determine the portion of ground-truth pixels present in the segmented leaf region, i.e.,424 

Recall (%) = ~t
~t6�I

× 100（10）425

where True Positive (TP), False Negative (FN) and False Positive (FP) respectively denote the number 426 

of leaf region pixels correctly identified, the number of leaf region pixels unidentified and the number of 427 

leaf region pixels falsely identified. 428 

Metrics for count. To evaluate how good a leaf count method is in estimating the correct number of 429 

leaves, we employed the regression metrics: Difference in Count (DiC), Absolute Difference in Count 430 

(ADiC), and mean squared error (MSE) calculated as follows:431 

DiC =
1
𝑚�

o

"3*

�𝑦��,�
(") − 𝑦����,�

(") � (11)432

ADiC =
1
𝑚�

o

"3*

��𝑦��,�
(") − 𝑦����,�

(") �� (12)433

MSE =
1
𝑚�

o

"3*

�𝑦��,�
(") − 𝑦����,�

(") �
;
(13)434

435 

3.3 Experimental analysis 436 

3.3.1 Segmentation analysis437 



In the first experiment, we evaluated the effectiveness of our segmentation model on plant images 

 

438 

by using different segmentation architectures and backbones for comparison. FCN8, PSPNet, U-Net are 439 

selected as the basic encoder and decoder architectures, where ResNet and VGG are used as backbones 440 

due to its good ability of depicting 2D images. The comparative segmentation performance in terms of 441 

IoU on the combination of all sub-datasets are provided in Figure 3. It is evident from Figure 3 that the 442 

segmentation results generated by our segmentation model outperforms the other architectures. Among 443 

different models, using VGG as backbone performs constantly better than using ResNet as backbone. To 444 

evaluate the performance of dealing with a variety of scenes, we evaluated our model on the four 445 

individual sub-datasets and the results are shown in Table 2). The U-Net++ performs significantly better 446 

than the state-of-the-art segmentation methods. For better illustration, the segmentation results for images 447 

in sub- dataset A1 using different models together with ground truth are shown in Figure 4. Although all 448 

the three semantic segmentation methods can obtain clear segmentation results on A1, the U-Net++ 449 

retains the boundary and detail information. For the relative scarce sub-dataset A3 which only contains 450 

27 tobacco images, the proposed method still shows a stable IoU. For each sub-dataset, the network 451 

generates segmentation results that are almost consistent with the corresponding binary template, from 452 

both quantitative and qualitative standpoints. 453 
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461 

Figure 3: Results of segmentation using Resnet50 and VGG16 as backbone in FCN, PSPnet, U-Net and 462 

U-Net++ architectures. 463 
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Table 2: Segmentation results on each sub-dataset and their com- bination using different basic 

 

468 

architectures469 

 IoU(%)  All A1 A2 A3 

 

    

 

A4

     FCN 93.95 93.45 89.17 88.51 92.23

      PSPNet 90.17 94.34 90.55 91.19 93.83

      U-Net 98.32 98.51 97.76 94.72 97.17

      U-Net++ 99.11 98.29 97.98 95.90 97.23
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480 

Figure 4: Comparing segmentation results on the same RGB image. 481 

During the training for segmentation, the sigmoid function produces outputs in the range [0...1]. 482 

While calculating the loss, greater weight is assigned for the boundary pixels. The weight map is then 483 

calculated using 484 

𝑤(𝐱) = 𝑤m(𝐱) + 𝑤4 ⋅ exp �−
(G�(𝐱)6G�(𝐱))�

;��

 

�（16） 485 

where wc(x) is the category weight based on the frequency of occurrence of each category in the training 486 

dataset; d1(x) represents the distance between the object pixel and the nearest boundary. d2(x) represents 487 

the same distance for the second nearest boundary. In our work, we set the threshold σ to 0.5 to obtain 488 

the segmentation weight map. The segmentation results using our method on different sub-datasets are 489 

shown in Figure 5. Our model generates the segmentation results that are almost coincident visually with 490 

the ground-truth mask for each sub-dataset. For A3 sub-dataset which only contains 27 tobacco images491 



with small leaf area, our method still shows a stable segmentation result. The results show our method 

 

492 

effectively addresses segmentation under various scenes, i.e., with occlusions, small leaf area, and large 493 

leaf area, demonstrating good robustness. 494 
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Figure 5: Segmentation result for each sub-dataset, with the corresponding IoU provided at the right 508 

We also compared the convergence rate of different segmentation models. The curves of the 509 

precision, recall, training cross entropy (CE) loss, and IoU are shown in Figure 6. The figure shows that 510 

all four networks selecting VGG16 as the encoder for feature extraction achieve good IoU scores 511 

consistently. In addition, Figure 7 visualises the feature extraction process of our method using UNet++ 512 

with VGG from the early to late epochs. The process of feature extraction is smoother and faster to reach 513 

the convergence, which shows VGG can capture the meaningful representations for leaf images. 514 
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Figure 6: Convergence curves for accuracy, loss and IoU score on the validation set during the training 522 

process, for comparison in terms of accuracy and convergence rate.523 

 

524 

Figure 7: Visualization for the feature extraction process of our method, arranged by time series from 525 

the early to late epochs. The first to third line images respectively show the predicted images, ground 526 

truth images and transformed RGB images. 527 

We compared the proposed segmentation model with the other state-of-the-art method that 

 

 

 

528 

performed the experiment on plant (foreground) segmentation, i.e., SRGB (Aich and Stavness., 2017) 529 

using three metrics, i.e., Precision, Recall and IoU. and the results are shown in Table 3. Our method 530 

outperforms the SRGB method on two metrics, achieve the high performance on IoU. The results suggest 531 

that our approach is very effective for plant segmentation task in plant phenotyping. 532 

Table 3: Segmentation Results on each sub-dataset and their combination using different basic 533 

architectures534 

SRGB Ours

           All A1 A2 A3 A4 All A1 A2 A3 A4

           Precision 0.92 0.98 0.94 0.80 0.96 0.99 0.99 0.99 0.99 0.99

           Recall 0.97 0.99 0.99 0.94 0.98 0.99 0.98 0.99 0.99 0.99

           IoU - - - - - 0.98 0.98 0.99 0.98 0.98

 

 535 

3.3.2 Leaf count evaluations 536 

In the second experiment, we evaluated the effectiveness of the proposed leaf counting method 537 

using segmented binary mask (referred as RGB+SBM). During the experiment, the number of input 538 

channels must be consistent with the input size of the backbone models, i.e., 3 channels. In this way, 539 

when a binary image with single channel is fed into the model, the values of the single channel are 540 

extended to three channels by duplication, forming an image with 3 channels. The resulting 3-channel541 



images are mixed with the RGB image samples to increase the number of training samples, facilitating 

 

542 

the stability of leaf counting. To validate the effectiveness of our counting model for leaf counting, we 543 

adopted different backbones for our leaf counting task, e.g., MobileNet, VGGNet, InceptionNet and 544 

ResNet, and report the results in Table 4. Moreover, to further explore the potential benefit of the 545 

auxiliary binary mask, we conducted an ablation experiments on with/without using the binary channel, 546 

and the result is also shown in in Table 4. In Table 4, RGB denotes the method without using the binary 547 

mask, while RGB+SBM denotes that our method using the auxiliary binary mask. It is observed from 548 

the table that the count model using the ResNet50 backbone performs the best among the backbones. 549 

The binary mask increases the count performance in all metrics, where the MSE drops from 0.89 to 0.04, 

    

 

    

 

 

 

550 

DiC from 0.02 to 0.01, and ADiC from 0.60 to 0.36. These results validate our assumption that binary 551 

mask improves the accuracy and robustness for the leaf count model, due to its capability to deal with 552 

background interferences. 553 

Table 4: Counting results using different backbones with or without the auxiliary binary mask on 554 

CVPPP 2017 dataset555 

 

 

 

Metric DiC
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MSE

 

 

 

 

 

 

 

 

 

  

 

 

Mobilenet

RGB

RGB+SBM

-0.30

0.13

0.66

0.46

0.98

0.64

InceptionNet

Rgb

RGB+SBM

0.29

0.20

0.61

0.43

1.20

0.54

 

 

 

 

 

 

 

 

 

  

 

 

VGGNet

RGB

RGB+SBM

0.20

-0.12

0.79

0.37

1.44

0.44

 

 

 

 

 

 

 

 

 

  

 

 

Resnet50

RGB

RGB+SBM

-0.12

0.11

0.60

0.36

0.89

0.42

  

 

For DiC, ADiC and MSE, a lower value is better. 556 

557 

558



 

559 

Figure 8: Comparison between the Coefficient of Determination in the implementation of scatter 560 

graphics 561 

We used the scatter diagram to visually illustrate the correlation between the estimated leaf numbers 562 

and their ground truth, and the results are shown in Figure 8, which is also for the evaluation of our 563 

regression model. The higher overlap between the scatter plots of estimation and the ground truth 564 

indicates a better agreement. Figure 8 shows that the binary mask significantly enhances the agreement 565 

between the ground truth and the estimation, as the error distribution in leaf count is constantly confined 566 

within smaller region. If directly doubling the number of the input samples by simple copy, referred as 567 

RGB *2, we find that the performance is almost the same as with the mixture of RGB and binary mask 568 

images. In the experiments, the time cost using double RGB images is higher than using the combination 569 

of RGB and binary mask images. Thus, we conclude that using the auxiliary binary mask to guide the 570 

leaf counting is a simple but effective way for improving the performance of counting. 571 

In addition, we reported the quantitative comparison of our leaf counting method with state-of-the-572 

art methods i.e., GLC (Giuffrida et al., 2015), IPK (Pape and Klukas, 2015), Nottingham (Scharr et.al., 573 

2016), MSU (Scharr et.al., 2016), and Wageningen (Scharr et.al., 2016), as shown in Table 5. For fair 574 

comparison, we used A1, A2, A3 from testing set for testing the counting performance. Overall, the 575 

proposed leaf counting model using segmented binary mask achieves the best performance with lower 576 

values in the metrics of DiC, ADiC and MSE. This shows the proposed counting model estimates the 577 

number of leaves with adequate accuracy and stability. 578 
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Table 5: Comparative evaluation of the proposed counting model with state-of-the-art methods

 

584 

  DiC ADiC MSE 

    

 

     IPK -1.9(2.7) 2.4(2.1) -

   GLC -0.51(2.02) 1.43(1.51) 4.31  

    Nottingham -2.4(2.8) 2.9(2.3) -

    MSU -2.3(1.8) 2.4(1.7) -

    Wageningen 1.5(4.4) 2.5(3.9) -

    Proposed RGB+SBM 0.11(0.98) - 0.36(0.93) 0.42

  
 
 
 

 

 

585 

4. Conclusions 586 

In this paper, we focus on dealing with two fundamental tasks in plant phenotyping, i.e., plant 587 

segmentation and leaf counting, and propose a two-stream deep learning framework for automatic 588 

segmenting and counting leaves with various size and shape from two-dimensional plant images. In the 589 

first stream, a multi-scale segmentation model using spatial pyramid is developed to extract the whole 590 

plant in different size and shape, where the fine-grained details of leaves are captured using deep feature 591 

extractor. In the second stream, a regression counting model is proposed to estimate the number of leaves 592 

without any pre-detection, where the auxiliary binary mask is introduced to enhance the counting 593 

performance by effectively alleviating the influence of complex background. Extensive experiments on 594 

a publicly available plant phenotyping dataset show that the proposed framework achieves a promising 595 

performance both in the task of plant segmentation and leaf counting, providing a reference for the 596 

automatic analysis of plant. Future work will focus in increasing the robustness of the tasks of 597 

segmentation and the counting to deal with varying environments. 598 
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